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Resumo

Critelli, R. Plasmas não-Abelianos fortemente acoplados em um campo mag-

nético Dissertacão de mestrado - Instituto de Física, Universidade de São Paulo, São

Paulo, 2016.

Nesta dissertação utilizamos uma abordagem via dualidade gauge/gravity para estudar

a dinâmica de plasmas não-Abelianos fortemente interagentes. Nosso objetivo último visa

aplicações para o plasma de quarks e glúons (QGP), cujo interesse científico cresceu

exponencialmente depois de sua descoberta em meados dos anos 2000 ao colidir-se íons

ultrarelativísticos.

Podemos enriquecer a dinâmica do QGP ao adicionarmos campos externos, como

o potencial químico (para exploração do diagrama de fases hadrônico), ou um campo

magnético. Nesta dissertação, tomamos como norte a exploração dos efeitos magnéticos.

De fato, acredita-se que campos magnéticos da ordem de eB ∼ 10m2
π sejam criados nos

estágios iniciais do QGP.

O observável escolhido para sondar possíveis efeitos do campo magnético no QGP

foi a viscosidade, em partes pelo famoso resultado η/s = 1/4π obtido holograficamente.

Utilizamos num primeiro momento uma caricatura da QCD, a N = 4 super Yang-Mills

para calcular o que muda na viscosidade com o advento do campo magnético. Devemos

salientar, contudo, que um plasma altamente magnetizado possui a priori sete coeficientes

de viscosidade (cinco de cisalhamento e duas volumétricas). Também exploramos, nesse

mesmo modelo, o potencial de um par pesado de quark-antiquark na presença de um

campo magnético.

Por fim, propomos um modelo holográfico fenomenológico mais semelhante a QCD,

sendo ele “calibrado” pelos dados da QCD na rede, para estudar a termodinâmica e a

viscosidade do QGP imerso num forte campo magnético.

Palavras-chave: dualidade gauge-gravity, plasmas não-Abelianos, fenômenos de trans-

porte, viscosidade.
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Abstract

Critelli, R. Strongly coupled non-Abelian plasmas in a magnetic field 2016. Dis-

sertation (M.Sc.) - Instituto de Física, Universidade de São Paulo, São Paulo, 2016.

In this dissertation we use the gauge/gravity duality approach to study the dynamics

of strongly coupled non-Abelian plasmas. Ultimately, we want to understand the proper-

ties of the quark-gluon plasma (QGP), whose scientifc interest by the scientific community

escalated exponentially after its discovery in the 2000’s through the collision of ultrarela-

tivistic heavy ions.

One can enrich the dynamics of the QGP by adding an external field, such as the

baryon chemical potential (needed to study the QCD phase diagram), or a magnetic

field. In this dissertation, we choose to investigate the magnetic effects. Indeed, there are

compelling evidences that strong magnetic fields of the order eB ∼ 10m2
π are created in

the early stages of ultrarelativistic heavy ion collisions.

The chosen observable to scan possible effects of the magnetic field on the QGP was the

viscosity, due to the famous result η/s = 1/4π obtained via holography. In a first approach

we use a caricature of the QGP, the N = 4 super Yang-Mills plasma to calculate the

deviations of the viscosity as we add a magnetic field. We must emphasize, though, that

a magnetized plasma has a priori seven viscosity coefficients (five shears and two bulks).

In addition, we also study in this same model the anisotropic heavy quark-antiquark

potential in the presence of a magnetic field.

In the end, we propose a phenomenological holographic QCD-like model, which is built

upon the lattice QCD data, to study the thermodynamics and the viscosity of the QGP

with an external strong magnetic field.

Keywords: gauge-gravity duality, non-Abelian plasmas, transport phenomena, viscosity.
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Chapter 1

Introduction

The so-called Standard Model (SM) is the state-of-the-art description for the basic

constituents of matter, having a striking success in describing physics phenomena up to

distances ∼ 10−17 m. The SM is built within the quantum field theory (QFT) framework,

whose physical objects are the fields and their respective excitations, i.e. the particles,

which can be either fermions (half-integer spin) or bosons (integer spin).

Putting aside the Higgs mechanism [1–4], responsible to give mass for the elementary

particles, one can separate, for practical and pedagogical reasons, the SM into two: The

electroweak sector and the strong sector. The electroweak sector embraces the leptons (e.g.

electron), the neutrinos, the massive vector bosons, and the photon; the strong sector is

concerned with the quarks and gluons. Furthermore, this idea can be formalized in terms

of group theory since the SM contains the following set of internal gauge symmetries

SU(3) × SU(2) × U(1), (1.1)

where SU(N) denotes the special unitary group of rank N . Above, the SU(3) represents

the strong interaction, while SU(2) × U(1) represents the electroweak sector1. Since the

focus of this dissertation is to unveil aspects in the strong interaction domain, we will

omit further explanations regarding the weak interactions.

The strong interaction gives rise to hadronic matter, formed basically by quarks and

gluons. Inside a hadron, such as the proton, one has an intricate interplay between quarks

and gluons, which is also responsible to maintain an atom cohesive. We call baryons

the hadrons formed by three quarks (e.g. proton), whereas meson is the designation for

hadrons with a pair quark-antiquark (e.g. pion)2.

1Note that the SM does not contain information about the gravity. Indeed, an experimental sign of
some quantum gravity effect is far beyond our reach once it requires energies to the order of the Planck
mass (MP ∼ 1019GeV/c2)

2A priori, there is no reason to limit the numbers of quarks inside an hadron, but only these two
classes of hadrons are stable. We remark, though, the recent discovery of the so-called pentaquark [5].

1
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The quantum chromodynamics (QCD) is the theory of strong interactions and it gives

the rules for how the quark and gluon fields interact. For example, one great triumph

of QCD is the correct calculation of a broad variety of states in the hadronic spectrum

[6]. However, due to its non-perturbative nature, the hadronic spectrum can only be

accurately calculated using lattice QCD [7], which is a computational method to explore

the non-perturbative aspects of QCD. On the other hand, using the celebrated properties

of asymptotic f reedom [8], one can access analytically, via perturbation theory, high energy

processes.

Another amazing feature of QCD is color confinement. Quarks and gluons have color

charge, the fingerprint of the strong interaction and, for some reason, nature forbids free

colored particles to exist. We can only observe their bound states, the hadrons. This puzzle

is also difficult to tackle because confinement is a non-perturbative property of QCD.

In our way to understand how the basic constituents of matter behave, we also want

to understand what happens when one increases the temperature T and density, i.e.

we wants to unfold the phase diagram of hadronic matter. In the context of hadronic

matter, the density is given by the baryonic chemical potential µB (see Refs. [9, 10] for

a review). The experimental exploration of this phase diagram is done by the means

of a heavy ion collision (HIC), in which the kinetic energy of the ultrarelativistic ions

is converted in temperature; nowadays the main operational facilities performing HICs

are the Relativistic Heavy Ion Collider (RHIC), and the Large Hadron Colider (LHC).

Alternatively, one could extract some data from the early universe (very high T , T ≫ mπ),

or from the dense stars (very high µB, around O (1 GeV) [11–13]), but it is a tougher task,

naturally.

It turns out that the phase diagram of the hadronic matter is quite rich. As one

increases the temperature, one will eventually end up with a hadron gas. Increasing

even more the temperature, this hadronic matter undergoes a (pseudo) phase transition

(crossover [14]), where the hadrons “melt” and one has a quark-gluon plasma (QGP). Ad-

ditionally, by increasing µB, one suspects the existence of a critical ending point (CEP)

along with the first order transition line. One also suspects that, for extremely large values

of µB, one has the so-called color superconductor [15].

The possibility of the quark-gluon plasma phase raised several theoretical questions

and answers. The experimental way to reach it, the community concluded, was colliding

two ultrarelativistic heavy ions, as mentioned before. A major result accumulated from

decades of efforts came in 2004, as in this year all the experimental collaborations at RHIC

made an announcement claiming that the QGP was formed in the heavy ion collisions

[16–19].Theoretical support was also released as well [20].

The most startling feature of this new state of matter is, perhaps, its extremely low
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shear viscosity to entropy ratio η/s, now supported by solid measurements and theoretical

predictions [21]. This value is also coherent with a naive estimate of what would be the

lowest possible value for η/s using kinetic theory and the uncertainty principle [22] (cf.

Sec. 2.2.2). For this reason, one often says that the QGP is the most “perfect fluid” ever

created. Furthermore, there has been great success in describing the strongly coupled

QGP using relativistic hydrodynamic evolution [23–25].

However, QCD perturbation techniques (pQCD) are not able to obtain such small vis-

cosity [26–30]. This is a compelling sign of the non-perturbative nature of the QGP formed

in these experiments. Also, lattice QCD is not suited for calculations of nonequilibruim

phenomena [31]. It is in this daunting scenario that the Anti-de Sitter/Conformal field

(AdS/CFT) correspondence [32–34] flourished because in 2004 a calculation performed

within this framework gave the following result for the shear viscosity of the maximally

supersymmetric SU(Nc) Yang-Mills theory (a.k.a. N = 4 SYM) in the strongly coupled

regime [35]3

η

s
=

~

4πkB

, (1.2)

which is close to what was estimated in RHIC, and later at the LHC. Such astonishing

result served as motivation for the enormous efforts made towards a better understanding

of the QGP using holographic dualities.

Just to emphasize how a “simple” heavy collision may reveal some of the most recondite

secrets of nature, we list briefly some of its possibilities:

• One can study a quantum field theory (QCD) at finite temperature in a labora-

tory. Unfortunately, there still no means to access the thermal electroweak sector,

basically because the energy required is just too high. However, a novel 100 TeV pp

collider may shed some light in the electroweak phase transition - See Ref. [36] for

a review.

• It might connects us with the origin of the Universe. Indeed, after the Big-Bang

(the first few seconds), the visible matter was a soup of quark-gluon plasma. In this

sense, one often refers to a heavy ion collision as being a little bang - although this

is misleading name since the energy scales of a heavy ion collision vastly differ from

the early universe.

• Relativistic hydrodynamics is far from being a natural extension of the Navier-Stokes

equation - see Ref. [37] for a review. It has many subtleties and (apparent) flaws,

mainly on its dissipative aspect - we explain this briefly in Sec. 2.1.1. Therefore,

3The number of colors is also infinite.
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the QGP formed in HIC represents a great opportunity to reveal how a relativistic

dissipative fluid behaves.

• The applications of the gauge/gravity duality may lead to some progress in string

theory.

In more recent years, it was perceived that in a peripheral heavy ion collision, there

may be the formation, for a short period of time, of the strongest magnetic field ever

created in laboratory with an upper limit around O(1019G) - or O
(

0.3 GeV2
)

in natural

units4, at the LHC [38–46]. Moreover, extreme magnetic fields are found in dense neutron

stars known as magnetars [47], and is very likely to have existed in the early universe

[48–50]. Extreme magnetic fields can considerably change the thermodynamics of the

QGP, and, in this sense, one is effectively adding a new B-axis on the phase diagram

[51–55]. Another characteristic effect of strong magnetic fields is the breaking of the

spatial isotropy, due to the appearance of a preferred direction along the B-axis; this

feature may have profound impact on transport coefficients, as we shall see in this work.

In summary, it is an auspicious time to investigate these magnetic effects, either with

lattice QCD, effective models, or the gauge/gravity duality [56–111].

Therefore, following the holographic spirit, we investigate in this dissertation the in-

terplay between the hot and dense matter, i.e. the QGP, with extreme magnetic fields -

That is our goal. More specifically, we investigate the dependence of shear and bulk vis-

cosities, and the potential between a quark-antiquark with respect the magnetic field. In

the end, we propose a holographic bottom-up model that emulates the QCD equation of

state (EoS) at µB = 0 and B 6= 0. A detailed resume of this dissertation is presented below

1.0.1 Dissertation’s briefing

Here we present how this dissertation is organized, and give a short summary of each

chapter.

We continue this introduction with the basics of the strong interactions involving

the QCD Lagrangian at zero temperature. Then, we review the formation and the basic

features of the QGP, with a focus on its low viscosity since we want to exploit this feature

in presence of a magnetic field in Chapters 5 and 6.

In Chapter 2 we perform a study of the shear viscosity and bulk viscosity, aiming

possible applications in strongly coupled non-Abelian plasmas, such as the QGP. For sake

of completeness, we also briefly discuss the kinetic theory’s formulation of shear and bulk

4To translate the magnetic field expressed in natural units to the CGS system of units, one may use
the fact that B(CGS) ≃ 1.69 × 1020 Gauss for (eB)(natural) = 1 GeV2.
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viscosities. This chapter serves as preparation for a more detailed study made in Chapter

5 and Chapter 6, in which we calculate the viscosities as functions of the magnetic field.

Chapter 3 is dedicated to introduce in some detail the gauge/gravity duality, which

will be our tool to deal with strongly coupled non-Abelian plasmas. As an instructive

exercise, we computed the isotropic shear viscosity from two different ways in Sec. 3.4;

the bulk viscosity is examined in Sec. 3.5.

In Chapter 4 we introduce the effects of a magnetic field on the QGP. Also, we intro-

duce here the important magnetic brane solution found by D’Hoker and Kraus [89–91] -

the gravity dual of magnetic N = 4 SYM, which is used in Chapters 5, 6 and 7. More-

over, this Chapter contains the discussion of how we deal with viscosity when one has an

anisotropy induced by the magnetic field, i.e. we learn that now one has seven viscosity

coefficients, being five shears and two bulks; this will be important for the subsequent

chapters.

In Chapter 5 we calculate the anisotropic shear viscosities of the strongly coupled

N = 4 SYM plasma in presence of a magnetic field, using the magnetic brane solution

developed in the previous Chapter. This Chapter is based on Ref. [93].

In Chapter 6 we calculate the two bulk viscosities of the strongly coupled N = 4 SYM

plasma in presence of a mangetic field using the magnetic brane background. Although we

argue that the non-vanishing trace of the magnetic brane could induce a bulk viscosity,

we found that both bulk viscosities vanish.

In Chapter 7 we calculated the anisotropic heavy quark-antiquark potential in the

presence of a magnetic field. Again, we have used the magnetic brane solution. This

chapter is based on Ref. [93].

The Chapter 8 is devoted to present a novel bottom-up non-conformal holographic

model, which is constructed upon the lattice results for the QCD EoS in order to emulates

the effect of an external magnetic field on the non-confromal strongly interacting QGP.

At the present stage, we have calculated some thermodynamic variables, such as entropy

density and pressure, and the anisotropic shear viscosity. This Chapter is based on Ref.

[97].

We close this dissertation in Chapter 9 where we present our conclusions and an

outlook.

1.0.2 Notation and conventions

To avoid possible misunderstandings, we define here our notation and conventions used

throughout this dissertation, if not otherwise specified.

We adopt the natural units system, i.e. c = kb = ~ = 1. The signature of the metric

is mostly plus, i.e. (− + + · · · ). We also adopt the Einstein summation notation, which
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means that two repeated indices are being summed, e.g.
∑

j ajb
j = ajb

j.

The greek indices (µ, ν, . . . ) run through all the space dimensionality. The latin indices

(i, j, k, . . . ) are reserved for the spatial dimensions, such as x, y, and so on.

Our Riemann curvature tensor is given by

Rα
βµν = ∂µΓα

βν − ∂νΓα
βµ + Γα

µσΓσ
βµ − Γα

νσΓσ
βµ, (1.3)

where Γα
µν is the Christoffel tensor, defined as

Γα
µν =

1

2
gασ (∂νgσµ + ∂µgσν − ∂σgµν) . (1.4)

Regarding the AdS5 space, whenever we use u as the “extra” radial coordinate, it is

understood that the conformal boundary is located at u = 0. On the other hand, if r is

used for the radial coordinate, the boundary is located at r → ∞.

The physical magnetic field on the magnetic brane context, following the previous

literature, is represented by B. However, following Ref. [97], we denote as B the physical

magnetic field in Chapter 8.
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1.1 Strong Interactions at zero temperature

This section reviews the basic aspects of QCD, which defines the interactions among

gluons (spin-1 bosons) and quarks (fermions with spin 1/2), and gluons among themselves.

The material covered here can be found in any QFT textbook [112].

The strong interactions are ruled by the QCD Lagrangian, which is obtained from

the SU(Nc) non-Abelian Yang-Mills theory, where Nc = 3 for the QCD, but is often

enlightening to leave the number of colors free.

The QCD Lagrangian is defined as being a Lorentz scalar in (3 + 1) dimensions, and

it is given by

L = −1

4
Ga

µνG
aµν +

Nf∑

f

ψ̄f (γµDµ −mf )ψf , (1.5)

where ψf (ψ̄f ) denotes the quark (antiquark) Dirac field, and mf its respective mass. The

number of flavors is represented by Nf . So far, there are six flavors for the QCD (quarks

up, down, strange, charm, bottom and top), but we usually consider only the first three

in general, since the rest of them are very heavy5. The covariant derivative Dµ is given

by

Dµ = ∂µ + igAa
µt

a, (1.6)

where Aa
µ are the gluon fields in the adjoint representation, ta are the generators of the

SU(Nc) group, and g is the coupling constant among quarks and gluons.

The structure Ga
µν is the non-Abelian Yang-Mills field strength, defined as

Ga
µν = ∂µAν + ∂νAµ + gfabcAaAb, (1.7)

where fabc denotes the structure constants of the group SU(Nc), [ta, tb] = fabctc. From

Ga
µν , we also deduce that the gluons (bosons) interact directly with each other, in oppo-

sition of what happens in QED, whose photons do not interact directly among them-

selves. Although we can condense in one equation the essence of the strong interac-

tions, it is extremely difficult to deal with it. For instance, for the gluon interaction

gluon + gluon → 8 gluon, at tree level, we need to take into account more than one

million Feynman diagrams [114]!

QCD, as well as the whole SM, is renormalizable. The beta function β(µ) ≡ µ∂g/∂µ

tells us how the coupling g(µ) evolves with the energy scale. For QCD (Nc = 3), at the

5The masses of the quarks are: mu = 2.3 MeV, md = 4.8 MeV, ms = 95 MeV, mc = 1275 MeV,
mb = 4180 MeV, mt = 173 GeV [113].
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1-loop level, it is given by

β(µ) = −
(

11 − 2Nf

3

)
g3

16π2
. (1.8)

Using the beta function, at 1-loop level, we have

g(µ) ∼ 1

ln µ
ΛQCD

, (1.9)

where ΛQCD ≈ 200 MeV is the intrinsic energy scale of the strong interactions, and µ is

the energy scale of the specific process.

From Eq. (1.9), one concludes that the interactions among quarks and gluons, rep-

resented by the coupling g, become weaker at high energies for Nf < 33/2 - this is the

property of asymptotic freedom [8]. With asymptotic freedom at hand, we can derive the

potential felt by the pair quark-antiquark VQQ̄ for short distances. The expression for VQQ̄

is [112]

VQQ̄ = −4

3

αs

r
, (short distances). (1.10)

Naturally, the above potential does not hold for long distances, i.e. when one has to

deal with the non-perturbative regime of QCD, which is evidenced by the increase of g(µ)

as we diminish the energy scale. Fortunately, lattice QCD is able to capture this static

potential between the QQ̄ pair and the result is generally parametrized by the so-called

Cornell potential [115]

VQQ̄ = −4

3

αs

r
+ σr, (1.11)

where the linear factor σr is responsible for color confinement. Also, we say that σ is

the string tension, because of the string flux-tube of the chromo-eletromagnetic charge.

Moreover, there are some effective models to deal with the non-perturbative aspect of the

QCD, such as the MIT bag model [116], the Nambu-Jona-Lasinio [117,118] model, etc.

Since the Chapter 7 is devoted to the study of the Q̄Q potential immersed in a magnetic

field, it is worth to give some further theoretical details about the potential VQ̄Q. Using

standard tools in QFT, we can obtain Eq. (1.10) in, at least, two different ways. The

first one is to consider a simple tree-level Feynman diagram interaction of the QQ̄ pair

intemediated by a gluon; by comparing the result of this diagram, i.e. its S−Matrix,

with the Born-level potential for the nonrelativistic scattering, we are led to the result

(1.10) [112].

The other way to obtain VQ̄Q is using the so-called Wilson loop [119]. The Wilson loop

is a non-local but gauge invariant observable, whose structure is given in terms of the
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holonomy of the gauge connection. The explicit formula for the Wilson loop is

〈W (C)〉 = TrRPe
i
∮

C
Aµdxµ

, (1.12)

where Tr =Trace, R is the representation of the group SU(Nc), and P is the path-ordering

operator. Notice that (1.12) resembles the Aharanov-Bohm phase in quantum mechanics,

which is not a coincidence since the Wilson loop is the phase of a charged particle moving

through the contour C.

To investigate further the physical meaning of the Wilson loop (1.12), we take a

rectangular contour in, say, the tx−plane with sides T (t−axis) and D (x−axis). Taking

the limit T → ∞, we have

lim
T →∞

〈W (C)〉 = e−iT VQ̄Q(D), (1.13)

where D now is the distance between the Q̄Q pair. In a confining theory, such as the

QCD, as we increase the distance D the Wilson loop behaves like

〈W (C)〉 ∼ e−iσDT . (1.14)

Notice that the energy of the interaction is proportional to the loop’s area, i.e. there is

an area law for confining theories. Moreover, in his seminal paper [119], Wilson tried to

explain confinement (g → ∞) arguing that the links (pieces of the loop) in one direction

do not compensate links in opposite direction, but the flaw is that this is valid even for

QED. Thus, analytical approaches for the confinement problem are certainly an open

question.

The importance of the Wilson loop exceeds the mere QQ̄ potential calculation since

it also can be defined as an order parameter for phase transitions. We postpone further

discussions about this subject to the next section when we introduce temperature effects.

Moreover, in the Appendix E we revise the holographic calculation of this observable for

N = 4 super Yang-Mills at strong coupling [120–124].

Incidentally, the QCD Lagrangian has some additional symmetries. One very impor-

tant symmetry is the chiral symmetry. Decomposing the (lightest) quarks in left-handed

(L) and right-handed (R), and considering that mu
∼= md ≈ 0, we have the global symme-

try U(2)L ×U(2)R = SU(2)L ×SU(2)R ×U(1)V ×U(1)A, with the part SU(2)L ×SU(2)R

denoting the chiral symmetry; the U(1) symmetries are the vector and axial symmetries,

respectively6. Furthermore, chiral symmetry was spontaneously broken in the early uni-

6Actually, the vector and axial symmetries are only exact, at the classical level, in the chiral limit mu =
md = 0, once ∂µJ

µ
V ∝ m and ∂µJ

µ
A ∝ m. However quantum effects implies that ∂µJ

µ
A = g2

16π2 ǫ
αβγδGa

αβG
a
γδ

(chiral anomaly) [112].
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verse as the temperature cooled down below a certain critical temperature Tχ, which is

very close to the critical temperature (Tc) of the deconfinement phase transition. There-

fore, one may probe the restoration of the chiral symmetry in heavy ion collisions.

The pion is a Nambu-Goldstone boson associated with the spontaneous symmetry

breaking of chiral symmetry. However, since the masses of the u and d quarks are not

identically zero, the pion actually has a mass, which is

m2
π =

(mu +md)

fπ

〈ψ̄ψ〉, (1.15)

where fπ = 92 MeV is the pion’s decay constant. Hence, we usually say that the pion

is a pseudo Nambu-Goldstone boson. The term denoted by 〈ψ̄ψ〉 is known as the chiral

condensate, a non-perturbative observable per se, which spontaneously breaks the chiral

symmetry SU(2)L × SU(2) → SU(2)V to the isospin symmetry. Furthermore, the chiral

condensate is an intrinsic property of quarks in the fundamental representation.

1.2 The hot and dense QCD matter

In this section we begin to heat up ordinary hadronic matter until we observe a phase

transition leading to the QGP, which is the object of our studies. Also, we intend to pave

the way to Chapter 8 where we deal with the QGP thermodynamics in the presence of a

magnetic field.

The usual treatment in thermal QFT [125] is to Wick rotate the time coordinate, i.e.

t → iτ , so that the path integral formulation becomes a partition function,

Z =
∫

Dφ exp

[
∫ 1/T

0
dτ
∫

ddxL(φ)

]

. (1.16)

Since Z is the partition function, we can obtain information about thermodynamics using

standards identities of the partition function. However, none of this will be done in this

work. As will be clear along the dissertation, the gauge/gravity duality provides the same

information from a gravitational point of view.

We know that quarks and gluons are confined inside hadrons and there is no hope

to see them freely. Nevertheless, it was realized some decades ago that there are some

conditions under which quarks and gluons may be observed as the true degrees of freedom.

These scenarios are feasible in extreme conditions: very high temperature (melted hadrons)

or/and very high density (squeezed hadrons). In Fig. 1.1, which is a sketch of the phase

diagram for the hadronic matter, we present the current view of what happens in these
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extreme situations. Therefore, as one increases the temperature we have a (pseudo) phase

transition between the gas of hadrons and the QGP; on the other hand, for extremely large

baryonic chemical potential, we infer the existence of a color superconducting phase [126].

Figure 1.1: A sketch of the phase diagram of the hadronic matter. The yellow band near T = 150
MeV and µB = 0 MeV corresponds to the crossover region between confined/deconfined matter
probed so far. The BES-II refers to the Beam Energy Scan II RHIC’s program to search the
critical ending point (CEP) of QCD, planned to start soon [127]. Notice that we can reach
higher values of µB by decreasing the energy of the beam collider [128]. Also, for extremely high
values of µB, we have an intriguing phase known as Color Superconductor (CSC) phase, which
is likely to happen in very dense neutron stars [15]. Figure adapted from [129].

In order to estimate the critical temperature Tc transition between the hadronic con-

fined matter and the deconfined QGP, we shall use the crude but instructive bag model

with µB = 0. In this model, the QGP is treated as a free gas of fermions (quarks with

m = 0) and bosons (gluons), whilst the hadrons (confined phase) are regarded as “bags”

with an inward pressure PB locking the quarks inside the hadron. One can compute the

critical temperature by doing PQGP = PB.

To obtain PQGP we use standard quantum thermodynamics. The starting point is the

state density dn in an interval d3p,

dn =
d3p

(2π)2
gf(p) =

dp

(2π)2
4πp2gf(p), (1.17)

where g is the degeneracy factor. The distribution function f(p) is given by

f(p) =
1

ep/T ± 1
, (1.18)

where the plus sign is for quarks and antiquarks (Fermi-Dirac distribution), and the minus
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sign if for gluons (Bose-Einstein distribution).

Before we calculate the energy density, by integrating its differential dε = p dn, let us

derive what is the degeneracy factor for quarks (gq) and gluons (gg). For quarks (antiquarks

have the same degeneracy), we have

gq = Nspin
︸ ︷︷ ︸

=2

× Nc
︸︷︷︸

=3

× Nf
︸︷︷︸

=2

= 12, (1.19)

where we assumed contributions only for the lightest quarks, up and down. On the other

hand, the gluon degeneracy factor is

gg = Nspin
︸ ︷︷ ︸

=2

×N2
c − 1

︸ ︷︷ ︸

=8

= 16. (1.20)

The next step is to calculate the energy density εQGP ,

εq = 4πgq

∫ dp

(2π)3

p3

ep/T + 1
=

7π2gq

240
T 4, (1.21)

εq̄ = εq, (1.22)

εg = 4πgg

∫ dp

(2π)3

p3

ep/T − 1
=
π2gg

30
T 4 (1.23)

∴ εQGP = εq + εq̄ + εg. (1.24)

For an ultrarelativistic gas, the relation between the pressure (P ) and the energy

density (ε) is

P =
1

3
ε. (1.25)

Hence, to extract the critical temperature, we equate the above pressure with the bag

pressure,
1

3
εQGP = PB ⇒ Tc =

(
45PB

17π2

)1/4

∼ 140MeV, (1.26)

where we used P
1/4
B ∼ 200 MeV. Although this is a rough estimative, it is in agreement

with realistic calculations [10], though it misses the order of the transition.

Let us go back to the case of the Wilson loop, discussed in the previous section. As

mentioned already, the Wilson loop can be used as an order parameter for phase transition.

Actually, one defines the Wilson line, known as the Polyakov loop, which has the following

form

L(~x) =
1

Nc

TrP exp

[
∫ 1/T

0
Aτ (~x, τ)dτ

]

, (1.27)

where the integral is taken in the compact “time” direction with period 1/T , which is the
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usual in any thermal quantum field theory. For a pure gauge theory7, we can summarize

the important (qualitative) result of the Polyakov loop as being:

T < Tc : 〈L〉 = 0,

T > Tc : 〈L〉 > 0. (1.28)

Thus, we can regard 〈L〉 as an important observable in the crossover region. We can obtain

the respective critical temperature from the peak of the susceptibility, χL ∼ (〈L2〉−〈L〉2),

as depicted in Fig. 1.2. Moreover, we can infer that 〈L〉 ∝ e−Fq(T )/T , for T > Tc, where

Fq(T ) is the quark’s free energy.

The chiral 〈ψ̄ψ〉 condensate is also an order parameter that is related with the chiral

symmetry breaking, which is restored above some critical temperature Tχ; below this

temperature we have the formation of N2
f − 1 pions and other hadrons. Although Tχ is

not directly connected with the deconfinement critical temperature, it seems to be very

close to it. The Tχ can be obtained from the peak of the susceptibility χm = ∂〈ψ̄ψ〉/∂m,

cf. Fig. 1.2.

Our cutting-edge knowledge about this phase transition comes from lattice QCD [130],

which furnishes Tc ∼ 150 MeV. And very important, it gives us a crossover, which is not

a bona fide phase transition since all functions are smooth and analytical, i.e. there is no

discontinuity. We present some lattice results supporting these conclusions, including the

Polyakov loop and the quark condensate in Fig. 1.2, whose behavior is characteristic for

a crossover phase transition.

There is a plethora of observables from which one can extract information about the

critical temperature8. For instance, in Chapter 8, we calculated the critical temperature

as function of the magnetic field using the entropy density inflexion point.

Now that we have discussed some of the theoretical aspects of the confined-deconfined

phase transition, it is time to discuss the basics of a typical heavy ion collision, which is how

we can achieve high temperatures. Extensive reviews can be found in Refs. [24,25,132,133]

- in particular, we indicate Ref. [134] for the history of heavy ion collisions.

The first attempt to study experimentally hot and dense QCD matter began in 1971

with the Bevalac, the first heavy ion collider9 at the Lawrence Berkeley National Labora-

tory (LBNL); although the motivation at the time was to probe the partonic structure of

the nucleons, since in the 60’s it was understood that they were not fundamental. Some

7This is equivalent to assume quarks with infinite mass.
8It is not a problem that we have some slight difference between different critical temperatures,

obtained from different observables. However, it is a necessary condition that they coalesce to the same
Tc at the CEP.

9In general, the ions used to perform these experiments currently are lead (Pb) or gold (Au), and their
velocity at the collision is very close to the speed of light.
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Figure 1.2: Top figure: The energy density as function of temperature on lattice [131]. Notice
that we have an abrupt though smooth increase of the energy density in the crossover region;
with the asymptotic behavior (T >> Tc) being the Stefan-Boltzmann relation found in Eq (1.24).
Bottom-left figure: The expected value for the Polyakov loop 〈L〉 along with its respective sus-
ceptibility χL as function of the coupling β = 6/g2, with a clear sign of the deconfined phase for
T > Tc. Bottom-right figure: The quark condensate is monotonically decreasing, which means the
recovering of the chiral symmetry in the same region of the confined/deconfined phase transition
given by the other figures. Both figures were taken from [131].
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years later, the theoretical predictions for the fluid-like behavior of the QGP began to

appear [136]. The next facilities designed to perform heavy ion collisions were the Super

Proton Synchrotron (SPS) at CERN in 1981, and the Alternating Gradient Synchrotron

Booster (AGS) at the Brookhaven National Laboratory (BNL) in 1991. Currently, we

have two operational facilities, the Relativistic Heavy Ion Collider (RHIC) at the BNL,

with energy capability of 7.7 GeV .
√
sNN . 200 GeV, and the Large Hadron Collider

(LHC) at the CERN, with energy capability of
√
sNN = 5.02 TeV10.

We shall outline now what happens in a heavy ion collision and why expect the for-

mation of the QGP. To help the visualization, we sketched in Fig. 1.3 the time evolution

of a typical collision event.

Figure 1.3: The time evolution of a typical heavy ion collision. See the main text for the
explanation. Soon after the formation of the QGP, the temperature is about T ∼ 400 MeV.
Figure adapted from [135].

The first highly non-trivial situation is already the initial state (the first stage in Fig.

1.3). It is not a surprise, since we have ∼ 260 nucleons per ion at almost the speed of light,

and they will eventually interact with the other ion. The simplest way to model this initial

condition is using the so-called Glauber Model [137], in which we assume a Woods-Saxon

profile for the nuclei. A more sophisticated way to describe the initial state is using the

Color Glass Condensate (CGC) - see Ref. [138] for a review, which is an effective theory

for high energy QCD where the saturation scale Qs guarantees the validity of perturbation

theory, i.e. αs(Qs) ≪ 1, though the system is strongly correlated, due to its high occupancy

level11 . Moreover, the collision between two nuclei described by the CGC leads to the

glasma [139,140] formation.

The next stage is the thermalization of the glasma towards the strongly coupled quark-

gluon plasma (QGP). We must emphasize that the thermalization is not completely un-

10In his first run (2009-2013), the LHC operated with
√
sNN = 2.76 TeV.

11This is known as the saturation of the gluon fields [141]. One can infer the importance of the gluon’s
field from the Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution equation for the gluon’s density. Given
the gluon distribution function G, we have that G ∼ x− 4Nc ln 2

π
αs , where x is the usual Bjorken−x. Hence,

if we increase the energy (low x), the gluon’s occupancy grows [141].
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derstood yet, on contrary, it is a very active area of research, with recent studies using

tools from QCD [142], as well as some holographic approaches [143, 144]. Nevertheless,

we do know that thermalization is fast, i.e. τtherm ∼ 1 fm, and the initial temperature of

the thermalized QGP is about T ∼ 400 MeV. Furthermore, the initial conditions for the

hydrodynamic evolution of the QGP is provided by matching the energy,

T initial
µν (τtherm) = T hydro

µν (τtherm), (1.29)

where “initial” refers to some model (e.g. CGC) used to describe the early stages of the

collision. The QGP phase is the focus of this dissertation. The existence of the QGP was

announced by RHIC in 2004 [16–19]12.

Finally, we have the last stage, the hadronization of the deconfined matter. Concomi-

tant with its (fast) expansion, the QGP cools down and once it reach the transition

temperature, we have the formation of the bounded states - the hadrons. Eventually, this

hadron gas will reach a temperature such that all the inelastic collisions cease, which is

denoted as being the chemical freeze-out, since the hadron’s species are maintained af-

ter this threshold temperature. As the temperature keeps decreasing, one has the kinetic

freeze-out, wherein the elastic interactions cease (the gas does not interact any more) and

the momentum distribution and the correlation distributions are frozen. After the kinetic

freeze-out the remaining unstable hadrons decays and we have the stream of particles

measured by detectors. The theoretical description of this hadronization can be described

using, for example, the Hadron Resonance Gas (HRG) model [146].

The experimental evidences for the existence of the QGP in a heavy ion collision, are

related to:

• Jet suppression: In vacuum, a di-jet event has an equal distribution of energy among

its jets. However, the QGP acts like a medium that reduces the momentum/energy

from the jets, and we can measure this “jet quenching”. Jet quenching is an important

observable, which can be studied from the pQCD point of view (See Ref. [147] for

a review) assuming a weakly interacting QGP. To tackle the strongly coupled QGP

one can resort to holographic techniques [148,149], or lattice calculations [150].

• Elliptic flow: A well-defined elliptic flow is characteristic of the collective behavior.

We come back to this issue in Sec. 1.2.1 with further details.

Notice that we did not try to give further details of how this matter can be formed

inside neutron stars; the main reason is because the holographic methods developed in the

12There were some previous evidences for the QGP at SPS found by looking at the suppression of the
J/ψ meson [145].
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subsequent chapters are not capable (yet!) to deal with large µB. In the next subsection,

we will speak more about key issues regarding the viscosity of the QGP.

1.2.1 The viscosity of the QGP

Let us discuss now, in some detail, the striking feature of the smallness of the QGP

η/s. This discussion will motivate Chapter 2 which, in turn, will pave the way to tackle

the anisotropic viscosities due to an external magnetic field.

To connect the QGP formed in a heavy ion collision with its viscosity, we need to give

some further details about the geometry of the collision. In Figure 1.4 we have a schematic

non-central collision (also called peripheral collision). The parameter that characterizes a

peripheral collision is the impact parameter b, which is the distance between the centres of

two colliding nuclei; we do not measure the impact parameter experimentally, nor Nspec. or

Npartic (cf. Fig. 1.4). What is actually measured is the particle multiplicity in momentum

space, which is decomposed in terms of Fourier coefficients:

E
d3N

d3p
=

1

2π

d2N

pTdpTdy

[

1 + 2
∞∑

n=1

vn cos(n(φ− ψn))

]

, (1.30)

where E, pT , φ, and y, are the particle’s energy, transverse momentum, azimuthal angle

and rapidity, respectively. The angle ψn is the event plane angle. The vn is the Fourier

coefficient associated with the respective mode, with the first having specific names, i.e.

v1 is the direct flow, v2 is the elliptic flow, v3 is the triangular flow and so on.

When the QGP is formed in a peripheral heavy ion collision, it has initially an ellip-

soidal shape (almond). As time goes by, this formed ellipsoid will expand, faster in the

perpendicular direction of the collision (notice the momentum anisotropy on the left of

Fig. 1.4), generating the elliptic flow. We can formally represent the momentum asymme-

try using the eccentricity ǫ,

ǫ =
〈Txx − Tyy〉
〈Txx + Tyy〉 , (1.31)

where Txx and Tyy are the components of the stress-energy momentum tensor, with 〈. . . 〉
meaning that we are averaging it on the reaction plane. Intuitively, we can understand

the elliptic flow as being originated from the gradient pressure of the QGP formed in the

collision, with the large elliptic flow indicating that the partons of the QGP are interacting

strongly with small shear viscosity to entropy density (momentum diffusion).

The question of whether relativistic hydrodynamics can describe elliptic flow satisfac-

torily is “answered” in Fig. 1.5, which shows good agreement of the hydrodynamic model

with the experimental data. Notice that, from the data analysis, we have a very small
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Figure 1.4: A typical peripheral heavy ion collision. The number of spectators nuclei is given
by Nspec = 2A−Npartic, where A is the mass number of the ion. Figure adapted from [151].

shear viscosity (η/s = 0.2 [152])13.

Using the standard perturbative QCD, at the next-to-leading order, we have the fol-

lowing result for the viscosity [26,27]:

η ∼ T 3

g4 ln g−1
=⇒
g∼2

η

s
∼ 1. (1.32)

This value found is about one order of magnitude higher than the experimental values

of η/s, cf. Fig. 1.5. Thus, we have compelling reasons to believe that the QGP formed

in these heavy ion collisions is strongly coupled. Moreover, in Figure 1.6 we show the

expected behavior of (η/s)QGP and compare it with some other known fluids.

Therefore, the we can draw the following big picture for the QGP: We can compute

properties of the QGP using pQCD whenever the temperature is high enough and we

can compute these same properties for low temperatures when we the QGP is already

hadronized using some thermal model for hadrons [153,155] (the shear viscosity using the

HRG is done in Ref. [156]); it is the crossover region (strongly coupled regime) the source

of great problems.

More recently, physicists became aware of the importance of the bulk viscosity [158–

161]. Because QCD is not conformal, though it can be approximately conformal at high

13The value of the shear viscosity depends of the temperature. Consequently, we can have some devi-
ations of η/s as we vary the energy of the collision [153,154].
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Figure 1.5: Left panel: The success of the hydrodynamic modelling of the QGP (the red line
crossing the experimental dots). The IP+Glasma is the initial condition model, whilst MUSIC
is the hydrodynamic code that models the spacetime evolution of the QGP. Right Panel: The
experimental coefficients vn are in good agreement with the theoretical model for η/s = 0.2 (very
low viscosity). Figure adapted from [152].

temperatures, it is indispensable to build a non-conformal theory from a strong coupling

framework to model near crossover region. In addition, bulk viscosity affects directly the

value of the shear viscosity: If ζ grows then η has to decrease and vice-versa. Figure 1.7

shows a plot for the bulk viscosity [160] used in hydrodynamic simulations compared

with experimental data, which seems to be one order of magnitude above the holographic

calculations [163–172]. We return to the holographically computed ζ in Sec. 3.5.

1.3 A bump on the road: The gauge/gravity duality

String theory appeared in the late 1960’s as an attempt to describe the strong inter-

actions of mesons [173]. Despite its first success in describing the Regge trajectories of

mesons, it was overcome by the QCD. Nowadays, string theory is seen as a promising

theory of quantum gravity since it has a massless spin-2 particle in its spectrum.

However, after a Maldacena’s paper in 1997 [32], which connects a strongly coupled

conformal theory in four dimensions with a string theory in higher dimensions, string

theory returned as an attempt to describe the strong interactions. In a few words, Ref. [32]

conjectured a duality between N = 4 Super Yang-Mills theory in (1+3) dimensions with

the type IIB super string theory. This duality is known as the AdS/CFT correspondence,

since the N = 4 SYM is a conformal field theory (CFT), and the Anti-de Sitter (AdS)

space is the background solution of the supergravity action originated from string theory.

Soon after the publication of Maldacena’s paper, Witten [34], Gubser, Klebanov and
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Figure 1.6: The comparison of η/s for a variety of substances that admits a hydrodynamic
description. The “holographic bounds” are related to the KSS bound (3.95), and the possible
Gauss-Bonnet correction (3.108). Figure adapted from [162].

Figure 1.7: The newest estimation for the bulk viscosity of the QGP. The HRG circle-dots were
taken from [153], whilst the “QGP” square-dots refers to [161] Figure adapted from [160].

Polyakov [33] defined the map with more precise statements, allowing to “easily” extract

properties of strongly coupled systems. One remarkable result was the derivation of the

ratio η/s for the N = 4 SYM with infinite coupling and infinite number of colors [35]

η

s
=

1

4π
, (1.33)

with (η/s)sQGP being in the vicinity of this value. This remarkable result opened a new

window to explore non-equilibrium properties of strongly coupled theories, similar to

QCD.

The AdS/CFT correspondence is encompassed in a more general idea that relates

field theories to gravitational theories in higher dimensions. To introduce it, we remind

the reader that Bekenstein and Hawking [174, 175] taught us that the entropy of a black
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hole scales with its horizon area,

S =
Ah

4π
. (1.34)

The above result is intriguing because the entropy is an extensive quantity, i.e. it should

scale with the volume. This result inspired ’t-Hooft in his seminal paper [176] to propose

that the information is encoded on the boundary of the theory; later, this idea was per-

fected and vaunted by Susskind [177], giving origin to the holographic principle. Therefore,

AdS/CFT is the first serious realization of this holographic principle. This also explains

why we often refer to the AdS/CFT correspondence as being an holography.

The fact that the original Maldacena’s conjecture maps two highly symmetric theories

is good, in the sense that we have more control of quantities (“BPSness”), and we can test

some aspects of this conjecture more easily [178,179]. However, its very unpleasant to be

bounded only to the N = 4 SYM, since it is a highly symmetric theory, contrary to the real

QCD, which is a non-conformal theory and does not have supersymmetry. This scenario

naturally leads us to the pursuit of broader dualities with broken symmetries [180], going

from a more theoretical view (top-down constructions) [181, 182] to a phenomenological

approach (bottom-up construction) [183–187]. The agenda of connecting gauge theories

with gravitational theories in higher dimensions is also known as the gauge/gravity duality

[188].

In this dissertation we want to apply this gauge/gravity duality idea to strongly cou-

pled non-Abelian plasmas embedded in a magnetic field. We shall discuss its precise

formulation in Chapter 3 and apply it in the subsequent chapters in the case of including

a magnetic field. Chapters 4 (shear viscosity), 5 (bulk viscosity) and 6 (heavy q̄q potential)

utilize the gravitational dual of the N = 4 SYM in presence of a magnetic field developed

by D’Hoker and Kraus in Refs. [89–91], which is reviewed in Sec. 4.2. The final Chapter

8 introduces a bottom-up model that we developed which is designed to describe QCD

with magnetic field near the crossover temperature.



Chapter 2

Transport coefficients: the shear and

bulk viscosities

Now that we are more familiar with the properties of the QGP formed in a heavy ion

collision, it is time to perform a thorough study of the so-called transport coefficients. The

transport coefficients are important observables to fully characterize a medium, or a fluid,

in our case of interest. They arise to parametrize the response of the system under a small

perturbation: when the system is out of its equilibrium it undergoes dissipative processes

to return to the equilibrium, and the dissipation will be proportional to the correspondent

transport coefficient.

In this dissertation we are interested on the transport coefficients that causes dissipa-

tions on a fluid, i.e. the shear and bulk viscosities without other conserved charges such

as Jµ. Just to cite another example of transport coefficient, we also have the conductivity,

which is the measure of how well a system conducts some conserved charge under an

external influence; for instance, the electrical conductivity measures how well the system

conducts an electric current under an external electric field. Just to say the obvious, this

is the realm of non-equilibrium statistical physics.

Therefore, the next section will be devoted to analyse the underlying physics of dis-

sipative processes in a fluid from a macroscopic point of view, i.e. hydrodynamics [189].

The fluid mechanics (or hydrodynamics), is an effective theory, relying in small departures

from the equilibrium (long-wavelength), and trustful whenever the microscopic scale (e.g.

the mean free path of the molecules in a gas) is much smaller than the macroscopic scale.

Thus, we shall be able to connect the dissipative processes with some coefficients, the

transport coefficients. However, the fluid mechanics cannot derive these constants once it

is not a microscopic description, so they are obtained by experimental measures.

The section 2.2 introduces kinetic theory [190], which allows us to look at the mi-

croscopic foundations of (diluted) fluids. Although the calculations become harder, this

22
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theory bypasses the limitations of the macroscopic fluid mechanics because in the frame-

work of the kinetic theory, we can actually derive the transport coefficients. Nevertheless,

this method relies in how diluted the fluid is and how weakly the particles interact; as

outlined in the Introduction, the QGP seems to be a liquid, which severely constraint this

method. To circumvent this problem, we will use the gauge/gravity duality introduced in

Chapter 3.

The end of this chapter finishes in Section 2.3 with linear response theory, which relates

the transport coefficients with Green’s functions (“correlators” and “two-point functions”

are synonyms here). This is a very powerful tool to calculate quantities, once it does not

rely in assumptions such as weakly coupling and/or how diluted the fluid is. Indeed, this

formulation will be used to calculate all the transport coefficients (viscosities) throughout

this work.1

2.1 Dissipation in fluid mechanics

Let us start with ideal (non-relativistic) hydrodynamics [189], which is appropriate

when the viscosity (internal friction) and the thermal conductivity can be suppressed. In

this scenario, according to the standard theory of fluid mechanics, we need, along with

the equation of state, three equations to completely describe the fluid’s motion,

∂ρ

∂t
+ ∇ · (ρ~v) = 0, (2.1)

∂~v

∂t
+ ~v · ∇~v = −1

ρ
∇P, (2.2)

∂(1/2mv2 + ρε)

∂t
+ ∇ ·

[

ρ~v(1/v2 + h)
]

= 0, (2.3)

where ρ is the fluid’s density, ~v is the velocity, P is the pressure, ε is the energy density, and

h is the enthalpy. The first equation is the continuity equation, expressing the conservation

of the mass of the fluid. The second set of equations, (2.2), is Newton’s second law at

work, known as the Euler’s equations. The third equation takes into account the energy

balance of the fluid. Furthermore, all the quantities above should be regarded as fields at

some point (t, ~x) of the space-time, not the fluid itself, i.e. we are in the Eulerian picture.

In writing the fundamental equations of the fluid mechanics, we tacitly ignored an

external force density ~f . To remedy this, one could include this force in the RHS of the

Euler’s equations (2.2). For instance, if the fluid is under the effect of a gravitational

1Also, one can use kinetic theory to calculate the Green’s functions [191].
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field g, then, ~f = ~g; for plasmas, it is usual to have ~f = e(~v × ~B + ~E), where e is the

ion/electron charge, and ~B ( ~E) is the magnetic (electric) field.

To include the effects of the energy dissipation (closely related with the increase of the

entropy) in the fluid’s equations of motion, we have to alter the equations above. More

specifically, we alter the eqs. (2.2) and (2.3).

For the heuristic derivation of the viscous stress tensor Tij, we first rewrite the Euler’s

equations in the following way,

∂(ρvi)

∂t
= −∂Tij

∂xj
, (2.4)

where Tij = Pδij + ρvivj, is the momentum flux density. The question now is how to

add a dissipative term Πij for this flux density. For such task, we need some further

phenomenological considerations:

• Internal friction occurs when we have relative motion between the fluid’s con-

stituents. We expect then something like ∂ivj - a gradient in the fluid’s velocity.

Also, the friction vanishes for ~v = constant;

• Assume linearity in the dissipation with respect ∂ivj, in analogy with the stan-

dard classical mechanics. Fluids that obey this law are called Newtonian fluids. We

mention some non-Newtonian cases by the end of this subsection;

• For an uniform rotation, with angular velocity ~Ω, there are no frictions too. In this

case, the velocity ~v goes like ~Ω × ~r;

• For an isotropic fluid (or even with axial symmetry), Πij is a symmetric tensor.

Bearing in mind all theses assumptions, we can construct the following viscous stress

tensor,

Πij = η
(

∂ivj + ∂jvi − 2

D − 1
δij∇ · ~v

)

+ ζδij∇ · ~v, (2.5)

where D is the number of dimensions of the space and time, η is the shear viscosity, ζ is

the bulk viscosity2, and they are independent of the fluid’s velocity. These two viscosity

coefficients certainly depends of some parameters, such as the temperature (see Fig. 1.6

for the case of the QGP) but, as mentioned before, we cannot (yet) determine their values.

Moreover, notice that we arranged the tensor Πij in such a way that η is related with the

vanishing trace of Πij whereas ζ does not vanish if we take the trace of the viscous stress

tensor - this will always be the case, even for the magnetic scenario in Section 4.3.

2The shear viscosity η is also known as the dynamical viscosity, whereas ζ is also known as the second
viscosity.
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With the viscous stress tensor (2.5) at hand, we can finally modify Euler’s equations

(D = 3 hereafter),

∂~v

∂t
+ ~v · ∇~v = −1

ρ
∇p+

η

ρ
∇2~v +

1

ρ

(
1

3
η + ζ

)

∇(∇ · ~v). (2.6)

The above set of equations are the famous Navier-Stokes equations. Analytical solutions

for the Navier-Stokes are very challenging, as one can easily guess by looking at it, mostly

because of its non-linearity3; usually, one tries to perform some sort of approximation.

Last but not least, the dissipation effects enter as a scalar function in the energy equation

(2.3).

Another important feature of the shear and bulk viscosities is their positiveness, i.e.

η > 0 and ζ > 0. To arrive at this conclusion, we just need to check the rate of entropy

increasing due to the internal friction, whose formula is given by

T∂t(ρs) =
η

2

(

∂ivj + ∂jvi − 2

3
δij∇ · ~v

)2

+ ζ(∇ · ~v)2. (2.7)

Thus, taking for granted the second law of thermodynamics (s is the entropy density), we

conclude that η > 0 and ζ > 0. Moreover, the increase of the entropy (irreversibility) is

consonant with the fact that Πij breaks the time reversal symmetry.

After the discussion of the viscous stress tensor, it is time to think about what is the

physical meaning of the viscosities (see also [193]). Let us begin by studying the effects of

the shear viscosity.

For the shear viscosity, it is convenient to think of a laminar flow, as sketched in Fig.

2.1. In this case, when the fluid is Newtonian, the force per unit of area obeys the following

relation
F

A
= η

vx

d
, (2.8)

where vx is the x−component of the moving plate’s velocity, and d is the separation be-

tween the plates in Fig. 2.1. Thus, the fluid’s shear viscosity is a measure of the resistance

to flow or shear.

Additionally, shear viscosity (and bulk viscosity as well) describes momentum diffu-

sion. To see this, consider a fluid’s infinitesimal layer in the Couette flow (Fig. 2.1), and

then apply Newton’s laws along with (2.8). The result is

∂tpx − η

ρ
∂2

xpx = 0, (2.9)

3Indeed, the proof of existence and smoothness of the Navier-Stokes equations stands as one of the
millenium problems - see Clay Mathematics Institute [192].
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Figure 2.1: The schematic representation of a laminar flux induced by a moving boundary. The
gradient of the fluid’s velocity along the y−axis, induced by the friction with the moving plate,
will result in an internal friction between the “layers" of the fluid. This is known as Couette
flow.

where px is the x−component of the layer’s momentum . The above equation is the well

known form of the diffusion equation.

To see whether the shear viscosity is important or not, we cannot perform a naive

analysis by looking at only its absolute value; instead, we must analyse all the variables.

A simple way to do this is defining the Reynolds number (Re). If one neglects ∇ · ~v = 0

(incompressible fluid), the Navier-Stokes equations become4

∂~v

∂t
+ ~v · ∇~v = −∇p+

1

Re
∇2~v, (2.10)

where

Re ≡ ρ|~v|L
η

, (2.11)

with L being some macroscopic characteristic scale of the flow (e.g. the distance between

two plates). Thus, for Re ≫ 1, we can treat, in a good approximation, the fluid as being

inviscid.

In table 2.1 we provide some experimental values for η obtained from various elements.

The cgs physical units for the viscosity is the poise (P, 1P = 0.1kg.m−1.s−1), originated

from Jean Leonard Marie Poiseuille.

We turn our attentions to the bulk viscosity now. The bulk viscosity plays a major

role whenever we have an expansion of the fluid. This is evident once one notes that ζ

is always associated with ∇ · ~v, with the latter being different than zero for fluids being

4This is achieved by a simple rescalying: ~x → ~x
L , t → V

L t, ~v → ~v
V , p → p

ρV 2 .
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Table 2.1: Some selected fluids and their respective shear viscosity η. The values were measured
under temperature and pressure conditions of T = 300 K and P = 1 atm [194], respectively.

Element η (cP)
air 18.5
hydrogen 9.0
helium 20
Honey (non-Newtonian) 2000-10000

compressed (∂tρ 6= 0, from the continuity equation). Furthermore, this closely connects

the bulk viscosity with the sound speed cs, c
2
s ≡ ∂P

∂ρ
(or c2

s = ∂P
∂ε

for relativistic fluids).

Another very important aspect of the bulk viscosity is that it vanishes in conformal

field theories (CFT), as shown in Appendix B. In field theory, a conformal theory does

not have a characteristic energy scale (e.g. the particle masses), and this is represented

by the vanishing trace of the stress-energy tensor T µ
µ = 0; once one recalls that T µ

µ ∝ ζ it

becomes obvious that ζ has to vanish for a CFT.

In general, bulk viscosity can be of the same magnitude as the shear viscosity, and,

frequently, we have expressions relating both. For instance, a simple kinetic model of

the expanding (viscous) universe gives that ζ/η ∼ (1/2 − c2
s)

2 [195]. For the case of the

strongly coupled non-Abelian plasma, calculations within the gauge/gravity correspon-

dence, indicate the following relation between bulk and shear viscosity [165–168]

ζ

η
∼ 1

2

(
1

3
− c2

s

)

(2.12)

We shall return to the holographic case in more detail in Chapter 3.

Extreme viscosities

It is worth mentioning some further “extremal” cases. By extremal cases we mean

fluids with very high or low viscosity. In general, highly viscous fluids (liquids) deviate

from the Newtonian behavior. Moreover, as we increase the viscosity, the fluid begin to

behave as a type of plastic, or solid [196]; we have some grey zone between liquids, plastics

and solids. Fig. 2.2 illustrates the behavior of non-Newtonian fluids.

One prominent example which fits in the above description, is the asthenosphere. When

one studies the Earth’s structure, it is useful to divide it in different rheological layers (e.g.

crust, mantle and core); the asthenosphere is located just above the mantle and below

the lithosphere (very solid). Remarkably, the asthenosphere, though solid at first sight,

behaves like a highly viscous fluid (η ∼ 1020 poises!) over geological times [199], working

as a type of “grease” between the mantle and the crust.

Now, let us cool down the temperature until the nano Kelvin scale, and mention some
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Figure 2.2: Classification of some materials according to their response under a shear stress.
Recent holographic attempts to emulate a solid behavior in the context of the AdS/CMT is done
in Refs. [197,198]. This image was taken from [193].

novel fluids which possess a tiny viscosity. As one cool down certain alkaline metals,

through some laser beam trapping mechanism, we may have the formation of quantum

gases, such as ultracold fermi gas [162, 200], which are the prototype of a many-body

quantum system. An ultracold Fermi gas can be brought to a strongly coupled phase as

it condensates displaying a small value for the viscosity (superfluidity), in analogy with

the QGP. We ilustrate the elliptic flow of the fermi gas in Fig. 2.3.

2.1.1 The relativistic generalization

The relativistic generalization, in the sense of the special relativity5, of the viscous fluid

dynamics is not easy. If one tries to use a naive relativistic version of the Navier-Stokes

equations, one finds some very undesirable features, because now the theory is plagued

with instabilities (for boosted frames) and it does not respect causality [202, 203]. Here

we briefly discuss how these problems can be circumvented. For a complete discussion we

suggest Ref. [37].

For the relativistic case, we also start with the inviscid case. In this case, we have

the following equations for the fluid motions (supplemented by an equation of state,

ε = ε(ρ, P ), where ε is the energy density)

∂µ(ρuµ) = 0, (particle number conservation) (2.13)

5One could also consider the general relativity but, in order to simplify the discussion, we shall not
consider curved spacetimes here.
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Figure 2.3: Images of the time evolution of a ultracold fermi gas. The initial condition
(anisotropic pressure) resembles the one found in a non-central heavy ion collision. Moreover,
the sharp elliptic flow, which arises in the course of the time, is only possible for small values of
the viscosity η/s, like the QGP. The typical time scale of this experiment is about 1 mili second.
This image was taken from [201].

∂µ((ε+ P )uµuν) + Pgµν) = 0, (2.14)

where uµ = (γ, γ~v) is the fluid’s four-velocity, with γ being the Lorentz factor and uµuµ =

−1. Since the stress energy tensor is given by6

T µν = (ε+ P )uµuν + Pgµν . (2.15)

The second set of equations (2.14) expresses the local conservation of energy and momen-

tum.

The relativistic version of the viscous stress tensor for he Navier-Stokes theory is given

by

Πµν = −2η

(

wµν − ∆µν
θ

3

)

− ζθ, (2.16)

where wµν = 1
2

(Dµuν +Dνuµ), Dµ = ∆µα∂
α, ∆µν = gµν + uµuν (orthogonal projector),

and θ = ∂µu
µ.

Now, if one employs this viscous tensor in Eq. (2.14), just as done in the non-relativistic

case, the theory will suffer from instabilities and acausality [202, 203]. For instance, the

relativistic theories for viscous fluids, such as the Eckart and Landau-Lifshitz theories,

6Note that the stress tensor Tij is just the spatial components of the stress-energy tensor Tµν .
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predict that water, in room temperature, should explode in 10−34 s [203]!

So far, the most well succeeded way to fix these problems, is the so-called Israel-

Stewart theory [204,205], derived from some entropy argument that guesses correctly the

entropy current out of the equations. In this framework, we have a relaxation equation

for the viscous tensor rather than a simple algebraic relation. From the kinetic theory

point of view, one can obtain a relativistic hydrodynamic system from the truncation of

the gradient expansion, in which the Knudsen number (Kn ≡ lmicro/Lmacro) is the small

parameter [206] - this is the so-called Chapman-Enskog method; though, this expansion

leads to the (acausal and unstable) NS equations. A better way to proceed in kinetic theory

is to use the moments method [207]. For strongly coupled theories, the fluid/gravity duality

can provide useful insights to construct the gradient expansion in terms of spacetime

parameters [208]7

One can separate the shear/bulk (traceless/non-traceless) contributions for Πµν in the

following way

Πµν = πµν
︸︷︷︸

traceless

+ Π
︸︷︷︸

gµνΠµν/3

∆µν . (2.20)

Thus, in Israel-Stewart theory, the equation for the shear channel becomes

τπ

(

Dπ〈µν〉 +
4

3
θπµν

)

+ πµν = −2ησµν + . . . , (2.21)

where τπ is the relaxation time. We have defined also D ≡ uµ∂µ, and A〈µν〉 ≡ ∆µναβAαβ,

with ∆µναβ = (∆µα∆νβ +∆µβ∆να)/2−1/3∆µν∆αβ, for any second rank tensor Aµν . In this

equation, the time dependent variable is the tensor πµν = ∆µναβTαβ. The dots represent

higher order corrections of the theory; for instance, for an holographic calculation of the

7Let us comment on how the stress-energy tensor of fluids can be constructed from gravitational
arguments in the light of the AdS/CFT correspondence. Firstly, we write the thermal AdS5 metric in the
Fefferman-Graham coordinates,

ds2 = − (1 − u4/u4
h)2

(1 + u4/u4
h)u2

dt2 + (1 +
u4

u4
h

)d~x2 +
du2

u2
. (2.17)

.
The next step is to use the formula (6.1) [209–213] for the expected value of the stress-energy tensor

of the dual theory,

〈Tµν〉 =
g

(4)
µν

4πG5
= diag (ε, ε/3, ε/3, ε/3) , where ε ≡ 3

16πG5u4
h

. (2.18)

Hence, we obtained the stress-energy tensor of a conformal (ε = 3P ) ideal fluid in the rest frame.
Performing a rigid boost uµ in the metric, we obtain the ideal part for the stress-energy tensor,

〈Tµν〉 = (ε+ p)uµuν + Pgµν . (2.19)

We can gradually include higher gradient terms in the gravity side in order to obtain the dissipative
(higher gradient expansion) part of the fluid stress-energy tensor [208].
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second order transport coefficients, see Ref. [172].

For the non-vanishing trace contribution of Πµν , one has

τΠ(DΠ + θΠ) + Π = −ζθ + . . . , (2.22)

where τΠ is the relaxation time, and Π defined in Eq. (2.20).

2.1.2 Estimating the shear viscosity of liquids

So far, we were not able to infer some value for the shear and bulk viscosities. Indeed,

even nowadays we do not have a theory which enables us to derive them for liquids -

see [193] for a complete review. Of course, we do not have a quasiparticle description for

liquids, so it is really an astonishing fact that we are, perhaps, closer to compute η(T )

for the QGP than we are to obtain η(T ) for water from first principles. The analysis for

diluted gases is done in Section 2.2.

The complexity of the interactions between the molecules in a liquid stands as a great

challenge to derive η(T ). Each type of liquid has its own peculiarities and it would be a

ludicrous task to tackle them individually. What is done, in the vast majority of the cases,

to find the analytical expression for η(T ) of some liquid, is to resort to some empirical

method. For example, one takes the data for η(T ) of a liquid and then fits this data to a

function (e.g. η(T ) = Ae−BT ).

However, one can learn at least one lesson about η(T ) from Eyring’s pioneer work [214].

In this work, the dissipation rate comes from the filling of some vacancy (hole) by a

molecule; in this picture the liquid is like a crystal because the molecules can freely fill

(and leave) the holes. Thus, the shear viscosity depends on the activation energy E of

this process,

η ≃ hne
E

kBT , (2.23)

where n is the molecule density, h is the Plack’s constant and T is the temperature. The

important feature of this estimate is that η varies greatly with the temperature, which is

the opposite of what occurs in gases.

2.2 The kinetic theory’s point of view

In order to take a step further towards understanding the shear and bulk viscosities

of a fluid, one may look at short distance behavior, i.e. the microscopic foundations of

hydrodynamics [190]. As already emphasized in previous sections, this is mainly suited

for gases, as will be clearer below. Furthermore, this approach is a quasiparticle method,

since we consider the granulations (the molecules) to formulate the equations.
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The basic quantity to be considered here is the distribution function f(t, ~x,Γ), where Γ

covers the dependence on some other(s) possible(s) variable(s)8. The distribution function

gives us the statistics of the gas. For instance, the distribution for a classical diluted gas

at rest is given by the well-known Boltzmann distribution,

f0 = exp

(

µ− ε(Γ)

T

)

, (2.24)

where µ is the chemical potential, T is the temperature, and ε(Γ) is the energy per

molecule. For a quantum gas, we can have either the Fermi-Dirac distribution for fermions

or the Bose-Einstein distribution for bosons.

One extracts macroscopic (measurable) quantities from kinetic theory by taking aver-

ages (moments). For instance, the spatial distribution density of molecules is

N(t, ~x) =
∫

f(t, ~x,Γ)dΓ, (2.25)

while the macroscopic mean velocity of the gas is

~V (t, ~x) =
1

N

∫

~v(t, ~x,Γ)f(t, ~x,Γ)dΓ, (2.26)

among others.

Kinetic theory is concerned also with the evolution of the system through the course of

the time, i.e. how the distribution function evolves with time. This information is obtained

form the Boltzmann transport equation,

df

dt
= ∂tf + ~v · ∇f = C[f ]. (2.27)

The factor C[f ] appears on the RHS of the Boltzmann equation is the so-called collision

term. This collision term tells us how the molecules of the fluid interact, and, depending

of the interaction, the distribution function evolves differently with time. Assuming that

the molecular interactions are fast9 binary collision, and two molecules collide elastically,

one can write the collision term explicitly,

C[f ] =
∫

w(f ′f ′
1 − ff1)dΓ1dΓ

′dΓ1, (2.28)

where we assumed collisions of the kind Γ,Γ1 → Γ′,Γ′
1 (with the respective distributions

f ′, f ′
1, f, f1), meaning that we have inhomogeneities in the gas once Γ 6= Γ1. Of course, in

8The most common dependence is the momentum p. Indeed, to form the phase space, we need all the
conjugated momenta of the generalized coordinates.

9By fast, we mean that the interaction occurs in one point of the space-time.
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equilibrium Γ = Γ1 and C[f ] = 0 ⇒ df/dt = 0. The term w′ is related to the differential

cross section of the molecule’s interactions, dσ = w(Γ,Γ1; Γ′,Γ′
1)/|~v − ~v1|dΓ′dΓ′

1. Thus,

the Boltzmann equation (2.27) is a non-linear integro-differential equation.

For extensive reviews and studies of the Boltzmann transport equation, we suggest

Ref. [190]. Here, we shall only pinpoint the basics in order to extract the shear and bulk

viscosity in non-relativistic gases.

To solve exactly (2.27) is a tough task. Usually, we consider small departures from

equilibrium,

f = f0 + δf, (2.29)

where f0 is the equilibrium distribution (2.24) and δf is a small correction. A useful

parametrization for the correction is δf = f0χ/T , with χ being the unknown function.

Before we plug the correction in the Boltzmann equation, we recast its LHS in the

following way (see §6 of [190])10

T

f0

df

dt
=
ε(Γ) − cp

T
~v · ∇T +

[

mvivj − δij
ε(Γ)

cv

]

wij, (2.30)

where cp (cv) is the thermal capacity with constant pressure (volume), m the molecule’s

mass, and wij = 1/2∂(ivj) (we already met this structure in the viscous stress tensor (2.5)).

The above structure for the RHS of Boltzmann equation is very enlightening because we

have written it in terms of a (first) gradient expansion, with the thermal conductivity κ

being related with the gradient of temperature, and the viscosity coefficients, η and ζ,

being related with the gradient of velocity.

Substituting (2.29) into (2.27), and using the form (2.30), we have

ε(Γ) − cp

T
~v · ∇T +

[

mvivj − δij
ε(Γ)

cv

]

wij = I[χ], (2.31)

where

I[χ] =
∫

wf01(χ
′ + χ′

1 − χ− χ1)dΓ1dΓ
′dΓ′

1, (2.32)

is the linear operator for the collisions. Since we are not interested on the thermal con-

duction of the gas, we omit the temperature gradient contribution hereafter.

To calculate the viscosities, we split the traceless (shear channel) and non-traceless

(bulk channel) contributions of the velocity in the Boltzmann equation. This can be easily

10The assumptions behind this rearrangement involve the equation of state of the ideal gas and the
enthalpy h = cpT , which is valid for classical gases with no vibrational modes.
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achieved with the following procedure

[

mvivj − δij
ε(Γ)

cv

]

wij = mvivjw
ij − ε(Γ)

cv

∇ · ~v

= mvivj

(

wij − 1

3
δij∇ · ~v

)

︸ ︷︷ ︸

shear channel

+

(

1

3
mv2 − ε(Γ)

cv

)

∇ · ~v
︸ ︷︷ ︸

bulk channel

. (2.33)

Also, notice the similarity of the above equation with the viscous stress tensor (2.5).

Indeed, in kinetic theory, we define the visoucs tensor Πij as being

Πij =
∫

mvivjfdΓ. (2.34)

When calculating the shear viscosity, we neglect the bulk channel. Then, we end up

with the equation11

m
(

vivj − 1

3
δijv

2
)

wij = I[χ]. (2.35)

We will search for solutions of the equation above adopting the Ansatz

χ = Aijw
ij, (2.36)

where Aij(Γ) is a symmetric second rank tensor. Moreover, for a monoatomic gas, the ten-

sor Aij must depend exclusively of the velocity. Thus, the general form for this symmetric

tensor is given by

Aij =
(

vivj − 1

3
δijv

2
)

A(v), (2.37)

where A(v) is some unknown scalar function of v.

The equation for the shear channel reduces to

m(vivj − 1

3
δijv

2) = I[Aij]. (2.38)

Concerning the viscous stress tensor, if we plug the distribution function χ in (2.34),

we obtain its traceless dissipative part σij,

σij = −m

T

∫

vivjf0χdΓ = ηijklw
kl, (2.39)

ηijkl = −m

T

∫

f0vivjAkldΓ, (2.40)

At this point, we introduced the rank four tensor ηijkl; this object will be very important

11More precisely, one can divide the contributions of the transport coefficients κ, η and ζ, in the collision
integral as I[χ] = Iκ[χ] + Iη[χ] + Iζ [χ].
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in defining the viscosity within the context of anisotropic media - we discuss its properties

in Sec. 4.3. Because of the isotropic nature of the gas, the tensor ηijkl is symmetric under

the index exchanges: i ↔ j, k ↔ l, and ij ↔ jl. Thus, we can construct it as follows (the

traceless part)

ηijkl = η
(

δikδjl + δilδjl − 2

3
δijδkl

)

, (2.41)

so that σij = 2ηwij and, consequently, η is the desired shear viscosity coefficient. To

calculate η, we contract the the tensor ηijkl with respect to the pairs of suffixes (ij) and

(kl). Therefore ,the expression for the shear viscosity becomes

η = − m

10T

∫

vivjAijf0dΓ. (2.42)

Instead of solving the equation above12, let us here only analyze its physical content.

For such a task, we shall digress about key concepts of the kinetic theory.

A fundamental concept in kinetic theory is the mean free path, which we denote by

lmfp. The mean free path tells us how much, in average, a molecule travels in space before

colliding again with another molecule. Intuitively, lmfp should be small for a dense gas

and for molecules with large interactions. A simple dimensional analysis estimate gives

the relation: lmfp ∼ 1/(Nσ), where σ is the collision cross-section; if we consider the

molecular gas of hard spheres, then σ = πd2, with d being the molecule’s diameter.

Aside the mean free path, one may also define a relaxation time τ ∼ lmfp/〈v〉, called

mean free time. Bearing this in mind, we introduce the so-called Bhatnagar-Gross-Krook

(BGK) model [215]. In this approach, we approximate the collision integral by the expres-

sion

C[f ] =

(

∂f

∂t

)

coll.

= −f − f0

τ
, (2.43)

where τ is the relaxation time. Although this approach can be a good qualitative descrip-

tion of transport coefficients, it is not precise enough to determine an overall factor. Using

the BGK operator, the shear viscosity is

ηBGK = NTτ, (2.44)

with τ ∼ 1/(n〈v〉σ). So equivalently, one can write

η ∼ m〈v〉Nlmfp, (2.45)

12 One can obtain a fairly accurate solution by expanding the scalar function A(v) in terms of the
Laguerre’s polynomials [190].
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Using lmfp ∼ 1/(Nσ) and 〈v〉 ∼
√

T/m, one also obtains

η ∼
√
mT

σ
. (2.46)

We can compare quantitatively the BGK operator method with the solution of the

Boltzmann’s equations described in the footnote 12 [217],

(
η

κ

)

Bolt.
=

4

15
m,

(
η

κ

)

BGK
=

2

5
m. (2.47)

where κ is the thermal conductivity of the gas. As aforementioned, we see a significant

numerical disagreement due to accuracy limitations of the BGK method.

The result obtained by James C. Maxwell in 1860 [221] for the shear viscosity, which

is carried out in detail in Appendix A, is

η =
1

3
mn〈v〉lmfp, (2.48)

which is in agreement (up to some overall constant) with the previous discussion. The

most startling fact about the shear viscosity for dilute gases is its dependence with the

density - This fact is explicit in Eq. (2.46). This result had great importance to establish

confidence in kinetic theory [221].

We now come to the bulk viscosity. Returning to the expression (2.33), one considers

now the bulk channel,
(

1

3
mv2 − ε(Γ)

cv

)

∇ · ~v = I[χ]. (2.49)

In a similar way to what was done for the shear, we shall seek for solutions with the form

χ = A(v)∇ · ~v, (2.50)

so that
1

3
mv2 − ε(Γ)

cv

= I[A]. (2.51)

Thus,

ζ = − m

3T

∫

v2Af0dΓ. (2.52)

For monoatomic gases, we have ε(Γ) = 1/2mv2 and cv = 3/2, therefore, the LHS of Eq.

(2.51) is zero. Consequently, we have that ζ = 0 for non-relativistic monoatomic gases13.

In the next subsection we shall mention what happens in the relativitstic case, but it

is convenient to examine the ultrarelativistic (massless) case now. Using the fact that

13However, if we perform the virial expansion, which is some correction in the gas’ EoS in terms of the
gaseousness parameter Nd3, one obtains a nonzero bulk viscosity [190].
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3P = ε for ultrarelativistic gases, we see that (2.51) vanishes in this limit too, though, as

we shall see below, it does not in the purely relativistic case.

2.2.1 Relativistic Boltzmann equation

So far, we have only dealt with the non-relativistic case for the diluted gas since that

was enough to develop our intuition about the viscosity coefficients. However, the case

of bulk viscosity has some appeal, once it does not vanish in the relativistic case. Also,

the high energy physics requires the usage of the relativistic version of the Boltzamnn

equation.

The relativistic generalization of the Boltzmann distribution (2.24) is (see [218] for an

extensive review)

f0(p) = exp
(
uµp

µ − µ

T

)

, (2.53)

where uµ (pµ) is the four-velocity (momentum). This is also known as the Juttner-Synge

distribution function.

The relativistic version of the Boltzmann equation (2.27) is (in flat spacetime)

pµ∂µf = C[f ]. (2.54)

In this relativistic scenario, and using the BGK operator method, the shear and bulk

viscosities for a monoatomic (classical) gas are respectively given by (see section 2 of

Ref. [218])

η =
τ

15
βm54πeβµ

[

3
K3(βm)

(βm)2
− K2(βm)

βm
+K1(βm) −Ki1(βm)

]

, (2.55)

ζ = −τm44πeβµ

[

K2(βm)

(βm)2

(βm)2h′(βm) + βmh(βm)

(βm)2h′(βm) + 1

−K3(βm)

βm

1

(βm)2h′(βm) + 1
− βm

9

(

3K2(βm)

(βm)2
− K3(βm)

βm
+K1(βm) −Ki1(βm)

)]

,

(2.56)

where τ is the relaxation time, β = 1/T , and h(βm) = K3(βm)/K2(β), with Kn(x) being

the modified Bessel function of the second kind 14.

14The modified Bessel function of the second kind may be defined as

Kn(x) ≡
∫ ∞

0

ds e−s cosh s cosh (nx) . (2.57)
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Moreover, as we mention ahead in Sec. 4.3.2, Ref. [219] used this relativistic formal-

ism, with the addition of an external magnetic field, to derive the anisotropic viscosity

coefficients that arise in anisotropic media.

There are some recent developments regarding the relativistic kinetic theory, with pos-

sible applications to heavy ion collisions. We highlight a novel study on the analyticity

of the Green’s function, from which one can extract the transport coefficients analysing

its poles; the reference [220] offers a good summary of recent developments. Similar phi-

losophy is found in the holographic context, wherein one can compute the transport

coefficients via the quasinormal modes (QNM) of the black branes which also correspond

to poles of the retarded Green’s function in the gauge theory [222].

2.2.2 Minimal shear viscosity to entropy density ratio from the

uncertainty principle

We now present a simple argument, based on the uncertainty principle (∆p∆x ≥
~/(2π)), of the minimal ratio η/s that one could find in nature [22]. In this sense,one

argues that the particle momentum 〈p〉 cannot be measured with precision higher than

∼ ~/〈p〉. Oh the other hand, the mean free path lmfp must balances this accuracy in a

way that 〈p〉lmfp & ~. As for the entropy density, recovering the Boltzmann constant kB,

we have s ∼ kB. Therefore, from Maxwell’s formula (2.48), we have that

η

s
&

~

kB

. (2.58)

This supposed minimum is still larger than the ratio η/s obtained from the AdS/CFT

correspondence [35].

2.3 Linear response theory

It is time to develop an important tool to tackle the calculation of transpot coefficients

in dense fluids. As we saw above, in section 2.2, there are some very standard ways to

derive the shear and bulk viscosities of diluted gases. However, we need to surpass this

dilute limitation and the way to achieve this is via linear response theory [216], from which

one can derive the Green-Kubo relations. This is, by far, the most used method to extract

the transport coefficients of the QGP, without [35, 156, 224] or with external magnetic

field [93,223].

We have a classical formulation of this problem, but let us bypass it and go straightfor-

ward to the quantum case. Suppose now that we have a quantum theory and we perform
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some small time-dependent fluctuation. The effect of this disturbance is seen as a change

in the original Hamiltonian, and, if we relate the fluctuation with some operator O, we

have the following correction to the original Hamiltonian

H ′(t) = λO(t), (2.59)

where λ is a small parameter.

We calculate now the expectation value of some operator A with this new correction.

Here, we will always work in the canonical ensemble (ρ = e−βH), if not otherwise specified.

Thus, we have

〈A(t)〉 = Tr{ρ(t)A(t)}. (2.60)

To proceed with the calculation, it is useful to work in the interaction picture, which

gives us the following rule to evolve the density matrix operator

ρ(t) = U(t)ρ0U
−1(t), (2.61)

where U(t) is the time evolution operator, and ρ0 ≡ ρ(t = 0) is the density matrix just

before the perturbation. The time evolution operator is defined as

U(t) = T exp
(

−i
∫ t

0
H ′(t′)dt′

)

, (2.62)

where T is the time ordering operator. The above equation is solution of the evolution

equation dU/dt = H ′U .

Using Eq. (2.61), we write the expectation value as

〈A(t)〉 = Tr{ρ0U
−1(t)A(t)U(t)}

= Tr{ρ0

(

A(t) + i
∫ t

−∞
dt′[H ′(t′),A(t)] + · · ·

)

}

≈ 〈A(t)〉O=0 + i
∫ t

0
dt′〈[H ′(t′),A(t)]〉, (2.63)

where in the second line we used the Baker-Campbell-Hausdorff formula15. Also, the

small parameter λ inside H ′(t) allows us to make the approximation above. Defining

15This formula is defined by

eABeA = B + [A,B] +
1
2

[A, [A,B]] + · · · ,

with A and B being two distinct operators.
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δ〈A〉 = 〈A〉 − 〈A〉O=0, we have

δ〈A(t)〉 =
∫ ∞

0
dt′〈[λO(t′),A(t)]〉

=
∫ ∞

−∞
dt′θ(t)〈[λO(t′),A(t)]〉. (2.64)

We can trivially generalize this result for some space dependent operator, O(t) →
O(t, ~x). Moreover, if we assume also that the disturbance happened in a very short time

scale, i.e. O(t) = O(0)δ(t), we obtain

δ〈A(t, ~x)〉 = −iθ(t)〈[A(t, ~x), λO(0,~0)]〉, (2.65)

or, equivalently, in Fourier space

δ〈A(ω,~k)〉 = −i
∫

d4xei(ωt−~k·~x)θ(t)〈
[

A(t, ~x), λO(0,~0)
]

〉. (2.66)

The above equations, (2.65) and (2.66), are known as the Green-Kubo relations, or Kubo

formulas, for short. The θ(t) term ensures causality: only for t > 0 we can have an effect

from a perturbation made at t = 0. Therefore, it is natural to write the relation

δ〈O(ω,~k)〉 = −φ(ω,~k)GR(ω,~k), (2.67)

where φ(ω,~k) is the source of the operator O, and GR(ω,~k) is the retarded Green’s

function (also know as correlator, or two-point function) defined as

GR(ω) = −i
∫

d4xei(ωt−~k·~x)θ(t)〈
[

O(t, ~x),O(0,~0)
]

〉. (2.68)

The transport coefficient χ(ω) associated to the system’s response for the original

disturbance is given by the Green’s function in the low frequency regime (~k → ~0), i.e.

χ(ω) = −GR(ω,~k = 0)

iω
= −ImGR(ω,~k = 0)

ω
, (2.69)

where we used the property that ReGR (ImGR) is odd (even) with respect to ω. We

emphasize that the dissipative information is all encoded in the imaginary part of the

Green’s function, as it occurs in the damped harmonic oscillator or in the Drude’s model

for the conductivity.

For example, the conductivity tensor σij(ω) can be seen as the response of the system to

some electromagnetic disturbance, H ′ = AµJ
µ. In this case, the conductivity is expressed



2.3 LINEAR RESPONSE THEORY 41

as

σij = −ImGR
ij(ω,

~k = 0)

ω
, (2.70)

where

GR
ij(ω,

~k = 0) = −i
∫

d4xei(ωt−~k·~x)θ(t)〈
[

Ji(t, ~x), λJj(0,~0)
]

〉. (2.71)

2.3.1 The Kubo formulas for the viscosities

The goal now is to obtain the Kubo formula for both the shear and bulk viscosities. In

this chapter we deal only with the isotropic case while the generalization for the anisotropic

case induced by a magnetic field is done in Sec. 4.3. So firstly, we have to specify what is

the relevant operator to extract the formulas of the viscosities; turns out that the stress-

energy tensor T µν is the required one, as evidenced by Eq. (2.5). In fact, the metric field

gµν couples with T µν in the interaction Hamiltonian so we have (in a linearised level)

H ′ = −1

2
hµνδ(t)δ

(3)(~x)T µν(t, ~x), (2.72)

where hµν is a small deviation of the background metric gµν and T µν is the stres-energy

tensor. With this disturbance, if we identify A = T µν , the eq. (2.67) becomes

δ〈T µν(ω,~k)〉 = −1

2
hρσGR

T µνT ρσ(ω,~k), (2.73)

with

GR
T µνT ρσ(ω,~k) ≡ −i

∫

d4xei(ωt−~k·~x)θ(t)〈
[

Tµν(t, ~x), Tρσ(0,~0)
]

〉, (2.74)

being the retarded Green function.

We need some extra equation for δTµν to compare with (2.73), and then, extract

the Green’s functions. The way to do this is generalizing T µν to a curved spacetime by

introducing the covariant derivative ∂µ → ∇µ, and performing a small fluctuation of the

metric. Because we are dealing with a field theory in flat spacetime, we assume that the

background is flat; also, we work in the rest frame of the fluid where uµ = (1, 0, 0, 0)16,

and we assume a homogeneous perturbation, which means that we can work only with

the spatial indeces, i.e. gij = ηij + hij(t), with h00 = h0i = 0. Lastly, we can set ~k = 0 in

the very beginning simplifying the intermediate steps.

To clarify, let us rewrite the expression for Tµν ,

Tµν = T (0)
µν + Πµν , (2.75)

16In other words, we will work in the Landau-Lifshitz frame, where uµΠµν = 0, and all the information
about the viscosities are in the components {i, j, k, l} of the retarded Green function.
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where

T (0)
µν = (ε+ P )uµuν + Pgµν , and Πµν = −2η

(

wµν − ∆µν
θ

3

)

− ζθ. (2.76)

Thus, after we fluctuate the metric within T µν , we have

δTij = phij − 1

2
Kδijh

k
k + η

(

−∂thij +
1

3
δij∂th

k
k

)

− 1

2
ζ∂th

k
k, (2.77)

where K = −V dP/dV is the bulk modulus.

Taking (ij) = (xy) in δTij, one obtains

δTxy = (p+ iωη)hxy. (2.78)

Comparing Eq. (2.78) with Eq. (2.73), we arrive at the Kubo formula for the shear

viscosity,

η = − lim
ω→0

1

ω
ImGR

T xyT xy(ω,~0). (2.79)

In order to obtain the bulk formula, we take the trace of δTij, and compare it with

the trace of (2.73). The result is

ζ = −1

9
lim
ω→0

1

ω
ImGR

T i
i T j

j
(ω,~0). (2.80)



Chapter 3

The Gauge/Gravity duality

In the section 1.3 of this dissertation, it was mentioned how the dualities coming from

string theory helped us to understand strongly coupled theories since they provide a map

between the strong and the weak coupling regime. The most studied and understood du-

ality is the Anti-de Sitter/Conformal field theory (AdS/CFT) correspondence, in which

it is conjectured that there is a map between type IIB string theory in AdS5 × S5 and

the maximally supersymetric SU(N) theory, N = 4 SYM. In the correspondence, the low

energy limit of the string theory corresponds to the strong coupled regime of the field

theory, providing a unique way to study quantum field theories beyond weak coupling;

the opposite direction of the duality, i.e. the weakly interacting CFT, is more challenging

because it a theory of quantum gravity1 theory, and we did not achieve it in string the-

ory yet. Therefore, in the remaining of this Chapter, we shall review this gauge/gravity

duality and apply it to obtain hydrodynamic transport coefficients of strongly coupled

field theories. Furthermore, as explained in Sec. 1.3, one may use the terms AdS/CFT,

gauge/gravity and holography interchangeably.

The first glimpse of a possible connection between gauge theories and string theory

came from the seminal paper of ’t Hooft [229] in 1974 in which he considered the large Nc

limit of SU(Nc) gauge theories (see Ref. [230] for a review). In this large Nc expansion,

perturbation theory is governed by ’t Hooft’s coupling λ ≡ Ncg
2 rather than just the

gauge coupling g. In the ’t Hooft limit, the beta function for λ is given by

µ
dλ

dµ
= − 11

24π2
λ2 + O(λ3). (3.1)

Notice that the above flow equation tells us that the large Nc theory is still asymp-

totically free. In fact, one can include effects of flavors by setting Nf → ∞ but keeping

1The usual superstring theory is equivalent to the “first quantization” of particles, in the sense that
we have individual strings being quantized.

43
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Nf/Nc small; this is the Veneziano limit [173], which is also being used recently in some

holographic models [98,186].

Remarkably, as Nc → ∞, there is a great simplification of the gauge theory at the

perturbative level since only the planar diagrams2 will contribute in the calculations; the

non-planar diagrams are suppresed by powers of 1/Nc. This fact can be seen directly from

the general rule to calculate some Feynman amplitude M in large Nc theories (for the

gluonic sector):

M =
∞∑

h,b=0

N2−2h−b
c

∞∑

n=0

cn(h, b)λn, (3.2)

where h denotes the number of “handles”, and b the number of boundaries. It turns out

that the form of the expansion (3.2) is the same one encounters in string perturbation

theory. This fact is a strong indication of some deeper relation between gauge theories

and string theories.

The last key ingredient within string theory towards the formulation of the AdS/CFT

correspondence came in 1995 when it was shown that string theory also admits extended

objects, called Dirichlet branes, or just D-branes for short [231]. A Dp-brane is like a

(p + 1) dimensional membrane moving through the spacetime where the open strings

endpoints are allowed to end (Dirichlet boundary condition). Another striking feature of

D-branes is the existence of gauge theories in their worldvolume, thanks to the spectrum

of the open-strings living on it; the worldvolume of a D-brane carries a U(1) SUSY gauge

theory in (p+ 1) dimensions [232].

Therefore, with the concept of D-branes at hand, we shall outline in the next subsection

the underlying motivations behind Maldacena’s conjecture. The material covered in this

Chapter can be found in Refs. [233–236].

3.1 The Conjecture

Maldacena’s original conjecture [32] relies on the examination of the same physical

system from two rather distinct points of view. Assuming that we are on the type IIB

superstring theory framework, we can add the theory a stack of N coincident D3-branes

and depending of certain limits involving the string coupling gs and the number of D3-

branes, we may use distinct effective theories. For instance, we can face this situation from

the gauge theory induced on the D3-branes (open string picture). The other situation is

obtained for gsN ≫ 1, in which the D3-branes bend the space and one can use the

supergravity limit (closed string picture).

Let us begin with the open string picture. In this scenario, we can decompose the

2A planar diagram is one that can be drawn without crossing lines.
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contributions of the open/closed strings in the action as follows

S = Sbranes + Sbulk + Sint, (3.3)

where Sbranes contains the contributions of the gauge theory generated by the open strings

living within the stack of N D3-branes. Turns out that this gauge theory is SU(Nc = N)

N = 4 SYM in four dimensions [232], an exact conformal field theory with vanishing beta

function, whose Lagrangian can be written in terms of the string coupling as (the bosonic

part)

L =
1

4πgs

Tr
[
1

4
F µνFµν +

1

2
Dµφ

iDµνφi + [φi, φj]2
]

. (3.4)

Thus, if we compare it with the Lagrangian of the N = 4 SYM with coupling g, we infer

the following relation between the couplings

g = 4πg2
s . (3.5)

Returning to Eq. (3.3), Sbulk is related to the closed strings distributed around the

space and Sint denotes the interaction between open/closed strings. Knowing that Sint ∝
α′2, we conclude that Sint → 0 in the low energy limit (α′ → 0), and the closed string

modes decouple from the open string modes. Moreover, in the limit where α′ → 0, the

closed strings behaves as free gravity in R
9,1.

Open string picture: N = 4 SU(Nc) SYM in four dimensions + Free gravity. (3.6)

Now, let us analyse the closed string picture involving the stack of Nc D3-branes. Let

us also assume that we have a large number of D3-branes, i.e. g2
sN ≫ 1, still in the low

energy limit (α′ → 0). Intuitively, the large number of D3-branes will bend spacetime, so

we need a general relativity plus supersymmetry. We can describe this scenario using an

effective theory called supergravity (SUGRA). Since this will give rise to the AdS5 space,

we elaborate a little bit more the detail below.

Roughly speaking, these supergravity actions are obtained by equating the bosonic

and fermionic degrees of freedom while demanding supersymmetry. The general SUGRA

action of the type IIB (not necessarily a D3-brane system) is given by [234–236]

SIIB Sugra = SNS + SR + SCS + fermions, (3.7)
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where SNS describes the Neveu-Schwarz sector, SR is for Ramond sector while SCS is

the Chern-Simons (topological) term. Also, commonlly the fermionic part (gravitino and

dilatino) of the supergravity action are neglected since it vanishes in the classical limit.

The explicit bosonic part of SIIB Sugra, in the string-frame3, is given by

SNS =
1

16πG10

∫

d10x
√−ge−2Φ

(

R + 4(∂Φ)2 − 1

2
|H3|2

)

, (3.9)

SR = − 1

32πG10

∫

d10x
√−g

(

|F1|2 + |F̃3|2 +
1

2
|F̃5|2

)

, (3.10)

SCS = − 1

32πG10

∫

d10x C4 ∧H3 ∧ F3, (3.11)

where Φ is the dilaton, and the field strengths Fp are obtained from some potential Cp−1

such that Fp = dCp−1; in type IIB (IIA) p is odd (even). In the equations above, we also

make use of the definitions

|Fp|2 ≡ 1

p!
F µ1...µpFµ1...µn , F̃3 = F3 − C0 ∧H3, F̃5 = F5 − 1

2
C2 ∧H3 +

1

2
B2 ∧ F3,

H3 = dB2. (3.12)

The Dp-branes are the sources of the field strengths Fp. For instance, a D3-brane will

source the (self-dual) field F5, just as a charged particle is the source of the a U(1) gauge

field. Furthermore, this imposes the Dirac quantization condition for some integer charge

Q,

Q ≡
∫

S8−p
⋆F2+p = Nc, (3.13)

where we already identify the charge as being the rank of the SU(Nc) group. We can also

rewrite this in terms of some other constant L in the following manner

L4 = 4πl4sgsNc, (3.14)

and we say, in advance, that L will be the AdS radius.

For a complete guide in solving the equations of motions for Dp-branes, we recommend

Ref. [237]. Here, we just give the final result of the extremal black hole metric created by

3The Einstein-frame metric gE
µν , is related to the string-frame metric gs

µν , by a Weyl rescaling, i.e.

gs
µν = eΦ/2gE

µν . (3.8)
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a stack of Nc D3-branes (F1 = F3 = H3 = 0):

ds2
s =

1
√

H(r)

(

−dt2 + δijdx
idxj

)

+
√

H(r)(dr2 + dΩ2
5),

F5 = (1 + ⋆)dH(r)−1 ∧ dx ∧ dy ∧ dz,

eΦ = gs = constant, (3.15)

where

H(r) = 1 +
L4

r4
. (3.16)

Notice that the case of D3-branes is special in the sense that the dilaton profile is

trivial. Taking the limit r ≫ 1 (near the “throat”, cf. Fig 3.1), one obtains

ds2 =
r2

L2
(−dt2 + dx2 + dy2 + dz2) +

L2dr2

r2
+ L2dΩ2

5. (3.17)

The metric (3.17) is AdS5 × S5 - we are close now to fully state the conjecture. To

finish the closed string picture, we still have to notice that the closed strings far from the

throat are weakly interacting, so we have a free gravity theory; this is justified because

energies near of horizon Ehor is small with respect to an observer far from the horizon,

i.e. E ∼ Ehor/r → 0. This situation is depicted in Fig. 3.1.

Figure 3.1: The closed string picture: The strings in the flat space are long wavelength excita-
tions and do not see the throat. On the other hand, the strings near the throat still interact as
they are pushed down the throat. Figure adapted from [238].

In summary, from the closed string picture, we have

Closed string picture: type IIB inAdS5 × S5 + Free gravity, (gNc ≫ 1). (3.18)
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Now, if we compare Eq. (3.6) with Eq. (3.18), we are lead to the conjecture made by

Maldacena [32]:

N = 4 SU(Nc) SYM in four dimensions = type IIB inAdS5 × S5. (3.19)

We expressed the duality in its strong form, i.e. the statement above is supposed to

be valid at any value of the coupling, though the derivation assumed gNc ≫ 1 in the

closed string picture. In his weak form, the conjecture is assumed to hold only between

strongly coupled N = 4 SYM and the weakly coupled type IIB string theory (classical

approximation).

The parameters L (AdS radius), ls (string length), gs (string coupling), g (Yang-Mills

coupling), and λ (’t Hooft coupling) are related by

L4

l4s
= 4πgsNc = 4πg2Nc = 4πλ. (3.20)

For the classical (super)gravity approximation on the AdS side to be valid, one must

have

L ≫ ls ⇒ λ ≫ 1 (’t Hoof limit). (3.21)

The relation above makes evident the weak/strong duality implied by the AdS/CFT

correspondence.

Basic Checks

Now that we stated the conjecture, one may perfome some checks to verify it. For the

purposes of this dissertation, to analyse the symmetries of both sides suffices. Thus, let

us

• The global symmetries on both sides of the duality must match since they reflect

the physical properties of the system. The global symmetry of N = 4 SYM (CFT

side) is provided by conformal symmetry SU(2, 2) plus its R-charge symmetry, i.e.

one has SU(2, 2) × SU(4)R ∼ SO(2, 4) × SO(6), which is the bosonic subgroup of

the supergroup SU(2, 2|4). On the gravity side, the symmetry group of the AdS5

space is SO(2, 4), while the 5-sphere possess a SO(6) rotational symmetry; so again,

one has SO(2, 4) × SO(6) symmetry. For the interested reader, in Appendix A we

discuss more about the conformal group.

• The AdS5 × S5 has 32 Killing spinors and N = 4 SYM has 32 supercharges.
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• There is a SL(2,Z) symmetry related with an S-duality on both sides,

τ =
4πi

gs

+
θ

2π
=
i

g
+

χ

2π
. (3.22)

Another very important match is the comparison of the spectra of operators (CFT

side) and the fields (AdS side). This check can be verified in Table 7 of Ref. [239].

3.1.1 The renormalization group argument

Although the first great début of the holographic principle took place within the

framework of string theory, it is a widespread belief that it may be well defined without

any mention to string theory. Thus we outline here how one can arrive at the AdS/CFT

correspondence using solely concepts of QFT [162].

We consider then some generic lattice field theory in d dimensions, such as Ising model,

whose Hamiltonian is given by

H =
∑

x

Ji(x)Oi(x), (3.23)

where Ji(x) is the coupling of the correspondent operator Oi(x) at the lattice x. Following

the usual renormalization group approach, we examine the behavior of the couplings as

one varies the energy, which means that one can coarse-grains the system, similarly to a

block-spin, as we vary the lattice scale u (e.g. u = a, 2a, . . . ). Mathematically, this idea is

expressed by the beta function β(J(x), u),

u
∂

∂u
Ji(x) = β(J(x), u). (3.24)

Now, one can think of a stack of different coarse-grained lattices obeying the energy

hierarchy, i.e. from the IR to the UV, as depicted in Fig. 3.2. Taking the continuum

limit, now one has (d+1) dimensional theory, with u being the extra (energy) coordinate.

Furthermore, one can associate some bulk field Φ of this new higher dimensional theory

to the coupling of the old theory in the UV as follows

Φi(r = boundary) = Ji(x, u → 0). (3.25)

Hence, we arrived at some field/operator relation, i.e. the boundary value of the bulk

field is the source of the original field theory - this is the key idea behind the holographic

dictionary that we will present in Sec. 3.3. We can infer that the higher dimensional

theory is a gravity theory by wondering what would be the bulk field associated with
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Figure 3.2: The renormalization picture of the AdS/CFT. This illustration was taken from
[162].

stress-energy operator T µν ; it turns out that the only admissible spin-2 that couples with

T µν is the metric field gµν . Assuming now that we have a CFT as the original field theory,

this choice implies the scaling symmetry u → λu (besides Poincaré invariance), which is

accomplished, on the gravity side, by the AdS space (3.17).

As we said above one can understand the radial coordinate u as an energy scale.

With (3.43) at hand, we can put this statement in a mathematical form. To do this, we

consider a test particle with four-momentum P µ = (0,−E, ~p), and a static observer at

the conformal boundary with four-velocity given by Uµ = (0, 1,~0)/
√−gtt. The observer

at the boundary measures the following energy (Ebdry) for the test particle

Ebdry = −gµνU
µP ν =

E√−gtt

=
E

u
, (3.26)

with 1/
√−gtt being the red shift factor. This is nothing else than the UV/IR correspon-

dence [225,226]: the deep bulk of AdS space is associated with the low energy limit of the

theory (IR), whilst the near boundary region is identified with the high energy branch

(UV).

3.2 General properties of AdS space and its black

holes

In this dissertation, all the calculations are related to the gravity side of the gauge/-

gravity duality in the sense that we perform some calculation in the curved spacetime,
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and then we extract information about gauge theory in flat spacetime. Bearing this in

mind, in this section we comment some properties of AdS spacetime, and other aspects of

general relativity as well, which are fundamental for this dissertation. There is plenty of

material on this subject ranging from the pure general relativity viewpoint [227] to some

stringy reviews [234–236].

The AdS space belongs to a category of manifolds entitled maximally symmetric. As

the name indicates, a maximally symmetric manifold possess the maximum number of

Killing vectors4 allowed. For instance, the Euclidian space R
n is a maximally symmetric

manifold. To count the number of Killing vectors of a maximally symmetric manifold, one

takes a generic point P and its neighbourhood (assuming local flatness) and considers the

following symmetry operations: translations and rotations. For an Euclidian maximally

symmetric manifold in n dimensions, we have n independent translations, and 1
2
n(n− 1)

independent rotations; now we sum both to get the number of Killing vectors:

n+
1

2
n(n− 1) =

1

2
(n+ 2)(n+ 1). (3.28)

If the manifold has Lorentzian signature, as Minkowski spacetime does, some of the rota-

tions are boosts as well.

A maximally symmetric manifold has constant curvature, which can be easily deduced

from the following relation (valid for maximally symmetric spaces)

Rαβµν =
R

n(n− 1)
(gαµgβν − gανgβν), (3.29)

where Rαβµν is the Riemann curvature tensor and R is the curvature scalar. In general

relativity, a manifold with constant negative curvature is called Anti-de Sitter (AdS),

whereas manifolds with zero and positive constant curvatures, are called Minkowski and

de Sitter (dS), respectively.

There is an elegant way to begin the study of the AdSp+2 space. In this way we first

consider the Minkowski manifold R
2,p+1, whose metric is given by the line element

ds2 = −dX2
0 − dX2

p+2 +
p+1
∑

i=1

dX2
i , (3.30)

with isometry group SO(2,p+1). Now, to see the AdSp+2 space to rise and shine, we embed

4Recall that a Killing vector ξµ represents a symmetry of the manifold. They are characterized by the
equation

∇µξν + ∇νξµ = 0. (3.27)
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a hyperboloid into Minkowski space

−X2
0 −X2

p+2 +
p+1
∑

i=1

X2
i = −L2, (3.31)

where the element L is the curvature radius.

We introduce now a parametrization known as global coordinates, which is useful to

map the causal structure and the topology of the AdS space since it covers all the manifold,

X0 = L cosh ρ cos τ

Xp+2 = L cosh ρ sin τ

Xi = L sinh ρΩi, (Σp+1
i=1 Ω2

i = 1, i = 1, ..., p+ 1). (3.32)

The induced metric of this embedding is given by

ds2 = L2
(

− cosh2 ρdτ 2 + dρ2 + sinh2 ρdΩ2
p

)

(3.33)

where dΩ2
p is the line-element of a p-sphere with unity radius. We emphasize also that

the domain of the coordinates, ρ ∈ [0,∞) and τ ∈ [0, 2π), covers all the AdS space. The

topology of the AdSp+2 manifold is S
1 × R

p+1, with S
1 being related to the temporal

coordinate. A peculiar fact of this construction is that the “time” coordinate τ is cyclic

and, consequently, this allows for a closed time-like curve - it cause problems with causality.

To remedy this, we unwrap the AdS manifold and “glue" it with some copy; after this

procedure, the domain of the temporal coordinate becomes t ∈ (−∞,∞).

Another important feature of the vacuum AdSp+2 space is that it is a solution of the

vacuum Einstein’s equations with a negative cosmological constant (Λ < 0)

Rµν =
2Λ

p
gµν . (3.34)

To verify the statement above, we write the metric solution in p + 2 dimensions of the

vacuum,

ds2 = −
(

1 − 2Λr2

(p+ 1)p

)

dt2 +

(

1 − 2Λr2

(p+ 1)d

)−1

dr2 + r2dΩ2
p, (3.35)

and recalling that Λ < 0, we have

2Λ

(p+ 1)p
= − 1

L2
< 0, (3.36)
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which leads us to

ds2 = −
(

1 − r2

L2

)

dt2 +

(

1 − r2

L2

)−1

dr2 + r2dΩ2
p. (3.37)

After the following change of variables

t = Lτ ; r = L sinh ρ (3.38)

we recover the line element of (3.33).

To gain information about the causal structure of AdS space, one constructs its causal

map, i.e. the Penrose diagram (also known as Carter-Penrose, or Conformal diagram) for

the space. The main idea of these diagrams is to consider some nice coordinate transforma-

tions such that null-geodesics, i.e. the light path, can be drawn as straight diagonal lines,

as in Minwkoswki space. The first step to build this map is to consider the global coordi-

nates (3.33) and perform a change of variable with respect to the radial coordinate [227]

cosh ρ =
1

cosχ
, χ ∈ [0, π/2[, (3.39)

so that

ds2 =
L2

cos2 χ
(−dt2 + dχ2 + χ2dΩ2

p). (3.40)

Note that term within the parenthesis is just the Einstein’s static universe. Also, the

conformal factor multiplying the static universe does not alter the null geodesics - this

explains the epithet conformal diagram. In Fig. 3.3 the Penrose diagram for AdS space.

Figure 3.3: Penrose diagram for the AdS space. Notice that a massive particle, represented by
the time-like path, can never reach the boundary. On the other hand, a photon can eventually
reach the boundary and take its way back in finite time.
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The domain of the radial coordinate of the Einstein’s static universe is [0, 2π), one

says that the AdS manifold is conformally related to half of the Einstein’s static universe.

Consequently, a timelike slice5 of this space has the topology of the inner hemisphere of

S
p, including the boundary. To draw the geodesics of some particle one needs to solve the

geodesic equations, as usual.

As drawn in Fig. 3.3, massless particles within the AdS space have the striking capa-

bility of reaching the boundary and return to the bulk in finite time. This feature enables

the thermal equilibrium between a black hole inside the bulk and the boundary since the

former will not effectively evaporate by radiation emission. We discuss more about the

thermodynamics in the next subsection.

Another patch of coordinates, {t, u, ~x}, often employed in calculations6, is the so-called

Poincaré patch. It is defined as follows

X0 =
u

2

[

1 +
1

u2

(

L2 + ~x2 − t2
)]

,

Xp+2 =
Lt

u
,

Xi =
Lxi

u
, i = 1, . . . , p

Xp+1 =
u

2

[

1 − 1

u2

(

L2 − ~x2 + t2
)]

. (3.41)

The domain of the radial coordinate u is (0,∞). By doing this, we cut the AdS hyperboloid

in half (the other half is located in u < 0). To see this more explicitly, we write

X0 −Xp+1

L2
=

1

u
, (3.42)

confirming the statement that we cut the hyperboloid with the condition that X0 > Xp+1.

In these coordinates, the metric has the following form,

ds2 =
L2

u2

(

−dt2 + du2 + d~x2
p

)

(3.43)

with a manifest dilation symmetry (t, u, ~x) → (λt, λu, λ~x). Another self-evident character-

istic is that slices of the manifold to u = cte are conformally related with the Minkowski

space.

For the patch (3.43), one sees that the time-like Killing vector ∂t goes to zero as

u → ∞, which does not occur in global coordinates. Performing some analogy with the

usual Schwarzschild metric, whose time-like Killing vector vanishes near its horizon, one

5To categorize some hypersurface (spacelike, null, or timelike), one just needs to look at its normal
vector nµ. For instance, a null hypersurface has a null normal, nµnµ = 0.

6Indeed, this patch is, by far, the most employed in holographic calculations.
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can say that u = ∞ is a Killing horizon. Naturally, the locus of the conformal boundary

is u = 0.

Figure 3.4: The conformal diagram for the AdSp+2 space using the Poincaré patch (3.43). In
this patch, we can only access the dark region.

3.2.1 Thermodynamics

We discussed in some detail how massless particles are “locked” inside the AdS space.

Indeed, topologically, the AdS space is like a closed box. Thanks to this, if we insert a black

hole in AdS space, the former will be in thermal equilibrium with the boundary of AdS

and will not evaporate by thermal radiation emission (Hawking radiation); black branes

have positive specific heat and are thermodynamically stable. Black branes are black holes

with extended translational symmetry, though we use both terms interchangeably here.

Therefore, to include temperature on the field theory, we add a black hole in the bulk.

The usual AdS5-Schwarzschild metric of the black brane is given by (the S5 piece is

discarded from now on)

ds2 =
r2

L2

[

−(1 − r4/r4
h)dt2 + d~x2

]

+
L2dr2

r2(1 − r4/r4
h)
, (3.44)

where we adopted r as being the extra radial coordinate with r → ∞ being the locus of

the conformal boundary.

The task now is to obtain the temperature of a generic five dimensional black hole,

whose value will be the same as in the dual field theory. To obtain the explicit formula for

the temperature of a black hole, we follow the standard procedure in thermal field theories

(briefly mentioned in the beginning of Sec. 1.2) and Wick rotate the time coordinate to
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its Euclidean version, i.e. t → iτ . Let us assume that the Euclidean metric of the black

brane has the form

ds2 = g(r)[f(r)dτ 2 + d~x2] +
dr2

h(r)
, (3.45)

with f(rh) = h(rh) = 0. From a general relativity point of view, we still have to compactify

the τ coordinate, τ = τ + β, to avoid a conical singularity. The temperature of the black

hole will be proportional to the length circle, just as in field theory [125].

To make the above statement more precise and explicit, let us take r ≈ rh. Then, we

have

f(r) ≈ f ′(rh)(r − rh), h(r) ≈ h′(rh)(r − rh), (3.46)

and we define a new coordinate ρ (the radius of the circle) such that

1

r − rh

dr2

h′(rh)
= dρ2 ⇒ ρ = 2

√

r − rr

h′(rh)
. (3.47)

Next, we define the the coordinate θ, the angle of the circle, in the following way

g(rh)f ′(rh)(r − rh)dτ 2 = ρ2dθ2 ⇒ θ =
1

2

√

g(rh)f ′(rh)h′(rh)θ. (3.48)

With these definitions, the near horizon metric becomes

ds2 ≈
(

dρ2 + ρ2dθ2
)

+ g(rh)d~x2. (3.49)

Notice that the term inside the brackets corresponds to flat space in polar coordinates. In

order for ds2 to be well defined at the horizon (ρ = 0), we need to compactify the angle θ

to avoid the conical singularity (angle defect); the periodicity of θ is 2π. This procedure

also implies the periodicity τ = τ + 1
T

, where T is the Hawking temperature. Therefore,

the explicit formula for the temperature (for the bulk and boundary) is

T =

√

g(rh)f ′(rh)h′(rh)

4π
, (3.50)

or, more generally,

T =

√

|g′
tt(rh)g′rr(rh)|

4π
, (3.51)

for a generic line element of the form

ds2 = gtt(r)dt
2 + grr(r)dr

2 + . . . . (3.52)

The entropy density s = S/V3, where V3 =
∫

dxdydz, is another important thermody-
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namic quantity but we will not derive it here.7. We just give the final result, which is the

famous Bekenstein-Hawking formula [174,175]

s =
Ah

4G5

, (3.54)

where Ah is the are of the black hole, andG5 is the Newton’s constant for a five dimensional

space.

Therefore, given the geometry of the bulk space (the hardest part most of the times),

it is quite easy to extract the temperature and the entropy density.

3.2.2 The scalar field in AdS: The BF bound and scalings di-

mensions

Now that we are more familiar with AdS space, let us take a free massive scalar field

in this space. From this apparently simple exercise, we shall learn some valuable lessons

about the bulk fields according to the renormalization group perspective. Consider then

the AdSd+1 space with no temperature and zero density, whose metric is

ds2 =
L2

u2
(−dt2 + du2 + d~x2

d−1). (3.55)

The scalar field Lagrangian is

S =
∫

dd+1x
√−g

[

−1

2
(∂Φ)2 − m2Φ2

2

]

, (3.56)

where m is the mass of the scalar field. For sake of simplicity, we assume no backreaction

of the scalar field in the background. Taking the plane-wave Ansatz Φ(t, u, x) = φ(u)eikẋ,

the equation of motion of the scalar field becomes

1√−g∂µ(
√−g∂µΦ) −mΦ = 0,

⇒ u2φ′′(u) + r(d− 1)φ′(u) − (k2r2 −m2L2)φ(u) = 0, (3.57)

7This can be done in, at least, two different ways. The first one is using the path integral formalism,
in which we plug the Gibbons-Hawking-York (GHY) boundary term in the on-shell action to obtain the
partition function, and then extract the entropy [174, 175] using thermodynamic identities. The second
way to derive it, is using the Wald entropy formula [240]

S = −2π
∫

H

√
h

δL
δRαβµν

dD−1x, (3.53)

where H is the slice of the horizon and h the induced metric on it.
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whose solution is given in terms of the Bessel’s modified functions Kν and Iν ,

φ(u) = φregr
d/2K∆− d

2
(
√
k2u) + φirregr

d/2I∆− d
2
(
√
k2u), (3.58)

with ∆(∆ − d) = m2L2. (3.59)

The constants φreg and φirreg are related to the regularity of the correspondent solution

at the boundary (u = 0); remember that Kν(0) = 0 and Iν(0) → ∞. Thus, if we im-

pose regularity at the boundary we should discard the irregular solution (φirreg = 0).

Demanding the reality condition for the scaling dimension ∆, i.e. ∆ ∈ R, we find the

Breitenlohner-Freedman (BF) bound [241]

m2 ≥ − d2

4L2
, (3.60)

or, for the five dimensional AdS space,

m2 ≥ − 4

L2
. (3.61)

The BF bound means that a (small) negative mass does not induce an instability. Natu-

rally, the bottom-up model developed in Chapter 8 respects this bound.

It is instructive to further examine the near boundary behavior of the scalar field. As

φ(u) approaches the boundary, one can write

φ(u → 0) ∼ φd−∆(k)ud−∆ + φ∆(k)u∆ + . . . (3.62)

so that

φ(u = 0, x) = lim
u→0

u∆−dφ(u, x). (3.63)

Although we arrived at Eq. (3.63) for the scalar field, this is a very general way to

express the behavior of some field in the bulk. Moreover, with the scaling dimension ∆

(the relation (3.63) is valid only for scalar fields) we can study how the introduction of a

new operator breaks the conformality of the original theory. Suppose that we introduce

some Lorentz scalar operator O in the old CFT theory,

SCF T → SCF T +
∫

x
O(x). (3.64)

Then, one may categorize this deformation as

• Relevant operator, d− ∆ > 0: This deformation is weak in the UV (φ(u → 0) → 0)

and strong in the IR .



3.3 THE HOLOGRAPHIC DICTIONARY: EXTRACTING GREEN’S FUNCTIONS 59

• Irrelevant operator, d− ∆ < 0: This deformation is strong in the UV (φ(u → 0) →
∞) and weak in the IR.

• Marginal operator, d − ∆ = 0: Does not break conformal invariance at the lead-

ing order of the deformation. However, the operator can be marginally relevant or

marginally irrelevant after the inclusion of string corrections.

3.3 The holographic dictionary: Extracting Green’s

functions

After our brief detour through the basics aspects of holography and the AdS spacetime,

it is time to stablish a precise duality, from which we can calculate the Green’s functions

of the strongly coupled field theory, erstwhile impossible via standard methods.

From the conjecture of the AdS/CFT correspondence (3.19), given the generating

function Z[J ] of the N = 4 SYM in four dimensions supplied by some source J(x) and

remembering the relation between the source and the bulk field (J = Φ0) in Eq. (3.25),

one can write the Euclidean partition function as follows

Z[J ] =
∫

D[. . . ]exp
(

S +
∫

x
Φ0O

)

=
〈

exp
(∫

x
Φ0O

)〉

, (3.65)

where the ellipsis denotes the field content of the field theory.

Following [33,34], one states the field/operator correspondence, where

〈

exp
(∫

x
Φ0O

)〉

CF T
= ZString[Φ], (3.66)

where ZString is the partition function of the IIB superstring theory. As aforementioned,

we are rather clueless of what Zstring is for quantum gravity, which is needed to check the

AdS/CFT correspondence in some arbitrary coupling strength. Fortunately, for strongly

coupled N = 4 SYM, we can approximate the partition function of the string theory by

the (super)gravity action

ZString[Φ] ≈ exp (−Sclas[Φ(u = 0, x) = Φ0]) . (3.67)

In the Euclidean signature, one can extract the n−point function of the field theory

by taking functional derivatives as follows

〈O1(x1) . . .On(xn)〉 =
δnZQF T [J ]

δJ1(x1) . . . δJn(xn)

∣
∣
∣
∣
∣
J=0

. (3.68)
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Therefore, one can calculate the Euclidean correlators of the field theory by taking func-

tional derivatives of the boundary value of the respective bulk field in the classical (on-

shell) gravitation action! However, this procedure is valid only for the Euclidian signature.

If we want to compute real-time correlators (e.g.: needed for the shear viscosity) using the

relation (3.19) we find incongruences on the correlators. In the next subsection we shall

outline how one can circumvent this and extract the 2-point function (Green’s function)

in real-time; we shall employ this recipe to calculate the shear and bulk viscosities late in

this chapter.

If by chance we need to obtain higher point functions in real-time, such as 3-point

function, the discussion becomes more complicated. Instead, we have to solve the bulk-

to-bulk, bulk-to-boundary, and boundary-to-boundary propagators of the AdS side of the

theory [242].

3.3.1 The Euclidian one-point function the holographic renor-

malization

Before we tackle the problem of the retarded two-point function, from which most of

the quantities come from, it is important and instructive to discuss some aspects of the

one-point function. We shall specialize our discussion to the expectation value of stress-

energy tensor 〈T µν〉,and we shall comment on the divergences of the on-shell action and

how one can deal with them.

We begin by defining the Brown-York (BY) [243] stress-energy tensor, defined at the

boundary of the manifold via

T µν
BY = − 2√−γ

δS

δγµν
, (3.69)

where γµν is the induced metric at the boundary. The BY tensor is called quasilocal since

it is defined at the boundary of a given manifold; the definition of a local energy density

in general relativity is flawed. Also, the BY tensor is often divergent. However, this is

very suitable for the AdS case: regarding the boundary of the AdS space as being the

CFT, we can assign a stress-energy tensor for the latter 〈T µν〉 by using the BY tensor

at the boundary; the (gravitational) divergences correspond to the original ultraviolet

divergences of the field theory.

Just as in field theory, one can cancel the divergences of the AdS space by introducing

the so-called counter term action Sct, which is defined at the boundary. Therefore, the

complete gravitational action, i.e. the renormalized action, for the AdS space becomes

Sren = SEH + SGHY + Sct, (3.70)
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where SEH is the Hilbert-Einstein action (plus cosmological constant), and SGHY is the

Gibbons-Hawking-York (GHY) boundary term needed for a well posed variational prob-

lem with boundary [243, 244]. For a (d+1)-dimensional AdS space, the boundary terms

are

SGHY =
1

8π

∫

∂M
ddx

√−γK, (3.71)

Sct = −
∫

∂M
ddx

√−γ 3

L

(

1 − L2

12
R(γ)

)

, (3.72)

where γ is the induced metric on the boundary and K is its extrinsic curvature.

With the renormalized action at hand, the Brown-York tensor (3.69) obtained is

T µν =
1

8πG5

[

Kµν −Kγµν − 3

L
γµν − L

2

(

Rµν − γµν

2
R
)]

. (3.73)

The trace of T µν is given by

T µ
µ = − L3

8πG5

(

−1

8
RµνRµν − 1

24
R2
)

, (3.74)

which is zero for the case of AdS space in remarkably agreement with the CFT (see Eq.

(23) of Ref. [209] and subsequent discussion).

The discussion done here is also connected with the bulk viscosity since it vanishes

when the trace of the stress-energy momentum tensor vanishes (see the discussion in

Appendix A).

3.3.2 The retarded two-point function

In this subsection we shall show how to compute retarded two-point functions. Origi-

nally, this recipe was proposed in [245] and was put on firmer grounds correct later in [246].

Moreover, this procedure is generalized in Chapter 6 where we have a mixing of operators,

i.e. we have to work with matrices. For this reason, this section is not a “step-by-step”

calculation since this is done in Chapter 6.

Let φ(u, x) be the dual bulk field of the operator O(x). The field φ will obey some

equation of motion, from the Einstein’s equations for instance. Performing the following

Fourier transformation

φ(u, x) =
∫ d4k

(2π)4
eik·xφ(u, k), (3.75)

we can decompose the solution as

φ(u, x) = fk(u)φ0(k), (3.76)
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with the Dirichlet boundary condition

lim
u→0

u4−∆fk(u) = 1. (3.77)

Now we substitute the on-shell field (3.76) into the action. We then recast the on-shell

action in the following way

Son−shell =
∫ d4k

(2π)4
φ0(k)F(k, u)φ0(k)

∣
∣
∣
∣
∣

u=uh

u=0

, (3.78)

where F(k, u) is some flux whose imaginary part is conserved, i.e. ∂u(F − F∗) = 0.

If we try the naive Euclidean prescription (3.68), we find

G(k)
?
= −F(k, u)|u=uh

u=0 − F(k, u)|u=0
u=uh

. (3.79)

However, as mentioned in the previous section, this result does not hold. The fact that

the result (3.79) does not possess an imaginary part already rules it out. To circumvent

this problem we take just the boundary contribution, in the following way [245,246]

GR(k) = −2F(k, u)|u=0, (3.80)

The above expression gives us the correct retarded two-point function.

Now, we pass to some applications of the formalism developed in this chapter. We

shall focus on the shear and bulk viscosities.

3.4 The holographic shear viscosity

After discussing the viscosities in Chapter 2 and the AdS/CFT correspondence, it is

time to link these two concepts in order to extract the shear viscosity from the AdS/CFT

correspondence. Loosely speaking, it is common to use the word “holographic” to des-

ignate quantities calculated via the duality; e.g. the holographic shear viscosity. Thus,

this subsection is devoted to calculate the shear viscosity of strongly coupled non-Abelian

theories in the large Nc limit.

For sake of completeness, and for pedagogical reasons, in this dissertation we shall

calculate the usual holographic shear viscosity using three distinct methods:

• Associating the absorption cross section with the imaginary part of the retarded

Green’s function;

• Using the standard recipe described in Sec. 3.3.2. This method is also exploited in
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Chapter 6 in order to calculate the bulk viscosity (from the magnetic brane) and

in Sec. 8.4 where we calculated the anisotropic shear viscosity for the bottom-up

magnetic model;

• Adopting the so-called membrane paradigm approach [247, 248]. The discussion of

this method is postponed to Chapter 5, where we calculate the anisotropic shear

viscosity using the magnetic brane solution.

Before we go straight to tackle the first item, we need to establish the field/operator

relation for the shear viscosity. To guess what is the bulk field associated with the shear

viscosity, let us rewrite the Kubo formula for the shear viscosity derived in Sec. 2.3.1, as

follows

η = − lim
ω→0

1

ω
ImGR

Txy ,Txy
(ω,~0). (3.81)

From the above formula, we learn that the important operator is the stress-energy tensor,

i.e. O = T µν . The stress-energy tensor operator is sourced by the metric field and, at the

linearised level, we have the following interaction term

Sint =
1

2

∫

d4xhµνT
µν ⊃ hxyT

xy, (3.82)

where in the last step we emphasized the important part to calculate (3.81). Therefore,

in order to calculate the shear viscosity one needs to perform small fluctuations of the

metric, gµν → gµν + hµν .

From the absorption cross section

In the early ages of the AdS/CFT correspondence it was a common exercise to compare

the absorption rates of gravitons (closed strings) on the D-brane world volume (AdS side)

with the perturbative side [249,250]. It turns out that in the low energy limit both views of

the absorption rate agree [251]. Motived by these facts, let us consider some graviton wave

(metric disturbance) of frequency ω, which propagates along a perpendicular direction to

the black brane (h ∼ h(r)e−iωt). From the field theory perspective, the graviton absorption

cross section is related to the component Txy of the stress-energy tensor in the following
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way8

σabs(ω) = −2κ2
5

ω
ImGR(ω) =

κ2
5

ω

∫

dtd~xeiωt
〈[

Txy(t, ~x), Txy(0,~0)
]〉

(3.84)

with κ5 =
√

8πG5. Comparing (3.84) with (3.81), we have

η =
σabs(0)

2κ2
=
σabs(0)

16πG
. (3.85)

The calculation of σabs(0) was carried out in Ref. [252]. The result is

η =
π

8
N2

c T
3. (3.86)

In this subsection, however, we shall follow Ref. [35] in which the general result for the

ratio η/s = 1
4π

was obtained using some few assumptions. The first assumption is about

symmetry of the black brane, whose metric we assume to be

ds2 = f(ξ)(dx2 + dy2) + . . . , (3.87)

where ξ represents the dependence of some variable except x or y, i.e. we have a SO(2)

symmetry, valid for isotropic theories.

With the background metric (3.87) at hand, we perform some disturbance on the

metric (graviton scattering)

gµν = g(0)
µν + hµν , (3.88)

where g(0)
µν denotes the background metric and hµν is the disturbance. To calculate the

shear viscosity, it is enough to work only with hxy different than zero, since this mode

decouples from the others. This can be viewed as being a gravitational wave with ×
(times) polarization. Moreover, let us assume that hxy does not depend of x or y, i.e.

hxy = hxy(ξ).

In a (d+ 1) dimensional manifold, we can write the Einstein’s equations as follows9

Rµν = κ2
5

(

Tµν − T λ
λ

d− 1
gµν

)

, (3.89)

8To connect the absorption cross section with the imaginary part of the Green’s function one first
realize that, according to Fermi’s golden rule, the net absorption rate of the graviton is

Γ = V3

∑

i,f

e−βEi

Z
|〈f |Tx,y(0)|i〉|2(2π)4δ(3)(~pf − ~pi) [δ(Ef − Ei − ω) − δ(Ef − Ei + ω)] . (3.83)

Thus, if one compares Γ with the spectral decomposition of the Green’s function, i.e. Γ = −2V3ImGR(ω),
we arrive at the formula (3.85).

9To get rid of the scalar curvature R in Einstein’s equations we just take their trace and write R as
function of Tλ

λ .
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where T µν is the stress-energy tensor supplied by some matter field (e.g. dilaton field).

To calculate σabs, one still has to massage the equations obtained from (3.89) in order to

arrive in a nice expression for the equations of motion for hxy. Assuming that

Tµν = −gµνL + . . . , (3.90)

where the ellipsis denotes higher order corrections, we obtain the following expressions

for the components Rxx and Rxy of (3.89), respectively

1

2

[

�f +
∂µf∂

µf

f

]

= κ2
5



L +
T

(0)λ
λ

d− 1



 , (3.91)

−�hxy +
2∂µf∂µhxy

f
− ∂µf∂

µf

f 2
hxy = −2κ2



L +
T

(0)λ
λ

d− 1



hxy. (3.92)

The fundamental observation of Ref. [35] is that hy
x = hxy/f obeys the same equation

of a massless scalar field,

�hy
x = 0. (3.93)

Hence, in order to obtain the holographic shear viscosity, we need to calculate the absorp-

tion cross section of a massless scalar field. The detailed calculation of this cross section

is done in the Appendix C. One can show that σabs(0) depends solely on the area of the

black hole horizon [253],

σabs(ω = 0) = Ah. (3.94)

Therefore, if we divide (3.85) by the entropy density s = Ah/4G5, we are lead to the

celebrated ratio [35] (recovering now ~ and kB)

η

s
=

~

4πkB

. (3.95)

As we already emphasized throughout this dissertation, the ratio (3.95) had tremen-

dous consequences in establishing the usefulness of the gauge/gravity duality in the study

of strongly coupled systems, such as the QGP near the crossover region. It is also a robust

result since it is valid for every isotropic field theory described with a dual gravity theory

with at most two derivatives in the action.

From the conserved flux

Now, let us apply the recipe developed in Sec. 3.3.2 to calculate the shear viscosity

for an isotropic theory. Once one knows that the metric fluctuation hy
x obeys the same
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equation of motion as a massless scalar fild field does, one can write the on-shell action

as follows

S =
1

16πG5

∫

d5x
√−g

(

−1

2
(∂hy

x)2
)

(3.96)

where g is the determinant of the background metric. Actually, there is an overall factor

that we must fix by perturbing the whole action; we postpone this calculation to Sec.

5.1.2, where we perform the action perturbation for the magnetic brane case. In this brief

calculation, let us adopt the following black 3-brane metric

ds2 = eA(r)(−h(r)dt2 + d~x2) + e2B(r) dr
2

h(r)
, (3.97)

with h(r) being the blackening factor.

The next step is to Fourier transform the fluctuation10

hy
x(t, r) =

∫ dω

(2π)
e−iωtΦ(ω, r), (3.98)

with

Φ(ω, u) = φω(r)φ0, and lim
r→∞φω(r) = 1. (3.99)

Making the Lagrangian explicitly complex, i.e. (∂hy
x)2 → (∂µh

y †
x )∂µhy

x, and plugging

(3.98) into (3.96), one obtains

S = V3

∫ dω

2π
φ0F(ω, r)φ0, (3.100)

where

F(ω, r) = he4A−Bφ∗
ω∂rφω. (3.101)

Thus, from Eqs. (3.80) and (3.81), we have the relation

η = − 1

16πG5

lim
ω→0

1

ω
Im F . (3.102)

Since ∂rIm F = 0, we can calculate it in the most convenient region, which turns out

to be the near horizon limit. Near the horizon, we have that

φω(r → rh) = c−(r − rh)− iω
4πT + c+(r − rh)+ iω

4πT , (3.103)

where c− and c+ are two integration constants that can be determined via a matching

procedure with the boundary; this is done carefully in Sec. 8.4 and here we only state

10We take the Fourier transform only with respect the time coordinate because we take ~k = ~0 in the
Green’s function.
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the result c− = 1. We shall take c+ = 0 because this solution is related to the advanced

Green’s function, whilst c− is related to the retaded Green’s function.

Substituting (3.103) into the flux (3.101), and the latter in (3.102), we obtain the

following expression for the shear viscosity

η =
1

16πG5

e3A(rh), (3.104)

and, dividing it by the entropy density s = e3A(rh)/4G5, we are lead to the result

η

s
=

1

4π
. (3.105)

Lastly, it is time to notice a very important point. To calculate the shear viscosity, the

on-shell action, and so on, we tacitly assumed that there were no divergences. This may

seem odd since in Sec. 3.3.1 we spoke about these divergences. The answer for this apparent

puzzle is that the imaginary part of the Green’s function is free from divergences. To see

this more clearly, from the gravity side, remember that the counter-terms are defined as

boundary terms and if we add the boundary term ∂r(φωφω) to the action, the effect of

this new term on F is

F = α|φω|2 + . . . . (3.106)

Hence, it has no effect on the imaginary part of the Green’s function.

Corrections to η
s

= 1
4π

Although the result for shear viscosity to entropy density ratio obtained via the Ad-

S/CFT duality is very robust, there are some situations in which η/s 6= 1/4π. Here, we

shall list all known the situations where are deviations from the original result.

The first realization of η/s 6= 1/4π came from supergravity corrections, which are

the so-called α′-corrections. Using the first α′-correction, the holographic shear viscosity

becomes [254]
η

s
=

1

4π

(

1 +
135ζ(3)

8(2λ)3/2

)

, (3.107)

where λ is the ’t Hooft coupling. Notice that this correction increase the value of the

shear viscosity, giving some support for the conjecture that the value η/s = 1/4π is a

minimum. Moreover, this is in agreement with the QCD cf. Fig. 1.6.

The first supergravity correction in type IIB goes like R4 in the gravitational action.

Therefore, we can imagine somehow a quadratic correction, going like R2, though without

a stringy guide. This correction is accomplished by introducing the so-called Gauss-Bonnet

term LGB = λGB(R2−4RµνRµν +RαβµνRαβµν). The Gauss-Bonnet term modifies the shear
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viscosity in the following manner [255,256]

η

s
=

1 − 4λGB

4π
, (3.108)

with the condition − 7
36
< λGB < 0.09 needed to preserve causality [256].

Another way to modify the result (3.95) is to consider anisotropic theories, such as the

one induced by the magnetic brane solution [93], focus of this dissertation. In anisotropic

theories though, we have more than one shear (and bulk) viscosity coefficient - the detailed

discussion about this fact in Sec. 4.3.

The first calculation of anisotropic shear viscosities was done in Ref. [257] for the case of

an anisotropic plasma created by a spatial dependent axion profile, which was proposed

originally in Ref. [258] - see also Refs. [259, 260] for extensions of this axion+dilaton

model; the result resembles some qualitative features of the viscosities obtained from

the magnetic brane background as we shall see ahead. By the same token, one can find

model with a dilaton driven anisotropy [261, 262], an anisotropic SU(2) model used for

superfluids [263–265], and a black brane whose temperature is modulated by the spatial

directions ~x [266,267]. Lastly, recent violations of the viscosity result of isotropic theories

were found in the context of massive gravity [197,198].

3.5 The holographic bulk viscosity

The bulk viscosity is the remaining transport coefficient to characterize energy dissipa-

tion due to internal friction in a strongly coupled non-Abelian plasma. In the same spirit

of this introductory chapter, we begin discussing the standard N = 4 SYM. However,

this is a somewhat brief discussion because the N = 4 SYM is an exactly conformal field

theory (beta function vanishes identically). The discussion of why a conformal theory has

zero bulk viscosity is presented in Appendix B.

Ultimately, we are interested in make contact with the real world and QCD, for in-

stance, does have a trace anomaly (B.18). The the way to deform the four dimensional

CFT and obtain an energy scale was sketched in Eq. (3.64) [180], which is accomplished

by introducing some operator O such that

LN =4 → LN =4 + Λ4−∆O. (3.109)

In the equation above, the operator O is dimensionless and the scale is represented by

Λ4−∆. Moreover, we are interested in relevant deformations ∆ < 4 because of the dimen-

sion of TrF 2 < 4.
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With the above deformation and the trace of the stress-energy tensor becomes [269]

T µ
µ = (∆ − 4)〈O∆〉Λ4−∆, (3.110)

which is congruent with the existence of a bulk viscosity.

Now, let us see how we can effectively implement such deformations. From the top-

down perspective, we have several models, such as the Sakai-Sugimoto model [182] or

the Klebanov-Strassler cascade model [181]. However, none of these top-down models are

able to capture the correct thermodynamics of the QCD and, for this reason, we adopt a

bottom-up perspective.

The simplest bottom-up addition to the bulk action to bring the dual CFT closer to

the QCD is achieved by adding a scalar field backreacting with the metric field. This is

the procedure adopted in the Improved Holographic QCD (IHQCD) [183, 184, 186], and

also in Gubser’s model [169, 170]. Since Chapter 8 is an extension of the latter with a

magnetic field, our discussion done here is based on Refs. [169–171,187]. The bulk action

is given by

S =
1

16πG5

∫

d5x
√−g

(

R − 1

2
∂µφ∂

µφ− V (φ)
)

(3.111)

where φ = φ(r) is the scalar field (dilaton) along with its respective potential V (φ). The

Einstein equation of this dilatonic gravity is

Rµν − 1

3
gµνV (φ) − 1

2
∂µφ∂νφ = 0, (3.112)

which is supplied by the dilaton equation

(� − V ′(φ))φ = 0. (3.113)

The most general metric Ansatz for a black hole with SO(3) symmetry in the ~x spatial

directions is

ds2 = ea(r)
(

−h(r)dt2 + d~x2
)

+ e2b(r) dr
2

h(r)
. (3.114)

Both Einstein and dilaton equations can be solved for a broad variety of potentials

V (φ); we have a landscape of possible black holes. So now comes the phenomenological

aspect of the model: we shall fix the parameters of the potential V (φ) using the lattice

QCD results for the equation of state (EoS). The observable that we choose from the

lattice in order to fix V (φ) is the speed of sound cs given by

c2
s =

d log T

d log s
. (3.115)
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For each V (φ) that we take, we will have a different background geometry and, conse-

quently, we will also have the correspondent cs(T ) of this geometry given by Eq. (3.115).

Therefore, the idea is to choose the potential in a way that it maximally approaches the

lattice data. The functional form to make this fit (by “eyeball”) is

L2V (φ) = −12 cosh γφ+ b2φ
2 + b4φ

4 + b6φ
6, (3.116)

where γ, b2, b4 and b6 are the fit parameters. Although this scalar model does not include

fermions in the fundamental representation, we use the lattice EoS with 2+1 flavors from

Ref. [270] to perform the fit. As pointed out in [169], this is a way to mimic QCD at finite

temperature near the crossover region. We show the result of this fit in Fig. 8.2 and in

Eq. (8.26). Furthermore, we assign a value for the constant G5 by fitting the gravitational

results of p/T 4 found on lattice.

Expanding the potential (3.116) in the UV (near the boundary), where the dilaton

goes to zero, we have

V (φ → 0) = − 12

L2
+

1

2L2
m2φ2 + O(φ4). (3.117)

The first term is the negative cosmological constant, which guarantees an asymptotic

AdS5 space. The second term is the dilaton mass and for the parameters given in (8.26)

one finds m2 ≈ −3; although this is a negative mass, it respect the BF bound (3.61).

Now that we are more familiar with the non-conformal bottom-up model, let us cal-

culate the bulk viscosity. First, the Kubo formula for the bulk viscosity is

ζ = −4

9
lim
ω→0

1

ω
ImGR

T i
i T j

j
(ω), (3.118)

where

GR
T i

i T j
j
(ω) = −i

∫

dteiωt
〈[

1

2
T i

i (t, ~x),
1

2
T j

j (0,~0)
]〉

. (3.119)

Therefore, to calculate the bulk viscosity, we must consider fluctuations of the diagonal

part of the metric field around the background

hµν = diag{htt, hrr, hxx, hxx, hxx}, (3.120)

adopting the plane wave Ansatz as usual, i.e. hµν = hµνe
−iωt. We also set hxx = hyy = hzz

due to SO(3) symmetry.

However, there are some difficulties here. The dilaton fluctuation also couples with

this diagonal fluctuated part of the metric, so one cannot ignore it. There are two ways to
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remedy this complication. The first one is to make a gauge change (using diffeo. invariance)

to eliminate the dilaton fluctuation, though giving up the radial gauge hµr = 0; the second

way is to work with a gauge invariant quantity involving the fluctuations of the metric

and the dilaton [171]. Here, we choose the first path.

Before we proceed with the calculations, it is useful to take the gauge where the dilaton

is the radial coordinate11,

φ = r. (3.121)

Hence, defining Hxx ≡ hx
x, the resulting equation of motion derived from (3.112) is

H ′′
xx +

(

4a′ − b′ +
h′

h
− 2A′′

A′

)

H ′
xx +

(

h′b′

h
− h′

6hA′ +
e2a−2b

h2
ω2

)

Hxx = 0, (3.122)

where the primes denote derivatives with respect to φ.

The conserved flux (ImF) for the differential equation above is12

ImF =
e4a−bh

4a′ Im(H∗
xx∂rHxx). (3.125)

With the bulk viscosity being given by

ζ = − ImF
16πG5

. (3.126)

Actually, we skipped the calculation of the on-shell action, which is important to determine

the overall factor on the conserved flux.

As mentioned before, we have the freedom to evaluate the conserved flux in the most

convenient region, which is the horizon. The near horizon solution of Hxx is

Hxx(φ → φh) = Ceiωt|φ− φh|− iω
4πT , (3.127)

where C is some consant, which is determined by imposing the Dirichlet boundary con-

dition Hxx(φ = 0) = 1. But this constant cannot be analytically calculated and one must

11In this case, we switched of the location of the conformal boundary to φ = 0 (r = 0).
12The flux of the second order differential equation

y′′(x) + p(x)y′(x) + q(x)y(x) = 0, (3.123)

is given by Abel’s identity,

ImF = exp

(∫ x

p(u)du

)

W (y1, y2), (3.124)

where W (y1, y2) = y′
1y2 − y′

2y1 is the Wronskian.
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resorts to numerics. Plugging (3.127) into the conserved flux (3.125), one obtains

ImF(ω, φ → φh) ≈ e3a(φh)ωh′(φh)|C|2
4a′(φh)2

ea(φh)−b(φh)

4πT
≈ ωe2a(φh)

4a′(φh)2
|C|2. (3.128)

Using the relation a′ = −V/3V ′ obtained from the Einstein’s equations, we finally

obtain the expression for the bulk viscosity to the entropy density,

ζ

s
=

|C|2
4π

V ′(φh)

V (φh)
. (3.129)

The result is shown in Fig. 3.5.

Figure 3.5: The holographic result for the bulk viscosity using the non-conformal action (3.111).
Figure adapted from [172].



Chapter 4

Strong magnetic fields in hot and

dense matter

In this chapter we begin to include effects of strong magnetic fields in our studies of

strongly coupled matter. Our main goal is to better understand the interplay of magnetic

fields with the hot and dense matter. By hot and dense matter we mean the quark-gluon

plasma as described in the Introduction. Therefore, this section is devoted to provide the

big picture behind the generation of intense magnetic fields within the QGP context.

The study of the equilibrium and transport properties of the QGP as functions of

parameters such as the temperature T , chemical potential(s), and (electro)magnetic fields

are of great relevance for the characterization and understanding of this new state of QCD

matter. In particular, very strong magnetic fields up to O
(

0.3 GeV2
)

are expected to be

created in the early stages of noncentral relativistic heavy ion collisions [38–46]. and even

much larger magnetic fields of O
(

4 GeV2
)

may have been produced in the early stages of

the Universe [48,49] (see also Fig. 10 in [51]). Moreover, magnetic fields up to O
(

1 MeV2
)

are present in the interior of very dense neutron stars known as magnetars [47]. Therefore,

the study of the effects of strong magnetic fields on the QGP has sparked a large amount

of interest in the community in recent years [54–83] (for extensive reviews and other

references, see for instance, [84–87])

In the last few years, several works have emphasized that non-central heavy ion col-

lisions are not only characterized by a sizable anisotropic flow but also by the presence

of very strong electromagnetic fields formed at the early stages of the collisions [38–46].

This has created a lot of interest on the effects of strong electromagnetic fields in strongly

interacting QCD matter [88] and, recently, lattice calculations with physical quark masses

have determined how a strong external magnetic field changes the thermodynamic prop-

erties of the QGP [51–53]. Lattice calculations have also been used in [72, 102, 103] to

73
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determine the magnetization of QCD matter in equilibrium and the authors of Ref. [72]

argued that the paramagnetic behavior [110] found in these lattice simulations leads to a

sort of paramagnetic squeezing that could contribute to the overall elliptic flow observed

in heavy ion collisions. If the magnetic field is still large enough at the time that elliptic

flow is building up, it is natural to also consider the effects of strong magnetic fields on

the subsequent hydrodynamic expansion of the QGP.

Since the properties of a strongly coupled QGP cannot be reliably studied using per-

turbative techniques one has to resort to nonperturbative approaches that are valid at

strong coupling. Interestingly enough, contrary to what happens in the case of a nonzero

baryon chemical potential where the sign problem of the fermion determinant prevents the

application of the Monte Carlo importance sampling method in lattice simulations (for a

review see [10]), in the case of a nonzero magnetic field (at vanishing baryon chemical po-

tential) standard lattice techniques may be employed to study the equilibrium properties

of QCD in the (T,B)-plane, see for instance, [51–53].

Another nonperturbative method that is suited to study strongly coupled non-Abelian

gauge theories is the holographic AdS/CFT correspondence (also known as the gauge/-

gravity duality) as detailed in the previous chapter. The correspondence has been em-

ployed to obtain useful insights into the properties of the strongly coupled QGP, as re-

cently reviewed in [162, 271]. A very attractive feature of the gauge/gravity duality is

that it may be easily employed to compute transport coefficients of strongly coupled non-

Abelian gauge theory plasmas, as done in Secs. 3.4 and 3.5, which is a challenging task

to perform on the lattice [31].

4.1 The magnetic field generated by a peripheral heavy

ion collision

In this section we present some further details about the generating of strong magnetic

field in a heavy ion collision.

The first thing that we must consider is the form of the magnetic field generated by

relativistic charged particle, since one considers that the magnetic field is produced by

the spectator protons of the heavy ion collison (see Fig. 1.4). This information is obtained

from the Liénard-Wiechert potentials,

~B(t, ~r) = αEM

Nproton∑

i=1

Zi
~vi × ~R

Ri − ~Ri × ~vi

(1 − v2
i ), (4.1)

where ~R = ~R(t), Zi and ~vi are the proton’s position, charge and speed, respectively;
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Figure 4.1: Top-left pannel: Transverse impact plane of a typical peripheral heavy ion collision
that will produce a strong magnetic field (large impact parameter). Top-right pannel: Monte-
Carlo simulation of the time evolution of the magnetic field (neglecting conductivity effects)
created in a Au+Au collision. Bottom-left pannel: Monte-Carlo simulation of the initial EM
fields using a nonzero electrical conductivity for the QGP; notice that the value of the electric
field can be large. Bottom-right pannel: Illustration of how a finite electric conductivity (top red
line) may enhance the magnetic field duration; the bottom curve is assuming a vacuum media.
Figures adapted from Ref. [40,43,56], respectively.

the top-left pannel in Fig. 4.1 provides the coordinate axes. Although the fine-structure

constant αEM ≈ 1/137 is small, it is balanced by the large number of protons. Indeed, we

can see how eB scales with the total number of protons Z using that eB ∼ Z/R2, where

R is the nucleus size R ∼ A1/3 ∼ Z1/3. Therefore, we have that eB ∼ Z1/3.

In order to obtain an accurate evolution of the magnetic field one usually proceed

with the Monte-Carlo (MC) simulation [40, 42, 43]. The result of this MC simulation at

the vacuum is given in Fig. 4.1 (top-right pannel), and we can see a quite strong magnetic

field eB ∼ m2
π in the early stages of the collision.

It is not clear at the moment if the electromagnetic fields present in the early stages

of heavy ion collisions remain strong enough to directly affect equilibrium and transport

properties of the plasma produced at later stages. As shown in [41], the electrical con-
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ductivity of the QGP can greatly increase the lifetime of the magnetic field on the QGP.

Thus, a precise estimate of the QGP electrical conductivity is imperative. A lattice QCD

result for the electrical conductivity of the QGP is [45]

σLQCD = (5.8 ± 2.9)
T

Tc

MeV, (4.2)

with large uncertainty yet. The best lattice calculation of this electrical conductivity,

shown in Fig. F.1, is found in Ref. [272]. We illustrate the effects of the electrical conduc-

tivity on the bottom-right pannel of Fig. 4.1.

Since we have the coexistence of magnetic and electric fields during the early stages of

the QGP, it is natural to ask whether we have the formation of a non-trivial topological

field configurations. The information about this is given by the Chern-Simons following

term
∫

d4xǫαβµνFαβFµν 6= 0, (4.3)

whose presence may create a current that will unbalance1 quarks and antiquarks leading

to some chiral imbalance . This effect is called the chiral magnetic effect (CME), which

is of great interest in recent years [38,39,277].

4.2 The magnetic brane background

Now that we are conscious about the very strong magnetic fields created in the early

stages of (peripheral) heavy ion collision, we would like to scan possible effects induced

by this magnetic field. In this dissertation we choose to work with the gauge/gravity

duality to tackle this problem, given its suitability to describe strongly coupled systems in

equilibrium, near-the-equilibrium, or even far-from-equilibrium. The holographic approach

is one specific approach among many, such as lattice QCD, the NJL model, the chiral

Lagrangian, etc.

There are, so far, four distinct ways to implement a magnetic field in a holographic

model aiming possible applications to the sQGP: the magnetic brane solution [89–91]; the

Sakai-Sugimoto model [65,104–106,182], from which the magnetic field is generated by the

Dirac-Born-Infeld action inherent to the Dp/D̄p branes embedding; a bottom-up model

mimicking the QCD EoS [97] - develoved in Chap. 8; and another bottom-up model based

on the IHQCD in the Veneziano limit [98]. There are some extensions of the magnetic

brane solution as well using the hard/soft wall perspective [107, 108]. In this Chapter,

though, we shall develop the magnetic brane solution for the subsequent applications in

Chapters 5, 6, and 7.

1The QCD chiral anomaly is also necessary to provide the initial chirality imbalance.
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The magnetic brane solution is a bona-fide top-down construction [89–91] dual to

the magnetic N = 4 SYM. Of course, it is a caricature of QCD but it can be very

enlightening and show some universal qualitative behaviors. For instance, the anisotropic

shear viscosity obtained from the magnetic brane (Chap. 5) has the same qualitative

behavior of the QCD-like model 8.4. Before we present the (super)gravity action for

the magnetic brane, let us examine the conformal field theory side in the presence of a

magnetic field.

To include the effects of a magnetic field on the maximally supersymmetric SU(Nc)

theory, in the large Nc limit and in four dimensions, we must deform the theory by

including an external Abelian U(1) gauge field

SN =4 → SN =4 +
∫

d4xjµ(x)Aext
µ (x), (4.4)

where

Aext = Bdx, (Landau gauge) (4.5)

with B being the physical magnetic field, and jµ(x) is the conserved U(1) current, asso-

ciated to the four Weyl fermions and the three complex scalars of N = 4 SYM. Diving

more deep in some technical details, recall that all the matter content of the N = 4 SYM

theory is in the adjoint representation, with the Weyl fermions in the 4 of the SO(6),

and the scalars in the 6 of SO(6). The global SO(6) R-symmetry accommodates up to

three distinct magnetic fields, i.e. U(1)3 ⊂ SO(6), though we use only one U(1) Cartan

subgroup to create the magnetic field.

From the gravitational point of view, we have originaly the type IIB SUGRA in AdS5×
S5. The reduction of the five-sphere breaks the group SO(6) into SO(2)×SO(2)×SO(2) =

U(1)a × U(1)b × U(1)c; the black brane solutions are charged under these U(1) Cartan

subroups. As in the field theory, we are only interested in one of these subgroups.2

A consistent truncation of the 5-dimensional bosonic supergravity is3

S =
1

16πG5

∫

d5x
√−g

(

R +
12

L2
− F µνFµν

)

+ SCS + Sbdry, (4.6)

where G5 is the 5-dimensional gravitational constant, L is the asymptotic AdS5 radius

and F = dA is the Maxwell field strength 2-form. The term SCS is the Chern-Simons

term, given by

SCS =
1

6
√

3πG5

∫

M
A ∧ F ∧ F. (4.7)

2For instance, if we want to include the baryonic chemical potential µB we need to turn on another
Abelian gauge field.

3We note that our definition for the Riemann tensor possesses an overall minus sign in comparison to
the one used in [89].
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For the case where there is only the magnetic field, the Chern-Simons term is identically

zero and for this reason we shall ignore it hereafter.

The boundary term Sbdry encodes the contributions of the Gibbons-Hawking-York

action, necessary to define a well posed variational problem, and the counter-term action

that eliminates the divergences of the on-shell action. The explicit form of Sbdry is

Sbdry = SGHY + Sct, (4.8)

where SGHY is given by Eq. (3.71) and

Sct =
1

8πG5

∫

∂M
d4x

√−γ
(
L

4
R(γ) − 3

L
+
L

2

(

ln
r

L

)

F µνFµν

)

. (4.9)

The equations of motion are obtained from the Einstein-Maxwell field equations

Rµν = − 4

L2
gµν − 1

3
FρσF

ρσgµν + 2FµρF
ρ

ν , (4.10)

and also from the Maxwell’s field equations for the Abelian field,

∇µF
µν = 0. (4.11)

If we want a constant magnetic field along the z-direction, which breaks the original

SO(3) rotation symmetry, the natural Ansatz for the magnetic brane geometry is

ds2 = −U(r)dt2 +
dr2

U(r)
+ f(r)(dx2 + dy2) + p(r)dz2, (4.12)

where U(r), f(r) and p(r) are determined by solving the equations of motion. The holo-

graphic coordinate r is such that the boundary is located at r → ∞. We want a black

brane background and, thus, we require that at a given r = rh the function U(r) has a

simple zero. The Ansatz for the field strength F is given by

F = B dx ∧ dy, (4.13)

where the constant B is the bulk magnetic field oriented along the z direction. It can be

checked that the equation of motion (4.11) is trivially satisfied by this Ansatz.

In the absence of a magnetic field p(r) = f(r), which reflects the spatial SO(3) in-

variance of the boundary gauge theory. However, since the magnetic field establishes a

preferred direction in space, it breaks the SO(3) spatial symmetry to only a SO(2) sym-

metry in the x, y directions. In the bulk theory this is taken into account by the fact that

in this case f(r) 6= p(r).
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The equations of motion derived from (4.12) are (we set L = 1 from now on)

U(V ′′ −W ′′) + (U ′ + U(2V ′ +W ′)) (V ′ −W ′) = −2B2e−4V ,

2V ′′ +W ′′ + 2(V ′)2 + (W ′)2 = 0,

1

2
U ′′ +

1

2
U ′(2V ′ +W ′) = 4 +

2

3
B2e−4V (4.14)

2U ′V ′ + U ′V + 2U(V ′)2 + 4UV ′W ′ = 12 − 2B2e−4V ,

where we defined V and W by f = e2V and p = e2W . By Bianchi’s identity, the fourth

equation of motion can be shown to be a consequence of the three first equations and,

thus, it can be taken as a constraint on initial data.

It is well-known that charged systems undergo dimensional reduction in the presence

of strong fields due to the projection towards the lowest Landau level [273–275] (see the

recent review in [276]). Taking that into account, the authors of [89] proposed that the

background (4.12) satisfied two conditions. The first condition is that the geometry must

be asymptotically AdS5, that is, U(r) → r2, p(r) → r2 and f(r) → r2 when r → ∞ since

in the UV we must recover the dynamics of N = 4 SYM without the influence of the

magnetic field. The second condition is that in the asymptotic IR the geometry becomes a

BTZ black hole [278] times a two dimensional torus T 2 in the spatial directions orthogonal

to the magnetic field. In fact, deep in the IR the geometry near the horizon of the black

brane rh, r ∼ rh, is given by

ds2 =

[

−3(r2 − r2
h)dt2 + 3r2dz2 +

dr2

3(r2 − r2
h)

]

+

[

B√
3

(dx2 + dy2)

]

. (4.15)

This implies that in the IR the dynamics corresponds to a (1+1) dimensional CFT. Thus,

imposing that the background interpolates between the BTZ black hole for r ∼ rh and

AdS5 for high T and interpreting the flow along the r direction as a renormalization group

flow, this solution flows from a (1+1) dimensional CFT in the IR to a 4 dimensional CFT

in the UV [89].

4.2.1 Numerical solution and thermodynamics

No analytic solution which interpolates between AdS5 and the BTZ×T 2 geometry is

known and, thus, we must resort to numerics. In this subsection we briefly review the

numerical procedure for solving the equations of motion and the thermodynamics, first

elaborated in [89].

The strategy is to first choose the scale for the t and r coordinates to fix the horizon

position at rh = 1 so that Ũ(1) = 0, where the tilde indicates that we are in the rescaled
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coordinates t̃ and r̃. By using the fact that any physical quantity in this model should

depend on the dimensionless ratio T/
√
B, we also fix the temperature at T = 1/(4π)

- this means that we take Ũ ′(1) = 1. Also, we rescale the x, y, and z coordinates to

have Ṽ (1) = W̃ (1) = 0. In these new coordinates, the magnetic field is b. After these

redefinitions, the first and fourth equations in (4.14) imply that

Ṽ ′(1) = 4 − 4

3
b2 and

W̃ ′(1) = 4 +
2

3
b2. (4.16)

This gives a well posed initial value problem for Ũ(r̃), Ṽ (r̃), and W̃ (r̃), which can be

integrated out from r̃ = 1 to a large value of r̃. It can be checked numerically that the

geometry has the asymptotic behavior

Ũ(r̃) → r̃2, e2Ṽ (r̃) → vr̃2, e2W̃ (r̃) → wr̃2, (4.17)

where v(b) and w(b) are proportionality constants that depend on the rescaled mag-

netic field b. This result implies that, apart from a coordinate rescaling, the geometry

is asymptotically AdS5. To go back to the original units and have the correct AdS5

asymptotic behavior, we need to rescale back to our original coordinate system by doing

(x̃, ỹ, z̃) → (x/
√
v, y/

√
v, z/

√
w). The metric is then (in coordinates that are asymptoti-

cally AdS5)

ds2 = −Ũ(r)dt2 +
dr2

Ũ(r)
+
e2Ṽ (r)

v
(dx2 + dy2) +

e2W̃ (r)

w
dz2, (4.18)

where we note that we have taken r = r̃. By the same token, the field strength is now

written as

F =
b

v
dx ∧ dy. (4.19)

Therefore, the rescaled magnetic field is related to the physical field at the boundary

by B = b/v. Also, note that the first equation (4.16) implies that for b >
√

3 we have

V ′(1) < 0, which means that the geometry will not be asymptotically AdS5. Thus, the

rescaled field b has an upper value given by bmax =
√

3.

From (4.18) one can obtain the thermodynamics of the gauge theory. The physical

field is B =
√

3B, as argued in [89] by comparing the Chern-Simons term in (4.6) with

the N = 4 SYM chiral anomaly. The dimensionless ratio T/
√

B is given by

T√
B

=
1

4π 31/4

√
v

b
. (4.20)
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Figure 4.2: The rescaling parameters v (solid blue curve) and w (dashed black curve) as a
function of b/

√
3.

while the dimensionless ratio of the entropy density s by N2B3/2 (using that G5 = π/2N2)

is
s

N2B3/2
=

1

33/42π

√
v

b3w
. (4.21)

The numerical procedure for evaluating the thermodynamics can then be summarized

as follows: one chooses a value of the rescaled magnetic field b, numerically solves the

equations of motion, and obtains the rescaled parameters v and w by fitting the asymptotic

data for Ṽ (r) and W̃ (r) to the functions vr2 and wr2. By varying b, one can obtain the

functions v(b) and w(b) and evaluate T/
√

B versus s/(N2B3/2) by using b as a parameter.

In Fig. 4.2 we show v and w as a function of b. The entropy density is shown in Fig. 4.3

and we have checked that our results match those previously found in [89].
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Figure 4.3: The normalized entropy density s/(N2B3/2) as a function of the dimensionless
combination T/

√
B.
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4.3 Viscous relativistic magnetohydrodynamics

In this section we shall elaborate in detail the consequence of breaking the SO(3)

rotation on the fluid’s dissipation, i.e. we shall see the rising of anisotropic viscosities.

Below, we shall see that we have seven viscosity coefficients, five shear viscosities and

two bulk viscosities. Historically, the calculations of the anisotropic transport coefficients

in plasmas were carried out in the 1950’s, mainly by Braginskii [279], in the context of

the abelian plasmas. In more recent years, we became aware of high energy relativistic

systems, like neutron stars [281,282], where the anisotropic nature of the plasma may play

an important role. Although our discussion is about the anisotropic viscosity in a plasma

driven by a magnetic field, we stress that this phenomena occurs in various others systems,

like plastics and superfluids [196]; see Refs. [263–265] for the holographic approach of the

later.

Ultimately, we are interested in relativistic viscous plasmas and, consequently, we want

a causal and stable theory of magnetohydrodynamics. For the viscous magnetohydrody-

namics one has the Navier-Stokes-Fourier-Ohm theory [281], which is an extension of the

old (acausal and unstable) relativistic Navier-Stokes theory - we shall not exploit this fur-

ther. There was an attempt to include relativistic effects on the magnetohydrodynamics

for the weakly collisional (abelian) plasmas [283]; this may be important to study black

hole’s accretion flows, where the magnetic field is intense. Recently, though, Ref. [284] ex-

tended the Israel-Stewart formalism (cf. Sec. 2.1.1) in order to accommodate anisotropic

fluids.

Before we tackle the viscosity part, it is worth to discuss a bit the inviscid (ideal)

case, which is well established. Ideal magnetohydrodynamics follows the same idea of the

usual hydrodynamics described in Chapter 2, i.e. it is an effective theory, valid for long-

wavelength and low-frequency excitations. Ideal hydrodynamics is the zeroth order result

of the gradient expansion and it can be built using the following quantities:

T µν
ideal = T µν

F O + T µν
EM , (4.22)

T µν
F O = εuµuν − P∆µν +Mλ(µF

ν)
λ , (4.23)

nµ = nuµ, (4.24)

sµ = suµ, (4.25)

where uµ is the four-velocity with normalization uµu
µ = −1, T µν

EM = F µαF ν
α − 1/4ηµνF 2

is the electromagnetic contribution for the stress-energy tensor, ∆µν = gµν + uµuν is the

orthogonal projector, and ε, P , s are the energy density, pressure, and entropy density,

respectively. The symbol n represents any possible charges that the theory may contain; for
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instance, it could be the baryon number. The antisymmetric tensor Mµν is the polarization

tensor, which can be obtained from the thermodynamic potential Ω, Mµν = ∂Ω/∂Fµν .

The magnetohydrodynamics equations are obtained from the conservation laws

∂µT
µν
ideal = ∂µn

µ = 0, ∂µs
µ ≥ 0. (4.26)

For instance, the one-dimensional magnetic Bjorkern flow is solved in Ref. [280].

In order to make contact with the dissipative part of magnetohydrodynamics in it first

order formulation, we write

T µν = T µν
ideal + Πµν , (4.27)

nµ = nuµ + jµ
n , (4.28)

sµ = suµ + jµ
s , (4.29)

where Πµν is the viscous stress tensor, with jµ
n and jµ

s being the dissipative fluxes.

The task now is to derive the form of the viscous stress tensor. For highly magnetized

plasmas, it cannot be the same of the usual isotropic plasmas since it has a reduced axial

symmetry around the magnetic vector; from the gravitational side, the magnetic brane

(4.12) tells us the same. Therefore, to arrive at some expression for Πµν , we shall need

the rank-4 viscosity tensor ηαβµν which we already found in Eq. (2.40) when we discussed

the shear viscosity in the context of kinetic theory. To clarify the discussion, let us first

define the dissipation function R

R =
1

2
ηµναβwµνwαβ, (4.30)

where wµν = 1
2

(Dµuν +Dνuµ), and Dµ = ∆µν∂
ν . Taking the derivative of (4.30) with

respect to wµν , we obtain the usual stress tensor Πµν

Πµν = ηµναβwαβ, (4.31)

which is the same relation that we found in Eq. (2.40).

The construction of the viscosity tensor is based on its symmetry properties. Assuming

the existence of an external magnetic field B, we have

ηµναβ(B) = ηνµαβ(B) = ηµνβα(B). (4.32)

Also, the the Onsager principle [190] tells us that

ηµναβ(B) = ηαβµν(−B). (4.33)
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Now, we write down all the linear independent objects satisfying the above conditions of

symmetry

(i) ∆µν∆αβ,

(ii) ∆µα∆νβ + ∆µβ∆να,

(iii) ∆µνbαbβ + ∆αβbµbν ,

(iv) bµbνbαbβ,

(v) ∆µαbνbβ + ∆µβbνbα + ∆ναbµbβ + ∆νβbµbα,

(vi) ∆µαbνβ + ∆µβbνα + ∆ναbµβ + ∆νβbµα,

(vii) bµαbνbβ + bµβbνbα + bναbµbβ + bνβbµbα, (4.34)

where bµ is a spacelike vector orthogonal to the magnetic field (bµb
µ = 1), and bµν =

ǫµναβbαuβ. This means that we have seven coefficients, five shear viscosities and two bulk

viscosities. The shear viscosities are related to the traceless part of Πµν while the bulk

viscosities are related to the trace of the stress tensor. We note that Onsager’s condition

in Eq. (4.31) is responsible for the presence of the two last tensors, (vi) and (vii), involving

the Levi-Civita symbol ǫµναβ. These structures are inherent in magnetized plasmas [190,

281,282] but they are not present in the case of anisotropic superfluids, in which we have

only five viscosity coefficients altogether.

We say in advance, however, that the form of the line element in Eq. (4.12) allows up

to five different viscosity coefficients. This is because we have the following independent

metric fluctuations: hxy, hxz, hxx +hyy and hxx −hyy. Moreover as we shall see below after

the calculation of the Kubo formulas, three shear viscosity coefficients are trivially zero

in this case.

For the sake of convenience, we will adopt the same combination of viscosity coefficients

chosen in [281,282] 4. Thus, using the general linear combination of the structures above,

we find the most general form of the viscosity tensor in the presence of a constant magnetic

field

ηµναβ =(−2/3η0 + 1/4η1 + 3/2ζ⊥)(i) + (η0)(ii) + (3/4η1 + 3/2ζ⊥)(iii)

+ (9/4η1 − 4η2 + 3/2ζ⊥ + 3ζ‖)(iv) + (−η2)(v) + (−η4)(vi)

+ (−η3 + η4)(vii), (4.35)

with the η′s being the shear viscosities and the ζ ′s the bulk viscosities.

4This is a different convention for the coefficients than the one adopted in [279] and in Â§13 of [190].
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Substituting (4.35) into (4.31) we find the following viscous tensor

Πµν = −2η0

(

wµν − ∆µν
θ

3

)

− η1

(

∆µν − 3

2
Ξµν

)(

θ − 3

2
φ
)

+ 2η2 (bµΞναbβ + bνΞµαbβ)wαβ

+ η3 (Ξµαbνβ + Ξναbµβ)wαβ − 2η4 (bµαbνbβ + bναbµbβ)wαβ − 3

2
ζ⊥Ξµνφ− 3ζ‖bµbνϕ,

(4.36)

where wµν = 1
2

(Dµuν +Dνuµ), Dµ = ∆µα∇α, Ξµν ≡ ∆µν − bµbν (orthogonal projector),

θ = ∇µu
µ, φ ≡ Ξµνw

µν and ϕ ≡ bµbνw
µν . Note that the derivative operator Dµ is given

in terms of the covariant derivative, i.e. we are generalizing the viscous tensor to a curved

spacetime; this will be essential to extract the Kubo formulas, once they come from gravity

fluctuations.

4.3.1 Kubo formulas for viscous magnetohydrodynamics

With the expression for the viscous tensor Πµν (4.36) at hand, it is time to derive the

Kubo formulas that relate the viscosity coefficients to the retarded Green’s functions. In

this sense, this subsection is the generalization of what we did in Sec. 2.3.1 by computing

the Kubo formulas for an isotropic and homogeneous fluid. We remark that Ref. [282]

also derived the Kubo formulas though using the Zubarev formalism.

Let us resume then the procedure developed in Sec. 2.3.1 to obtain the Kubo formulas

for the viscosity: adopting the Minkowski background, we perform small gravity pertur-

bations assuming that they are all homogeneous, which means that we can work only with

the spatial indices, i.e. gij = ηij + hij(t), with h00 = h0i = 0. Also, we work in the rest

frame of the fluid where uµ = (1, 0, 0, 0)5, . The novelty here is the presence of magnetic

field, which is assumed to be constant along the z−direction, i.e. bµ = (0, 0, 0, 1).

Thus, we have the variation for the viscous tensor6

δΠij = δ(i) + δ(ii) + δ(iii) + δ(iv) + δ(v) + δ(vi) + δ(vii), (4.37)

where

δ(i) = −η0

(

∂thij − 1

3
δij∂th

k
k

)

, (4.38)

5In other words, we will work in the Landau-Lifshitz frame where uµΠµν = 0, and all the information
about the viscosities are in the components {i, j, k, l} of the retarded Green function.

6Note that:

δΞµν = hµν , δθ =
1
2
∂th

λ
λ, δϕ =

1
2
∂thzz.
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δ(ii) = −1

4
η1

[

(δij − 3bibj)
1

2
∂th

k
k − 3(δij − 3bibj)

1

2
∂thzz

]

, (4.39)

δ(iii) = η2

[

bib
k∂thjk + bjb

k∂thik − 2bibjb
kbl∂thkl

]

, (4.40)

δ(iv) = η3 (δik + bibk) ǫjlz∂th
kl, (4.41)

δ(v) = −2η4 (ǫikzbjbk + ǫjlzbibk) ∂th
kl, (4.42)

δ(vi) = −3

4
ζ⊥ (δij − bibj)

(

∂th
k
k + ∂thzz

)

, (4.43)

δ(vii) = −3

2
ζ‖bibj∂thzz. (4.44)

The next step is to write the variations above in Fourier space (hij ∼ e−iωt), which

gives us the following expressions

δ(i) =
iω

2
hkl(ω)

[

η0

(

δk
i δ

l
j + δl

iδ
k
j − 2

3
δijδ

kl
)]

(4.45)

δ(ii) =
iω

2
hkl(ω)

1

4
η1

[

(δij − 3bibj)δ
kl − 3(δij − 3bibj)δ

k
z δ

l
z

]

, (4.46)

δ(iii) = −iω

2
hkl(ω)

[
1

2
η2

(

bib
kδl

j + bib
lδk

j + bjb
kδl

i + bjb
lδk

i − 4bibjb
kbl
)]

, (4.47)

δ(iv) = −iω

2
hkl(ω)

[

2η3ǫ
l

j z (δik + bibk)
]

, (4.48)

δ(iv) =
iω

2
hkl(ω)

[

4η4

(

ǫ k
i zbibk + ǫ l

j zbibk

)]

, (4.49)

δ(v) =
iω

2
hkl(ω)

[
3

2
ζ⊥
(

δijδ
kl + δijδ

k
z δ

l
z − bibjδ

kl − bibjδ
k
z δ

l
z

)]

, (4.50)
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δ(vii) =
iω

2
hkl(ω)

[

3ζ‖bibjδ
k
z δ

l
z

]

. (4.51)

Collecting all the variations above in Fourier space, we write

δΠij(ω) =
iω

2
hkl(ω)

[

η0

(

δk
i δ

l
j + δl

iδ
k
j − 2

3
δijδ

kl
)

+
1

4
η1

[

(δij − 3bibj)δ
kl − 3(δij − 3bibj)δ

k
z δ

l
z

]

−1

2
η2

(

bib
kδl

j + bib
lδk

j + bjb
kδl

i + bjb
lδk

i − 4bibjb
kbl
)

− 2η3ǫ
l

j z (δik + bibk)

+4η4

(

ǫ k
i zbibk + ǫ l

j zbibk

)

+
3

2
ζ⊥
(

δijδ
kl + δijδ

k
z δ

l
z − bibjδ

kl − bibjδ
k
z δ

l
z

)

+ 3ζ‖bibjδ
k
z δ

l
z

]

,

(4.52)

which allows us to express the retarded Green’s function as a function of the viscosities,

− lim
ω→0

1

ω
ImGR, kl

ij (ω) =η0

(

δk
i δ

l
j + δl

iδ
k
j − 2

3
δijδ

kl
)

+
1

4
η1

[

(δij − 3bibj)δ
kl − 3(δij − 3bibj)δ

k
z δ

l
z

]

− 1

2
η2

(

bib
kδl

j + bib
lδk

j + bjb
kδl

i + bjb
lδk

i − 4bibjb
kbl
)

− 2η3ǫ
l

j z (δik + bibk)

+ 4η4

(

ǫ k
i zbibk + ǫ l

j zbibk

)

+
3

2
ζ⊥
(

δijδ
kl + δijδ

k
z δ

l
z − bibjδ

kl − bibjδ
k
z δ

l
z

)

+ 3ζ‖bibjδ
k
z δ

l
z. (4.53)

The final stage is to isolate the viscosities and obtain their associated Kubo formulas.

For such a task, we only need to select specific components of GR
ij,kl. For instance, if we

take i = k = x and j = l = y in (4.53), we have

η0 = − lim
ω→0

1

ω
GR

TxyTxy
(ω), (4.54)

and so forth.

In the end, we have the following Kubo formulas:

η0 = − lim
ω→0

1

ω
ImGR

TxyTxy
(ω), (4.55)

η1 = −4

3
η0 + 2 lim

ω→0

1

ω
ImGR

P‖P⊥
(ω), (4.56)

η2 = −η0 − lim
ω→0

1

ω
ImGR

TxzTxz
(ω), (4.57)

η3 = − lim
ω→0

1

ω
GR

P⊥T12
(ω), (4.58)

4η4 = − lim
ω→0

1

ω
ImGR

TxzTyz
(ω), (4.59)

ζ⊥ = −2

3
lim
ω→0

1

ω

[

ImGR
P⊥P⊥

(ω) + ImGR
P‖,P⊥

(ω)
]

, (4.60)

ζ‖ = −4

3
lim
ω→0

1

ω

[

ImGR
P⊥P‖

(ω) + ImGR
P‖,P‖

(ω)
]

, (4.61)
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where

P⊥ ≡ 1

2
T a

a =
1

2
(T x

x + T y
y), P‖ ≡ 1

2
T z

z. (4.62)

At first sight, the Kubo formulas obtained here seem different from the ones obtained

in Ref. [282]. The reason is that the formulas written in [282] are in a fully covariant way.

However, if we use the following identity

〈[∫

d3xT 00, A
]〉

= 〈[H,A]〉 = i

〈

∂A

∂t

〉

= 0, (4.63)

where A is a generic operator and H is the Hamiltonian, we get rid of the term ǫ̂ ∼ T 00

- recall that the mean values 〈· · · 〉 for the Kubo formulas are aways related with the

equilibrium state7. Furthermore, when we recover isotropy, i.e. B = 0, the formulas of

both bulk viscosities, ζ⊥ and ζ‖, return to the well-known isotropic formula. Moreover,

due to the structure of the Kubo formulas for the bulk viscosity, we have the relation

ζ =
2

3
ζ‖ +

1

3
ζ⊥, (4.64)

where ζ is the isotropic bulk viscosity obtained by the well-known Kubo formula (2.80).

Following the usual convention, we define8

η⊥ ≡ η0, η‖ ≡ η0 + η2. (4.65)

Another common way to write the formulas for the shear viscosities is

ηijkl = − lim
ω→0

1

ω
Im GR

TijTkl
(ω,~k = 0) with i, j, k, l = x, y, z. (4.66)

For example, in the above notation the isotropic shear viscosity η0 is

η0 = ηxyxy = η⊥. (4.67)

We finish this subsection emphasizing that the Kubo formulas for η1, η3 and η4 vanishes

trivially in the context of the magnetic brane. For example, the Kubo formula for η3 (4.58)

depends on the operators P⊥ and T xy; however, the dual bulk fields of these operators,

hxx and hxy respectively, are decoupled on the fluctuated on-shell action, which causes

the vanishing of the two-point function.

7Apparently, however, we found an overall factor disagreement in η3 and η4, though this will not
influence the results since these coefficients vanish trivially for the magnetic brane.

8Note that this notation is different from the one considered in [261,262].
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4.3.2 From the kinetic theory

Let us mention briefly how we include the effects of an external magnetic field on the

framework of the kinetic theory. In this case, the expression for the relativistic transport

equation (2.54) is generalized to [206]

pµ∂µf +
∂(fzeF µνuν)

∂pµ
= C[f ], (4.68)

where ze is the charge of the species of the plasma (e.g: quarks), and F µν is the usual

electromagnetic tensor.

Ref. [219] calculated the anisotropic shear viscosities (4.55)-(4.59) within the relativis-

tic kinetic theory framework. The final result for the anisotropic viscosities scales with

respect to the magnetic field as follows

η1, 2 ∼ 1

(zeB)2
, η3, 4 ∼ 1

zeB
. (4.69)

The same result holds for the non-relativistic case done in §59 of Ref. [190]. Further-

more, the author from [219] argues that this could enhance the anisotropic flow v2, though

the weakly interacting kinetic model seems somewhat unrealistic for the QGP near the

crossover region where T ∼ 150 − 250 MeV.



Chapter 5

The anisotropic shear viscosity from

the magnetic brane

This chapter initiates some novel applications of the gauge/gravity duality (see Chap-

ter 3) for the calculation of observables in strongly coupled non-Abelian plasmas, such

as the QGP described in Chapter 1. More specifically, this chapter is concerned with the

anisotropic shear viscosity that comes up when we introduce strong magnetic fields - see

Chapter 2 for a detailed discussion about the isotropic viscosity.

The strong magnetic fields that are generated in heavy ion collisions (cf. Chap. 4)

break the spatial SO(3) rotational symmetry to a SO(2) invariance about the magnetic

field axis and this type of magnetic field-induced anisotropic relativistic hydrodynamics

has more transport coefficients than the more symmetric case in order to distinguish the

dynamics along the magnetic field direction from that on the plane orthogonal to the

field. In fact, this means that the number of independent transport coefficients in the

shear viscosity tensor ηijkl increases from 1 (in the isotropic case) to 5 in the presence

of the magnetic field while there are 2 bulk viscosity coefficients [190, 196, 219, 282] as

mentioned in the previous chapter. Therefore, one needs to know how this “Zeeman-like”

splitting of the different viscosity coefficients depends on the external magnetic field to

correctly assess the phenomenological consequences of strong fields on the hydrodynamic

response of the QGP formed in heavy ion collisions.

Since one no longer has SO(3) invariance, one may expect that some of the different

shear viscosities could violate the universal result η/s = 1/(4π) valid for isotropic Ein-

stein geometries [35,228], which would then constitute an example of the violation of the

viscosity bound that is of direct relevance to heavy ion collisions. As mentioned in Sec.

3.4, previous examples involving the violation of the viscosity bound include: anisotropic

deformations of N = 4 Super-Yang-Mills (SYM) theory due to a z-dependent axion
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profile [258] computed in [257] where η‖/s < 1/(4π) along the direction of anisotropy;

anisotropic holographic superfluids with bulk SU(2) non-Abelian fields which present

universality deviation for η‖/s [263–265]; and a dilaton-driven anisotropic calculation re-

cently shown in [261]. We remark, however, that the first examples of viscosity bound

violation were found in (SO(3) invariant) theories with higher order derivatives in the

gravity dual [254–256,268].

In this chapter we evaluate two components of the shear viscosity tensor, namely

η⊥ ≡ ηxyxy and η‖ ≡ ηxzxz = ηyzyz, in a strongly coupled non-Abelian plasma in the

presence of an external magnetic field using the gauge/gravity duality. These calculations

are done using the membrane paradigm [247,248]. The holographic model we consider is

simple Einstein gravity (with negative cosmological constant) coupled with a (prescribed)

Maxwell field, which correspond to strongly coupled N = 4 SYM subjected to an external

constant and homogenous magnetic field [89–91], discussed at lengthy in Sec. 4.2. We

examine the role played by the anisotropy introduced by the external field searching for

a violation of the viscosity bound in η‖/s. A study of the behavior of η‖/s is also of

phenomenological interest for the modeling of the strongly coupled QGP under strong

magnetic fields.

This chapter is organized as follows. In Section 5.1, after a preliminary discussion

about the computation of η/s from the membrane paradigm in isotropic theories, we

show that metric fluctuations in this background parallel and transverse to the external

magnetic field result in scalar field fluctuations with two different couplings. This result

can then be used in the context of the membrane paradigm to evaluate the shear viscosity

coefficients η⊥ and η‖. We finish the chapter in Section 5.2 with a discussion of our results.

5.1 Anisotropic shear viscosity due to an external

magnetic field

5.1.1 The membrande paradigm and the isotropic shear viscos-

ity

In this subsection we shall complete the discussion initiated in Chapter 3 where we

calculated the shear viscosity from various methods. Here we shall discuss how to obtain

the shear viscosity using the so-called membrane paradigm; the results presented for the

isotropic shear viscosity serve as guidance for the anisotropic calculation.

Let us start, once more, with linear response theory. The viscosity tensor for an
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anisotropic theory is given by the Kubo formula

ηijkl = − lim
ω→0

1

ω
Im GR

TijTkl
(ω,~k = 0) with i, j, k, l = x, y, z (5.1)

where GR
TijTkl

(ω,~k) is the Fourier space retarded Green’s function given by

GR
ij,kl(ω,

~k) = −i
∫

d4x e−ik·xθ(t)
〈[

T̂ij(x), T̂kl(0)
]〉

, (5.2)

while T̂ij is the stress energy tensor operator in the quantum field theory.

For an isotropic theory of hydrodynamics in the absence of other conserved currents,

there are only two transport coefficients associated with energy and momentum at the level

of relativistic Navier-Stokes theory, namely the isotropic shear viscosity η and the bulk

viscosity ζ. The computation of η in strongly coupled gauge theories using the gauge/-

gravity duality, in the case of isotropic gauge theories with two derivative gravitational

duals, gives a universal value [35,252] reviewed already in Sec. 3.4

η

s
=

1

4π
. (5.3)

A convenient method that can be used to derive this result is the membrane paradigm

[248]. In this framework, if we want to compute the transport coefficient χ of a scalar

operator Ô given by the Kubo formula

χ = − lim
ω→0

1

ω
Im GR(ω,~k = 0), (5.4)

where GR is the retarted correlator associated with the scalar operator Ô

GR(ω,~k) = −i
∫

d4x e−ik·xθ(t)〈
[

Ô(x), Ô(0)
]

〉, (5.5)

one needs to look for fluctuations φ of the associated bulk field in dual gravity theory, in

accordance with the gauge/gravity dictionary [33,245]. In the case that the action for the

fluctuations is given by a massless scalar field with an r dependent coupling Z(r),

Sfluc = −
∫

d5x
√−g 1

2Z(r)
(∂φ)2, (5.6)

the transport coefficient χ is given by the corresponding transport coefficient χmb of the

stretched membrane of the black brane horizon [248]

χ = χmb =
1

Z(rh)
. (5.7)
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In the case of the isotropic shear viscosity η, we must consider the fluctuations hxy of the

metric component gxy since the energy-momentum tensor operator in the gauge theory

T̂µν is dual to the bulk metric gµν of the gravity dual. Given that in isotropic backgrounds

the mixed fluctuation hy
x can be described as the fluctuation of a massless scalar field

with Z(r) = 16πG5 [35], then η = 1/(16πG5). The universal result in (5.3) follows from

identifying the entropy density with the area of the horizon via the Bekenstein formula

[174,175].

5.1.2 Metric fluctuations and anisotropic shear viscosity

Let us now consider metric fluctuations around the background (4.12), which is a so-

lution of the Einstein-Maxwell system (4.6). In a fluid with axial symmetry about an axis

due to an external magnetic field there are, in principle, 7 independent transport coeffi-

cients in the full viscosity tensor ηijkl defined in (5.1), five of which are shear viscosities

and the other two bulk viscosities [190,282] - the complete discussion regarding the struc-

ture of the viscosity tensor was done in Sec. 4.3. However, as also argued in Sec. 4.3, out

of the five shear viscosities, three of them are identically zero for the class of anisotropic

diagonal backgrounds given by Eq. (4.12), which reduces the total number of indepen-

dent components of the shear tensor from 7 to 4 (anisotropic superfluids have 5 transport

coefficients [196,264]). Therefore, we end up with the following shear components of ηijkl,

ηxyxy = η⊥, and ηyzyz = ηxzxz = η‖ . (5.8)

The magnetic field breaks the SO(3) rotational invariance of background to only a

SO(2) rotation invariance about the z axis. Thus, as expected, it is possible to show that

linearized φ(t, r) = hy
x(t, r) fluctuations obey

δS = − 1

32πG5

∫

d5x
√−g (∂φ)2, (5.9)

which means that the shear viscosity ηxyxy ≡ η⊥ is still given by (5.3) and this shear

coefficient saturates the viscosity bound.

However, hzx (or, equivalently, hzy) fluctuations are not protected by the remaining

rotation invariance of the background. In fact, in the context of the membrane paradigm,

we must first show that the fluctuation hzx(t, r) obeys the equation of a massless scalar

field in order to apply (5.7). However, the coupling in the action may differ from (5.9)

and, thus, η‖ 6= η⊥.

Consider then a fluctuation of the form gzx → gzx +hzx
1. In order to have a scalar-like

1One can show that homogeneous fluctuations of the U(1) bulk field Aµ decouple from the correspond-
ing fluctuations hxy and hzx.
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action with just the kinetic term (and possibly an r dependent coupling), we choose the

mode ψ(t, r) ≡ hz
y(t, r), rather than hy

z for example. Inserting this fluctuation into the

action and keeping only quadratic terms one can show that

δS =
1

16πG5

∫ √−g
{

ψ2

[

�p

f
− p

f 2
�f − 3

2f 2
∂µf∂

µp+
3p

2f 3
(∂f)2

]

+

+

[

2p

f
ψ�ψ − 3p

2f 2
∂µf∂

µψ2 +
2

f
∂µp∂

µψ2

]

+

+

[

− 3p

2f

(∂tψ)2

U
+

3p

2f
U(∂rψ)2 =

3p

2f
∂µψ∂

µψ

]

+ (5.10)

−
[(

R +
12

L2
− F 2

)
p

2f
ψ2 +

p

f
F 2ψ2

]}

,

where the d’Alembertian is

� = − 1

U
∂2

t + U∂2
r +

(

U ′ +
Uf ′

f
+
Up′

2p

)

∂r . (5.11)

Now, using that the trace of the Einstein’s equations gives R + 20/L2 = F 2/3 and,

integrating by parts the ψ�ψ term, we obtain

δS =
1

16πG5

∫

d5x
√−g

[

− p

2f
∂µψ∂

µψ − p

2f 2
∂µf∂

µψ2 +
1

f
∂µp∂

µψ2+

+ψ2

(

�p

f
− p

f 2
�f − 3

2f 2
∂µf∂

µp+
3p

2f 3
(∂f)2

)

+

(

4p

fL2
ψ2 +

F 2

3

p

f
ψ2

)

− p

f
F 2ψ2

]

.

(5.12)

We now use the unperturbed Einstein’s equations. One needs the zz equation

4p

fL2
=

�p

2f
− (∂p)2

2pf
− F 2

3

p

f
(5.13)

and also the yy equation,

−1

2
�p+

(∂p)2

2p
= − 4p

L2
− F 2

3
p. (5.14)

Using the zz (5.13) equation in (5.12) and integrating by parts once again, noting that

1

f
∂µp∂

µψ2 = ∇µ

(

∂µp

f
ψ2

)

+
1

f 2
∂µf∂

µpψ2 − ψ2�p

f
and (5.15)
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− p

2f 2
∂µf∂

µψ2 = −∇µ

(

ψ2 p

2f
∂µf

)

+
ψ2

2f 2
∂µp∂

µf − p

f 3
ψ2(∂f)2 +

p

2f 2
ψ2�f, (5.16)

we arrive at

δS =
1

16πG5

∫

d5x
√−g

[

− p

2f
∂µψ∂

µψ +
p

f
ψ2 +

+
p

f
ψ2

(

1

2

�p

p
− 1

2f
�f +

1

2f 2
(∂f)2 − (∂p)2

2p2

)

− p

f
F 2ψ2

]

. (5.17)

Finally, from (5.13) and (5.14)

1

2

�p

p
− 1

2f
�f +

1

2f 2
(∂f)2 − (∂p)2

2p2
= F 2, (5.18)

one can show that the action for the fluctuations (5.17) becomes

δS = − 1

16πG5

∫

d5x
√−g

(

p(r)

2f(r)
∂µψ∂

µψ

)

. (5.19)

Therefore, we have a massless scalar field with an r dependent coupling Z(r) = 16πG5f(r)/p(r).

These functions were found in the previous section to determine the thermodynamic prop-

erties of this system and, thus, in the next section we shall evaluate η‖.

5.1.3 Viscosity bound violation due to an external magnetic

field

From the result of the previous section, it follows that we can also apply the membrane

paradigm to (5.19) to evaluate η‖, using (5.7). We then have

η‖
s

=
1

4π

p(rh)

f(rh)
. (5.20)

In terms of the numerical, rescaled geometry described in (4.18), we then obtain

η‖
s

=
1

4π

v(b)

w(b)
. (5.21)

Thus, the ratio (η/s)‖/(η/s)⊥ is given by v/w. Using this result, we can then evaluate

the degree of anisotropy of the shear viscosities as a function of B/T 2; we show the

results in Fig. 5.1. One can see that for B/T 2 ≪ 1, η‖ → η⊥, reflecting the fact that

at high temperatures we recover the isotropic strongly coupled SYM plasma limit. The



5.2 CONCLUSIONS OF THE CHAPTER 96

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

B�T²

HΗ
�s
L �
��
HΗ
�s
L ¦

Figure 5.1: The ratio of shear viscosities (η/s)‖/(η/s)⊥ as a function of B/T 2. The solid blue
line is the numerical result from (η/s)‖/(η/s)⊥ = w/v; the dashed red line is the asymptotic
result valid only when B ≫ T 2. (5.22)

asymptotic behavior in the opposite limit, B/T 2 ≫ 1, can be understood by looking at

the BTZ metric (4.15), which is the relevant geometry in this case. Evaluating η‖ in this

limit, one obtains the asymptotic behavior

η‖
s

∼ π
T 2

B , (B ≫ T 2), (5.22)

which is also shown in Fig. 5.1. We should note that in this model, η‖/s < 1/(4π) whenever

B > 0. This gives another example in which the viscosity bound in a gravity dual is

violated due to anisotropy. The formula above indicates that η‖/s can become much

smaller than 1/(4π) for sufficiently strong fields. However, it is conceivable that in this

limit other constraints must be imposed to obtain a well defined theory. In fact, it was

found in [255,256] that causality in the gauge theory constituted an important constraint

that was used to set a lower value for η/s in that particular case involving higher order

derivatives in the gravity dual. This matter deserves further study and we hope to address

this question in the future. For now, we remark that Ref. [261] did not detect instabilities

for a dilaton driven anisotropy, which has qualitative similarities with the magnetic system

treated here.

5.2 Conclusions of the chapter

Motivated by the recent studies involving the effects of electromagnetic fields on the

strongly coupled plasma formed in heavy ion collisions, in this chapter we used the

holographic correspondence to compute two anisotropic shear viscosity coefficients of a
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strongly coupled N = 4 SYM plasma in the presence of a magnetic field. As expected,

the shear viscosity that describes the dynamics in the plane transverse to the magnetic

field, η⊥ is not affected by the field and, thus, it still saturates the viscosity bound, i.e.,

η⊥/s = 1/(4π). On the other hand, the shear viscosity coefficient along the axis parallel to

the external field, η‖, violates the bound when B > 0. In fact, we find η‖/s < 1/(4π). These

results are qualitatively similar to those found in [257] for the case of an anisotropic plasma

created by a spatial dependent axion profile [258]. Indeed, after the publication of this

work, a novel paper appeared [262] summarizing this “universal” behavior of anisotropic

branes. However, the source of anisotropy in our case (the magnetic field) is arguably

more directly connected to heavy ion phenomenology than the one used in [257,261].

Plasmas in the presence of magnetic fields usually experience instabilities and it would

be interesting to investigate whether there are instabilities induced by strong magnetic

fields in the strongly coupled plasma studied in this paper. In fact, one could compute the

spectral functions and the quasi-normal modes associated with η‖ and check if there is any

sudden change in their behavior at strong fields. Also, instabilities in homogeneous mag-

netic media can sometimes be resolved by the formation of magnetic domains and, thus,

it would be interesting to investigate whether this is the case for the theory considered in

this paper.

Our results for the magnetic field dependence of η‖/s show that this ratio only deviates

significantly from 1/(4π) when B/T 2 ≫ 1. Taking the typical temperature at the early

stages of heavy ion collisions to be T ∼ 2mπ, we see that 4πη‖/s ∼ 0.9 when B ∼ 40m2
π.

This value of magnetic field may be too large for heavy ion phenomenology and, thus,

our results suggest that anisotropic shear viscosity effects in strongly coupled plasmas are

minimal and the isotropic approximation is justified. Alternatively, one could also study

the effects of strong magnetic fields on the weak coupling calculations of [26,27] following

the general procedure to compute transport coefficients of relativistic hydrodynamics from

the Boltzmann equation proposed in [191].



Chapter 6

The anisotropic bulk viscosity from

magnetic branes

This chapter is the natural sequence of the last one. The main goal here is to calculate

the two bulk viscosities, ζ⊥ (4.60) and ζ‖ (4.61), that arise when in the presence of an

external magnetic field, as explained in Chapter 4, in the context of the magnetic brane

solution.

At first one may think that the magnetic brane solution is conformal, with the vanish-

ing of the stress-energy tensor T µ
µ = 0, so the both bulk viscosities ζ‖ (4.60) and ζ⊥ (4.61)

would vanish too (see the discussion in Appendix B). However, as shown in Ref. [95], the

trace of the stress-energy tensor does not vanish in the presence of an external magnetic

field. On contrary, a trace anomaly proportional to B2 in the rest frame is found.

After we realized that the magnetic brane solution induces a trace anomaly, we com-

puted the bulk viscosities ζ‖ and ζ⊥, whose Kubo formulas are (4.60) and (4.61), respec-

tively. It turns out that we found that both are identically zero, which is an odd result,

since non-conformal theories usually possess bulk viscosities. Furthermore, as we empha-

sized in Sec. 1.2.1, bulk viscosity plays an important role in the dynamics of the QGP,

and an understanding of this transport coefficient is certainly important. The anisotropic

bulk viscosity, in the context of the dense matter inside neutrons stars was calculated in

Ref. [281]. In Ref. [285] we have the calculation of the (isotropic) bulk viscosity of the

QGP in a magnetic field. For a calculation of the dependence of the (isotropic) bulk vis-

cosity with respect to the magnetic field in the context of the HRG model, see Ref. [223].

For holographic calculations of the isotropic bulk viscosity, without a magnetic field,

see [163–168,187];.

The plan for the rest of this chapter is as follows. Section 6.1 is dedicated to show

that the trace of the stress-energy does not vanish for the magnetic brane solution. In

Sec. 6.2 we define precisely the dual bulk fields of the relevant operators from the Kubo

98
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formulas (4.60)-(4.61), necessary to proceed with a generalization of the recipe developed

in Sec. 3.3.2 which gives the two-point functions. Section 6.3 is dedicated to explain how

we numerically solved the coupled set of differential equations for the metric fluctuations.

We present our conclusions about this study in Sec. 6.4.

6.1 The expectation value of the stress-energy tensor

The bulk viscosity is related with the non-vanishing part of the stress-energy tensor.

Consequently, for a conformal theory (T µ
µ = 0) such as thermal N = 4 SYM, the bulk

viscosity is identically zero. We shall now compute explicitly how the magnetic field in-

duces an external scale that breaks conformality, albeit in a rather different way than

introducing an intrinsic energy scale (e.g. ΛQCD) for the field theory. The details can be

found in [95] - and also in [96], which was the first paper to calculate 〈Tij〉 for the magnetic

brane background.

The standard procedure to extract holographically the expectation value of the stress-

energy tensor of the field theory requires the near boundary behavior of the metric and

the formula for the stress-energy tensor is given by [209–211]

〈Tij〉 =
1

4πG5

[

g
(4)
ij − g

(0)
ij trg(4) − (log(µ) + C)h

(4)
ij

]

, (6.1)

with the metric above being expressed in Fefferman-Graham coordinates1, defined as

ds2
F G =

1

u2

[

du2 + gij(u, x)dxidxj
]

=
1

u2

[

du2 + gtt(u)dt2 + gxx(u)(dx2 + dy2) + gzz(u)dz2
]

.

(6.2)

In any asymptotic AdS5 space one has the following asymptotic behavior of the metric

gij(u → 0) = g
(0)
ij + g

(2)
ij u

2 + g
(4)
ij u

4 + h
(4)
ij u

4 log u2 + O(u5). (6.3)

Note that the conformal boundary is now located at u → 0. In (6.1), there is also an

energy scale µ and a scheme-dependent renormalization constant C. However, since the

trace of h
(4)
ij vanishes as we will show below, we do not bother to set precise values to µ

and C.2

Working out the equations of motion obtained from (4.10) in the near boundary region,

1We use the Fefferman-Graham coordinates only in this section of the work. Thus, one should not be
confused with the numerical coordinates employed in the rest of the dissertation.

2For instance, in [95,96], they choose C = −1/4 whilst the energy scale µ is proportional to
√

B at low
temperatures.
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one finds

gtt = −1 +
(

2g(4)
xx + g(4)

zz −B2/6
)

u4 − B2

2
u4 log u+ O(u5),

gxx = 1 + g(4)
xx u

4 − B2

2
u4 log u+ O(u5),

gtt = 1 + g(4)
zz u

4 +
B2

2
u4 log u+ O(u5), (6.4)

where g(4)
xx and g(4)

zz are the two free parameters.

Substituting (6.4) into (6.1), and taking the trace of the former, we obtain the trace

of the stress-energy tensor of the field theory

〈T µ
µ〉 = − B2

24πG5

, (6.5)

where we have used the definition of the physical magnetic field, i.e. B =
√

3B. The result

shows that the trace anomaly is a function of the magnetic fiel, and, since the absence of

the bulk viscosity relies on the vanishing of 〈T µ
µ〉, we expect a non-zero bulk viscosity for

the N = 4 SYM plasma in presence of a magnetic field.

6.2 Dual operators, metric fluctuations and the Green’s

function

We know, from the holographic calculation of the bulk viscosity done in Sec. 3.5, that

we need to perform small fluctuations of the diagonal part of the metric field in order

to extract the holographic bulk viscosity. However, there are some subtleties that arise

in the anisotropic case; we have to state precisely what is the field/operator map in this

anisotropic case. Thus, we begin by rewriting the Kubo formulas for the anisotropic bulk

viscosities,

ζ⊥ = −2

3
lim
ω→0

1

ω

[

ImGR
P⊥P⊥

(ω) + ImGR
P‖,P⊥

(ω)
]

, (6.6)

ζ‖ = −4

3
lim
ω→0

1

ω

[

ImGR
P⊥P‖

(ω) + ImGR
P‖,P‖

(ω)
]

, (6.7)

where

P⊥ ≡ 1

2
T a

a =
1

2
(T x

x + T y
y), P‖ ≡ 1

2
T z

z. (6.8)

and

GR
AB(ω,~k) = −i

∫

d4x e−iq·xθ(t)
〈[

Â(x), B̂(0)
]〉

, (6.9)

as usual.
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The question that appears involves identification of the dual bulk fields associated

with the operators P⊥ and P‖, defined in Eq. (6.8). Recall that the interaction between

gravity and matter (in a linearized level) has the form

Sint =
1

2

∫

x
δgµνT

µν ⊃
∫

x









δgxx
1

2
(T xx + T yy)

︸ ︷︷ ︸

=P⊥

+δgzz
1

2
T zz

︸ ︷︷ ︸

=P‖









, (6.10)

where we assumed a SO(2) symmetry to set δgyy = δgzz. Therefore, we see that the dual

bulk fields of the operators P⊥ and P‖ are δgxx(= δgyy) and δgzz, respectively3.

Knowing the dual bulk fields for the retarded Green’s functions, such as the ones in

Eqs. (6.6) and (6.7), the holographic dictionary tells us to perform small fluctuations of

the metric and the gauge field around the background,

g′
µν = gµν + δgµν ,

a′
µ = aµ + δaµ, (6.11)

where gµν and aµ are the background fields in the magnetic brane (4.12). Moreover, we

assume that all the fluctuations have an harmonic profile X(r, t, ~x) = X̃(r)e−iωt+i~k·x for

X ∈ {δg, δa}. Because the Green’s functions require only ~k → ~0, we can now set ~k = 0

and recover the SO(2) symmetry on the plane (x, y).

For the specific case of the bulk viscosity, we keep track only of the diagonal fluc-

tuations of the metric, which are the dual bulk field of the operators (6.8) as discussed

above. Due to symmetry SO(2) one can show, by looking at the linearized field equations

for instance, that the diagonal perturbations decouple from the fluctuations of the U(1)

field. This fact is obvious since the fluctuations δgxx + δgyy are scalars under the SO(2)

group, whereas δai are vectors under the SO(2) group. Hence, the only non-vanishing

fluctuations here are

δgµν = diag

{

−UHtt,
Hrr

U
,
e2V

v
Hxx,

e2V

v
Hxx,

e2W

w
Hzz

}

, (6.12)

where Htt ≡ δgt
t, Hrr ≡ δgr

r , Hxx ≡ δgx
x and Hzz ≡ δgz

z . Due to SO(2) symmetry, we have

already set Hxx = Hyy. Also, we take the radial gauge Hrµ = 0, which means that Hrr = 0

from now on.

From the Kubo formulas given by (6.6) and (6.7), we expect somehow a mixing between

3The subtlety here is that this is valid as long as one works in the so-called radial gauge δgrµ = 0,
which is the one used in this work. If we choose another gauge, as in [187], then we ought show the
equivalence between this new gauge and the radial gauge by analyzing the behavior of the fluctuations
near the boundary to conclude that the gauge choice did not affect their values there.
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the fluctuations Hxx and Hzz in their equations of motion, and indeed, this is exactly

what happens as is shown below. With the mixing of the operators in the bulk, we

have to employ the generalization of the holographic recipe to calculate the retarded

Green’s function [245, 246], which is worked in full detail in [286]4. As we proceed with

the calculations, we shall review the main ingredients of this generalization.

In this scenario, the retarded Green’s function will have the following form (schemat-

ically)

G
R(ω) ≡








GR
T t

t T t
t
(ω) GR

T t
t P⊥

(ω) GR
T t

t P‖
(ω)

GR
P⊥T t

t
(ω) GR

P⊥P⊥
(ω) GR

P⊥P‖
(ω)

GR
P‖T t

t
(ω) GR

P‖P⊥
(ω) GR

P‖P‖
(ω)







. (6.13)

Then, by looking at the Kubo formulas for the bulk viscosities given by (6.6) and (6.7),

we see that the relevant entries of G
R(ω) to calculate ζ⊥ are

[

G
R(ω)

]

xx
= GR

P⊥P⊥
(ω)

and
[

G
R(ω)

]

zx
= GR

P‖P⊥
(ω). On the other hand, to calculate ζ‖, we need the entries

[

G
R(ω)

]

zz
= GR

P‖P‖
(ω) and

[

G
R(ω)

]

xz
= GR

P⊥P‖
(ω). After this brief digression about the

retarded Green’s function within the mixing operator framework, we move on to the

calculation of the quadratic fluctuated action, which is obtained from plugging (6.12) into

(4.6).

For the fluctuated on-shell action, we adopt a notation similar to the one used in [187]

to calculate the fluctuated gravity action. But, unlike what occurs in [187], the fluctuations

of the metric are coupled and so are the retarded Green’s functions.

Using the the numerical coordinates of the magnetic brane (4.18)5, the fluctuated

action acquires the form

S =
1

16πG5

∫

M5

d5xL (6.14)

L = L̂ + ∂tL̂t + ∂rL̂r, (6.15)

where L̂ is the “improved” Lagrangian, whose structure is

L̂ =
1

2
∂t
~HT

M
tt∂t

~H +
1

2
∂r
~HT

M
rr∂r

~H +
1

2
~HT

M ~H + ∂r
~HT

M
r ~H, (6.16)

4Enlightening discussions about the mixing issue can also be found in [287].
5As discussed before, we do not use the tildes here.
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with

~H =








Htt

Hxx

Hzz







, M

tt = − e2V +W

Uv
√
w








0 0 0

0 1 1

0 1 0







, M

rr =
Ue2V +W

v
√
w








0 1 1/2

1 1 1

1/2 1 0







,

M =
e2V +W

12v
√
w








−2b2e−4V + Σ 28b2e−4V − 2Σ 2b2e−4V − Σ

28b2e−4V − 2Σ −48b2e−4V 28b2e−4V − 2Σ

2b2e−4V − Σ 28b2e−4V − 2Σ −2b2e−4V + Σ







,

M
r =

e2V +W

4v
√
w








U ′ −2U ′ −U ′

−4UV ′ 0 −4UV ′

−2UW ′ −4UW ′ 2UW ′







, (6.17)

and

Σ ≡ −3 (U ′ (2V ′ +W ′) + 2UV ′ (V ′ + 2W ′) − 20) . (6.18)

The boundary terms, ∂tL̂t and ∂rL̂r, will not play any role in the calculation of the bulk

viscosity; indeed, they are closely related to the Gibbons-Hawking-York action [243, 244]

and the counter-term action [209–213]. Therefore we bypass the calculation of boundary

terms because any imaginary part of a retarded Green’s function is free from the diver-

gences that we encounter on the on-shell action. For this reason we did not make any

attempt to simplify (6.17) by introducing boundary terms.

The next step is to complexify the field ~H(t, r), i.e. we promote ~HT to ~H†. Now we

have a real-valued Lagrangian density, denoted by L̂C , which is given by a set of complex-

valued fields contained in ~H. Noticing that ∂t
~H = −iω ~H, we write L̂C as

2L̂C = ∂r
~H†

M
rr∂r

~H + ∂r
~H†

M
r ~H + ~H†

M
r†∂r

~H + ~H†
K ~H, (6.19)

where K = ω2
M

tt + M.

We now substitute this new improved Lagrangian into the fluctuated action and inte-

grate by parts. The result is

S =
V3

32πG5

∫ ∞

−∞
dt



 ~H† (Mrr∂r + M
r) ~H

∣
∣
∣
∣
∣

r=∞

r=rh

+

+
∫

dr ~H†
(

−∂r

[

(Mrr∂r + M
r) ~H

]

+ M
r†∂r

~H + K ~H
)]

, (6.20)

where V3 =
∫

dxdydz is the 3 volume. Notice that the factor multiplying ~H† in the

integrand of r is the equation of motion of ~H, which is obtained by varying the action
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with respect to ~H†, so this factor vanishes when we take the on-shell action.

Since we want to work with the fluctuations in momentum space, we Fourier transform

them,

~H(t, r) =
∫ ∞

−∞

dω

2π
e−iωt

D(r, ω)~hω(r). (6.21)

The matrix D(r, ω) is introduced in such a way that all the fluctuations ~hω(r) go to

constants at the boundary, which will then be regarded as the sources of the operators

in the dual field theory. To obtain the explicit form of D(r, ω) we recall that near the

boundary the components of ~H goes like, ~Hi(r → ∞) ∼ r−∆i
−Ai + r−∆i

+Bi, where i ∈
{t, x, z}, and ∆i

− is the smallest exponent. Therefore, D = diag
(

r−∆t
− , r−∆x

− , r−∆z
−

)

.

Inserting (6.21) into the on-shell action, we end up with (after discarding the horizon

contribution as required by the holographic prescription)

Son−shell =
V3

32πG5

∫ ∞

−∞

dω

2π
~hT

−ω(r)
(

M̄
rr∂r + M̄

r
)

~hω(r)

∣
∣
∣
∣
∣
r→∞

, (6.22)

where

M̄
rr ≡ D

†
M

rr
D,

M̄
r ≡ D

†
M

r
D + D

†
M

rr∂rD. (6.23)

The general solution for the fluctuations ~h can be written as

~hω(r) = H(r, ω) ~J, (6.24)

where H is the matrix formed by three linearly independent (LI) solutions of the fluctu-

ations with the Dirichlet boundary condition,

lim
r→∞ H = 13×3, (6.25)

which allows us to consider ~J as the value of the fields at the boundary. We can write H
and ~J as

H =
(

~h1
~h2

~h3

)

, ~J =
(

Hfar
tt , Hfar

xx , Hfar
zz

)T
, (6.26)

with ~h1,~h2,~h3 being three linearly independent solutions of the system (6.36) - (6.39) for

the fluctuations contained in ~hω.

In practice, what we do to achieve the Dirichlet condition (6.25), is to write the general

solution as

H(r, ω) = S(r, ω)S−1(∞, ω), (6.27)
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where S(r, ω) is some generic solution generated by giving initial conditions near the

horizon. Notice, from the relation above, that whenever det S = 0 the matrix H is ill-

defined and, as detailed in [286], this happens when we encounter a quasinormal mode.

Another reason to have det S = 0, is that we are not really with a complete linear

independent (LI) basis of solutions - we shall find this last situation since the incoming

wave solution is not enough to construct the complete basis of solutions. We discuss how

to circumvent this problem in the next section using the prescription given in [287] where

a similar situation was encountered.

Returning to the fluctuated action and plugging (6.24) in (6.22) the on-shell action

will be reduced to

Son−shell =
V3

2

∫ ∞

−∞

dω

2π
~JT

−ωF(ω, r) ~Jω

∣
∣
∣
∣
∣
r→∞

. (6.28)

where we have defined the matrix flux in the same spirit of [286],

F =
1

16πG5

(

H†
M̄

rr∂rH + H†
M̄

rH
)

, (6.29)

with

∂r

(

F − F †
)

= 0. (6.30)

To demonstrate the above property, we have to use the equations of motion for the

fluctuations and its hermitian conjugated version, replacing ~H by H,

−∂r [(Mrr∂r + M
r) H] + M

r†∂rH + KH = 0, (6.31)

−∂r

[

∂rH†
M

rr + H†
M

r †
]

+ ∂rH†
M

r + H†
K = 0. (6.32)

Then, by performing the subtraction H†(6.31)-(6.32)H, one arrives at the desired result

(6.30). Thus, even in this more general case the imaginary part of the retarded Green’s

function is closely connected with conserved fluxes from graviton scatterings.

Finally, the expressions above allow us to extract the following Green’s function

G
R(ω) = lim

r→∞ F(r, ω) =
1

16πG5

lim
r→∞

(

M̄
rr∂rH + M̄

r
)

, (6.33)

along with the two bulk viscosities given by the formulas (6.6) and (6.7)

ζ⊥ = −2

3
lim
ω→0

[

Im
(

G
R(ω)

)

xx
+ Im

(

G
R(ω)

)

zx

]

, (6.34)

ζ‖ = −4

3
lim
ω→0

[

Im
(

G
R(ω)

)

zz
+ Im

(

G
R(ω)

)

xz

]

. (6.35)
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Note that the Green’s function defined in Eq. (6.33) is divergent. Nonetheless, this is

not a problem since we want its imaginary part, obtained from the conserved flux (6.30),

which is divergence free. Moreover, we have a symmetry between the non-diagonal part

of the Green’s function, i.e.
(

G
R(ω)

)

zx
=
(

G
R(ω)

)

xz
.

Now that all the cards are on the table, it is just a matter of solving numerically the

equations of motion for the fluctuations to get the matrix S(r, ω) and, consequently, the

matrix H(r, ω) (6.27) so that we can calculate both bulk viscosities. We do this analysis

in the next section.

6.3 Towards the numerical solution for ζ⊥ and ζ‖

The calculation of the retarded Green’s function (6.33) that gives the two bulk vis-

cosities ζ⊥ and ζ‖ relies on solving the linearized equations of motion of gravity under

the fluctuation (6.12), whose influence in (6.33) is given by the matrix H. Although we

just need the near boundary coefficients of H, these coefficients depend of the whole bulk

geometry, such as the near horizon behavior of the fluctuations. For this reason, an analyt-

ical solution of limr→∞ H can be achieved for some simple cases only (using the matching

procedure for instance); hence, as detailed below, we proceed to numerically obtain the

retarded Green’s function.

The linearized components (tt), (xx), and (zz) of the Einstein-Maxwell field equations

(4.10) with respect to the diagonal fluctuation (6.12), in the numerical coordinates (4.18)

and in momentum space (6.21), are respectively given by (as usual, the prime denotes

∂r)
6

hxx

(

8b2Ue−4V + 6ω2
)

3U2
+
ω2hzz

U2
+
U ′h′

xx

U
+
U ′h′

zz

2U
+ h′

tt

(

3U ′

2U
+ 2V ′ +W ′

)

+ h′′
tt = 0,

(6.36)

hxx

(

3ω2 − 16b2Ue−4V
)

3U2
+ V ′h′

tt + V ′h′
zz + h′

xx

(

U ′

U
+ 4V ′ +W ′

)

+ h′′
xx = 0, (6.37)

8b2e−4V hxx

3U
+
ω2hzz

U2
+W ′h′

tt + 2W ′h′
xx + h′

zz

(

U ′

U
+ 2 (V ′ +W ′)

)

+ h′′
zz = 0, (6.38)

where Hii(r, t) = hii(r)e
−iωt. The equations above form a set of three linear independent

6The matrix D(r, ω) in (6.21) is the identity matrix since the fluctuation ~h already goes to a constant
vector at the boundary.
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equations, which is required to solve for the fluctuations htt, hxx, and hzz as functions

of the radial coordinate. Besides these equations, we also have two constraint equations

(CE); the first CE is just the component (rt) of (4.10),

hxx

(

U ′

U
− 2V ′

)

+ hzz

(

U ′

2U
−W ′

)

− 2h′
xx − h′

zz = 0. (6.39)

The second CE is obtained by combining the (rr) component with the sum (6.36)+(6.37)+(6.38).

The result is

4hxx

(

ω2 − b2Ue−4V
)

U2
+ 2h′

tt (2V ′ +W ′) +
2ω2hzz

U2

+ h′
xx

(

2U ′

U
+ 4 (V ′ +W ′)

)

+ h′
zz

(

U ′

U
+ 4V ′

)

= 0. (6.40)

In summary, the task now is to solve the system of three coupled differential equations

(6.36)-(6.38), along with the CE (6.39) and (6.40). Furthermore, we have 2N boundary

conditions to determine, where N is the number of independent fluctuations; thus, we

have to fix 6 boundary conditions in our case.

For the sake of clarity, we shall first analyse the solution of the system (6.36)-(6.38) in

the absence of the magnetic field, b = 0. In this situation, isotropy is restored (hxx = hzz,

W = V ) and the background metric is the usual AdS5-Schwarzschild7. The solution for

the fluctuations in this scenario is simple, even analytical, with the expressions for the

fluctuations being

htt(r; b = 0) =
C1

2
√
Ur3

[

2(r4 + r4
h) + r2ω2

]

+ C2

hxx(r; b = 0) = C1

√
U

r
(6.41)

where C1 and C2 are two arbitrary constants. However, it happens that the solution

(6.41) is a pure gauge solution, i.e. it can be obtained via an infinitesimal diffeomorphism

transformation8

xµ → xµ + ξµ,

gµν → £ξgµν = gµν − ∇µξν − ∇νξµ, (6.42)

7In this case, the background metric is given by: U(r) = r2(1 − r4
h/r

4) and e2V (r) = r2, with rh being
the radius of the black hole.

8In the context of general relativity, given a smooth manifold M, a diffeomorphism transformation is
regarded to be a isomorphic map φ : M → M such that the pullback metric (φ⋆g)µν , and the pullback
energy tensor (φ⋆T )µν , satisfy the Einstein’s equations if gµν and Tµν satisfy them.
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where £ξ represents the Lie derivative along ξµ, and

ξµ(t, r) = −e−iωt

(

−iωC1

√
U

r
+ C2,

C1√
U
, 0, 0, 0

)

. (6.43)

In this work, we consider that all the diffeomorphism changes will affect only the fluctuated

part of the metric δgµν . For instance, we can write ξµ as

ξµ = ξ(0)
µ + λξ(1)

µ + O(λ2), (6.44)

where λ is the order of the fluctuation. Thus, we consider only ξ(1)
µ different from zero.

It is then obvious that we can perform a gauge choice and eliminate the solution (6.41).

This makes sense because for b = 0 we have a conformal theory and the bulk viscosity

vanishes. Also, the solution (6.41) is the same pure gauge solution obtained in [288] (with

~q = ~0) when studying the so-called sound channel.

Now, let us give a step further and include the magnetic field. In this case, we shall

also encounter two LI pure gauge solutions, along with one incoming wave solution near

the horizon. The pure gauge solutions should not be discarded otherwise the matrix S
would not be invertible. One of the reasons for the inclusion of pure gauge solutions, as

detailed also in [287], is because the Einstein’s equations have constraint equations (CE)

(two in our case (6.39)-(6.40), and one in [287]) which tie the initial conditions of each

fluctuation.9

To exemplify the above statement, let us first analyze the incoming wave solution of

the system (6.36)-(6.38). Since this system displays of a regular singular point at the

horizon, the natural Ansatz for the fluctuations is (r − 1)αF (r), where F (r) is a regular

function near the horizon (rh = 1 in the numerical coordinates) and α is the characteristic

exponent. Hence, for r → 1, we write

hinc
tt (r) = (r − 1)± iω

4πT

(

h
(0)
tt + h

(1)
tt (r − 1) + · · ·

)

,

hinc
xx (r) = (r − 1)± iω

4πT

(

h(0)
xx + h(1)

xx (r − 1) + · · ·
)

,

hinc
zz (r) = (r − 1)± iω

4πT

(

h(0)
zz + h(1)

zz (r − 1) + · · ·
)

. (6.45)

As we want the incoming wave solution, we select the minus sign in the exponents; this

fixes half of the boundary conditions. The coefficients h
(1)
tt , h(1)

xx , h(1)
zz , and all the higher

coefficients are functions of the parameters h
(0)
tt , h(0)

xx , h(0)
zz , and b. However, these later

9One way to circumvent these issues is to work with variables invariant under diffeomorphism.
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Figure 6.1: An example for the incoming wave solution of the diagonal fluctuations of the
metric.

parameters are not independent and, in fact, they obey the relations

h
(0)
tt = 0, and 2h(0)

xx + h(0)
zz = 0, (6.46)

so we have a free parameter, h(0)
xx for instance, which is another boundary condition. The

other two boundary conditions will come from the pure gauge solutions. So, if we take

some value for h(0)
xx , we determine the next coefficients in terms of h(0)

xx and b and use

them to seed the NDSolve of the Mathematica. However, this procedure will not ensure

that hxx = hzz for b = 0. We circumvent this problem using h(0)
xx → h(0)

zz + h(0)
xx f(b), for

some smooth function f(b) such that f(b = 0) = 0. In Fig. 6.1 we give an example of the

incoming wave solution for a generic value of ω and b.

The constraints (6.46) shall not allow us to write the general solution only in terms

of the incoming wave solution (6.45). To see this, we write the general solution (near the

horizon) as

S =
(

~h1
~h2

~h3

)

=








h
I (0)
tt hI (0)

xx hI (0)
zz

h
II (0)
tt hII (0)

xx hII (0)
zz

h
III (0)
tt hIII (0)

xx hIII (0)
zz







, (6.47)

where I, II and III denotes three solutions with distinct h(0)
xx . Clearly the determinant of

the above matrix is zero if we use the constraints (6.46) since the lines are proportional

to each other. Thus, as done in [287], we resort to the pure gauge solutions to complete

the solution basis.

The choice of the radial gauge, Hµr = 0 does not fix the gauge completely and we still

have a residual gauge freedom. Demanding the condition Hµr = 0, we can only perform a
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diffeomorphism transformation if

∇rξµ + ∇µξr = 0. (6.48)

Therefore, the pure gauge solutions must come from the Killing equation (6.48) in order

to satisfy the initial radial gauge choice.10 The one form ξµ which satisfies (6.48) is given

by

ξµ = e−iωt

(

iωUC1

(
∫ 1

U(r)3/2
dr

)

+ C2,
C1√
U
, 0, 0, 0

)

, (6.49)

which produces the following pure gauge solutions

htt(r) = −
2C1ω

2U
(∫ 1

U3/2 dr
)

− C1

√
UU ′

2U
+ C2,

hxx(r) = C1

√
UV ′,

hzz(r) = C1

√
UW ′, (6.50)

where C1 and C2 are the two last boundary conditions. Also, notice that (6.50) reduces

to (6.41) for b = 0.

We end up with three free parameters: h(0)
xx , C1, and C2. Then, to generate the three

LI solutions for each value of b, we take:

h(0)
xx = 1, C1 = 0, C2 = 0 ⇒ ~S1 =








hinc
tt (r)

hinc
xx (r)

hinc
zz (r)







, (6.51)

h(0)
xx = 0, C1 = 1, C2 = 0 ⇒ ~S2 =









−
2ω2U

(∫
1

U3/2
dr

)

−
√

UU ′

2U√
UV ′

√
UW ′









, (6.52)

h(0)
xx = 0, C1 = 0, C2 = 1 ⇒ ~S3 =








1

0

0







. (6.53)

We are close now to obtain the Green’s functions (6.34) and (6.35). With the above

set of LI solutions, we construct the general solution S = (~S1
~S2

~S3) using Eqs. (6.51),

(6.53), and (6.53). Thus, we are able to calculate the matrix H via the relation (6.27),

the missing ingredient to obtain G
R in (6.33).

10We could also derive these pure gauge solutions in a similar way to the incoming wave solution (6.45).
Actually, this was done for the case where b = 0.
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However, the numerical results led to

Im
(

G
R(ω)

)

xx
= Im

(

G
R(ω)

)

zz
= −Im

(

G
R(ω)

)

xz
. (6.54)

The obvious consequence is the vanishing of both bulk viscosities, ζ⊥ and ζ‖. This result

leads us to conjecture that the trace anomaly induced by the magnetic field does not give

rise to a bulk viscosity. A basic numerical check, in order to detect some inconsistency,

was to confirm the Ward identity, i.e. kµGR
µναβ(ω) = ωGR

tναβ(ω) = 0 ⇒ GR
tναβ(ω) = 0,

which is consistent with our results.

6.4 Conclusions of the chapter

The presence of a constant magnetic field in a strongly coupled non-Abelian plasma

breaks the original SO(3) rotation symmetry down to SO(2). The consequence, as dis-

cussed in detail in Chapter 4 is the proliferation of the viscosity coefficients; in particular

we have two bulk viscosities, ζ⊥ and ζ‖, which are related to the trace of the stress-energy

tensor.

Using the magnetic brane set-up, which is the dual theory of magnetic N = 4 SYM

theory, we performed a calculation of the two anisotropic bulk viscosities. We found that

both viscosities vanish, even though there is a trace anomaly induced by the magnetic

field. Another approach that we could have used is the calculation of the quasinormal

modes, in which one defines (on the AdS side) gauge invariant fields and calculate their

eigenvalues; by comparing these eigenvalues with the modes of the hydrodynamic theory,

we can extract the bulk viscosity [222].

We remark once again, though, that the tracelessness of the stress-energy tensor does

not guarantee existence of a bulk viscosity. Indeed, the Bag Model has a non-vanishing

trace for the stress-energy tensor, i.e. TBag µ
µ = ε − 3P = 4BBag where BBag is the bag

energy, and the bulk viscosity for this theory does vanish. It is also important to note

that the trace (6.5) is the same for a vacuum geometry - again, this is also true for the

Bag Model; consequently, this trace is insensitive about temperature effects, and it is

the temperature that gives sense to many-body physics phenomena and their respective

properties, such as transport coefficients.

A similar result is found in the context of kinetic theory in Abelian plasmas. Although

four of the five shear viscosities acquire a magnetic field dependent profile, the two bulk

viscosities are zero if they vanish in the limit B = 0, which is the case of ideal gases

treated in Sec. 2.2. For the complete discussion see §58 and §59 of Ref. [190].



Chapter 7

The anisotropic heavy quark

potential in strongly coupled N = 4

SYM in a magnetic field

The holographic correspondence [32–34] is a powerful nonperturbative tool that has

been widely used to investigate the properties of strongly coupled non-Abelian gauge

theories with a large number of colors. In fact, its relevance to the physics of the strongly-

coupled quark gluon plasma formed in relativistic heavy ion collisions became evident

after the discovery [35] that strongly coupled (spatially isotropic) plasmas that can be

described by holographic methods behave as nearly perfect fluids where the shear vis-

cosity to entropy density ratio, η/s, is close to the estimates obtained within relativistic

hydrodynamic modeling of heavy ion collisions. Other applications of the correspondence

to the physics of the Quark-Gluon Plasma (QGP) have been reviewed in [271].

Given the recent interest regarding the effects of strong electromagnetic fields in the

physics of strong interactions, as discussed in Chapter 4, it is natural to investigate

whether holography can also be as insightful in this case. For instance, it has been shown

in Chapter 5 that in a presence of a magnetic field, B, the shear viscosity tensor of strongly

coupled N = 4 SYM theory becomes anisotropic and the shear viscosity coefficient in the

direction of the magnetic field violates the η/s = 1/(4π) result [35].

Motivated by the recent lattice work on the effects of strong external (Abelian) mag-

netic fields on the QCD heavy quark potential at zero temperature done in [67], in this

chapter we study the effect of a constant magnetic field on the heavy quark potential

in strongly coupled N = 4 SYM theory both at zero and nonzero temperature T . The

magnetic field distinguishes the different orientations of the QQ̄ pair axis with respect

to direction of the magnetic field (defined here to be z axis) and, thus, there is now a

perpendicular potential, V ⊥
QQ̄

, for which the pair’s axis is on the transverse plane xy and

112
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also a parallel potential, V
‖

QQ̄
, for which the QQ̄ axis coincides with that of the magnetic

field. Clearly, other orientations are possible but here we shall focus only on these two

cases.

These heavy quark potentials (both at zero and nonzero temperature) in the gauge

theory are defined in this work via their corresponding identification involving the appro-

priate Wilson loops

lim
T →∞

〈W (C‖)〉 ∼ e
iV

‖

QQ̄
T

lim
T →∞

〈W (C⊥)〉 ∼ e
iV ⊥

QQ̄
T
, (7.1)

where C‖ is a rectangular time-like contour of spatial length L‖ in the z direction and ex-

tended over T in the time direction while C⊥ is the corresponding contour of spatial length

L⊥ in the x direction1. We shall follow D’Hoker and Kraus’ construction of the holographic

dual of N = 4 SYM theory in the presence of a magnetic field [89–91] and perform the

calculations of the loops defined above in the background given by the asymptotic AdS5

holographic Einstein-Maxwell model to be reviewed below.

This chapter is organized as follows. In the next section we review the necessary details

about the holographic dual of N = 4 SYM theory in the presence of a magnetic field at

zero temperature and perform the calculation of the parallel and perpendicular potentials

and forces in this case. The effects of the breaking of SO(3) spatial invariance induced by

the magnetic field on the heavy quark potential and the the interquark force at nonzero

temperature are studied in Sec. 7.4. Our conclusions of the chapter are presented in Sec.

7.5 and other minor details of the calculations can be found in the Appendices D and E.

7.1 The holographic setup at zero temperature

In this section we review the properties of the asymptotic AdS5 background corre-

sponding to the holographic dual of strongly coupled N = 4 SYM theory in a magnetic

field worked out by D’Hoker and Kraus in [89–91]. We shall focus here on the T = 0

properties of the model.

The holographic model involves the Einstein-Maxwell action defined and explained in

Sec. 4.2. However, we have treated only the background metric with temperature, so we

still need to construct the metric field for the vanishing temperature case. For such task,

1Due to the matter content of N = 4 SYM theory, the Wilson loop also contains the coupling to
the six SU(N) adjoint scalars XI . In this work we shall neglect the dynamics of the scalars and the
holographic calculation of the Wilson loop is defined in 5 dimensions.
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we begin by writing the metric Ansatz on the light-cone gauge2 [90]

ds2 =
dr2

P 2(r)
+ 2P (r)dudv + e2W (r)(dx2 + dy2), F = Bdx ∧ dy, (7.2)

where the boundary of the asymptotically AdS5 space is located at r → ∞. A simple gauge

choice for the Maxwell field giving the electromagnetic field strength tensor specified above

is A = Bxdy. Maxwell’s equations, ∇µF
µν = 0, are then automatically satisfied.

The set of linearly independent components of Einstein’s equations is given by the rr-,

uv- and xx-components of (4.10), respectively

W ′′ +
P ′′

2P
+W ′ 2 +

P ′ 2

4P 2
+
P ′W ′

P
− 1

6P 2

(

12 + 2B2e−4W
)

= 0, (7.3)

P ′′

2P
+
P ′ 2

2P 2
+
P ′W ′

P
− 1

3P 2

(

12 + 2B2e−4W
)

= 0, (7.4)

W ′′ + 2W ′ 2 +
2P ′W ′

P
− 1

3P 2

(

12 − 4B2e−4W
)

= 0, (7.5)

where the prime denotes the derivative with respect to the radial direction, r.

It is useful to recast the above equations of movement in the following manner

P ′′ + 2P ′W ′ + 4P (W ′′ +W ′ 2) = 0, (7.6)

3P 2W ′′

2
+ 2P 2W ′ 2 − P ′ 2

4
+ PP ′W ′ +B2e−4W = 0, (7.7)

(P 2e2W )′′ = 24e2W . (7.8)

We shall use the coupled ODE’s (7.6) and (7.7) to obtain the numerical solutions for W (r)

and P (r). For this sake, we also need to specify the initial conditions to start the numerical

integration of these ODE’s. We are going to work with infrared boundary conditions which

we shall specify in a moment. First, notice we can formally solve (7.8) for P 2 as follows

P 2(r) = 24e−2W (r)
∫ r

0
dξ
∫ ξ

0
dλe2W (λ), (7.9)

where we fixed the integration constants by imposing that in the infrared P 2(0) =

(P 2)′(0) = 0 [90]. Besides (7.9), another equation that will be useful in the determi-

nation of the parameters of the infrared expansions we shall take below for W (r) and

2See Appendix D.
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P (r) is given by the combination3 2[(7.6)+(7.7)]

3
[

(P 2)′W ′ + P 2(W ′′ + 2W ′ 2)
]

− 12 +B2e−4W = 0 . (7.10)

Let us now work out the infrared expansions for W (r) and P (r). Following [90], we are

interested in numerical solutions of the dynamical ODE’s (7.6) and (7.7) that interpolate

between AdS3 × R
2 for small r in the infrared and AdS5 for large r in the ultraviolet.

As discussed in [89], this corresponds to a renormalization group flow between a CFT in

(1 + 1)-dimensions in the infrared and a CFT in (3 + 1)-dimensions in the ultraviolet,

which is the expected behavior of SYM theory in the presence of a constant magnetic

field [89]. Then, for small r we can take the following infrared expansions

W (r) = ra + ωr2a + O(r3a), (7.11)

P 2(r) ≈ 12r2
[

1 − 2ra + (2 − 2ω)r2a
]
[

1 +
4ra

2 + 3a+ a2
+

2(1 + ω)r2a

1 + 3a+ 2a2

]

, (7.12)

where (7.12) was obtained by substituting (7.11) into (7.9). Now we substitute (7.11)

and (7.12) into (7.10) and set to zero the coefficients of each power of r in the resulting

expression, obtaining

O(r0) : B = 2
√

3, (7.13)

O(ra) : 9a2 + 9a−B2 = 0 ⇒ a = a+ ≈ 0.758, (7.14)

O(r2a) : ω ≈ −0.634, (7.15)

where we have chosen the positive root in (7.14) in order to obtain a finite W (0) and

used (7.13) and (7.14) to obtain (7.15). Substituting (7.14) and (7.15) into (7.11) and

(7.12), we determine the first terms in the infrared expansions for W (r), W ′(r), P (r)

and P ′(r), which are enough to initialize the numerical integration of the coupled ODE’s

(7.6) and (7.7). We start the integration in the deep infrared at some small r = rmin and

integrate up to some large r = rmax near the boundary. The numerical results for the

metric functions W (r) and P (r) appearing in (8.2) are shown in Fig. 7.1 (these results

match those in [90]).

The ultraviolet asymptotics for this numerical solution is given by:
(

e2W (rmax), P (rmax)
)

≈ (1.12365, 1.00002) × 2rmax. Therefore, in order to have an asymptotically AdS5 space

at the ultraviolet cutoff, r = rmax, we rescale
(

e2W (r), P (r)
)

7→
(

e2W̄ (r), P̄ (r)
)

, where

e2W̄ (r) = e2W (r)/1.12365 and P̄ (r) = P (r)/1.00002. With this metric rescaling, the physical

3We note that P (r) enters in this equation only through P 2 and (P 2)′ = 2PP ′, which can be imme-
diately read off from (7.9).
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Figure 7.1: Numerical solution for the functions W (r) and P (r) that appear in the background
metric at zero temperature (7.2), which interpolates between AdS3 × R

2 in the infrared (small
r) and AdS5 in the ultraviolet (large r).

constant magnetic field in the gauge theory reads4: B =
√

3B/1.12365 ≈ 5.34.

These results were originally obtained in Ref. [90]. In the following we use them to

evaluate the parallel and perpendicular heavy quark potential at zero temperature in the

presence of a constant magnetic field.

7.2 Holographic Wilson loop ‖ B at T = 0

Now we determine the parallel heavy quark potential from the VEV of a rectangular

Wilson loop defined by a contour C‖ with its spatial length along the magnetic field

direction. We follow the holographic prescription proposed in [120–122] (see also [123,124]

and references therein for more recent discussions) to evaluate the rectangular loops in

SYM in the strong t’Hooft coupling limit, λ ≫ 1, with a large number of colors, N → ∞,

in terms of a classical Nambu-Goto action in the background discussed in the previous

section.

For this sake, it is better to recast the rescaled version of the metric (7.2) as follows5

ds2 =
dr2

P̄ 2(r)
+ P̄ (r)(−dt2 + dz2) + e2W̄ (r)(dx2 + dy2), (7.16)

where P̄ (r) and W̄ (r) are the rescaled numerical functions discussed in the previous

section. For the sake of notation simplicity, since in the remaining of this section we are

going to use only these rescaled functions, we shall omit from now on the bars in their

4This rescaling changes the x- and y-coordinates in (7.2) as follows: (x, y) 7→ (x, y) /
√

1.12365. Fur-
thermore, as discussed after eq. (4.19), the extra factor of

√
3 relates the bulk magnetic field and the

magnetic field in the gauge theory.
5See Appendix D.
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notation.

The rectangular Wilson loop at the boundary of the asymptotically AdS5 space (7.16)

parallel to the magnetic field is extended along the time direction by T and has spatial

length L‖, which denotes the heavy quark-antiquark spatial separation in the direction of

the magnetic field (we take T ≫ L‖). We choose to place the probe quark Q at −ẑL‖/2

and the Q̄-probe charge at +ẑL‖/2. Attached to each of the probe charges in the pair

there is a string that sags in the interior of the bulk of the space (7.16). As usual [120–122],

in the limit T → ∞ we consider a classical U-shaped configuration that extremizes the

Nambu-Goto action and has a minimum at some value r0 of the radial coordinate in the

interior of the bulk.

The parametric equation of the 2-dimensional string worldsheet swept out in the 5-

dimensional bulk is formally given by

Xµ : Internal Space → Target Space (Bulk)

(τ, σ) 7→ Xµ(τ, σ) = xµ, (7.17)

and, in static gauge τ → t, σ → z, the target space coordinates over the string worldsheet

become

Xr(t, z) = r, X t = t, Xx = 0, Xy = 0, Xz = z, (7.18)

where Xr(t, z) = r is a constraint equation. For loops where T ≫ L‖, the static string con-

figuration is invariant under translations in time and one can write Xr(t, z) = Xr(z) = r.

For the sake of notation simplicity, we take a slight abuse of language and write sim-

ply r = r(z) for this constraint equation. Therefore, the static gauge condition can be

summarized as follows

(τ, σ) → (t, z) ⇒ Xµ(t, z) = (r(z), t, 0, 0, z). (7.19)

The pullback or the induced metric over the string worldsheet in the numerical back-

ground (7.16) is defined by

γab = gµν∂aX
µ∂bX

ν , a, b ∈ {τ, σ}, (7.20)
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with components

γtz = γzt = 0, (7.21)

γtt = −P (r(z)), (7.22)

γzz =
ṙ2(z)

P 2(r(z))
+ P (r(z)), (7.23)

where the dot denotes the derivative with respect to z. The square root of minus the

determinant of the induced metric reads

√−γ =

√
√
√
√

ṙ2(z)

P (r(z))
+ P 2(r(z)), (7.24)

and, therefore, the Nambu-Goto action for this QQ̄-configuration is

SNG =
1

2πα′

∫

d2σ
√−γ =

T
2πα′

∫ L‖/2

−L‖/2
dz

√
√
√
√

ṙ2(z)

P (r(z))
+ P 2(r(z)) , (7.25)

where α′ = ℓ2
s and ℓs is the string length.

Since the integrand in (7.25), LNG, does not depend explicitly on z, HNG defined below

is a constant of motion in the z direction

HNG ≡ ∂LNG

∂ṙ
ṙ − LNG =

−P 2(r(z))
√

ṙ2(z)
P (r(z))

+ P 2(r(z))
= C . (7.26)

We may determine C by evaluating (7.26) at the minimum of r(z) where the U-shaped

string configuration has a minimum in the interior of the bulk, r(z = 0) = r0, where

ṙ(0) = 0 and find

C =
−P 2(r0)
√

P 2(r0)
. (7.27)

Substituting (7.27) into the square of (7.26) and solving for ṙ(z), one obtains

ṙ(z) =
dr(z)

dz
=

√
√
√
√P 3(r(z))

[

P 2(r(z))

P 2(r0)
− 1

]

, (7.28)
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which implies that

L‖(r0) = 2
∫ ∞

r0

dr
√

P 3(r)
[

P 2(r)
P 2(r0)

− 1
] , (7.29)

where we used that for the U-shaped string configuration described before, r(±L‖/2) →
∞, since the probe charges are localized at the boundary of the space (7.16), and we also

took into account the fact that the U-shaped contour of integration in the rz-plane is

symmetric with respect to the r-axis, with r(z = 0) = r0.

The bare parallel heavy quark potential for this static QQ̄-configuration reads

V
‖

QQ̄,bare
(r0) =

SNG

T

∣
∣
∣
∣
∣
on-shell

=
1

2πα′

∫ L‖/2

−L‖/2
dz

√
√
√
√
P 4(r(z))

P 2(r(0))

=
1

πα′

∫ ∞

r0

dr

√
√
√
√

P (r)

P 2(r) − P 2(r0)
, (7.30)

where we used (7.28) to evaluate the on-shell Nambu-Goto action (7.25). Now we need to

regularize (7.30) by subtracting the divergent self-energies of the infinitely heavy probe

charges Q and Q̄. These contributions correspond to strings stretching from each probe

charge at the boundary to the deep interior of the bulk and, in practice, one identifies the

ultraviolet divergences to be subtracted by looking at the dominant contribution in the

integrand of (7.30) in the limit r → ∞
√
√
√
√

P (r)

P 2(r) − P 2(r0)
r→∞−→ 1

√

P (r)

∣
∣
∣
∣
∣
r→∞

∼ 1√
2r
. (7.31)

Therefore, the sum of the self-energies of the probe charges is given by

2 × V0 = 2 × 1

2πα′

∫ ∞

0

dr√
2r
, (7.32)

and the renormalized parallel heavy quark potential is

V
‖

QQ̄
(r0) = V

‖
QQ̄,bare

(r0) − 2V0 =
1

πα′





∫ ∞

r0

dr





√
√
√
√

P (r)

P 2(r) − P 2(r0)
− 1√

2r



−
∫ r0

0

dr√
2r



 .

(7.33)

In order to obtain the curve V
‖

QQ̄
(L‖), one may construct a table with pairs of points

(L‖(r0), V
‖

QQ̄
(r0)) by taking different values of the parameter r0 in Eqs. (7.29) and (7.33),

and then numerically interpolate between these points. Before doing this, let us first obtain
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the corresponding expressions for the perpendicular potential V ⊥
QQ̄

(L⊥). After that, we will

make a comparison between the heavy quark potentials and forces obtained in the presence

of the magnetic field and the standard isotropic SYM results discussed in [120].

7.3 Holographic Wilson loop ⊥ B at T = 0

Now we consider a rectangular Wilson loop with spatial length L⊥ located in the

plane perpendicular to the magnetic field direction at the boundary of the space (7.16).

We place the Q-probe charge at −x̂L⊥/2 and the Q̄-probe charge at +x̂L⊥/2. For this

QQ̄-configuration, it is convenient to define the following static gauge

(τ, σ) → (t, x) ⇒ Xµ(t, x) = (r(x), t, x, 0, 0) . (7.34)

Following the same general steps discussed in detail in the previous section, one obtains

L⊥(r0) = 2
∫ ∞

r0

dr
√

P 2(r)e2W (r)
[

P (r)e2W (r)

P (r0)e2W (r0) − 1
] , (7.35)

V ⊥
QQ̄(r0) =

1

πα′





∫ ∞

r0

dr





√
√
√
√

e2W (r)

P (r)e2W (r) − P (r0)e2W (r0)
− 1√

2r



−
∫ r0

0

dr√
2r



 . (7.36)

We note that both the (renormalized) parallel and perpendicular potentials are regularized

by the same subtraction term, 2 × V0, in Eq. (7.32).

In practice, for the numerical integrations to be performed in Eqs. (7.29), (7.33), (7.35),

and (7.36), the boundary at r → ∞ is numerically described by rmax, in accordance with

the numerical solution obtained for the metric (7.16). Our plots for the parallel and

perpendicular potentials at T = 0 are shown on the left panel of Fig. 7.2. One can see

that for the T = 0 anisotropic holographic setup considered in this section the magnitudes

of both the parallel and perpendicular potentials at nonzero B are enhanced with respect

to the B = 0 isotropic case (given by ∼ −0.228/L [120]), though the parallel potential

is more affected by the magnetic field. Also, for very short distances
√

BL ≪ 1, both

potentials converge to the isotropic potential [120] since the effects from the magnetic

field become negligible in this limit. On the right panel of Fig. 7.2 we show the forces

associated with these potentials. One can see that the magnetic field generally decreases

the magnitude of the attractive force between the quarks in comparison to the isotropic

scenario and that the force experienced by the quarks becomes the weakest when the pair

axis is parallel to the direction of the magnetic field.

Moreover, in the absence of any other scale in the theory besides B (and the interquark

distance L), the actual value of B is immaterial. This situation changes when one switches
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Figure 7.2: Anisotropy induced by a magnetic field B in N = 4 SYM at T = 0 (in this plot
α′ = 1) in the heavy quark potential (left panel) and the corresponding force (right panel). The
solid black lines denote the isotropic result ∼ −0.228/L [120], the dashed red lines correspond to
the perpendicular potential V ⊥

QQ̄
and force F⊥

QQ̄
= −dV ⊥

QQ̄
/dL, and the dotted-dashed blue lines

correspond to the parallel potential V
‖

QQ̄
and force F

‖
QQ̄

= −dV ‖
QQ̄
/dL.

on the temperature and, in this case, there is a new dimensionless scale given by the ratio

B/T 2. In fact, we shall see in the next section that in this case one is able to tune the

anisotropy in the heavy quark potential by varying the value of the magnetic field.

7.4 Anisotropic heavy quark potential for T 6= 0

The holographic calculation of the T 6= 0 Wilson loops used in the definition of the

parallel and perpendicular potentials follows the same procedure done before in the case

where T = 0. The boundary conditions for each string configuration are the same as

before and the overall shape of the string in the bulk is the U-shaped profile [122]. The

only difference is that when T 6= 0 the background metric to be used is the numerically

found anisotropic black brane in Eq. (4.12) according to the discussion above. Therefore,

it is easy to show that the interquark separation and (renormalized) heavy quark potential
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for the parallel case are

L‖(r0) = 2
∫ ∞

r0

dr
√

U(r)e2W (r)
[

U(r)e2W (r)

U(r0)e2W (r0) − 1
] , (7.37)

V
‖

QQ̄
(r0) =

1

πα′





∫ ∞

r0

dr





√
√
√
√

U(r)e2W (r)

U(r)e2W (r) − U(r0)e2W (r0)
− 1



−
∫ r0

0
dr



 (7.38)

while for the perpendicular setup one finds

L⊥(r0) = 2
∫ ∞

r0

dr
√

U(r)e2V (r)
[

U(r)e2V (r)

U(r0)e2V (r0) − 1
] , (7.39)

V ⊥
QQ̄(r0) =

1

πα′





∫ ∞

r0

dr





√
√
√
√

U(r)e2V (r)

U(r)e2W (r) − U(r0)e2V (r0)
− 1



−
∫ r0

0
dr



 , (7.40)

where r0 is the point in the bulk where the U-shaped configuration has its minimum.

Note that we used the same (temperature independent) subtraction scheme employed

at T = 0 to define the renormalized potentials at finite temperature. These potentials

are proportional to the (regularized) area of the Nambu-Goto worldsheet and they are

interpreted in the strongly coupled gauge theory as the difference in the total free energy of

the system due to the addition of the heavy QQ̄-pair [289]. While one can may argue that

one should remove an “entropy-like" contribution from this free energy difference [290,291],

in this work we shall not perform such a subtraction and, for simplicity, we define this

free energy difference (which equals the regularized Nambu-Goto action) in each case to

be the corresponding heavy quark potential at finite temperature.

As done before, in the numerical integrations to be performed in Eqs. (7.37), (7.38),

(7.39), and (7.40), the boundary at r → ∞ is numerically described by rmax. At fi-

nite temperature, there is a maximum value of LT above which there are other string

configurations that may contribute to the evaluation of the Wilson loops at finite tem-

perature [123] besides the semi-classical U-shaped string configuration. This implies that

one cannot compute the potentials with the setup described here when LT is large. In

fact, one can show that the inclusion of the magnetic field makes this problem worse, as

it is shown in Fig. 7.3 below. In this plot we show LT as a function of the appropriate

rescaled horizon yH (see Appendix E for the definition of this variable) for the isotropic

case (solid black line) and for the parallel (dotted-dashed blue line) and perpendicular

(dashed red curve) cases computed using B/T 2 = 50 (left panel) and B/T 2 = 1000 (right

panel). When yh → 0 the curves follow the isotropic SYM case while one can see that the

maximum of LT is considerably decreased if the magnetic field is sufficiently intense and

this effect is stronger for the perpendicular configuration. This implies that the region of
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Figure 7.3: Interquark separation LT versus the rescaled horizon yH (see Appendix E). In the
left panel B/T 2 = 50 while for the right panel B/T 2 = 1000. For both panels the solid black
line corresponds to the isotropic SYM case while the dashed red line (dotted-dashed blue line)
corresponds to the case of anisotropic SYM with QQ̄ axis perpendicular (parallel) to the magnetic
field axis.

applicability of the U-shaped string worldsheet decreases with the applied magnetic field

and, thus, other string configurations must be taken into account when computing the

string generating functional for sufficiently large LT [123]. This problem was investigated

in the case of an isotropic N = 4 SYM plasma in [292] but the extension of these calcu-

lations to the anisotropic scenario studied here will be left as a subject of a future study.

Nevertheless, for the values of LT in which the U-shaped configuration is dominant our

results for the potential are trustworthy and we shall discuss them below.

Also, the fact that the maximum of LT decreases with the applied magnetic field

implies that the imaginary part of the potential, computed for instance within the world-

sheet fluctuation formalism [293, 294], may be enhanced by the magnetic field and this

would affect the thermal width of heavy quarkonia in a strongly coupled plasma.

The combined effects from nonzero temperature and magnetic field on the heavy quark

potential (left panel) and the corresponding force between the quarks (right panel) can

be seen in Fig. 7.4. We found that the anisotropy in the heavy quark potential (and

the force) induced by the magnetic field only becomes relevant for very large values of

the field. In fact, in Fig. 7.4 we have set B/T 2 = 1000 to better illustrate the effects.

The solid black lines correspond to the isotropic result for the potential V B=0
QQ̄

and its

respective force, the dashed red lines correspond to the perpendicular potential V ⊥
QQ̄

and
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Figure 7.4: Anisotropy induced by a strong magnetic field B/T 2 = 1000 in the heavy quark
potential (left panel) and the corresponding force (right panel) experience by a QQ̄ pair in a
strongly-coupled N = 4 SYM plasma. The solid black lines correspond to the isotropic result
V B=0

QQ̄
and isotropic force FB=0

QQ̄
= −dV B=0

QQ̄
/dL, the dashed red lines correspond to the perpen-

dicular potential V ⊥
QQ̄

and perpendicular force F⊥
QQ̄

= −dV ⊥
QQ̄
/dL, and the dotted-dashed curves

correspond to the parallel potential V
‖

QQ̄
and force F

‖
QQ̄

= −dV ‖
QQ̄
/dL. In this plot α′ = 1.

perpendicular force, and the dotted-dashed curves correspond to the parallel potential V
‖

QQ̄

and parallel force (in this plot α′ = 1). By comparing Fig. 7.4 and Fig. 7.2 one can see that,

roughly, the overall effect of the temperature is to shift the parallel and perpendicular

potentials upwards with respect to the isotropic result. However, the pattern found at

T = 0 regarding the corresponding forces between the quarks is maintained, i.e., the force

experienced by the quarks is the weakest when the pair axis is aligned with the magnetic

field. Therefore, at least in the case of strongly coupled N = 4 SYM, we find that the

inclusion of a magnetic field generally weakens the attraction between heavy quarks in

the plasma.

7.5 Conclusions of the chapter

In this chapter we have studied how the inclusion of a constant magnetic field B
affects the interaction between heavy QQ̄ pairs in strongly coupled N = 4 SYM theory

both at zero and finite temperature by computing rectangular Wilson loops using the

holographic correspondence. The magnetic field makes the heavy quark potential and

the corresponding force anisotropic and we found that the attraction between the heavy

quarks weakens in the presence of the magnetic field (both at T = 0 and T 6= 0). One
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may see this as indication that in a strongly coupled plasma deconfinement is facilitated

by the inclusion of a magnetic field. Although, in practice, in the model considered here

this effect only becomes relevant when B/T 2 is extremely large [92,93].

We note that Ref. [296] studied the anisotropy in the heavy quark potential induced

by a nontrivial axion field in the bulk [258] and found a reduction in the binding energy of

the QQ̄ pair. This result is consistent with ours even though the source of anisotropy used

in [296] is different than the one used here (the constant magnetic field). This agreement

between different anisotropic holographic models has also been found to hold in the case of

transport coefficients since the shear viscosity coefficient along the direction of anisotropy

computed in the axion-induced model [257] and in Ref. [93] display the same qualitative

behavior.

One may think that results in this paper give support to the idea that in a strongly

coupled plasma deconfinement is facilitated by the inclusion of a magnetic field. However,

such a conclusion may only be properly drawn in the case where the underlying gauge

theory is not conformal at T = 0 and B = 0. In fact, the lattice results of Ref. [67] show

that in QCD in a magnetic field at T = 0 the absolute value of the Coulomb coupling in

the direction of the magnetic field is enhanced with respect to its vacuum value while this

coupling is suppressed in the case perpendicular to the magnetic field. On the other hand,

the string tension perpendicular to the field is enhanced with respect to its vacuum value

while the string tension parallel to the field is suppressed. This illustrates how complicated

the effects of a magnetic field-induced anisotropy can be in a gauge theory with a mass

gap.

It would be interesting to study modifications of the current setup and consider systems

that are not conformal at T = 0. For instance, consider a confining theory at T = 0 with

confinement scale Λ. In this case, there is already a relevant dimensionless ratio B/Λ2 and,

for instance, one can study how the mass gap of the theory is affected by the presence

of the magnetic field and also how the area law of the rectangular Wilson loop becomes

anisotropic and can be used to define a string tension for the heavy quark potential that

depends on the angle between the QQ̄ pair and the magnetic field direction.

Such a model could be easily constructed following the bottom up studies in [169,

183,184,186,295] this time involving a dynamical metric, a scalar field, and a vector field

in the bulk. The parallel and perpendicular potentials computed in this non-conformal

model could be more easily compared to the lattice QCD study of Ref. [67].Indeed, the

next chapter is devoted to build this holographic model that can be fruitful for the phe-

nomenology of the QGP formed in heavy ion collisions.



Chapter 8

Magnetic non-conformal strongly

coupled plasma

A top-down holographic dual for N = 4 super Yang-Mills theory (SYM) in the pres-

ence of an external constant magnetic field was studied in Sec. 4.2 [89–91] and calculations

for different physical observables in this scenario were carried out, such as the anisotropic

viscosity and the anisotropic heavy quark potential - see also [92,95] for some other appli-

cations. However, the QGP formed in heavy ion collisions [132,133] probes the temperature

region within which the QCD plasma is highly nonconformal [270] (when T ∼ 150 − 300

MeV). Therefore, in order to make contact with realistic heavy ion collision applications,

one needs to develop holographic models that are able to capture some of the relevant

aspects of the physics of the strongly coupled QGP near the QCD crossover [14]. One pos-

sible way to accomplish this within holography is to deform the boundary quantum field

theory by turning on a dynamical scalar field in the bulk whose boundary value sources

a relevant operator in the gauge theory. Near the boundary the scalar field approaches

zero and conformal invariance is recovered in the ultraviolet. In the infrared, however, the

holographic dual gauge theory generated by such deformation behaves very differently

than a conformal plasma and may be tuned to display some of the properties of QCD in

the strong coupling regime.

In this chapter we construct a nonconformal anisotropic bottom-up holographic model

that is suited for the study of a QCD-like plasma at nonzero magnetic field and vanishing

chemical potential(s). Our model is built up on classical nonconformal anisotropic black

brane solutions to the Einstein-Maxwell-Dilaton (EMD) model defined with a negative

cosmological constant and in the presence of an external constant magnetic field. This

constitutes a sequel to the studies of strongly coupled nonconformal plasmas via black

brane solutions initiated by [169,170] in the case of finite temperature, zero magnetic field,

126
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and vanishing chemical potential1, which was later extended in [171,187] and also [298] to

take into account the presence of a nonzero baryon chemical potential at zero magnetic

field2. This type of nonconformal model has been used in the last years to investigate

how different observables of phenomenological relevance to the QGP and the physics

of heavy ion collisions vary near the QCD crossover transition. In fact, after the original

calculations in [169,170], which included the evaluation of the bulk viscosity at zero baryon

chemical potential and zero magnetic field [170], a series of other quantities were computed

within this type of holographic model such as the heavy quark free energy [289,295], the

energy loss of highly energetic probes [301–303], the Debye screening mass [300], the

electric conductivity [297], a large set of first and second order viscous hydrodynamic

transport coefficients [172], the spectrum of quasinormal modes [306] and the thermal

photon production rate [307]. In the context of the holographic models developed in

[171, 187] and [298] as extensions of the original models [169, 170], taking into account

the presence of a nonvanishing baryon chemical potential, we mention the calculation of

the holographic critical point in the (T, µB)-plane and the associated critical exponents

[187], the evaluation of the holographic equation of state, the heavy quark drag force, the

Langevin diffusion coefficients, the jet quenching parameter, the energy loss of light quarks

and an estimate of the equilibration time in the baryon-rich strongly coupled QGP [298],

the evaluation of the bulk viscosity [171], as well as the baryon susceptibility, baryon

conductivity, thermal conductivity, baryon diffusion [299], and the thermal photon and

dilepton production rates [310] at finite baryon chemical potential and zero magnetic field.

Here we add one more entry to this family of nonconformal black hole solutions by taking

into account, for the first time, the presence of a magnetic field in the nonconformal,

QCD-like gauge theory.

Our model is a bottom-up holographic setup in which the dilaton potential and the

Maxwell-Dilaton gauge coupling are dynamically fixed in order to describe lattice data

at zero chemical potential(s) and vanishing magnetic field, which should be contrasted

with top-down models coming from compactifications of known string theory solutions.

Although in bottom-up models the holographic dual is not precisely known, the fact that

these models may be constructed using some phenomenological input from QCD makes it

possible that at least part of the physics of the boundary gauge field theory resembles, even

at the quantitative level, QCD in the strong coupling limit. Thus, one may regard such

constructions as holographic effective theories that are engineered to model some specific

1These nonconformal solutions can also be adapted to study the vacuum properties of the gauge
theory, as recently discussed in [300]. This was studied in detail earlier in [183–185] in the case of similar
bottom-up models at zero and finite temperature concerning pure glue Yang-Mills theory.

2See also [186] for a bottom-up holographic model at finite temperature, nonzero chemical potential,
and zero magnetic field in the Veneziano limit [173].
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aspects of QCD phenomenology, e.g. the correct thermodynamics around the crossover.

Once the model parameters are fixed, these theories can be used to make predictions about

observables that are currently beyond the scope of lattice calculations, such as most of

the second order hydrodynamic coefficients [172].

This chapter is organized as follows. In Section 8.1 we describe in detail the construc-

tion of our holographic model and how the dilaton potential and the Maxwell-Dilaton

gauge coupling can be determined by lattice data for the (2 + 1)-flavor lattice QCD equa-

tion of state and magnetic susceptibility at zero magnetic field, respectively. With the

holographic model parameters fully specified, we proceed in Section 8.3 to obtain the

holographic equation of state at nonzero magnetic field and present results for the tem-

perature and magnetic field dependence of the entropy density and the pressure. We find

that the deconfinement temperature in our holographic model decreases with an increas-

ing magnetic field, as recently observed on the lattice. Moreover, our model results for

the pressure and the crossover temperature are in quantitative agreement with current

lattice data up to eB . 0.3 GeV2, which is the relevant range of magnetic fields for heavy

ion collisions. In Sec. 8.4 we present the calculation of the anisotropic shear viscosity for

this EMD model and we compare the result with the one obtained from the magnetic

brane in Chapter 5. We present our conclusions in Section 8.5 where we also point out

other applications to be pursued in the near future using the anisotropic nonconformal

holographic model developed here.

8.1 The holographic model

Assuming as usual that charm quarks are not relevant in the crossover transition,

in QCD there are three different chemical potentials associated with three independent

globally conserved charges. These different chemical potentials are the three lighter quark

chemical potentials µu, µd, µs or, equivalently, the baryon chemical potential µB, the

electric charge chemical potential µQ, and the strangeness chemical potential µS. For

each nonzero chemical potential in the gauge theory there must be a nonzero temporal

component of the associated gauge field in the bulk. It is also clear that an Abelian

magnetic field B in the gauge theory should come from a nonzero spatial component of

the gauge potential in the electric charge sector.3

In the present work we solely focus on the electric charge sector at B 6= 0 with

3Recall our discussion of the three Cartan subgroups when we defined the magnetic brane in Sec. 4.2.
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µQ = µB = µS = 0, which may be described by the following EMD action

S =
1

16πG5

∫

M5

d5x
√−g

[

R − 1

2
(∂µφ)2 − V (φ) − f(φ)

4
F 2

µν

]

+ SGHY + SCT, (8.1)

where SGHY is the Gibbons-Hawking-York action [243, 244] needed to establish a well-

posed variational problem with Dirichlet boundary condition for the metric, and SCT is

the counterterm action that can be constructed using the holographic renormalization

procedure [209–213]. These two boundary terms contribute to the total on-shell action

but not to the equations of motion and, since we shall not need to compute the total

on-shell action in the present work, we do not need to worry about their explicit form

here. Also, as we are going to discuss in detail in Section 8.2.2, we shall dynamically fix

the gravitational constant G5, the dilaton potential V (φ), and the Maxwell-Dilaton gauge

coupling f(φ), by solving the equations of motion for the EMD fields with the requirement

that the holographic equation of state and magnetic susceptibility at zero magnetic field

match the corresponding lattice QCD results.

In (8.1), the metric field in the bulk is dual to the stress-energy tensor of the boundary

field theory while the dilaton field is introduced in order to dynamically break the confor-

mal symmetry of the gauge theory in the infrared. The Abelian gauge field in the bulk is

employed here to introduce an external magnetic field at the boundary, which we take to

be constant and uniform in the ẑ-direction and, as stated before, in the present work we

set all the chemical potentials to zero. The constant and uniform magnetic field breaks

the SO(3) rotational invariance of the gauge theory down to SO(2) rotations around the

ẑ-axis implying that the Ansatz for the bulk metric must be anisotropic and translation-

ally invariant. Also, at zero temperature this Ansatz must be invariant under boosts in

the (t, z)-plane though this symmetry is not present at nonzero temperature. Based on

these symmetry properties, which are phenomenologically dictated by the corresponding

symmetry content present in current lattice QCD calculations defined on the (T,B)-plane,

we take the following black brane Ansatz for the bulk fields in4 (8.1):

ds2 = e2a(r)
[

−h(r)dt2 + dz2
]

+ e2c(r)(dx2 + dy2) +
e2b(r)dr2

h(r)
,

φ = φ(r), A = Aµdx
µ = Bxdy ⇒ F = dA = Bdx ∧ dy, (8.2)

where the radial location of the black brane horizon, rH , is given by the largest root of

4As we shall discuss soon, B is one of the two initial conditions controlling the temperature and the
external magnetic field at the boundary quantum field theory. The other initial condition corresponds to
the value of the dilaton field evaluated at the black brane horizon, φ0. The set of initial conditions (φ0,B)
is nontrivially related to the thermodynamical pair (T,B) in the gauge theory. In Sections 8.1.3 and 8.2.2
we discuss how one can relate B to the external magnetic field at the boundary gauge theory, B.
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the equation h(rH) = 0 and in our coordinates the boundary of the asymptotically AdS5

spacetime is located at r → ∞. In (8.2) we have already fixed a convenient gauge for

the Maxwell field, which in the present case is a prescribed non-dynamical field. Also, for

simplicity, we shall adopt units where the asymptotic AdS5 radius is equal to one.

Using (8.2), the equations of motion obtained from (8.1) may be expressed as follows

φ′′ +

(

2a′ + 2c′ − b′ +
h′

h

)

φ′ − e2b

h

(

∂V (φ)

∂φ
+

B2e−4c

2

∂f(φ)

∂φ

)

= 0, (8.3)

a′′ +

(

14

3
c′ − b′ +

4

3

h′

h

)

a′ +
8

3
a′2 +

2

3
c′2 +

2

3

h′

h
c′ +

2

3

e2b

h
V (φ) − 1

6
φ′2 = 0, (8.4)

c′′ −
(

10

3
a′ + b′ +

1

3

h′

h

)

c′ +
2

3
c′2 − 4

3
a′2 − 2

3

h′

h
a′ − 1

3

e2b

h
V (φ) +

1

3
φ′2 = 0, (8.5)

h′′ + (2a′ + 2c′ − b′)h′ = 0, (8.6)

where the prime denotes a derivative with respect to the radial direction. Using these

equations of motions one can also derive a useful constraint

a′2 + c′2 − 1

4
φ′2 +

(

a′

2
+ c′

)

h′

h
+ 4a′c′ +

e2b

2h

(

V (φ) +
B2e−4c

2
f(φ)

)

= 0. (8.7)

The equation of motion for the Maxwell field is automatically satisfied by the Ansatz

(8.2). Moreover, b(r) has no equation of motion and, thus, it can be freely chosen to take

any value due to reparametrization invariance. In the next Section we specify a subsidiary

condition for b(r) that defines a convenient gauge for the metric that will be used in the

numerical calculations carried out in the present work.

8.1.1 Ultraviolet expansions

For the calculation of physical observables in the gauge theory one needs to obtain

the near-boundary, far from the horizon expansions for the bulk fields a(r), c(r), h(r),

and φ(r). In the present work, we use the domain-wall gauge defined by the subsidiary

condition b(r) = 0. At the boundary the dilaton field goes to zero in such a way that

V (φ(r → ∞) → 0) = −12 (cf. Eq. (3.117)) and f(0) is a finite positive constant5. Also,

the metric blackening factor, h(r), must go to a constant at the boundary, which we

denote by6 h(r → ∞) = hfar
0 .

Moreover, since we are interested in asymptotically AdS5 solutions to the equations of

5Note that in (8.1) the Maxwell-Dilaton gauge coupling f(φ) plays the role of an inverse effective
gauge coupling squared and, therefore, it must correspond to a positive-definite function.

6This constant is equal to one in the so-called “standard coordinates” of the domain-wall gauge, which
we shall discuss soon. Here we are considering general coordinates where this constant may be different
than one. We shall also see later how to relate these two sets of coordinates.
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motion (8.3), (8.4), (8.5), and (8.6), at the boundary one finds a(r → ∞) = c(r → ∞).

In the domain-wall gauge b(r) = 0, the leading order near-boundary expression for a(r)

(and also c(r)) is linear in r [171,187] such that at lowest order in φ(r → ∞) → 0 we may

consider the following leading order far from the horizon ultraviolet asymptotics

V (φ) ≈ −12, f(φ) ≈ f(0), h(r) ≈ hfar
0 , a(r) ≈ afar

0 + afar
−1r, c(r) ≈ cfar

0 + cfar
−1r, (8.8)

where afar
−1 = cfar

−1, as discussed above. Indeed, by substituting (8.8) into the equations of

motion and taking the asymptotic limit of large r (where the ultraviolet expansions hold),

one concludes that

afar
−1 = cfar

−1 =
1

√

hfar
0

. (8.9)

In order to obtain the next to leading order term for h(r) and also the first terms for φ(r)

in the ultraviolet expansions for the bulk fields, we consider the first backreaction of the

near-boundary fields expressed in (8.8) and (8.9) on the equations of motion7. In fact, we

first consider the next to leading order near-boundary expansion for the dilaton potential

V (φ) ≈ −12 +
m2

2
φ2, m2 = −ν∆, (8.10)

where ∆ is the ultraviolet scaling dimension of the gauge invariant operator dual to the

bulk dilaton field and we defined ν = d−∆, where d = 4 is the dimension of the boundary.

We shall see in Section 8.2.2 that a good description of lattice data can be achieved by

taking ∆ ≈ 3 (ν ≈ 1). One can now show that the far from horizon ultraviolet asymptotics

for the bulk fields may be written as

a(r) ≈ α(r) + · · · ,
c(r) ≈ α(r) + (cfar

0 − afar
0 ) + · · · ,

h(r) ≈ hfar
0 + hfar

4 e−4α(r) + · · · ,
φ(r) ≈ φAe

−να(r) + φBe
−∆α(r) + · · · , (8.11)

where we defined α(r) = afar
0 + r/

√

hfar
0 while · · · denotes subleading terms. We note

that the ultraviolet asymptotics (8.11) are in agreement with our numerical solutions. By

comparing these numerical solutions to (8.11) one can determine the ultraviolet coefficients

afar
0 , cfar

0 , hfar
0 and φA, which are needed to compute the thermodynamical observables in

7This procedure may be repeated to obtain all the other subleading terms in the ultraviolet expan-
sions. However, we only need the first few terms in these expansions to compute the thermodynamical
observables.
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Sections 8.1.3 and 8.2.2.

8.1.2 Infrared expansions

Now we consider the infrared, near-horizon expansions for the bulk fields a(r), c(r),

h(r), and φ(r). Near the horizon all the bulk fields in (8.2) are assumed to be smooth and

we may consider the Taylor expansions

X(r) =
∞∑

n=0

Xn(r − rH)n, (8.12)

where X = {a, c, h, φ}.

In order to numerically solve the equations of motion (8.3), (8.4), (8.5), and (8.6) we

need to specify the boundary conditions X(rstart) and X ′(rstart), where rstart is a value of

the radial coordinate that is slightly above the horizon8. In this work we work with Taylor

expansions up to second order, which are sufficient to perform the numerical integrations

if rstart is close enough to rH . Therefore, we must determine 12 Taylor coefficients in order

to specify X(rstart) and X ′(rstart) at second order. One of these 12 coefficients, namely, φ0,

is one of the two initial conditions of the problem9. Four of these 12 coefficients, namely,

a0, c0, h0, and h1 and also the radial location of the black hole horizon, rH , may be fixed

by rescaling the bulk coordinates while taking into account also the fact that h(r) vanishes

at the horizon. For definiteness, we adopt here numerical coordinates fixed in such a way

that

rH = 0; a0 = c0 = h0 = 0, h1 = 1. (8.13)

Note that rH = 0 may be obtained by rescaling the radial coordinate while h0 = 0 comes

from the fact that h(r) has a simples zero at the horizon. Also, h1 = 1 may be obtained

by rescaling t while a0 = 0 may be arranged by rescaling (t, z) by a common factor.

Similarly, c0 = 0 may be arranged by rescaling (x, y) by a common factor. After this,

the remaining 7 coefficients in the near-horizon Taylor expansions for the bulk fields can

be fixed on-shell as functions of the initial conditions (φ0,B) by substituting the second

order Taylor expansions into the equations of motion and setting to zero each power of

rstart in the resulting algebraic equations10.

With X(rstart) and X ′(rstart) determined as discussed above, the equations of motion

8The horizon is a singular point of the equations of motion and, thus, we need to initialize the numerical
integrations slightly above it.

9As discussed before, the other initial condition is B.
10In practice, we set to zero the following 7 terms: O(r0

start), O(r1
start), and O(r2

start) in (8.6), O(r−1
start)

in (8.7), O(r−1
start) and O(r0

start) in (8.3), and O(r0
start) in (8.4).
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are numerically integrated from rstart near the horizon up to some numerical ultraviolet

cutoff rmax near the boundary. We used rstart = 10−8 and rmax = 10 to numerically solve

the equations of motion. It is important to remark, however, that even before reaching

rconformal = 2 the numerical backgrounds we considered in the present work have already

reached the ultraviolet fixed point corresponding to the AdS5 geometry. This fact is used

in Section 8.1.3 to reliably obtain the ultraviolet coefficients in (8.11) and it will be also

employed in Section 8.2.2 to properly compute the holographic magnetic susceptibility

numerically.

8.1.3 Coordinate transformations and thermodynamical observ-

ables

Let us now introduce the so-called “standard coordinates” of the domain-wall metric

gauge, b̃(r̃) = 0, where variables with ∼ refer to quantities evaluated in these standard

coordinates where the background reads

ds̃2 = e2ã(r̃)
[

−h̃(r̃)dt̃2 + dz̃2
]

+ e2c̃(r̃)(dx̃2 + dỹ2) +
dr̃2

h̃(r̃)
,

φ̃ = φ̃(r̃), Ã = Ãµdx̃
µ = B̂x̃dỹ ⇒ F̃ = dÃ = B̂dx̃ ∧ dỹ, (8.14)

and the boundary is at r̃ → ∞ while the horizon is at r̃ = r̃H . The “hat” in B̂ accounts

for the fact that this is the magnetic field measured in units of the inverse of the AdS

radius squared, while B shall be used to denote the boundary magnetic field measured

in physical units, as we shall discuss in Section 8.2.2. In the standard coordinates, the

ultraviolet asymptotics for the bulk fields are given by [171,187] (see also [298])

ã(r̃) ≈ r̃ + · · · ,
c̃(r̃) ≈ r̃ + · · · ,
h̃(r̃) ≈ 1 + · · · ,
φ̃(r̃) ≈ e−νr̃ + · · · . (8.15)

The standard coordinates (in which h(r) goes to one at the boundary) are the coor-

dinates where we obtain standard holographic formulas for the gauge theory’s physical

observables such as the temperature and the entropy density. However, in order to obtain

numerical solutions for the bulk fields one needs to give numerical values for all the infrared

near-horizon Taylor expansion coefficients, which in turn requires rescaling these standard

coordinates, as discussed in the previous Section. The numerical solutions are obtained in

the numerical coordinates described by the Ansatz (8.2) with the ultraviolet asymptotics
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(8.11), while standard holographic formulas for physical observables are obtained in the

standard coordinates described by the background (8.14) with the ultraviolet asymptotics

(8.15). One may relate these two sets of coordinates by equating φ̃(r̃) = φ(r), ds̃2 = ds2

and B̂dx̃ ∧ dỹ = Bdx ∧ dy and this leads to the following relations11 (by comparing the

near-boundary asymptotics (8.11) and (8.15) for r → ∞)

r̃ =
r

√

hfar
0

+ afar
0 − ln

(

φ
1/ν
A

)

,

t̃ = φ
1/ν
A

√

hfar
0 t,

x̃ = φ
1/ν
A ecfar

0 −afar
0 x,

ỹ = φ
1/ν
A ecfar

0 −afar
0 y,

z̃ = φ
1/ν
A z;

ã(r̃) = a(r) − ln
(

φ
1/ν
A

)

,

c̃(r̃) = c(r) − (cfar
0 − afar

0 ) − ln
(

φ
1/ν
A

)

,

h̃(r̃) =
h(r)

hfar
0

,

φ̃(r̃) = φ(r);

B̂ =
e2(afar

0 −cfar
0 )

φ
2/ν
A

B. (8.16)

The temperature of the plasma is given by the black brane horizon’s Hawking tem-

perature

T̂ =

√

−g̃′
t̃t̃
g̃r̃r̃ ′

4π

∣
∣
∣
∣
∣
r̃=r̃H

=
eã(r̃H)

4π
|h̃′(r̃H)| =

1

4πφ
1/ν
A

√

hfar
0

, (8.17)

while the entropy density is obtained via the Bekenstein-Hawking’s relation [174,175]

ŝ =
S

V
=
AH/4G5

V
=

∫

horizon d
3x̃
√

g̃(r̃ = r̃H , t̃ fixed)

4G5V
=

2π

κ2
eã(r̃H)+2c̃(r̃H) =

2πe2(afar
0 −cfar

0 )

κ2φ
3/ν
A

,

(8.18)

where we defined κ2 = 8πG5 and used (8.12), (8.13), and (8.16).

One can see from (8.16), (8.17), and (8.18) that the only ultraviolet coefficients in

the numerical coordinates which we need to fix by fitting the numerical solutions with

(8.11) are afar
0 , cfar

0 , hfar
0 , and φA. The numerical solutions for h(r) converge quickly to

their asymptotic values at large r and we may reliably set hfar
0 = h(rconformal). With hfar

0

11As mentioned in [187], if φA < 0 one must replace φA 7→ |φA| in these relations.
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fixed in this way, we may fix afar
0 , cfar

0 , and φA, respectively, by employing the fitting

functions a(r) = afar
0 + r/

√

hfar
0 , c(r) = cfar

0 + r/
√

hfar
0 , and φ(r) = φAe

−νa(r) in the interval

r ∈ [rconformal − 1, rconformal]. We were able to obtain good fits for the near-boundary

behavior of the numerical solutions using this fitting scheme.

Also, it is important to remark that there is an upper bound on the initial condition

B for a given value of the initial condition for the dilaton φ0. In fact, for values of B above

this bound, all the numerical backgrounds we generated failed to be asymptotically AdS5.

Such a bound, which we denote by B ≤ Bmax(φ0), may be numerically constructed by

interpolating a list with pairs of points {(φi
0,Bi

max) , i = 1, 2, 3, · · · } and the corresponding

result is presented in Fig. 8.1.
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Figure 8.1: The curve corresponds to the upper bound for the initial condition B as a function
of the initial condition for the dilaton φ0, below which the solutions of the equations of motion
are asymptotically AdS5. This curve depends on the chosen profiles for the dilaton potential V (φ)
and gauge coupling function f(φ) to be discussed in the next Section.

In the next Section we explain how one can express the thermodynamical quantities

B̂, T̂ , and ŝ in physical units12 using the lattice data for the equation of state and the

magnetic susceptibility at zero magnetic field.

12Note from (8.16), (8.17), and (8.18) that B̂, T̂ , and ŝ are proportional to φ−2/ν
A , φ−1/ν

A and φ
−3/ν
A ,

respectively. Correspondingly, their counterparts in physical units (without the “hat”) are given in MeV2,
MeV, and MeV3, respectively. This is related to the fact that the leading mode for the dilaton field, φA,
corresponds to the insertion of a relevant deformation in the quantum field theory, which is responsible
for generating an infrared scale that breaks the conformal invariance of the theory at low energies [171].
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8.2 Specifying the dilaton potential V (φ) and the Maxwell-

Dilaton gauge coupling f (φ)

Given the general EMD action (8.10), one still needs to specify the dilaton potential

V (φ) and the Maxwell-dilaton gauge coupling f(φ) in order to solve the Einstein’s equa-

tions (8.3)-(8.6). The idea, as already sketched in section 3.5, is to use data from lattice

QCD to fix V (φ) and f(φ). Let us first discuss how to fix V (φ).

8.2.1 Fixing the dilaton potential using lattice data for the QCD

EoS with (2+1) flavors

Here we follow Refs. [172,298] which discuss in detail how to dynamically fix the dilaton

potential, V (φ), and the gravitational constant, κ2, using the recent lattice data [270] for

the QCD equation of state with (2 + 1)-flavors.

The first step towards the specification of the dilaton potential is to make a functional

Ansatz such that V (φ = 0) = −12, i.e. one still has an asymptotically AdS5 space. In

particular, we take

V (φ) = −12(1 + a4)1/4 cosh γφ+ b2φ
2 + b4φ

4 + b6φ
6, (8.19)

where a, γ, b2, b4 and b6 are the fit parameters. This functional form is, so far, the most

useful one to reproduce the equation of state for the QCD with few parameters.

However, the parameters of the potential (8.19) are not entirely free, they must satisfy

some constraints which are shown below:

• Positivity of c2
s: In the adiabatic approximation (cf. sec. 2 of Ref. [169]), one may

approximate the speed of sound as follows

c2
s ≈ 1

3
− V ′(φ)

V (φ)
, (8.20)

which leads us to c2
s ≈ 1

3
− γ2

2
near the boundary13. Therefore, in order to have a

positive definite speed of sound, one must have γ ≤
√

2/3.

• Breitenlohner-Freedman (BF) bound: As we remarked in Sec. 3.2.2, the mass of the

scalar field may be a little negative as long as it satisfies Eq. (3.61). The dilaton’s

mass may be found expanding the potential near the boundary, where φ → 0, i.e.

V (φ → 0) = −12 +
1

2
m2φ2 + O(φ4). (8.21)

13Recall that φ → ∞ near the boundary.
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Thus, with the specific functional form (8.19), the mass of the dilaton field becomes

m2 = −6a+ 2b2 − 3γ2 ≥ −4, (8.22)

with the inequality representing the BF bound (3.61). Furthermore, the dilaton

deformation must be a relevant one, i.e. it deforms the IR of our theory and, from

Sec. 3.2, this is achieved whenever the dilaton scaling dimension ∆ has values in the

interval

2 ≤ ∆ < 4,where ∆(∆ − 4) = −m2. (8.23)

• Singularity criteria: Large curvatures in the IR are allowed if and only if [304]

V (φ) ≤ −12. (8.24)

Bearing in mind all the remarks done above, one can start to generate different ge-

ometries for different parametrizations. Since we want a holographic model that mimics

the QCD equation of state for (2+1) flavors, we compute the speed of sound,

c2
s =

d log T

d log s
, (8.25)

and then we compare the holographic result with the lattice data given in Ref. [270]. The

best parametrization was found to be

V (φ) = −12 cosh(0.606φ) + 0.703φ2 − 0.1φ4 + 0.0034φ6. (8.26)

From the dilaton potential specified above one obtains the dilaton mass m2 ≈ −3, as

anticipated in Section 8.1.1.

However, we still need to fix the gravitational constant κ2 = 8πG5 once the speed of

sound is insensitive to this parameter. To fix κ2, we calculate the pressure

p(T ) =
∫ T

Tref

s(T ′)dT ′, where Tref ≈ 20 MeV, (8.27)

which is a sensitive quantity with respect κ2, and then we compare with the lattice

data [270]. The result is

κ2 = 8πG5 = 12.5. (8.28)

The results for the holographic equation of state are given in Fig. 8.2.

We remark that, although the present EMD construction does not explicit introduce

fundamental flavors at the dual boundary quantum field theory, the dilaton potential in
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Eq. (8.26) was adjusted in order to quantitatively mimic the (2 + 1)-flavor lattice QCD

equation of state and its crossover. This mimicking procedure was originally introduced

in [169] (see also [311] for more recent discussions), where it was also discussed how

different choices for the dilaton potential may emulate not only the QCD crossover, as

done in the present work, but also first and second order phase transitions, which may be

useful for a large variety of different physical systems.

In the present work, we employ the same procedure used in [172, 298] to express the

holographically determined thermodynamical observables in physical units, i.e., we find

the temperature at which our speed of sound squared, c2
s, displays a minimum (at zero

magnetic field) and match it to the corresponding lattice QCD result [270]

λ =
T lattice

min. c2
s

TBH
min. c2

s

≈ 143.8 MeV

0.173
≈ 831 MeV. (8.29)

In what follows, we relate any black hole thermodynamical observable, X̂, with its coun-

terpart in physical units, X, with mass dimension [MeVp], by taking X = λpX̂ [MeVp].

This prescription respects the fact that dimensionless ratios, such as s/T 3, must give the

same result regardless of the units. A comparison between our holographic results for the

speed of sound squared, c2
s(T,B = 0), and the (normalized) pressure, p(T,B = 0)/T 4 (at

zero magnetic field) and the corresponding lattice QCD results from [270] is shown in Fig.

8.2. One can see that the holographic model provides a good description of the lattice

data in the absence of an external magnetic field.
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Figure 8.2: Holographic calculation of the speed of sound squared c2
s and the (normalized)

pressure p/T 4. The data points correspond to lattice QCD results from [270] computed at zero
magnetic field.

Although our potential (8.26) mimics the thermodynamics of the QCD and, conse-

quently, has a crossover as phase transition, one could use another parametrization to

obtain a different phase transition. Table 8.1 summarizes this idea showing a couple of



8.2
SPECIFYING THE DILATON POTENTIAL V (φ) AND THE MAXWELL-DILATON GAUGE

COUPLING F (φ) 139

parametrizations that gives us different types of phase transition. We denote by V2nd the

holographic model that displays a second order phase transition, whilst the holographic

model with V1st displays a first order phase transition. The dilaton potential VIHQC(φ) is

the one used in the improved holographic QCD [183, 184], which describes the pure glue

sector of the QCD near the crossover temperature.

Table 8.1: Different parametrizations of V (φ) which give different types of phase transitions.

Potential a γ b2 b4 b6 ∆
V(2+1)Nf

(8.26) 0 0.606 0.703 -0.1 0.0034 3.00

V2nd [169] 0 1/
√

2 1.942 0 0 3.37

V1st [169] 0
√

7/12 2.0 0 0 3.00

VIHQC [183,184] 1
√

2/3 6.25 0 0 3.58

Note added: After the finish of this dissertation we generated another parametrization

for V (φ) that greatly improves the agreement with the lattice data. This new parametriza-

tion may be found in Ref. [305].

8.2.2 Fixing the Maxwell-Dilaton gauge coupling using lattice

data for the magnetic susceptibility at zero magnetic field

In order to fully determine our holographic model and include the effects from a

magnetic field we also need to dynamically fix the Maxwell-Dilaton gauge coupling f(φ).

This can be done using the recent lattice data [52] for the magnetic susceptibility of QCD

with (2 + 1)-flavors evaluated at zero magnetic field. In order to compute the magnetic

susceptibility in our holographic model we follow the same general steps discussed in [308]:

we substitute the Ansatz (8.2) into the action (8.1) and calculate the second derivative

of the on-shell action with respect to the magnetic field, dividing the result by the entire

spacetime volume of the boundary. In order to obtain the bare magnetic susceptibility we

plug the on-shell numerical solutions into the expression obtained in the previous step14,

χbare(T,B) = −∂2fbare

∂B2
= − 1

Vbdy

∂2Son-shell
E, bare [B]

∂B2
=

1

Vbdy

∂2Son-shell
bare [B]

∂B2

= − 1

2κ2

∫ r̃fixed
max

r̃H

dr̃f(φ̃(r̃))e2(ã(r̃)−c̃(r̃))

∣
∣
∣
∣
∣

on-shell

,

(8.30)

14As mentioned in footnote 7 of [308], the Euclidean action has the opposite sign of the Lorentzian
action.
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where fbare is the bare free energy density and, formally, one should take the limit r̃fixed
max →

∞. However, in numerical calculations, r̃fixed
max must be a fixed ultraviolet cutoff for all the

geometries in order to ensure that the ultraviolet divergence in (8.30) is independent of

the temperature. Since we are interested here in calculating the magnetic susceptibility

at zero magnetic field where a(r) = c(r), one obtains from (8.30)

χbare(T,B = 0) = − 1

2κ2

∫ r̃fixed
max

r̃H

dr̃f(φ̃(r̃))

∣
∣
∣
∣
∣

on-shell

. (8.31)

In order to regularize (8.31) we follow the same procedure adopted on the lattice [52] and

subtract from (8.31) the vacuum contribution at zero temperature. Clearly, this removes

the ultraviolet divergences since those are temperature independent. More precisely, we

subtract the geometry corresponding to (Tsmall, B) ≈ (0.005 MeV, 0), which is generated

by the initial conditions (φ0,B) = (7.8, 0); this is the asymptotically AdS5 geometry with

the lowest temperature and zero magnetic field which we could reach in our numerical

computations15. Therefore, we obtain the following holographic formula for the magnetic

susceptibility at zero magnetic field (which is valid for any EMD model of the kind con-

sidered here)

χ(T,B = 0) = χbare(T,B = 0) − χbare(Tsmall, B = 0)

= − 1

2κ2





(
∫ r̃fixed

max

r̃H

dr̃f(φ̃(r̃))

)∣
∣
∣
∣
∣
T,B=0

− (same)

∣
∣
∣
∣
∣
Tsmall,B=0





on-shell

= − 1

2κ2








1

√

hfar
0

∫ rvar
max

rstart

drf(φ(r))





∣
∣
∣
∣
∣
T,B=0

− (same)

∣
∣
∣
∣
∣
Tsmall,B=0





on-shell

, (8.32)

where r̃fixed
max must be chosen in such a way that the upper limits of integration in the

numerical coordinates satisfy rconformal ≤ rvar
max =

√

hfar
0

[

r̃fixed
max − afar

0 + ln
(

φ
1/ν
A

)]

≤ rmax for

all the geometries considered. We found that for r̃fixed
max ∼ 33 such requirement is met. We

also checked that one can vary the value of the ultraviolet cutoff r̃fixed
max and the results for

the holographic magnetic susceptibility do not change, which confirms the stability of our

numerical procedure.

We can now use many different trial profiles for f(φ) to evaluate (8.32) over the zero

magnetic field background solutions, trying to holographically fit the recent lattice data

from [52] for the magnetic susceptibility of (2 + 1)-flavor QCD at zero magnetic field. We

15Note that φ0 = 7.8 corresponds to the local minimum of our dilaton potential (8.26). For φ0 > 7.8,
our dilaton potential becomes non-monotonic and, in practice, we took φ0 = 7.8 as the upper bound for
the initial condition φ0 in our numerical calculations to avoid complications with extra singular points in
the equations of motion.
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found that a good description of the lattice data can be obtained by fixing

f(φ) = 1.12 sech(1.05φ− 1.45), (8.33)

with the corresponding results displayed in Fig. 8.3.
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Figure 8.3: Holographic calculation of the magnetic susceptibility at zero magnetic field and
comparison with lattice data from [52] (we consider 10.9 times the data available in table III
in [52], which corresponds to the magnetic susceptibility in natural units - see footnote 1 in [52]).

With the dilaton potential (8.26) and the Maxwell-Dilaton gauge coupling (8.33) dy-

namically fixed by the description of adequate lattice data at zero magnetic field, our

holographic model is now fully determined. This setup may be employed to investigate

the physics of the dual quantum field theory at finite temperature and nonzero magnetic

field with vanishing chemical potential(s).

We finish this Section by mentioning some limitations of the holographic model pre-

sented here:

• The model cannot describe phenomena directly related to chiral symmetry and its

breaking/restoration (such as T = 0 magnetic catalysis [100, 273, 275]). This could

be studied by adding flavor D-branes in the bulk (see, for instance, Ref. [186]);

• The model cannot properly describe hadron thermodynamics (which sets in at low

temperatures, below T ∼ 150 MeV) and the effects of magnetic fields at low tem-

peratures (for a study of the hadron resonance gas in a magnetic field see [99]).

Moreover, in this holographic model asymptotic freedom is replaced by conformal
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invariance at sufficiently high temperatures. Furthermore, for high enough magnetic

fields the nonlinear nature of the DBI action for the D-branes should be taken into

account [309];

• In Appendix F, we present a brief discussion on the behavior of electric field response

functions in the present EMD model, which indicates that this simple model is not

versatile enough to simultaneously cover in a quantitative way both the magnetic

and electric sectors of the QGP.

With these limitations in sight, we expect that the present bottom-up holographic model

will be mostly useful to understand the effects of magnetic fields on the QGP within the

range T ∼ 150 − 400 MeV and eB . 1 GeV2.

8.3 Holographic QCD thermodynamics at nonzero

magnetic field

In this Section the results for the holographic equation of state at nonzero magnetic

field are presented. The formulas needed to compute the observables shown below were

presented in the last Section. Here, we define the pressure as the temperature integral of

the entropy density performed while keeping the magnetic field fixed16

p(T,B) =
∫ T

Tref

dT ′s(T ′, B), (8.34)

where we took a low reference temperature, Tref = 22 MeV, in agreement with what was

done in [172,298] to obtain the fit for the dilaton potential and the gravitational constant

(8.26). By doing so, the holographic curves for the pressure in Fig. 8.4 (and also Fig. 7.2)

actually correspond to differences with respect to reference pressures calculated at Tref for

each value of the magnetic field.

In Fig. 8.4 we show our holographic results for the normalized entropy density, s/T 3,

and pressure, p, and compare them to recent lattice data [53] for eB = 0, 0.3, and 0.6

GeV2. It is important to remark, however, that the above convention to calculate the

pressure is not exactly the same used in [53] since in (8.34) the pressure (difference)

vanishes at T = Tref = 22 MeV while in the calculation carried out in [53] the pressure

goes like ∼ O ((eB)4) for T → 0 and, therefore, one should expect that the differences

16As discussed in detail in Section 2 of [53] this corresponds to the isotropic pressure in the so-called
“B-scheme” where the magnetic field is kept fixed during compression. Also, this corresponds to the
anisotropic pressure in the direction of the magnetic field in the so-called “Φ-scheme” where the magnetic
flux is kept fixed during compression.
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between these two calculations17 become more pronounced at low temperatures and large

magnetic fields, as seen in Fig. 8.4. However, even for eB = 0.6 GeV2, we do find a

reasonable agreement for the pressure at large temperatures (T > 200 MeV).
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Figure 8.4: Holographic calculation for the normalized entropy density, s/T 3, and pressure, p,
in the presence of an external magnetic field. The solid, dashed, and dot-dashed curves correspond
to magnetic fields eB = 0, 0.3, and 0.6 GeV2, respectively. The data points correspond to the
lattice calculations for these quantities performed in [53].

On the other hand, when it comes to the ratio s/T 3, the agreement between our

holographic results and the lattice is only at the qualitative level. This is in part due to

the uncertainties in the holographic description of this observable already at B = 0: the

holographic model parameters were chosen to describe the lattice data for the pressure

and the speed of sound squared at B = 0 and not18 s/T 3. In any case, one can see that

s/T 3 increases with an increasing magnetic field, which is the general behavior observed

on the lattice [53]. Moreover, note that the curve s/T 3 becomes steeper near the transition

region for increasing values of the magnetic field, which is again in agreement with the

general trend observed on the lattice [54].

As discussed in [53], the inflection point of s/T 3 may be used to characterize the

crossover temperature as a function of the magnetic field19. Correspondingly, the peak

17Note that in [53] the pressure was obtained from the renormalized free energy density. Here, we
could have done the analogous holographic procedure by calculating the free energy density from the
holographically renormalized on-shell action for the EMD model. This is, however, a much more laborious
calculation than the one we have carried out here where we first calculated the entropy density using the
Bekenstein-Hawking’s relation (8.18) and then we calculated the pressure (difference) using Eq. (8.34).

18Probably a better agreement with B 6= 0 lattice data may be obtained by improving the choice of
the model parameters through a global fit to B = 0 lattice data for the pressure, the entropy density, the
speed of sound, and the trace anomaly. See Ref. [305] for this implementation.

19Since the crossover is not a genuine phase transition, the free energy is analytic in the region where
the degrees of freedom change from a hadron gas to a deconfined plasma. Thus, the definition of the
crossover temperature Tc depends on the observable one uses to characterize it. Different observables can
give in principle different values for Tc and one may use them to obtain a band defining the crossover
region [51,53].
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eB [GeV2] Tc(eB) [MeV]

0 158.2
0.1 157.6
0.2 154.9
0.3 153.2
0.4 151.3
0.5 149.9

Table 8.2: Deconfinement temperature (defined by the inflection point of s/T 3) for different
values of the magnetic field in the bottom-up holographic model.
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Figure 8.5: Deconfinement temperature (defined by the inflection point of s/T 3) for different
values of the magnetic field in the bottom-up holographic model. The data points correspond to
the lattice calculation performed in [53].

in T∂T (s/T 3) may be used to estimate the crossover temperature as a function of the

magnetic field in our holographic model. We used our results for s/T 3 to find how the

crossover temperature changes with a magnetic field and the results are displayed in table

8.2 and in Fig. 8.5. One can see in Fig. 8.5 that in our model the crossover tempera-

ture decreases with an increasing magnetic field, as found on the lattice [51, 53], but a

quantitative agreement with the data from [53] occurs only for eB . 0.3 GeV2.

Some general comments regarding the crossover found in our holographic model are

in order at this point. Depending on the chosen dilaton potential, the black hole solutions

may or may not have a minimum temperature, as detailed discussed, for instance, in

Refs. [169,300,311,312]. In the case there is some minimum temperature below which the

black hole solutions do not exist, the system generally features a first order Hawking-Page

phase transition [313] to the thermal gas phase at some critical temperature a little bit
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higher than the minimum temperature for the existence of the black hole solutions. Also,

in this case, the black hole solutions are not unique and there is at least one unstable

branch of black hole solutions above this minimum temperature. But for some choices

of the dilaton potential the temperature of the black hole solutions may monotonically

decrease as a function of the radial position of the horizon until going to zero, in which case

the black hole solutions are unique and thermodynamically preferred over the thermal gas

solution and the system does not feature any phase transition at nonzero temperature (at

least at zero magnetic field and vanishing chemical potentials): this is the case realized

in our EMD model. Note also this is indeed the adequate situation to mimic the QCD

crossover instead of the pure Yang-Mills first order phase transition. In fact, by analyzing

our dilaton potential according to the general criteria discussed in [312], one notes that in

the deep infrared our dilaton potential goes like V (φ → ∞) ∼ −e0.606φ, in which case at

each finite value of temperature (at zero magnetic field and vanishing chemical potentials)

there exists a unique black hole solution and this corresponds to the true ground state

of the system, having a larger pressure than the thermal gas solution. Moreover, since

within the region of the (T,B)-phase diagram analyzed in our manuscript the pressure of

the plasma increases with B (as also seen on the lattice, see Fig. 8.4), within this region

the black hole solutions are always thermodynamically preferred and do correspond to

the true ground state of the system.

As a technical detail, in order to obtain the curves in Fig. 8.4 we used a large grid of

initial conditions with 720,000 points taking 900 equally spaced points in the φ0-direction

starting from φ0 = 0.3 and going up to φ0 = 7.8, and 800 equally spaced points in the
B

Bmax(φ0)
-direction starting from B

Bmax(φ0)
= 0 and going up to B

Bmax(φ0)
= 0.99. A large

number of points was required to obtain sufficiently smooth curves for s/T 3 that allowed

for the extraction of the crossover temperature and its dependence on the magnetic field.

However, smooth curves for p could be obtained using much smaller (and faster) grids.

8.4 The anisotropic shear viscosity

We now calculate the shear viscosity coefficients in this novel EMD model that emu-

lates effects of an external magnetic field. Actually, as discussed at length in Chapter 4,

we have seven viscosity coefficients, being five shear viscosities and two bulk viscosities.

In this section we shall calculate the shear viscosities, in the same spirit of Chapter 5.

For the sake of completeness, we will show how to obtain the same result for the

anisotropic shear viscosity (5.20) from Chapter 5 for this QCD-like theory using a match-

ing procedure [170]. Although this bottom-up model has a dilaton field, the anisotropic

shear mode hxz is still decoupled; the consequence is that its equations of motion remains
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the same. Assuming the usual harmonic fluctuation ψ ≡ hz
x = hz

x(r)e−iωt, we write its

equation of motion explicitly,

ψ′′ + ψ′
(

4a′ − b′ +
h′

h

)

+
ω2e2b−2a

h2
ψ = 0, (8.35)

where primes denote ∂r derivatives. The conserved flux for the differential equation above

is

Im F = he4a−b Im(ψ∗ψ′). (8.36)

We relate the imaginary part of the retarded Green’s function with ImF by (cf. dis-

cussion in Sec. 3.4)

ImGR
T xzT xz(ω) = − Im F

16πG5

. (8.37)

The task now is to fully determine the flux Im F . However, as we shown below, only the

near horizon region will not be enough, because there will be an undetermined constant.

We will circumvent this issue by analyzing the solution with ω = 0 and comparing it with

the near horizon solution (matching).

In the near horizon limit, r → rh, Eq. (8.35) is reduced to

ψ′′ + ψ′ 1

r − rh

+
ω2e2b−2a

h′(rh)2(r − rh)2
ψ = 0, (8.38)

whose solution is given by

ψ(r → rh) ≈ c+(r − rh)
iω

4πT + c−(r − rh)− iω
4πT , (8.39)

where T = ea(rh)−b(rh)

4π
h′(rh) is the Hawking temperature and c+/− are constants. Since we

want the retarded Green’s function we discard the outgoing term of the solution above,

i.e. c+ = 0. On the other hand, the solution of (8.35) around ω = 0 is given by

ψ(r) = a1 + a2

∫ ∞

r

e−4a(r′)+b(r′)

h(r′)
dr′, (8.40)

where a1 and a2 are another constants. The matching technique to solve (8.35) comes

about when we expand (8.39) around ω = 0 and (8.40) aroung rh, giving us the following

relation

c−

[

1 − iω

4πT
log (r − rh)

]

≈ a1 + a2
e−4a(rh)+b(rh)

h′(rh)
log (r − rh) . (8.41)

Thus, we have the result

a1 = c−, a2 = −iωe3a(rh)c−, (8.42)
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Figure 8.6: Numerical results for the anisotropic shear viscosity (8.45) of the EMD model with
an external magnetic field.
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which is valid for small values of ω. The condition at the boundary tells us that ψ(r →
∞) = 1 and, therefore, we have that c− = 1. Bearing this in mind, we can now write

the flux F using the solution of the near horizon geometry, which is the more convenient

region

Im F = h(rh)e4a(rh)−b(rh) Im(ψ∗(rh)ψ′(rh))

= ωe3a(rh). (8.43)

Plugging this result into the Kubo relation (8.37), we have that

η‖ =
e3a(rh)

16πG5

. (8.44)

Dividing the formula above of the parallel shear viscosity by the entropy density, we obtain

η‖
s

=
1

4π
e2a(rh)−2c(rh), (8.45)

We show the numerical result for the anisotropic shear viscosity (8.45) in Fig. 8.6. Note

that the result is in qualitative agreement with the calculation done in the magnetic brane

context (compare with Fig. 5.1). Furthermore, the result for the anisotropic viscosity

is also in qualitative agreement with the kinetic result [219] (mentioned in Sec. 4.3.2).

However, as one can see in Fig. 8.6, it would be hard to detect some effect due to the

anisotropic viscosity in a heavy ion collision because at early times, whereB is relevant, the

QGP temperature is high, which decreases the effect of a magnetic field on the viscosity.

8.5 Conclusions of the chapter

In this chapter we developed, for the first time, a bottom-up holographic model that

provides a quantitative description of the crossover behavior observed in the equation

of state and in the magnetic susceptibility of a QCD plasma with (2 + 1)-flavors at

zero magnetic field. We employed this model to study how an Abelian magnetic field B

affects the thermodynamic properties of this strongly coupled plasma (at zero chemical

potentials). In the presence of the magnetic field the plasma becomes anisotropic and we

used the inflection point of the holographically calculated s/T 3 curve to determine how

the crossover temperature is affected by the external magnetic field. We found that the

crossover temperature decreases with an increasing magnetic field, which agrees with the

general behavior recently observed on the lattice. Our model calculations display some

level of quantitative agreement with the lattice data for values of the magnetic field up

to eB . 0.3 GeV2, which is the expected range achieved in ultrarelativistic heavy ion
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collisions.

We believe that this agreement with the lattice data can be further improved toward

larger values of eB if one tries to carefully match the lattice thermodynamic calculations

at B = 0 by simultaneously taking into account different observables such as the pressure

and the speed of sound squared, as we have done in the present approach, with the addition

of the entropy density and the trace anomaly in a global fit; in this sense, our choice for

the holographic model parameters (fixed at B = 0) may be systematically improved.

An interesting feature of our holographic model that distinguishes it from other con-

structions (such as [106, 107]) is that the suppression of the crossover temperature with

the external magnetic field found here is directly tied to a quantitative description of near

crossover lattice QCD thermodynamics at B = 0. It would be desirable to generalize the

present holographic model by taking into account the contribution of the chiral conden-

sate. Moreover, motivated by the recent studies in Refs. [54,55], one could also investigate

if this model indicates the existence of a critical point in the (T,B)-plane at higher values

of the magnetic field20.

The holographic setup constructed here may be employed to obtain estimates for the

magnetic field dependence of many other physical observables relevant to the strongly

coupled QGP. For instance, in Sec. 8.4 we calculated the anisotropic viscosities and how

they vary as we increase the value of a magnetic field; we also learned that η‖ < η⊥ for

any nonzero value of magnetic field, which is in qualitative agreement with the calculation

done in Chapter 5.

Recently, the effects of an external magnetic field on the equilibration dynamics of

strongly coupled plasmas have been studied using holography [95, 111]. In this context,

it would be interesting to see how the quasinormal mode spectrum in our nonconformal

plasma varies with an external magnetic field. Given that our model can capture the

nonconformal behavior of the QGP near the crossover transition, with and without the

external magnetic field, a detailed study of the quasinormal modes in this model may shed

some light on the thermalization process that takes place in an anisotropic nonconformal

strongly magnetized QGP. We hope to report results in this direction in the near future.

20Note from Fig. 8.4 that for the values of B considered here we only have a smooth analytical crossover,
as also seen on the lattice.



Chapter 9

Conclusions and outlook

Throughout the first part of this dissertation, which comprehends Chapters 1, 2, and

3, we have reviewed how we can heat up hadronic matter (“melt” the hadrons) and create

the so-called quark-gluon plasma. After we summarize some important properties of this

new state of matter, emphasizing how small its viscous effects (in the sense that η/s is

small) are, we began, in Chapter 2, a diligent study of the shear viscosity and the bulk

viscosity; we also had a glimpse on why a relativistic viscous theory of hydrodynamics

is not easy to construct. We have ended the second chapter by introducing the linear

response formalism, which is the standard way to compute the transport coefficients in

a strongly coupled plasma (and on the weakly coupled systems as well). After that, we

studied the basics of the gauge/gravity duality [32–34], and why it is so “simple” to

calculate transport coefficients within this framework - such as the viscosity calculation

in Sections 3.4 and 3.5. The studies in these chapters served as a preparation for the rest

of the dissertation.

Motivated by the recent indications of the presence of very strong magnetic fields in

heavy ion collisions [38–43], we began, in Chapter 4, to explore effects of strong magnetic

fields on the QGP - the main focus of this work. We also discussed the holographic top-

down construction of the magnetic brane [89–91], dual to the magnetic strongly coupled

N = 4 SYM, which is the background used in the subsequent chapters. Moreover, in Sec.

4.3 we discussed in detail the emergence of anisotropic viscosities due to the anisotropy

induced by an external magnetic field (we now have five shear viscosities and two bulk

viscosities).

In Chapter 5 we gathered the knowledge developed in previous chapters and obtained

the anisotropic shear viscosities of the magnetic brane setup, i.e. η⊥ and η‖ 1. We ob-

served another violation of the result η/s = 1/4π for anisotropic theories [257, 262, 265],

with η‖ decreasing with increasing magnetic field. Besides calculating only the transport

1We recall that the other three shear viscosities trivially vanish for the magnetic brane case.
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coefficients, it was necessary to tackle the dynamical problem of relativistic magnetohy-

drodynamics of strongly coupled theories, i.e. its equations of motion. For a such task,

one could try to extend the fluid/gravity paradigm [314] in presence of magnetic fields in

(2+1) dimensions [315], where the magnetic field is a (pseudo) scalar and the theory is

isotropic, to the (3+1)-dimensional case, which would certainly shed some light on this

matter.

Naturally, the shear viscosity is one among many other transport coefficients. Thus,

given the suitability of the gauge/gravity duality to calculate real-time phenomena, we

can exploit other directions as well, such as the effects of magnetic fields on heavy quark

diffusion [316,317].

We also presented a preliminary discussion in Chapter 6 about the anisotropic bulk

viscosities for the magnetic N = 4 SYM, ζ⊥ and ζ‖. These coefficients were shown to

vanish in this theory, even though there is a trace anomaly induced by the magnetic field.

In Chapter 7 we studied the anisotropic heavy QQ̄ potential using the magnetic brane

solution. We have found that at zero and finite temperature, the inclusion of the magnetic

field decreases the attractive force between heavy quarks with respect to its B = 0 value

and the force associated with the parallel potential is the least attractive force. Qualita-

tively, the same result is found in Ref. [296] in the context of an anisotropy induced by

the axion [258].

When we developed the EMD model to mimic the strongly coupled QGP embedded

in a magnetic field in Chapter 8, following the previous holographic constructions [169,

171, 187], we demonstrated that is completely feasible to construct realistic holographic

models that include a magnetic field. The toll we paid, though, was to relinquish some

firm connections with the string theory. Furthermore, the lack of breaking/restoration of

the chiral symmetry on the EMD model must be fixed. A promising way to remedy the

chiral issue, aside the D-brane embedding [309], is outlined in Refs. [318,319].

We end this dissertation commenting the lack of studies about dense stars (neutron

stars) via gauge/gravity duality. Inside these compact stars, it is likely that quarks and

gluons are deconfined in a strongly interacting regime. As an example, we conjecture that

an extension of the EMD model developed in Chapter 8 that accommodates the chemical

potential sector2 µB [187,298] suffices for a first approach. This is certainly a new branch

of study that deserves further investigations.

2Neutron stars have large values of baryonic chemical potential.



Appendix A

Maxwell’s result for the shear

viscosity of a diluted gas

The goal of this appendix is to show, in a rather simple but effective way (see [216]),

how one calculates the shear viscosity of a diluted gas. The results of these calculations

had profound consequences and it is evidently within the subject of this dissertation.

To calculate η, we again resort to the simple laminar flow (for a gas, obviously) illus-

trated in Fig. 2.1. In this flow, we have the relation

F

A
= η

dux

dy
∼= η

u

d
, (A.1)

with the boundary conditions: ux(0) = 0, and ux(d) = u. The relation above was obtained

in Sec. 2.1 from macroscopic arguments, i.e. the Navier-Stokes equation. We have to arrive

at a similar expression using the microscopic nature of the gas, and, by comparing with

Eq. (A.1), extract the shear viscosity.

The strategy is to relate the momentum diffusion with the consecutive collisions of the

gas molecules. More specifically, we track what happens with one molecule in a limited

region, and afterwards we use some distribution function to take the average. To better

visualize this, we depicted this situation in Fig. A.1.

We begin by looking at the variation of the momentum ∆p (not the pressure!) of the

molecule drawn in Fig. A.1,

∆p = m [ux(y + ∆y) − ux(y)] ∼= m
dux

dy
∆y. (A.2)

Notice also that what happens in the x−axis and z−axis is not important since the

momentum diffusion occurs only on the y−axis.

The next step is take the average of ∆p. This can be done once we know the momentum
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Figure A.1: The path of a molecule’s gas between two consecutive collisions. The distance
traveled by this molecule - the red arrow, is given by the mean free path lmfp.

flux density, which is the number of particles per unit of time and area crossing some

section in the xz−plane, such as the planes drawn in Fig. A.1. This number is given by

Nvyf(~v)d3x1. Therefore, the force per unit of area is

F

A
= − 1

A

∆p

∆t
= −N

∫

d3v∆p vyf(~v)

= −mN dux

dy

∫

d3vvzf(~v). (A.3)

We cannot solve directly the integral above because f(~v) is not the usual Maxwell

distribution function. Instead, it is some anisotropic version of it, where 〈vy〉 = 〈vz〉 = 0,

and 〈vx〉 6= 0. The clever way to deal with this integral is to assume u ≪ 〈v〉 (slightly

anisotropic distribution function), so that the following approximation

∫

d3v vf(~v)Q(cosθ) ≈ 1

2
〈v〉

∫ 1

−1
d(cos θ) cos θQ(cosθ), (A.4)

is legitimate for some generic function Q(cosθ).

Hence, by using the approximation (A.4) in Eq. (A.3), and knowing that vy = −v cos θ,

we obtain
F

A
=

1

3
mN〈v〉lmfp

dux

dy
. (A.5)

Now, we just compare the above result with expression (A.1). This gives us the fol-

lowing expression for the shear viscosity of a gas

η =
1

3
mN〈v〉lmfp. (A.6)

Note that this expression derived for the shear viscosity of a gas does not depend of

1We can directly derive this number from the expression Πij = m
∫
d3vvivjf(~v), which is the momen-

tum flux. In this case, we are interested on the Πxy component.
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its density N (cf. Eq. (2.46)). This is a remarkable feature and helped to consolidate the

kinetic theory since this result was a successful theoretical prediction derived by Maxwell

in 1860 [221].



Appendix B

The conformal symmetry

Throughout this dissertation we mentioned conformal field theories (N = 4 SYM)

and how they were important in establishing the foundations of the gauge/gravity duality

(cf. Chap. 3). In addition, we emphasized the effect of conformal invariance on the bulk

viscosity, i.e. ζ = 0 for conformal theories. Therefore, this appendix is dedicated to show

more explicitly these results. The canonical reference for conformal field theory is Ref. [320]

We start with the conformal transformation. In a a conformal transformation the

coordinates change as x → x̃(x), whose effect on the metric is

gµν → e2Ω(x)gµν , (B.1)

where e2Ω(x) is the conformal factor. These conformal transformations are part of the

so-called conformal group.

The conformal group contains translations, rotations, and boosts (for Lorentzian mani-

folds). Besides them, we have two more transformations which characterizes the conformal

group, the scale transformation

x → λx, (B.2)

and the special conformal transformation (SCT),

x → xµ + x2bµ

1 + 2x · b+ x2b2
, (B.3)

which can be seen as an inversion-translation-inversion transformation.

For a D-dimensional space, the conformal group has 1/2(D + 2)(D + 1) generators,

which is the same number of the generators of the rotation group in D + 2 dimensions.

Therefore, the conformal group is related to the group SO(D+ 2) = SO(1 + p, 1 + q), for

p+ q = D.
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The generators of the conformal group are

Translations: Pµ ≡ −i∂µ (B.4)

Rotations: Mµν ≡ i(xµ∂ν − xν∂µ) (B.5)

Dilatations: D ≡ −ixµ∂
µ (B.6)

SCT: Kµ ≡ i(x2∂µ − 2xµxν∂
ν). (B.7)

The algebra of the conformal group is given by (the non-vanishing commutators)

[D,Pµ] = iPµ, (B.8)

[D,Kµ] = −iKµ, (B.9)

[Kµ, Pν ] = 2iηµνD − 2iMµν , (B.10)

[Pσ,Mµν ] = i(ησµPν − ησνPµ), (B.11)

[Mµν ,Mµν ] = i(ηνρMµσ − ηµσMνρ − (µ ↔ ν)). (B.12)

After this short prelude, let us check that T µ
µ = 0 in conformal theories and what

consequences this fact brings. The simplest way at arrive in this result is to consider the

following (constant) scale transformation

δgµν = ǫgµν . (B.13)

Now, we compute the effect of this transformation on the action,

δS =
∫

dDx
δS

δgµν
δgµν = −1

2

∫

dDx ǫ T µ
µ , (B.14)

where we have used the usual formula for the energy-stress tensor in the last equality,

Tµν =
−2√−g

δS

δgµν
. (B.15)

Since the scale transformation is a symmetry of the system, we have

δS = 0 ⇒ T µ
µ = 0, (B.16)

which is an essential feature of any conformal field theory. The converse is not true though,

i.e. T µ
µ = 0 does not imply that the theory is conformal.

In order to investigate the consequences of T µ
µ = 0, we just rewrite the Kubo formula
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for the bulk viscosity of a D-dimensional theory derived in Sec. 2.3.1. The formula is

ζ =
1

(D − 1)2
lim
ω→0

1

ω

∫

dDxeik·xθ(t)〈[T µ
µ (x), T µ

µ (0)]〉, (B.17)

where we have used the property of Eq. (4.63) to have this explicit covariant expression

for the bulk viscosity. Hence, it is obvious from the above Kubo relation that the bulk

viscosity ζ must vanish in conformal theories.

Regarding the trace of the stress-energy tensor of the strong interactions, it is well

known that, at the classical level, the non-Abelian Yang Mills theory is a conformal

theory in four dimensions, i.e. T Y M µ
µ = 0. However, quantum effects prevent this theory

from being conformal. Indeed, the trace of the stress-energy tensor of QCD is

TQCD µ
µ =

Nf∑

q

mq q̄q +
β(g)

2g3
GaµνGa

µν , (B.18)

where β(g) is the beta function defined in Eq. (1.8). Obviously, the masses of the quarks

induces an energy scale, though very small. The important contribution comes from the

Yang-Mills anomaly.

A final important warning is that, in general, the trace of the stress-energy tensor of

some conformal field theory may vanish, which is an apparent puzzle (cf. the discussion

in 4.3.3 of [320]). For example, let us take simplest case of the free massless scalar field in

D−dimensions. In this case its stress-energy tensor is given by

T µν = ∂µφ∂νφ− 1

2
gµν(∂φ)2, (B.19)

so its trace is

T µ
µ = (1 −D/2)(∂φ)2, (B.20)

which is zero only for D = 2. However, we can easily fix it by introducing the improved

stress-energy tensor,

T µν
I = T µν + ∂αJ

αµν , (B.21)

where Jαµν = −Jανµ in order to respect the Noether charges; in other words, we add

total derivatives on the action to get T µ
I µ = 0. For the scalar field, we add ∂αJ

αµν =

−1/6(∂µ∂ν − gµν)φ2.

The above procedure can be similarly used to obtain the symmetric stress-energy

tensor, i.e. the Belinfante tensor.



Appendix C

Universality of the low energy limit

absorption of a scalar field by a

spherical symmetric black hole

In this appendix we show in detail the proof regarding the low energy limit absorption

of a scalar field by a spherical symmetric black hole [253], i.e. limω→0 σ(ω) = Ah, where

σ(ω) is the absorption cross section of a (massless) scalar field wave scattered by a spherical

black hole, ω is the frequency (energy) of the wave, and Ah is the black hole’s horizon. As

mentioned in Section 3.4, this theorem was of crucial importance to arrive at the ration

η/s = 1/4π1. Naturally, the method for computing two-point functions from absorption

cross sections is outdated once we acquired powerful tools to compute them (e.g. the

membrane paradigm).

First, one takes a generic metric with isotropic coordinates2 in p+ 2 dimensions,

ds2 = −f(r)dt2 + g(r)
[

dr2 + r2dΩ2
p

]

(C.1)

with limr→∞ f(r) = 1 and limr→∞ g(r) = 1 (asymptotically flatness), and dΩ2
p = dφ2

1 +

sin2 φ1dφ
2
2 + · · · +

∏d−1
k=1 sin2 φkdφ

2
k being the metric of a p-sphere with unity radius.

Using that
√−g =

√
r2pfgp+1 = rpf 1/2g

p+1
2 , the equation of motion for the massless

scalar field becomes

1√−g∂µ

(√−ggµν∂νΦ
)

= −∂2
t Φ

f
+

1

rpf 1/2g
p+1

2

∂r




rpf 1/2g

p+1
2

g
∂rΦ



+ ∆Ω2
p
Φ = 0 (C.2)

1See also [321] for the absorption cross section of extended branes.
2For instance, in isotropic coordinates, the metric of the Schwarzschild black hole is given by ds2 =

−
(

1−M/2r
1+M/2r

)

dt2 + (1 +M/2r)4
[
dr2 + r2dΩ2

2

]
.
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where ∆Ω2
p

is the Laplacian of the p-sphere, whose eigenfunctions are the spherical har-

monics in p dimensions. More precisely, ∆Ω2
p
Ylm... = −l(l + p − 3)Ylm.... Since we are

interested in the low energy limit, we discard the excitations of the scalar field with l ≥ 1.

Adopting the plane-wave Ansatz, Φ(t, r, θ) = φw(r)e−iwt, we have

w2φ

f
+

1

rpf 1/2g
p+1

2

∂r

[

rpf 1/2g
p−1

2 ∂rφ
]

= 0 (C.3)

or
[

(rpf 1/2g
p−1

2 ∂r)
2 + w2r2pgp

]

φw(r) = 0 (C.4)

The strategy to solve (C.4) to use the matching procedure (see Sec. 8.4 for another

calculation using this method). In this procedure, we will slice the space-time in three

regions, always focusing the low energy limit w → 0. The regions to be considered are:

I Near the black hole’s horizon, i.e., r → rH ;

II An intermediate region, i.e., r >> M (the mass of the black hole) and rw << 1.

III A region at far spatial infinity, far from the horizon, i.e., rw >> 1.

We will consider the solutions in the regions I and III, and then we will extrapo-

late both solutions to the intermediate region II so that we determine all the unknown

constants.

Since we are handling a scattering problem, it is natural to think that, at spatial

infinity, we have a mixture between the incoming wave and the scattered (reflected) wave.

On the other hand, in the near horizon region, we should have only the transmitted

(absorbed) component. Thus,

φw(r) ∼ e−iwr +R(w)eiwr r → ∞, (C.5)

where R(w) is the reflection amplitude. Naturally, the absorption probability associated

with the scalar field is Γ = 1 − |R(w)|2.
Now we define ξ such that

dξ =
dr

rpf 1/2g
p−1

2

(C.6)

and we simplify (C.4) to
[

∂2
ξ + w2r2pgp

]

φw(r) = 0. (C.7)

The area of the black hole is given by

AH =
∫

r=rH

√
√
√
√

p
∏

i=1

gθiθi
dθi = rp

H [g(rH)]
p
2

∫

dΩp = rp
H [g(rH)]

p
2 Ωp ≡ Rp

HΩp, (C.8)
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where Ωp = 2π(p+1)/2

Γ( p+1
2 )

is the area of a p-sphere with radius equals unity.

In the near horizon limit, we can consider r2g(r) ∼ R2
H as being a constant. Then, the

boundary condition given in (C.5) becomes

φw(r) = T (w)e−iwRp
Hξ, r → rH , (C.9)

where T (w) is the constant to be related with the transmission amplitude. Consequently,

for distances r >> M (region II), i.e., g(r) ∼ 1 and f(r) ∼ 1, but rw << 1, the solution

(C.9) is approximately given by

φw(r) ∼ T (1 − iwRp
Hξ), ξ ∼ − T

p− 1
r−p+1. (C.10)

For the case where rw >> 1 (region III), Eq. (C.7) for the scattered wave is given by

{rp∂r(r
p∂r) + w2r2p}φw(r) = 0. (C.11)

Making a change of variables, ρ = rw, one obtains

{∂2
ρ + p/ρ∂ρ + 1}φw(ρ) = 0, (C.12)

whose solutions are given in terms of Bessel functions. From now on, let us assume that

p is an even number (the procedure for p odd is the same); thus, the solution for (C.12)

has the following form

φw(ρ) = ρ
1−p

2 [AJν(ρ) +BJ−ν(ρ)] , ν = (p− 1)/2 (C.13)

To extrapolate the solution of region III to the intermediate region II, we use the

approximation of Bessel’s functions for small arguments, i.e., Jν ≈ 1
Γ(ν+1)

(
x
2

)ν
if |x| ≪ 1.

Then, for rw ≪ 1,

φw(r) ≈ 2
−p+1

2 A

Γ
(

p+1
2

) +
2

p−1
2 w1−p

Γ
(

3−p
2

)
B

rp−1
(C.14)

Comparing, in the sense of the power series in r, the coefficients of (C.14) with the

coefficients of (C.10),we have

T =
2

−p+1
2 A

Γ
(

p+1
2

) ; iwRp
H

1

p− 1
T =

2
p−1

2 w1−p

Γ
(

3−p
2

) B, (C.15)

∴
B

A
= i

2−p+1(wRH)p

p− 1

Γ
(

3−p
2

)

Γ
(

p+1
2

) . (C.16)
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For the calculation of the absorption cross section of the scalar field by the black hole,

we have to find the absorption probability Γ of a spherical wave with l = 0, defined by

Γ = |T (w)|2 = 1−|R(w)|2. In this problem, we will use T (w). However, one cannot extract

such information from the solution (C.13) and, because of this, we have to use its limit

when r → ∞. Knowing that Jν(x) ≈
√

2
πx

cos (x− νπ/2 + π/4) for |x| ≫ 1, one obtains

φw(r) ≈
√

2

π(rw)p
[A cos (rw − (p− 1)π/4 + π/4) +B cos (rw + (p− 1)π/4 + π/4)] .

(C.17)

Now, we must write the formula above in terms of complex numbers so we can extract

the transmission coefficients of the waves going towards the black hole:

cos (rw − (p− 1)π/4 + π/4) = e−i(p−1)π/4+iπ/4

(

eirw + e−irw+i(p−1)π/2−iπ/2

2

)

= eiβ

(

eirw − ie−irw+iα

2

)

, (C.18)

with α ≡ (p− 1)π/2, e β ≡ −(p− 1)π/4 + π/4. Similarly,

cos (rw + (p− 1)π/4 + π/4) = e−i(p−1)π/4+iπ/4

(

eirw+i(p−1)π/2 + e−irw−iπ/2

2

)

= eiβ

(

eirw+iα − ie−irw

2

)

, (C.19)

which results in

φw(r) ≈ C(r)
[

(eirw − ie−irw+iα) +B(eirw+iα − ie−irw)
]

≈ C ′(r)

[

e−iwr + i

(

1 + B
A
eiα

1 + B
A
e−iα

)

e−iαeiwr

]

, (C.20)

where C(r) and C ′(r) are two undetermined functions of r. Notice that, from the expres-

sion (C.20), we can extract the transmission coefficient T (w) sine it is accompanied by

the exponential term eiwr. Therefore, the absorption probability is

Γ = 1 −
∣
∣
∣
∣
∣

1 + B
A
eiα

1 + B
A
e−iα

∣
∣
∣
∣
∣

2

. (C.21)
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Also, if B/A = iγ, with γ = 2−p+1(wRH)p

p−1

Γ( 3−p
2 )

Γ( p+1
2 )

, then,

Γ = 1 −
∣
∣
∣
∣
∣

1 + iγ cos 2α− γ sin 2α

1 + iγ cos 2α+ γ sin 2α

∣
∣
∣
∣
∣

2

=
4γ sin 2α

1 + γ2 + 2γ sin 2α
. (C.22)

In the low limit frequency ω → 0 (low energies), we can approximate the denominator

of the above expression for Γ to the unity; ergo, one obtains

Γ = 4
2−p+1

p− 1
(wRH)p sin [π(p− 1)/2]

Γ
(

3−p
2

)

Γ
(

p+1
2

) . (C.23)

For the calculation of the absorption cross section, we still have to extract the plane

wave from the spherical wave that will be scattered by the black hole3. As we are consid-

ering only terms with l = 0 for the plane wave, it is useful to write

e−iωz = K
e−iwr

rp/2
Y00... + partial waves with higher l + reflected waves, (C.24)

where Y00... is the analogue of the spherical harmonic for higher dimensions. Given the

standard normalization
∫ |Y |2dΩp = 1, we conclude that Y00... = Ω−1/2

p .

One way to determine the constant K is to integrate both sides over the solid angle

of the p-sphere,

∫

e−iwzdΩp = K
e−iwr

rp/2
Y00...

∫

dΩp = K
e−iwr

rp/2
Ω1/2

p . (C.25)

To integrate the left-hand side of the above expression, we recall that

Ωp =
∫ 2π

φp=0

∫ π

φp−1=0
...
∫ π

φ1=0
sinp−1 φ1 sinp−2 φ2... sinφp−1dφ1...dφp−1dφp, (C.26)

and we choose z such that z = r cosφ1. Thus,

∫

e−iwzdΩp = Ωp−1

∫ π

0
sinp−1 φ e−iwrcosφdφ, (C.27)

3This is entirely analogous to standard textbook computation of scatterings in quantum mechanics
(in four dimensions) where one decomposes the radial wave in terms of the Bessel’s functions. However,
in higher dimensions, one has to use a generalization of the Bessel’s functions, i.e. the Gegenbauer
polynomials [322].
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using the identity

∫

sink φ e−iwrcosφdφ =
√
π
(

2

wr

)k/2

Γ

(

k + 1

2

)

J k
2
(wr), (C.28)

we are lead to

∫

e−iwzdΩp = Ωp−1

√
π
(

2

wr

)(p−1)/2

Γ
(
p

2

)

J p−1
2

(wr). (C.29)

However, the Bessel function does not give us information about the coefficient of the

spherical wave going towards the black hole; we circumvent this by taking the asymptotic

limit of the Bessel function, which has the appropriate functional form of an ingoing wave.

With this trick, the integral (C.29) becomes

∫

e−iwzdΩp
∼= 2

p
2

2w
p
2

Ωp−1Γ
(
p

2

)
e−iwr+iθ

r
p
2

, (C.30)

where θ is just a phase. Comparing this result with (C.25), we conclude that

|K|2 =
2p

4wp
Ω−1

p Ω2
p−1 [Γ(p/2)]2 . (C.31)

We can use that Ω2
p−1 = 4πp

[Γ(p/2)]2
, to obtain

|K|2 =
1

Ωp

(
2π

w

)p

. (C.32)

Finally, the absorption cross section σabs(ω), in the low energy limit ω → 0, is given

by

σabs(0) = |K|2Γ. (C.33)

Obviously, such result is valid only for l = 0. For sake of completeness, we just quote

here the general result for σabs(ω), valid for any value of l, given in [323]

σl
abs(w) =

2p−1π(p−1)/2

wp
Γ((p− 1)/2)(l + (p− 1)/2)

(

l + p− 2

l

)

Γl(w). (C.34)

Returning to our case, we have that

σabs(0) =
Rp

H

Ωp

8πp

p− 1
sin [π(p− 1)/2]

Γ
(

3−p
2

)

Γ
(

p+1
2

) , (C.35)
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and applying Euler’s reflection formula,

Γ(1 − z)Γ(z) =
π

sin (πz)
⇒ sin [π(p− 1)/2] Γ

(
3 − p

2

)

=
π

Γ
(

p−1
2

) ,

we simplify it to

σabs(0) =
Rp

H

Ωp

4πp+1

(p−1)
2

Γ
(

p−1
2

)

Γ
(

p+1
2

)

=
1

Ωp

4πp+1

[

Γ
(

p+1
2

)]2R
p
H . (C.36)

Noting the term Ω2
p we finally arrive at

σabs(0) = AH . (C.37)

Which demonstrates the initial statement.



Appendix D

Coordinate transformations

In this Appendix we list the different coordinate systems used on Chapter 7 and how

one may write the metric of AdS5 spacetime in each one of them. A common way of

expressing the AdS5 metric in the context of the holographic correspondence is through

the explicitly conformal coordinate system below

ds2 =
L2

U2
(dU2 − dt2 + dx2 + dy2 + dz2), (D.1)

where the boundary of the AdS5 space is at U = 0. Defining the coordinate transformation

r̄ :=
L2

U
, (D.2)

one may rewrite the AdS5 metric as follows

ds2 =
L2

r̄2
dr̄2 +

r̄2

L2
(−dt2 + dx2 + dy2 + dz2), (D.3)

where the boundary of the AdS5 space is now at r̄ → ∞. This coordinate system is the

one used in [89] and in Sec. 4.2 to obtain the finite temperature solutions.

Also, through the coordinate transformation

r :=
r̄2

2L
=

L3

2U2
, (D.4)

one can write the AdS5 metric as

ds2 =
L2

4r2
dr2 +

2r

L
(−dt2 + dx2 + dy2 + dz2), (D.5)
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where the boundary is at r → ∞. We can further define the light-cone coordinates

u :=
z + t√

2
, v :=

z − t√
2
, (D.6)

in terms of which (D.5) is rewritten as follows

ds2 =
L2

4r2
dr2 +

4r

L
dudv +

2r

L2
(dx2 + dy2) . (D.7)

This coordinate system is the one used in [90] and in Sec. 7.1 to study the zero temperature

solution of the magnetic brane.



Appendix E

Wilson loops in strongly coupled

N = 4 SYM

For the sake of completeness, in this Appendix we give a brief review of the holographic

computation of rectangular Wilson loops in SYM at finite temperature [121,122] without

magnetic fields. We shall closely follow the discussions in Section 5.1 of Ref. [124]. At

finite T and B = 0, the background giving an holographic description of thermal SYM is

the AdS5-Schwarzschild metric

ds2 =
L2

r̄2f(r̄)
dr̄2 − r̄2f(r̄)

L2
dt̄2 +

r̄2

L2
(dx̄2 + dȳ2 + dz̄2), f(r̄) = 1 − r̄4

H

r̄4
, (E.1)

where the boundary is at r̄ → ∞ and the horizon is at r̄ = r̄H . Rescaling r̄ =: 4r̄H(r−3/4),

(t̄, x̄, ȳ, z̄) =: (t, x, y, z)/4r̄H and adopting units where L = 1, one rewrites (E.1) as follows

ds2 =
dr2

(

r − 3
4

)2
f(r)

−
(

r − 3

4

)2

f(r)dt2 +
(

r − 3

4

)2

d~x 2, f(r) = 1 − 1
[

4
(

r − 3
4

)]4 ,

(E.2)

where the boundary is at r → ∞ and the horizon is now at r = 1. From (E.2), the

Hawking temperature reads

T =

√−g′
tt grr ′

4π

∣
∣
∣
∣
∣
r=1

=
1

4π
, (E.3)

which is the same constant temperature obtained before for the magnetic backgrounds.

Indeed, one can check numerically that the magnetic backgrounds at finite temperature

derived in Sec. 4.2 converge for the metric (E.2) in the limit of zero magnetic field, as it

should be.
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The formal expressions for the interquark distance and the heavy quark potential (we

set α′ = 1 below) as functions of the parameter r0 are given by1

L
(T 6=0)

QQ̄
(r0) = 32

√

(4r0 − 3)4 − 1
∫ ∞

r0

dr
√

[(4r − 3)4 − 1][(4r − 3)4 − (4r0 − 3)4]
, (E.4)

V
(T 6=0)

QQ̄
(r0) =

1

π





∫ ∞

r0

dr





√
√
√
√

(4r − 3)4 − 1

(4r − 3)4 − (4r0 − 3)4
− 1



−
∫ r0

0
dr



 . (E.5)

Defining the new integration variable R := 4r − 3 and also the constant R0 := 4r0 − 3,

we rewrite (E.4) and (E.5) as follows

L
(T 6=0)

QQ̄
(R0) = 8

√

R4
0 − 1

∫ ∞

R0

dR
√

(R4 − 1)(R4 −R4
0)
, (E.6)

V
(T 6=0)

QQ̄
(R0) =

1

4π

[
∫ ∞

R0

dR

(√

R4 − 1

R4 −R4
0

− 1

)

−R0 − 3

]

. (E.7)

Defining now y := R/R0 and also yH := 1/R0, one rewrites (E.6) and (E.7) as follows

L
(T 6=0)

QQ̄
(yH) = 8yH

√

1 − y4
H

∫ ∞

1

dy
√

(y4 − y4
H)(y4 − 1)

, (E.8)

V
(T 6=0)

QQ̄
(yH) =

1

4πyH





∫ ∞

1
dy





√
√
√
√
y4 − y4

H

y4 − 1
− 1



− 1 − 3yH



 . (E.9)

Let us denote the integrals in (E.8) and (E.9) by I1 and I2, respectively. In what follows,

we are going to express these integrals in terms of Gaussian hypergeometric functions, by

using the following integral representation

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
dx xb−1 (1 − x)c−b−1 (1 − zx)−a, (E.10)

which is valid for Re[c] > Re[b] > 0 and |z| < 1.

Defining the new integration variable x := y−4, one obtains for the integral in (E.8)

I1 =
∫ ∞

1

dy
√

(y4 − y4
H)(y4 − 1)

=
1

4

∫ 1

0
dx x−1/4 (1 − x)−1/2 (1 − xy4

H)−1/2

=
1

4

Γ(3/4)Γ(1/2)

Γ(5/4)
2F1

(
1

2
,
3

4
;
5

4
; y4

H

)

≈ 0.599 2F1

(
1

2
,
3

4
;
5

4
; y4

H

)

. (E.11)

1For instance, one may obtain these expressions by replacing U(r) → (r − 3/4)2f(r) and e2V (r) →
(r − 3/4)2 in Eqs. (7.39) and (7.40).
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For the integral in (E.9),

I2 =
∫ ∞

1
dy





√
√
√
√
y4 − y4

H

y4 − 1
− 1



 =
1

4

∫ 1

0
dx x−5/4

[

(1 − x)−1/2 (1 − xy4
H)1/2 − 1

]

, (E.12)

we employ the following regularization scheme2 in order to allow the use of the integral

representation (E.10)

Ireg
2 =

1

4
lim
λ→0

∫ 1

0
dx x−5/4+λ

[

(1 − x)−1/2 (1 − xy4
H)1/2 − 1

]

=
1

4
lim
λ→0

[

Γ(−1/4 + λ)Γ(1/2)

Γ(1/4 + λ)
2F1(−

1

2
,−1

4
+ λ;

1

4
+ λ; y4

H) +
4

1 − 4λ

]

≈ −0.599 2F1

(

−1

2
,−1

4
;
1

4
; y4

H

)

+ 1 . (E.13)

Substituting (E.11) into (E.8) and (E.13) into (E.9), one obtains, respectively

L
(T 6=0)

QQ̄
(yH) ≈ 4.792 yH

√

1 − y4
H 2F1

(
1

2
,
3

4
;
5

4
; y4

H

)

, (E.14)

V
(T 6=0)

QQ̄
(yH) ≈ −0.048

yH
2F1

(

−1

2
,−1

4
;
1

4
; y4

H

)

− 3

4π
, (E.15)

with |y4
H | < 1. Eqs. (E.14) and (E.15) were employed to obtain numerically the parametric

SYM curve in Fig. 7.4.

As a final remark, we mention that the values of yH considered in the parametric plots

shown in Fig. 7.4 were restricted to values below ymax
H , which is the value of yH where LT

reaches its maximum value.

In the zero temperature case discussed in [120] the potential can be obtained analyti-

cally as we now briefly review. The formal expressions for the interquark separation and

the interquark potential as functions of the parameter r0 are given by3:

L
(T =0)

QQ̄
(r0) = 2r2

0

∫ ∞

r0

dr

r2
√

r4 − r4
0

, (E.16)

V
(T =0)

QQ̄
(r0) =

1

π





∫ ∞

r0

dr




r2

√

r4 − r4
0

− 1



−
∫ r0

0
dr



 . (E.17)

2Note this regularization procedure involves commuting the limit λ → 0 with the integral.
3For instance, one may obtain these expressions by replacing U(r) → r2 and e2W (r) → r2 in eqs. (7.39)

and (7.40).
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Defining the new integration variable y := r/r0, we rewrite (E.16) and (E.17) as follows:

L
(T =0)

QQ̄
(r0) =

2

r0

∫ ∞

1

dy

y2
√
y4 − 1

=
2
√
π Γ(3/4)

r0 Γ(1/4)
, (E.18)

V
(T =0)

QQ̄
(r0) =

r0

π

[
∫ ∞

1
dr

(

y2

√
y4 − 1

− 1

)

− 1

]

=
r0

π
[−E(−1) + (2 − i)K(−1) − K(2)] ,

(E.19)

where K(x) and E(x) are the complete elliptic integrals of the first and second kinds,

respectively. From (E.18) one obtains r0 as an explicitly function of the interquark sepa-

ration

r0 =
2
√
π Γ(3/4)

Γ(1/4)

1

L
(T =0)

QQ̄

≈ 1.198

L
(T =0)

QQ̄

. (E.20)

Taking into account that [−E(−1) + (2 − i)K(−1) − K(2)] ≈ −0.599 and substituting

(E.20) into (E.19), one gets the following analytical result [120]

V
(T =0)

QQ̄
(L

(T =0)

QQ̄
) ≈ − 0.228

L
(T =0)

QQ̄

. (E.21)

This result was used to plot the SYM curve in Fig. 7.2.



Appendix F

Electric susceptibility and

conductivity for different coupling

functions

In order to check further limitations of the present EMD model (some of which have

been discussed at the end of Section 8.2.2), we compare in this Appendix the results for the

magnetic susceptibility, and also the electric susceptibility and DC electric conductivity

for two different profiles of the Maxwell-Dilaton electric coupling function f(φ). The first

profile is given in Eq. (8.33), which was fixed by fitting lattice data [52] for the magnetic

susceptibility at B = 0, as discussed before. The second profile was fixed in Ref. [310] by

fitting lattice data [324] for the electric susceptibility also at B = 0,

f(φ) = 0.0193 sech(−100φ) + 0.0722 sech(10−7 φ). (F.1)

At B = 0, the holographic formulas for the electric susceptibility and the DC electric

conductivity are given respectively by,

χQ
2

T 2
=

1

16π2

s

T 3

1

f(0)
∫∞

rH
dr e−2a(r)f−1(φ(r))

, (F.2)

σQ

T
=

2π
√

hfar
0 f(φ0)

κ2
, (F.3)

and we refer the reader to consult Ref. [310] for a discussion on the derivation of these

formulas1.

One can see from the results shown in Fig F.1 that a simple EMD holographic model

cannot give simultaneously good quantitative descriptions of electric and magnetic field

1We use that a(rH) = a0 = 0 and φ(rH) = φ0.
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Figure F.1: EMD magnetic susceptibility (top left), electric susceptibility (top right) and DC
electric conductivity (bottom) for two different choices of the Maxwell-Dilaton electric coupling
function f(φ): the full curves were obtained by using f(φ) given in Eq. (8.33), while the dashed
curves were obtained by employing f(φ) given in Eq. (F.1). All the lattice data displayed in these
plots refer to (2 + 1)-flavor QCD (lattice data for the electric conductivity are taken from [272]).
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response functions: by adjusting the electric coupling f(φ) in order to fit the magnetic

susceptibility at B = 0, one is able to attain a good description of the QCD thermody-

namics at finite B, as shown in Section 8.3, but response functions to an applied electric

field are not well described in a quantitative way within such prescription. On the other

hand, if one adjusts the electric coupling f(φ) in order to match the electric susceptibility,

one is not able to obtain a good quantitative agreement with lattice data for the magnetic

susceptibility. It would be certainly interesting to think about the construction of some

holographic model versatile enough to quantitatively cover the entire electric-magnetic

sector of the QGP, which is something that our simple EMD model is not able to do. We

must remark, however, that up to now, our EMD model is the only holographic approach

available in the literature which is able to match in a quantitative way the behavior of

many magnetic field related observables calculated on the lattice.
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