• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.43.2018.tde-17092018-154433
Document
Author
Full name
Lucas Silva Simões
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2018
Supervisor
Committee
Alfonso, Nestor Felipe Caticha (President)
Idiart, Marco Aurelio Pires
Pereira, Carlos Alberto de Braganca
Title in English
Emergent Collective Properties in Societies of Neural Networks
Keywords in English
Entropy
Information Theory
Learning Models
Sociology
Statistical Mechanics
Abstract in English
This project deals with the study of the social learning dynamics of agents in a society. For that we employ techniques from statistical mechanics, machine learning and probability theory. Agents interact in pairs by exchanging for/against opinions about issues using an algorithm constrained by available information. Making use of a maximum entropy analysis one can describe the interacting pair as a dynamics along the gradient of the logarithm of the evidence. This permits introducing energy like quantities and approximate global Hamiltonians. We test different hypothesis having in mind the limitations and advantages of each one. Knowledge of the expected value of the Hamiltonian is relevant information for the state of the society, inducing a canonical distribution by maximum entropy. The results are interpreted with the usual tools from statistical mechanics and thermodynamics. Some of the questions we discuss are: the existence of phase transitions separating ordered and disordered phases depending on the society parameters; how the issue being discussed by the agents influences the outcomes of the discussion, and how this reflects on the overall organization of the group; and the possible different interactions between opposing parties, and to which extent disagreement affects the cohesiveness of the society.
Title in Portuguese
Propriedades Coletivas Emergentes em Sociedades de Redes Neurais
Keywords in Portuguese
Entropia
Mecânica Estatística
Modelos de Aprendizagem
Sociologia
Teoria da Informação
Abstract in Portuguese
Esse projeto lida com o estudo da dinâmica de aprendizado social de agentes em uma sociedade. Para isso empregamos técnicas de mecânica estatística, aprendizado de máquina e teoria de probabilidades. Agentes interagem em pares trocando opiniões pró/contra questões usando um algoritmo restringido pela informação disponível. Fazendo-se uso de uma análise de máxima entropia, pode-se descrever o par da interação como uma dinâmica ao longo do gradiente do logaritmo da evidência. Isso permite introduzir quantidades similares a energia e Hamiltonianos globais aproximados. Testamos diferentes hipóteses tendo em mente as limitações e as vantagens de cada uma. Conhecimento do valor esperado do Hamiltoniano é informação relevante para o estado da sociedade, induzindo uma distribuição canônica a partir de máxima entropia. Os resultados são interpretados com as ferramentas usuais de mecânica estatística e termodinâmica. Algumas das questões que discutimos são: a existência de transições de fase separando fases ordenada e desordenada dependendo dos parâmetros da sociedade; o como a questão sendo discutida pelos agentes influencia os resultados da discussão, e como isso se reflete na organização do grupo como um todo; e as possíveis diferentes interações entre partidos opostos, e até que ponto o desacordo afeta a coesão da sociedade.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2018-09-20
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2019. All rights reserved.