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Resumo
Nessa tese usamos a dualidade holográfica calibre/gravidade para estudar dois aspectos
diferentes de plasmas não-Abelianos fortemente acoplados. No primeiro tópico estudamos
os efeitos de campos magnéticos (Abelianos) intensos sobre o coeficientes de transporte
de um plasma não-Abeliano fortemente acoplado. Devido à anisotropia espacial criada
pelo campo magnético, o tensor de viscosidade mais geral de um plasma magnetizado
deve possuir 5 coeficientes de viscosidade de cisalhamento e 2 de viscosidade volumétrica.
Usamos a correspondência holográfica para um plasmaN = 4 Supersimétrico de Yang-Mills
(SYM) fortemente acoplado para calcular a viscosidade de cisalhamento perpendicular ao
campo magnético e a viscosidade de cisalhamento paralela ao campo. Na presença do
campo magnético, a viscosidade de cisalhamento perpendicular ao campo satura o limite
viscoso de Kovtun-Son-Starinets enquanto que na direção paralela ao campo o limite é
violado.

O segundo tópico investigado nessa tese é motivado pelo estudo do comportamento próximo
ao equilíbrio de plasmas não-Abelianos fortemente interagentes que exibem um ponto
crítico em seus diagramas de fase. Focamos no espectro dos modos quasinormais não-
hidrodinâmicos de um plasma N = 4 SYM fortemente acoplado na presença de um
potencial químico, que exibe um ponto crítico no equilíbrio. Exceto próximo ao ponto
crítico, observamos que ao aumentar o potencial químico geralmente se intensifica a taxa de
amortecimento dos modos quasinormais, que levam à redução dos tempos de equilibração
característicos do plasma dual fortemente acoplado. Entretanto, aproximando-se do ponto
crítico o tempo de equilibração típico aumenta embora sua derivada em relação ao potencial
químico diverge com um expoente igual à −1/2. Encontramos também um modo não-
hidrodinâmico puramente imaginário no canal de difusão vetorial com potencial químico
não-nulo que dita o tempo de equilibração neste canal próximo do ponto crítico.

Palavras-chave: dualidade calibre-gravidade, coeficientes de transporte anisotrópicos,
ponto crítico, modos quasinormais.





Abstract
In this thesis we use the holographic gauge/gravity duality to study two different aspects
of strongly coupled non-Abelian plasmas. In the first topic we study the effects of
strong (Abelian) magnetic fields on the transport coefficients of a strongly coupled non-
Abelian plasma. Due to the spatial anisotropy created by the magnetic field, the most
general viscosity tensor of a magnetized plasma has 5 shear viscosity coefficients and 2
bulk viscosities. We use the holographic correspondence for a strongly coupled N = 4
Supersymmetric Yang-Mills (SYM) plasma to evaluate the shear viscosity perpendicular to
the magnetic field and the shear viscosity parallel to the field. In the presence of a magnetic
field, the shear viscosity perpendicular to the field saturates the Kovtun-Son-Starinets
viscosity bound while in the direction parallel to the field the bound is violated.

The second topic investigated in this thesis is motivated by the study of the near equilibrium
behavior of strongly interacting non-Abelian plasmas that display a critical point in their
phase diagram. We focus on the spectra of non-hydrodynamic quasinormal modes of
a strongly coupled N = 4 SYM plasma in the presence of a chemical potential, which
displays a critical point in equilibrium. Except close to the critical point, we observe
that by increasing the chemical potential one generally increases the damping rate of the
quasinormal modes, which leads to a reduction of the characteristic equilibration times
in the dual strongly coupled plasma. However, as one approaches the critical point the
typical equilibration time increases though its derivative with respect to the chemical
potential diverges with an exponent equal to −1/2. We also find a purely imaginary
non-hydrodynamical mode in the vector diffusion channel at nonzero chemical potential
which dictates the equilibration time in this channel near the critical point.

Keywords: gauge-gravity duality, anisotropic transport coefficients, critical point, quasi-
normal modes.
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1 Introduction
The new state of matter formed in ultra-relativistic heavy ion collisions (STAR,

2005; PHENIX, 2005; BRAHMS, 2005; PHOBOS, 2005) behaves as a strongly coupled
Quark-Gluon Plasma (QGP) (GYULASSY; MCLERRAN, 2005). Perhaps one of its most
striking features is its apparent near “perfect” fluid behavior inferred from comparisons of
relativistic hydrodynamic calculations to heavy ion data (for a recent review see Heinz
and Snellings (2013)). In fact, the experimental data can be reasonably described1 using
very small values of the shear viscosity to entropy density ratio, η/s ∼ 0.2 (HEINZ;
SNELLINGS, 2013), which is of the order of the ratio η/s = 1/(4π) (POLICASTRO; SON;
STARINETS, 2001; BUCHEL; LIU, 2004; KOVTUN; SON; STARINETS, 2005) found
in a large class of strongly coupled non-Abelian plasmas using the gauge/gravity duality
(MALDACENA, 1999; GUBSER; KLEBANOV; POLYAKOV, 1998; WITTEN, 1998a)
(see Casalderrey-Solana et al. (2014) for a review that includes applications to heavy ion
collisions). Such a small η/s is not really compatible with standard weak coupling QCD
results (ARNOLD; MOORE; YAFFE, 2000; ARNOLD; MOORE; YAFFE, 2003) and other
mechanisms/models have been tried over the years to explain this ratio (DANIELEWICZ;
GYULASSY, 1985; ASAKAWA; BASS; MULLER, 2006; MEYER, 2007; XU; GREINER,
2008; HIDAKA; PISARSKI, 2008; NORONHA-HOSTLER; NORONHA; GREINER, 2009;
NORONHA-HOSTLER; NORONHA; GREINER, 2012; ASAKAWA; BASS; MüLLER,
2013; OZVENCHUK et al., 2013). In this aspect, the gauge/gravity duality remains as
one of the leading non-perturbative tools suited for calculations of real time properties
of strongly coupled non-Abelian plasmas. In this thesis we study how strong magnetic
fields and also the presence of a critical point can affect the near equilibrium properties of
strongly coupled systems that can be seen as “toy models” for the QGP formed in heavy
ion collisions.

Several works have emphasized in recent years that non-central heavy ion collisions
(where the ions do not collide “head-on”) are not only characterized by a sizable anisotropic
flow but also by the presence of very strong electromagnetic fields formed at the early
stages of the collisions (KHARZEEV; MCLERRAN; WARRINGA, 2008; FUKUSHIMA;
KHARZEEV; WARRINGA, 2008; SKOKOV; ILLARIONOV; TONEEV, 2009; TUCHIN,
2013; DENG; HUANG, 2012; BLOCZYNSKI et al., 2013). This has created a lot
of interest on the effects of strong electromagnetic fields in strongly interacting QCD
matter (KHARZEEV et al., 2013) and, recently, lattice calculations with physical quark

1 There are other effects, not included in the analysis of Heinz and Snellings (2013), which can affect
the effective value of η/s in the QGP. For instance, there are many transport coefficients in viscous
relativistic hydrodynamics (DENICOL et al., 2012) and very little is known about their values
and their effects on the anisotropic flow. In fact, it has been recently found that the inclusion of
bulk viscosity directly affects estimates of η/s in the QGP (NORONHA-HOSTLER et al., 2013;
NORONHA-HOSTLER; NORONHA; GRASSI, 2014; RYU et al., 2015).
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masses have determined how a strong external magnetic field changes the thermodynamic
properties of the QGP (BALI et al., 2012; BALI et al., 2014). If the magnetic field is still
large enough at the time that elliptic flow is building up, it is natural to also consider the
effects of strong magnetic fields on the subsequent hydrodynamic expansion of the QGP.

The presence of a magnetic field alters the near equilibrium behavior of charged
fluids. For instance, the magnetic field breaks the spatial SO(3) rotational symmetry to a
SO(2) invariance about the magnetic field axis and this type of magnetic field-induced
anisotropic relativistic hydrodynamics has more transport coefficients than the spatially
isotropic case (to distinguish the dynamics along the magnetic field direction from that in
the plane orthogonal to the field). In fact, this means that the number of independent
transport coefficients in the shear viscosity tensor ηijkl increases from 1 (in the isotropic
case) to 5 in the presence of the magnetic field while there are 2 bulk viscosity coefficients
(HUANG; SEDRAKIAN; RISCHKE, 2011; LIFSHITZ; PITAEVSKII, 1981; LANDAU et
al., 1986; TUCHIN, 2012).

Since one no longer has SO(3) invariance, one may expect that some of the different
shear viscosities could violate the universal result η/s = 1/(4π) valid for isotropic Einstein
geometries (BUCHEL; LIU, 2004; KOVTUN; SON; STARINETS, 2005), which would then
constitute an example of the violation of the viscosity bound that is of direct relevance
to heavy ion collisions. Previous examples involving the violation of the viscosity bound
include: anisotropic deformations of N = 4 Super-Yang-Mills (SYM) theory due to
a z-dependent axion profile (MATEOS; TRANCANELLI, 2011) computed in Rebhan
and Steineder (2012) where η‖/s < 1/(4π) along the direction of anisotropy; anisotropic
holographic superfluids with bulk SU(2) non-Abelian fields which present universality
deviation for η‖/s (NATSUUME; OHTA, 2010; ERDMENGER; KERNER; ZELLER,
2011; ERDMENGER; FERNANDEZ; ZELLER, 2013); and a dilaton-driven anisotropic
calculation recently shown in Jain et al. (2015). However, we note that the first examples
of viscosity bound violation were found in (spatially isotropic) theories with higher order
derivatives in the gravity dual action (KATS; PETROV, 2009; BRIGANTE et al., 2008b;
BRIGANTE et al., 2008a; BUCHEL; MYERS; SINHA, 2009).

In chapter 4 we evaluate two components of the shear viscosity tensor, namely
η⊥ ≡ ηxyxy and η‖ ≡ ηxzxz = ηyzyz, in a strongly coupled non-Abelian plasma in the presence
of an external magnetic field using the gauge/gravity duality (other two shear coefficients
are identically zero for the theory considered here). These calculations are done using
the membrane paradigm (IQBAL; LIU, 2009; THORNE; PRICE; MACDONALD, 1986).
The holographic model we consider is simple Einstein gravity (with negative cosmological
constant) coupled with a Maxwell field, which corresponds to strongly coupled N = 4
SYM subjected to an external constant and homogeneous magnetic field (D’HOKER;
KRAUS, 2010a; D’HOKER; KRAUS, 2009; D’HOKER; KRAUS, 2010b). We examine the
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role played by the anisotropy introduced by the external field searching for a violation of
the viscosity bound in η‖/s. A study of the behavior of η‖/s is also of phenomenological
interest for the modeling of the strongly coupled QGP under strong magnetic fields.

Another important aspect of the QGP formed in heavy ion collisions involves the
possibility of finding effects from a critical point in the QCD phase diagram. Even if there
is indeed a critical point in the phase diagram, it is important to remark that the system
formed in heavy ion collisions is not in thermodynamic equilibrium — non-equilibrium
effects, induced by viscosities, affect the evolution of the system. Therefore, it is interesting
to investigate the out-of-equilibrium properties of strongly coupled plasmas that display
a critical point when in equilibrium. In this thesis, we use the gauge/gravity duality to
initiate the study of this topic via the investigation of the behavior of Quasinormal Modes
(QNM’s), which are exponentially damped collective excitations (VISHVESHWARA, 1970;
DAVIS et al., 1971) that define the characteristic behavior of fluctuations of black holes
and black branes (for reviews, see Nollert (1999), Kokkotas and Schmidt (1999), Berti,
Cardoso and Starinets (2009), Konoplya and Zhidenko (2011)). The spectra of QNM’s
collectively describe the linear part of the decaying fluctuations of a disturbed black hole,
a phenomenon known as “quasinormal ringing”, which is analogous to the decaying sound
emitted by a brass bell when struck by a mallet (KAC, 1966). For this reason, QNM’s are
important in astrophysical and cosmological observations since they describe the ringdown
of possible black hole remnants of binary stars and black hole mergers, which were pivotal
to the direct detection of gravitational waves in 2016 (LIGO; VIRGO, 2016b; LIGO;
VIRGO, 2016a).

In the context of the holographic gauge/gravity duality (MALDACENA, 1999;
GUBSER; KLEBANOV; POLYAKOV, 1998; WITTEN, 1998a; WITTEN, 1998b), QNM’s
associated with the fluctuations of a given bulk field are related to the poles of the
retarded Green’s function of the dual operator in the quantum field theory (STARINETS,
2002; KOVTUN; STARINETS, 2005). These poles describe hydrodynamic and non-
hydrodynamic dispersion relations with which one can not only compute hydrodynamic
transport coefficients but also derive upper bounds for characteristic equilibration times
of the dual plasma (HOROWITZ; HUBENY, 2000). Additionally, non-hydrodynamic
modes (which correspond to collective excitations whose frequency remains nonzero even in
homogeneous situations) play an important role in the fate of the hydrodynamic gradient
series, as demonstrated by studies in holography (HELLER; JANIK; WITASZCZYK,
2013; BUCHEL; HELLER; NORONHA, 2016) and also in kinetic theory (FLORKOWSKI;
RYBLEWSKI; SPALIńSKI, 2016; DENICOL; NORONHA, 2016; HELLER; KURKELA;
SPALINSKI, 2016).

Previous works (ALANEN et al., 2011; JANIK; JANKOWSKI; SOLTANPANAHI,
2016a; JANIK; JANKOWSKI; SOLTANPANAHI, 2016b) have dealt with QNM’s in
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bottom-up Einstein-dilaton constructions (GUBSER; NELLORE, 2008; GUBSER et al.,
2008; GÜRSOY et al., 2011; FINAZZO et al., 2015) exhibiting different kinds of phase
transitions at zero chemical potential. Additionally, Ref. Buchel, Heller and Myers (2015)
investigated the QNM’s associated with scalar operators in a top-down N = 2∗ non-
conformal plasma also at zero chemical potential. On the other hand, in Rougemont et al.
(2016) the QNM’s of an external scalar perturbation were investigated in a bottom-up,
QCD-like Einstein-Maxwell-dilaton model at finite baryon density. In general, through the
holographic correspondence, any question regarding the thermalization process in a given
strongly coupled gauge theory necessarily involves a study of the QNM’s of its gravity
dual. These modes describe different timescales in the gauge theory and, close to a critical
point, one may expect that the QNM’s of the corresponding gravity dual display critical
behavior.

In fact, near a critical point, thermodynamical quantities typically display diver-
gences which enable the definition of critical exponents. Static properties such as single time
correlation functions and linear response coefficients to time-independent perturbations
display critical behavior which are determined by the underlying equilibrium distribution.
However, critical behavior is also observed in many dynamical quantities such as the
transport coefficients, which depend on the properties of multi-time correlations functions
and are not determined by the information contained in the equilibrium distribution. In
fact, while static thermodynamical properties of several different physical systems may be
grouped into a few different (static) universality classes, dynamical properties associated
with slowly varying hydrodynamical fluctuations of a system near criticality do not fit
into this static classification scheme, as discussed in detail in Hohenberg and Halperin
(1977) nearly 40 years ago. The dynamic universality classes reviewed in Hohenberg and
Halperin (1977) require the study of hydrodynamic modes, i.e., collective excitations whose
frequency vanishes in the case of homogeneous disturbances. While these modes dominate
the long time behavior of the system (since they are associated with conserved currents)
and can be used to study how transport coefficients (such as the shear viscosity) behave
near a critical point, there is much more information about dynamical critical phenomena
in multi-time correlation functions that cannot be obtained from their zero frequency
limit.

In chapter 5 we initiate the investigation of the critical behavior displayed by non-
hydrodynamic modes in strongly coupled gauge theories with gravity duals. This novel
type of critical phenomena determines the behavior of different characteristic equilibration
times of the system at zero wavenumber and, since these QNM’s are not directly associated
with conserved currents, their behavior at criticality does not follow from the analysis
made in Ref. Hohenberg and Halperin (1977). In this thesis, as the first exploration in
this new arena, we compute QNM’s for an external scalar perturbation and also for the
diffusion channel associated with a vector perturbation in the so-called 1-R charge black
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hole (1RCBH) model (GUBSER, 1999; BEHRNDT; CVETIC; SABRA, 1999; KRAUS;
LARSEN; TRIVEDI, 1999; CAI; SOH, 1999; CVETIC; GUBSER, 1999a; CVETIC;
GUBSER, 1999b). This is an analytical top-down construction obtained from (4 + 1)-
dimensional maximally supersymmetric gauged supergravity, which is holographically dual
to a strongly coupled N = 4 SYM plasma in flat (3 + 1) dimensions with a finite chemical
potential under a U(1) subgroup of the global SU(4) symmetry of R-charges. This theory
is conformal and its phase diagram is a function of a single dimensionless ratio µ/T , where
µ and T are the U(1) R-charge chemical potential and temperature of the black brane
background, respectively. The model has a very simple phase diagram with a critical point
at µ/T = π/

√
2 and its static critical exponents were computed in Maeda, Natsuume

and Okamura (2008) and Buchel (2010). Also, the fact that the R-charge conductivity
remains finite at the critical point (MAEDA; NATSUUME; OKAMURA, 2008) shows
that this model belongs to the type B dynamical universality class (HOHENBERG;
HALPERIN, 1977) and the anomalous static critical exponent was found to vanish in
Buchel (2010). Thus, this model is of mean-field type (BUCHEL, 2010), which was later
argued (NATSUUME; OKAMURA, 2011) to be a general consequence of the underlying
large Nc approximation.

This simple model provides a useful arena for investigating dynamical phenomena
in a strongly coupled plasma at finite temperature and density, even though it does not
possess the full set of physical properties (such as chiral symmetry) displayed by the real
world quark-gluon plasma (QGP) (ROUGEMONT, 2016). In fact, such a model may
be useful for discovering new dynamical phenomena associated with critical endpoints
in strongly coupled non-Abelian plasmas which could be further investigated in more
realistic models of the QGP such as Rougemont et al. (2016), Rougemont, Noronha and
Noronha-Hostler (2015), with a view towards applications to the ongoing beam energy
scan program at RHIC. Other studies of critical phenomena in holography include Refs.
Buchel (2009), Buchel and Pagnutti (2010), Buchel and Pagnutti (2011), DeWolfe, Gubser
and Rosen (2011a), Cai, He and Li (2012).

As we are going to show in chapter 5, the real and imaginary parts of non-
hydrodynamical modes in the external scalar and vector diffusion channels display an
infinite slope at the critical point of the phase diagram of the 1RCBH model. This is
true also for higher order QNM’s, showing that high frequency modes are also sensitive to
the presence of the critical point. In particular, from the imaginary part of the QNM’s
it is possible to extract the behavior of different characteristic equilibration times in the
finite density plasma at criticality (at zero wavenumber) and define a dynamical critical
exponent associated with their derivatives with respect to the dimensionless ratio µ/T .
We find the same critical exponent 1/2 for all the equilibration times investigated in the
different channels.
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By increasing the chemical potential one generally increases the damping of the
quasinormal black brane oscillations which, consequently, leads to a reduction of the
characteristic equilibration times of the dual plasma. However, as the critical point is
approached these equilibration times increase and they acquire an infinite slope. When
µ/T ∼ 2 is taken towards its critical value (given by π/

√
2), a purely imaginary, non-

hydrodynamical mode appears in the vector diffusion channel at nonzero chemical potential
and zero wavenumber which defines the critical behavior of the equilibration time in this
channel (we remark that such a mode was also found in Ref. Janiszewski and Kaminski
(2016) in the context of a (4 + 1)-dimensional Einstein-Maxwell model without a chemical
potential, though in the presence of a magnetic field).

This thesis is organized as follows. In the introductory part in chapter 2, we briefly
review some properties of quantum chromodynamics and the relevant features displayed
by the quark-gluon plasma that served as motivation for this thesis. We also include
in section 2.4 a discussion about linear response theory to illustrate in a simple manner
how Kubo-like formulas for transport coefficients may be obtained. Since there are by
now many authoritative books about the gauge/gravity duality and its applications, see
for instance Nastase (2015), Ammon and Erdmenger (2015), in this thesis we decided
to focus on the work we have done using the duality and provide to the reader only a
quick introduction to this topic in chapter 3. As mentioned above, the main results of this
thesis are shown in chapter 4 and chapter 5. We finish this work in chapter 6 with our
conclusions and outlook. We use natural units where ~ = c = kB = 1 and a mostly plus
metric signature.
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2 Basic aspects about quantum
chromodynamics, the quark-glu-
on plasma, and linear response
theory

2.1 Standard Model
After several decades of observation and theoretical investigations, the different

stages of the evolution of the Universe can be understood using the standard model of
cosmology (WEINBERG, 2008). This is a mathematical formulation of the Big Bang
model in which the Universe has a cosmological constant, and is the simplest model that
reasonably accounts for the cosmic microwave background, the Big Bang nucleosynthesis,
and the large-scale structure in the distribution of galaxies which are accelerated moving
away from each other. The observations collected over years were able to quantify the
energy content of the Universe (WMAP, 2013) see Figure 1, which shows that only 4.6% is
constituted of ordinary matter composed of protons, neutrons, and electrons. This small
fraction of the Universe has many properties which today are mathematically understood
using the Standard Model of Particle Physics (PESKIN; SCHROEDER, 1995).

Figure 1 – Energy content of the Universe: only 4.6% is ordinary matter (e.g. protons,
neutrons and electrons), a greater fraction, 24% of the universe, is constituted
by dark matter which interacts only gravitationally and the biggest fraction,
71.4%, is called dark energy, which is the source for the accelerated expansion
of the universe.

Source – NASA/WMAP Science Team (2013).

The Standard Model of Particle Physics describes the fundamental forces in nature
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(except for gravity), which can be understood via the interactions between all elementary
particles modeled mathematically by quantum field theory. These elementary particles
are, in principle, indivisible and may be classified in two groups concerning their statistical
properties. The first group of particles defines the so-called fermions (a name coined
by Paul Dirac from the surname of physicist Enrico Fermi), which display Fermi-Dirac
statistics and also obey the Pauli exclusion principle (the fermions in the Standard Model
have spin 1/2). The second group has Bose-Einstein statistics, being called bosons (a
name also coined by Paul Dirac from the surname of physicist Satyendra Nath Bose) and
have spin 0 or 1 depending on the type of boson.

The fundamental forces in nature are the electromagnetic force, the weak force, and
the strong force1. Fermions in the Standard Model are classified in two sectors according
to its interaction via the strong force. Leptons belong to one of these sectors and do not
interact via the strong force but they interact via the weak and electromagnetic forces.
There are 6 types of leptons: electron (e), muon (µ), tau (τ), electron neutrino (νe), muon
neutrino (νµ), and tau neutrino (ντ ). On the other sector one finds the quarks and they
interact via the strong force (and, since they carry also electric charge, they also interact
via the electromagnetic force). There are 6 types (so-called flavors) of quarks: up (u),
down (d), charm (c), strange (s), top (t), and bottom (b).

Furthermore, to complete the list of particles in the Standard Model, one finds the
gauge bosons, sometimes called “force carriers”, and also the Higgs particle (scalar boson).
Gauge bosons have spin 1 and there are 3 types of gauge bosons2: the carrier of the strong
force, the gluon (g), the electromagnetic force carrier, the photon (γ), and the carriers of
the weak force, W± and Z bosons. The Higgs boson is the only particle with spin 0 in the
Standard Model (assuming that this particle is indeed fundamental, not being composed
of other yet unknown particles). The respective masses, spins, and electrical charges of
the fermions and bosons are shown in Figure 2a while in Figure 2b we see the possible
interactions between the elementary particles.

The quark sector and the gluons share an intrinsic property that other particles
do not, they possess the so-called color charge (PESKIN; SCHROEDER, 1995). This
property can be, by analogy with the electric charge in electromagnetism, either “positive"
in which one just refers to it as color or “negative”, namely anticolor. In the Standard
Model, there are three possible colors: red, green, and blue; and, thus, three possible
anticolors: antired, antigreen, and antiblue. Each quark carries only one color, and a gluon
carries, simultaneously, both a color and a different anticolor. Besides that, quantum field
theory predicts the existence of an antiparticle for each particle in the Standard Model,
that is, a similar picture of Figure 2a where the the masses and spins are the same but

1 The gravitational force, described by General Relativity (CARROLL, 2004), is not included in the
Standard Model.

2 It is expected that carrier of the gravitational force, the graviton, is a gauge boson with spin 2.
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Figure 2 – Standard Model of Particle Physics: the 12 fundamental fermions (quarks and
leptons), 4 fundamental gauge bosons and 1 scalar boson (Higgs boson). The
values currently depicted in (a) are from Ref. Particle Data Group (2012) (see
also the PDG website: <http://pdg.lbl.gov/>). A diagram summarizing the
interactions between elementary particles according to the Standard Model are
shown in (b). Dark circles/ovals represent types of particles (bosons are circles
and fermions are ovals) and the blue arcs represent the possible interactions
among them.

(a) Mass, spin, and charge.

Source Wikipedia (2013).

(b) Interactions.

Source Wikipedia (2014).

with opposite electric charge and color charge. Then the antiparticle of a quark with given
color is called an antiquark which possesses anticolor.

Elementary particles are subject to color confinement (PESKIN; SCHROEDER,
1995), a non-perturbative phenomenon that dictates that any observable must be “col-
orless”, a feature achieved when either all three different colors (or all three different
anticolors) are included, or when a color and the same anticolor are present3. The conse-
quence of color confinement is the binding, via the strong force, of a color charged particle
together with other color charged particles yielding a colorless object, which physically
means one cannot observe a free quark nor a free gluon.

These clumps of color charged particles are called hadrons: subatomic particles
formed by quarks and antiquarks held together, primarily, by the strong force via the
exchange of gluons. Hadrons are classified according to their baryonic quantum number
B = 1

3(nq − nq̄), where nq is the number of quarks present in this hadron and nq̄ is the
number of antiquarks. The baryonic number must be an integer and also a conserved
quantum number when a reaction between hadrons happens. If B = 0 the hadron is called
a meson. One way to achieve this is, for instance, by binding a quark and an antiquark

3 Elementary particles with no color charge are, by definition, colorless, e.g., the electron.

http://pdg.lbl.gov/
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in such a way that the system becomes colorless, e.g., the pion. Another way involves
binding two quarks and two antiquarks forming a hadron called tetraquark which, again,
is constrained to be colorless. If B = 1 the bound state of quarks and gluons is simply
called a baryon (for instance, the proton and the neutron). It is possible also to form
other more exotic states if one adds to these three quarks a colorless combination of a
quark and an antiquark, which gives a baryon called the pentaquark, e.g. P+

c . If B = −1
we have an antibaryon, which can be constructed by exchanging quarks with antiquarks
(and vice-versa) from a given baryon.

After this brief introduction to the Standard Model, we now discuss in more detail
below some of the important features of QCD.

2.2 Quantum Chromodynamics
Consider a non-Abelian gauge theory with symmetry group SU(Nc), where Nc is

the number of colors, and Nf different fermionic flavors in the fundamental representation.
The gauge invariant Lagrangian density is (PESKIN; SCHROEDER, 1995)

L =
Nf∑
f=1

ψ̄f,i(i /Dij −mfδij)ψf,j −
1
4G

a
µνG

aµν , (2.1)

where δij is the Kronecker delta in color space, and the latin and greek indices are summed
implicitly following Einstein’s summation convention, except for the index f where the
summation is explicit. In this Lagrangian there are Nf flavors and N2

c − 1 types of gluons.
A quark with flavor f has mass mf and carries a color i from a total of Nc colors. The
quarks with these specific features are represented by a quark spinor field, ψf,i. Each type
of gluon is labeled by a, from the total set of N2

c − 1 possibilities, and the gluon field
transforms in the adjoint representation of SU(Nc). Gluons are represented by the gluon
field Aaµ which is related to the gluon rank-2 field strength tensor,

Ga
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν , (2.2)

where the greek indices indicate tensorial notation for a four-dimensional spacetime. The
coupling constant of this theory is g which, along with the quark masses mf , is subject
to renormalization (PESKIN; SCHROEDER, 1995). Moreover, the quantities fabc are
the structure constants of SU(Nc) satisfying [T a, T b] = ifabcT c. Finally, the interaction
between quarks and gluons is described by the covariant derivative (we use Feynman’s
slash notation, /D = γµDµ where γµ are the so-called gamma matrices) defined as

Dµ = ∂µ + igT aAaµ. (2.3)

The local gauge invariance in Equation 2.1 has the symmetry group SU(Nc), where
any element, V (x), of this group in the fundamental representation can be written as
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V (x) = exp(igαa(x)T a) for αa(x) defined in 4-dimensional spacetime. Let the quark field
with all color components be defined as

ψf =


ψf,1

ψf,2
...

ψf,Nc

 , (2.4)

then if we take the gauged quark field to be ψ′f = V ψf and substitute it in the operator
ψ̄fψf , it remains invariant, i.e. ψ̄′fψ

′
f = ψ̄fψf . Also from the covariant derivative in

Equation 2.3, one concludes that after a gauge transformation the gluon field satisfies

A′aµ T
a = V

(
AaµT

a + i

g
∂µ

)
V †. (2.5)

Besides the local symmetry group SU(Nc), Equation 2.1 also has a U(1) global
symmetry, V = exp(iα) where α is a global phase. The conserved charge resulting from
this U(1) symmetry is the baryonic number B, which was discussed above. Also, if we
take mf = 0 for all flavors, we obtain new symmetries, the global axial U(1) symmetry
given by V = exp(iγ5α), and the global chiral symmetry SUL(Nf)×SUR(Nf), where the
subscripts L and R stand for left-handed and right-handed fermions, respectively. In the
former, each group acts on the respective chiral quark field separately.

When Nc = 3 and Nf = 6 this theory is called QCD, which is the quantum
field theory that mathematically describes the fundamental strong force that governs
the dynamics of quarks and gluons in the Standard Model as described before. Color
confinement, as discussed previously, is believed to be a consequence of QCD, although no
mathematical proof of that exists yet.

Furthermore, the coupling constant g of QCD, present in the covariant deriva-
tive and in the gluon field strength tensor, is subject to renormalization (PESKIN;
SCHROEDER, 1995). This roughly means that in this quantum field theory the coupling
depends on the scale of the process that is being investigated. For Nc = 3 and Nf = 3
(massless) quarks one finds the following expression at 1-loop order

g(µ) = (4π)3

7
1

ln( µ2

Λ2 )
, (2.6)

where µ is an energy scale and Λ ∼ 200 MeV (comparable to the mass of a pion) indicates
the typical energy scale for strong interactions. This shows that the beta function in QCD
is β(g) = µdg/µ < 0, the hallmark of asymptotic freedom (see (PESKIN; SCHROEDER,
1995)). However, note that the formula for the running of the coupling shown above is
only valid when µ� Λ. When this is not the case and the renormalization scale µ is taken
to be close to Λ, the coupling constant becomes large. This defines the non-perturbative
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regime of the theory within which the physics of color confinement and spontaneous chiral
symmetry breaking take place. In this strong coupling regime, weak coupling perturbation
theory methods are not applicable and other non-perturbative techniques, such as lattice
QCD (GATTRINGER; LANG, 2010), must be employed.

On the other hand, for a comparison, in Quantum Electrodynamics (QED) the
beta function is positive, which means that the electromagnetic coupling constant becomes
large when evaluated at large energy scales - the opposite of the strong coupling constant.
In practice, for any energy that we can probe directly in current particle physics collider
experiments the QED coupling constant remains sufficiently small and perturbation theory
may be used.

2.3 Quark-gluon plasma
Microseconds after the Big Bang (WEINBERG, 2008), the Universe was filled

with an exotic state of matter called the quark-gluon plasma. In this type of matter,
quarks and gluons are not confined into hadrons and they can become the main degrees of
freedom. Nowadays, the QGP is being recreated in ultrarelativistic heavy ion collisions
that take place at the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National
Laboratory in NY, USA, and also at the Large Hadron Collider (LHC) at CERN in
Geneva.

In the proton-proton collisions at the LHC each proton beam carries around 1011

protons being squeezed down to 64 µm (in comparison, the human hair is 50 µm thick) at
the interaction point in order to increase the chances of collision (CERN, 2008). Although
there is an enormously number of protons, only an average of 20 collisions happens per
crossing. The remaining intact protons continue circulating the LHC ring when the two
beams meet each other again at the interaction point and this process repeats again and
so on, being able to last for 10 to 20 hours. Since these protons are ultra-relativistic4, i.e.
accelerated to high energies around 7 TeV, then, at the start of a fill with nominal current,
they obtain peak crossing rates of 40 MHz, which means that around 6 × 108 collisions
occur per second (bypassing the small number of collisions per crossing). On the other
hand, in collisions among heavy nuclei many interactions happen and the system produced
is much more involved than that formed in typical proton-proton collisions.

Such processes involving ultrarelativistic heavy ion collisions produce a QGP defined
at high temperature and (relatively small) baryon density. By comparisons of heavy ion
collision data and hydrodynamic simulations (HEINZ; SNELLINGS, 2013), one may obtain
that the temperatures achieved in these collisions can be as large as ∼ 300 MeV, which
corresponds to ∼ 4× 1012 K. After the initial collisions among heavy ions take place, the
4 Around 99.999999% of the speed of light.
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hot and dense deconfined matter composed of quarks and gluons expands and cools down.
When the temperature is similar to the pion mass T ∼ 140 MeV (HEINZ, 2004), the
system eventually hadronizes forming a hadron gas which will evolve in space and time
until its interactions cease (due to the very large mean free path) and the final hadrons
are measured by the particle detectors.

Figure 3 – QCD phase diagram
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In Figure 3 we see a cartoon of the different phases of QCD phase diagram in the
T and baryon chemical potential plane. There are basically three main phases, the QGP
phase, the hadronic phase, and the color superconducting phase (RISCHKE, 2004). The
QGP phase occurs at high temperatures while normal nuclear matter can be found within
the hadron phase. The color superconducting phase only occurs at very large baryon
densities and small temperatures and it may be relevant for the physics of compact stars
(RISCHKE, 2004). One can see that this phase diagram includes a critical endpoint,
which defines the end of a first-order transition line towards a crossover at small chemical
potential. The only part of this phase diagram that has been directly confirmed by ab
initio QCD calculations on the lattice is the crossover region (AOKI et al., 2006). In this
region, there is no real phase transition and the thermodynamic quantities vary rapidly
but smoothly as shown in Figure 4. One can see that the entropy density found on the
lattice changes smoothly from the low temperature hadronic phase to a high temperature
QGP phase but no latent heat (characteristic of a 1st order phase transition) is found.

At first, due to the asymptotic freedom property of QCD, it was hoped that the
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Figure 4 – Normalized entropy density, s/T 3, evaluated by lattice QCD with Nf = 2+1, as
a function of the temperature T , asymptotically approaching the non-interacting
(Stefan-Boltzmann) limit indicated in the graph by an arrow for large T .

Source – Borsányi et al. (2010, p. 17).

QGP formed in heavy ion collisions could be described using weak coupling techniques.
This turned out to not be the case. For instance, one can see in Figure 4 that for the
typical temperatures produced in heavy ion collisions, between 100 and 400 MeV, the
entropy density of the plasma is very different than its non-interacting limit (given by
a simple gas of free quarks and gluons). This already suggests that the QGP formed in
heavy ion collisions is in the strong coupling regime of QCD.

Another important development was the finding that the QGP behaves as a nearly
perfect fluid (for a recent review see (HEINZ; SNELLINGS, 2013)) in which the ratio
between the shear viscosity, η, and the entropy density, s, is in the ballpark of 1/(4π), the
value for this ratio obtained by (POLICASTRO; SON; STARINETS, 2001; BUCHEL;
LIU, 2004; KOVTUN; SON; STARINETS, 2005) in a large class of strongly coupled
non-Abelian plasmas using the gauge/gravity duality (MALDACENA, 1999; GUBSER;
KLEBANOV; POLYAKOV, 1998; WITTEN, 1998a) (see (CASALDERREY-SOLANA et
al., 2014) for references that include applications of these ideas to heavy ion collisions). If
the QGP were weakly coupled, such as dilute gas of quarks and gluons as naively suggested
by asymptotic freedom arguments, η/s would be at least an order of magnitude larger,
as shown by (ARNOLD; MOORE; YAFFE, 2000; ARNOLD; MOORE; YAFFE, 2003).
Rather, the QGP behaves as a strongly coupled plasma. As will be shown later in this
thesis, η is a transport coefficient that measures the near equilibrium properties of the
system and is defined by a Kubo formula that involves a real time correlator. Therefore,
this quantity cannot be computed yet on the lattice (where only Euclidean correlators can
be done) (MEYER, 2011) and other type of strong coupling techniques must be used.

In this thesis, we will use the fact that holography generally gives a very small value
for the η/s ratio, which is compatible with current estimates for the QGP coming from
heavy ion collisions, to motivate the application of gauge/gravity ideas to understand some
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key aspects of the near equilibrium behavior of the QGP. For the sake of completeness, in
the next section we will review the general concepts behind linear response theory, which
is used to define the transport coefficients discussed in this thesis.

2.4 Review about linear response theory
In this section we review the basic ideas behind linear response theory (KAPUSTA;

GALE, 2011). We describe how an output obtained from an ensemble may vary in time
when a small external force perturbs the system. If we isolate an ensemble from the
rest of the universe and give to it enough time to relax and achieve thermodynamical
equilibrium, then the time-independent Hamiltonian in the Schrödinger picture describing
this system will be H0. Consider that an external force starts acting on the ensemble at
time t = t0 in such a way that the source of this force, which is a time-dependent source
field J(t,x), couples to one of the several operators that may be used to characterize
this system. The so-called “external Hamiltonian” describing such an interaction is the
time-dependent operator Hext(t), which is also in Schrödinger picture and is constrained
to Hext(t < t0) = 0. Therefore, by the superposition principle, the Hamiltonian describing
this system for times t ≥ t0 is

H(t) = H0 +Hext(t). (2.7)

Knowing the above form of the Hamiltonian, the next step to achieve our goal is to solve
the Schrödinger equation of motion for the time evolution operator U(t, t0),

∂U(t, t0)
∂t

= −iH(t)U(t, t0), (2.8)

where the initial condition is U(t0, t0) = 1. Unfortunately, there is no general exact solution
for the equation above (unlike the simple case where the Hamiltonian is time-independent).
So we limit ourselves to consider small perturbations of the system, which is actually our
objective since the beginning of this section.

Let Hext(t) = λH1(t) where λ > 0 is the coupling constant taken to be sufficiently
small so perturbation theory may be used5, and H1(t) does not depend on λ. The
Hamiltonian now takes the exact form

H(t) = H0 + λH1(t). (2.9)

Since λ is small, we can expand U(t, t0) in a power series for a defined set of values
in λ that makes the convergence of this series valid, then

U(t, t0) =
∞∑
n=0

λnUn(t, t0). (2.10)

5 What really defines mathematically the smallness of the coupling constant is the radius of convergence
of the power series expansion around λ = 0 for the time evolution operator. Therefore, for simplicity,
we simply admit that λ satisfies the condition of convergence and proceed with the computations.
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The initial condition for the evolution operator constrains each coefficient of this power
series to

U0(t0, t0) = 1, and Un≥1(t0, t0) = 0. (2.11)

Substituting Equation 2.9 and Equation 2.10 into Schrödinger’s equation of motion given
by Equation 2.8, we obtain

∞∑
n=0

λn
∂Un(t, t0)

∂t
= −iH0U0(t, t0)− i

∞∑
n=1

λn
(
H1(t)Un−1(t, t0) +H0Un(t, t0)

)
. (2.12)

From now on terms with λ2 and higher will be neglected (even if we know their explicit
form), which is the greatest virtue of perturbation theory: to be able to truncate our
power series expansion at a chosen order without losing most of the predictive power.
Equating the coefficients order by order in λ for the series in Equation 2.12 we obtain the
following equations of motion

∂U0(t, t0)
∂t

= −iH0U0(t, t0),

∂U1(t, t0)
∂t

= −iH1(t)U0(t, t0)− iH0U1(t, t0).
(2.13)

The zeroth-order equation above is well-known and its solution is

U0(t, t0) = e−iH0(t−t0), (2.14)

and one can readily check that U0(t0, t0) = 1. The first-order equation has the same
structure of the zeroth-order one but with a remainder function, −iH1(t)U0(t, t0). Its
solution is exact and pretty similar to the one-dimensional case,

U1(t, t0) = −ie−iH0(t−t0)
∫ t

t0
dt′eiH0(t′−t0)H1(t′)e−iH0(t′−t0), (2.15)

where U1(t0, t0) = 0. For simplicity, we use the Heisenberg picture defined using the
unperturbed system for H1(t), then

U1(t, t0) = −ie−iH0(t−t0)
∫ t

t0
dt′HH

1 (t′), (2.16)

where HH
1 (t) = eiH0(t−t0)H1(t)e−iH0(t−t0).

The next step is to obtain the time evolution for the density matrix, ρ, of the
ensemble under the influence of a small external force,

ρ(t) = U(t, t0)ρ(t0)U †(t, t0). (2.17)

We can also expand ρ(t) in a power series to find

ρ(t) =
∞∑
n=0

λnρn(t), (2.18)
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where the coefficient of each power is

ρ0(t0) = ρ(t0), and ρn≥1(t0) = 0. (2.19)

Now we substitute Equation 2.10 and Equation 2.18 into Equation 2.17 and equate the
coefficients order by order in λ to obtain

ρ0(t) = U0(t, t0)ρ(t0)U †0(t, t0),

ρ1(t) = U0(t, t0)ρ(t0)U †1(t, t0) + U1(t, t0)ρ(t0)U †0(t, t0),
(2.20)

where higher order coefficients are neglected as we said before. Substituting Equation 2.14
and Equation 2.16 into Equation 2.20 we obtain

ρ0(t) = e−iH0(t−t0)ρ(t0)eiH0(t−t0),

ρ1(t) = ie−iH0(t−t0)
∫ t

t0
dt′[ρ(t0), HH

1 (t′)]eiH0(t−t0).
(2.21)

Density matrices have in their definition a set of enumerable states and in our case
we consider thermal states,

ρ(t) = C exp
[
−β

(
H(t)−

∑
i

µiNi

)]
, (2.22)

where β is inversely proportional to the temperature of the system, the subscript i indicates
the type of conserved charge in question, µi is the chemical potential, Ni is number operator,
and C is a normalization constant. The eigenstates of this matrix are thermal states of
the form |Ek(t), {ni(t)}〉, where Ek(t) is the eigenvalue (energy) of the Hamiltonian H(t),
and ni(t) is the eigenvalue (number of particles of type i) of the operator Ni. As we have
said above these eigenstates are enumerable and therefore they support a well-defined
trace operation. From Equation 2.17 we obtain a constant of motion,

Tr ρ(t) = TrU(t, t0)ρ(t0)U †(t, t0),
= Tr ρ(t0)U †(t, t0)U(t, t0),
= Tr ρ(t0), (2.23)

where both the cyclic property of the trace and also the unitary property of the evolution
operator, i.e. U †(t, t0)U(t, t0) = 1, were used. Here we are free to choose the normalization
condition Tr ρ(t0) = 1, thus

C = 1
Tr exp [−β (H(t)−∑i µiNi)]

. (2.24)

After this last step we are ready to compute outputs at different times and compare
them to the unperturbed system, which allows us to obtain the effects of the external force.
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Let the observable A(t,x) be a time-dependent field operator in Schrödinger picture, then
its average over a statistical ensemble at a given time, t, and given point in space, x, is

〈A(t,x)〉 = Tr ρ(t)A(t,x)
Tr ρ(t) . (2.25)

We can make an expansion in power series for this statistical average too,

〈A(t,x)〉 =
∞∑
n=0

λn〈A(t,x)〉n, (2.26)

where the constrains are

〈A(t0,x)〉0 = 〈A(t0,x)〉, and 〈A(t0,x)〉n≥1 = 0. (2.27)

The term 〈A(t,x)〉0 is the statistical average over the unperturbed ensemble, and we will
use this term to compute

δ〈A(t,x)〉 ≡ 〈A(t,x)〉 − 〈A(t,x)〉0. (2.28)

Substituting Equation 2.18 and Equation 2.26 into Equation 2.25, and equating
the coefficients order by order in λ we obtain

〈A(t,x)〉1 = Tr ρ1(t)A(t,x),

= iTr e−iH0(t−t0)
∫ t

t0
dt′[ρ(t0), HH

1 (t′)]eiH0(t−t0)A(t,x),

= i
∫ t

t0
dt′Tr ρ(t0)[HH

1 (t′), AH(t,x)], (2.29)

where we have used again the Heisenberg picture for the field observable cited above,
AH(t,x) = eiH0(t−t0)A(t,x)e−iH0(t−t0), and we also used the cyclic property of trace opera-
tion for the evolution operator and the commutator. The zeroth-order is not explicitly
computed since Equation 2.28 does not require it. Higher orders in λ in Equation 2.28
are truncated yielding an approximation at the first order. Then we finally obtain the
equation we were looking for in this section

δ〈A(t,x)〉 = i
∫ t

t0
Tr ρ(t0)[HH

ext(t′), AH(t,x)] + higher order corrections, (2.30)

where we used the external Hamiltonian definition given in the beginning of this section
but in Heisenberg picture. The Equation 2.30 is at the core of linear response theory.

2.4.1 Scalar field source

As a simple application of this idea, let us suppose that the external small force is
generated by a time-dependent scalar source field J(t,x) (not an operator). This source
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couples to an observable A(t,x), which is defined in the unperturbed system. The external
Hamiltonian in Heisenberg picture takes the form

HH
ext(t) =

∫
d3xJ(t,x)AH(t,x), (2.31)

where J(t0,x) = 0. We are interested in computing the linear response effect on the
observable due to the external source. Therefore, using Equation 2.30, we obtain

δ〈A(t,x)〉 ∼ −i
∫ t

t0
dt′
∫

d3x′J(t′,x′) Tr ρ(t0)[AH(t,x), AH(t′,x′)]. (2.32)

At this point, it is useful to work with Green’s functions because they satisfy
well-known properties known already from quantum field theory (PESKIN; SCHROEDER,
1995). We can identify the retarded Green’s function in the equation above since t′ ∈ [t0, t]
for all the integration interval and then

iGR(t,x; t′,x′) = Θ(t− t′) Tr ρ(t0)[AH(t,x), AH(t′,x′)], (2.33)

where Θ is the Heaviside step function. If we extend the lower limit of the integral in
Equation 2.32 to −∞ (which does not affect the result), then this equation becomes

δ〈A(x)〉 =
∫

d4x′J(x′)GR(x;x′), (2.34)

where x = (t,x). One of the properties of Green’s function in QFT for systems in thermal
equilibrium, such as the one in Equation 2.33, is that6 GR(x;x′) = GR(x − x′), i.e.,
translation invariance. Each function in Equation 2.34 is substituted by their Fourier
transform as follows,

J(x′) =
∫ d4k

(2π)4 e
ik·x′

J̃(k),

GR(x− x′) =
∫ d4k′

(2π)4 e
ik′·(x−x′)G̃R(k′),

δ〈A(x)〉 =
∫ d4k

(2π)4 e
ik·xδ〈Ã(k)〉,

(2.35)

where kµ = (ω,k) is the momentum. Then, we use the integral representation for the
delta function,

(2π)4δ(k − k′) =
∫

d4x′ei(k−k
′)·x′

, (2.36)

and, by comparing both sides of the resulting equation, one obtains the linear response
relation

δ〈Ã(k)〉 = J̃(k)G̃R(k). (2.37)

This equation allows one to determine the linear effects coming from the presence of the
source on the system. As a matter of fact, transport coefficients may be computed using
this expression, as shown below.
6 This would not be true for a solid or crystal.
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2.4.2 Transport coefficient

We now assume that the statistical ensemble describing the correlator has a simpler
limit known from a physical model, which in this case is hydrodynamics. More specifically,
we consider the long-wavelength/long time hydrodynamic limit, i.e. which corresponds
to k→ 0 and then ω → 0 in Equation 2.37. In this limit, one obtains an Ohm’s law-like
expression

δ〈A〉 ∼ χ∂tJ, (2.38)

where χ is the transport coefficient (a real number) of this hydrodynamical model. Applying
the Fourier transform on J(x), just the way we have done in Equation 2.35, then taking
k→ 0 we obtain the approximate expression

δ〈Ã(ω,0)〉 ∼ −iωχJ̃(ω,0). (2.39)

It is important to remember the equation above is valid only for small frequencies.
Therefore, when comparing this equation to Equation 2.37, we are able to relate the
retarded Green’s function with the transport coefficient via the so-called Kubo formula
(RAMALLO, 2015),

χ = − lim
ω→0

Im G̃R(ω,0)
ω

. (2.40)

In chapter 4 we will come back to linear response theory and the calculation of transport
coefficients in a strongly coupled anisotropic plasma. In that case, we will show how to
define the shear viscosity (in its isotropic limit) via a Kubo formula involving the retarded
correlator of the energy-momentum tensor.
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3 Gauge/gravity duality
As mentioned before in this thesis, there are many review articles and books

such as (NASTASE, 2015; AMMON; ERDMENGER, 2015; KIRITSIS, 2007), about the
gauge/gravity duality. Therefore, we refer the reader to those references for detailed
discussions about the duality and its derivation from string theory. In fact, in this thesis
we only consider the duality at finite temperature and density and, thus, important
aspects about the duality in the vacuum will not be discussed. In this chapter, for the
sake of completeness, we are going to heuristically motivate the gauge/gravity duality by
focusing on the aspects involving the Anti-de Sitter/Conformal Field Theory (AdS/CFT)
correspondence. In this specific case, the string side of this duality refers to type IIB
string theory on AdS5×S5 while the gauge theory side refers to an N = 4 SYM plasma in
four spacetime dimensions. After reviewing some basic mathematical concepts involved
in the description of AdS spacetime (HAWKING; ELLIS, 2011), we briefly explain the
correspondence and show some of its applications related to the thermodynamics of black
holes in an asymptotically AdS spacetime, which is very different from the properties of
black holes defined in asymptotically flat spacetimes.

3.1 Embedding mathematical structures
Lets begin this introductory section talking about a sphere, a well-known structure,

which is a set where each one of its elements is a list of three real numbers (x, y, z) satisfying
the equation x2 + y2 + z2 = r2, where r is the so-called radius, a real number. Despite
that three numbers are needed to describe each element of this sphere, only two of them
are said to be independent and the third dependent one must satisfy an equation. Also,
these two independent numbers are bounded to a domain, otherwise the third number
could be complex. Thus, this sphere is a two-dimensional structure since we need only
two (bounded) independent variables.

Now we want to define distances on this sphere. We usually imagine a two-
dimensional surface embedded in an abstract three-dimensional Euclidean space where the
distance from the origin of this space to any point on the surface of the sphere is the same
for all points on this sphere (which is, historically, the geometrical definition of a sphere).
In fact, any geometrical structure we are able to imagine/visualize are always embedded
in an abstract three-dimensional flat space which follows Euclidean postulates1. Then any
point in this space can be described by a set of coordinates (e.g. Cartesian coordinates), so
the geometrical structure is embedded. If we extend analytically the number of dimensions
of this flat space to d, then higher dimensional (up to d− 1) geometrical structures can
be embedded. Each point in this higher dimensional Euclidean space is identified by
1 This embedding fact is a rough way to refer to the more general Nash embedding theorems.
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d real numbers (building up the entire space with, for example, the set Rd if one uses
Cartesian coordinates). And the distance between two infinitesimally close points in this
d-dimensional Euclidean space is defined by the line element,

ds2 =
d∑
i=1

(dX i)2, (3.1)

where ds2 ≥ 0, and the Cartesian set of coordinates {X i} was used with |dX i| � 1 for
all i. Lets get back to the sphere above and embed it in this d = 3 dimensions Euclidean
space. In order to embed it, we need a correspondence between the coordinates of the
Euclidean space, {X i}, and the coordinates of the sphere (also called variables), {xi}, i.e.
the correspondence follows a map2 X i = f i(x1, x2, . . . , xd). It is very common to choose
the simple one, X i = xi, which makes structures, such as spheres, to be uniquely defined
by their geometrical counterpart (i.e. if one knows the line element then the rest follows
in a straightforward manner), and it is also easy to read coordinates and variables at the
same time with this correspondence. Some mappings are, in fact, the same because of
the symmetries of Euclidean space: rotations and translations. So taking the common
choice for the sphere we have: X1 = x, X2 = y and X3 = z, where one should apply the
sphere equation and substitute this correspondence into Equation 3.1. Instead, we will use
a simpler set of coordinates to this case, the spherical coordinates: X1 = x = r sin θ cosφ,
X2 = y = r sin θ sinφ, and X3 = z = r cos θ, where θ ∈ [0, π] and φ ∈ [0, 2π]. This set
automatically satisfies the equation for the sphere, and yields the following line element
ds2 = r2dΩ2

2 = r2dθ2 + r2 sin2 θdφ2.

Besides the embedding Euclidean space Rd, there is the Minkowski space-time Rp,q,
where its line element is defined to be

ds2 =
p∑
i=1

(dX i)2 −
q∑
i=1

(dY i)2, (3.2)

where two sets of Cartesian coordinates were used, {X i} and {Y i}. By convention, X i are
called spatial-coordinates and Y i are time-coordinates. The spatial line element is defined
as ∑p

i=1(dX i)2 and the time line element is ∑q
i=1(dY i)2 (notice there is no minus sign in

this latter definition). If ds2 > 0 we have a space-like distance, if ds2 < 0 a time-like
distance, and ds2 = 0 a light-like distance. Because one can have ds2 < 0 then there is no
coordinate transformation that takes Equation 3.2 into Equation 3.1 for any d = p + q

(even if we try to embed a Minkowski space-time into a higher dimensional Euclidean
space will not work), implying that Minkowski space-time is a non-Euclidean space, thus
one cannot imagine/visualize geometrical structures in this space-time. When evaluating
the average of an observable over a statistical ensemble described by QFT (which is in
a Minkowski space-time), one can use the so-called Wick rotation Y j → iXp+j where
Xp+j ∈ R, so the value of the averaged observable may be evaluated in an Euclidean space.
2 These maps are not diffeomorphisms so the geometrical structure generated may not be the same when

using two different maps.
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The presence of time coordinates makes the corresponding map between Minkowski
coordinates and the variables describing a structure not straightforward to identify as
was done in the Euclidean case. To clarify this statement we give the following example,
suppose we want to embed the sphere above into a Minkowski space-time R2,1, then using
spherical coordinates and the same correspondence done for Euclidean case but with
Y 1 = z, we obtain ds2 = r2 cos(2θ)dθ2 + r2 sin2 θdφ2. Instead, if one chooses Y 1 = x then
the line element will be different (and this is not a problem). This happens because the
sphere equation is invariant under O(3) and the Minkowski space-time with the same
number of dimensions has only O(2). For a general Minkowski space-time, there are more
symmetry groups than Euclidean space, it preserves symmetry by rotation in both of
its Euclidean subspaces separately (i.e. the one generated by spatial-coordinates, and
the other generated by time-coordinates), it preserves translation, and boosts (a type of
symmetry that mixes spatial-coordinates and time-coordinates).

3.1.1 Anti-de Sitter geometry

One can find a structure which is invariant under the same symmetry group that
Minkowski space-time is and use a simple map for correspondence. This structure is the
(p+ q − 1)-dimensional (conjugate) hyperboloid which is a set that satisfies the following
equation3

p∑
i=1

(xi)2 −
q∑
i=1

(yi)2 = ±L2, (3.3)

where L is a constant positive number. The structure with minus sign on the right hand
side is the conjugate hyperboloid, while the one with plus sign is just a hyperboloid.
If one embeds a (p + q − 1)-dimensional hyperboloid into a Minkowski Rp,q with the
correspondence X i = xi and Y i = yi and substitutes Equation 3.3 with positive sign
into Equation 3.2, then one obtains the so-called de Sitter space. The resulting line
element is not diagonal with these coordinates which makes analytical properties difficult
to obtain. To circumvent this obstacle, we introduce the so-called static coordinates,
y1 =

√
L2 − r2 sinh(t/L), x1 =

√
L2 − r2 cosh(t/L), and xi = rzi for i ∈ {2, 3, . . . , p}. One

can check these coordinates satisfy Equation 3.3 with r ∈ [0, L] noticing that coordinates
{zi} must satisfy a (p − 2)-dimensional sphere, i.e. ∑p

i=2(zi)2 = 1. Using the static
coordinates one obtains

ds2 = −
(

1− r2

L2

)
dt2 +

(
1− r2

L2

)−1

dr2 + r2dΩ2
p−2, (3.4)

3 Mathematicians prefer to define an inner product in Minkowski space-time that is an analytical
extension of the usual inner product of vectors in Euclidean space, and then make the correspondence
between a (d− 1)-dimensional sphere embedded in an Euclidean space Rd with a (d− 1 = p+ q − 1)-
dimensional conjugate hyperboloid embedded in a Minkowski space-time Rp,q. The latter one is
sometimes referred as quasi-spheres because it satisfies similar properties as the sphere.
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where dΩ2
p−2 is the line element of a (p − 2)-sphere of unit radius. In this geometry, L

receives the name cosmological horizon (since r ≤ L).

Now we get to the point we are interested in as we will embed a (p + q − 1)-
dimensional conjugate hyperboloid into a Minkowski Rp,q with the mapping X i = xi and
Y i = yi and substitute Equation 3.3 with negative sign into Equation 3.2 to obtain the
so-called Anti-de Sitter space (AdS). These coordinates suffer from the same difficulty as
the ones in the hyperboloid case and, then, this time we focus on a slightly different case:
the (p+ 2− 1)-dimensional conjugate hyperboloid and introduce the so-called Poincaré
coordinates,

y1 = r

2

(
L2

r2 + ~z 2 − t2

L2 + 1
)
,

y2 = r

L
t,

x1 = r

2

(
L2

r2 + ~z 2 − t2

L2 − 1
)
,

xi = r

L
zi, for i ∈ {2, 3, . . . , p},

(3.5)

where zi ∈ R, ~z 2 = ∑p
i=2(zi)2, and r ∈ R>0. Here, despite the similar notation used in de

Sitter coordinates, neither {zi} are constrained to a sphere nor r is the radius of a sphere.
The line element then takes the simple form

ds2 = − r
2

L2 dt2 + L2

r2 dr2 + r2

L2 dE2
p−1, (3.6)

where dE2
p−1 is the line element of a (p− 1)-Euclidean space. In this geometry, L is called

the AdS radius, and in the context of the gauge/gravity duality r is holographic coordinate.
When r → +∞ the line element tends to a conformal flat space, the Minkowski space-time
Rp−1,1. It is important to note, however, that this patch of coordinates does not cover all
AdS space. To do so, one uses global coordinates (HAWKING; ELLIS, 2011), which define
an analytical extension of Equation 3.4 where the cosmological horizon L2 is replaced with
the AdS radius −L2.

Now that some of the mathematical properties of AdS space-time have been dis-
cussed, we briefly discuss in the next section the main arguments behind the gauge/gravity
duality.

3.2 AdS/CFT correspondence
In string theory, the elementary objects are one-dimensional structures called strings

(instead point-like particles). Strings are classified according to their boundary conditions
and they could be either open or closed strings and their oscillations are described by fields.
Open strings’ ends are attached to p-dimensional hypersurfaces called branes and the
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motion of these strings on this brane satisfies Dirichlet boundary conditions and, therefore,
these special branes are so-called D-branes, or Dp-branes (KIRITSIS, 2007). Just like
particles scatter in quantum field theory, strings also scatter in string theory but a more
complete understanding of this is only achieved in the perturbative regime because string
theory still currently lacks a full formalism valid also in the non-perturbative regime. The
Euclidean action of D-branes is proportional to the tension (KIRITSIS, 2007)

Tp = 1
gs`s(2π`s)p

, (3.7)

where gs is the string coupling constant, and `s is the string length. When gs → 0,
quantities such as the partition function of these objects (Z =

∫
D[. . . ]e−Tp

∫
[... ]) cannot

be computed perturbatively. This statement ensures that D-branes are non-perturbative
objects in string theory with open strings coupled to it behaving as fluctuations. On the
other hand, one could still consider a low-energy limit when `s → 0. Another important
aspect in string theory is that it is possible to associate a charge to each end of the open
string and, since these ends are attached to a D-brane, then these charges also live on the
D-brane. In the low-energy limit one can consider Nc D-branes stacked together because
the open strings connecting each brane have `s → 0 and, therefore, the conserved charge
living on them imposes a symmetry U(Nc) to the fields on D-branes. This is the string
theory way to define a gauge theory on the world volume of D-branes.

Unlike bosonic string theory that describes only bosonic strings, superstring theory
models fermions and bosons by adding supersymmetry, which means fermions and bosons
can be swapped in such a way the predictions of the theory remain invariant. There are
five types of superstring theories, all of them are related to each other in a non-trivial way
and they are conjectured to be the limiting cases of a more general theory, the so-called
M-theory (for references see (KIRITSIS, 2007)). One of these superstring theories is called
type IIB superstring theory, where each field associated to an open string fluctuates on
a ten-dimensional bulk space-time while their ends are attached to the boundary of this
space-time featured by a stack of Nc coincident D3-branes (notice p = 3 on this case, and
`s → 0). With the low energy limit considered, the fluctuations on these D3-branes are
described by a four-dimensional gauge theory SU(Nc), the so-called N = 4 SYM, where
the number 4 stands for the number of supersymmetries and Nc the number of colors
interpreted in the same way as in QCD, for example. SYM is a classical conformal field
theory that remains conformal even after quantization with the beta function vanishing
at all orders in perturbation theory. Outside the low-energy limit, the total action of the
theory is a sum of three terms: the action of the fields oscillating around closed strings
created from open strings inside the bulk of space-time, the action of the fields vibrating
on D-branes at the boundary of space-time, and the action describing the interaction
between branes and closed strings. However, in the low energy limit the action for the
interaction term vanishes, and, therefore, N = 4 SYM completely describes the fields at



44 Chapter 3. Gauge/gravity duality

the boundary while free type IIB supergravity describes the fields in the bulk.

Still in the low energy limit but also with gs → 0, the metric for type IIB
supergravity acquires the form

ds2 =
(

1 + L4

r4

)−1/2

(−dt2 + dE2
3) +

(
1 + L4

r4

)1/2

(dr2 + r2dΩ2
5). (3.8)

The AdS radius is related to string theory via the following equation

L4 = `4
sM, (3.9)

where M = gsNc is the mass of a black hole. Along with the line element, there is an
electromagnetic tensor sourced by an electric charge Q = gsNc on the D-brane. Since
Q = M , this solution is considered extremal (no temperature) and the event horizon is
localized at r = 0, which is also the singularity of a black hole. Thus, near the horizon the
metric for type IIB supergravity takes the form

ds2 = − r
2

L2 dt2 + L2

r2 dr2 + r2

L2 dE2
3 + L2dΩ2

5, (3.10)

which, according to Equation 3.6, is the product AdS5×S5, where both structures have
the same radius L. Notice that this metric has the same form of the AdS-Schwarzchild
metric shown later in Equation 3.16 if one takes d = 4 and r →∞.

For our purposes in this thesis, the AdS/CFT correspondence states that fluctua-
tions at the event horizon of an extreme black brane of type IIB supergravity on AdS5×S5

background have corresponding fluctuations defined in N = 4 SYM. In order to be a
valid correspondence, the low-energy limit, `s → 0, is achieved when compared to the
macroscopic scale of the geometry into which strings are embedded, which means

`s
L
� 1 =⇒ Ncgs � 1. (3.11)

The string coupling is related to the gauge coupling constant, gs = g2
YM, and therefore

gYM → 0. Despite the gauge coupling constant being small, this does not mean that we
can apply perturbation theory. In fact, in the large Nc →∞ case we consider one needs
to analyze the ’t Hooft coupling, which is defined as λ = Ncg

2
YM, and by Equation 3.11 we

obtain λ� 1. Then, the gauge theory on D3-branes described by N = 4 SYM is in its
non-perturbative, strongly coupled regime.

Lets summarize what we have discussed so far. While the fields on the gravity/string
side are treated perturbatively (the classical regime, where the string coupling is small,
gs → 0), the corresponding fields on the gauge side are treated non-perturbatively (strongly
coupling, λ→∞). This shows why holography can be so useful to study the properties of
strongly coupled gauge theories. Problems in strongly coupled theories, which cannot even
be properly defined (or computed) using standard techniques such as the shear viscosity,
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can be readily computed using classical gravity. Furthermore, the Maldacena’s conjecture,
or gauge/gravity duality, in its stronger form states that the reverse is also true, i.e. when
the fields on the gravity side are treated non-perturbatively (within quantum gravity where
the coupling is strong gs →∞), the corresponding fields on the gauge theory are treated
perturbatively (weak ’t Hooft coupling, λ → 0). These results are better visualized in
Table 1.

Table 1 – Holographic dictionary.

Boundary QFT Bulk Gravity

Operator O(x) ←→ Φ(x, r) Field
Spin sO ←→ sΦ Spin
Global Charge qO ←→ qΦ Gauge Charge
Scaling dimension ∆O ←→ mΦ Mass
Source J(x) ←→ Φ(x, r)|∂ Boundary Value (B.V.)
Expectation Value 〈O〉 ←→ ΠΦ(x, r)|∂ B.V. of Radial Momentum
Global Symmetry Group G ←→ G Gauge Symmetry Group
Source for Global Current Aµ(x) ←→ Aµ(x, r)|∂ B.V. of Gauge Field
Expectation Current 〈J µ(x)〉 ←→ Πµ

A(x, r)|∂ B.V. of Momentum
Stress Tensor Tµν(x) ←→ gµν(x, r) Spacetime Metric
Source for Stress-Energy hµν(x) ←→ gµν |∂ B.V. of Metric
Expected Stress-Eenrgy 〈Tµν(x)〉 ←→ Πg,µν(x, r)|∂ B.V. of Momentum
# of Degrees of Freedom Radius of Curvature
per Spacetime Point N2 ←→ ( L`p

)d−1 in Planck Units
Characteristic Strength Radius of Curvature
of Interactions λ ←→ ( L`s

)d in String Units

QFT Partition Function QG Partition Function
with Sources Ji(x) ZQFTd

[Ji] ←→ ZQGd+1 [Φi[Ji]] in AdS with Φi|∂ = Ji
QFT Partition Function Classical GR Action
at Strong Coupling Zλ,N�1

QFTd
[Ji] ←→ e−IGRd+1 [Φi[Ji]] in Ads with Φi|∂ = Ji

QFT n-point Classical Derivatives of
Functions at 〈O1 . . .On〉 ←→ δnIGRd+1 [Φi[Ji]]

δJ1...δJn
|Ji=0 the On-Shell

Strong Coupling Classical GR Action

Thermodynamic State ←→ Black Hole
Temperature T ←→ TH Hawking Temperature
Chemical Potential µ ←→ Q Charge of Black Hole
Free Energy F ←→ IGR|on-shell On-Shell Bulk Action
Entropy S ←→ AH Area of Horizon

Source – Adams et al. (2012).

After quickly reviewing the holographic correspondence, we can now state some
basic results related to the thermodynamics of black holes and their implications to the
properties of strongly coupled gauge theory plasmas.

3.2.1 AdS-Schwarzschild geometry

Alternatively to the geometrical definition given before, it is useful to remember
that one may obtain either de Sitter or Anti-de Sitter space-time from the vacuum solution
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of Einstein’s field equations with a cosmological constant,

S = 1
2κ

∫
dd+1x

√
−g

(
R± d(d− 1)

L2

)
, (3.12)

where d is the Minkowski dimensions and the extra 1 refers to the holographic coordinate
r (such as the ones in Equation 3.4 and Equation 3.6). The action with a plus sign refers
to de Sitter geometry, while the negative sign to the Anti-de Sitter spacetime. Both have
constant scalar curvature proportional to the cosmological constant. Since this action is a
functional of the metric, using the principle of least action one obtains the Einstein field
equations (without matter fields),

Rµν = ± d

L2 gµν . (3.13)

It is possible to obtain a spherically symmetric solution by introducing a spherical
black hole in both spaces, analogously to the well-known (d+ 1)-Schwarzschild solution
(i.e. no cosmological constant),

ds2 = −
(

1− 2M
rd−2

)
dt2 +

(
1− 2M

rd−2

)−1
dr2 + r2dΩ2

d−1, (3.14)

where one finds a singular solution at r = 0 of mass M 4. Therefore, one obtains

ds2 = −
(

1− 2M
rd−2 ±

r2

L2

)
dt2 +

(
1− 2M

rd−2 ±
r2

L2

)−1

dr2 + r2dΩ2
d−1, (3.15)

where the minus sign refers to the spherical de Sitter-Schwarzschild metric while the plus
sign refers to the spherical AdS-Schwarzschild metric.

It is also possible to obtain a solution that preserves both rotation and translation
symmetry. This solution has a planar event horizon rather than the usual spherical one.
Then in a Poincaré patch (see Equation 3.6) for a (d+ 1)-dimensional solution the metric
takes the form

ds2 = −
(
± r

2

L2 ∓
2M
rd−2

)
dt2 +

(
± r

2

L2 ∓
2M
rd−2

)−1

dr2 + r2

L2 dE2
d−1, (3.16)

where the upper sign solution is the planar AdS-Schwarzschild while the lower one is the
planar dS-Schwarzschild. The solution in Equation 3.16 describes black holes with an
event horizon, rH , if it is asymptotically Anit-de Sitter (or a cosmological horizon if it is
asymptotically de Sitter) given by the outer most positive root of 1/grr = 0.
4 Here in this section we are using a system of units where any quantity is expressed as powers of length.

In a space-time with four dimensions the mass of a black hole has then units of [length], and in d+ 1
dimensions this mass has unit of [length]d−2, where this deviation from standard units follows from
the gravitational constant Gd+1.
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3.3 Thermodynamics of black holes
Let a stationary isotropic black hole be described by diagonal metric normalized at

the boundary,

ds2 = −f(r)dt2 + dr2

g(r) + gii(r)(dxi)2, (3.17)

where the event horizon, r = rH , is the outer most positive root of g(r) = 0, hence f(rH) = 0
too. For r > rH all functions above are positive. The normalization imposed means that for
r →∞ the metric components are asymptotically Minkowski with f(r) = g(r) = gii ∼ 1,
or asymptotically AdS with f(r) = g(r) = gii ∼ r2/L2. Using Euclidean time t → itE

(along with Wick rotation) near the event horizon, the line element approaches

ds2 ∼ (r − rH)f ′(rH)dt2E + dr2

(r − rH)g′(rH) + gii(rH)(dxi)2. (3.18)

Using polar coordinates, ρ = 2
√

(r − rH)/g′(rH) and φ =
√
f ′(rH)g′(rH) tE/2, the metric

takes the form

ds2 ∼ dρ2 + ρ2dφ2 + gii(rH)(dxi)2. (3.19)

In order to make this metric continuous (without a conical singularity) one needs to impose
a periodical structure with φ→ φ+ 2π, which is equivalent to tE → tE + 1

T
, where

T =

√
f ′(rH)g′(rH)

4π . (3.20)

This is the Hawking temperature for a black hole (KIRITSIS, 2007).

With this formula we are able to compute the temperature for Equation 3.14, and
Equation 3.16. In the following we show the thermodynamical properties of a spherical
black hole and a planar one.

a) Schwarzschild metric,

T = d− 2
4π r −1

H ; (3.21)

b) planar AdS-Schwarzschild metric,

T = d

4πL2 rH . (3.22)

Now we proceed to compute the entropy s of a black hole, which according to
the Bekenstein-Hawking formula is proportional to the volume of the remaining space
in Equation 3.18 around the horizon (i.e. the space constructed by keeping fixed tE and
r = rH),

s = 2π
κ

∫
dd−1x

√
det

(
gii(rH)

)
. (3.23)

Therefore, as was done for the temperature, we obtain the entropy for
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a) Schwarzschild metric,

s = 2π d+1
2

κΓ
(
d+1

2

)rd−1
H ; (3.24)

b) planar AdS-Schwarzschild

s = 2πV
κLd−1 r

d−1
H . (3.25)

Note the appearance of V in the latter case , which is the (infinite) volume of (d − 1)-
Euclidean space, the same spatial volume of the asymptotic (r →∞) conformal Minkowski
space-time5. One can divide both sides of this equation by V to obtain the entropy density
for the gauge theory “living” at the boundary of this space.

Relating the entropy to the temperature the above equations take the form

a) Schwarzschild

s ∝ 1
T d−1 ; (3.26)

b) planar AdS-Schwarzschild

s ∝ T d−1. (3.27)

Besides the geometrical difference between the horizons of the above two metrics, there
is also a great difference between the thermodynamic expressions. By the second law of
thermodynamics, black hole entropy must increase (or remains fixed) over time, thus while
the former black hole above has its temperature decreasing over time (i.e. it loses mass),
the latter one has its temperature fixed over time6. Alternatively, one can see this feature
on the heat capacity at constant volume,

CV = T

(
∂s

∂T

)
V

, (3.28)

where CV < 0 for Schwarzschild while CV > 0 for AdS-Schwarzschild case. This means
that the first black hole loses heat by evaporation over time, while the second defines
a thermal bath. The explanation for this phenomenon relies on the fact that, in global
coordinates, AdS space-time is cylindrically bounded in the r direction and, then, light
rays traveling on this direction go to infinity and return to the emitting source in finite
time (AdS space works as a box). This feature is important because one can introduce
a black hole in asymptotic AdS geometry and prevent it from evaporating because the
5 This volume is infinite because this black hole has an infinite planar surface while the former one has a

spherical horizon which has a finite area.
6 The temperature could in principle increase with increasing entropy, but it does not since the system

is isolated and there is no matter source field to feed this black hole.
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environment outside the black hole event horizon is saturated with its own radiation
(detailed balance occurs). Thus, while evaporation is the final fate for black holes in
asymptotic Minkowski geometry such as the Schwarzschild black hole, black holes in AdS
spacetimes correspond to well-defined systems in thermodynamical equilibrium.

Besides temperature, black holes can also have conserved charges. In this case,
within the context of the holographic duality, charged black holes describe states in the
strongly coupled gauge theories in the presence of a chemical potential. The possibility
that black holes in higher order dimensional spacetimes may be used as models of strongly
coupled plasmas at finite temperature and density has led to several applications over the
years, both in condensed matter physics (ZAANEN et al., 2015) and also in the physics of
the QGP formed in heavy ion collisions (CASALDERREY-SOLANA et al., 2014).

In the next chapters we will show how the gauge/gravity duality can be used to
understand some new features displayed by strongly coupled anisotropic plasmas in the
presence of a magnetic field and also how the correspondence can shed light on the near
equilibrium properties of strongly coupled fluids that display a critical point.

3.4 Membrane Paradigm
In this section we show how the transport coefficient χ evaluated in Equation 2.40

for a thermodynamical state in QFT can be computed in a bulk gravity theory, more
specifically using thermodynamical variables obtained from a black hole which are evaluated
at a vanishingly close distance from the event horizon. The key idea here is to consider
perturbations on the event horizon behaving as a thin membrane that is mathematically
described as hydrodynamical systems (or nonequilibrium statical mechanics) so we can
extract transport coefficients. This is the so-called Membrane Paradigm (THORNE;
PRICE; MACDONALD, 1986) which is a semi-classical model used to understand quantum
mechanics effects for the exterior of black holes (see Figure 5 for an intuitive picture).
This approach was used to model the Hawking radiation effect predicted by quantum
mechanics.

First lets consider the action of a massless scalar field φ(t,x, r) in the bulk of a
(d+ 1)-dimensional spacetime (where r stands for the holographic coordinate),

S = −1
2

∫
dd+1x

√
−g∂µφ∂

µφ

q(r) , (3.29)

where q(r) is the effective coupling and depends only on r. According to the holographic
dictionary (see Table 1), the field φ on the bulk gravity side is related to an operator O at
the boundary QFT. At the boundary of spacetime this field becomes a source J(x) for a
corresponding QFT, more specifically (RAMALLO, 2015)

J(x) = lim
r→∞

rd−∆φ(x, r), (3.30)
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Figure 5 – Intuitive picture of the Membrane Paradigm being used as a tool for AdS/CFT
correspondence: A perturbation on the event horizon of a black hole corresponds
to a perturbation on the CFT living at the boundary of the spacetime. Both
perturbations behave as hydrodynamical systems.

Source – Natsuume (2015, p. 5).

where ∆ is the scaling dimension which is related to the mass of the field by

∆ = d

2 +

√√√√(d
2

)2

+m2L2. (3.31)

And this source affects the QFT partition function, consequently the expectation value for
the corresponding operator O as follows

〈O(x)〉 = lim
r→∞

r∆−dΠ, (3.32)

where is Π the radial canonical momentum,

Π(t,x, r) = − ∂L
∂(∂rφ) , (3.33)

where L is the Lagrangian density of the action. Since we are considering the massless
case, all relations above simplify. If one consider the field φ as a perturbation, then the
relation Equation 2.38 applies in the hydrodynamical limit (k→ 0) obtaining the Kubo
formula

χ = lim
ω→0

lim
k→0

lim
r→∞

Π̃
iωφ̃

, (3.34)

where the Fourier transform were applied for both Π and φ as

φ̃(ω,k, r) =
∫ dωdd−1x

(2π)d ei(ωt−k·x)φ(t,x, r),

Π̃(ω,k, r) =
∫ dωdd−1x

(2π)d ei(ωt−k·x)Π(t,x, r).
(3.35)

The transport coefficient χ describes the perturbation of QFT theory living at the
boundary. However we can show this same transport coefficient describes the perturbation
on the event horizon of the black hole.



3.4. Membrane Paradigm 51

3.4.1 Isotropic case

The last assumption can be shown for the very special case where we have a
diagonal metric that only depends on the holographic coordinate and is isotropic,

ds2 = gtt(r)dt2 + grr(r)dr2 + gzz(r)
d−1∑
i=1

(dxi)2. (3.36)

Lets define a function that closely resembles the transport coefficient for every slice
of constant r but outside the hydrodynamical limit, i.e.

ρ(r) = Π̃
iωφ̃

. (3.37)

The transport coefficient function for every slice of constant r is just the hydrodynamical
limit in a linear response theory,

χ(r) = lim
ω→0

lim
k→0

ρ(r). (3.38)

We want to show that χ(r) does not depend on r.

From the radial momentum definition we obtain

Π =
√
−g
q

grr∂rφ. (3.39)

The equation of motion for a massless scalar field takes the form

∂µ

(√
−g
q

gµν∂νφ

)
= 0, (3.40)

which after some substitutions we obtain

∂rΠ +
√
−g
q

(
gtt∂2

t + gzz
d−1∑
i=1

∂2
i

)
φ = 0. (3.41)

Since only φ and Π are functions of (t,x), then we can simply take Fourier transform of
the equation of motion,

dΠ̃
dr =

√
−g
q

(
gttω2 + gzzk2

)
φ̃, (3.42)

where k2 = k · k. Also from Equation 3.39 we obtain

Π̃ =
√
−g
q

grr
dφ̃
dr . (3.43)

Now we want to transport the function ρ(r) defined in Equation 3.37 from the
boundary, along the holographic coordinate, to the event horizon via a differential equation
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and then apply the hydrodynamical limit in the linear response. Then we take Equation 3.37
and Equation 3.43, and put dφ̃/dr in terms of ρ(r) and φ̃(r),

dφ̃
dr = iω

qgrr√
−g

ρφ̃. (3.44)

Therefore, we are able to do the same thing with dΠ̃/dr starting from Equation 3.37,

dΠ̃
dr = iω

d(φ̃ρ)
dr ,

= iωφ̃

(
iω

qgrr√
−g

ρ2 + dρ
dr

)
.

(3.45)

Now we substitute this equation into the equation of motion and obtain the so-called flow
equation,

dρ
dr = −iω

[
qgrr√
−g

ρ2 +
√
−g
q

(
gtt + gzz

k2

ω2

)]
. (3.46)

Applying the hydrodynamical limit (i.e. the ordered limit lim
ω→0

lim
k→0

) on both sides of the
above equation we obtain

dχ(r)
dr = 0, (3.47)

which means that

χ = lim
r→∞

χ(r) = lim
r→rH

χ(r). (3.48)

Thus we have show the initial hypothesis.

We do not need to solve the Equation 3.46 for every value of r. We just need to
solve it near the horizon rH . More specifically, near the horizon the function ρ can be
exactly expanded into an infinite series,

ρ(r) = ρH + ρ′H(r − rH) +O((r − rH)2), (3.49)

where the subscript H is used to indicate that the given function is evaluated at the
horizon. The metric components also admit such an expansion,

gtt(r) = (gtt)′H(r − rH) +O((r − rH)2), where (gtt)′H < 0,

grr(r) = (r − rH)−1

(grr)′H
+O((r − rH)0), (3.50)

gzz(r) = (gzz)H +O((r − rH)1),

With this trick we expand the flow equation (Equation 3.46) around the horizon to
obtain

iω

(
qH√

−gH(grr)′H
ρ2
H +

√
−gH

qH(gtt)′H

)
(r − rH)−1 +O((r − rH)0) = 0 (3.51)
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The above equation indicates it needs to be zero for every order in (r − rH)n. Then the
function ρ at the horizon takes the form

ρH = ± 1
qH

√√√√gH(grr)′H
(gtt)′H

. (3.52)

Notice there is no dependence on the momentum k, neither on ω. Intuitively, one should
choose the solution with positive sign, since typical transport coefficients (e.g. diffusion
coefficient, heat transport coefficient, mass transport coefficient, shear viscosity, and
electrical conductivity) are all positive. But the choice of the sign also brings important
physics, and we will do this by analyzing the wave-function φ. Let φ̃(r) = (r − rH)αf(r),
where fH is finite and nonzero, then we can apply the same procedure we used in the
flow equation to solve Equation 3.37 for φ̃ (remember to use Equation 3.43 for Π̃). So
expanding around the horizon the equation Equation 3.37, we obtain

f(rH)√
−gH(grr)′H

(
−iωρHqH + α

√
−gH(grr)′H

)
(r − rH)−1 +O((r − rH)0) = 0. (3.53)

Again order by order each coefficient of (r − rH)n is zero. So α must take the value

α = ± iω√
−(grr)′H(gtt)′H

. (3.54)

Therefore, φ(t,x, r) is

φ± = eiω(±bu−t)+ik·xf±(r), (3.55)

where

u = ln(r − rH), and b = 1√
−(grr)′H(gtt)′H

. (3.56)

To analyze the speed of a wave function, one has to keep track a given point on this wave
as time goes by. By definition a wave function has constant speed v if, initially, at a
given point u0 and instant t0 the wave has amplitude φ0, and at a posterior instant t and
position u0 + v(t− t0) it has the same amplitude φ0. If we let v = du/dt and keep x fixed,
and use the definition of wave-function speed at the event horizon,(

dφ±
dt

)
H

= 0, (3.57)

we obtain after some computations that

v±(rH) = ∓1
b
. (3.58)

Clearly, the plus sign solution (i.e. v−) refers to a wave outgoing the horizon since
r is increasing with time t, and the minus sign solution (i.e. v+) refers to a wave infalling
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at the horizon since r diminishes with increasing time. We take the negative sign solution,
which is φ+ because this solution is related to causality since a classical black hole does
not radiate (i.e. no Hawking radiation). Another reason is that at the boundary QFT one
relates this solution with the retarded Green function. Therefore, as we predicted we take
the positive ρH and now, as the membrane paradigm takes place, this is related to the
transport coefficient of the thin membrane hovering over the horizon,

χ = lim
ω→0

lim
k→0

ρH

= 1
qH

√√√√gH(grr)′H
(gtt)′H

. (3.59)

Since we are considering a planar black hole (i.e. not a spherical one), we can rewrite the
above equation as

χ = 1
qH

A

V
, (3.60)

where A is the are of the event horizon and V is the spatial volume. We can go further
and relate these geometrical quantities with the thermodynamics of this black hole (which
corresponds to the membrane), the entropy density is

s = A

4Gd+1V
, (3.61)

therefore
χ

s
= 4Gd+1

qH
. (3.62)

For the case φ is the source for stress-energy at the boundary QFT (i.e. a perturbation of
metric in the bulk gravity side), then q(r) = 16πGd+1 and η is the transport coefficient for
the shear viscosity (in the isotropic case),

η

s
= 1

4π . (3.63)

This is the famous KSS bound conjecture (KOVTUN; SON; STARINETS, 2005), where
all systems should satisfy the inequation η/s ≥ 1/4π. Experimentally QGP and ultracold
atomic Fermi gases have η/s & 1/4π.

One possible violation of this happens in theories containing more then two deriva-
tives of the metric such as Gauss-Bonnet (BRIGANTE et al., 2008b),

S = 1
16πG5

∫
d5x
√
−g

[
R− 12

L2 −
L2

2 λ
(
R2 − 4RµνR

µν +RµνσρR
µνσρ

)]
, (3.64)

which leads to
η

s
= 1− 4λ

4π , (3.65)

violating the KSS bound viscosity when λ > 0.

Another possibility is when homogeneity is broken, or even isotropy (as will be the
case in this work).



Part II

Results
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4 Anisotropic shear viscosity of
a strongly coupled non-Abelian
plasma from magnetic branes
This chapter directly follows the first article published during my PhD (CRITELLI

et al., 2014). In section 4.1 we review the thermodynamics of the magnetic brane solution
found in D’Hoker and Kraus (2009). We also introduce our notation and discuss the
numerical procedure used to solve the Einstein-Maxwell coupled equations. In section 4.2,
after a preliminary discussion about the computation of η/s (where η is the shear viscosity
and s is the entropy density) using the membrane paradigm in isotropic theories, we show
that metric fluctuations around the magnetic brane background (i.e. around an anisotropic
theory) on directions parallel and transverse to an external magnetic field result in scalar
field fluctuations with two different couplings which, in the context of the membrane
paradigm, are the shear viscosity coefficients η⊥ and η‖. Finally we discuss how our results
violate the Kovtun-Son-Starinets viscosity limit η/s ≥ 1/4π.

4.1 Magnetic brane background
We consider in the bulk a simple Einstein-Maxwell system and look for solutions

corresponding to the deformation of the AdS5-Schwarzschild geometry due to a U(1)
Abelian gauge field which is chosen to give a constant and homogeneous magnetic field.
This magnetic field in the bulk is then taken as an external magnetic field at the boundary
gauge theory which is a strongly coupled N = 4 SYM theory (D’HOKER; KRAUS, 2009).
Clearly, the adjoint fermions in SYM feel directly the effects of the magnetic field but,
due to fermion loops, the gluon sector is also affected by the field. This is why the
thermodynamic properties of this magnetic SYM plasma considerably differ from those
found in SYM in the absence of external fields.

Let us review this background and its thermodynamic properties. The action of
the 5-dimensional gravitational bulk theory is given by the Einstein-Hilbert action coupled
with a Maxwell field

S = 1
16πG5

∫
d5x
√
−g

(
R + 12

L2 − F
2
)

+ SCS + SGHY , (4.1)

where G5 is the 5-dimensional gravitational constant, L is the asymptotic AdS5 radius
and F is the Maxwell field strength 2-form. The subscripts in the actions SCS and SGHY
stand for Chern-Simons and Gibbons-Hawking-York, respectively. The latter action is
necessary to define a well posed variational problem, but both terms will not play a role in
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the calculation of shear viscosity coefficients1. From holographic renormalization point of
view, other terms are also needed in Equation 4.1 but they do not affect the calculations
performed in this thesis.

The resulting Einstein field equations are then given by

Rµν = − 4
L2 gµν −

1
3FρσF

ρσgµν + 2FµρF ρ
ν , (4.2)

and the Maxwell’s field equations for the Abelian field,

∇µF
µν = 0. (4.3)

Following D’Hoker and Kraus (2009), the Ansatz for the magnetic brane geometry is

ds2 = −U(r)dt2 + dr2

U(r) + f(r)(dx2 + dy2) + p(r)dz2, (4.4)

where U(r), f(r) and p(r) are determined by solving the equations of motion. The
holographic coordinate r is such that the boundary is located at r →∞. We want a black
brane background and, thus, we require that at a given r = rh the function U(r) has a
simple zero. The Ansatz for the field strength F is given by

F = B dx ∧ dy, (4.5)

where the constant and homogeneous B is the bulk magnetic field oriented along the
z-direction. It can be checked that the Equation 4.3 is trivially satisfied by this Ansatz.

In the absence of a magnetic field (i.e. B = 0) we must obtain f = p, which
reflects the spatial SO(3) invariance of the boundary gauge theory. However, since the
magnetic field (B 6= 0) establishes a preferred direction in space, it breaks SO(3) to a
SO(2) symmetry in the (x, y)-directions. In the bulk theory this is taken into account by
the fact that in this case f 6= p.

The Equation 4.2 together with the ansatz of Equation 4.4 result in the following
equations of motion,

U(V ′′ −W ′′) + (U ′ + U(2V ′ +W ′)) (V ′ −W ′) = −2B2e−4V ,

2V ′′ +W ′′ + 2(V ′)2 + (W ′)2 = 0,
1
2U
′′ + 1

2U
′(2V ′ +W ′) = 4 + 2

3B
2e−4V ,

2U ′V ′ + U ′W ′ + 2U(V ′)2 + 4UV ′W ′ = 12− 2B2e−4V ,

(4.6)

where we defined V and W by f = e2V and p = e2W . The derivative with respect to r
of the fourth equation is the same to a non-linear combination of the four equations in
Equation 4.6 and, thus, the fourth equation can be taken as a constraint on initial data.
1 We note that our definition for the Riemann tensor possesses an overall minus sign in comparison to

the one used by D’Hoker and Kraus (2009).
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It is well-known that charged systems undergo dimensional reduction in the presence
of strong fields due to the projection towards the lowest Landau level (GUSYNIN; MI-
RANSKY; SHOVKOVY, 1994; GUSYNIN; MIRANSKY; SHOVKOVY, 1995; GUSYNIN;
MIRANSKY; SHOVKOVY, 1996) (see the recent review in Shovkovy (2013)). Taking
that into account, D’Hoker and Kraus (2009) proposed that the background described by
Equation 4.4 satisfies two conditions. The first condition is that the geometry must be
asymptotically AdS5, i.e. when r →∞ then U(r)→ r2, p(r)→ r2 and f(r)→ r2 because
in the UV we must recover the dynamics of N = 4 SYM without the influence of the
magnetic field. The second condition is that in the asymptotic IR the geometry becomes
a BTZ black hole (BANADOS; TEITELBOIM; ZANELLI, 1992) for coordinates in time,
holographic and spatial direction parallel to the magnetic field; and a two dimensional
torus T2 for coordinates in spatial directions orthogonal to the magnetic field. In fact,
deep in the IR, r ∼ rh, the geometry of the black brane is given by

ds2 =
[
−3(r2 − r2

h)dt2 + 3r2dz2 + dr2

3(r2 − r2
h)

]
+
[
B√

3
(dx2 + dy2)

]
. (4.7)

This implies that in the IR the dynamics corresponds to a (1 + 1)-dimensional CFT. Thus,
imposing that the background interpolates between the BTZ black hole for r ∼ rh and
AdS5 for r →∞ and interpreting the flow along the r-direction as a renormalization group
flow, this solution flows from a (1 + 1)-dimensional CFT in the IR to a 4-dimensional CFT
in the UV (D’HOKER; KRAUS, 2009).

4.1.1 Numerical solution and thermodynamics

Unfortunately, no analytic solution interpolating between AdS5 and the BTZ×T2

geometry is known and, thus, we must resort to numerics. In this subsection we briefly
review the numerical procedure for solving the Equation 4.6 and the thermodynamics,
first elaborated by D’Hoker and Kraus (2009). We do so since the same procedure will be
used to determine η‖/η⊥ numerically in section 4.2.

The strategy is to first choose the scale for the t and r coordinates to fix the horizon
position at rh = 1 so that Ũ(1) = 0, where the tilde indicates that we are in the rescaled
coordinates t̃ and r̃. By using the fact that any physical quantity in this model should
depend on the dimensionless ratio T/

√
B, we also fix the temperature at T = 1/(4π) —

this means that we must take Ũ ′(1) = 1. Also, we rescale the x, y, and z coordinates to
have Ṽ (1) = W̃ (1) = 0. In these new coordinates, the magnetic field is b. After these
redefinitions, the first and fourth equations in Equation 4.6 yield

Ṽ ′(1) = 4− 4
3b

2 and W̃ ′(1) = 4 + 2
3b

2. (4.8)

This gives a well posed initial value problem for Ũ(r̃), Ṽ (r̃), and W̃ (r̃), which can
be numerically integrated from near r̃ = 1 to a large value of r̃. It can be checked that the
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geometry has the asymptotic behavior

Ũ(r̃)→ r̃2, e2Ṽ (r̃) → vr̃2, and e2W̃ (r̃) → wr̃2, (4.9)

where v and w are asymptotic coefficients that depend on the rescaled magnetic field b. This
result implies that, apart from a coordinate rescaling, the geometry is asymptotically AdS5.
To go back to the original units and have the correct AdS5 asymptotic behavior, we need to
rescale back to our original coordinate system by doing (x̃, ỹ, z̃)→ (x/

√
v, y/
√
v, z/
√
w).

The metric (in coordinates that are asymptotically AdS5) then becomes

ds2 = −Ũ(r)dt2 + dr2

Ũ(r)
+ e2Ṽ (r)

v
(dx2 + dy2) + e2W̃ (r)

w
dz2, (4.10)

where we note that we have taken r = r̃. By the same token, the field strength is now
written as

F = b

v
dx ∧ dy. (4.11)

Therefore, the rescaled magnetic field is related to the physical field at the boundary by
B = b/v. Also, if we take b >

√
3 in Equation 4.8 then we have V ′(1) < 0, which means

that the geometry will not be asymptotically AdS5. Thus, the rescaled field b is bounded
to b <

√
3.

From Equation 4.10 one can obtain the thermodynamics of the gauge theory. The
physical field is B =

√
3B, as argued in D’Hoker and Kraus (2009) by comparing the Chern-

Simons term in Equation 4.1 with the N = 4 SYM chiral anomaly. The dimensionless
ratio T/

√
B is given by

T√
B

= 1
4π 31/4

√
v

b
. (4.12)

while the dimensionless ratio of the entropy density s by N2B3 (using that G5 = π/2N2)
is

s

N2B3/2 = 1
2π33/4

√
v

b3w
. (4.13)

The numerical procedure for evaluating the thermodynamics can then be summa-
rized as follows: one chooses a value of the rescaled magnetic field b, numerically solves the
Equation 4.6 and obtains the asymptotic coefficients v(b) and w(b) as shown in Figure 6a
by fitting the asymptotic behavior of Ṽ (r) and W̃ (r) to the functions v(b)r2 and w(b)r2,
respectively. Then using Equation 4.12 and Equation 4.13 one is able to evaluate T/

√
B

versus s/(N2B3/2) as shown in Figure 6b by using b as a parameter2.

2 We have checked that our results match those previously found in D’Hoker and Kraus (2009).
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Figure 6 – (a) The asymptotic coefficients v (solid blue curve) and w (dashed black curve)
as a function of b/

√
3; (b) The normalized entropy density s/(N2B3/2) as a

function of the dimensionless combination T/
√
B.
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4.2 Anisotropic shear viscosity due to an external
magnetic field

We begin this section discussing the computation of the ratio between the shear
viscosity and the entropy density from membrane paradigm in isotropic theories. Then
we show that metric fluctuations around a magnetic brane background described by
Equation 4.4 on directions parallel and transverse to the external magnetic field result in
scalar field fluctuations yielding, in the context of the membrane paradigm, an anisotropic
shear viscosity. Finally we show that this anisotropy violates the conjectured viscosity
bound η/s ≥ 1/4π.

4.2.1 Isotropic shear viscosity

From linear response theory (KAPUSTA; GALE, 2011), the viscosity tensor for an
anisotropic theory is given by the Kubo formula

ηijkl = − lim
ω→0

1
ω
Im GR

ij,kl(ω,~k = 0) with i, j, k, l = x, y, z (4.14)

where GR
ij,kl(ω,~k) is the retarded Green’s function in momentum coordinates given by

GR
ij,kl(ω,~k) = −i

∫
d4x e−ik·xθ(t)

〈[
T̂ij(x), T̂kl(0)

]〉
, (4.15)

while T̂ij is the stress-energy operator in the quantum field theory and θ(t) is the step
function.

For an isotropic theory of hydrodynamics in the absence of other conserved currents,
there are only two transport coefficients associated with energy and momentum at the
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level of relativistic Navier-Stokes theory, namely the isotropic shear viscosity η and
the bulk viscosity ζ. The computation of η in strongly coupled gauge theories using
the gauge/gravity duality in the case of isotropic gauge theories with two derivative
gravitational duals gives a universal value (POLICASTRO; SON; STARINETS, 2001;
KOVTUN; SON; STARINETS, 2005)

η

s
= 1

4π . (4.16)

A convenient method that can be used to derive this result is the membrane
paradigm (IQBAL; LIU, 2009). In this framework, if we want to compute the transport
coefficient χ of a scalar operator Ô given by the Kubo formula

χ = − lim
ω→0

1
ω
Im GR(ω,~k = 0), (4.17)

where GR is the retarded correlator associated with the scalar operator Ô

GR(ω,~k) = −i
∫
d4x e−ik·xθ(t)〈

[
Ô(x), Ô(0)

]
〉, (4.18)

one needs to look for fluctuations φ of the associated bulk field in dual gravity theory,
in accordance with the gauge/gravity dictionary (GUBSER; KLEBANOV; POLYAKOV,
1998; SON; STARINETS, 2002). In the case that the action for the fluctuations is given
by a massless scalar field with an r dependent coupling Z(r), i.e.

Sfluc = −
∫
d5x
√
−g 1

2Z(r)(∂φ)2, (4.19)

then the transport coefficient χ is given by the corresponding transport coefficient χmb of
the stretched membrane of the black brane horizon (IQBAL; LIU, 2009)

χ = χmb = 1
Z(rh)

. (4.20)

In the case of the isotropic shear viscosity η, we must consider the fluctuations hxy of the
metric component gxy since the energy-momentum tensor operator in the gauge theory T̂µν
is dual to the bulk metric gµν of the gravity dual3. Given that in isotropic backgrounds the
mixed fluctuation hyx can be described by Equation 4.19 with Z(r) = 16πG5 (KOVTUN;
SON; STARINETS, 2005), then Equation 4.20 guarantees that η = 1/(16πG5). The
universal result in Equation 4.16 follows from identifying the entropy density with the
area of the horizon via the Bekenstein formula.

4.2.2 Shear tensor in a magnetic field

Let us now consider metric fluctuations about the background Equation 4.4, which
is a solution of the Einstein-Maxwell system in Equation 4.1. In a fluid with axial symmetry
3 Since the background in this case is isotropic then one could have considered instead fluctuations of

the metric components gxz or gyz without loss of generality.
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due to an external magnetic field, we show how one can determine the form of the shear
tensor — the detailed discussion can be found in Huang, Sedrakian and Rischke (2011).
Here we will present an overview of how one can construct a rank-4 viscosity tensor ηαβµν

defined in Equation 4.14, incorporate the anisotropy due to the magnetic field B, and then
extract the shear viscosities ηxzxz and ηxyxy from Kubo formula4. To clarify the discussion,
we define the dissipation function R,

R = 1
2η

µναβwµνwαβ, (4.21)

where wµν = 1
2 (∇µuν +∇νuµ), with uµ being the 4-velocity and ∇µ = ∆µν∂

ν ; the object
∆µν is just a projector on the directions orthogonal to uµ. Thus, the viscosity tensor
gives us information about dissipation (i.e. generation of entropy) in the fluid. Taking
the functional derivative of Equation 4.21 with respect to wµν , we obtain the usual stress
tensor Πµν ,

Πµν = ηµναβwαβ. (4.22)

The construction of the viscosity tensor is based on its symmetry properties,

ηµναβ(B) = ηνµαβ(B) = ηµνβα(B) (4.23)

and the Onsager principle (LIFSHITZ; PITAEVSKII, 1981; HUANG; SEDRAKIAN;
RISCHKE, 2011),

ηµναβ(B) = ηαβµν(−B). (4.24)

First, one writes down all the linear independent objects satisfying the above conditions
of symmetry:

a) ∆µν∆αβ;

b) ∆µα∆νβ + ∆µβ∆να;

c) ∆µνbαbβ + ∆αβbµbν ;

d) bµbνbαbβ;

e) ∆µαbνbβ + ∆µβbνbα + ∆ναbµbβ + ∆νβbµbα;

f) ∆µαbνβ + ∆µβbνα + ∆ναbµβ + ∆νβbµα;

g) bµαbνbβ + bµβbνbα + bναbµbβ + bνβbµbα.

Where bµ is a spacelike vector orthogonal to the magnetic field, and bµν = εµναβbαuβ. This
means that we have seven coefficients, five shear viscosities and two bulk viscosities. The
shear viscosities are related to the traceless part of Πµν while the bulk viscosities are
related to the trace of the stress tensor. We note that Onsager’s condition in Equation 4.22
4 For the sake of convenience, we will adopt the same conventions of those adopted in Huang, Sedrakian

and Rischke (2011) and, thus, we will work in 4-dimensional Minkowski spacetime with mostly minus
signature.
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is responsible for the presence of the two last tensors, (f) and (g), involving the Levi-
Civita symbol εµναβ. These structures may appear in magnetized plasmas (LIFSHITZ;
PITAEVSKII, 1981; HUANG; SEDRAKIAN; RISCHKE, 2011) but they are not present
in the case of anisotropic superfluids (LANDAU et al., 1986).

In fact, according to Erdmenger, Kerner and Zeller (2011), Erdmenger, Fernandez
and Zeller (2013), Jain et al. (2015), for an anisotropic diagonal metric one can find
only five linearly independent coefficients for the shear viscosity tensor due to metric
fluctuations. This result is valid for the diagonal anisotropic background considered in this
work (see Equation 4.4) and one can show using Kubo formulas that the two coefficients
associated with (f) and (g) trivially vanish due to the general structure of the background
metric.

For the sake of convenience, we will adopt the same combination of viscosity
coefficients chosen in Huang, Sedrakian and Rischke (2011). Thus, using the general linear
combination of the structures above, we find the most general form of the viscosity tensor
in the presence of a constant magnetic field,

ηµναβ = (−2/3η0 + 1/4η1 + 3/2ζ⊥)(a) + (η0)(b) + (3/4η1 + 3/2ζ⊥)(c)+

+(9/4η1 − 4η2 + 3/2ζ⊥ + 3ζ‖)(d) + (−η2)(e) + (−η4)(f)+

+(−η3 + η4)(g),

(4.25)

where the Kubo formulas for these coefficients are given by

ζ⊥ = −1
3
∂

∂ω

[
2GR

P̃⊥P̃⊥
(ω,~0) +GR

P̃⊥P̃‖
(ω,~0)

] ∣∣∣∣∣
ω→0

,

ζ‖ = −1
3
∂

∂ω

[
2GR

P̃⊥P̃‖
(ω,~0) +GR

P̃‖P̃‖
(ω,~0)

] ∣∣∣∣∣
ω→0

,

η0 = − ∂

∂ω
ImGR

T̂ 12,T̂ 12(ω,~0)
∣∣∣∣∣
ω→0

,

η1 = −4
3η0 + 2 ∂

∂ω
GR
P̃⊥P̃‖

(ω,~0)
∣∣∣∣∣
ω→0

,

η2 = −η0 −
∂

∂ω
ImGR

T̂ 13,T̂ 13(ω,~0)
∣∣∣∣∣
ω→0

,

η3 = − ∂

∂ω
GR
P̃⊥,T̂ 23(ω,~0)

∣∣∣∣∣
ω→0

,

η4 = − ∂

∂ω
GR
T̂ 13,T̂ 23(ω,~0)

∣∣∣∣∣
ω→0

,

(4.26)

where P̃⊥ = P̂⊥−(θβ−Φβ)ε̂ and P̃‖ = P̂‖−θβ ε̂; with P̂⊥ = −1
2(∆µν+bµbν)T̂ µν , P̂‖ = bµbνT̂

µν ,
θβ =

(
∂P
∂ε

)
B
, Φβ = −B

(
∂M
∂ε

)
B
, ε̂ = uµuνT̂

µν , and M is the magnetization of the plasma.
Also, the retarded Green’s function is defined as

GR
ÂB̂

(ω,~k) = −i
∫
d4x e−ik·xθ(t)

〈[
Â(x), B̂(0)

]〉
. (4.27)
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The relation between these coefficients and the shear viscosities, η⊥ and η‖, calcu-
lated holographically, is

η0 = η⊥,

η0 + η2 = η‖.
(4.28)

Finally, one can see from Equation 4.26 that for the type of background considered
in this work η3 = η4 = 0, because the components hxz, hyz, (hyy +hxx), and hxy do not mix
when one computes the action for the fluctuations. Thus, there are only five independents
transport coefficients in this class of anisotropic backgrounds5. From now on, we will be
especially interested in the following two components of ηijkl,

ηxyxy = η⊥ and ηyzyz = ηxzxz = η‖. (4.29)

4.2.3 Anisotropic shear viscosity

The magnetic field breaks the SO(3) rotational invariance of background to only a
SO(2) rotation invariance about the z-axis. Thus, as expected, it is possible to show that
the fluctuation φ(t, r) = hyx(t, r) obeys

δS = − 1
32πG5

∫
d5x
√
−g (∂φ)2, (4.30)

which means that the shear viscosity ηxyxy ≡ η⊥ is still given by Equation 4.16 and this
shear coefficient saturates the viscosity bound.

However, hzx (or, equivalently, hzy) fluctuations are not protected by the remaining
rotation invariance of the background. In fact, in the context of the membrane paradigm,
we must first show that the fluctuation hzx(t, r) obeys the equation of a massless scalar
field in order to apply Equation 4.20. However, the coupling in the action may differ from
Equation 4.30 and, thus, η‖ 6= η⊥.

Consider then a fluctuation of the form gzx → gzx + hzx
6. In order to have a scalar-

like action with just the kinetic term (and possibly a r dependent coupling), we choose the
mode ψ(t, r) ≡ hzy(t, r), rather than hyz(t, r) for example. Inserting this fluctuation into

5 Incidentally, anisotropic superfluids also have 5 transport coefficients (LANDAU et al., 1986; ERD-
MENGER; KERNER; ZELLER, 2011)

6 One can show that homogeneous fluctuations of the U(1) bulk field Aµ decouple from the corresponding
fluctuations hxy and hzx.
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the action and keeping only quadratic terms one can show that

δS = 1
16πG5

∫
d5x
√
−g

{
ψ2
(
�p
f
− p

f 2�f −
3

2f 2∂µf∂
µp+ 3p

2f 3 (∂f)2
)

+

+2p
f
ψ�ψ − 3p

2f 2∂µf∂
µψ2 + 2

f
∂µp∂

µψ2+

− 3p
2f

(∂tψ)2

U
+ 3p

2f U(∂rψ)2 +
(

= 3p
2f ∂µψ∂

µψ

)

−
(
R + 12

L2 − F
2
)
p

2f ψ
2 − p

f
F 2ψ2

}
,

(4.31)

where the d’Alembertian is

� = − 1
U
∂2
t + U∂2

r +
(
U ′ + Uf ′

f
+ Up′

2p

)
∂r. (4.32)

The trace of Einstein field equations (i.e. Equation 4.2) gives R + 20/L2 = F 2/3 and,
integrating by parts the ψ�ψ term, we rewrite the action in Equation 4.31 to

δS = 1
16πG5

∫
d5x
√
−g

[
− p

2f ∂µψ∂
µψ − p

2f 2∂µf∂
µψ2 + 1

f
∂µp∂

µψ2+

+ψ2
(
�p
f
− p

f 2�f −
3

2f 2∂µf∂
µp+ 3p

2f 3 (∂f)2
)

+

+
(

4p
fL2ψ

2 + F 2

3
p

f
ψ2
)
− p

f
F 2ψ2

]
.

(4.33)

We now use Equation 4.2. One needs the zz equation,

4p
fL2 = �p2f −

(∂p)2

2pf −
F 2

3
p

f
, (4.34)

and also the yy equation,

−1
2�p+ (∂p)2

2p = −4p
L2 −

F 2

3 p. (4.35)

Using the Equation 4.34 in Equation 4.33 and integrating by parts once again, noting that

1
f
∂µp∂

µψ2 = ∇µ

(
∂µp

f
ψ2
)

+ 1
f 2∂µf∂

µpψ2 − ψ2�p
f
, (4.36)

and

− p

2f 2∂µf∂
µψ2 = −∇µ

(
ψ2 p

2f ∂
µf

)
+ ψ2

2f 2∂µp∂
µf − p

f 3ψ
2(∂f)2 + p

2f 2ψ
2�f, (4.37)

we arrive at

δS = 1
16πG5

∫
d5x
√
−g

[
− p

2f ∂µψ∂
µψ + p

f
ψ2 +

+ p

f
ψ2
(

1
2
�p
p
− 1

2f�f + 1
2f 2 (∂f)2 − (∂p)2

2p2

)
− p

f
F 2ψ2

]
.

(4.38)
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Finally, from Equation 4.34 and Equation 4.35

1
2
�p
p
− 1

2f�f + 1
2f 2 (∂f)2 − (∂p)2

2p2 = F 2, (4.39)

one can show that the action for the fluctuations Equation 4.38 becomes

δS = − 1
16πG5

∫
d5x
√
−g

(
p(r)

2f(r)∂µψ∂
µψ

)
. (4.40)

Therefore, we have a massless scalar field with a r dependent coupling Z(r) = 16πG5f/p.
These functions were found in the previous section to determine the thermodynamic
properties of this system and, thus, in the next section we shall evaluate η‖.

4.2.4 Viscosity bound violation due to an external magnetic
field

From the result of the previous section, it follows that we can also apply the
membrane paradigm to Equation 4.40 to evaluate η‖, using Equation 4.20. We then have

η‖
s

= 1
4π

p(rh)
f(rh)

. (4.41)

In terms of the numerical, rescaled geometry described in Equation 4.10, we then obtain
η‖
s

= 1
4π

v

w
. (4.42)

Thus, the ratio (η/s)‖/(η/s)⊥ is given by v/w. Using this result, we can then evaluate
the degree of anisotropy of the shear viscosities as a function of B/T 2; see Figure 7. One
can see that for B/T 2 � 1, η‖ → η⊥, reflecting the fact that at high temperatures we
recover the isotropic strongly coupled SYM plasma limit. The asymptotic behavior in the
opposite limit, B/T 2 � 1, can be understood by looking at the BTZ metric Equation 4.7,
which is the relevant geometry in this case. Evaluating η‖ in this limit, one obtains the
asymptotic behavior

η‖
s
∼ π

T 2

B
for B � T 2, (4.43)

which is also shown in Figure 7.

We should note that in this model, η‖/s < 1/(4π) whenever B > 0. This gives
another example in which the viscosity bound in a gravity dual is violated due to anisotropy.
The formula above indicates that η‖/s can become much smaller than 1/(4π) for sufficiently
strong fields. However, it is conceivable that in this limit other constraints must be imposed
to obtain a well defined theory. In fact, it was found in Brigante et al. (2008b), Brigante
et al. (2008a) that causality in the gauge theory constituted an important constraint
that was used to set a lower value for η/s in that particular case involving higher order
derivatives in the gravity dual. This matter deserves further study and we hope to address
this question in the future.
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Figure 7 – The ratio of shear viscosities (η/s)‖/(η/s)⊥ as a function of B/T 2. The solid
blue line is the numerical result from (η/s)‖/(η/s)⊥ = v/w; the dashed red line
is the asymptotic result valid only when B � T 2 given by Equation 4.43.

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

B�T²

HΗ
�sL

���
HΗ

�sL
¦

Source – Made by the authors.

4.3 Quasinormal modes for each scalar channels

We now analyze the near-equilibrium properties of the system encoded in its
quasinormal modes as function of the magnetic field. In this section we calculate the
QNM’s for an external scalar perturbation on top of the magnetic brane background
for each scalar channel, the parallel to the magnetic field φ‖ and the transversal to the
magnetic field φ⊥. In each channel the field evaluated at the boundary act as a source for
stress-energy tensor on the QFT side of the AdS/CFT correspondence. Each channel is
described by corresponding the bulk action of a massless scalar field,

S = −1
2

∫
d5x
√
−g (∂φ)2

q(r) , (4.44)

where φ = φ(t,x, r) and q(r) is the effective coupling. The perturbation of the metric
transversal to the magnetic field is φ⊥ = hyx, and the parallel is φ‖ = hzy. The resulting
equation of motion is

∂µ

(√
−g
q(r) g

µν∂νφ

)
= 0. (4.45)

The numerical method used to obtain the QNM’s in this section is direct numerical
integration which is much less powerful and time consuming than the one recently used in
section 5.2 called pseudospectral method. In order to make it less difficult to solve the fol-
lowing differential equations by numerical integration we consider just the hydrodynamical
limit, i.e. when k→ 0, which means the scalar function does not depend on position x.
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4.3.1 Transversal scalar channel

For the transversal perturbation of the metric, φ = hyx ≡ φ⊥(t, r), the effective
coupling is q⊥(r) = 16πG5, and the equation of motion obeys

φ′′⊥ +
(
U ′

U
+ 2V ′ +W ′

)
φ′⊥ −

φ̈⊥
U2 = 0, (4.46)

where φ̇ ≡ ∂tφ and φ′ ≡ ∂rφ. Now we use the ansatz of plane wave functions propagating
trough the bulk

φ⊥(t, r) = e−iωtφ̃⊥(ω, r). (4.47)

As we will soon see, ω assumes only a discrete spectrum, then one cannot take Fourier
transform in principle.

In addition to the plane wave solution we will simplify the differential equation
in order to better manipulate the method of numerical integration, thus we rescale the
holographic coordinate to r → rHr so the event horizon is now located at r = 1, also
the metric components are normalized to U(r) → rHU

′
HU(r), V (r) → VH + V (r), and

W (r)→ WH +W (r). The Hawking temperature is a scalar and takes the value

T = U ′H
4π . (4.48)

The equation of motion reduces to

φ̃′′⊥ +
(
U ′

U
+ 2V ′ +W ′

)
φ̃′⊥ + (ω/πT )2

16U2 φ̃⊥ = 0, (4.49)

where ω/πT is an eigenvalue (that still needs well defined boundary conditions which we
will soon offer). We choose the in-falling wave solution for the same reasons claimed in
section 3.4, that is, to preserve causality in the gravity side so one identify a retarded
Green function at the boundary QFT. One can compute the exponent α (for guidance see
Equation 3.54) then

φ̃⊥(r) = (r − 1)−i ωπT P⊥(r), (4.50)

and we are free to choose a finite and nonzero value for P⊥ at the horizon because the
differential equation is homogeneous, then P⊥(1) = 1.

Using this ansatz, the resulting differential equation becomes

P ′′⊥ +
(
U ′

U
+ 2V ′ +W ′ − i(ω/πT )

2(r − 1)

)
P ′⊥+

+
(

(ω/πT )2

16U2 − i(ω/πT )(U ′ + U(2V ′ +W ′))
4U(r − 1) − (ω/πT )(ω/πT − 4i)

16(r − 1)2

)
P⊥ = 0.

(4.51)

To completely specify the eigenvalue problem to be solved in order to find the QNM
spectra associated to this scalar channel, we still need to impose a Dirichlet boundary
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condition. From the fact that φ̃ is a scalar field defined on an asymptotically AdS5

background, it follows that asymptotically close to the boundary it may be written as φ̃(r) =
G(r) + F (r)

r4 , with the leading, non-normalizable mode lim
r→∞

G(r) = J(ω) being the source
for the QFT operator Ô dual to the scalar field φ, and the subleading, normalizable mode
lim
r→∞

F (r) = 〈Ô(ω)〉 being its expectation value. According to the real time holographic
dictionary (SON; STARINETS, 2002), the retarded propagator of the QFT operator Ô
is given by the ratio between the normalizable and non-normalizable modes, GR

ÔÔ
(ω) =

−〈Ô(ω)〉/J(ω). Therefore, if we impose, as a Dirichlet boundary condition, the selection
of the normalizable mode (i.e. no source for the QFT operator Ô) by setting lim

r→∞
G(r) = 0

with lim
r→∞

F (r) 6= 0, we are left with an eigenvalue problem whose eigenfrequencies
correspond to a dispersion relation where B/T 2 is the parameter, describing the poles
of GR

ÔÔ
, which are the QNM’s we are looking for. This argument is mathematically

summarized to

lim
r→+∞

P⊥(r) = 0. (4.52)

After one solves the Equation 4.51 with the Dirichlet boundary conditions one
obtains the graphs below that show the evolution of the two lowest quasinormal modes as
function of the physical magnetic field Figure 8, and also for each component in Figure 9.

Figure 8 – Flow direction of the lowest QNM’s for the transversal scalar channel as the
magnetic field B/T 2 increases.
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Notice the QNM’s becomes purely imaginary as the magnetic field goes to infinity.
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Figure 9 – QNM’s for the transversal scalar channel for a given value of the magnetic field
B/T 2.
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4.3.2 Parallel scalar channel

For the case which φ = hzy ≡ φ‖(t, r) the effective coupling is q‖(r) = 16πG5e
2(V−W ),

and the equation of motion obey

φ′′‖ +
(
U ′

U
+ 3W ′

)
φ′‖ −

φ̈‖
U2 = 0. (4.53)

The resolution will be very similar as done for the transversal case. We use the ansatz of
plane wave functions propagating trough the bulk

φ‖(t, r) = e−iωtφ̃‖(ω, r). (4.54)

We also add the same rescaling for r and the components of the metric. The differential
equation reduces to

φ̃′′‖ +
(
U ′

U
+ 3W ′

)
φ̃′‖ + (ω/πT )2

16U2 φ̃‖ = 0 (4.55)

Now we choose the in-falling wave solution with the same exponent as the transversal case

φ̃‖(r) = (r − 1)−i ωπT P‖(r), (4.56)

with P‖(1) = 1.

Using this ansatz, the resulting differential equation is

P ′′‖ +
(
U ′

U
+ 3W ′ − i(ω/πT )

2(r − 1)

)
P ′‖+

+
(

(ω/πT )2

16U2 − i(ω/πT )(U ′ + 3UW ′)
4U(r − 1) − (ω/πT )(ω/πT − 4i)

16(r − 1)2

)
P‖ = 0.

(4.57)
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Selecting the normalizable mode at the boundary is to impose

lim
r→+∞

P‖(r) = 0. (4.58)

Solving the eigenvalues above we obtain the graphs below that show the evolution
of the two lowest quasinormal modes as function of the physical magnetic field Figure 10,
and also for each component in Figure 11.

Figure 10 – Flow direction of the lowest QNM’s for the parallel scalar channel as the
magnetic field B/T 2 increases.

QNMs
1st
2nd
Im

0 2 4 6 8
-12

-10

-8

-6

-4

-2

0

ReHΩL�ΠT

Im
HΩ
L�
Π

T

Evolution of Parallel QNMs

around magnetic branes as B�T2 varies

Source – Made by the authors.

Notice that only one of the QNM’s becomes purely imaginary as the magnetic
field goes to infinity, while the other increases both the real and imaginary part. There is
a third quasinormal mode which is purely imaginary dominating the dynamics at finite
magnetic field. This third mode was also observed by Janiszewski and Kaminski (2016).

Figure 11 – QNM’s for the parallel scalar channel for a given value of the magnetic field
B/T 2.
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5 Critical behavior of non-hydro-
dynamic quasinormal modes in a
strongly coupled plasma
This chapter directly follows the second and last article published during my PhD

(FINAZZO et al., 2017). This is the main chapter of this thesis. In section 5.1 we briefly
review the 1RCBH model and its thermodynamics and phase diagram. Then we compute
the QNM’s for an external scalar perturbation in section 5.2 and for the vector diffusion
channel in the limit of long wavelengths in section 5.3. This work is complemented by
subsection 5.2.4, where we compute the spectral function in the external scalar channel. A
discussion of the pseudo-spectral method, used in the numerical calculations done here,
can also be found in this chapter.

5.1 1-R charge black hole model
For the sake of completeness, in this section we review the thermodynamics of the

1RCBH model (GUBSER, 1999; BEHRNDT; CVETIC; SABRA, 1999; KRAUS; LARSEN;
TRIVEDI, 1999; CAI; SOH, 1999; CVETIC; GUBSER, 1999a; CVETIC; GUBSER,
1999b). We closely follow the discussion made in DeWolfe, Gubser and Rosen (2011b,
chap. 4) and supplement it with additional plots to better illustrate the behavior of the
thermodynamic properties of the model near the critical point.

5.1.1 Background

The 1RCBH model is described by an Einstein-Maxwell-dilaton (EMD) action,

S = 1
2κ2

5

∫
d5x
√
−g

[
R− f(φ)

4 FµνF
µν − 1

2(∂µφ)2 − V (φ)
]
, (5.1)

with the dilaton potential and the coupling between the dilaton and Maxwell fields given
by, respectively,

V (φ) = − 1
L2

(
8e

φ√
6 + 4e−

√
2
3φ
)

and f(φ) = e−2
√

2
3φ, (5.2)

where κ2
5 is the five dimensional Einstein’s constant and L is the asymptotic AdS5 radius.

With these profiles for V (φ) and f(φ), one obtains a consistent truncation of maximally
supersymmetric gauged supergravity in five dimensions, which is itself a consistent trun-
cation of type IIB superstring theory on AdS5×S5. This model is a bona fide top-down
string theory construction, which is dual to a SYM plasma with a finite chemical potential
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under a U(1) subgroup of the global SU(4) symmetry of R-charges. For simplicity, in the
following we set L = 1 without loss of generality.

The 1RCBH line element has the following ansatz

ds2 = e2A(r)
(
−h(r)dt2 + d~x2

)
+ e2B(r)

h(r) dr
2, (5.3)

where r is the holographic radial coordinate and the boundary of the asymptotically AdS5

geometry is located at r →∞. The components of this metric have analytical solution,

A(r) = ln r + 1
6 ln

(
1 + Q2

r2

)
,

B(r) = − ln r − 1
3 ln

(
1 + Q2

r2

)
,

h(r) = 1− M2

r2(r2 +Q2) ,

(5.4)

where Q is the charge and M is the mass of the black brane. The radial position of the
black brane horizon may be written in terms of these two parameters as follows,

rH =
√√

Q4 + 4M2 −Q2

2 . (5.5)

The 1RCBH background is, thus, completely characterized by two nonnegative1 parameters,
(Q,M) or, alternatively, (Q, rH). This charge Q is responsible for the presence of an
electrostatic potential described by the following electromagnetic potential vector,

A = Φ(r)dt =
(
− MQ

r2 +Q2 + MQ

r2
H +Q2

)
dt. (5.6)

And, finally, the dilaton which couples to the Maxwell fields reads

φ(r) = −
√

2
3 ln

(
1 + Q2

r2

)
. (5.7)

5.1.2 Phase diagram

The class of solutions corresponding to the 1RCBH model may be parametrized by
different values of the dimensionless ratio Q/rH which is the ratio between two extrinsic
parameters of the black brane. In this subsection we show how to obtain the equivalent
but thermodynamical parameter µ/T which, this time, is the ratio between two intrinsic
parameters: the Hawking temperature T and the chemical potential µ. We will note that
in this model any dimensionless ratio of thermodynamical quantities is always written in
terms of µ/T , as expected
1 For simplicity, the charge Q is considered nonnegative without loss of generality.
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The Hawking temperature of the black brane horizon is given by

T =

√
−(gtt)′(grr)′

4π

∣∣∣∣∣∣
r=rH

= Q2 + 2r2
H

2π
√
Q2 + r2

H

, (5.8)

where the prime symbol ′ denotes a derivative with respect to r. On the other hand, the
U(1) R-charge chemical potential reads

µ = lim
r→∞

Φ(r) = QrH√
Q2 + r2

H

. (5.9)

Dividing the Equation 5.8 by Equation 5.9 and then solving for Q/rH , one obtains

Q

rH
=
√

2

1±
√

1−
(
µ/T

π/
√

2

)2

µ/T

π/
√

2

 . (5.10)

Since Q/rH is nonnegative, Equation 5.10 implies that µ/T ∈
[
0, π/

√
2
]
. It also follows

from Equation 5.10 that for every value of µ/T ∈
[
0, π/

√
2
)
, there are two different

corresponding values of Q/rH , which parametrize two different branches of solutions. As
we are going to show in the next subsection, by analyzing the thermodynamics of the
1RCBH solutions one concludes that the point of the phase diagram where these two
branches merge, µ/T = π/

√
2 or, correspondingly, Q/rH =

√
2, is a critical point of a

second order phase transition.

In order to simplify the equations that lie ahead in this chapter, we define below a
useful variable that smoothly connects these two branches of solutions,

y2 +
(
µ/T

π/
√

2

)2

= 1 with y ∈ [−1, 1], (5.11)

where y = 0 parametrizes the critical background geometry with µ/T = π/
√

2, while
y = 1 parametrizes the AdS5-Schwarzschild background, corresponding to Q = 0 and
rH 6= 0, which implies µ/T = 0. For y = −1 we also have µ/T = 0, but this time rH = 0
and Q 6= 0, which corresponds to a supersymmetric BPS solution dubbed “superstar”
(MYERS; TAFJORD, 2001) instead of a black hole.

As we are going to see in the next subsection, the thermodynamically stable branch
corresponds to the lower sign in Equation 5.10 with Q/rH ∈

[
0,
√

2
)
or y ∈

(
0, 1

]
, while

the thermodynamically unstable branch corresponds to the upper sign in Equation 5.10
with Q/rH ∈

(√
2,∞

)
or y ∈

[
− 1, 0

)
, with both branches of solutions being smoothly

connected at the critical point, Q/rH =
√

2 or y = 0. This is illustrated in Figure 12.

5.1.3 Thermodynamics: equation of state and susceptibilities

For a SYM plasma, it is known that (GUBSER; KLEBANOV; PEET, 1996)
1
κ2

5
= N2

c

4π2 . (5.12)
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Figure 12 – Phase structure of the 1RCBH model (closely following the discussion in
DeWolfe, Gubser and Rosen (2011b, chap. 4)): (a) the single dimensionless
control parameter of the QFT phase diagram, µ/T , as a function of the
corresponding dimensionless ratio Q/rH on the gravity side for both stable
and unstable branches (note that the superstar solution lies atQ/rH →∞); (b)
the same, now in terms of the alternative variable y defined in Equation 5.11.
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By substituting the expression above in Bekenstein-Hawking’s relation (BEKENSTEIN,
1973; HAWKING, 1975), one can write down the entropy density, s = AH/4G5 (see
Table 1), as follows

s

N2
c T

3 = π2

16(3 + y)2(1− y). (5.13)

The R-charge density, ρ = lim
r→∞

δS/δΦ′, may be written as

ρ

N2
c T

3 = µ/T

16 (3 + y)2. (5.14)

From the Gibbs-Duhem relation, dp = sdT + ρdµ, one may compute the pressure,

p

N2
c T

4 = π2

128(3 + y)3(1− y). (5.15)

Using the Equation 5.13, the Equation 5.14 and the Equation 5.15 one can readily evaluate
the internal energy density, ε = Ts− p+µρ, obtaining ε = 3p, as expected for a conformal
QFT in four dimensions.

The heat capacity at fixed chemical potential is given by Cµ = (∂s/∂T )µ, while
the nth-order R-charge susceptibility is given by χn = (∂np/∂µn)T (note that χ1 = ρ). At
the critical point the heat capacity Cµ and the higher order susceptibilities χn≥2 diverge.
In Figure 13 we show the equation of state and the heat capacity while in Figure 14 we
display the susceptibilities for the stable and unstable branches of the 1RCBH model.
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Figure 13 – Equation of state and heat capacity for the 1RCBH model (closely following
the discussion in DeWolfe, Gubser and Rosen (2011b, chap. 4)).
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In the 1RCBH model one obtains the Jacobian J = ∂(s, ρ)/∂(T, µ) to be

J
N4
c T

4 = 3π2

256(3− y)4
(

1 + 1
y

)
. (5.16)

Thermodynamical stability is ensured if J > 0, therefore, analyzing the Equation 5.16 we
note that the quartic term is always positive while the expression in the last parenthesis
becomes negative for y ∈

(
− 1, 0

)
, justifying the aforementioned classification of stable

and unstable branches2.

Finally, by analyzing the behavior of the R-charge density in Equation 5.14 near
the critical point, one can obtain the static critical exponent δ = 2 as discussed in Maeda,
Natsuume and Okamura (2008), Buchel (2010), DeWolfe, Gubser and Rosen (2011b).

2 Note that the superstar solution (y = −1) has J = 0 and corresponds to a saddle point.
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Figure 14 – nth-order susceptibilities for the 1RCBH model.
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5.2 QNM’s for an external scalar fluctuation

In the previous section we reviewed the thermodynamical equilibrium properties of
the 1RCBH plasma. We now analyze near-equilibrium properties of the system encoded
in its quasinormal modes. In this section we calculate the QNM’s for an external scalar
perturbation ϕ on top of the 1RCBH backgrounds (which may be interpreted as the source
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for stress-energy tensor on the QFT side of the AdS/CFT correspondence) described by
the bulk action,

S = 1
2κ2

5

∫
d5x
√
−g

[
−1

2(∂µϕ)2
]
. (5.17)

In order to find these QNM’s we will use the pseudospectral method and closely follow
the procedure made by Yaffe (2014) that applied this method to a scalar channel on
AdS5-Schwarzschild background and compared the matching spectra to Starinets (2002,
p. 9).

5.2.1 Equation of motion

The equation of motion following from Equation 5.17 is just the massless Klein-
Gordon equation on top of the solution given by Equation 5.3. We take a plane-wave
ansatz for the Fourier modes of the perturbation (it is not a completeness relation),
ϕ(t, ~x, r) = e−iωt+i

~k·~xϕ̃(ω,~k, r), which for brevity we write simply as ϕ̃(ω,~k, r) ≡ ϕ̃(r)
because the differential equations ahead have r as its variable while ω and ~k are treated
as parameters. More precisely, the resulting equation of motion will depend on the
frequency ω, the magnitude of the spatial 3-momentum k ≡ |~k|, and the background
control parameter y.

In what follows we employ the in-falling Eddington-Finkelstein (EF) “time” coordi-
nate defined by

dv = dt+
√
−grr
gtt
dr = dt+ eB−A

h
dr, (5.18)

in terms of which the line element in Equation 5.3 then becomes

ds2 = e2A
(
−hdv2 + d~x2

)
+ 2eA+Bdvdr. (5.19)

One of the main advantages of the EF coordinates is that the in-falling wave condition at
the horizon, which is associated with the retarded Green’s function, becomes automatically
satisfied by just requiring regularity of the solutions there. In these coordinates, the
equation of motion for ϕ̃ becomes

ϕ̃′′ +
(

4A′ −B′ + h′

h

)
ϕ̃′ − iωe

B−A

h
(2ϕ̃′ + 3A′ϕ̃)− k2 e

2(B−A)

h
ϕ̃ = 0. (5.20)

We map the radial coordinate r, defined on the interval rH ≤ r < ∞, to a new dimen-
sionless radial coordinate u = rH/r, defined on the interval 0 ≤ u ≤ 1, which is more
suitable to be used in the pseudospectral method (BOYD, 2013) (to be briefly reviewed in
subsection 5.2.2). In these new coordinates, the equation of motion for the external scalar
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perturbation becomes

ϕ̃′′ − (u4(3− y) + 2u2(1− y)− 3(1 + y)) ϕ̃′
u (1− u2) (u2(3− y) + 1 + y) +

− 2i(ω/T )
π (1− u2)

√
3− y (u2(3− y) + 1 + y)

(4u2(1− y) + 3(y + 1)) ϕ̃
u
√

2u2(1− y) + 1 + y
+

+2
√

2u2(1− y) + 1 + y ϕ̃′

− 4(k/T )2ϕ̃

π2 (1− u2) (3− y) (u2(3− y) + 1 + y) = 0,

(5.21)

where the primes ′ now denote derivatives with respect to the new radial coordinate u.
From the discussion above, and from the definition of the background control parameter
y in Equation 5.11, one concludes that the dimensionless quasinormal eigenfrequencies,
ω/T , will depend only on the dimensionless ratios µ/T and k/T .

To completely specify the eigenvalue problem to be solved in order to find the QNM
spectra associated to this external scalar perturbation, we still need to impose a Dirichlet
boundary condition. From the fact that ϕ̃ is a scalar field defined on an asymptotically
AdS5 background, it follows that asymptotically close to the boundary it may be written
as ϕ̃(u) = G(u) + u4F (u), with the leading, non-normalizable mode G(0) = J(ω,~k) being
the source for the QFT operator Ô dual to the (external) scalar field ϕ, and the subleading,
normalizable mode F (0) = 〈Ô(ω,~k)〉 being its expectation value. According to the real
time holographic dictionary (SON; STARINETS, 2002), the retarded propagator of the
QFT operator Ô is given by the ratio between the normalizable and non-normalizable
modes, GR

ÔÔ
(ω,~k) = −〈Ô(ω,~k)〉/J(ω,~k). Therefore, if we impose, as a Dirichlet boundary

condition, the selection of the normalizable mode (i.e. no source for the QFT operator
Ô) by setting G(0) = 0 with F (0) 6= 0, we are left with an eigenvalue problem whose
eigenfrequencies correspond to the dispersion relation ω/T = ω(k/T ;µ/T )/T describing
the poles of GR

ÔÔ
, which are the QNM’s we are looking for. From Equation 5.21 we set

ϕ̃(u) = u4F (u) with F (0) 6= 0, then we obtain

16u
(

1− 2
u2(3− y) + 1 + y

)
F +

(
u2
(

9− 8
u2(3− y) + 1 + y

)
− 5

)
F ′+

−u
(
1− u2

)
F ′′ + 2i(ω/T )

π
√

3− y (u2(3− y) + 1 + y)

−(12u2(1− y) + 5(1 + y))F√
2u2(1− y) + 1 + y

+

+2u
√

2u2(1− y) + 1 + y F ′

+ 4(k/T )2uF

π2(3− y) (u2(3− y) + 1 + y) = 0.

(5.22)

We now have a Generalized Eigenvalue Problem (GEP) for the eigenfunction F (u)
and the quasinormal eigenfrequency ω/T , which may be solved as functions of k/T and
µ/T via pseudospectral method. Note that Equation 5.22 also reveals one of the greatest
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virtues of the EF coordinates, namely, the fact that it reduces the QNM eigenvalue problem
from a Quadratic Eigenvalue Problem (TISSEUR; MEERBERGEN, 2001) in the standard
set of spacetime coordinates to a GEP, which requires far less computational cost when
numerically evaluating the QNM spectra.

5.2.2 Brief overview of the pseudospectral method

The main numerical algorithm we employ in this work to find the QNM’s is the
pseudospectral method (BOYD, 2013). In this section, we briefly review the main steps
required to tackle the problem. The main advantage of the pseudospectral method, when
compared to other methods used in the literature to calculate QNM’s, is the ease of
numerical implementation and the accuracy — in general, it requires a modest number
of collocation points and basis functions in order to compute several QNM’s with high
accuracy. The main disadvantage is the requirement of high numerical precision in the
intermediate calculations, which still brings a drawback in terms of running time, since
typical machine precision calculations result in spurious results for any but the lowest
QNM’s.

The general spectral method, of which the pseudospectral (or collocant) method
is a particular case3, aims to solve the following general non-homogeneous differential
equation for a complex function f(u),

L̂f(u) = h(u), (5.23)

where L̂ is a general differential operator and h(u) is the non-homogeneous term. One
may consider, for instance, the basic interval u ∈ [0, 1], which was used to define the radial
holographic coordinate u in the main text (with the boundary at u = 0 and the horizon
at u = 1). In finite difference methods one discretizes the basic interval using a finite
grid and introduce finite difference approximations for the derivatives. In both spectral
and pseudospectral methods, one instead introduces a subset {φi(u)}Ni=0 of a complete set
{φi(u)}∞i=0 of orthogonal basis functions defined on the basic interval, approximating f(u)
by its truncated base expansion fN(u),

f(u) ≈ fN(u) =
N∑
i=0

aiφi(u). (5.24)

3 The main difference between spectral and pseudospectral methods regards the determination of the
coefficients ai to be specified in the sequel. As explained in Boyd (2013), the nomenclature used
in the literature is a bit messy: both spectral and pseudospectral methods are known as spectral
methods in a broad sense, due to the fact that they use a complete set of orthogonal functions. In
the restricted sense, spectral methods (also called non-collocant methods) determine the generalized
Fourier coefficients by exploiting the orthogonality of the basis, projecting down the unknown function
f(u). On the other hand, pseudospectral methods (also known as collocant methods) use a selected set
of points on the function domain in order to build an interpolating polynomial. For the purposes of
the present work, we will consider only pseudospectral (or collocant methods) in this restricted sense.
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Now we consider the pseudospectral method in order to determine the coefficients ai that
best provide an approximation fN (u) for f(u). First, one introduces the residual function
R (u; {ai}) defined by,

R (u; {ai}) = L̂fN(u)− h(u) =
N∑
i=0

aiL̂φi(u)− h(u). (5.25)

The strategy is to suitably choose a set of points {uj}Nj=0 (the so-called collocation points)
on the domain of the basis functions φi, and then fix ai such that the residual function
is zero at uj, that is, R(uj; {ai}) = 0. This generates a system of N linear differential
equations with N variables, {ai},

N∑
i=0

ai[L̂φi](uj) = h(uj). (5.26)

By solving for {ai} one determines the approximate solution fN(u).

There are several possible choices for the basis functions φi and collocation points
uj, depending on the symmetries of the problem and boundary conditions. A generally
proposed basis defined in the interval x ∈ [−1, 1] is given by the Chebyshev polynomials4,
Tn(x). Since u ∈ [0, 1], we can relate these variables by x = 2u−1, then φi(u) = Ti(2u−1).
A useful accompanying set of collocant points is given by the so-called Gauss-Lobatto grid,
which for u ∈ [0, 1] can be written as,

uj = 1
2

[
1− cos

(
jπ

N

)]
, for j = 0, 1, ..., N. (5.27)

The Chebyshev polynomials along with the Gauss-Lobatto grid take the basis function at
each collocant point to be5

φi(uj) = cos
(
ijπ

N

)
, φ′i(uj) = 2i csc

(
jπ

N

)
sin

(
ijπ

N

)
,

and φ′′i (uj) = 4i csc2
(
jπ

N

)(
cot

(
jπ

N

)
sin

(
ijπ

N

)
− i cos

(
ijπ

N

))
.

(5.28)

Finally, we can solve the Generalized Eigenvalue Problem (GEP) which we are
interested in by extending the operator L̂ to include a dependence on a parameter λ,
L̂ → L̂(λ) = L̂0 + λL̂1, and then taking h(u) = 0, such as to search for eigenvalues
λ ≡ ω/T satisfying L̂(λ)f(u) = 0 with boundary values f(0) = f0 and f(1) = f1. The
resulting matrix GEP is then,

(A0 + A1λ) a = 0, (5.29)

where a = {ai} and Ak = {Ak,ij} = {[L̂kφi](uj)} with k ∈ {0, 1}.
4 The Chebyshev polynomials are defined to be the set of polynomials satisfying Tn(cos θ) = cos(nθ) for

every angle θ ∈ [0, π] and n ∈ N.
5 The letters “i” in these equations are not the imaginary numbers.
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In this work, we used a Chebyshev basis with N basis functions and collocant
points, and then employed the Arnoldi method (via the built-in Eigensystem[ ] procedure
in Wolfram. . . (2016)) to solve the resulting GEP6 for ω/T . For higher order QNM’s,
one needs to use high numerical precision from the outset. Denoting the number of
floating-point digits used in the calculations byM , the final error estimate of the numerical
QNM’s is mainly controlled by the number of basis functions N and the numerical precision
parameter M . We have checked that using M = 60 and N = 80 yielded the 20 first
QNM’s with good accuracy — this was the setting used in most of the work. For higher
order QNM’s, such as the ones we are going to show in Figure 15 and Figure 23, we
used M = N = 100. We verified the stability of the QNM spectra involving the desired
modes by doubling the number of basis points N or the numerical precision parameter M ,
following the error control procedure discussed in Boyd (2013).

5.2.3 QNM spectra and equilibration time

In Figure 15 we show the evolution of the external scalar QNM spectra for the first
26 poles as we evolve k/T from 0 to 100, both for the AdS5-Schwarzschild background
(i.e. µ/T = 0) and the critical geometry at µ/T = π/

√
2. We observe the usual non-

hydrodynamical QNM structure for the external scalar channel with an infinite series of
QNM pairs with Imω < 0 and Reω 6= 0 symmetrically distributed with respect to the
imaginary axis (KOVTUN; STARINETS, 2005). Keeping k/T = 0 as one increases µ/T
enhances the magnitude of the Imaginary part of the pole which becomes more appreciable
for higher order (faster varying) modes, while keeping the magnitude of the Real part
almost unchanged. On the other hand, keeping µ/T fixed as one increases k/T enhances
the magnitude of the Real part of the poles, while suppressing the magnitude of the
Imaginary part. We see that by increasing the chemical potential one generally increases
the damping of the quasinormal black hole oscillations, which qualitatively agrees with
the result found previously in Rougemont et al. (2016) for a non-conformal, QCD-like
bottom-up EMD model describing the physics of the QGP at finite baryon density.

Also, we note that the non-hydrodynamic modes in Figure 15 remain finite when
evaluated at the critical point, even when k = 0. Thus, one can see that the timescales
contained in the non-hydrodynamic modes are different than the usual equilibration time
quantity τeq ∼ ξz, where ξ is the correlation length (which diverges at the critical point)
and z is the dynamical critical exponent, which becomes infinitely large at criticality
describing the well-known phenomenon of critical slowing down. Nevertheless, in this
strongly coupled model the microscopic scales defined by the non-hydrodynamic QNM’s
still display some critical behavior, as we show below.

6 In the particular case of the AdS5-Schwarzschild background, a didactic sample calculation of the
QNM spectra using the pseudospectral method can be found in Yaffe (2014).
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Figure 15 – First 26 QNM’s trajectories in the external scalar channel evolved within the
interval 0 ≤ k/T ≤ 100 for µ/T = 0 (beginning with a black dot for k = 0 and
evolving into solid gray lines for k > 0) and for the critical point µ/T = π/

√
2

(beginning with a red square for k = 0 and evolving into dashed pink lines for
k > 0).
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In Figure 16 and Figure 17 we display the imaginary and real parts of the first four
QNM’s as functions of µ/T , for both stable and unstable branches, at k/T = 0 and k/T = 1.
We see that at the critical point all the QNM’s develop an infinite slope. Moreover, we
also note that the effects on the non-hydrodynamic modes due to finite momentum are
small for k/T ∼ 1 (especially for the imaginary part), being more pronounced for the
lowest QNM’s, which seems to be a general holographic property of the dispersion relation
of non-hydrodynamics QNM’s known as “ultralocality” (HELLER et al., 2014; JANIK et
al., 2015).

Following Horowitz and Hubeny (2000), one may define an upper bound for the
equilibration time of the plasma, τeq, using the inverse of minus the imaginary part of the
lowest non-hydrodynamical QNM evaluated at zero momentum, i.e.

τeq = − 1
Imω1

∣∣∣∣
k=0

, (5.30)

where ω1 = ω1(k/T, µ/T ) is the lowest QNM. This is shown in Figure 18a, from which one
can see that far from the critical point the equilibration time of the finite U(1) R-charge
density SYM plasma decreases with increasing chemical potential, again in qualitative
agreement with what was previously found in Rougemont et al. (2016) in the context of
a phenomenologically realistic holographic model for the QGP at finite baryon chemical
potential. However, for larger chemical potentials, as one approaches the critical point of
the model, this behavior is modified and the equilibration time starts to increase, acquiring
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Figure 16 – Imaginary part of the first four QNM’s in the external scalar channel for
k/T = 0 and k/T = 1, as a function µ/T , for both stable and unstable
branches.
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an infinite slope at the critical point.

We may associate a new critical exponent with the derivative of the equilibration
time, d(Tτeq)/d(µ/T ), since it diverges at the critical point, as shown in Figure 18b. Close
to the critical point,

d(Tτeq)
d (µ/T ) ∼

(
π√
2
− µ

T

)−θ
for µ

T
∼ π√

2
, (5.31)

where θ is the dynamical critical exponent which we want to calculate.

Let us now discuss the numerical procedure we followed in order to determine the
critical exponent θ of the divergent quantities near the critical point µ/T = π/

√
2, by

performing fits of the asymptotic form given by Equation 5.31 as a function of µ/T .

We used a first order central difference formula with step size h ≡ ∆(µ/T ) in order
to compute the required numerical derivatives. By varying h from 10−5 to 10−11, and
taking into account that we have an accuracy of several digits in the computed observables,
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Figure 17 – Absolute value of the real part of the first four QNM’s in the external scalar
channel for k/T = 0 and k/T = 1, as a function µ/T , for both stable and
unstable branches.
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we estimated the error introduced by the numerical differentiation to be of the order of
10−7.

Taking as a specific example the calculation of the critical exponent for the equili-
bration time in the external scalar channel, in order to check that the asymptotic form
in Equation 5.31 is valid close to the critical point µ/T = π/

√
2, we split d(Tτeq)/d(µ/T )

into 14 subintervals and then performed a least squares fit of Equation 5.31 to the resulting
data within each subinterval, with each of them populated by 100 points evenly spaced
in µ/T . In Table 2 we specify the subintervals used for the determination of the critical
exponent of d(Tτeq)/d(µ/T ) in the external scalar channel. In Figure 19 we display the
convergence of the fitted critical exponent θ to the value 1/2. The estimate of the least
squares standard error in the value of θ is of the order of 10−7 for the last interval.

More generally, one may consider different characteristic equilibration times of the
medium associated with the different non-hydrodynamic QNM’s, where equilibration times
associated with higher order modes should be understood as estimates for how fast the
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Figure 18 – Equilibration time (a) and its normalized derivative (b) in the external scalar
channel as functions of µ/T at zero wavenumber.
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Table 2 – Intervals for the deriva-
tive of equilibration
time used for the fit
procedure.

Interval Starting – Ending points

1 0.05 – 0.10
2 0.10 – 0.15
3 0.15 – 0.20
4 0.20 – 0.25
5 0.25 – 0.30
6 0.30 – 0.50
7 0.50 – 1.0
8 1.0 – 5.0
9 5.0 – 15.0
10 15.0 – 40.0
11 40.0 – 70.0
12 70.0 – 150.0
13 150.0 – 250.0
14 250.0 – 530.0

Source – Made by the authors.

system relaxes to equilibrium depending on how rapidly varying are the perturbations to
which it is subjected. Operationally, this amounts for computing the inverse of minus the
imaginary part of the different non-hydrodynamic QNM’s. By doing so, we obtain the
same dynamical critical exponent θ = 1/2 associated with all the different characteristic
equilibration times of the plasma in the external scalar channel at zero wavenumber.
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Figure 19 – Fit results for the critical exponent θ for each subinterval in d(Tτeq)/d(µ/T ).
The abscissas were chosen at the midpoint of the corresponding subinterval.
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5.2.4 Spectral function

In this subsection we study the spectral function associated with the external scalar
fluctuation in the bulk. The motivation for this pursuit comes from the fact that QNM’s
are associated with poles of the retarded Green’s function, whose imaginary part defines
the spectral function. Therefore, one should expect that the critical behavior found for the
QNM’s leave somehow an imprint in the spectral function. Here we investigate this issue
by considering the spectral function of the external scalar field fluctuation. Also, we note
that due to the universal character of the δgyx fluctuation of the metric (KOVTUN; SON;
STARINETS, 2005), the same calculation also gives the shear viscosity spectral function.

For the sake of completeness, let us briefly review here the holographic computation
of the spectral function based on the real time holographic prescription (SON; STARINETS,
2002) recast using the holographic membrane paradigm (IQBAL; LIU, 2009). From
linear response theory, the expectation value of the QFT operator Ô dual to the scalar
perturbation is associated with the retarded correlator according to (see Ramallo (2015))7,

〈Ô(ω,~k)〉 = −GR
ÔÔ

(ω,~k)J(ω,~k), (5.32)

where, as before, J(ω,~k) denotes the leading mode of the scalar fluctuation at the boundary,
which sources the QFT operator Ô, while the expectation value is associated with the
subleading mode, being given by

〈Ô(ω,~k)〉 = lim
r→∞

Π(r, ω,~k) = lim
r→∞

δS

δϕ̃′
, (5.33)

7 Note that here in this chapter our definitions are such that there is a minus sign in the expression for
the linear response result in comparison to that done in section 2.4.
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where Π is the radial canonical momentum conjugate to the scalar perturbation ϕ̃. Once
more, we impose that the scalar perturbation satisfies an in-falling wave condition at the
horizon, which gives the retarded propagator.

Our goal here is to compute the spectral function defined by

Fs ≡ − ImGR
ÔÔ

= lim
r→∞

Im Π
ϕ̃
. (5.34)

To do so, we have to first solve the equation of motion that follows from the action
Equation 5.17 in the usual coordinates of Equation 5.3,

ϕ̃′′ +
(

4A′ −B′ + h′

h

)
ϕ̃′ + e2(B−A)

h2

(
ω2 − k2h

)
ϕ̃ = 0, (5.35)

with an in-falling horizon condition at r = rH and lim
r→∞

ϕ̃(r, ω,~k) = J(ω,~k).

We introduce a bulk response function8 (IQBAL; LIU, 2009),

ζ ≡ 2κ2
5

Π
ωϕ̃

, (5.36)

which allows us to reduce the linear second order differential equation Equation 5.35 to a
first order nonlinear Riccati equation,

ζ ′ + ωgrr√
−g

[
ζ2 + g3

xx

(
1 + gtt

gxx

k2

ω2

)]
= 0. (5.37)

By requiring regularity at the horizon, one obtains the following horizon condition needed
to solve the first order flow equation above,

ζ(r = rH , ω,~k) = ±igxx(rH)3/2, (5.38)

where we choose the positive sign, which corresponds to the in-falling wave at the horizon.
From the membrane paradigm (IQBAL; LIU, 2009), assuming that the scalar disturbance
corresponds to the δgyx fluctuation of the metric, one recognizes this result as the shear
viscosity,

η = lim
ω→0

lim
~k→0

Im ζ(rH , ω,~k)
2κ2

5
. (5.39)

Then, one may write down the following dimensionless ratio,

Fs
ωη

= Im ζ(r →∞, ω,~k)
gxx(rH)3/2 . (5.40)

One can now numerically integrate Equation 5.37 with the positive sign Equation 5.38 as
the initial condition and then use Equation 5.40 to obtain the normalized spectral function.
8 This response function should not be confused with the bulk viscosity, which is always zero in the

conformal theory considered here.
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The results are shown in Figure 20 for µ/T = 0 (AdS5-Schwarzschild) and µ/T = π/
√

2
(critical point), both evaluated at k = 0. We see that, naively, an increase in µ/T seems to
have only a small effect on the spectral function, even as one approaches the critical point.
However, this is due to the fact that in the ultraviolet limit, ω/T →∞, the dimensionless
ratio Fs/ωη scales as (ω/T )3, which overwhelms any poles or fluctuations in the plot for
the spectral function.

Figure 20 – Normalized spectral function as a function of ω/T for µ/T = 0 and µ/T =
π/
√

2 (critical point). Both curves scale with (ω/T )3 as ω/T →∞.
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Let us now consider a subtraction scheme which removes the scaling (ω/T )3 from
the spectral function at some ultraviolet cutoff (CARON-HUOT et al., 2006; TEANEY,
2006; GÜRSOY et al., 2013),

∆Fs
ωη
≡ Fs(ω, k = 0)

ωη
− a

(
ω

T

)3
, (5.41)

where a is a constant defined by the asymptotic behavior of the spectral function,

a ≡ lim
ω/T→∞

Fs/ωη

(ω/T )3

∣∣∣∣∣
k=0

. (5.42)

We remark that in order to reliably perform the subtraction above, the flow equation
Equation 5.37 must be solved with high numerical accuracy. This becomes more difficult
for larger values of the ultraviolet cutoff in ω/T , which also requires one to increase the
ultraviolet cutoff used to numerically parametrize the boundary in the radial coordinate.
For the numerical evaluation of the first oscillations of the subtracted spectral function,
one can safely take as the ultraviolet cutoff in the dimensionless frequency a value around
ω/T ∼ 40.

In Figure 21 we display the behavior of ∆Fs/ωη as a function of µ/T and ω/T at
k/T = 0, while in Figure 22 we analyze the evolution of the height of its first peak as
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a function of µ/T , which acquires an infinite slope at the critical point. By computing
its derivative and fitting the numerical result close to the critical region using the same
functional dependence as in Equation 5.31, one again obtains a critical exponent compatible
with 1/2. Thus, we find that the critical behavior found in the QNM’s can also be found,
albeit in an indirect manner, in the spectral function.

Figure 21 – (a) Full surface profile of the subtracted normalized spectral function as a
function of ω/T and µ/T , in the long wavelength limit, k/T = 0. (b) Details
of ∆Fs/ωη for µ/T = 0 and µ/T = π/

√
2 (critical point).

(a) Subtracted spectral function 3D. (b) Subtracted spectral function 2D.
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Figure 22 – Height of the first peak of ∆Fs/ωη as a function of µ/T in the long wavelength
limit, k/T = 0.
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5.3 QNM’s in the vector diffusion channel
In this section we compute the QNM’s of the vector diffusion channel in the long

wavelength limit. Differently from what was done in the last section where we considered
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an external scalar perturbation on top of the 1RCBH background, now we need to consider
fluctuations of the Maxwell field Aµ which is already nonzero in the background and,
therefore, we also need to consider disturbances in the background metric gµν and dilaton
field φ.

5.3.1 Equation of motion

At zero spatial momentum the different channels for these fluctuations, at the
linearized level, are classified by different representations of the SO(3) rotation group9

(DEWOLFE; GUBSER; ROSEN, 2011b). By taking the fluctuation of the gauge field
along the z-direction one finds that at the linearized level it only mixes with the fluctuation
of gzt . Taking now the long wavelength limit, i.e. k = 0, we write down for the Fourier
modes of these fluctuations,

δAz = a(r)e−iωt and δgzt = s(r)e−iωt. (5.43)

Then, the linearized Maxwell’s equations, ∇µ (f(φ)F µν) = 0, expressed in Eddington-
Finkelstein coordinates read,

−Φ′′ +
(
−2A′ +B′ − f ′(φ)φ′

f(φ)

)
Φ′ = 0, (5.44)

a′′ +
(

2A′ −B′ + h′

h
− 2iωe

A−B

h
+ f ′(φ)φ′

f(φ)

)
a′ − iωeB−Af(φ)A′ + f ′(φ)φ′

f(φ)h a+

+ Φ′
2h′ s

′ +
f ′(φ)φ′Φ′ + f(φ)

(
(2A′ −B′)Φ′ + Φ′′

)
2f(φ)h

 s = 0,

(5.45)

where the Equation 5.44 is the equation of motion for the background Maxwell field, Φ(r),
while Equation 5.45 is the equation of motion for the Maxwell perturbation, a(r).

We may decouple the perturbations a(r) and s(r) by using Einstein field equations,

Rµν −
gµν
3

(
V (φ)− f(φ)

4 F 2
αβ

)
− f(φ)

2 FµαF
α
ν −

1
2∂µφ∂νφ = 0. (5.46)

By taking the vz-component minus the rz-component of the above equation of motion,
one obtains the constraint,

s′ = −f(φ)Φ′e−2Aa. (5.47)

By using the Equation 5.44 to eliminate the s(r) term from Equation 5.45 and substituting
Equation 5.47 into Equation 5.45, one obtains a decoupled equation of motion for the
9 At nonzero k such classification is no longer valid and the corresponding fluctuations are organized

in a more complicated way under a smaller SO(2) symmetry group. We are not going to pursue the
investigation of this more involved case in the present work.



5.3. QNM’s in the vector diffusion channel 93

radial profile of the vector field perturbation, which is associated with the diffusion of the
U(1) R-charge (KOVTUN; STARINETS, 2005; DEWOLFE; GUBSER; ROSEN, 2011b),

a′′ +
[
2A′ −B′ + h′

h
+ f ′(φ)φ′

f(φ) − 2iωe
B−A

h

]
a′+

−e
−2A

h

[
iωeA+B

(
A′ + φ′

f ′(φ)
f(φ)

)
+ f(φ)Φ′2

]
a = 0.

(5.48)

Once again we apply the radial coordinate transformation r → rH/u, which yields,

a′′ +
(
−10u6(y − 3)(y − 1)− 3u4(5(y − 2)y + 1) + 4u2 (y2 − 1) + (y + 1)2

u (u2 − 1) (u2(y − 3)− y − 1) (−2u2(y − 1) + y + 1)2 +

−
4i(ω/T )

√
(3− y) (−2u2(y − 1) + y + 1)

π (u2 − 1) (y − 3) (u2(y − 3)− y − 1)

 a′+
+
(
− 8u4(y − 3)(y − 1)(y + 1)

(u2 − 1) (u2(y − 3)− y − 1) (−2u2(y − 1) + y + 1)2 +

− 2i(ω/T ) (4u2(y − 1) + y + 1)
π (u2 − 1)u (u2(y − 3)− y − 1)

√
(y − 3) (2u2(y − 1)− y − 1)

 a = 0.

(5.49)

For the vector perturbation the normalizable mode at the boundary corresponds to set
a(u) = u2F (u), with F (0) 6= 0, from which one finally obtains,

F ′′ +
[
−18u6(y − 3)(y − 1)− 7u4(5(y − 2)y + 1) + 20u2 (y2 − 1)− 3(y + 1)2

(u2(y − 3)− y − 1) (−2u2(y − 1) + y + 1) +

−
4iu(ω/T )

√
(3− y) (−2u2(y − 1) + y + 1)

π(y − 3) (u2(y − 3)− y − 1)

 1
u(u2 − 1)F

′+

+ 1
u(u2 − 1)

[
8u (6u6(y − 3)(y − 1)2 − 2u4(y(7(y − 3)y + 9) + 5))

(u2(y − 3)− y − 1) (−2u2(y − 1) + y + 1)2 +

+8u (u2(y + 1)(3y − 5)(3y − 1)− 2(y − 1)(y + 1)2)
(u2(y − 3)− y − 1) (−2u2(y − 1) + y + 1)2 +

− 6i(ω/T ) (4u2(y − 1)− y − 1)
π (u2(y − 3)− y − 1)

√
(y − 3) (2u2(y − 1)− y − 1)

F = 0.

(5.50)

5.3.2 QNM spectra and equilibration time

With the QNM eigenvalue problem completely specified as discussed above, we
can now apply the pseudospectral method (see subsection 5.2.2) to numerically solve it.
In Figure 23 we display the QNM spectra for the first 30 symmetric poles in the vector
diffusion channel in the limiting cases of µ/T = 0 (AdS5-Schwarzschild) and µ/T = π/

√
2

(critical point).
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Figure 23 – QNM spectra of the first 30 symmetric poles in the vector diffusion channel
for µ/T = 0 (black circles) and µ/T = π/

√
2 (red squares) at k/T = 0. The

hydrodynamical diffusive pole is depicted by the blue diamond. Note also the
emergence of a new purely imaginary, non-hydrodynamical mode which comes
from −i∞ at µ/T = 0 and remains at a finite distance from the origin at the
critical point µ/T = π/

√
2.
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In Figure 24 and Figure 25 we show the imaginary and real parts, respectively, of
the first four QNM’s as functions of µ/T , for both stable and unstable branches. We see
that also in the vector diffusion channel both the real and imaginary parts of the QNM’s
develop an infinite slope at the critical point.

We remind the reader that at k = µ = 0 the QNM spectra in the vector diffusion
channel may be analytically calculated (KOVTUN; STARINETS, 2005),

ω

T
= 2πn(1− i), n ∈ N at µ = 0. (5.51)

Our numerical calculations at µ/T = 0 agree with this analytical result. The standard
hydrodynamical mode ω(k = 0) = 0 is depicted by the blue diamond in Figure 23.
Since this is a hydrodynamical pole, it does not evolve with the chemical potential if
we keep k = 0. This mode determines the R-charge conductivity of the model and
the zero frequency limit of this transport coefficient was found in DeWolfe, Gubser and
Rosen (2011b) to remain finite at the critical point, as expected for a type B dynamic
universality class, while its derivative near the critical point has infinite slope described by
an exponent equal to 1/2, which matches the exponent found in the previous section in
the study of non-hydrodynamic modes of different nature corresponding to external scalar
perturbations.

On the other hand, the main effect of the chemical potential on the symmetric
non-hydrodynamical modes is to increase the magnitude of both the imaginary and real
parts of these poles. Therefore, also in the vector diffusion channel one sees that the
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Figure 24 – Imaginary part of the first 4 QNM’s in the vector diffusion channel for k/T = 0,
as a function of µ/T , for both stable and unstable branches.
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inclusion of a chemical potential leads to additional damping for the quasinormal black
hole oscillations.

A novel feature we observe in Figure 23 is the emergence of a new purely imaginary,
non-hydrodynamical pole at finite chemical potential, which comes from ω/T → −i∞
at µ/T = 0 and lies at ω/T ≈ −7.315i at the critical point µ/T = π/

√
2. For µ/T & 2,

this new purely imaginary pole becomes the lowest non-hydrodynamical mode, while
for lower values of the chemical potential the lowest non-hydrodynamical mode is given
by any of the first two symmetric poles with respect to the imaginary axis. Therefore,
this new non-hydrodynamical imaginary mode plays a crucial role in the description of
the equilibration time of the system in the vector diffusion channel when the chemical
potential is large, specially at criticality, when it dominates the physics of the slowest
varying perturbations. The appearance of such a purely imaginary mode is an interesting
feature of this model that shows that the distinction between transient phenomena at
weak and strong coupling, currently understood in terms of their different pattern of
non-hydrodynamic modes at zero wavenumber (DENICOL et al., 2011) (see also Noronha
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Figure 25 – Absolute value of the real part of the first 4 QNM’s in the vector diffusion
channel for k/T = 0, as a function µ/T , for both stable and unstable branches.
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and Denicol (2011)) corresponding to fluctuations around global equilibrium, can become
more complicated near a critical point.

We define the upper bound for the equilibration time of the system in the vector
diffusion channel as before by taking the inverse of minus the imaginary part of the lowest
non-hydrodynamical QNM. The result is shown in Figure 26a. The kink observed in the
equilibration time at µ/T ≈ 2 is due to the shift from the regime dominated by the first
symmetric poles to the regime dominated by the new purely imaginary mode. This also
causes a discontinuity in the derivative of the equilibration time, as seen in Figure 26b.
As before, one can calculate the critical exponent associated with this derivative at the
critical point and the result is once again compatible with θ = 1/2. This shows that in this
model both the hydrodynamic and the non-hydrodynamic modes in this vector diffusion
channel have the same critical exponents.
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Figure 26 – Equilibration time (a) and its normalized derivative (b) in the vector diffusion
channel as functions of µ/T .
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6 Conclusions and outlook
In this section we summarize the main results found in this thesis and present some

other possible studies that can be performed later on.

Motivated by the recent studies involving the effects of electromagnetic fields on
the strongly coupled plasma formed in heavy ion collisions, the holographic correspondence
was used in chapter 4 to compute two anisotropic shear viscosity coefficients of a strongly
coupled N = 4 SYM plasma in the presence of a magnetic field. As expected, the
shear viscosity that describes the dynamics in the plane transverse to the magnetic
field, η⊥, is not affected by the field and, thus, it still saturates the viscosity bound, i.e.
η⊥/s = 1/(4π). On the other hand, the shear viscosity coefficient along the axis parallel
to the external magnetic field, η‖, violates the bound when B > 0, i.e. η‖/s < 1/(4π).
These results are qualitatively similar to those found in Rebhan and Steineder (2012) for
the case of an anisotropic plasma created by a spatial dependent axion profile (MATEOS;
TRANCANELLI, 2011). However, the source of anisotropy in our case (the magnetic
field) is arguably more directly connected to heavy ion phenomenology than the axion
dependence.

Our results for the magnetic field dependence of η‖/s show that this ratio only
deviates significantly from 1/(4π) when B/T 2 � 1. Taking the typical temperature at the
early stages of heavy ion collisions to be T ∼ 2mπ, where mπ is the pion mass, we see that
4πη‖/s ∼ 0.9 when B ∼ 40m2

π. This value of magnetic field may be too large for heavy ion
phenomenology and, thus, our results suggest that anisotropic shear viscosity effects in
strongly coupled plasmas are minimal and the isotropic approximation is justified. It would
be interesting to check if the same behavior is obtained in strongly coupled plasmas that
are not conformal (such as the bottom-up models in Gürsoy and Kiritsis (2008), Gürsoy,
Kiritsis and Nitti (2008), Gürsoy et al. (2008), Gubser and Nellore (2008), Noronha (2010))
to see if there is some nontrivial interplay between the confinement/deconfinement scale
and the external magnetic field. The first study in this direction was done in (FINAZZO
et al., 2016). Alternatively, one could also study the effects of strong magnetic fields on
the weak coupling calculations of Arnold, Moore and Yaffe (2000), Arnold, Moore and
Yaffe (2003) perhaps following the general procedure to compute transport coefficients of
relativistic hydrodynamics from the Boltzmann equation proposed in Denicol et al. (2011).

Plasmas in the presence of magnetic fields usually experience instabilities and
it would be interesting to investigate whether there are instabilities induced by strong
magnetic fields in the strongly coupled plasma studied in chapter 4. In fact, one could
compute the spectral functions and the quasi-normal modes associated with η‖ and check
if there is any sudden change in their behavior at strong fields. Part of this study has been
done and this material is being prepared for publication. Also, instabilities in homogeneous
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magnetic media can sometimes be resolved by the formation of magnetic domains and, thus,
it would be interesting to investigate whether this is the case for the theory considered.

The behavior of the QNM’s for the external scalar and vector diffusion channels
of the 1RCBH model was analyzed in chapter 5, which is a top-down gauge/gravity
construction dual to a SYM plasma at nonzero U(1) R-charge density. The phase diagram
of the model displays a critical point at a second order phase transition and, except close
to this critical point, by increasing the chemical potential one generally increases the
damping of the quasinormal black hole oscillations, which leads to a reduction of the
characteristic equilibration times of the dual plasma. However, as one approaches the
critical point these equilibration times are enhanced and they acquire an infinite slope at
the criticality. We found that the derivatives of all the characteristic equilibration times of
the medium, obtained from the non-hydrodynamic QNM’s at zero wavenumber, share the
same critical exponent θ = 1/2. Previously, the same value was also found for the critical
exponent associated to the derivative of the DC conductivity extracted from the R-charge
diffusive hydrodynamic mode in this model (DEWOLFE; GUBSER; ROSEN, 2011b). We
also found a purely imaginary, non-hydrodynamical mode in the vector diffusion channel
at nonzero chemical potential which dictates the critical behavior of the equilibration time
in this channel.

The observation that the quasinormal black hole oscillations away from the critical
region are additionally damped by a nonzero chemical potential, obtained here for a top-
down conformal construction dual to a SYM plasma at finite R-charge density, is consistent
with the behavior found previously in Rougemont et al. (2016) for a rather different
holographic construction, which involves a bottom-up model with black brane solutions
that are engineered to describe the realistic non-conformal physics of the QGP both at
zero baryon density (FINAZZO et al., 2015) and also at finite density (ROUGEMONT;
NORONHA; NORONHA-HOSTLER, 2015). This may indicate that this additional
damping in the quasinormal black hole oscillations due to a nonzero chemical potential,
and the consequent attenuation of the equilibration time of the dual plasma away from
criticality, may be a general holographic property of strongly correlated quantum fluids.

Regarding the purely imaginary, non-hydrodynamical mode found in the diffusion
channel at finite density, the common link between the 1RCBH model studied here and
the Einstein-Maxwell model investigated in Janiszewski and Kaminski (2016) (where this
mode was also found, although with no critical behavior, due to the lack of a phase
transition) is the presence of bulk electromagnetic fields. Somehow, the Maxwell field
changes qualitatively the dynamical response of the system to perturbations. From
the point of view of the gravitational dynamics in five dimensions, what we see is that
this purely imaginary non-hydrodynamic mode appears for electromagnetically charged
asymptotically AdS black holes and that, when the charge of the black hole is large
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enough, this new mode dominates the dynamics of relaxation towards equilibrium when
the black hole is disturbed. From the point of view of the four dimensional dual quantum
field theory at the boundary of the asymptotically AdS spacetime background, this new
mode dominates the dynamics responsible for the characteristic equilibration time of the
plasma at large enough densities in the diffusion channel. Since bulk electric fields map to
boundary states at finite density, this may be a general feature of holographic models at
finite density. Therefore, one could investigate if the behavior of non-hydrodynamic modes
in other holographic models that display critical phenomena possess similar properties to
those found in the present study, i.e. the corresponding equilibration times have infinite
slope characterized by a single critical exponent θ. In particular, we intend to investigate
in the near future these features in two bottom-up constructions of phenomenological
relevance for the physics of the QGP: the EMD model at finite baryon chemical potential
(ROUGEMONT et al., 2016; ROUGEMONT; NORONHA; NORONHA-HOSTLER, 2015)
and the anisotropic EMD model at finite magnetic field from Rougemont, Critelli and
Noronha (2016), Finazzo et al. (2016). Such studies may be relevant to understand how
the presence of a critical endpoint in the QCD phase diagram may lead to new observables
associated with, for instance, baryon transport in the baryon rich quark-gluon plasma
produced in heavy ion collisions within the beam energy scan program at RHIC.
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