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Abstract

Modern wide-area multi-color deep galaxy redshift surveys provide a powerful tool to
probe cosmological models. Yet they bring new practical and theoretical challenges in
order to exploit the information contained in their data. This dissertation reviews the
theoretical interpretation of clustering of galaxies and shear/convergence weak lensing
effects by the large scale structure of the Universe in the context of FLRW cosmological
models. This interpretation is general in the sense that the effects of the spatial curvature
are properly taken into account, thus holding for FLRW Universes with arbitrary content
of matter and dark energy. In this context, we consider two-point statistics both in con-
figuration and harmonic spaces, providing general formulae for the two-point correlation
function in real and redshift space. We further include wide angle effects and consider
the proper distant observer approximation.

One main characteristic of photometric galaxy surveys is that they will gain in area and
depth, in exchange for a poorer determination of radial positions. In this context splitting
the data into redshift bins and using the angular correlation function (ACF) w(θ) and the
angular power spectrum (APS) Cℓ constitutes a standard approach to extract cosmological
information. This dissertation also addresses the problem of constraining cosmological
parameters using Bayesian inference techniques from measurements of the ACF and the
APS on large scales. Different computational approaches are discussed to accomplish
this goal and a detailed model for the ACF at large scales is presented including all
relevant effects, namely nonlinear gravitational clustering, bias, redshift-space distortions
and photo-z uncertainties.

We present an analysis of the large scale ACF of the CMASS luminous galaxies, a
photometric-redshift catalogue based on the Data Release 8 (DR8) of the Sloan Digital
Sky Survey-III, showing that the ACF can be efficiently applied to constrain cosmology
in future photometric galaxy surveys. We also present a similar analysis on simulated
data from the Dark Energy Survey (DES), showing that in the near future such analysis
will allow us to constrain cosmological models with even high precision. Finally, we also
present preliminary work on the position and shear angular correlations in harmonic space
for the Onion simulations.
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Resumo

Experimentos modernos com observações das posições e redshifts de galáxias em grandes
áreas do céu representam uma poderosa ferramenta para a investigação de modelos cos-
mológicos. Entretanto, estas observações trazem consigo novos desafios práticos e teóricos
para a extração da informação contida nos dados. Esta dissertação faz uma revisão da in-
terpretação teórica da aglomeração de galáxias e dos efeitos de lenteamento gravitacional
fraco por estruturas em largas escalas no Universo, no contexto de modelos cosmológicos
FLRW. Esta interpretação é geral, na medida em que os efeitos da curvatura espacial
são apropriadamente considerados, sendo portanto verdadeiros para Universos FLRW
com conteúdos artibrários de matéria e energia escura. Neste contexto, consideramos a
estat́ıstica de dois pontos no espaço de configurações e no espaço harmônico, obtendo
fórmulas gerais para a função de correlação de dois pontos no espaço real e no espaço de
redshifts. Inclúımos ainda efeitos de grandes ângulos e consideramos a aproximação de
observador distante de forma apropriada.

Uma caracteŕıstica importante de levantamentos fotométricos de galaxias é a de que
eles vão ganhar em área e profundidade, em troca de uma pior determinação das posições
radiais. Neste contexto, uma técnica padrão para extração de informação cosmológica dos
dados consiste em dividir as galáxias em bins de redshift, de forma a assim usar a função
de correlação angular (ACF) w(θ) e o espectro de potências angular (APS) Cℓ. Nesta
dissertação também tratamos o problema de vincular parâmetros cosmológicos usando
técnicas de inferência estat́ıstica Bayesiana a partir das medidas da ACF e do APS em
grandes escalas. Diferentes técnicas computacionais são discutidas e um modelo detalhado
para a ACF em grandes escalas é apresentado, incluindo todos os efeitos relevantes, como
não-linearidades gravitacionais, o bias, distorsões no espaço de redshift, e incertezas nas
estimativas de redshifts (photo-zs).

Apresentamos uma análise da ACF em grandes escalas para galáxias do CMASS, um
catálogo de redshifts fotométricos baseado no Data Release 8 do Sloan Digital Sky Survey-
III, mostrando que a ACF pode ser eficientemente aplicada para vincular cosmologia em
levantamentos fotométricos do futuro. Também apresentamos uma análise similar em da-
dos simulados do Dark Energy Survey, mostrando que no futuro próximo tal análise nos
permitirá vincular modelos cosmológicos com precisão ainda maior. Finalmente, apresen-
tamos um trabalho preliminar sobre correlações angulares de posição e shear no espaço
harmônico para as simulações Onion.
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Chapter 1

Introduction

One of the main challenges in modern cosmology is the study of the large-scale structure of
the observable Universe, its relation to astrophysical phenomena such as galaxy formation
on the one hand and to the Universe evolution on large scales on the other hand. In
particular, the latter may help shed light on yet unknown fundamental physics, which
seems necessary to explain recent observations.

In recent years cosmology entered what can be called a “golden age”, due to two
fundamental reasons: (a) our knowledge about the Universe appears to be consolidating
along with all observational data that seem to converge consistently into a standard cos-
mological model (a concordance model) and (b) on top of this consolidation, cosmology
faces many theoretical and practical challenges. The theoretical challenges are mostly
related to the physical nature of the constituents of the concordance model, as for exam-
ple, the nature of dark matter, of dark energy or cosmic acceleration, and of inflation.
The observational challenges are mainly related with the variety of observational probes
proposed, their proper interpretation and the necessity of dealing with large amounts of
data that are expected from current and upcoming observations.

Among these challenges, the mystery and fundamental implications of cosmic acceler-
ation have inspired numerous ambitious observational efforts, with the goal of measuring
the Universe expansion history and possibly reveal its origin. An important step in this
process was the production of the report of the Dark Energy Task Force (DETF; [1]), a
fundamental effort in defining the problem, categorizing the observational approaches and
providing a quantitative framework to compare their capabilities. The DETF focused on
four cosmological observables: Type-Ia supernovae (SNIa), clusters of galaxies, clustering
of galaxies and baryon acoustic oscillations (BAO) and weak gravitational lensing. The
last three probes are fundamentally related with the large scale structure of the Universe.

In fact, the large scale structure of the Universe (LSS) constitutes a promising probe
for most of the theoretical challenges of cosmology, especially inflation and cosmic ac-
celeration. For the first challenge, the reason is that the seed perturbations for cosmic
structures are settled by the inflationary period, described by specific inflationary mod-
els. Most of these models predict initial perturbations to be nearly scale invariant and to
obey nearly Gaussian statistics. However, the extent to which they deviate from perfectly
scale invariant Gaussian fluctuations depends on the details of the model. Therefore, by
accurately measuring deviations from scale invariance as well as from Gaussianity, one
can in principle constrain the physics of inflation. For the second challenge, dark energy
controls the expansion history of the Universe, which in turn affects how one observes
astrophysical objects such as galaxies cataloged by their angular positions and redshifts.
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The relation between redshift and physical distances depends on the expansion rate and
the spatial geometry of Universe. In addition, the expansion rate slows down the gravi-
tational evolution of cosmic structure. Therefore, by measuring the distances and growth
of cosmic structures, one can constrain the properties of dark energy.

This dissertation is organized as follows. This first chapter sets the foundations of
the work, as the standard cosmological model is reviewed. We do not intend to provide
an exhaustively complete revision, but only the most fundamental aspects that will be
necessary later. Our treatment is based on the original treatments of textbooks [2, 3, 4]
and the Cargèse lectures of 1998 [5], which we recommend for further discussions. In
section 1.2 we consider perturbations around the background expansion following the
same textbooks and original developments presented on [6]. In section 1.3 we briefly
discuss the Dark Energy Survey. The chapter ends in section 1.4, where two of the four
observational probes considered in the DETF are interpreted in the context of FLRW
Universes. More precisely, the galaxy number fluctuation field is presented as the basic
concept for understanding clustering and the cosmic shear and convergence fields are
also presented as analogs for the weak lensing phenomena by LSS in the Universe. Our
discussions follow the original works [7, 8] and [9] in the galaxy clustering section and
the review articles [10, 11] as well as §7.1 of [3] for the weak lensing section, which we
recommend for further details. Some further theoretical details and computations are also
left for the appendices.

In chapter 2, the two-point statistics of these fields is considered and its relation to the
total matter power spectrum today is derived. This relation is the basic tool to properly
compare cosmological observations with theoretical models.

In chapter 3, Bayesian statistical inference methods are reviewed as the basic tool
to constrain cosmological parameters from observations. In this context the sampling
problem is depicted and the widely used Markov Chain Monte Carlo (MCMC) methods
are presented as a reliable solution. The recent method of affine-invariant MCMC is also
discussed as a powerful alternative for solving efficiently the problems of sampling degener-
ate probability distribution functions with the possibility of using parallel computational
resources.

In chapter 4, the main results of the present dissertation are presented. Initially a
general formula for the two-point correlation function of galaxies in redshift space is pre-
sented, accounting for wide angle effects, arbitrary redshifts and spatial curvature. From
them, the distant observer approximation is considered. Then, a model for the angu-
lar correlation function of galaxies at large scales is presented, accounting for nonlinear
gravitational clustering, bias, redshift space distortions and photo-z uncertainties. An
analysis of the large-scale angular correlation function is presented for the CMASS lumi-
nous galaxies (LGs), a photometric-redshift catalog based on the Data Release 8 (DR8)
of the Sloan Digital Sky Survey-III, showing that the ACF can be efficiently applied to
constrain cosmology in future photometric galaxy surveys. The results of this work have
been published in [12]. Another analysis of the ACF on large scales but for a simulated
catalog of the DES collaboration is also presented. We end the chapter with an analysis
of simple measurements of the APS from galaxy positions on the Onion Universe Simu-
lation [13]. Measurements of the auto-correlation of the convergence field and the cross
correlation of convergence and galaxy positions are also considered but are not used on
the cosmological analysis.

Finally, we conclude the present dissertation with a summary and outlook in chapter
5.
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1.1 Standard model of cosmology

The Universe is observed to be isotropic about us to a high degree of confidence, once we
(a) average over large enough scales, considerably larger than the typical scales of clusters
of galaxies, and (b) allow for an observer peculiar velocity relative to the average motion
of matter in the Universe. In practice, this velocity is treated as relative to the microwave
background radiation1. In other words, on cosmologically observable scales, there is no
particular direction that can be stated to be the center of the Universe. One ends up
with two possibilities: (a) either the Universe is spatially homogeneous, and as an specific
observer we are on a typical place as the Universe is isotropic for any typical observer, or
(b) the Universe is spatially inhomogeneous, and we are near a distinguished place with
respect to which the Universe looks isotropic. The common choice of the modern scientific
community is the former one. It is commonly interpreted as a Copernican principle, i.e.,
the assumption that we are not at a privileged position in the Universe [14, 2]. The
Copernican principle along with the observed isotropy are sufficient conditions for the
global spatial homogeneity of the Universe [2].

The modern standard cosmological model then assumes that the Universe is spatially
homogeneous and isotropic. Combined, these two assumptions are commonly known as
the cosmological principle. Spatial homogeneity imply the existence of a one-parameter
family of space-like hypersurfaces Σt, foliating the spacetime, in which the Copernican
principle is valid and therefore every point is equivalent. On the other hand, spatial
isotropy imply the existence of a congruence of time-like worldlines with tangent vector
ua defining the four-velocity of the so-called isotropic observers, such that it is impossible
to construct a preferred tangent vector perpendicular to ua 2. Combining both conditions
imply that the four-velocity of isotropic observers ua and the homogeneity hypersurfaces
Σt should be perpendicular, otherwise the Universe should have a privileged spatial di-
rection violating isotropy. Then, viewed as three-dimensional subspaces, the Σt surfaces
are maximally symmetric, and consequently are spaces of constant curvature [14, 2]. The
isotropic observers acquire the property that for each instant of proper time, they ob-
serve a maximally symmetric 3D space, which is why they are also called fundamental
observers.

Therefore, one can define a coordinate time t, the cosmic time, as the proper time
measured by the fundamental observers, dt = dxaua in terms of which the metric of
spacetime can be written as

gab = uaub + γ̂ab(t) , (1.1)

where for each value of t, γ̂ab(t) determines the metric of the constant time hypersurfaces
Σt. Since this hypersurfaces should be of constant curvature for each cosmic time instant,
one can choose comoving spatial coordinates (xi) to separate the time dependence and
write the spacetime metric tensor as

ḡ = −dt⊗ dt+ a2(t)γijdx
i ⊗ dxj , (1.2)

where the function a(t), giving the time evolution of the hypersurfaces Σt, is the cosmic
scale factor, determining how physical spatial scales change with time and relate to the
comoving scales. The spatial metric of components γij in comoving coordinates defines

1See Appendix C for a discussion of this point.
2Throughout this work the index convention is such that spacetime and spatial indices with respect

to a general basis are denoted by a, b, · · · = 0, 1, 2, 3 and α, β, · · · = 1, 2, 3 respectively, while spacetime
and spatial indices in a coordinate basis are µ, ν, · · · = 0, 1, 2, 3 and i, j, · · · = 1, 2, 3, respectively.
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generic 3D spaces of constant curvature. A spacetime metric with the form of (1.2) and
the above characteristics is known as a Robertson-Walker metric (RW).

For the purposes of this work it is useful to introduce the conformal time η by the
relation adη = dt, in terms of which the RW metric (1.2) reads

ḡ = a2(η)
[
−dη ⊗ dη + γijdx

i ⊗ dxj
]
. (1.3)

For the constant time hypersurfaces one can always choose spherical coordinates xi =
(χ, θ, ϕ), where χ is a radial coordinate and (θ, ϕ) are the usual polar and azimuthal
angles of spherical coordinates on the unit sphere S2. During this work χ is chosen to be
adimensional for the spatially non-flat cases. The components of the spatial metric for
this coordinates choice are given in the (comoving) spatial line element

dℓ2 = γijdx
idxj =





−K−1
[
dχ2 + sinh2(χ)dΩ2

]
K < 0,

dχ2 + χ2dΩ2 K = 0,

K−1
[
dχ2 + sin2(χ)dΩ2

]
K > 0;

(1.4)

where χ ∈ [0,∞) for K ≤ 0, χ ∈ [0, π] for K > 0 and θ ∈ [0, π] and ϕ ∈ [0, 2π) for all
cases in order to cover the spacetime. This choice of coordinates is particularly useful for
our purposes because it leaves all the spatial coordinates with the same dimensionality.
Note that here K can be interpreted as determining a radius of curvature of constant time
hypersurfaces. 3D spaces of constant curvature can be constructed by embedding a 3D
hyperboloid, plane and sphere on a 4D flat space for the K < 0, K = 0 and K > 0 cases,
respectively. The radius of each one of these hypersurfaces defined as |K|−1/2 imply the
embedded metric to be given by (1.4) (see e.g., [2]).

One can also choose a fully dimensional radial coordinate (a more frequent choice in
the literature) by defining the radial comoving distance,

r =

{
|K|−1/2χ K 6= 0,

χ K = 0.
(1.5)

Thus for coordinates xi = (r, θ, ϕ) the comoving spatial line element reads:

dℓ2 = γijdx
idxj = dr2 + f 2

K(r)dΩ
2, (1.6)

where the function fK depends on the sign of the curvature as

fK(r) =





(−K)−1/2 sinh
(√
−Kr

)
K < 0,

r K = 0,

K−1/2 sin
(√

Kr
)

K < 0.

(1.7)

There are other common choices for the spatial coordinates, as e.g. taking the function
fK(r) itself as the radial coordinate. Setting xi = (R, θ, ϕ) with R := fK(r) the spatial
metric reads

γijdx
idxj =

dR2

1−KR2
+R2dΩ2. (1.8)

When the forms (1.4) and (1.6) are considered on the full RW metric (1.3), for each
value of η the curvature of spatial sections Σt is given by Ka−2(η), so that it is possible to
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rescale the scale factor in order to make K to have only three discrete values −1, 0,+1. In
that case, choosing a radial coordinate adimensional/dimensional is equivalent to choosing
the scale factor dimensional/adimensional. This kind of choice has the disadvantage of
inhibiting the choice of an arbitrary value for the scale factor today, say a0 = 1, which
proves to be very useful for cosmological analyses. In fact, Universe models based on the
RW metric have as degrees of freedom the function a(η), determining the evolution in
time of spatial scales, and the constant K, determining the curvature of spatial sections
of spacetime. When the rescaling of a(η) is done, the degree of freedom in K can be
thought to be translated to the value of a0 plus the sign of K.

The gravitational effects of spatial curvature can be characterized by comparing the
curvature radius |K|−1/2 and the radial comoving scales considered r. From equations
(1.4) or (1.7) one can see that the spatial metric γ for the K 6= 0 cases reduces to the flat
case when r|K|1/2 = χ → 0, and according to the principle of equivalence, this should
be independent of the coordinates used. Therefore, when r|K|1/2 = χ ≫ 1 the effects
of curvature should be important, in contrast to situations in which r|K|−1/2 = χ ≪ 1
where they should become negligible.

The fundamental observers move on lines defined by constant comoving coordinates,
i.e., xi = const., so their four-velocity components are uµ = dxµ/dt = δµ0 on coordinates
xµ = (t, xi) and consequently uν = a−1δν0 on coordinates xν = (η, xi).

In order to specify a cosmological model, besides the spacetime geometry, one needs a
suitable matter/energy content and a gravitational theory or a specification of the inter-
action of the geometry and the matter/energy content [5]. Modern Cosmology assumes
the former through Einstein’s relativistic gravitational field equations (EFE) given by

Gab := Rab −
1

2
Rgab = κTab − Λgab, (1.9)

where Gab and Rab are the components (on a general basis) of the Einstein and Ricci
tensor of the spacetime, respectively, R is the Ricci (or curvature) scalar, κ := 8πGN

3, Tab
are the components of the energy-momentum tensor and Λ is the cosmological constant,
an spacetime constant in the sense that its covariant derivative is null, i.e. ∇aΛ = 0.
The EFE also guarantee the local conservation of energy and momentum, as the twice-
contracted Bianchi identities, ∇aG

ab = 0, imply ∇aT
ab = 0 [14].

Any cosmological model with a RW geometry and some suitably specified matter/energy
content determining the dynamical evolution according to General Relativity via the EFE
(1.9) is called a Friedmann-Lemâıtre-Robertson-Walker model (FLRW). In this work only
FLRW cosmological models are considered. On any FLRW model, as a consequence of
the cosmological principle, the only non-zero energy/momentum variables are the energy
density ρ and the isotropic pressure p. It is important to note that there are no vec-
tor nor tensor non-zero energy-momentum degrees of freedom. Furthermore, this scalar
fields are all functions of time alone, because of assumptions of homogeneity and isotropy.
Thus, fundamental observers on FLRW models measure an energy-momentum tensor,
irrespective of the chosen time coordinate, cosmic or conformal, of the form

Tµ
ν = Tµσg

σν =




−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


 . (1.10)

3Throughout this work natural units are assumed c = ~ = kB = 1. Then the gravitational constant
in EFE reads κ = 8πGN, where GN is the Newton’s gravitational constant.
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In other words, FLRW Universe models are made up of energy-matter contents that give
rise to an effective perfect fluid energy-momentum tensor. From the 10 components of
Tab only the two scalar ones are non-zero.

The equations governing the dynamics of FLRW Universe models can be obtained
considering the EFE (1.9), for the RW geometry (1.3) with the energy-momentum tensor
given by (1.10). In terms of the conformal time η the EFE equations are4

(
a′

a

)2

+K =
κ

3
a2ρ+

a2Λ

3
, (1.11a)

2

(
a′′

a

)·

+

(
a′

a

)2

+K = −κa2p+ a2Λ; (1.11b)

and in terms of the cosmic time are

(
ȧ

a

)2

+
K

a2
=

κ

3
ρ+

Λ

3
, (1.12a)

2
ä

a
+

(
ȧ

a

)2

+
K

a2
= −κp+ Λ. (1.12b)

The local conservation of energy/momentum is contained on systems (1.11) and (1.12)
because of the Bianchi identities and can be expressed by

ρ′ + 3
a′

a
(ρ+ p) = 0 and ρ̇+ 3

ȧ

a
(ρ+ p) = 0, (1.13)

in conformal and cosmic time respectively.
The systems of equations (1.11) or (1.12) are known as the Friedmann equations and

relate the rate of expansion/contraction of the Universe with its matter/energy content
and its spatial curvature. On the other hand equations (1.13) describe the energy conser-
vation on the Universe.

When a 6= 0 (1.12b) is easily readable from (1.12b) and the last equation in (1.13).
Therefore, just the Friedmann equation (1.12b) and the conservation equation (1.13) need
to be satisfied. It is very useful and also a common practice in the literature to write the
Friedmann equation in adimensional form. Therefore, dimensionless density parameters
are introduced as

Ωi(η) =
ρi(η)

ρcrit
, ΩΛ =

Λ

3H2
, (1.14)

where ρcrit := 3H2/κ is the critical density, corresponding to the evolution that the
energy density should have in the exact case of a spatially flat Universe, with H := ȧ/a
the Hubble parameter. A “density” parameter for curvature can also be introduced as
ΩK(η) = −K/a2H2 in terms of which the Friedmann equation (1.12b) becomes

Ω + ΩΛ + ΩK = 1. (1.15)

The density parameter Ω here represents the contribution to the energy density of all
matter fields present, baryons, cold dark matter (CDM), neutrinos, etc., but not the
cosmological constant. It is also useful to separate the radiation and matter contributions,

4Throughout this work the prime symbol ′ denotes derivative with respect to conformal time η and
the dot ˙ with respect to cosmic time t.



1.1 Standard model of cosmology 7

Ω = Ωm + Ωr, because of their different evolutions. We can further split matter naively
into CDM and baryons as Ωm = Ωc+Ωb. The conservation equation (1.13) is easily solved
for perfect fluids with equation of state (EOS) w = p/ρ = constant. For species i, one
finds5

ρi(a) = ρi0

(a0
a

)3(1+wi)

= Ωi(a)ρcrit(a) (1.16)

Taking into account that for pressureless matter w = 0 and for radiation w = 1/3 the
Friedmann equation can be written in adimensional form as

E2(a) :=
H2(a)

H2
0

=
Ωm0

a3
+

Ωr0

a4
+

ΩK

a2
+ ΩDE0

ρDE(a)

ρDE0

,

E2(z) :=
H2(z)

H2
0

= Ωm0(1 + z)3 + Ωr0(1 + z)4 + ΩK(1 + z)2 + ΩDE0
ρDE(z)

ρDE0

,

(1.17)

where we introduced the time–dependent function E as the Hubble parameter normalized
by its value today and on the second line (1+z) := a−1 defines the cosmological redshift z
(see §C.1) and a general model for Dark Energy (DE) is considered. When it is assumed
only as a cosmological constant, we replace ΩDE by ΩΛ, and because it is constant ρDE(z) =
ρDE0; otherwise it is described by the energy density ρDE and may change with time. It
is also a common practice in the literature to describe the Hubble parameter evolution
with the dimensionless variable h := H0/100 Km s−1 Mpc−1.

The comoving distance at a given redshift z, is given by the distance-redshift relation,

r(z) :=

∫ z

0

dz′

H(z′)
=

1

H0

∫ z

0

dz′

E(z′)
(1.18)

where E(z) describes the expansion history of the Universe according to the Friedmann
equation (1.17). On the past light-cone, r(z) is related to the adimensional radial comov-
ing coordinate according to

χ(z) =

{
|K|1/2 r(z), K 6= 0,

r(z), K = 0.
(1.19)

Note that, according to this relation, on the light-cone surface the variable z and the
coordinates t and χ are equivalent. That is because of the physical interpretation of
r(z) as the comoving distance travelled by a photon propagating in a radial null geodesic
from a point of radial coordinate χ to the observer (assumed at χ = 0 without loss of
generality).

During the last decade of the last century, a major discovery was made in Cosmology:
the scientific community reached the conclusion that dark and ordinary matter were insuf-
ficient to describe accurately a variety of cosmological observations within the framework
of the standard cosmological model just depicted above, i.e., a RW metric describing the
spacetime and the validity of GR on cosmological scales. The relation between lumi-
nosity and distance of type Ia supernovae revealed that in the context of the standard
model about 73% of the total energy density in the Universe comes from an extra com-
ponent, which causes the Universe not only to expand, but to do it in an accelerated
way (i.e., ä > 0), [15, 16]. The more recent results for the observational evidence of
the energy/matter content of the Universe come from measurements of the temperature

5Throghout this work quantities indexed by a 0 are defined to be evaluated today.
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fluctuations in the cosmic microwave background (CMB) radiation as determined by the
Planck mission [17]. These results have been shown to be consistent with the so-called
ΛCDM concordance model of cosmology, consisting of a nearly spatially flat Universe,
determined to an accuracy of better than a percent, dominated by two unknown compo-
nents, the dark matter and dark energy, with 26.8% and 68.3% of the total energy content
in the Universe respectively, and with only 4.9% of ordinary matter, i.e. baryons. See
[17] for a more detailed discussion.

The nature of dark matter and dark energy or the accelerated expansion of the Universe
constitute two of the most important open problems in Physics today. The most basic
model of dark energy (DE) describes it as a cosmological constant Λ, for which density
and pressure are constant and related by the equation of state parameter w = p/ρ = −1.
A large number of alternative models has been explored in recent years. They are mostly
separated in two groups: (a) models in which DE is, in fact, a gravitational source in the
context of GR, and then is modeled as an evolving field, like e.g., quintessence, see e.g.,
[18, 19, 20], and (b) models in which the theoretical basis of gravitational phenomena is
proposed to be changed, i.e., the equations of GR are modified in order to describe the
acceleration as a dynamical (gravitational) effect, e.g. [18, 21].

1.2 Cosmological perturbation theory

In GR, we have to solve ten coupled nonlinear partial differential equations for the metric
tensor in terms of the gravity sources represented in the energy-momentum tensor: the
EFE (1.9). The idea of perturbation theory (PT) is to reformulate the problem as an
infinite hierarchy of linear differential equations for deviations of the metric with respect
to a known solution of the EFE that defines the background solution of the system con-
sidered. In this way, one translates the difficulty from nonlinearity to the infinite number
of equations (see e.g. §7.5 of [22]). The key assumption of the perturbative scheme is, as
is a common practice in Physics, that one can truncate the problem at a finite order and
still obtain an approximate solution to the original system.

The cosmological principle allows for relatively over-simplified solutions of the EFE
(1.9) as we saw in the last section. Physical reality is more complicated, as the distribution
of matter is not exactly homogeneous on all scales. On small scales, below some hundred
Mpc, one observes a vast variety of structures such as “walls” of matter, filaments, galaxy
clusters and galaxies. In addition, given the non-linear nature of the EFE, it is a very
difficult task to solve them exactly for more realistic spacetime models. Thus, in order to
obtain realistic models to compare with detailed observations, one needs to approximate,
aiming to obtain almost-FLRW models representing a Universe that is FLRW-like on
large scales, but allowing for generic inhomogeneities on small scales.

The major problem in studying such perturbed models is the gauge problem, related
to the arbitrariness on the identification of perturbed and unperturbed (background)
physical degrees of freedom, see e.g. §5.2 of [2] and [23, 24, 25]. Such identification
depends on the choice of the coordinate system and thus on the specific spacetime observer.
Consequently the dynamical equations written in terms of perturbation variables have as
solutions both physical modes and gauge modes, the latter corresponding to variation
of gauge choice, i.e. a choice of the coordinate system used, rather than a physical
variation of the corresponding background quantity. A way to overcome this problem is
to identify proper gauge-invariant modes describing the physical degrees of freedom on
the perturbative quantities, i.e. the actual physical observable quantities. A brief review
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of the way to study general perturbations within GR applied to FLRW Universe models
is presented in Appendix A.

The fluctuations (perturbations) on the metric and the energy-momentum tensor of a
FLRW model can be separated into three different modes: scalar-, vector- and tensor-like,
the so-called scalar, vector and tensor decomposition (SVT), which evolve independently
in linear theory [2]. In this work we will concentrate on scalar modes, since they con-
nect the metric perturbations to density, pressure and velocity (see §A.3). Vector-like
perturbations are damped by the cosmic expansion and tensor modes are related to the
propagation of gravitational waves. Specifically the work will focus mostly on linear scalar
perturbations, although when comparing theory to observations, we must also consider
non-linear effects which propagate into linear scales.

Linear (first order) scalar perturbations can be generally described by four functions
for the metric and four for the energy-momentum tensor according to equations (A.28)
and (A.45) respectively. The energy-momentum perturbations can be identified with
the following physical quantities: (a) δ(x, η) = ρ(x, η)/ρ(η) − 1, the density contrast
(fluctuation) at point x and time η relative to the mean value ρ(η); (b) v(x, η), the peculiar
velocity, i.e. the intrinsic velocity of objects with respect to the comoving coordinates;
(c) the isotropic δp and (d) anisotropic Π pressure fluctuations. The solutions for these
variables contain modes that depend on the choice of coordinate system, i.e. to a gauge
choice. Since scalar degrees of freedom of gauge transformations are characterized by two
scalar fields, it is possible to choose a combination of the eight variables above and obtain
six scalar gauge invariant quantities (see e.g. [23, 24] and §A.3.3 and §A.3.4).

Since in this work the interest is on the clustering of matter in the Universe, the prob-
lem to consider is the evolution of the pressureless fluid (pure dust) describing the total
content of matter in the Universe, CDM plus baryonic, for which the energy-momentum
tensor can be chosen as, Tab = uaubρ, with ua the fluid four-velocity and ρ the energy
density. The scalar first order EFE in PT contains all the dynamics of the system. In
fact, from the six gauge invariant variables, two should be identically null, the isotropic
and anisotropic pressure fluctuations and the EFE can then be reduced to four equations
forming a closed system, see appendix A for details.

1.2.1 Linear growth of structures

On sufficiently large scales, the gravitational evolution of fluctuations in the total matter
in the Universe follows linear perturbation theory. Following the previous discussion, one
ends up with four independent linear scalar degrees of freedom: two gravitational poten-
tials, equation (A.38), the density fluctuation and the scalar component of the peculiar
velocity, equation (A.47). Their evolution is described by four independent equations
derived from the EFE and given by (§A.3)

δ′ +
(
∇2 + 3K

)
v = 0, (1.20a)

v′ +Hv + Φ = 0, (1.20b)
(
∇2 + 3K

)
Φ = a2

κ

2
ρ̄δ. (1.20c)

This system of equations fully describes the problem for gauge invariant degrees of free-
dom in the context of GR. In equation (1.20) H = a′/a is the conformal Hubble parameter.
Recall that primes denote derivatives with respect to the conformal time, δ, v and Φ de-
note the gauge-invariant density contrast, velocity potential and gravitational potential
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inside the particle horizon and are gauge-invariant up to first order. Actually v denotes
the longitudinal (the only scalar one) part of the velocity field, i.e., vi = Div, where Di

denotes the covariant derivative with respect to the spatial metric γij.
It is possible to eliminate the variables v and Φ to obtain an evolution equation for

the gauge-invariant fluctuation in matter density δ:

δ′′ +Hδ′ − 3H2
0Ωm0

2a(η)
δ = 0. (1.21)

Note that, as long as the equations describe pressure-less matter, the background evolution
is given by

ρ̄(η) = ρcritΩm(η) =
3H2

0

κ
Ωm(η) =

3H2
0

κa3(η)
Ωm0. (1.22)

The equation for δ is separable in the time and spatial coordinates, so the solutions
will be written as

δ(η, xi) = δ(η0, x
i)
D(η)

D(η0)
= δ0(x

i)
D(η)

D(η0)
, (1.23)

Obviously we can normalize D to any arbitrary time. In this work, by convenience, the
normalization is chosen with respect to the present time6. Therefore, the time-dependent
part of the solution satisfies the equation

D′′ +HD′ − 3H2
0Ωm0

2a(η)
D = 0. (1.24)

On equation (1.24) one has the freedom to change the time variable for the cosmic
time, the scale factor, or the cosmic redshift depending on what is more convenient. The
equations for these variables are then given by

D̈ + 2HḊ − 3H2
0Ωm0

2a3(t)
D = 0, (1.25)

for the cosmic time,

d2D

da2
+

[
3

a
+

d lnE(a)

da

]
dD

da
− 3Ωm0

2E(a)a5
D = 0, (1.26)

for the scale factor, where again E(a) describes the expansion history according to Fried-
mann equation (1.17), and

d2D

dz2
+

[
1

(1 + z)
− d lnE(z)

dz

]
dD

dz
+

3Ωm0(1 + z)

2E(z)
D = 0, (1.27)

for the redshift.
The solutions for D depend on the background evolution via the Hubble parameter

H. Solutions reduced to quadrature can only be obtained for very specific matter-energy
contents and DE models. In general, the problem of finding the time evolution of matter
fluctuations must be treated numerically, as is actually done in this work.

Consider now the evolution of the velocity field. Combining equations (A.53) with the
solution for the matter fluctuations equation (1.23), one arrives to

v′ +Hv = −Φ = −3H2
0Ωm0

2a
G(η)

(
∇2 + 3K

)−1
δ0, (1.28)

6Quantities with the subscript 0 denote evaluation on the present time.
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where G denotes the growth factor normalized to its value today, G(η) = D(η)/D(η0).
The homogeneous solution of equation (1.28) is a decaying mode in time, vhom ∝ a−2,

and an inhomogeneous solution can be obtained as

v = −HGf
(
∇2 + 3K

)−1
δ0 = −aHGf

(
∇2 + 3K

)−1
δ0, (1.29)

where the function

f(η) :=
d ln(G)

d ln(a)
=
a

G

dG

da
=

G′

HG =
Ġ

HG
. (1.30)

One may prove that equation (1.29) is actually a solution of the inhomogeneous equation,
by separating variables to see that the spatial-dependent part goes as (∇2 + 3K)

−1
δ0 and

the time-dependent part satisfies

v′ +Hv + 3H2
0Ωm0

2a
G(η) = 0, (1.31)

so that, by comparing with the equation for the growth factor, equation (1.24), the solution
can be written as v(t) = −G′(η) = −HGf .

1.2.2 Nonlinear evolution

On scales much smaller than the horizon and restricting the analysis to a spatially flat
background, Newtonian physics can be used to describe the structure evolution [26]. The
Newtonian equations for an ideal fluid of zero pressure in comoving coordinates are, see
e.g., [26, 27],

δ̇ +
1

a
∇ · [(1 + δ)v] = 0, (1.32a)

v̇ +Hv +
1

a
v · ∇v = −1

a
∇Φ, (1.32b)

where H = ȧ/a is the Hubble factor and recall dots denote derivatives with respect to
the cosmic time t. These are the continuity and Euler equations for the fluid, written
in terms of the density fluctuation and comoving coordinates. In conjunction with the
Poisson equation (1.20c) in the spatially flat case,

∇2Φ = 4πGa2ρ̄δ (1.33)

i.e., the standard Poisson equation for the Newtonian gravitational field in comoving
coordinates, this system of equations fully specifies the dynamics of the fluid.

Linearizing the equations of motion (EOM), i.e considering only terms linear in δ and
v, the Newtonian EOM (1.32b) and (1.32b) become

δ̇ +
1

a
∇ · v = 0, (1.34a)

v̇ +Hv = −1

a
∇Φ. (1.34b)

Thus, along with the Poisson equation (1.33), they are equivalent to the GR system in the
spatially-flat case (K = 0), equations (1.20c). To see this explicitly, just make a change
of variables t→ η and introduce the velocity scalar potential v.
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In order to describe the full non-linear evolution we must depart from linear per-
turbation theory just discussed above. Given the difficulty to find exact solutions of the
non-linear dynamical equations (1.32)-(1.33), a perturbative approach can be chosen. Our
following discussion on the perturbative approach within the framework of spatial flatness
and Newtonian description follows closely that of [27] and §2.2 of [6], to which we refer
the reader for more details and discussion.

We begin by introducing the variable θ := ∇·v, the divergence of the peculiar velocity
field. This variable is particularly useful because according to the SVT decomposition,
as long as in a spatially flat background vi = ∂iv, we found that it is nothing but the
Laplacian of the scalar peculiar velocity potential, i.e.,

θ = ∂iv
i = ∂i∂

iv = ∇2v, (1.35)

so that, by combining with the linear solution (1.29), we see that at linear level it has the
solution

θ = −HGfδ0 = −aHGfδ0, (1.36)

that is, in the linear regime the spatial evolution of the θ is given by the overdensity field
of total matter today and its temporal evolution is the same of the scalar peculiar velocity
potential, equation (1.29).

Thus, in terms of θ, one can take the Fourier transform of the full non-linear continuity
equation (1.32b) and obtain its representation in Fourier space as

aδ̇(k, t) + θ(k, t) = −
∫

d3x eik·x∇ · (δv) (x, t). (1.37)

One can then perform an integration by parts and write down the δ(k) and v(k) fields as
Fourier integrals to obtain

aδ̇(k, t) + θ(k, t) = −
∫

d3k1

(2π)3

∫
d3k2

(2π)3
ik · v(k1, t)δ(k2, t)

∫
d3x eix·(k−k1−k2). (1.38)

One now assumes the peculiar velocity field v to be curl-free. This assumption was
implicit on the SVT devomposition vi = Div in the context of relativistic pertubations as
long as the transverse vectorial mode was not considered because we only consider scalar
perturbations. In the Newtonian context, this assumption can be justified by noting
that for a pressure-less ideal fluid, linear vorticity perturbations, that is, the transverse
part of the peculiar velocity decay with time as a−1 (see the discussion in §2.3-2.4 of
[27]). The velocity then has only a divergence (scalar potential) part v, which in Fourier
representation is expressed as v(k) ∝ k, so that on the last integral one can write

k · v(k1, t) =
[
k · k̂1

] [
k̂1 · v(k1, t)

]
. (1.39)

Moreover, the x-integral can be computed to give a Dirac delta function multiplied by
(2π)3 and thus one finally arrives to

aδ̇(k, t) + θ(k, t) = −
∫

d3k1

(2π)3

∫
d3k2 δD(k− k1 − k2)α(k1,k2)θ(k1, t)δ(k2, t), (1.40)

with

α(k1,k2) :=
(k1 + k2) · k1

k21
(1.41)
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In an analogous way to the calculation for the continuity equation, the Euler equation
(1.32b), can be written in Fourier space, after combining it with the Poisson equation
(1.33) as

aθ̇(k, t) + ȧθ(k, t) +
3H0Ωm0

2a
δ(k, t) = −

∫
d3x eik·x [∂i (vj∂j) vi] (x, t), (1.42)

so that, integrating by parts and expanding the fields δ and v in Fourier modes, the
integral on the right-hand side becomes

−
∫

d3k1

(2π)3

∫
d3k2

(2π)3
ik · v(k1, t) [ik · v(k2, t) + v(k2, t)]

∫
d3x eix·(k−k1−k2). (1.43)

Then, neglecting the curl-part of the velocity field, as before, one arrives to

aθ̇(k, t) + ȧθ(k, t) +
3H0Ωm0

2a
δ(k, t) = −

∫
d3k1

(2π)3

∫
d3x δD(k− k1 − k2)

× β(k1,k2)θ(k1, t)θ(k2, t) (1.44)

with

β(k1,k2) :=
|k1 + k2|2 k1 · k2

2k21k
2
2

. (1.45)

The last expression is obtained with the requirement that the integrand in (1.44) is sym-
metric in k1,k2.

The kernels α and β, equations (1.41) and (1.45), respectively, describe the coupling
between different Fourier modes of the fields δ and θ arising from the non-linear terms in
the fluid equations of motion (1.32b)-(1.33). In this sense, the evolution of both harmonic
modes δ(k) and θ(k) at a given wave vector is determined by the mode-coupling of both
fields at all pairs of wave vectors (k1,k2) and these should have a sum equal to k (as
expressed by the Dirac delta on the equations) which is consistent with the requirement
of spatial homogeneity.

The equations (1.32b)-(1.33) can be easily written for the conformal time η as

δ′(k, η) + θ(k, η) = −
∫

d3k1

(2π)3

∫
d3k2 δD(k− k1 − k2)

× α(k1,k2)θ(k1, η)δ(k2, η), (1.46a)

θ′(k, η) +Hθ(k, η) + 3

2
HΩm0δ(k, η) = −

∫
d3k1

(2π)3

∫
d3k2 δD(k− k1 − k2)

× β(k1,k2)θ(k1, η)θ(k2, η) (1.46b)

This pair of equations are the basis of the standard cosmological perturbation theory
(PT) which begins by noting that for an Einstein-de Sitter (purely matter dominated)
cosmological model (EdS), that is, one with Ωm0 = 1 and ΩΛ = 0, where the Friedman
equation implies a(η) ∝ η2 and H(η) = 2/η and, moreover, where the growing mode,
according to equation (1.24), evolves as the scale factor, G(η) = a, and consequently
f(η) = 1, equations (1.46) can formally be solved with a perturbatibe expansion of the
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form 7

δ(k, η) =
∞∑

n=1

an(η)δn(k), (1.47a)

θ(k, η) = −H
∞∑

n=1

an(η)θn(k). (1.47b)

Note that these expansions are actually with respect to the linear density fields, as is
desired in any perturbative scheme as long as the perturbative terms are given by the
EOM as

δn(k) =

∫
d3q1 · · · d3qn

(2π)3n−3
δD

(
k−

n∑

i=1

qi

)
Fn(q1, . . . ,qn)δ1(q1, 0) · · · δ1(qn, 0), (1.48a)

θn(k) =

∫
d3q1 · · · d3qn

(2π)3n−3
δD

(
k−

n∑

i=1

qi

)
Gn(q1, . . . ,qn)δ1(q1, 0) · · · δ1(qn, 0), (1.48b)

where the integration kernels Fn and Gn can be obtained from the fundamental mode
coupling functions of the fields δ and θ, α and β (equations (1.41) and (1.45) respectively)
according to the recursion relations for n ≥ 2 [27]

Fn(q1, . . . ,qn) =
n−1∑

m=1

Gm(q1, . . . ,qm)

(2n+ 3)(n− 1)
[(2n+ 1)α(k1,k2)Fn−m(qm+1, . . . ,qn)

+2β(k1,k2)Gn−m(qm+1, . . . ,qn), ] (1.49a)

Gn(q1, . . . ,qn) =
n−1∑

m=1

Gm(q1, . . . ,qm)

(2n+ 3)(n− 1)
[3α(k1,k2)Fn−m(qm+1, . . . ,qn)

+2nβ(k1,k2)Gn−m(qm+1, . . . ,qn)] . (1.49b)

On this recursion relations k1 :=
∑m

j=1 qj and k2 :=
∑n

j=m+1 qj. These functions repre-
sent the coupling between Fourier modes of the fields δ and θ describing the non-linearity
of its EOM. Note further that at linear order, i.e., for n = 1, these two kernels should
reduce to unity, i.e. F1 = G1 = 1.

For the second-order solutions, i.e., n = 2, one has [27]

F2(q1,q2) =
5

7
+

1

2

q1 · q2

q1q2

(
q1
q2

+
q2
q1

)
+

2

7

(q1 · q2)
2

q21q
2
2

(1.50a)

G2(q1,q2) =
3

7
+

1

2

q1 · q2

q1q2

(
q1
q2

+
q2
q1

)
+

4

7

(q1 · q2)
2

q21q
2
2

(1.50b)

The remarkable feature of the perturbative solutions for EdS cosmological models
above is the fact that they are separated for the time and the wave-numbers, i.e., they
are made of products of terms that depend only on these variables. However, in general
the Universe should not be well described always by an EdS solution. For more general

7We do not provide here a proof of this statement because it is out of the scope of the present work.
However, the reader can see e.g. [27] and references therein.
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ΛCDM-like cosmological models the mentioned property of separability can be approxi-
matively maintained by allowing for the respective solutions for the linear growth factor
G and its logarithmic derivative f (see the discussion at §2.4.4 of [27]). In this sense,
equations (1.47) can be replaced by

δ(k, η) =
∞∑

n=1

Gn(η)δn(k) (1.51a)

θ(k, η) = −H(η)f(η)
∞∑

n=1

Gn(η)θn(k) (1.51b)

and remain approximately valid for any ΛCDM cosmology mantaining the same solutions
for the wave-number dependent perturbative coefficients, equations (1.48).

The most remarkable application of the PT formalism depicted above is on the con-
struction of a perturbative expansion for the power spectrum of the total matter in the
Universe. A definition of the power spectrum will be given in Chapter 2 as the two–
point correlation of Fourier modes of the field of matter fluctuations or equivalently the
Fourier transform of the two–point correlation function describing the probability of find
overdensities separated by a given distance scale in the Universe. Considering two wave-
numbers k1 and k2 the power spectrum of matter P at the instant of conformal time η
is given by the relation (2π)3δD(k1 − k2)P (|k1 − k2| , η) := 〈δ(k1, η)δ

∗(k2, η)〉. Note that
it depends only on the norm of the difference of the wave-vectors and also the appear-
ance of the Dirac delta function; these are consequences of the assumption of statistical
homogeneity and isotropy of the field of matter fluctuations (see Chapter 2). If we intro-
duce the PT perturbative solutions of equations (1.51) into this definition we end with
the mentioned expansion for the power spectrum, which clearly should have the form
P (k, η) =

∑
i,j Pij(k, η), where the perturbative terms Pij are given by the two–point

correlation of the fluctuation on the matter density field at different orders, i and j, in
PT scheme,

(2π)3δD(k1 − k2)Pij(|k1 − k2| , η) :=
〈
δi(k1, η)δ

∗
j (k2, η)

〉
. (1.52a)

Note then that at all orders the separation property of the PT expansions imply that the
temporal part can be separated according to Pij(k, t) = Gi+j(t)Pij(k).

At linear order the power spectrum is then given simply as the correlation of the linear
fluctuations

P
(0)
PT = P11(k, t) = G2(t)PLin(k), (1.53)

where PLin(k) is the linear power spectrum today, also known as the initial power spectrum.
In the context of the modern ΛCDM concordance model of cosmology, such spectrum is
parametrized as PLin(k) ∝ knsT 2(k), where ns is the primordial scalar spectral index
directly related to the initial conditions defined by the inflation and T 2(k) is the transfer
function, which encodes the information of the linear evolution of matter fluctuations
through the radiation domination era and the resulting recombination era of decoupling
of matter and radiation [2]. Such transfer function should then be tracked by using the full
dynamics of the mixture of the different species presented in the Universe at these stages
via the out of equilibrium formalism of the Einstein-Boltzmann system, see e.g., chapter
7 of [4]. During the present work we use modern sophisticated numerical codes devoted
to evolve these equations, specifically we used the CAMB code [28] (see the discussion at
the beginning of chapter 4).
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The next order contribution to the power spectrum from PT expansion is the sum of
two terms, each one of which mixes up two linear power spectra, P

(1)
PT = P22 + P13 where

[27]

P22(k, η) =
1

4π3

∫
d3q F 2

2 (k− q,q)P (|k− q| , η)P (q, η)

=
G4(η)

4π3

∫
d3q F 2

2 (k− q,q)PLin(|k− q|)PLin(q), (1.54a)

P13(k, η) =
3

4π3
P (k, η)

∫
d3q F3(k,q,−q)P (q, η)

=
3G4(η)

4π3
PLin(k)

∫
d3q F3(k,q,−q)PLin(q). (1.54b)

And in this way one can continue up to any order desired.

The linear power spectrum and the first three perturbation terms as computed in
the framework of PT just depicted above are shown in the left panel of figure 1.1 as
a function of the wave-number. Solid and dashed lines denote positive and negative
contributions. This figure shows the main problem of PT: with the exception of the linear
power spectrum, each term has both positive and negative contributions and does not
appear a tendency for the different perturbative contributions to decrease in amplitude
with increasing order. This left us with the impossibility to predict the sign and amplitude
of any term before computing it explicitly, and consequently makes the decision of where
to truncate the PT expansion problematic. By this fundamental reason one finds the
statement on the literature that PT can be used to describe only the mildly non-linear
regime but not the full non-linear regime, see [29, 30] and references therein.

Figure 1.1: Comparison between PT and RPT non-linear power spectrum. Left panel :
PT non-linear power spectrum, green line, decomposed according to perturbation the-
ory as the sum of the linear term, blue line, and the first three perturbation terms,
red, violet and cyan lines. Solid and dashed lines indicates positive and negative con-
tributions, respectively. Right panel : same non-linear power spectrum decomposed

according to RPT. The terms P
(0)
RPT and P

(n)
RPT , for n > 0 in the figure are equivalent

to G2(k, t0)P (k, 0) and P
(n)
MC(k, t0) from Eq (1.57). Figures from [29]
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Given that the modeling of the two-point statistics of different cosmic fields used in
this work requires the proper introduction of the effects of the non-linear evolution of
density fluctuations (for the details see §4.1.2 and [8, 7]), in this work we made use of
the renormalized perturbation theory (RPT) approach [29, 30] as an approach to improve
PT results. It is out of the scope of the present work to make a detailed review of RPT,
which requires a high level of technical developments and tools of field theory. However,
we try to mention the main features and basis of this approach. We closely follow the
treatment presented on §2.2 of [6], which can be consulted for detailed discussion.

In an oversimplified way, RPT can be understood as a reorganization of the terms
in the PT expansion that remove the problems of this formalism mentioned above. The
first idea is that all the terms in the PT expansion for the power spectrum that are
proportional to the initial power spectrum, here P (k, t), like P13 (see equation (1.54b))
and P15 (see e.g., [27, 29]), are grouped together into a common factor G(k, t), the so-called
renormalized propagator, which can be interpreted as encoding the loss of information of
the initial conditions due to non-linear evolution. At very large scales, the low-k limit,
the renormalized propagator should evolve as the growth factor, G(k, t) ≈ G(t), having
no dependence on the initial conditions. Meanwhile, at small scales, the high-k limit, the
behavior of the propagator was computed on [29] to have approximatively the form of a
Gaussian with zero mean and dispersion given by a characteristic scale determining where
linear theory breakdown. Here we call this scale as rNL following [12]8

r2NL =
1

3

∫
dk

PLin(k)

k2
. (1.55)

That is, for small scales [30]

G(k, η) ≈ G(η) exp

[
−1

2
k2r2NL (G(η)− 1)2

]
, (1.56)

with G(η) the linear growth factor.
The remaining terms, those that are not proportional to P (k, η), are organized accord-

ing to the number n of initial modes coupled and grouped into the mode coupling power
spectrum P

(n)
MC(k, t). As an example, the lower order term is the one that couples two

initial power spectra, i.e., P
(2)
MC(k, t). It is given by P22 of PT (equation (1.54b)) [30]. In

this way, the full non-linear power spectrum in RPT formalism should have the following
form

P (k, t) = G2(k, t)PLin(k) +
∞∑

n=2

P
(n)
MC(k, t) (1.57)

The linear power spectrum and the first three perturbation terms as computed in
the framework of RPT just depicted above are shown in the right panel of figure 1.1
as a function of the wave-number. Solid and dashed lines denote positive and negative
contributions. This figure shows how the main problems of PT are alleviated in the context
of RPT each term has positive contributions and appears dominant over a restricted range
of wave-numbers, which shows a tendency to increase in the values of k with increasing
perturbative order. This shows the advantage of RPT over standard PT. In principle, it
is simpler to decide where to truncate the series of equation (1.57) if a given precision at
wave-number k is required.

8Note that this quantity have different names on different works, [30] originally call it σv and [8] call
it sbao.
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1.3 The Dark Energy Survey

The Dark Energy Survey (DES) is a new generation galaxy survey designed to study the
late cosmic acceleration of the Universe through the dynamics of the expansion and the
growth of structures at large scales on cosmological context. The DES is a collaboration
of over a hundred researchers from the USA, UK, Spain, Germany, Chile, Switzerland
and Brazil.

The main innovation in the project is the development of a new optical CCD camera
of 5000 megapixels and 2.2 degrees of field of view called DECam, which has been placed
at the Blanco 4 meters telescope located at Cerro Tololo Inter-American Observatory
(CTIO) in Chile and saw its first light in September 2012. For over five years it will use
30% of the telescope available time to carry out a wide-area survey and reach redshifts
0.2 ≤ z ≤ 1.3 − 2 with a depth of ∼ 24 in magnitude in SDSS broad bands, g = 24.6,
r = 24.1, i = 24.3 and z = 23.9 over 5000 deg2 in the southern galactic sky.

The DES is expected to detect ∼ 100000 optical galaxy clusters and to measure shapes,
redshifts and positions of ∼ 200 millions of galaxies of all types. It will obtain cosmo-
logical information about the physical nature of dark energy via four different methods
(cosmological observables):

1. Count and spatial distribution of galaxy clusters with 0.2 ≤ z ≤ 1.3,

2. the evolution of the angular clustering of galaxies,

3. weak lensing tomography up to z ∼ 1 and

4. distances and luminosities of supernovae in 0.3 ≤ z ≤ 0.8

While observations and data analyses proceed by different working groups in the col-
laboration, simulations are also performed to validate the analysis tools and forecast
results with higher confidence. In this work, we will make use of these simulations in
order to test pipelines that estimate the angular correlation function of galaxies and how
to extract cosmological information from a Bayesian analysis of the data.

1.4 LSS cosmological observables

This section introduces the basic cosmic fields whose correlations will be studied in the
remaining of this work. Namely, the angular fluctuation of the density of galaxies in the
Universe and the convergence and shear fields that characterize weak lensing phenomena.

This will be done from a point of view as general as possible, within a cosmological
model based on first order (linear) scalar perturbations around a FLRW model. It will not
be assumed from the beginning that the Universe is spatially flat, which will nonetheless
be a particular and important case of the treatment here presented.

1.4.1 Three and two-dimensional galaxy clustering

In the context of galaxy surveys, one observes a particular window of the Universe, con-
sisting of an angular mask of the observed area and a radial distribution of galaxies. In
order to correct for spatially varying selection effects, we do not make direct use of ob-
served galaxy number density ng(x) but instead consider the dimensionless overdensity
of galaxies δg(x) = ng(x)/n̄g − 1, defined with respect to the mean number density n̄g.
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In order to confront theoretical model predictions for the total mass distribution in
the Universe against observational data, a relationship between the fluctuation fields of
galaxies and the total matter becomes necessary. The problem appearing resides in the
fact that luminous astrophysical objects, such as galaxies and quasars, are not direct (but
biased) tracers of mass in the universe. A difference of the spatial distribution between
luminous astrophysical objects and the total matter in the Universe has been indicated
from a variety of observations. This difference is commonly referred to in the literature
as the biasing effect. It is beyond the scope of this work to present a detailed discussion
of galaxy bias modeling. However, some related ideas are presented below.

In common applications a linear biasing model is often assumed in which the fluctua-
tion fields of galaxies δg and total matter δm are assumed to be deterministically related
by

δg = bgδm, (1.58)

where the bias factor bg fully determines the biasing effect. However, this modeling for
the biasing is not based on any reasonable physical motivation. Note that, if the bias
factor satisfies bg > 1 everywhere the model should break down because values of the
galaxy fluctuation field δg below −1 are forbidden by definition, even in voids.

A better motivated and formulated approach to biasing effect is based on the biasing
of density peaks in a Gaussian random field (see [31]). In this scheme the galaxy-galaxy
and total matter two-point correlation functions, ξgg and ξmm respectively, are related in
linear theory by

ξgg = b2gξmm, (1.59)

where the galaxy bias parameter is a constant independent of scale, i.e. a scale independent
bias. Note that the relation (1.59) follows from (1.58), but the reverse is not true.

In this work a scale independent galaxy bias of the form (1.58) is used. This relation
is assumed phenomenologically for a galaxy population and the bias factor is allowed to
vary with the radial distance to galaxies, i.e. with redshift or cosmic time.

The key concept on the theoretical interpretation of angular clustering of galaxies is
the field of projected galaxy density fluctuation onto the sky or projected galaxy fluctuation
for short, denoted here δ2Dg (n). Here n = (θ, ϕ) represents a particular direction (from the
observer) on the sky. It is convenient to define it as a properly weighted marginalization
of the total galaxy fluctuation on the observer past light-cone, δg(χ(z),n), over its redshift
(radial) dependence (see e.g. [7, 8, 32]),

δ2Dg (n) :=

∫ ∞

0

dz φg(z) δg(χ(z),n), (1.60)

and should be interpreted as the total averaged galaxy fluctuation on a given direction
on the sky. The marginalization kernel is the radial selection function of galaxies, φg(z),
which describes the selection of galaxies in redshift and depends on the kind of observation
considered. It should take into account the sky coverage for the definition of the field, the
method used to estimate the redshift of galaxies, spatially varying magnitude limits, etc.

The goal here is to derive the relation between the projected galaxy fluctuation δ2Dg
and the total matter fluctuation today, δ0(χ, θ, ϕ). This theoretical relation should then
enable us to relate their statistical properties too. In order to find this relation it is
necessary to deal with the proper relation between δg and δ0, which is a non-trivial one.

The main complication resides in the fact that the peculiar velocity of a galaxy will
cause it to appear shifted along the line-of-sight in redshift coordinates, an effect early
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studied by [33, 34]. In other words, the peculiar velocities of galaxies on top of their
background Hubble flow introduce a radial anisotropic distortion in redshift-space (rs),
the space of measured positions of galaxies. That is, the redshift distance of a body will
be altered from its true distance, by its own peculiar velocity radially oriented from the
observer. This deviation alters the apparent clustering of galaxies and, collectively, the
effect is said to be the result of redshift space distortions (see Appendix C or classical
references, e.g. [33, 34]).

In linear cosmological perturbation theory on a FLRW Universe, the observed redshift-
space fluctuation of galaxies δ

(rs)
g is related to the total matter fluctuation today δ0 by the

redshift space distortion operator, R̂g, an integro-differential operator, such that, on large
scales (see Appendix C for a detailed discussion)

δ(rs)g (χ,n) = bg(z)G(z)R̂g δ0(χ,n), (1.61)

where bg(z) represents the scale-invariant galaxy bias and G(z) the growing mode of linear
matter fluctuations dynamics.

A general treatment of redshift space distortions sourced by Doppler effect in the
context of GR is presented on Appendix C. There, the general form for the redshift space
distortion operator R̂g is deduced assuming linear perturbation theory and linear scale-
independent biasing, and is valid for arbitrary radial separation between the observer and
the galaxy (arbitrary galaxy redshift) and also arbitrary spatial curvature. The resulting
operator is given by equation (C.36), reproduced here for completeness:

R̂g = 1̂ + βg(z)

{
|K| [∂χ + α(χ)] ∂χ

(
∇2 + 3K

)−1
K 6= 0,

[∂χ + α(χ)] ∂χ
(
∇2
)−1

K = 0,

where 1̂ represents the identity operator, βg(z) (equation (C.37)) is the standard redshift-
space distortion factor, determining the strength of the distortions, and α is an observation-
dependent function of the comoving distance given by equation (C.29).

Thus, the projected galaxy fluctuation can be written as the projection of the redshift-
space distorted fluctuation of matter today,

δ2Dg (θ, ϕ) =

∫ ∞

0

dz W g(z)R̂gδ0(χ, θ, ϕ), (1.62)

where the galaxy window function was introduced as

W g(z) := φg(z)bg(z)G(z). (1.63)

1.4.2 Weak gravitational lensing

In this section, the first Greek indices α, β, δ . . . run in 2, 3 labeling coordinates used
to cover the unit sphere S2. Unless mentioned otherwise, the system of usual spherical
coordinates (θ, ϕ) is used, so that the metric is given by

[gαβ] =

[
1 0
0 sin2(θ)

]
. (1.64)

In the Born approximation, the deflection angle of a light ray by the large scale struc-
ture of the Universe, described using linear scalar perturbations around a FLRW back-
ground (see §A.3), is given by a properly weighted projection on the sky of the S2-gradient
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of the Weyl or lensing gravitational potential, ΨW := (Φ + Ψ) /2, evaluated along unper-
turbed radial null geodesics,

(θ − θ0, sin θ0 (ϕ− ϕ0)) = αβ = −2
∫ rs

0

dr
fK(rs − r)
fK(rs)fK(r)

∇βΨW (η0 − r, r, θ0, ϕ0), (1.65)

where the sub-indices “s” and “0” denote source (emission of the light ray) and observer
(reception of the light ray events) and the function fK is given according to the radial
components of the RW metric (equation (1.6)) in coordinates xµ = (η, r, θ, ϕ) by equation
(1.7). The gradient on S2 on (1.65) can be interpreted as a perpendicular gradient to
radial null geodesics in the FLRW background. An explicit computation of the deflection
angle (1.65) is presented in Appendix D.

The lensing potential ψ is introduced as

ψ(n0) = 2

∫ rs

0

dr
fK(rs − r)
fK(rs)fK(r)

ΨW (η0 − r, r,n0) , (1.66)

where n0 = (θ0, ϕ0) is a direction on the observer sky, a point on S2, in other words, it is
a scalar field on S2 such that its covariant gradient gives the deflection angle of light rays
traveling from the source radial position, rs, to the observer position, r0 = 0 (assumed to
be the origin of radial coordinates without loss of generality), i.e.

αβ(n) = −∇βψ(n). (1.67)

Note that the lensing potential depends on the observation time η0 and the source radial
position rs.

The angular coordinates n0 in the deflection angle and the lensing potential expres-
sions, (1.65) and (1.66), respectively, represent the undeflected angular position of the
source, so that the application

(θ0, ϕ0) 7→ (θs, ϕs) = (θ0, ϕ0) +α(θ0, ϕ0) = (θ0, ϕ0)−∇⊥ψ(n) (1.68)

defines what in the literature is called the lens map. In other words, the lens map defines
the application that takes the actual angular position of a source in the Universe to the
observed deflected position.

The magnification matrix A is defined locally via the covariant derivative of the lens
map (1.68), i.e. the Jacobian of the transformation

Aα
β = δβα −∇α∇βψ(xδ)

= δα
β − 2

∫ rs

0

dr
fK(rs − r)
fK(rs)fK(r)

∇α

[
∇βΨW (η0 − r, r, xδ)

]

:=

[
1− κ 0
0 1− κ

]
−
[
γ1 γ2
γ2 −γ1

]
=

[
1− κ− γ1 −γ2
−γ2 1− κ+ γ1

]
. (1.69)

Note that formally the magnification matrix is defined as a second-rank tensor on S2.
The magnification matrix A describes the deformation of a bundle of light rays incom-

ing to an observer from a direction n (= xδ) in the sky, i.e. it describes how sources are
locally deformed under the lens mapping. This is better understood in equation (1.69),
where the separation into trace and trace-free parts is introduced in order to define the
scalar fields κ and γ1,2. The former is the S2-divergence of the deflection angle,

κ :=
1

2
∇α∇αψ (1.70)
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which defines the convergence field, the trace part of the magnification matrix. The latter
is the corresponding trace-free part, defining the fields

γ1 =
1

2

(
∇2∇2ψ −∇3∇3ψ

)
, (1.71a)

γ2 = ∇2∇3ψ = ∇3∇2ψ, (1.71b)

the components of the shear field, defined by convenience as the complex pair

γ := γ1 + iγ2. (1.72)

In absence of scattering, absorption or emission, the phase-space distribution function
f of photons satisfies Liouville’s theorem. This implies that f ∝ ν−3I(ν) is constant along
null geodesics, where ν and I(ν) are the frequency and the specific intensity of the light.
If the frequency is unchanged by the lensing mass distribution, I(ν) is constant and the
flux from the source is changed only because the lens mapping changes the solid angle
under which the source appears. As a result, lensing effect causes magnification µ, given
by

µ = |det [A]|−1 . (1.73)

The trace of the magnification matrix, Tr [A] = 2(1−κ), is a measure of the amount of
focusing of light rays, while its traceless part, presented as the complex pair γ, measures
shearing of lensed images. While the convergence is responsible for stretching a source
isotropically under the lens mapping, the shear is responsible for its distortion. In fact,
a circular source of unit radius is mapped into an elliptical image with semi-major and
semi-minor axes [11, 10]

a = (1− κ− |γ|)−1 , b = (1− κ+ |γ|)−1 . (1.74)

This distortion allows the systematic detection of gravitational lensing. The relative
axis ratio of elliptically distorted images, the ellipticity ǫ, is the so-called reduced shear,

ǫ =
a− b
a+ b

=
|γ|

1− κ = |g|. (1.75)

Applying the local definition of the convergence to the lensing potential on the canon-
ical basis on the sphere we find

κ(θ, ϕ) =

∫ rs

0

dr
fK(rs − r)
fK(rs)fK(r)

∇α∇αΨW (η0 − r, r, θ, ϕ). (1.76)

The main goal here is to derive a relation between the lensing convergence field κ and
the total matter fluctuation today, in an analogous way to what was done for the angular
fluctuation of galaxies in §1.4.1 (equation (1.62)). The key insight to relate these two
fields is the fact that one can augment the two-dimensional Laplacian in equation (1.76)
by a term of derivatives along the line-of-sight. In fact, the 3D Laplacian on the constant
time hypersurfaces Σt can be expanded as (by using e.g. equation (B.2)):

∇2ΨW =
1

f 2
K(r)

[
∂

∂r

(
f 2
K(r)

∂ΨW

∂r

)
+∇α∇αΨW

]
. (1.77)

Notice that this Laplacian is related to the energy density according to EFE. For the case
of first order scalar perturbations (see Appendix A), and in the absence of anisotropic
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stress, the Weyl potential reduces to the gauge invariant potential Φ̂ (equation (A.38)),
which in turns is sourced by the gauge invariant fluctuations in the matter according to
the first-order perturbed EFE (equation (A.53c)),

(
∇2 + 3K

)
ΨW = 4πGa2ρ̄δ, (1.78)

where ρ̄ and δ are associated only with pressureless matter.
One can then consider the geometrically weighted integration along the line of sight of

equation (1.78), where by the geometrical weight one refers to the kernel in the integral
giving the lensing convergence (equation (1.76)) for the S2-Laplacian of the Weyl potential.
Assuming the Weyl potential to be localized, the terms involving derivatives along the
line-of-sight direction r vanish after the line-of-sight integration in equation (1.76) or
contribute with terms that average to zero in the limit of interest. Thus, one can conclude
that the convergence is a suitably scaled and geometrically weighed surface-mass density
of matter inhomogeneities :

κ(θ, ϕ) = 4πGa2ρ̄m

∫ rs

0

dr
fK(rs − r)fK(r)

fK(rs)
δm(η0 − r, r, θ, ϕ), (1.79)

or, by introducing the background evolution of matter, 4πGa2ρ̄ = 3H2
0Ωm/2a, and the

time evolution of matter fluctuations,

κ(θ, ϕ) =
3H2

0

2
Ωm

∫ rs

0

dr
fK(rs − r)fK(r)

fK(rs)

G(z(r))

a(r)
δ0(r, θ, ϕ), (1.80)

where δ0 is the density contrast of total matter in the Universe today. The equation (1.80)
gives the convergence field observed at z0 = 0 (r0 = 0) associated to localized sources at
zs (rs = r(zs)) generated by the lensing effect on light rays deflected by total intervening
matter all the way from the source to the observer.

To have an insight on this result, consider the contribution to the convergence from a
single radially-located lens modeled by the matter fluctuation (today) of the form

δL0 (r, θ, ϕ) =
ΣL

0 (θ, ϕ)

ρ̄m0

δ
(1)
D (r − rL) (1.81)

where ΣL
0 is the lens surface mass density today and rL = r(zL) < rs is its radial distance

to the observer (given by its redshift, zL). The convergence field contribution from this
single lens is then given by

κL(θ, ϕ) = 4πG
fK(rs − rL)fK(rL)

fK(rs)

G(zL)

aL
ΣL

0 (θ, ϕ)

=
1

Σcr

G(zL)

aL
ΣL

0 (θ, ϕ), (1.82)

where the critical surface density Σcr was introduced

Σcr :=
1

4πG

fK(rs)

fK(rs − rL)fK(rL)
. (1.83)

Note that ΣL
0 (θ, ϕ)G(zL)/aL is the surface mass density of the single lens at the moment

it deflects the light ray.
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For a redshift distribution of sources, pz(z)dz = pr(r)dr, the convergence field should
be given by the averaged superposition of the effect of all sources over the (normalized)
source-distance distribution,

κ(θ, ϕ) =

∫ rH

0

dr pr(r)κ(θ, ϕ, r), (1.84)

where rH is the comoving horizon distance, obtained from the comoving distance-redshift
relation, r(z), letting z →∞.

Computing explicitly,

κ(θ, ϕ) =

∫ rH

0

dr pr(r)κ(θ, ϕ, r)

=
3

2

H2
0

c2
Ωm

∫ rH

0

dr

∫ r

0

dr′ pr(r)
fK(r − r′)fK(r′)

fK(r)

G(z(r′))

a(r′)
δ0(r

′, θ, ϕ),

changing appropriately the order of integration,

κ(θ, ϕ) =
3

2

H2
0

c2
Ωm

∫ rH

0

dr′
∫ rH

r′
dr pr(r)

fK(r − r′)fK(r′)
fK(r)

G(z(r′))

a(r′)
δ0(r

′, θ, ϕ).

At this point it is useful to introduce the lensing efficiency function,

g(r′) :=

∫ rH

r′
dr pr(r)

fK(r − r′)
fK(r)

, (1.85)

In terms of the efficiency function one can define the lensing window function, which
relates the density contrast and convergence fields via a projection onto the sky,

κ(θ, ϕ) =

∫ ∞

0

dz W κ(z)δ0(r, θ, ϕ); (1.86)

W κ(z) :=
3

2

H2
0

c2
Ωm

c

H(z)
G(z)(1 + z)g(r(z))fK(r(z))

=
3

2

H0

c
Ωm

G(z)(1 + z)

E(z)
g(r(z))fK(r(z)), (1.87)

where E(z) describes the Universe expansion history according to the Friedmann equation
(1.17).

It is interesting to note that in the particular case in which the sources are at a fixed
redshift, zs, we can describe the distribution using pr(r) = δ

(1)
D (r−rs). Then the efficiency

function reduces to

g(r′) :=

∫ rH

r′
dr δ

(1)
D (r − rs)

fK(r − r′)
fK(r)

=
fK(rs − r′)
fK(rs)

Θ(rs − r′), (1.88)

where Θ is the Heaviside step function, the efficiency function for punctual lens and source
systems. Thus, one can interprete the equation (1.85) as a generalization of the lensing
efficiency factor fK(rs − rL)/fK(rs), quotient between the angular diameter distances
between lens and source, and source and observer, of the punctual lens and puntual
source systems [11].



Chapter 2

Two-point statistics in the Universe

The current model for the large scale structure of the Universe is based on the concepts
depicted on the previous chapter. The observed distribution of the matter/energy content
of the Universe then results from the growth of primordial seed fluctuations, which may
be generated by quantum fluctuations during inflationary period in the early Universe,
and were amplified by gravitational instability phenomena, which is formally described
by cosmological perturbation theory [27, 4]. Thus, a first problem appears in Cosmology
coming from two reasons: (a) one does not have access to the initial conditions of the
evolution of perturbations, i.e., the primordial fluctuations and (b) the time-scale for
cosmological evolution is too large, thus is not possible to follow the evolution of single
systems. The resulting problem is that, consequently, fluctuations around a perturbed
FLRW background should be treated as random variables. The observable universe is thus
modeled as a stochastic realization of a statistical ensemble of possibilities. In this context
observations should be used to determine statistical properties of such fluctuations. A
perturbative variable, as e.g. the fluctuations in matter density δ(x) at some fixed time,
is associated with an ensemble of random functions, each with a probability assigned to
it. This is the notion of a random field, an application that takes points from some space,
as e.g. Σt (the constant time hypersurfaces of FLRW models) or S2 (the unit sphere
representing the observer sky), and assigns a random variable. It is beyond the scope of
this work to discuss the concept of a random field in depth, and we refer the reader to
e.g. the discussion of [3, 27] and references therein.

A second problem arising in this context is related with an intrinsic limitation in
Cosmology. As long as there is only one Universe to observe one has a single realization
of the stochastic process associated with the fluctuations whose consequences one wants to
observe. Therefore, it is impossible to measure ensemble averages or expectation values as
physicists are accustomed to, that is, in a repeatable and controlled laboratory experiment.
However, What can be done observing a fluctuation on a given scale r is to average
over many distinct regions of typical size r. Then, an ergodic-type hypothesis should
be considered in order to replace the (desired) ensemble average by a (possible) spatial
average over these regions. Such an hypothesis is known in the literature as the fair
sample hypothesis, stating that the finite part of the Universe accessible to observations is
a fair sample of the whole Universe (see e.g. §6.3 of [27]). In principle, this is reasonable
when the scale is much less than the observable Universe (r ≪ H−1

0 ). But on larger scales
it is impossible to average over many volumes and thus the measured value could be far
from the ensemble average. This is called the cosmic variance problem.

The most basic statistical quantity that one can construct with a fluctuation field is
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the two–point correlation function. The two-point correlation function of a perturbation
variable δ, 〈δ(x)δ(x′)〉, is defined as the average over the ensemble (incorporating the
probability distribution of δ considered as a random field). In order to have a physical
insight on this quantity, consider that the number density of galaxies in the Universe is
given in terms of a fluctuation field as ng(x) = n̄g (1 + δg(x)), where n̄g is the total spatial
average number density (independent of the position) and δg represents the fluctuation
(position-dependent). Therefore, the number of galaxy pairs separated by a distance r
(comoving) on a direction specified by the unit vector n̂ can be expressed as

dNpair(r, n̂) = ng(x)dV1 ng(x+ rn̂)dV2, (2.1)

where dV1 and dV2 are volume elements around x and x+rn̂ respectively, or equivalently,
by introducing the fluctuation field, as

dNpair(r, n̂) = n̄2
g [1 + δg(x) + δg(x+ rn̂) + δg(x)δg(x+ rn̂)] dV1 dV2. (2.2)

After averaging over all possible volume elements and considering the δg field as a fluc-
tuation in the sense of having zero mean, 〈δg〉 = 0, the expected number of galaxy pairs
separated by a distance r on the direction n̂ is given by

〈dNpairs(r, n̂)〉 = n̄2
g [1 + 〈δg(x)δg(x+ rn̂)〉] dV1 dV2. (2.3)

When there is no fluctuation on the number density of galaxies, the expected number of
pairs separated by a distance r on the direction n̂ is given by the squared spatial average
number of galaxies, thus, independent of the position. When the fluctuation is taken into
account, the number of pairs is position dependent and consequently, it appears an excess
(lack) of probability of finding a pair of galaxies depending on their separation, r and n̂;
this excess (lack) probability is quantified by the two-point correlation function, defined
as

ξg(r, n̂) = 〈δg(x)δg(x+ rn̂)〉 . (2.4)

Given a catalog of N galaxies with their corresponding positions, one can think on a
natural estimator for the probability of finding a pair of galaxies separated by a distance r
on the n̂ direction. When a catalog of galaxies is provided frequentist statistics techniques
can be used to estimate this quantity as the ratio between the number of pairs separated
by a distance r on direction n̂ in the catalog PDD(r, n̂) (correctly normalized by the
number of possible pairs N(N−1), see equations (2.26)) and the number of pairs with the
same characteristics on a constructed catalog of randomly distributed galaxies PRR(r, n̂)
(equations (2.26)),

DD(r, n̂)

RR(r, n̂)
=
〈dNpair(r, n̂)〉
n̄2
gdV1dV2

= 1 + ξ̂g(r, n̂). (2.5)

This statistical estimator for the two-point correlation function is known as the natural
estimator and will be discussed on §2.1.2. Hereinafter the hat-notation ·̂ will denote a
statistical estimator for a quantity.

The perturbative quantities described as random fields are usually assumed to be
statistically homogeneous and isotropic, i.e. invariant under translations and rotations.
For the two-point correlation function the statistical homogeneity assumption translates
into the condition 〈δ(x− a)δ(x+ rn̂− a)〉 = 〈δ(x)δ(x+ rn̂)〉 for all a, which implies that
the correlation function should depend only on the separation between the points, rn̂,
i.e., ξδ(r, n̂) = ξδ(rn̂). The statistical isotropy assumption on the other hand translates
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into the condition ξδ(rR [n̂]) = ξδ(rn̂), where R represents an arbitrary spatial rotation,
which implies that the correlation function should depend only on the absolute value of
the separation between the two points r, and therefore can be written as

ξδ(r) = 〈δ(x)δ(x+ rn̂)〉, (2.6)

so that ξδ does not depend on the position x or the (unit) direction n̂.

2.1 Configuration space

In this section some results on the two-point correlation function of random ields in
configuration space are presented. We begin by considering the relation between the
two-point correlation function and the power spectrum of a random field defined on the
constant time hypersurfaces of a FLRWmodel. Explicit relations between these quantities
are found depending on the sign of the spatial curvature considered. In order to do so,
we closely follow the treatment in [35].

A brief review of usual techniques to measure the correlation function is presented,
with special focus on pair counts-based estimators. A discussion on the bias of different
estimators is presented showing its deep relation with the uncertainty in the mean density
of a quantity from measurements. The section ends with a discussion on the comparison of
different pair counting-based estimators. All this review is based on [36] and the references
therein, which can be consulted for further discussions.

2.1.1 Correlation function and power spectrum

Consider a scalar fluctuation field δ defined at some time on an FLRW model. The field δ
is a scalar defined on the constant time hypersurfaces of the model Σt, i.e. δ = δ(χ, θ, ϕ),
for example, the fluctuation on the total matter or the number density of galaxies in
the Universe, and therefore can be expanded in scalar harmonic modes according to
spacetime spatial curvature as (a review of the scalar harmonic decomposition is presented
in Appendix B)

δ(χ, θ, ϕ) =





∞∑

ℓ=0

ℓ∑

m=−ℓ

∫ ∞

0

dν ν2

2π2
δℓm(ν)X̂

(−)
ℓ (χ, ν)Y m

ℓ (θ, ϕ) K < 0

∞∑

ℓ=0

ℓ∑

m=−ℓ

∫ ∞

0

dν ν2

2π2
δℓm(ν)X̂

(0)
ℓ (χ, ν)Y m

ℓ (θ, ϕ) K = 0

∞∑

ℓ=0

ℓ∑

m=−ℓ

∞∑

ν=3

ν2

2π2
δℓm(ν)X̂

(+)
ℓ (χ, ν)Y m

ℓ (θ, ϕ) K > 0,

(2.7)

where the functions X̂ℓ(ν) represent the radial harmonic modes on the constant time
hypersurfaces Σt (equations (B.27)).

Note that for a spatially closed Universe model (K > 0) there are special features. As
discussed in Appendix B the spectrum of the Laplace operator for this case is discrete. In
addition, it can be seen that in the case in which one considers fluctuations in the total
matter field the ν = 2 corresponds to a pure gauge mode. This follows from the Poisson
equation (A.53c), because combined with the definition of the adimensional eigenvalue
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for the Laplace operator ν (equations (B.5)) it is inconsistent with the positivity of ρ̄mδm
[35, 23]. Since our goal is to derive the relation between the two-point correlation and the
power spectrum for the matter density fluctuations in equations (2.7) the ν = 2 mode for
K > 0 was not considered.

The inverse expansions giving the harmonic modes δℓm(ν) are (see §B.1)

δℓm(ν) =





4π

∫
dχ sinh2(χ)

∫
d2Ω δ(χ, θ, ϕ)X̂

(−)
ℓ (χ, ν)Y m∗

ℓ (θ, ϕ), for K < 0;

4π

∫
dχχ2

∫
d2Ω δ(χ, θ, ϕ)X̂

(0)
ℓ (χ, ν)Y m∗

ℓ (θ, ϕ), for K = 0;

4π

∫
dχ sin2(χ)

∫
d2Ω δ(χ, θ, ϕ)X̂

(+)
ℓ (χ, ν)Y m∗

ℓ (θ, ϕ), for K > 0.

(2.8)

One can interpret the last two set of equations providing generalizations of the usual
Fourier decomposition in three dimensional Euclidean space. This is because the harmonic
expansion of equation (2.7) for δ in the Euclidean case (K = 0) is equivalent to the 3D
Fourier expansion

δ(x) = δ(χ, θ, ϕ) =
1

(2π)3

∫
d3k δ(k)eik·x (2.9)

because of the Rayleigh plane wave expansion [37]

eik·x = 4π
∞∑

ℓ=0

ℓ∑

m=−ℓ

iℓjℓ(kr)Y
m∗
ℓ (θk, ϕk)Y

m
ℓ (θx, ϕx), (2.10)

where for the flat case |x| = χ = r (equations (1.5)). Substituting equation (2.10) into
(2.9), using spherical coordinates in Fourier space, d3k = k2dk d2Ωk = k2 sin(θk)dk dθk dϕk

and remembering that for the Euclidean case ν = k (equations (B.5)) one ends up with
the relation between the Fourier modes δ(k) and the spherical harmonic modes δℓm(k):

δℓm(k) = iℓ
∫

d2Ωk δ(k)Y
m∗
ℓ (θk, ϕk), (2.11)

which is, due to the normalization convention of the harmonic decomposition (equation
(2.7)), a usual spherical harmonic decomposition in Fourier space.

Since according to the assumptions of statistical homogeneity and isotropy the two-
point correlation function must depend only on the spatial separation of the two points,
using spatial coordinates xi = (χ, θ, ϕ), one can compute the two-point correlation func-
tion as ξ(χ) = 〈δ(0, θ, ϕ)δ(χ, θ, ϕ)〉. Therefore,

ξ(χ) =
∑

ℓ,m

∑

ℓ′,m′

∫
dν ν2

2π2

∫
dν ′ ν ′2

2π2
X̂

(−,0)
ℓ (0, ν)X̂

(−,0)
ℓ′ (χ, ν ′)Y m∗

ℓ (θ, ϕ)Y m′

ℓ′ (θ, ϕ)

× 〈δ∗ℓm(ν)δℓ′m′(ν ′)〉,
(2.12a)

for K ≤ 0 and

ξ(χ) =
∑

ℓ,m

∑

ℓ′,m′

∞∑

ν=3

ν2

2π2

∞∑

ν′=3

ν ′2

2π2
X̂

(+)
ℓ (0, ν)X̂

(+)
ℓ′ (χ, ν ′)Y m∗

ℓ (θ, ϕ)Y m′

ℓ′ (θ, ϕ)

× 〈δ∗ℓm(ν)δℓ′m′(ν ′)〉,
(2.12b)



2.1 Configuration space 29

for K > 0.
In general, the correlation of the spherical harmonic modes defines the 3D spherical

power spectrum Sℓ(k, k
′) which has been used in the literature for the Euclidean case, see

e.g. [38, 39, 40]. Here the natural generalization for open and closed FLRW Universe
models is presented. According to the normalization conventions

〈δ∗ℓm(ν)δℓ′m′(ν ′)〉 = (2π)3δℓℓ′δmm′Sℓ(ν, ν
′), (2.13)

For a statistically homogeneous and isotropic field δ the spherical power spectrum
should be rotationally and translationally invariant, so that it reduces to the 3D power
spectrum S(ν) [35]

Sℓ(ν, ν
′) =





δD(ν − ν ′)
ν2

S(ν) K ≤ 0,

δνν′

ν2
S(ν) K > 0.

(2.14)

In order to find the relation between ξ(χ) and S(ν) for statistically homogeneous and
isotropic fields one can substitute equation (2.14) into (2.12). All cases are analogous,
consider e.g. the case of an open universe (K < 0),

ξ(χ) =
∑

ℓ,m

∑

ℓ′,m′

∫
dν ν2

2π2

∫
dν ′ ν ′2

2π2
X̂

(−)
ℓ (0, ν)X̂

(−)
ℓ′ (χ, ν ′)Y m∗

ℓ (θ, ϕ)Y m′

ℓ′ (θ, ϕ)〈δ∗ℓm(ν)δℓ′m′(ν ′)〉

= (2π)3
∑

ℓ,m

∑

ℓ′,m′

∫
dν��ν

2

2π2

∫
dν ′ ν ′2

2π2
X̂

(−)
ℓ (0, ν)X̂

(−)
ℓ′ (χ, ν ′)Y m∗

ℓ (θ, ϕ)Y m′

ℓ′ (θ, ϕ)

δℓℓ′δmm′

δ (ν − ν ′)
��ν
2

S(ν)

= 4π
∑

ℓ,m

∫
dν ν2

2π2
X̂

(−)
ℓ (0, ν)X̂

(−)
ℓ (χ, ν)Y m∗

ℓ (θ, ϕ)Y m
ℓ (θ, ϕ)S(ν),

so that, by using the property of scalar harmonic modes that at χ = 0 the only non-null
mode is the lowest one (ℓ = 0), X̂ℓ(χ = 0, ν) = δℓ0 (equation (B.30)), one can easily
perform the sums over ℓ and m to have

ξ(χ) = 4π
∑

ℓ,m

∫
dν ν2

2π2
δℓ0X̂

(−)
ℓ (χ, ν)Y m∗

ℓ (θ, ϕ)Y m
ℓ (θ, ϕ)S(ν)

= 4π

∫
dν ν2

2π2
X̂

(−)
0 (χ, ν)Y 0∗

0 (θ, ϕ)Y 0
0 (θ, ϕ)S(ν)

=

∫
dν ν2

2π2
X

(−)
0 (χ, ν)S(ν),

where in the last line the properties Y 0∗
0 (θ, ϕ)Y 0

0 (θ, ϕ) = |Y 0
0 (θ, ϕ)|

2
= (4π)−1 and X̂

(−)
0 =

X
(−)
0 (see Appendix B) for the Spherical Harmonics and the scalar harmonic modes were

used.
Thus one finally arrives to the following closed relations

ξ(χ) =





∫ ∞

0

dν ν2

2π2
X

(−,0)
0 (χ, ν)S(ν), K ≤ 0

∞∑

ν=3

ν2

2π2
X

(+)
0 (χ, ν)S(ν) K > 0.

(2.15)
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For the K 6= 0 cases one can consider the change of variables from ν → k according to
equations (B.5), i.e. the change from the adimensional harmonic variable ν to the fully
dimensional one k ([k] = length−1). This change is useful to compare the results presented
here to those commonly presented in the literature for the Euclidean case. Consider again
the open universe model (K < 0) for which the change is given by k2 := −Kν2 = |K| ν2,
then

ξ(χ) =

∫ ∞

0

dk k2

2π2
X

(−)
0

(
χ, |K|−1/2 k

) S
(
|K|−1/2 k

)

|K|3/2

=

∫ ∞

0

dk k2

2π2
X

(−)
0

(
χ, |K|−1/2 k

)
P (k), (2.16)

where the fully dimensional power spectrum P (k) ([P ] = length3) was introduced as

P (k) :=
S
(
|K|1/2 k

)

|K|3/2
. (2.17)

The closed model (K > 0) is analogous, the change of variable is given by k2 := Kν2 =
|K| ν2, then

ξ(χ) =
∑

k∈{3|K|1/2,4|K|1/2,...}

dk k2

2π2
X

(+)
0

(
χ, |K|−1/2 k

) S
(
|K|−1/2 k

)

|K|

=
∞∑

i=1

k2i
2π2

X
(+)
0

(
χ, |K|−1/2 ki

)
|K|1/2 P (ki), (2.18)

where the fully dimensional power spectrum is given again by (2.17) and is evaluated

at the discrete values ki := (i + 2) |K|1/2. For the flat case since the radial coordinates
coincide χ = r they are fully dimensional and consequently ν = k and S(ν) = P (k) are
also fully dimensional.

By using the functional forms of the ℓ = 0 scalar harmonic modes given by equations
(B.23) the two-point correlation function in terms of the radial coordinate χ can be written
in terms of the fully dimensional power spectrum as

ξ(χ) =





∫ ∞

0

dk k2

2π2
P (k)

√
−K sin(kχ/

√
−K)

k sinh(χ)
K < 0

∫ ∞

0

dk k2

2π2
P (k)

sin(kχ)

kχ
K = 0

∞∑

i=1

k2i
2π2

P (ki)
K sin(kiχ/

√
K)

ki sin(χ)
K > 0,

(2.19)

where

ki := (i+ 2)
√
K and P (k) :=





S
(
|K|1/2 k

)

|K|3/2
K 6= 0

S(k) K = 0.

(2.20)
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One can also change the radial comoving coordinate χ to the radial comoving distance r
(equations (1.5)) to write

ξ(r) =





∫ ∞

0

dk k2

2π2
P (k)

√
−K sin(kr)

k sinh(
√
−Kr)

K < 0,

∫ ∞

0

dk k2

2π2
P (k)

sin(kr)

kr
K = 0,

∞∑

i=1

k2i
2π2

P (ki)
K sin(kir)

ki sin(
√
Kr)

=
∞∑

i=1

kiK

2π2
P (ki)

sin(kir)

sin(
√
Kr)

K > 0,

(2.21)

Note that, independent of the radial coordinate used, equation (2.19) or (2.21), both
non-flat cases converges to the flat case for scales much smaller than the curvature radius
(flat-limit), r ≪ |K|−1/2.

2.1.2 Estimation techniques in configuration space

The goal of the preset paragraph is to review some basic results on methods for statistical
estimations of the two-point correlation function ξ(r), in order to do so, we closely follow
the review presented in [36] an references therein. From astrophysical observations of N
objects (e.g. galaxies of some type, quasars, etc.), one can obtain information on their
respective positions (angular and radial) relative to the observer inside a window W of
observation, defining a volume V (W ). This kind of information together with auxiliary
astrophysical or instrumental (relative to the kind of observation) characteristics for each
object defines a catalog.

Exploiting the idea that the correlation function measures the excess probability for
finding a pair of objects separated by a distance r, different estimators are based on some
kind of average of the counts of galaxy neighbors at a given scale, or more precisely,
within a narrow band of scales, commonly named as a bin. A natural problem that
emerges is that for galaxies close to the boundary of the window the number of neighbors
is underestimated. Usually an auxiliary random sample containing NR points must be
generated in W . The use of random samples in the estimators constitutes a way to
implement Monte Carlo integration of the volumes [36]. This also means that the number
of random points must be much larger than the size of the data sample, because this is a
basic requirement of Monte Carlo estimation techniques.

Properties of estimators

As in any statistical application, concrete concepts to quantify the “goodness” of an
estimator should be given. Here the definitions of bias and consistency for correlation
function estimators are presented following the ideas presented in [41].

An estimator ξ̂(r) is called unbiased if its expectation value ξ̂(r) equals the actual
value of ξ(r), i.e., if 〈

ξ̂(r)
〉
= ξ(r), (2.22)

where 〈·〉 is the average over all possible realizations of the random fields whose two-point
function is given by ξ(r).

An estimator is called consistent if the estimates ξ̂(r) obtained inside a finite sample
geometry W from one space filling realization, converges towards the true value of ξ(r),
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as the sample volume V (W ) increases, i.e. if

ξ̂(r)→ ξ(r) (2.23)

holds when V (W )→∞.
As discussed at the beginning of the present chapter, in Cosmology an ergodic-type

hypothesis is commonly assumed because of the fundamental impossibility to repeat the
stochastic process which generated cosmological fluctuations. If this hypothesis holds and
the stochastic process underlying cosmological fluctuations is in fact ergodic, one can state
that any unbiased estimator is also consistent. For this reason, we are mainly interested
on the study the bias of different estimators.

Pair counting-based estimators

Astrophysical studies favor estimators based on pair counting, while most of the mathe-
matical research is focused on geometric edge correction [42]. Here some results on pair
counting-based estimators are presented.

Following [42], we begin by defining the pair counts with a function Φr symmetric on
its arguments,

Φr(x,y) :=

{
1, r ≤ d(x,y) ≤ r +∆

0, Otherwise.
(2.24)

where d(x,y) defines a suitable separation (distance) of the two points. An important
point to note here is that the distance function d is cosmology-dependent for the 3D
two-point correlation function, i.e. it is necessary to assume a fiducial cosmology in order
to convert measured angular positions and redshifts into comoving distances. This can
be an undesired property in order to perform cosmological analysis. A possible way to
overcome this difficulty could be not to use directly the 3D correlation function but the
angular two-point correlation function (see §4.1.2) where the distance d is the angular
distance between objects, cosmology-independent in the context of FLRW models. See
e.g. [43] for a recent discussion.

The pair-counts can be introduced in terms of the function Φr, for example, for the
case of catalog-random pairs (DR) as

PDR(r) =
∑

x∈D

∑

y∈R

Φr(x,y), (2.25)

where the summation runs over coordinates of points in the data set D (catalog) and
points in the set R of randomly distributed points (random catalog), respectively. The
quantity PDR(r) is then the number of pairs of objects, one in the true data catalog and
one in the random catalog separated by distance r. PDD and PRR are defined in terms of
Φr in an analogous way, with x and y taken entirely from the data and random samples,
under the restriction that x 6= y.

It is convenient to introduce normalized pair counts

DD(r) = PDD(r)/(N(N − 1)),

DR(r) = PDR(r)/(NNR),

RR(r) = PRR(r)/(NR(NR − 1)),

(2.26)

where N and NR are the total number of data and random points in the window volume.
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The simplest pair counting-based estimator implementation is the Peebles and Hauser
estimator [44], first used for the study of the angular correlation function of galaxies (see
§4.1.2) on the Zwicky Catalog, a catalog containing 3755 galaxies covering an area on

the sky of 6014.1 deg2 [45]. The Pebbles and Hauser estimator ξ̂PH is also known in the

literature as the natural estimator ξ̂N because of its straightforward interpretation as the
excess probability of find pairs of galaxies separated a distance r (see the discussion at
the beginning of this chapter).

ξ̂PH(r) = ξ̂N(r) =
DD(r)

RR(r)
− 1. (2.27)

Despite its straightforward interpretation, the natural estimator is known to suffer
from insufficient correction effects related with its biasing specially at large scales where
it can be of the same order of the uncertainties in the measurements [46] (see discussion
of biasing of estimators in §2.1.2).

A better estimator is the Davis and Peebles estimator also known in the literature as
standard estimator. This estimator was introduced in [47] in the context of the analysis
of the 3D two-point correlation function of galaxies on the Harvard-Smithsonian Center
for Astrophysics (CfA) survey, the first wide-angle survey to reach beyond the Local
Supercluster (LSC) providing strong evidence of the existence of complex structures at
large scales (e.g. large voids, filaments, etc.) and consequently inspiring posterior studies
on the nature of clustering. The CfA survey covered an area of 2.7 steradian with 2400
galaxies. This estimator is given by

ξ̂DP(r) = ξ̂S(r) =
DD(r)

DR(r)
− 1. (2.28)

Following the chronological order on [46], a computation of the bias for the natural
and standard estimators bias was presented. These computations are reviewed here in
§2.1.2 using methods slightly different from the original. [46] showed that the expectation
values for the natural and standard estimators, equations (2.49) and (2.50) respectively,
realizing for the first time that as long as one is dealing with volume-limited samples the
biasing errors δ̄ and ψ(r) are both nonzero (the appropriate interpretation of those errors
is discussed in §2.1.2). These terms are of the same order and can be larger than the

uncertainty in ξ̂(r), specially for small correlation amplitude (at large scales), introducing
a substantial bias in the estimator. In this way, Hamilton [46] came out with a first
quantitative way to proceed with corrections to estimators by proposing a new estimator,
the so-called Hamilton estimator,

ξ̂Ham(r) =
DD(r) ·RR(r)

DR(r)2
− 1, (2.29)

which has only second order bias, caused by the finite sample effect, equation (2.51).
The main shortcoming of the Hamilton estimator, equation (2.29), is that the DR(r)

term may introduce numerical noise at small distances [46, 36].
Another estimator was proposed almost simultaneously by Landy and Szalay [48],

having almost the same properties, the so-called Landy-Szalay estimator :

ξ̂LS(r) :=
DD(r)− 2DR(r) +RR(r)

RR(r)
. (2.30)
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The bias and the uncertainty in the mean density

In this paragraph we show the calculations given in [46] in a simple case where the
sample is volume-limited (i.e. with a constant expected density in the sample). Under
this circumstances, the optimal strategy is to weight all galaxies equally. The empirical
density in the catalog n is a sum of Dirac delta functions over the galaxies in the catalog.

Let n̄ to be the expected value of the density and δ the relative fluctuation in the
sample:

δ(x) =
n(x)− n̄

n̄
. (2.31)

Let also W denote the window function for the sample volume and 〈·〉 the ensemble
average, properly represented by the integration on the volume. For example, 〈W (x)n(x)〉
represents the integration of the empirical density and thus equals the number of points
in the sample,

〈W (x)n(x)〉 =
∫

d3x W (x)n(x) = N. (2.32)

It is then necessary to introduce the following quantities

δ̄ =
〈W (x) δ(x)〉
〈W (x)〉 , (2.33)

ψ(r) =
〈δ(x)W (x)W (y)〉r
〈W (x)W (y)〉r

, (2.34)

ξ̂(r) =
〈δ(x)δ(y)W (x)W (y)〉r
〈W (x)W (y)〉r

, (2.35)

where δ̄ and ψ are fluctuations, in the sense that they have zero expectations value,〈
δ̄
〉
= 〈ψ〉 = 0, and 〈.〉r defines a constrained ensemble average under the condition that

the distance between pairs must be equal to r. It is properly represented by a double
integration in the volume, restricted to x and y separated by a distance in r. For example,

〈δ(x)W (x)W (y)〉r =
∫∫

d(x,y)=r

d3x d3y δ(x)W (x)W (y). (2.36)

The definition of ξ̂ in equation (2.35) allows for its interpretation as the unbiased
estimator of the real ξ. The important point is that it is not possible to calculate this
quantity as long as the value of n̄, i.e., the mean density, is unknown. The δ̄ quantity,
equation (2.33), represents the mean of the fluctuation field over the volume and ψ,
equation (2.34), can be interpreted as an unbiased estimator for the cross-correlation of
the fluctuation field and a homogeneous (random) field also on the volume considered.

In order to introduce, and relate, the pair counts with the previous formalism, it is
useful to introduce the abbreviated notation used by [46]. The pair counting of a general
catalog can be considered as an ensemble average over pairs on a given scale,

DD(r) = 〈NN〉 /
(
n̄est
)2

(2.37)

where

n̄est =
〈N〉
〈W 〉 , (2.38)

defines the catalog-estimated galaxy number density.
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In the last expressions, N denotes real galaxies weighted by some weight function w,
and W denotes the catalog window function, which is the catalog selection function Φ
weighted by the same weight function w of the galaxies.

The angular brackets in terms related to point counts like 〈N〉 denote averages over
points in the catalog whereas for terms that imply pair counts like 〈NN〉, the average is
over pairs in some infinitesimal interval of separations, say [r, r +∆].

In general, one needs to introduce the pair weighting field w(x,y) applied to 〈NN〉
and 〈NW 〉 unrelated to the point weighting field w(x) applied to 〈N〉 and 〈W 〉. Indeed,
the pair weighting field need not be separable and may be different for different pair
separations. It is useful therefore to define the pair window W (x,y) as the pair-weighted
product of selection functions,

W (x,y) := w(x,y)Φ(x)Φ(y), (2.39)

which should be distinguished from the point window, defined as the point-weighted
selection function,

W (x) := w(x)Φ(x). (2.40)

Let n(x) denote the true galaxy density field, the underling population from which
the observed galaxies are drawn. The observed galaxy density field Nobs(x) should then
be written as the true galaxy density weighted by the selection function

Nobs(x) = Φ(x)n(x). (2.41)

We can now introduce pair density fields

NN(x,y) = w(x,y)Nobs(x)Nobs(y) = w(x,y)Φ(x)Φ(y)n(x)n(y)

= W (x,y)n(x)n(y), (2.42)

NW (x,y) = w(x,y)Nobs(x)Φ(y) = w(x,y)Φ(x)n(x)Φ(y)

= W (x,y)n(x), (2.43)

WW (x,y) = w(x,y)Φ(x)Φ(y) =: W (x,y), (2.44)

and also the point density field

N(x) = w(x)Nobs(x) = w(x)Φ(x)n(x) = W (x)n(x). (2.45)

In terms of these density fields, the pair counts, involved in the different estimators
for the two-point correlation function, can be interpreted as

DD(r) =
〈NN〉
(n̄est)2

=
〈W (x,y)n(x)n(y)〉r · 〈W (x)〉2

〈W (x)n(x)〉2 , (2.46)

DR(r) =
〈NW 〉
n̄est

=
〈W (x,y)n(x)〉r · 〈W (x)〉

〈W (x)n(x)〉 , (2.47)

RR(r) = 〈WW 〉 = 〈W (x,y)〉r. (2.48)

It is important to remember that the average 〈·〉r is formally defined as a double
integral (in x and y) over the region defined by the restriction d(x,y) = r (see e.g.
equation (2.36)).

At this point, all the ingredients necessary to perform the computation of the expected
value of any of the estimators for the two-point correlation function based on pair counts
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discussed on the previous paragraph have been defined. For example, for the PH (Natural)
estimator one can begin by combining the definition (2.27) with equations (2.46)-(2.48),

ξ̂N(r) =
DD(r)

RR(r)
− 1

=
〈W (x,y)n(x)n(y)〉r〈W (x)〉2
〈W (x)n(x)〉2〈W (x,y)〉r

− 1,

then introducing the overdensity (fluctuation) field via equation (2.31), i.e. by writing
n(x) = n̄ [δ(x) + 1], it follows that

〈
ξ̂N(r)

〉
=
〈W (x,y) [δ(x) + 1] [δ(y) + 1]〉r〈W (x)〉2

〈W (x) [δ(x) + 1]〉2〈W (x,y)〉r
− 1

=
[〈W (x,y)δ(x)δ(y)〉r + 〈W (x,y)δ(x)〉r + 〈W (x,y)δ(y)〉r + 〈W (x,y)〉r] 〈W (x)〉2

[〈W (x)δ(x)〉+ 〈W (x)〉]2 〈W (x,y)〉r
− 1

=
〈W (x,y)δ(x)δ(y)〉r + 〈W (x,y)δ(x)〉r + 〈W (x,y)δ(y)〉r + 〈W (x,y)〉r

〈W (x,y)〉r

× 〈W (x)〉2
〈W (x)δ(x)〉2 + 〈W (x)〉2 + 2〈W (x)δ(x)〉〈W (x)〉 − 1

=

[〈W (x,y)δ(x)δ(y)〉r
〈W (x,y)〉r

+ 2
〈W (x,y)δ(x)〉r
〈W (x,y)〉r

+ 1

]

×
[〈W (x)δ(x)〉2
〈W (x)〉2 + 2

〈W (x)δ(x)〉
〈W (x)〉 + 1

]−1

− 1

=
ξ̂(r) + 2ψ(r) + 1

(
δ̄ + 1

)2 − 1

〈
ξ̂N(r)

〉
=
ξ̂(r) + 2

[
ψ(r)− δ̄

]
− δ̄2

(
δ̄ + 1

)2 ,

where in the last couple of equalities, definitions (2.33)-(2.35) were used.
Computations with the other estimators are completely analogous and one can show

that

〈
ξ̂N(r)

〉
=

ξ̂(r) + 2ψ(r)− 2δ̄ − δ̄2
[1 + δ̄]2

, (2.49)

〈
ξ̂S(r)

〉
=

ξ̂(r) + ψ(r)− δ̄ − ψ(r) δ̄
[1 + δ̄] [1 + ψ(r)]

, (2.50)

〈
ξ̂Ham(r)

〉
=

ξ̂(r)− ψ(r)2
[1 + ψ(r)]2

, (2.51)

〈
ξ̂LS(r)

〉
=

ξ̂(r)− 2δ̄ψ(r) + δ̄2

[1 + δ̄]2
. (2.52)

These formulae explain the superiority of Hamilton and Landy-Szalay estimators, with
ψ and δ̄ terms at the second order in the numerator. Terms in the denominator are not
important since they generate a small relative error, whereas terms in the numerator can
generate a high relative error when their values become non-negligible compared to ξ̂, i.e.
a significant bias for the estimator. For Hamilton and Landy-Szalay estimators, the error
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is dominated by that of ξ̂ and not really affected by ψ and δ̄, which are linked to the
uncertainty in n̄.

With these formulae it can also be shown that the estimators are biased in the general
case. Indeed δ̄ and ψ(r) have null expectation value and ξ̂(r) has expected value ξ(r), but
the terms are combined in multiplications and divisions. So we do not get the expected
value of the left-hand side by replacing each term by its expected value in the right-hand
side of equations (2.49), (2.50), (2.51), (2.52).

2.1.3 Comparison of different estimators

Several attempts have been made to compare different estimators, using real data samples,
N -body simulations and point processes with known correlation functions, see e.g. [49, 42].
The results are basically the same, the differences between estimators provides indications
of the best estimators to use to be Hamilton and Landy-Szalay. However, an important
remark pointed by [42] is that Landy-Szalay is easier to implement than Hamilton, a
highly desired property. Anyway, a good way to proceed on specific applications is to
compare the performance of all the estimators for the specific catalog considered. Note
that in this work we do not considered the variance of the estimators. A discussion of
this important statistical quantity can be found e.g. on [48].

2.2 Harmonic space

In this section some results on the two-point correlation function of random fields on
the unit sphere S2 in harmonic space are presented. Random fields coming from radial
projections of 3D fields are considered. We begin by defining the angular power spectrum
and consider its relation to the power spectrum of the 3D (unprojected) field, this is done
following the treatment of section II of [50], but extending its ideas to the context of
non spatially flat backgrounds. We also find explicit relations between these quantities
depending on the sign of the spatial curvature considered. The section ends with the
review of a naive estimation technique for the angular power spectrum from data on the
entire unit sphere.

2.2.1 Angular power spectrum

Consider a general field, s(χ, θ, ϕ), under the assumptions of statistical homogeneity and
isotropy in the Universe. Suppose further that, from this three-dimensional field, a set
of two-dimensional scalar fields {xi(n)} (where n represents a direction on the sky) is
constructed via appropriated weighted projections,

xi(n) = xi(θ, ϕ) =

∫ ∞

0

dz W xi

(z)s(χ(z), θ, ϕ), (2.53)

where W xi
(z) are suitable window functions in redshift for the fields {xi}.

Our goal is to deduce a general form of the angular auto- and cross- power spectra of
the fields xi in terms of that of the field s. As the fields are properly defined on the sky,
let us expand them in Spherical Harmonics on the unit sphere,

xi(n) =
∞∑

ℓ=0

ℓ∑

m=−ℓ

xiℓmY
m
ℓ (n), (2.54)
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and, according to the statistical isotropy assumption, to define the angular power spectrum
between two fields xi and xj by the expectation value

〈
xiℓmx

j∗
ℓ′m′

〉
= δℓℓ′δmm′Cxixj

ℓ . (2.55)

Thus, as a simple consequence of the addition theorem of Spherical Harmonics [37],

Pℓ (n1 · n2) =
4π

2ℓ+ 1

ℓ∑

m=−ℓ

Y m∗
ℓ (n1)Y

m
ℓ (n2), (2.56)

the two-point correlation function (in configuration space) between the fields xi and xj

can be obtained in terms of the angular power spectrum as an appropriate Legendre
transform:

〈
xi(n)xj∗(n′)

〉
=

∞∑

ℓ=0

2ℓ+ 1

4π
Cxixj

ℓ Pℓ(n · n′). (2.57)

On the other hand, we can expand the three-dimensional field s into harmonic modes
as

s(χ, θ, ϕ) =





∑

ℓm

∫ ∞

0

dν ν2

2π2
sℓm(ν)X̂

(−,0)
ℓ (χ, ν)Y m

ℓ (θ, ϕ) K ≤ 0,

∑

ℓm

∞∑

ν=3

ν2

2π2
sℓm(ν)X̂

(+)
ℓ (χ, ν)Y m

ℓ (θ, φ) K > 0,

(2.58)

where the X̂ℓ functions are the correctly normalized radial modes on the constant time
hypersurfaces Σt of FLRW Universe models, see appendix B. Inserting these expansions
on the projection relation between the xi and s fields we have the following expansions
for the projected fields:

xi(θ, ϕ) =





∫ ∞

0

dz W xi

(z)
∑

ℓm

∫ ∞

0

dν ν2

2π2
sℓm(ν)X̂

(−,0)
ℓ (χ, ν)Y m

ℓ (θ, ϕ) K ≤ 0,

∫ ∞

0

dz W xi

(z)
∑

ℓm

∞∑

ν=3

ν2

2π2
sℓm(ν)X̂

(+)
ℓ (χ, ν)Y m

ℓ (θ, ϕ) K > 0.

(2.59)

Taking the two-point correlation of arbitrary fields, xi and xj, we have

〈
xi(n)xj∗(n′)

〉
=

∫ ∞

0

dz W xi

(z)

∫ ∞

0

dz′W xj

(z′)

×
∑

ℓm

∑

ℓ′m′

∫ ∞

0

dν ν2

2π2

∫ ∞

0

dν ′ ν ′2

2π2
X̂

(−,0)
ℓ (χ, ν)X̂

(−,0)
ℓ′ (χ′, ν ′)

×Y m
ℓ (n)Y m′∗

ℓ′ (n′) 〈sℓm(ν)s∗ℓ′m′(ν ′)〉 , (2.60a)

for the spatially open and flat cases (K ≤ 0), and analogously

〈
xi(n)xj∗(n′)

〉
=

∫ ∞

0

dz W xi

(z)

∫ ∞

0

dz′W xj

(z′)

×
∑

ℓm

∑

ℓ′m′

∞∑

ν=3

ν2

2π2

∞∑

ν′=3

ν ′2

2π2
X̂

(+)
ℓ (χ, ν)X̂

(+)
ℓ′ (χ′, ν ′)

×Y m
ℓ (n)Y m′∗

ℓ′ (n′) 〈sℓm(ν)s∗ℓ′m′(ν ′)〉 , (2.60b)
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for the spatially closed case (K > 0).
Next, we introduce the 3D power spectrum of the field s, Ss. According to the

assumptions of statistical homogeneity and isotropy for s1,

〈sℓm(ν)s∗ℓ′m′(ν ′)〉 =





(2π)3δℓℓ′δmm′

δ
(1)
D (ν − ν ′)

ν2
Ss(ν) K ≤ 0,

(2π)3δℓℓ′δmm′

δνν′

ν2
Ss(ν) K > 0,

(2.61)

so that, for example, for the spatially open and flat cases we can simplify our result to

〈
xi(n)xj∗(n′)

〉
=

∫ ∞

0

dz W xi

(z)

∫ ∞

0

dz′W xj

(z′)

× 2

π

∫ ∞

0

dν ν2
∑

ℓ

X̂
(−,0)
ℓ (χ, ν)X̂

(−,0)
ℓ (χ′, ν) (2.62)

×
∑

m

Y m
ℓ (n)Y m∗

ℓ (n′)Ss(ν).

Using again the addition theorem of Spherical Harmonics, equation (2.56), we get

〈
xi(n)xj∗(n′)

〉
=
∑

ℓ

2ℓ+ 1

4π
Pℓ(n · n′)

∫ ∞

0

dz W xi

(z)

∫ ∞

0

dz′W xj

(z′)

× 2

π

∫ ∞

0

dν ν2X̂
(−,0)
ℓ (χ, ν)X̂

(−,0)
ℓ (χ′, ν)Ss(ν),

(2.63)

therefore, combining equations (2.57) and (2.63) we finally can arrive to

Cxixj

ℓ =

∫ ∞

0

dz W xi

(z)

∫ ∞

0

dz′W xj

(z′) (2.64)

×
[
2

π

∫ ∞

0

dν ν2Ss(ν)X̂
(−,0)
ℓ (χ, ν)X̂

(−,0)
ℓ (χ′, ν)

]
.

The analogous result for a spatially closed Universe model is given by

Cxixj

ℓ =

∫ ∞

0

dz W xi

(z)

∫ ∞

0

dz′W xj

(z′)

[
2

π

∞∑

ν=3

ν2Ss(ν)X̂
(+)
ℓ (χ, ν)X̂

(+)
ℓ (χ′, ν)

]
. (2.65)

An important remark here is to note that the radial coordinate distance inside the radial
modes χ represents the radial distance-redshift relation in the Universe χ = χ(z), equation
(1.19).

As final remark we can see that from the expresion for the APS for spatially open and
flat Universe models, equation (2.65), one easily recover the standar expression for the
spatially flat Universe which commonly appears in the liteature. By replacing the form of
the radial haarmonics in terms of the spherical Bessel functions X̂

(0)
ℓ (χ, ν) = (−1)ℓjℓ(χν),

see equations (B.27), easily follows

Cxixj

ℓ =

∫ ∞

0

dz W xi

(z)

∫ ∞

0

dz′W xj

(z′)

[
2

π

∫ ∞

0

dν ν2Ss(ν)jℓ(χν)jℓ(χ
′ν)

]
. (2.66)

1It is important to note that for cases where the field s is not statistically homogeneous and isotropic
this expansion is no longer valid, for example, when s is identified with the field of total matter fluctuations
in redshift space.
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2.2.2 Simple estimator for the angular power spectra

In this paragraph we present some basic preliminary work on measurement techniques
for the angular power spectrum of a field defined on the unit sphere S2 representing the
observer sky. We closely follow the basic treatment presented on [51].

Begin by consider a measurement of a real field x(n) on S2. Here x represent an
arbitrary cosmological observable, for example, the projected fluctuation of the galaxy
density δ2Dg or the convergence field of galaxies on the foreground generated by matter in
between to the observer κ, see section 1.4. This measurement can be described in terms of
its spherical harmonic coefficients {xℓm} (equation (2.70)) in terms of which, an observed
angular power spectrum Cℓ of x is given by the inversion of equation (2.70) [4],

Cℓ =
ℓ∑

m=−ℓ

xℓmx
∗
ℓm

2ℓ+ 1
. (2.67)

If x is an isotropic Gaussian random field, the power spectrum contain all the statistical
information of the field. Moreover, the observed power spectrum Cℓ should be considered
as a realization of a theoretical power spectrum Ctheo

ℓ that, again, fully characterizes
the field of interest x. The variance of the theoretical power spectrum, the so-called in
Cosmology cosmic variance, depends on the number of modes on the sky, as stated at the
beginning of the present chapter it is related with the scales allowed by observations, i.e.,
by the size of the observable Universe, and is given by (see e.g. chapter 11 of [4])

Var(Cℓ) =
2(Ctheo

ℓ )2

2ℓ+ 1
. (2.68)

In real applications, the data should contain a finite amount of information because
the continuous signal of x is observed at finite resolution on the sky and also because
of other observational issues. Consequently, this subtleties should be taken into account
in the estimation of the Cℓ. However, in the present work we are only presenting a first
approximation to this problem, so we will not cover this issues. For a recent discussion
see e.g. [51].

In the context of Large surveys of galaxies, data catalogs usually provide lists of
objects whose positions and other astrophysical properties, such as photometric colors,
were measured in the context of the survey, containing information of the 3D distribution
of objects and its properties. Then the main task is to relate the properties in such lists to
the specific fields defined on the sphere that can be modeled inside cosmological models.
In order to do so, a catalog must be translated into pixelized map(s) on the sphere which
are observational discrete representations of the fields. For example, following [51] if we
consider the field of fluctuations in the number of galaxies in the context of a given survey,
the catalog produced by the survey should be converted into into a number count pixelized
map ñ, and then transformed into an overdensity map δ̃, i.e., the actual map representing
the observation of the δ2Dg field. Given a pixelization scheme, if np denotes the number of
objects in the p-th pixel, which can be thought to be generically described by its size Ωp

and the position of its center np, the pixelized overdensities can be constructed as

δ̂p =
n̂p

Ωpn̄
− 1, (2.69)

where n̄ = Nobj/∆Ω is the average number of objects per steradian and Nobj is the total
number of objects in the catalog.
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The following task is to use the pixelized maps to properly estimate the angular power
spectrum of the underlying field. The initial natural problem arising on the design of
a statistical estimator for (2.67) is the fact that with a pixelized map it is impossible
to reproduce a full harmonic decomposition, i.e., it is impossible to construct the xℓm
coefficients for all the values of ℓ and m. One always has to begin the estimation from a
band-limited representation of the field associated with the pixelized map.

There are different alternatives (conventions) to represent pixelized maps and their
harmonic decomposition. In this work the HEALPix convention will be adopted. Origi-
nally developed to address the data processing and analysis needs of cosmic microwave
background (CMB) experiments, HEALPix2, acronym for the Hierarchical Equal Area iso-
Latitude Pixelization, is specially designed to manage very large volumes of astronomical
data and large area surveys in the form of discretized spherical maps [52].

In HEALPix conventions, a band-limited field x defined on the unit sphere S2 is decom-
posed in Spherical Harmonics as

x(n) =
ℓmax∑

ℓ=0

ℓ∑

m=−ℓ

xℓmY
m
ℓ (n), (2.70)

where it is assumed that there is insignificant signal power in modes with ℓ > ℓmax. As
was discussed, pixelizing x(n) can be understood as sampling it at Npix locations np,
p ∈ [0, Npix]. The sample function values xp can then be used to estimate the spherical
harmonic decomposition of the field xℓm. The most basic estimator that can be conceived
is given by

x̂ℓm =
4π

Npix

Npix−1∑

p=0

Y m∗
ℓ (np)xp. (2.71)

It is implemented as part of the library of the HEALPix code in the ANAFAST routine
along with other more sophisticated routines for estimation of the spherical harmonic
decomposition. This routine is specially designed to perform harmonic analysis of HEALPix
maps up to a maximum spherical harmonic order ℓmax. The principal advantage of the
iso-latitude and equal area pixelization in HEALPix is the computation speed of the xℓm,
given a pixelized map with Npix pixels, the total computation scales as O(N3/2

pix ) with a
prefactor depending on ℓmax in contrast to non iso-latitude schemes of pixelization of the
sphere, for which the same computation commonly scales as O

(
N2

pix

)
[52].

Taking into account this computational advantage, in this work the ANAFAST routine
is used to compute the estimator for the harmonic modes given in equation (2.71) and
then an estimator for the first ℓmax Cℓ’s is constructed from its definition, equation (2.67).

Note that such an estimator is a first approximation to the real estimation problem in
cosmology. The main drawback of this estimator is not taken into account the intrinsic
shot noise present on any cosmological signal, and then comes another issues like, for ex-
ample, masking effects and corrections for observational systematics. Indeed, for regimes
in which the shot noise contribution can be negligible and all the real data problems
are not present, like, for example, a simulated all-sky map of a cosmological field this
estimator can be still used as a first approximation. In this work we use the estimation
technique just depicted to measure the angular power spectrum of dark matter fluctua-
tions on a N -body cosmological simulation, namely, the Onion simulation [13], as well as
the auto-correlation of the weak lensing convergence field and its cross-correlation with

2http://healpix.jpl.nasa.gov/

http://healpix.jpl.nasa.gov/
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dark matter fluctuations, showing the points stated above. Our results are presented on
§4.2.



Chapter 3

Statistical inference

In the recent years cosmology has entered into its “golden age” as long as specially designed
experiments has allowed the field of precision cosmology to advance. This developments
have brought the problem of how to properly extract conclusions about our cosmological
models from contrasting them with observations. In order to solve this problem cosmology
uses the methods of statistical inference, the main theme of the present chapter.

Statistical inference is a branch of statistics devoted to draw conclusions from data sub-
ject to random variation, for example, observational and/or experimental errors present
on physical systems or sampling variation. At least two different schools of statistical
inference can be distinguished: first, the most common one (the “orthodox” if you want)
the frequentist statistical inference, where the probability of an event is determined by the
ratio of the number of times M the event occurred in N experiments, p = M/N , when
N → ∞. It is important to note that this interpretation requires the experiment to be
repeatable. Thus, Frequentist inference is objective, in the sense that probability is not
the property of a particular event, but the property of the ensemble or parent population.
In second place there is the Bayesian statistical inference which on an over-simplified
view, basically describes “degrees of belief” using probability theory. Bayesian inference
is subjective, in the sense that it allows to assign probability to predictions or theories
(models), supported by the available evidence.

It is important to note that the difference between the above schools of statistical
inference is inherently related to the interpretation of the notion of probability [53, 54].

In the present chapter the basics of Bayesian inference as a tool to use observations
to test cosmological models and update the “degree of belief” on them using available
data is presented. We closely follow the treatment of [54]. The problem of sampling
from a probability distribution function (PDF) is depicted in the context of Bayesian
parameter inference and the most widely used method of Monte Carlo Markov chain
(MCMC) sampling in Cosmology is reviewed. Sampling methods based on Markov chains
were first developed for applications in statistical physics. The paper of Metropolis [55]
introduce the concept nowadays known as the Metropolis algorithm in which the next
state in a Markov chain is chosen by considering a (usually small) change to the actual
state, and accepting or rejecting this change, based on how the probability of the altered
state compared to that of the current state, see e.g., Chapter 16 of [56]. The recent
alternative method of affine-invariant MCMC [57] is also discussed as a useful alternative
for solving efficiently the problems of sampling degenerate PDFs with the possibility of
using parallel computational resources.
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3.1 Bayes’ Theorem

Bayes’ Theorem can be understood as a “simple” consequence of the basic rules (axioms)
of probability theory. However, with amazing implications, giving the rules by which
probabilities (understood as degree of belief in propositions) should be interpreted and
manipulated. Here we present a description of the Bayes’ theorem by closely follow the
treatment of [54], showing that the basic rules of dealing with probabilities follow from
basic plausible properties of probability distributions.

Consider a proposition A and its negation ¬A, then its associated probabilities should
follow a sum rule in the sense that, p(A|I) + p(¬A|I) = 1, where the vertical bar means
that the probability assignment is conditional, i.e., it is properly assuming whatever in-
formation is given on its right. This sum rule tells nothing but that for A one of the
propositions should be true, itself or its negation. This sum rule can then be extended
to more general grounds by considering A to be an arbitrary event, e.g. a random vari-
able or, more related to the present work, the value of an specific parameter inside some
mathematical model (e.g. the content of Dark Matter in the Universe on the context of
the standard model of Cosmology). The natural generalization of the sum rule should be
of the form ∑

A

p(A|I) = 1, (3.1)

where the sum runs over the possible outcomes for A and, again, I represents any relevant
information that is assumed to be true. Note that this sum rule states the known fact
that probability distributions should be normalized to the unity.

A second basic requirement for probabilities is a product rule,

p(A,B|I) = p(A|B, I)p(B|I), (3.2)

stating that the joint probability of events A and B (left-hand side) should be equal to
the probability of A given that B occurs times the probability of B occurring on its
own, all conditional on information I. Note that this statement can be also understood
as a generalization of the definition of the notion of joint probability when additional
information I is given. In fact, when no information I is taken into account on (3.2) it is
equivalent to the standard definition of conditional probability, p(A|B) = p(A,B)/p(B).

In principle one can deduce notably interesting properties of the probability distri-
butions from only this two basic requirements. Of fundamental importance for inference
process, one can mention, the notion of marginalization and, the extremely important
Bayes’ theorem.

Let us begin with the notion of marginalization. Suppose one is interested in the
probability of B alone, irrespective of A, then, the sum and product rules together imply
that

p(B|I) =
∑

A

p(A,B|I), (3.3)

where the sum runs over the possible outcomes for proposition (event) A. The result
follows simply by summing over all possible outcomes for A on both sides of the product
rule (3.2) and then use the sum rule on the left-hand-side of the result. The quantity on
the left-hand-side of (3.3) defines what is called marginal probability of B coming from
the joint probability of A and B p(A,B).



3.1 Bayes’ Theorem 45

Now we can turn to the Bayes’ theorem. It simply follows from realize that as long as
p(A,B|I) = p(B,A|I), the product rule can be rewritten as

p(B|A, I) = p(A|B, I)p(B|I)
p(A|I) . (3.4)

In physics or science in general, the interpretation and usefulness of the Bayes’ theorem,
equation (3.4), is more clear when one replaces general event A for a given observed data
D and B for some hypothesis H one want to assess. This allows to write

p(H|D, I) = p(D|H, I)p(H|I)
p(D|I) . (3.5)

Let us now present an interpretation to each one of the terms involved in this equality.
The left-hand-side, p(H|D, I) is the posterior probability distribution function (posterior
PDF) of the hypothesis taking the data into account. On the right-hand-side one has that
the posterior PDF is proportional to the sampling PDF of the data p(D|H, I) assuming
the hypothesis is true, times the prior PDF for the hypothesis, p(H|I), which represents
the state of knowledge before the data is taken into account. Note that this is the only
PDF that does not depend on the data. On the other hand, the sampling PDF is a
fundamental quantity, because it encodes how the degree of plausibility (belief) of the
hypothesis changes when one is acquiring new data. Considered as a function of the
hypothesis, for fixed data (the one that have been observed), it is called the likelihood
function and it is common in literature to employ the notation

L(H) := p(D|H, I). (3.6)

It is important however to keep in mind that, as a function of the hypothesis, the likelihood
function is not a probability distribution. Up to this point one can see the power of the
Bayes’ theorem, as long as it specifies the way in which one can update the degree of
belief on some hypothesis from experience, i.e., by using observed data. One begins with
a prior PDF that does not depend on the data and then fully specifies the degree of belief
on the hypothesis before the data is taken into account. Then, when data is wanted to
be taken into account, Bayes’ theorem dictates the way it should be done, basically by
multiplying by the likelihood function associated with the hypothesis.

The left normalization constant in the denominator of the right-hand-side is defined
as the Bayesian evidence and is given by the marginalization of the product of the prior
and the likelihood over all possible hypothesis,

p(D|I) =
∑

H

p(D|H, I)p(H|I). (3.7)

As is easily seen, this results from requiring the posterior PDF to be correctly normalized
to the unity or equivalently from satisfying the sum rule for probabilities, equation (3.1).
The Bayesian evidence, equation (3.7), is the central quantity for Bayesian model com-
parison purposes, a topic that is outside of the scope of the present work, so not much
will be said about this quantity, however the reader can be referred to e.g. [58] for some
discussion. On the other hand, the posterior PDF is the relevant quantity for Bayesian
parameter inference as it represents the state of belief about hypothesis after one has
considered the information in the data, so it is the central quantity for the proposes of
the present work.
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3.2 Bayesian parameter inference

This section is intended to depict the Bayesian parameter inference problem. We again
follow closely the review of [54] which can be seen for further discussions. In principle, one
can formulate the problem of Bayesian parameter inference as follows. Initially, a model
should be chosen containing a set of hypotheses in the form of a vector of parameters θ
in the context of the present work, such a model is the standard cosmological model (see
the section 1.1). The parameters should describe any aspect of the model, but usually
they will represent some physically meaningful quantity inside physical theories. Together
with the model, the priors for the parameters should be specified. As was discussed, priors
should summarize the state of knowledge about the parameters before considering new
data, and the logical way to proceed is then, for the parameter inference step, to consider
as prior the posterior PDF obtained from previous data.

The central step is to construct the likelihood function for the measurement, which
should reflect the way the data is obtained. Nuisance parameters related to the mea-
surement process might be present in the likelihood. This reflects one of the powerful
aspects of Bayesian inference as long as the general strategy is always to work out the
joint posterior for all of the parameters in the problem and then marginalize over the ones
we are not interested in.

Begin then by assuming a set of model’s parameters θ and a set of nuisance parameters
ψ, the joint posterior probability forΘ = (θ,ψ) is obtained through Bayes’ Theorem (3.4)
as

p(Θ|D,H) = L(Θ)p(Θ|H)
p(D|H) , (3.8)

where an explicit assumption of a model H was made. For the proposes of parameter
inference, the normalizing constant p(D|H), i.e., the Bayesian evidence, can be effectively
ignored because it is irrelevant, it only represents a normalization constant factor.

Then it is possible to write the marginal posterior on the parameter of interest by
using equation (3.3), i.e., marginalizing over the nuisance parameters,

p(θ|D,H) ∝
∫

dψ L(θ,ψ)p(θ,ψ|H). (3.9)

The final inference on θ from the posterior can then be communicated either by some
summary statistics, such as the mean, the median or the mode of the distribution, its
standard deviation and the correlation matrix among the components, or more usefully
(especially for cases where the posterior presents multiple peaks or heavy tails) by plotting
one or two dimensional subsets of θ, with the other components marginalized over. On
the present work specialized numerical codes for do these kind of jobs was designed so we
present as much information as possible for the final inference on parameters.

In general, actual problems in cosmology and astrophysics are not analytically tractable
and one must resort to numerical techniques to evaluate the likelihood and to draw samples
from the posterior, which constitutes the fundamental problem for parameter inference
as long as it encodes all that the data have to tell in the context of a given model. It
is then desired to construct an accurate numerical approximation to the posterior PDF
following the procedure exposed above. The natural problem that appears is related
to the fact that likelihood evaluations can be computationally expensive. For example,
calculating the power spectrum of matter fluctuations today, the fundamental quantity
to describe the large-scale observables discussed in §1.4 and/or the Cosmic Microwave
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Background (CMB) power spectrum, basic ingredients to construct likelihood functions
associated with its respective observations, at one set of cosmological parameters requires
us to evolve many coupled differential equations from inflation to the present day, which
can take on the order of seconds to evaluate [28].

The alternatives to solve this problem nowadays are highly influenced by the so-called
Markov chain Monte Carlo (MCMC) class of sampling algorithms. This work focus on
MCMC samplers, which are briefly depicted in the following section.

3.3 MCMC techniques for model parameter Bayesian

inference

The present section aims to discuss the most important features of MCMC sampling
methods, it is based on the treatment of [53], and does not intend to be complete.

Monte Carlo (MC) methods are computational techniques that make use of random
numbers with the aims of solve one or both of the following two problems: (a) to generate
samples

{
Θ(r)|r ∈ {0, 2, . . . , R− 1}

}
from a given probability distribution, for example

the posterior probability distribution on the Bayesian inference context p(Θ|D,H) (sam-
pling problem) and (b) to estimate expectations of functions under this distribution, for
example

F := 〈f(Θ)〉 =
∫

dΘ p(Θ|D,H)f(Θ). (3.10)

A very interesting property of these methods is that one can concentrate only on the
sampling problem in order to solve the both. In fact, once sampling process is completed,
one can solve the second by using the random samples to give the estimator

F̂ =
1

R

R∑

r=1

f
(
Θ(r)

)
. (3.11)

This estimator can be shown to be optimal in the sense that, as the number of samples
R increases, the variance of f̂ will decrease as σ2

f/R [53].
MCMC methods are MC methods where the sampling is made by a sequence of points

in parameter space (called “a chain”), of a specific type, a Markov Chain, with density
proportional to the posterior PDF of Bayes’ Theorem (3.8). A Markov chain is defined
as a sequence of random variables {X(t)|t ∈ {0, 1, . . . , T − 1}} such that the probability
of the (t+ 1)-th element in the chain only depends on the value of the t-th element. The
crucial property of Markov chains is that they can be shown to converge to a stationary
state (i.e., which does not change with t) where successive elements of the chain are
samples from the target distribution, in our case, the posterior PDF p(Θ|D,H).

Another relevant property of MCMC techniques is that they make the process of
obtain and plot marginal posterior PDF for parameters relatively easy. for example if the
desired task is to obtain the marginalization to the PDF of a single parameter, say θi, one
can use the MC estimators (3.11). In fact, the process consist only on dividing the range
of θi in a series of bins and count the number of samples falling within each bin, simply
ignoring the coordinates values θj with j 6= i. The generalization to higher dimensional
posteriors, 2-dimensiona, 3-dimensional and so on is enterely analogous.

In what follows we briefly review specific algorithms to perform MCMC sampling used
on the present work. For further discussion the reader is encouraged to see the original
references cited along the text.
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3.3.1 Metropolis-Hastings sampling

The Metropolis-Hastings (MH) algorithm is one of the most widely used MCMC sampling
methods for Bayesian inference. It was introduced by [55] as a way to solve the interacting
Ising model in the lattice, see e.g. [56].

MH algorithm makes use of a proposal (also called in the literature by trial) density,
q(Θ′;Θ(t)), which depends on the current state of the chain (point in parameter space
for parameter inference proposes) Θ(t) and essentially describes the probability for at a
definite step, say the t-th one, the chain goes from the current state Θ(t) to a new state Θ′.
The density PDF q can be any fixed density from which one can draw samples. Common
choices are based on simplicity, for example, a Gaussian centered on the current state
Θ(t).

The essentials of the MH method to sample the PDF p(Θ) can be summarized as
follows: first of all, choose an initial point in parameter space Θ(0), then, each MH step to
evolve the chain can be represented on pseudo-code according to algorithm 1. Hereinafter

Algorithm 1 Single Metropolis-Hastings step from a given state Θ(t).

1: Draw a proposal for a new state from the trial PDF, Θ′ ← q(Θ′;Θ(t))
2: Define the acceptance probability, Q←

[
p(Θ′)q(Θ(t);Θ′)

]
/
[
p(Θ(t))q(Θ′;Θ(t))

]

3: Sample a random number between 0 and 1, R ← U [0, 1]
4: if R ≤ Q then
5: Accept the new state, Θ(t+1) ← Θ′

6: else
7: Stay at the same state, Θ(t+1) ← Θ(t)

8: end if

U [0, 1] denotes a uniform PDF between 0 and 1.
It is important to clarify notation. We use the superscript r = 1, . . . , R to label points

that are independent samples from a distribution , and the superscript t = 1, . . . , T to
label the sequence of states in a Markov Chain. It is important to note that a Metropolis-
Hastings simulation of T iterations do not produce T independent samples from the target
distribution P . The samples are, in principle, dependent.

Note that in order to compute the acceptance probability Q it is necessary to compute
the probability ratios p(Θ′)/p(Θ(t)) and q(Θ(t);Θ′)/q(Θ′;Θ(t)), line 2 in algorithm 1. In
the special case in which the proposal density is chosen to be a simple symmetrical density
such as a Gaussian centered on the current point, the later factor is unity and the MH
method simply involves comparing the value of the target density at the two points. This
special case is sometimes called the Metropolis method, because it was in fact the one
originally introduced by Metropolis [55]. It is important to mention that the symmetry
of the trial distribution q guarantees the stationarity of p(Θ) under the Markov process
and thus that the asymptotic distribution of the chain is effectively p(Θ) [53].

3.3.2 Affine-invariant ensemble MCMC

Recently a new class of MCMCmethods had received much attention from the community,
the ensemble or many-particle MCMC sampling algorithms introduced by [59, 60]. Such
class of algorithms have the property of affine-invariance; that is, the performance of the
algorithm is invariant under linear transformations of the parameter space (hence the
name). This is a highly desirable property because if it is guaranteed, in principle, one
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of this algorithms can work equally well sampling an uncorrelated and isotropic Gaussian
and a highly degenerate target distribution [57].

The basic principle of this sampling methods is that, in contrast to common MH
method, where a chain is generated sequentially as a single point (particle) moving on
parameter space, many points (particles), commonly called as walkers, explore, at the
same time, the parameter space. Moreover, this principle allows one to think in schemes
of parallelization of this kind of methods.

Following [57], the essentials of an affine-invariant MCMC sampling algorithm can be
described as follows: first of all an initial position for each of the walkers should be chosen,
i.e., an initial ensemble configuration (t = 0). An ensemble of K walkers will be denoted
as

S := {Θk|k ∈ {0, 1, . . . , K − 1}} . (3.12)

The proposal distribution for one walker, say the k-th one, is based on the current positions
of the K − 1 walkers on the complementary ensemble,

S[k] := {Θj|j 6= k} . (3.13)

This move should be done in such a way that detailed balance holds, imposing a restriction
on the possible types of moves (see discussion in [59]). Here the simplest one will be
discussed, in fact the one that is used during this work: the so called stretch move. In
the stretch move, in order to update the position of one walker Θk a walker Θj is drawn
randomly from the complementary ensemble, Θj ∈ S[k], and a new position is proposed
according to

Θ′ = Θj + Z [Θk(t)−Θj ] , (3.14)

where Z is a random variable drawn from a PDF g(z). In this sense, according to the
proposed position, one has that

Θk(t) = Θj + Z−1 [Θ′ −Θj ] , (3.15)

this shows that the proposal is symmetric, in the sense that the probability to go to a
position has the same value of the probability to return from it, if the PDF g satisfies the
condition

g(z−1) = zg(z). (3.16)

A particular form of g(z) commonly used was originally proposed by [60] as

g(z) ∝
{
z−1/2, z ∈ [a−1, a]

0, otherwhise,
(3.17)

where the parameter a > 1, controlling the step size, can be adjusted to improve per-
formance. Following [57] this parameter is setted in this work to a = 2 for all practical
applications. However, is important to remark the fact that in principle a may be varied
if the acceptance fraction of the sampling process is too low or too high (see [59] and [57]
for discussion).

Finally, the proposal is accepted following the acceptance probability

Q = min

(
Zn−1 p(Θ′)

p(Θk(t))

)
, (3.18)

where n is the dimension of the parameter space. The above form of the acceptance
probability Q in conjunction with the symmetry condition imposed to the probability
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density g of the trial step, equation (3.17), ensures detailed balance and therefore that
the asymptotic distribution of the Markov Chains generated by the ensemble of walkers
is in fact the target PDF p [59, 60].

The single stretch move is summarized in form of pseudo-code on algorithm 2.

Algorithm 2 Stretch move step.

1: for k ∈ {1, 2, 3, . . . , K} do
2: Draw a random walker Θj from the complementary ensemble S[k](t)
3: Sample a random number according to the PDF g(z), Z ← g(z)
4: Draw proposal position as Θ′ ← Θj + Z [Θk(t)−Θj]
5: Compute the acceptance probability, Q← Zn−1p(Θ′)/p(Θk(t))
6: Draw a random number between 0 and 1, R ← U [0, 1]
7: if R ≤ Q then
8: Accept the new position, Θk(t+ 1)← Θ′

9: else
10: Stay at the same position, Θk(t+ 1)← Θk(t)
11: end if
12: end for

Perhaps the most attractive feature of the affine-invariant ensemble method for MCMC
sampling based on the stretch move, algorithm 2, is the fact that it admits an scheme
of parallelization. As discussed in [57] this parallelization should carefully done, the first
natural thought of parallel advancing each walker based on the state of the ensemble in-
stead of evolving the walkers in series, as is implicit on algorithm 2, is not allowed because
it subtly violates detailed balance. However a scheme of parallelization not violating de-
tailed balance is also given in [57]. The solution resides in split the full ensemble into two
subsets (sub-ensembles if you prefer),

S(0) := {Θk|k ∈ {1, 2, 3, . . . , K/2}} , S(1) := {Θk|k ∈ {K/2 + 1 . . . , K}} .

Thus, first update all the walkers in the first sub-ensemble S(0) using the stretch move
procedure from algorithm 2 based only on the positions of the walkers in the other sub-
ensemble S(1), and then, using the new positions of S(0), update S(1). This procedure is
summarized in the form of pseudocode in Algorithm 3.

In this way, as can be seen from algorithm 3 the computationally expensive inner
loop, which starts at line 2 in algorithm 3, can efficiently run in parallel. A highly desired
property nowadays when parallel computing is becoming common practice for scientific
community. Given the variety of properties just depicted about affine-invariant ensemble
MCMC samplers, we used them during this work, for practical proposes we used the
emcee1 [57] code, a python-based code designed to be a “hammer” for MCMC sampling.

1https://github.com/dfm/emcee
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Algorithm 3 Parallel stretch move step.

1: for i ∈ {0, 1} do
2: for k ∈ {1, 2, 3, . . . , K/2} do ⊲ Parallel loop
3: Draw a random walker Θj from the complementary ensemble S(∼i)(t)

4: Θk ← S
(i)
k

5: Z ← g(z)
6: Θ′ ← Θj + Z [Θk(t)−Θj]
7: Q← Zn−1p(Θ′)/p(Θk(t))
8: R ← [0, 1]
9: if R ≤ Q then

10: Θk(t+ 1/2)← Θ′

11: else
12: Θk(t+ 1/2)← Θk(t)
13: end if
14: end for
15: t← t+ 1/2
16: end for
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Chapter 4

Results

This chapter is devoted to the main results of this work. We begin by considering the
general two-point correlation function of galaxies for arbitrary angular separation and
redshifts. This is accomplished by using the results presented in §2.1 and including the
redshift-space distortion effect as discussed in Appendix C, such that a general formula
for arbitrary spatial curvature is presented. Next, the distant observer approximation
is discussed and the standard functional forms of the two-point correlation function are
recovered. In order to do so, we closely follow the treatment of [35].

Interpretation of data from galaxy redshift surveys relies on the comparison of obser-
vations and theoretical predictions. Modern approaches rely on numerical computations
in the linear regime performed by sophisticated Boltzmann codes, i.e. numerical routines
specialized in evolving the Einstein-Boltzmann system of equations associated with first-
order metric perturbations, taking into account the interaction between different species
in the Universe according to the formalism of Kinetic Theory [2, 4].

Two main difficulties appear in this interpretation, (a) whether the model postulated
is a correct physical description of the Universe evolution and (b) given a model, whether
the theoretical predictions are computed with sufficient accuracy when the observational
errors are taken into account. The first problem can be addressed by a continuous theo-
retical effort and evaluation of how well competing models describe the same data. This
can be done by using Bayesian inference as described in Chapter 3. On the other hand,
the second difficulty is directly related to the robustness of the numerical methods used to
compute predictions from models. Commonly these methods are divided into two specific
tasks, Einstein-Boltzmann codes and specific observable model codes, i.e. the numerical
methods used to connect the solutions offered by the linear theory codes for the evolution
of perturbations in the Universe with the actual cosmological observables as e.g. those
discussed in section 1.4. On top of that, practical progress in the development of these
codes is triggered by the fact that their speed is crucial for sampling the space of model
parameters. As discussed in chapter 3, within the Bayesian inference process, sampling
methods require the evaluation of a considerable number of models every time a cosmology
is compared to the observed data set.

For the Einstein-Boltzmann system of equations, several Boltzmann codes have been
made public and compared to each other. From them, we can mention CMBFAST1 [61, 62],
the first numerical routine implementing the method of line-of-sight integration written
in Fortran 77 language and not maintained up to date, and later CAMB2 [28], a Fortran

1http://lambda.gsfc.nasa.gov/toolbox/tb_cmbfast_ov.cfm
2http://camb.info/

http://lambda.gsfc.nasa.gov/toolbox/tb_cmbfast_ov.cfm
http://camb.info/
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90 implementation of the same method which is maintained up to date, CMBEASY [63]3

an early C++ (object oriented) implementation based on CMBFAST, not maintained up to
date, and more recently CLASS4 [64, 65], a C++ implementation maintained up to date.
From all of them, CAMB and CLASS have been constantly updated and pushed to ever
higher precision and accuracy.

In this chapter, different approaches to the practical computation of the two-point
correlation function assuming the distant observer approximation are considered. We
show that a method based on discrete Hankel transform becomes competitive and nearly
optimal in the sense of being accurate and faster in comparison to standard integration
methods.

In the context of modern wide-area photometric galaxy surveys like the DES, the
gain in area and depth should be contrasted with a poorer determination of radial posi-
tions. Therefore, splitting the data into redshift bins and using the angular correlation
function (ACF) w(θ) and the angular power spectrum (APS) Cℓ constitute a standard
approach to extract cosmological information. We present a detailed model for w(θ) at
large scales including effects of nonlinear gravitational clustering, galaxy biasing, redshift
space distortions and photo-z uncertainties.

In the same context, future cosmic shear surveys will play a major role in cosmology.
The sensitivity of weak lensing observations will be high enough to allow for precision
measurements of cosmological parameters. These measurements will provide constraints
on cosmology that are independent and complementary to those obtained from other
observables such as galaxy clustering, CMB anisotropies and polarization, type Ia super-
novae and galaxy clusters [1]. Cosmic shear probes the nonlinear evolution of structures in
the Universe and can be used to measure the non-Gaussianity of the large scale structure
arising from gravitational collapse. Up to now, cosmic shear observations have focused
mainly on second-order (two-point) statistics which only probe the Gaussian part of the
matter distribution. Higher-order statistics that are able to determine non-Gaussian as-
pects of the large scale structure will become more important and observationally feasible
with larger and deeper surveys, higher sensitivity and better understanding of systematics
in the measurements and in the data analysis [11, 10]. Moreover, since the dependence
on cosmology is different for shear statistics of second- and third-order, the combination
of both will improve the determination of cosmological parameters and reduce the degen-
eracies between them. In the final part of this chapter, preliminary work on the galaxy
position and weak lensing convergence auto- and cross- correlation in harmonic space, i.e.
the angular power spectra, for the Onion simulations [13] is also presented.

4.1 Two-point statistics in configuration space

In §2.1.1 the two-point correlation function of total matter fluctuations ξ(r) in FLRW
Universe models was found in terms of the total matter power spectrum according to
equations (2.15) and (2.21). In this section those expressions will be generalized to the
case of the two-point correlation function of galaxies, equation (1.59), closely following the
pioneering work of [35]. After doing that we show how to use this result to construct the
angular two point correlation function of galaxies. We provide expressions that take into
account spatial curvature, nonlinear corrections, photometric redshift estimation errors

3http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/
4http://class-code.net/

http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/
http://class-code.net/
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and the proper covariance between redshift and angular scales, this is done by closely
follow the works in [7, 8].

4.1.1 Galaxy two-point correlation function in FLRW Universes

By properly accounting for the effect of the peculiar velocities of galaxies on the fluctuation
in their number density as discussed in §1.4.1 and computed in Appendix C one can write
the two-point correlation function of galaxies in redshift space as

ξ(rs)gg (z1, x
i
1, z2, x

i
2) =

〈
δ(rs)g (z1, x

i
1)δ

(rs)
g (z2, x

i
2)
〉
= b1b2G1G2

(
R̂1 ◦ R̂2

)
[ξ(χ)] (4.1)

where bi := bg(zi), Gi = G(zi) with zi for i = 1, 2 the redshifts of the two points where
the galaxies are located, ξ(χ) is the total matter two-point correlation function at present
time in terms of the adimensional radial separation between the two points χ (equation

(2.15)) and the two redshift-space distortion operators R̂1 and R̂2 (equation (C.36))5 are
applied on the total matter fluctuation at the spatial points xi1 and xi2 respectively.

In the following, explicit expressions for the correlation function in redshift space are
derived. The approach is to separately consider open, flat and closed Universes following
the work of [35]. However, from equation (4.1) one can see that the main task is to

compute the action of the composition of redshift-space distortion operators R̂1 ◦ R̂2

on the real space correlation function of matter at present time ξ(χ). Regardless of
the spatial curvature, by simple inspection of equations (2.15) and (C.36), one see that
this computation involves the action of the inverse of the operator

(
∇2

1,2 + 3K
)
on the

zero radial harmonic modes X0 (equations (B.23)). More explicitly, the action of the
composition (∇2

1 + 3K)
−1 ◦ (∇2

2 + 3K)
−1

on X0. Such computation can always be done
by taking into account the facts that the Laplacian operator is invariant under changes
of coordinates in the spatial hypersurfaces and that the X0 functions are special cases of
the Laplace operator eigenfunctions (see Appendix B). Then we should have

(
∇2

1 + 3K
)−1 (∇2

2 + 3K
)−1

X0(χ, ν) =
X0(χ, ν)

(3K − k2)2 , (4.2)

where k is the dimensional eigenvalue of the Laplace operator related to its adimensional
analog ν depending on the spatial curvature according to equations (B.5). The remaining
part of the computation involves derivatives along the LOS, i.e. derivatives with respect
to χi = χ(zi) (i = 1, 2), equation (1.19), which are non-trivial because they do not have
the invariance property of the Laplacian. This computations can then be performed by
introducing the angular separation between the two points θ and the angles subtended
between the lines of sight to each point and the geodesic connecting the two points γi (i =
1, 2), see figure 4.1. Since these definitions are geometry (spatial curvature)-dependent
they are separated for open, flat and closed FLRW Universe models.

Open FLRW Universe

Consider initially an open Universe, i.e., K < 0. The two-point correlation function of
total matter at present time is given by (see §2.1.1)

ξ(χ) =

∫ ∞

0

dν ν2

2π2
X

(−)
0 (χ, ν)S(ν); X

(−)
0 (χ, ν) =

sin(νχ)

ν sinh(χ)
, (4.3)

5Note that here the subindex g has been dropped out for simplicity in the notation
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Figure 4.1: Geometry of the two-point correlation function in FLRW Universe models.
The two points are supposed to have spacetime coordinates (η1,2, x

i
1,2). Since the points

should lie on the observer past light cone the time coordinate can be replaced by the
redshift z1,2 used on the definition of the correlation of galaxies (4.1). Choosing spatial
spherical coordinates xi = (χ, θ, ϕ) the radial positions of the two points is given by
χ1,2 = χ(z1,2), the radial distance between the objects χ depends on the spatial geometry
(curvature), θ is the angle subtended by the two objects for the observer and γ1,2 are
the angles between the lines of sight two the objects and the geodesic connecting them.

where S(ν) is the adimensional total matter power spectrum related to its fully dimen-
sional analog P (k) according to equation (2.17). Expanding the composition of the two

redshift-space distortion operators
(
R̂1 ◦ R̂2

)
for the terms that involve derivatives along

the LOS, one has
(
R̂1 ◦ R̂2

)
=
[
1 + β1K (∂1 + α1) ∂1

(
∇2

1 + 3K
)−1
] [

1 + β2K (∂2 + α2) ∂2
(
∇2

2 + 3K
)−1
]

=
(
1 +Kβ1α1∂1 +Kβ2α2∂2 +Kβ1∂

2
1 +Kβ2∂

2
2

+K2β1β2α1α2∂1∂2 +K2β1β2α2∂
2
1∂2 +K2β1β2α1∂1∂

2
2

+K2β1β2∂
2
1∂

2
2

) (
∇2

2 + 3K
)−1 (∇2

2 + 3K
)−1

, (4.4)

where the abbreviated notation βi := βg(zi), αi := α(χi), ∂i := ∂χi
was introduced for

simplicity. The action of the inverse Laplace operators on the ℓ = 0 radial mode is given
by equation (4.2) as

(
∇2

2 + 3K
)−1 (∇2

2 + 3K
)−1

X
(−)
0 (χ, ν) =

1

K2

1

(ν2 + 4)
X

(−)
0 (χ, ν). (4.5)

As discussed above, the non-trivial task is now to compute the derivatives along lines-of-
sight of the two points.

We start by using the open-space version of the law of cosines to relate the radial
positions of the two objects χi and its angular separation θ, as determined by the observer,
with their comoving separation χ (see figure 4.1),

cosh(χ) = cosh(χ1) cosh(χ2)− sinh(χ1) sinh(χ2) cos(θ). (4.6)

Then the angles subtended between the lines of sight to the objects (galaxies) at χi and
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the geodesic connecting these objects χ can be computed as

cos(γ1) =
∂χ

∂χ1

=
1

sinh(χ)
[sinh(χ1) cosh(χ2)− cosh(χ1) sinh(χ2) cos(θ)] ,

cos(γ2) =
∂χ

∂χ2

=
1

sinh(χ)
[cosh(χ1) sinh(χ2)− sinh(χ1) cosh(χ2) cos(θ)] .

(4.7)

In order to find the partial derivative of the γ1,2 angles along the lines of sight it is also
useful to consider the following identities hold [35]

∂

∂χ1

(sinhχ cos γ1) = coshχ, (4.8a)

∂

∂χ2

(sinhχ cos γ1) = − coshχ cos θ̃, (4.8b)

where the angle θ̃ is introduced according to

cos θ̃ =
sin γ1 sin γ2

coshχ
− cos γ1 cos γ2 =

coshχ1 coshχ2 cos θ − sinhχ1 sinhχ2

coshχ1 coshχ2 − sinhχ1 sinhχ2 cos θ
. (4.9)

Note from this definition that θ → θ̃ for comoving scales much smaller than the
curvature scale, i.e. in the flat limit, r ≪ |K|−1/2 or equivalently χ≪ 1. These identities
allow to write the derivatives of the γ1,2 angles with respect to χ1,2 as

∂ cos(γi)

∂χj

=




coth(χ)

[
1− cos2(γi)

]
i = j,

− coth(χ)
[
cos(θ̃) + cos(γi) cos(γj)

]
i 6= j,

(4.10)

where i, j ∈ {1, 2}.
By using the above equations (4.6)-(4.10) and the derivative and recursion relations

for the radial harmonic modes, equations (B.10)-(B.11), one can obtain the derivatives
along the lines of sight appearing on the expansion (4.4) as

∂X0

∂χi

= cos(γi)X1(χ, ν), (4.11a)

∂2X0

∂χ 2
1

= X0 −
1

3
(ν2 + 4)X0 +

[
cos2(γ1)−

1

3

]
X2, (4.11b)

∂2X0

∂χ1∂χ2

= − cos(θ̃)X0 +
1

3
cos(θ̃)(ν2 + 4)X0 +

[
cos(γ1) cos(γ2) +

1

3
cos(θ̃)

]
X2, (4.11c)

∂3X0

∂2χi∂χj

= cos(γj)X1 +
1

5
(ν2 + 4)

[
2 cos(γi) cos(θ̃)− cos(γj)

]
X1

+
1

5

[
2 cos(γi) cos(θ̃) + 5 cos2(γi) cos(γj)− cos(γj)

]
X3, (4.11d)

∂4X0

∂χ 2
1 ∂χ

2
2

= X0 −
2

15

(
4 + 3 cos2 θ̃

)
(ν2 + 4)X0 +

1

15

(
1 + 2 cos2 θ̃

)
(ν2 + 4)2X0

− 1

21

[
4− 6 cos2 θ̃ − 27

(
cos2 γ1 + cos2 γ2

)
− 60 cos γ1 cos γ2 cos θ̃

]
X2

+
1

21

[
2 + 4 cos2 θ̃ − 3

(
cos2 γ1 + cos2 γ2

)
+ 12 cos γ1 cos γ2 cos θ̃

]
(ν2 + 4)X2

+
1

35

[
1 + 2 cos2 θ̃ − 5

(
cos2 γ1 + cos2 γ2

)
+ 20 cos γ1 cos γ2 cos θ̃

+35 cos2 γ1 cos
2 γ2
]
X4. (4.11e)
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Thus the action of the composition of redshift-space distortion operators R̂1 ◦ R̂2 on
X

(−)
0 (χ, ν) can be expanded as [35]

(
R̂1 ◦ R̂2

)
X

(−)
0 (χ, ν) =

∑

n,ℓ

c
(n)
ℓ (χ1, χ2, θ)

(−1)nX(−)
ℓ (χ, ν)

sinh2n−ℓ(χ) (ν2 + 4)n
, (4.12)

where the sum runs over (n, ℓ) = (0, 0), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (2, 3), (2, 4),
and consequently the two-point correlation function of galaxies in redshift space is given
by (equation (4.1))

ξ(rs)gg (z1, z2, θ) = bg(z1)bg(z2)G(z1)G(z2)
∑

n,ℓ

c
(n)
ℓ (χ1, χ2, θ)Ξ

(n)
ℓ (χ), (4.13)

where the multipoles of the two-point correlation function were introduced as

Ξ
(n)
ℓ (χ) =

(−1)n
sinh2n−ℓ(χ)

∫ ∞

0

dν ν2

2π2

Xℓ(χ, ν)

(ν2 + 4)n
S(ν). (4.14)

Note that the index n appears to distinguish the ν dependence on the expansion of
R̂1R̂2X

(−)(χ, ν). The actual multipolar expansion runs over the ℓ index alone. Note fur-
ther that since the two points are inside the past light-cone of the observer the expansion
coefficients c

(n)
ℓ and consequently the correlation function in redshift space depends only

on the redshifts of the two points z1,2 and their angular separation θ.

The coefficients c
(n)
ℓ (z1, z2, θ) are given according to the line of sight derivatives (equa-

tions (4.10)-(4.11d)) as

c
(0)
0 = 1 +

1

3
(β1 + β2) +

1

15
β1β2

(
1 + 2 cos2(θ̃)

)
, (4.15a)

c
(1)
0 = −1

3
β1β2α̃1α̃2 cos(θ̃) +

[
β1 + β2 +

2

15
β1β2

(
4 + 3 cos(θ̃)

)]
sinh2(χ), (4.15b)

c
(1)
1 = β1α̃1 cos(γ1) + β2α̃2 cos(γ2) +

1

5
β1β2

[
α̃1

(
cos(γ1)− 2 cos(γ2) cos(θ̃)

)

+α̃2

(
cos(γ2)− 2 cos(γ1) cos(θ̃)

)]
, (4.15c)

c
(1)
2 = β1

(
cos(γ1)−

1

3

)
+ β2

(
cos(γ2)−

1

3

)
− 1

7
β1β2

[
2

3
+

4

3
cos2(θ̃)

−
(
cos2(γ2) + cos2(γ2)

)
+ 4 cos(γ1) cos(γ2) cos(θ̃)

]
, (4.15d)

c
(2)
0 = β1β2

(
sinh2(χ)− α̃1α̃2

)
sinh2(χ), (4.15e)

c
(2)
1 = β1β2 (α̃1 cos(γ1) + α̃2 cos(γ2)) sinh

2(χ), (4.15f)

c
(2)
2 = β1β2α̃1α̃2

(
cos(γ1) cos(γ2) +

1

3
cos(θ̃)

)
+

2

7
β1β2

[
cos2(θ̃)− 2

3

+
9

2

(
cos2(γ1) + cos2(γ2)

)
+ 10 cos(γ1) cos(γ2) cos(θ̃)

]
sinh2(χ), (4.15g)

c
(2)
3 =

1

5
β1β2

[
α̃1

(
5 cos(γ1) cos

2(γ2)− cos(γ1) + 2 cos(γ2) cos(θ̃)
)

+α̃2

(
5 cos(γ2) cos

2(γ1)− cos(γ2) + 2 cos(γ1) cos(θ̃)
)]
, (4.15h)

c
(2)
4 =

1

7
β1β2

[
1

5
+

2

5
cos2(θ̃)−

(
cos2(γ1) + cos2(γ2)

)

+4 cos(γ1) cos(γ2) cos(θ̃) + 7 cos2(γ1) cos
2(γ2)

]
, (4.15i)



4.1 Two-point statistics in configuration space 59

where the functions α̃i were introduced as

α̃i = α̃i(χi, χ) := sinh(χ)α(χi) = sinh(χ)
cosh(χi)

sinh(χi)

[
2 +

∂ ln(DifiΦi)

∂ ln sinh(χi)

]
, i ∈ {1, 2} .

(4.16)

Flat FLRW Universe

Consider now a flat universe. The two-point correlation function at present time is

ξ(χ) =

∫ ∞

0

dν ν2

2π2
X

(0)
0 (χ, ν)S(ν); X

(0)
0 (χ, ν) =

sin(νχ)

νχ
= j0(νχ), (4.17)

where S(ν) is the total matter power spectrum and jℓ represents the spherical Bessel
functions. On flat FLRW Universe models the eigenvalue of the Laplace operator ν = k
is fully dimensional and so S(ν) = P (k), see §2.1.1.

The two-point correlation function computation for flat Universes can be performed
in a completely analogous way as for the open Universe case of the previous section.
Alternatively, one can consider the flat limit for the open Universe results, i.e., the limit of
curvature radius much larger than radial comoving distances (K−1/2 ≫ r), i.e., χ1,2, χ→ 0
and ν → ∞ keeping χν finite. Whichever approach is adopted, the main ingredients for
the computation are the following: the well-known flat space version of the cosines law
relating the radial separation between the objects χ with their radial positions and angular
separation (χ1, χ2, θ),

χ2 = χ2
1 + χ2

2 − 2χ1χ2 cos(θ); (4.18)

note that this is in fact the flat limit of equation (4.6), the angles between the lines of
sight χi and the geodesic connecting the two points χ, which are given by (see figure 4.1),

cos(γ1) =
∂χ

∂χ1

=
χ1 − χ2 cos(θ)

χ
, cos(γ2) =

∂χ

∂χ2

=
χ2 − χ1 cos(θ)

χ
, (4.19)

they are also the flat limit of their open Universe versions, the variable θ̃, defined in
equation (4.9) for the open Universe case, which reduces in the flat limit to θ, the angle
subtended between the two object lines of sight.

Thus, the composition of redshift space operators acting on X
(0)
0 can be expanded as

(
R̂1 ◦ R̂2

)
X

(0)
0 (χ, ν) =

∑

n,ℓ

c
(n)
ℓ (χ1, χ2, θ)

(−1)nX(0)
ℓ (χ, ν)

χ(2n−ℓ)ν2n
, (4.20)

and consequently, the two-point correlation function in redshift space is given by equation
(4.13) where the corresponding flat Universe multipoles are given by

Ξ
(n)
ℓ (χ) =

(−1)n
χ2n−ℓ

∫ ∞

0

dν ν2

2π2

X
(0)
ℓ (χ, ν)

ν2n
S(ν), (4.21a)

or, by using the relation X
(0)
ℓ (χ, ν) = (−1)ℓνℓjℓ(νχ) (see Appendix B),

Ξ
(n)
ℓ (χ) =

(−1)n+ℓ

χ2n−ℓ

∫ ∞

0

dk k2

2π2
P (k)

jℓ(kχ)

k2n−ℓ
, (4.21b)
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and the flat Universe coefficients c
(n)
ℓ are

c
(0)
0 = 1 +

1

3
(β1 + β2) +

1

15
β1β2

(
1 + 2 cos2(θ)

)
, (4.22a)

c
(1)
0 = −1

3
β1β2α̃1α̃2 cos(θ), (4.22b)

c
(1)
1 = β1α̃1 cos(γ1) + β2α̃2 cos(γ2) +

1

5
β1β2 [α̃1 (cos(γ1)− 2 cos(γ2) cos(θ))

+α̃2 (cos(γ2)− 2 cos(γ1) cos(θ))] , (4.22c)

c
(1)
2 = β1

(
cos(γ1)−

1

3

)
+ β2

(
cos(γ2)−

1

3

)
− 1

7
β1β2

[
2

3
+

4

3
cos2(θ)

−
(
cos2(γ2) + cos2(γ2)

)
+ 4 cos(γ1) cos(γ2) cos(θ)

+7 cos2(γ1) cos
2(γ2)

]
, (4.22d)

c
(2)
0 = 0, (4.22e)

c
(2)
1 = 0, (4.22f)

c
(2)
2 = β1β2α̃1α̃2

(
cos(γ1) cos(γ2 +

1

3
cos(θ))

)
, (4.22g)

c
(2)
3 =

1

5
β1β2

[
α̃1

(
5 cos(γ1) cos

2(γ2)− cos(γ1) + 2 cos(γ2) cos(θ)
)

+α̃2

(
5 cos(γ2) cos

2(γ1)− cos(γ2) + 2 cos(γ1) cos(θ)
)]
, (4.22h)

c
(2)
4 =

1

7
β1β2

[
1

5
+

2

5
cos2(θ)−

(
cos2(γ1) + cos2(γ2)

)

+4 cos(γ1) cos(γ2) cos(θ) + 7 cos2(γ1) cos
2(γ2)

]
, (4.22i)

where

α̃i = α̃i(χi, χ) := χα(χi) =
χ

χi

[
2 +

∂ ln(DifiΦi)

∂ ln(χi)

]
, i ∈ {1, 2} . (4.23)

Closed FLRW Universe

Finally consider a closed universe (K > 0). The two-point correlation function of total
matter at present time is given by

ξ(χ) =
∞∑

ν=3

ν2

2π2
X

(+)
0 (χ, ν)S(ν); X

(+)
0 (χ, ν) =

sin(νχ)

ν sin(χ)
(4.24)

where S(ν) is the adimensional total matter power spectrum related with its fully dimen-
sional analog P (k) according to equation (2.17), see §2.1.1.

The two-point correlation function computation for closed Universes can be performed
in a completely analogous way as for the open Universe case. Alternatively, one can
consider the change of variables χ1,2 → iχ1,2, χ → iχ and ν → −iν in the results
obtained for open Universes. Whichever approach is adopted, the main ingredients for
the computation are the following: the closed space version of the cosines law relating the
radial separation between the objects χ with their radial positions and angular separation
(χ1, χ2, θ),

cos(χ) = cos(χ1) cos(χ2)− sin(χ1) sin(χ2) cos(θ), (4.25)
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the angles between the lines of sight χi and the geodesic connecting the two points χ,
which are given by (see figure 4.1),

cos(γ1) =
∂χ

∂χ1

=
1

sin(χ)
[sin(χ1) cos(χ2)− cos(χ1) sin(χ2) cos(θ)] ,

cos(γ2) =
∂χ

∂χ2

=
1

sin(χ)
[cos(χ1) sin(χ2)− sin(χ1) cos(χ2) cos(θ)] ,

(4.26)

and, in order to find the partial derivative of the γ1,2 angles along the lines of sight χi,
the following identities hold [35]

∂

∂χ1

(sinχ cos γ1) = cosχ, (4.27a)

∂

∂χ2

(sinχ cos γ1) = − cosχ cos θ̃, (4.27b)

which allow us to introduce the variable θ̃ for closed Universes as

cos(θ̃) =
sin(γ1) sin(γ2)

cos(χ)
− cos(γ1) cos(γ2) =

cos(χ1) cos(χ2) cos(θ)− sin(χ1) sin(χ2)

cos(χ1) cos(χ2)− sin(χ1) sin(χ2) cos(θ)

=
cos(θ)− tan(χ1) tan(χ2)

1− tan(χ1) tan(χ2) cos(θ)
.

(4.28)

Note that from this last relation, one can prove that for scales much smaller than the
curvature scale, i.e., in the flat limit, χ1,2 = |K|1/2 x1,2 ≪ 1, θ̃ → θ. In fact, all the above
equations in the flat limit reduce to the flat Universe ones of the previous section.

Thus, the composition of redshift space operators acting on X(+)0 can be expanded as

(
R̂1 ◦ R̂2

)
X

(+)
0 (χ, ν) =

∑

n,ℓ

c
(n)
ℓ (χ1, χ2, θ)

(−1)nXℓ(χ, ν)

sin2n−ℓ(χ) (ν2 + 4)n
, (4.29)

and consequently, the two-point correlation function in redshift space is given by equation
(4.13) where the corresponding closed Universe multipoles are given by

Ξ
(n)
ℓ (χ) =

(−1)n
sin2n−ℓ(χ)

∞∑

ν=3

ν2

2π2

X
(+)
ℓ (χ, ν)

(ν2 + 4)n
S(ν), (4.30)



62 Results

and the closed Universe coefficients c
(n)
ℓ are given by

c
(0)
0 = 1 +

1

3
(β1 + β2) +

1

15
β1β2

(
1 + 2 cos2(θ̃)

)
, (4.31a)

c
(1)
0 = −1

3
β1β2α̃1α̃2 cos(θ̃) +

[
β1 + β2 +

2

15
β1β2

(
4 + 3 cos(θ̃)

)]
sin2(χ), (4.31b)

c
(1)
1 = β1α̃1 cos(γ1) + β2α̃2 cos(γ2) +

1

5
β1β2

[
α̃1

(
cos(γ1)− 2 cos(γ2) cos(θ̃)

)

+α̃2

(
cos(γ2)− 2 cos(γ1) cos(θ̃)

)]
, (4.31c)

c
(1)
2 = β1 (cos(γ1)− 1/3) + β2 (cos(γ2)− 1/3)

−1

7
β1β2

[
2/3 + 4/3 cos2(θ̃)−

(
cos2(γ2) + cos2(γ2)

)

+4 cos(γ1) cos(γ2) cos(θ̃)
]
, (4.31d)

c
(2)
0 = β1β2

(
sin2(χ)− α̃1α̃2

)
sin2(χ), (4.31e)

c
(2)
1 = β1β2 (α̃1 cos(γ1) + α̃2 cos(γ2)) sin

2(χ), (4.31f)

c
(2)
2 = β1β2α̃1α̃2

(
cos(γ1) cos(γ2) +

1

3
cos(θ̃)

)
+

2

7
β1β2

[
cos2(θ̃)− 2

3

+
9

2

(
cos2(γ1) + cos2(γ2)

)
+ 10 cos(γ1) cos(γ2) cos(θ̃)

]
sin2(χ), (4.31g)

c
(2)
3 =

1

5
β1β2

[
α̃1

(
5 cos(γ1) cos

2(γ2)− cos(γ1) + 2 cos(γ2) cos(θ̃)
)

+α̃2

(
5 cos(γ2) cos

2(γ1)− cos(γ2) + 2 cos(γ1) cos(θ̃)
)]
, (4.31h)

c
(2)
4 =

1

7
β1β2

[
1

5
+

2

5
cos2(θ̃)−

(
cos2(γ1) + cos2(γ2)

)
+ 4 cos(γ1) cos(γ2) cos(θ̃)

+7 cos2(γ1) cos
2(γ2)

]
, (4.31i)

where

α̃i = α̃i(χi, χ) := sin(χ)α(χi) = sin(χ)
cos(χi)

sin(χi)

[
2 +

∂ ln(DifiΦi)

∂ ln sin(χi)

]
, i ∈ {1, 2} . (4.32)

Distant observer approximation

In this section we recover the usual formula for the correlation function in redshift space
from the general formulas obtained in the last sections. The limit to consider is the so-
called distant observer approximation, which corresponds to the situation in which the
distance between the two points is much smaller than the distances of the points to the
observer, i.e. χ ≪ χ1, χ2. Formally, this limit should be taken maintaining the γ1 and
γ2 angles fixed. In addition, one can consider that the scales of distance between the two
objects is much smaller than the curvature scale, i.e., χ≪ 1, a flat limit.

The first thing to note from this approximation is that, irrespective of the spatial
curvature, it implies a small angle approximation in the sense that θ, θ̃ → 0. In fact,
since one is considering scales between objects much smaller than the curvature scale,
a flat limit applies even for the K 6= 0 cases. Thus, as discussed above, the variable
θ̃ → θ. The fact that it goes to zero on the distant observer approximation follows from
the flat cosines law, equation (4.18), as long as cos(θ)→ 1. Therefore, under the distant
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observer assumption, one is always treating points separated on the observer sky by a
small angle. Usually separations below 10 deg are considered in the literature, beyond
which the deviation on the angle cosine with respect to one becomes larger than 2%
for z ∼ 1 [35]. However, the actual separation of the two points also depends on their
redshifts and on the specific cosmological model.

Moreover, this small angle approximation also implies an identification of the angles
γ1 and γ2. According to the flat Universe definitions of this angles, equations (4.19),
follows that as long as θ → 0, cos(γ1) → − cos(γ2), and therefore γ2 → π − γ1 := γ.
The interpretation of the angle γ is that it naturally describes a single line of sight
under small angle approximation. In other words, in the limit θ → 0, the two angles
between the lines of sight to the objects χ1,2 and the geodesic connecting the objects
χ are supplementary, so that define a unique line of sight. Thus, when one is working
under the distant observer/small angle approximation one defines a unique line of sight
for every pair of points, which can be one of the original line of sights or the bisector line
in between. As long as the small angle approximation is valid, any of these choices should
be equivalent.

Finally, consider the multipole expansion for the flat Universe redshift-space correla-
tion function (equations (4.13) and (4.22)). Within the distant observer approximation,

i.e. taking into account the above considerations, the c
(n)
ℓ coefficients reduce to

c
(0)
0 = 1 +

1

3
(β1 + β2) +

1

5
β1β2, (4.33a)

c
(1)
2 =

[
2

3
(β1 + β2) +

4

7
β1β2

]
P2 (cos(γ)) , (4.33b)

c
(4)
2 =

8

35
β1β2P4 (cos(γ)) . (4.33c)

These coefficients are equivalent to those obtained in [33] under the additional assumption
of the two points to be at the same redshift so that β1 = β2 = β. Thus, the two-point
correlation function in redshift space considering the distant observer approximation can
be written according to the expansion (2.19) as

ξ(rs)gg (χ) =

{
1 +

1

3
[βg(z1) + βg(z2)] +

1

5
βg(z1)βg(z2)

}
ξ0(χ)P0(cos(γ))

−
{
2

3
[βg(z1) + βg(z2)] +

4

7
βg(z1)βg(z2)

}
ξ2(χ)P2(cos(γ))

+

[
8

35
βg(z1)βg(z2)

]
ξ4(r)P4(cos(γ)), (4.34)

where Pℓ(x) are the Legendre polynomials and the multipoles of the correlation function

Ξ
(n)
ℓ (equation (4.21)) contributing must satisfy 2n − ℓ = 0 and n + ℓ even, so that they

reduce to the distant observer two-point correlation multipoles,

ξℓ(χ) :=

∫ ∞

0

dk k2

2π2
jℓ(kχ)P (k). (4.35)

Note that the ξℓ=0(χ) is nothing but the two-point correlation function of total matter
in real space (equation (2.21)). The angle γ is determined for the unique line of sight
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(LOS) of the distant observer approximation. In this work this will be set as one of the
two lines of sights, for example, taking the LOS as χ2 the angle γ = γ2 so that

cos(γ) =
χ2 − χ1 cos(θ)

χ
. (4.36)

4.1.2 Angular two-point correlation function of galaxies

This section introduces the basic tool to study the angular clustering of galaxies, the
angular two-point correlation function. Following the seminal works of [7, 8] one can
begin by considering the projection of the spatial galaxy fluctuation today along a given
direction in the sky (see §1.4.1 for details),

δ2Dg (n1) =

∫ ∞

0

dz W g(z)R̂gδ0(χ,n1), (4.37)

here n1 = (θ1, φ1) denotes a given comoving angular position or, from the point of view of
the observer, a direction in the sky, and W g(z) = φg(z)bg(z)G(z) (equation (1.63)) is the
galaxy window function, where bg(z) is a scale-independent galaxy bias, G(z) the linear
growth mode of matter fluctuations (see §1.2.1) and φg(z) the radial selection function
of galaxies which allows us to introduce intrinsic characteristics of the observation, in
particular it will be used to model the effect of photometric redshift errors (see §4.1.2).

The autocorrelation of δ2Dg as a function of the angular separation in the sky of two
points define the angular correlation function of galaxies and can be obtained as the
projection of the three dimensional correlation function along the lines of sight to the
points as

w(θ) :=
〈
δ(rs)g (n1)δ

(rs)
g (n2)

〉
=

∫ ∞

0

dz1 φ(z1)

∫ ∞

0

dz2 φ(z2)
〈
δ(rs)g (n1, z1)δ

(rs)
g (n2, z2)

〉

=

∫ ∞

0

dz1 φ(z1)

∫ ∞

0

dz2 φ(z2)ξ
(rs)
gg (z1, z2, θ) , (4.38)

here, θ is the angular separation between points in the sky, i.e., the angle subtended
between the geodesics that connect the points with the observer (figure 4.1), and z1,2
its respectives redshifts. Note that this formula is general in the sense that it is valid
for any value for the separation of the galaxies and for any value of spatial curvature;
the differences appear in the redshift space two-point correlation function ξ

(rs)
gg and were

studied on §4.1.1 in a completely general way, only assuming linear theory of cosmological
perturbations. The general expression for ξ

(rs)
gg , equation (4.1), allows for an expansion of

the angular correlation function of galaxies of the form

w(θ) =
∑

n,ℓ

∫ ∞

0

dz1 W
g(z1)

∫ ∞

0

dz2 W
g(z2)c

(n)
ℓ (χ1, χ2, θ)Ξ

(n)
ℓ (χ(χ1, χ2, θ)) . (4.39)

Note that the formula (4.39) already includes the effects of spatial curvature, redshift-
space distortions and galaxy biasing for the angular correlation function. However, in
the context of photometric galaxy surveys, two important physical effects still remain to
be modeled, (a) the fact that the redshift of objects in the context of this astronomical
surveys is not determined using accurate spectroscopic techniques but the techniques of
photometry, i.e. by using information contained on the brightness of objects as viewed
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through various standard filters comprising a given broad spectrum of colors, which is
useful in the context of estimating redshifts for a large number of objects; and (b) the
nonlinear gravitational effects which are important at small scales, where the linear per-
turbation theory on top of the derivation of (4.39) should fail (see the discussion of §1.2.2
for more details). In the following, the modeling of these two effects for the two-point
correlation function of galaxies is considered.

Photometric redshift estimates

When an astronomical object is observed, its redshift (see §C.1) can be directly determined
by an accurate measurement of its spectra, in which case absorption and emission lines can
be used to estimate redshifts by comparing their wavelengths with the known (laboratory)
wavelengths. Note that this interpretation relies on the assumption that atomic physics
is unchanged over cosmological scales and also knowledge about galaxy evolution models.
However, such a technique demands a great amount of time to collect spectra for each one
of the objects in a survey. Thus, recent advances in galaxy surveys have been driven by
new instrumentation that enables multiple galaxy spectra to be obtained simultaneously.
It is remarkable the development of multi-object spectrographs (MOS) which enabled
a number of survey teams to create maps of many hundreds of thousands or millions
of galaxies. Examples of these surveys are the 2-degree Field Galaxy Redshift Survey
(2dFGRS; [66]) and the Wigglez [67] surveys, that used the Anglo-Australian Telescope
facilities, and the Sloan Digital Sky Survey (SDSS; [68]) conducted at the Sloan Telescope,
specially designed for this propose. Typical errors for this kind of redshift estimates are
∼ 10−4 − 10−3 × (1 + z).

However, recently, another alternative emerged with the possibility of fitting observed
broad-band colors with templates or training samples of emitted light profiles of objects,
and thus estimate their redshift. Such class of techniques are known as photometric
redshifts, referring to redshifts estimated from broad-band colors only. An important
characteristic of such estimates is that since they rely on known light profiles for specific
classes of objects they vary in quality between galaxy samples, which leaves an accurate
description of its errors as a very difficult task. In this sense photometric redshift estimates
can have offsets from the true redshifts with standard deviations of σz ∼ 0.03(1 + z) for
red galaxies with strong 4000◦A breaks, while more general populations can give estimates
with σz ∼ 0.05(1 + z) [69] or worse. In any case, these are much less accurate than the
spectroscopic estimates. Nonetheless, the idea in the context of galaxy redshift surveys
is that the estimates based on photometric techniques allow to simultaneously determine
redshift of a great quantity of objects, so that in some sense one is exchanging the accuracy
on individual redshifts for a better statistics in the context of clustering analysis. For a
more detailed recent discussion see e.g. [70].

Photometric redshift uncertainties in our model for w(θ) (equations (4.38) and (4.39))
are included via the radial selection function of galaxies φg(z). This function defines the
probability to include a galaxy on a specific true redshift value z, so that, if the selection
of galaxies is done according to their true redshifts, φg(z) is simply the true number of
galaxies Ng(z) per unit redshift, ng(z) = dNg(z)/dz, times a redshift (radial) window
function, W (z), encoding selection characteristics, e.g. redshift cuts in the observations
and redshift binning.

φg(z) = ng(z)W (z). (4.40)

On other hand, if the selection is done according to photometric redshift estimates one
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can introduce the conditional probability P (z|zphot) for the true redshift to be z when
the photometric redshift (photo-z) is zphot. Then the number density as a function of the
true redshift should be properly given by the projection

ng(z) =

∫ ∞

0

dzphot
dNg(zphot)

dzphot
P (z|zphot) . (4.41)

In addition, a photometric redshift window function W (zphot) should also be projected to
be a true redshift window function. Thus, we should have [71]

φg(z) = ng(z)

∫ ∞

0

dzphot P (z|zphot)W (zphot). (4.42)

Note that dNg(zphot)/dzphot, the number of galaxies per unit of photometric redshift
can always be obtained by binning galaxies in a catalog in photo-z and W (zphot) is given
by the catalog characteristics. For example, when one is asking for the selection function
on a given photo-z bin, say the i-th one determined by photometric redshifts on the
interval

[
ziphot, z

i+1
phot

]
, with selection φg

i (z), one can write the photo-z window as

W i(zphot) =

{
1, ziphot ≤ zphot ≤ zi+1

phot

0, otherwise.
(4.43)

In this way, the effects of photo-z’s are then encoded on the conditional probability
function P (z|zphot). Note that a perfect determination of redshifts can be parametrized
by P (z|zphot) = δD(z − zphot) and, in fact, under this assumption equation (4.42) reduces
to (4.40). To go further, one can begin by a first idealized Gaussian approximation of the
form

P (z|zphot) =
1√
2πσz

exp

[
−(z − zphot − zb)2

2σ2
z

]
, (4.44)

where σz and zb represent the scatter and bias of a normal distribution and, in principle,
can depend on redshift and object type.

The impact of these parameters is shown in figure 4.2. In order to properly account
for only the photo-z parameters the remaining set of cosmological parameters of a con-
cordance cosmological model are chosen according to the WMAP7 results [72], see the
discussion at the begining of paragraph 4.1.2 below. where it is shown that the scatter
parameter σz affects mainly the amplitude of the ACF leaving the position of the BAO
peak unchanged, whereas the bias parameter zb appears having a much more complex
impact mixing the both, changes in the amplitude and in the position of the BAO peak.
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Figure 4.2: Impact of Gaussian photometric redshift errors (equation (4.44)) on the
ACF. The left panel shows the impact of the scatter σz whereas the right panel shows
the impact of the bias zb. The major feature one can see is that the scatter does not
have any impact on the position of the BAO angular scale, while the bias is inversely
proportional to its value. The cosmological parameters assumed on these predictions
are the WMAP7 results [72].

Nonlinear gravitational effects

The nonlinear (NL) gravitational evolution of matter fluctuations in the Universe becomes
more important as one goes to smaller scales as discussed in section 1.2.2. To incorporate
this effect on the modeling of the ACF in this work a Renormalized Perturbation Theory
(RPT) phenomenological approach introduced by [30, 8] is adopted.

On §1.2.2 a very brief discussion was made to introduce the full nonlinear power
spectrum as expanded in RPT, equation (1.57). The configuration space analog of this
expression was given in [30] to have the form

ξ(r, z) = [G2 ⊗ ξ0](r, z) + ξMC(r, z), (4.45)

where the symbol ⊗ indicates a convolution. Since in Fourier space the propagator G
is approximately Gaussian, the first term convolves the correlation function today, here
denoted as ξ0, with an approximately Gaussian kernel and ξMC account for the mode-
coupling term of the full NL power spectrum. Inspired on this particular form, [29, 8]
proposed the following simple phenomenological parametrization

ξNL(r, z) = G2(z)

∫ ∞

0

dk PLin(k) exp

[
−r

2
NLk

2G2(z)

2

]
+ AmcG

4(z)ξ
(1)
Lin(r)ξ

′
Lin(r), (4.46)

where

ξ
(1)
Lin(r) :=

1

2π2

∫ ∞

0

dk kPLin(k)j1(kr) , (4.47)

G is the linear growth factor (not the propagator of RPT formalism anymore), PLin refers
to the linear power spectrum today and rNL and Amc can be seen as free parameters,
shown in [8] to give good results by simple fixed to rNL ≈ 6.6 Mpc h−1 and Amc ≈ 1.55
for a large range of redshifts, up to z ∼ 1.3 (the approximated depth of the DES) and on
the scales of interest for clustering studies.
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Note then that the parametrization (4.46) allows for, given a linear power spectrum
for a given set of cosmological parameters, properly correct for NL effects directly in
configuration space. This is highly desirable in the context of ACF analysis and constitutes
the main reason why we adopted here during the rest of this work.

Cosmological information on the ACF

The previous sections describe a complete model for the ACF on large scales, which take
into account most of relevant effects, namely, nonlinear gravitational clustering, galaxy
bias, redshift-space distortions and photo-z uncertainties and assumes spatial flatness
and the distant observer approximation in concordance with the seminal studies [7, 8].
In this section, this model is now used to study the impact of different cosmological
parameters on the ACF. Throughout this study, when not stated otherwise, a flat ΛCDM
Universe with parameters similar to those determined by WMAP7 [72] is assumed as
fiducial cosmological model, i.e. the dark matter density parameter Ωc = 0.222, baryon
density parameter Ωb = 0.0449, Hubble parameter h = 0.71, primordial index of scalar
perturbations ns = 0.963, and normalization of perturbations given by σ8 = 0.801. The
primordial power spectrum is assumed to be parametrized as usual in the literature,
Pprim(k) = As(k0) (k/k0)

ns−1, with the pivot scale k0 = 0.002 Mpc−1, so only scalar
perturbations are considered. Note that the As parameter, the amplitude of primordial
spectrum at the pivot scale, is directly related to σ8, althought σ8 can vary slightly with
other parameters (e.g. Ωb). In the fiducial cosmology used here As = 2.142 × 10−9.
Nonlinear model parameters are assumed to be rNL = 6.6h−1 Mpc and Amc = 1.55,
photometric redshift is assumed to be modeled by a Gaussian PDF for P (z|zphot) (equation
(4.44)) with redshift scatter for a DES-like survey, σz = 0.03(1+z), and null bias, zb = 0.0.
The biasing effect for galaxies is assumed scale independent and constant for a sufficiently
thin photometric redshift bin. The computations shown here are for a photometric redshift
bin defined by zphot ∈ [0.45, 0.50] with no other selection effect on photometric redshift
than the binning, i.e., W (zphot) is given by equation (4.43). Thus the fiducial model
assumes bg = 1.

The impact of cosmological parameters on the ACF can be understood by coming
from four different sources [7]: the total matter power-spectrum today P (k), the growth
function G(z), the linear redshift-space distortion parameter βg(z), and the comoving
distances. In general terms, the total matter power spectrum is characterized by the
parameters Ωm, Ωb, h, ns and σ8, The growth function as well as the RSD parameter are
highly dependent on Ωm, and comoving distances are determined by Ωm as long as they
depend on the expansion history and, in this work, only a cosmological constant term is
considered to drive cosmic acceleration.

In figure 4.3 it is shown how the ACF changes with relevant cosmological parameters.
From the behavior of the ACF for the galaxy bias and σ8, at the bottom of the figure,
it is possible to appreciate the natural degeneracy between these two parameters. This
degeneracy comes from the fact that both parameters enter the ACF as multiplicative
factors for its amplitude on the same footing. Another important feature that can be
seen from the figure is the displacement of the angular scale for the BAO peak. Among
all the parameters considered just two of them appear to have a significant impact on
this, namely, the Hubble factor h and the content of baryons Ωb. As it is well known the
latter is strongly related with the BAO feature according to physics of the recombination
era [2, 4]. In fact, as can be seen from the figure, almost all the impact of Ωb on the ACF
is on the BAO peak. On the other hand, the impact of h on the angular scale of the BAO
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can be understood as coming from the radial distance dependence of the ACF.

Figure 4.3: Impact of different cosmological parameters on the ACF. Each panel shows
the the impact of one parameter on the ACF computed for a photometric redshift bin
defined by zphot ∈ [0.45, 0.50] with no selection effect on photometric redshift other than
the binning. Photometric-z errors are assumed to be modeled by a Gaussian PDF for
P (z|zphot) (equation (4.44)) with redshift scatter for a DES-like survey, σz = 0.03(1+z),
and null bias, zb = 0.0. Nonlinear model parameters are assumed to be fixed at rNL =
6.6h−1 Mpc and Amc = 1.55. The fiducial cosmological model parameters shown in all
panels as a green solid line are assumed to be the WMAP7 results [72].
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The impact of the content of total matter and the spectral index of primordial fluc-
tuations appear mostly on the amplitude of the ACF and can be understood as coming
from the dependence of the total matter power spectrum today.

A complication in the simple effects illustrated above is the presence of photo-z errors
(figure 4.2), which can mimic some of the effects of changing the cosmological parameters
in addition to redshift space distortions, nonlinearities and galaxy bias.

Covariance of w(θ)

In configuration space clustering analysis, contrary to the situation in Fourier or harmonic
space, the different scales in the correlation function are highly correlated, even in linear
theory where the Fourier modes for the power spectrum can be considered as uncorrelated.
As a result, the computation of the covariance of the correlation functions in real space is
as important as the computation of the correlations themselves. In this section we review
our method to compute the Gaussian theoretical covariance for the ACF including the
effects of partial sky coverage, shot noise, photo-z estimates and redshift-space distortions.

We follow the work of [8, 7] and take into account the correlation between redshift bins.
Given two different redshift bins, namely i and j, the full Gaussian covariance matrix can
be computed as:

Cov
(
wi(θn)w

j(θm)
)
:=
〈
wi(θn)w

j(θm)
〉

=
∞∑

ℓ,ℓ′=0

Cov(C i
ℓC

j
ℓ′)

2ℓ+ 1

4π

2ℓ′ + 1

4π
Pℓ(cos θn)Pℓ′(cos θm), (4.48)

where the indexes m,n denote angular bins and the Cℓ represents the angular power
spectrum modes of the ACF, see the §2.2.1,

w(θ) :=
∞∑

ℓ=0

Cℓ
2ℓ+ 1

4π
Pℓ (cos(θ)) . (4.49)

If our observations cover the full sky one can say that the Cℓ’s are statistically inde-
pendent. For partial sky coverage we can write (see e.g. the discussions in [8] and chapter
11 of [4])

Cov(C i
ℓC

j
ℓ′) =

2

(2ℓ+ 1)fsky

(
C i,j

ℓ +
δij
n̄i

)2

δℓℓ′ , (4.50)

which takes into accounts for a fraction of the sky fsky and also shot noise via n̄i which
defines the average number of galaxies per unit solid angle in the i-th z-bin. Note that
shot noise between redshift shells are uncorrelated.

The effects of photo-z and the redshift space distortion are included in the model for
the angular power spectra of w(θ) following [8, 32]. Assuming a flat FLRW model and
the validity of the distant observer approximation, the cross-correlation between z-bins
can be computed as

C i,j
ℓ =

2

π

∫
dk k2P (k)Ψi

ℓ(k)Ψ
j
ℓ(k), (4.51)

where redshift-space distortions are included in the kernels,

Ψi
ℓ(k) =

∫
dz βg(z)φ

g
i (z)G(z)

[
2ℓ2 + 2ℓ− 1

(2ℓ+ 3)(2ℓ− 1)
jℓ(kr)−

ℓ(ℓ− 1)

(2ℓ− 1)(2ℓ+ 1)
jℓ−2(kr)

− (ℓ+ 1)(ℓ+ 2)

2ℓ+ 1)(2ℓ+ 3)
jℓ+2(kr)

]
. (4.52)
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Therefore, the general full covariance matrix that correlate angular and redshift bins
is computed in this work as

Cov
(
wi(θn)w

j(θm)
)
=

2

fsky

∞∑

ℓ=0

[
2ℓ+ 1

(4π)2
Pℓ(cos θn)Pℓ(cos θm)

(
C i,j

ℓ +
δij
n̄i

)2
]
. (4.53)

4.1.3 Computing the multipoles of the two-point correlation
function

The multipoles of the two-point correlation function appear in the theoretical modeling
of the redshift-space correlation of tracers of the distribution of matter in the universe
as discussed in section 4.1.1. In this section different approaches to the computation of
the multipoles in the distant observer approximation (equation (4.35)) are considered.
Hereinafter, the power spectrum of matter P (k) is computed using the CAMB Boltzmann
code [28].

Integral method

The most basic way to compute the ξℓ is to perform directly the integration from its
definition, equation (4.35). Note that in order to perform such an integration a numerical
approximation scheme for the spherical Bessel functions jℓ is required. The Integral
method developed in this work uses for the numerical integration an implementation of
the Gauss-Kronrod method for unbounded integration interval [73] and the numerical
approximation for the jℓ functions of the CAMB code [28].

Hamilton method

A second method follows from the fact that by using the recurrence relations of the
spherical Bessel functions one can reduce the higher order multipoles of the correlation
functions to integrals of its monopole, ℓ = 0, which corresponds to the total matter (real-
space) two-point correlation function in real space for a spatially flat Universe [34]. For
the cases of interest in equation (4.35) ℓ = 2, 4 we have

ξ2(r) =

[
3

r3

∫ r

0

dx ξ(r)x2
]
− ξ(r), (4.54a)

ξ4(r) = ξ(r) +
5

2

[
3

r3

∫ r

0

dx ξ(x)x2
]
− 7

2

[
5

r5

∫ r

0

dx ξ(x)x4
]
. (4.54b)

In order to prove these relations, consider the standard recurrence relations for the
spherical Bessel functions and its derivatives [37]

jℓ−1(x) + jℓ+1(x) =
2ℓ+ 1

x
jℓ(x), (4.55a)

d

dx

[
xℓ+1jℓ(x)

]
= xℓ+1jℓ−1(x), (4.55b)

d

dx

[
jℓ(x)

xℓ

]
= −jℓ+1

xℓ
. (4.55c)

Rewriting (4.55b) as

jℓ(r) =
1

rℓ+1

∫ r

0

dxxℓ+1jℓ−1(x)
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and noting that from (4.55a) one has
∫ ∞

0

dk k2

2π2
jℓ+1(kr)P (k) =

2ℓ+ 1

r

∫ ∞

0

dk k

2π2
jℓ(kr)P (k)−

∫ ∞

0

dk k2

2π2
jℓ−1(kr)P (k)

one can write

ξℓ+1(r) =
2ℓ+ 1

r

∫ ∞

0

dk k

2π2
jℓ(kr)P (k)− ξℓ−1(r)

=
2ℓ+ 1

r

∫ ∞

0

dk k

2π2

[
1

(kr)ℓ+1

∫ kr

0

dy yℓ+1jℓ−1(y)

]
P (k)− ξℓ−1(r),

introducing y =: kx one finally gets

ξℓ+1(r) =
2ℓ+ 1

r

∫ ∞

0

dk k

2π2

[
k

rℓ+1

∫ r

0

dxxℓ+1jℓ−1(kx)

]
P (k)− ξℓ−1(r)

=
2ℓ+ 1

rℓ+2

∫ r

0

dxxℓ+1

∫ ∞

0

dk k2

2π2
jℓ−1(kx)P (k)− ξℓ−1(r)

so that a general recurrence relation for the distant observer multipoles ξℓ reads as

ξℓ+1(r) =
2ℓ+ 1

rℓ+2

∫ r

0

dxxℓ+1ξℓ−1(x)− ξℓ−1(r). (4.56)

The equations (4.54) follow from this last expression for ℓ = 1, 3 respectively.
The Hamilton method developed in this work implement the integrations of equa-

tions (4.54) by using a Gauss-Kronrod method [73] for a finite integration interval. The
monopole computation on top of this integrations is done using the integral method of
the previous paragraph with the analytic form of the ℓ = 0 spherical Bessel function,
j0(z) = sin(z)/z. The advantage of Hamilton method of computation over the integral
method is that one does not need to compute the spherical Bessel functions of higher
order, which is computationally expensive.

FFTLog method

The last method considered uses the fact that the distant observer multipoles ξℓ of the
two-point correlation function and the power spectrum can be considered as a specific
type of integral transform pair, namely, a Hankel transform [37].

Given an analytic function a(r) defined on the interval (0,∞) ∈ R a Hankel or Fourier-
Bessel transform pair is defined by the relations [37]

ã(k) =

∫ ∞

0

dr k(kr)qJµ(kr)a(r), (4.57a)

a(r) =

∫ ∞

0

dk r(kr)−qJµ(kr)ã(k), (4.57b)

where the function ã is the Hankel transform of a. Note that this transformation depends
on the values of q, the bias parameter and the order of the first kind Bessel function µ.
Under the changes of variables and a(r) =: A(r)r−q, ã(k) =: Ã(k)rq the Hankel transform
pair can be rewritten as independent of the bias parameter,

Ã(k) =

∫ ∞

0

dr kJµ(kr)A(r), (4.58a)

A(r) =

∫ ∞

0

dk rJµ(kr)Ã(k). (4.58b)
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Thus, the relation between the distant observer multipoles ξℓ and the matter power
spectrum P (k) can be considered as a special case of unbiased Hankel transform pair. In

fact, a more general relation can be found. Define the ξ
(m)
ℓ functions as

ξ
(m)
ℓ (r) :=

1

2π2

∫ ∞

0

dk kmjℓ(kr)P (k); ℓ ∈ N, (4.59)

then, according to the relation between the spherical Bessel functions and the Bessel
functions of the first kind [37], jℓ(z) =

√
π/2zJℓ+1/2(z), one arrives to

ξ
(m)
ℓ (r) =

1

(2πr)3/2

∫ ∞

0

dk rJℓ+1/2(kr)
[
km−1/2P (k)

]
, (4.60)

so that the functions

A(r) = (2πr)3/2 ξ
(m)
ℓ (r) and Ã(k) = km−1/2P (k) (4.61)

are related by an unbiased Hankel transform, equation (4.58), with µ = ℓ + 1/2. Note
that the distant observer multipoles, equation (4.35), of the two-point correlation function
correspond to the case m = 2.

In this sense, one translates the problem of computing the integrations considered in
the Integral and Hamilton method discussed above to the computation of Hankel trans-
forms. FFTLog is an algorithm designed to accomplish this goal by discretizing the
functions, i.e., in an analogous way as the discrete Fourier transform for standard Fourier
transformation problems [74]. The FFTlog method also takes into account an impor-
tant feature for cosmological purposes. In cosmology one usually requires transforming a
function that extends over many orders of magnitude, and was computed accurately in
logarithmic space. For instance, that is the case of the matter power spectrum coming
from Boltzmann codes, even in the linear regime, as the behavior of this function over at
least 3 decades in k (∼ 10−1−102 h/Mpc) is required to properly compute the multipoles
ξℓ on large scales, see e.g. [64] for a discussion of this point. Besides, in practical appli-
cations as those discussed in this work, it is necessary to perform thousands or millions
of such computations, so a fast transform method is highly desirable.

The FFTlog algorithm originally proposed in the cosmological context in [74] computes
the fast Hankel (Fourier-Bessel) transform of a periodic sequence of logarithmically spaced
points and thus can be regarded as a natural analogue to the standard Fast Fourier
Transform (FFT) [75, 73], in the sense that, just as the usual FFT gives the exact (to
machine precision) Fourier transform of a linearly spaced periodic sequence, representing
the discretization of a function, so also FFTLog gives the exact Hankel transform of a
logarithmically spaced periodic sequence, representing an appropriate discretization (for
cosmological applications) of a function.

The FFTLog algorithm is reviewed in Appendix E. Its actual implementation for this
work is a C++ (object oriented) version of the original set of Fortran routines developed
by A. Hamilton6.

Comparison of the methods

The methods for computing the distant observer multipoles of the two–point correlation
function ξℓ are compared in this section. The three methods defined on the last section

6http://casa.colorado.edu/~ajsh/FFTLog/

http://casa.colorado.edu/~ajsh/FFTLog/
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are used to compute the ℓ = 0, 2, 4 distant observer multipoles (the ones entering into
the computation of the distant observer two–point correlation function in redshift space,
equation (4.34)) for the fiducial cosmological model described on paragraph 4.1.2 and on
the physical scales relevant to clustering analysis 20 < r < 200h−1 Mpc.

Our results are shown in figure 4.4 where the left panels show the monopole ℓ = 0 the
middle panel the octupole ℓ = 2 and the right panels the hexadecapole ℓ = 4. For each
one of these multipoles the absolute error of Hamilton and FFTLog methods with respect
to the integral method are shown on the two bottom panels.

Figure 4.4: Comparison of the different methods presented to compute the distant
observer multipoles of the two-point correlation function. The left panels show the
monopole ℓ = 0, the middle panel the octupole ℓ = 2 and the right panels the hex-
adecapole ℓ = 4. For each one of these multipoles the absolute error of Hamilton and
FFTLog methods with respect to the integral method is shown on the two companion
bottom panels. The cosmological model used in the computation is given by the results
of WMAP7 mission [72].

For all the multipoles, we found that the absolute difference between FFTLog and the
Integral method is less than 10−2 as well as the absolute difference between the results
of Hamilton method and Integral method. We found then that the results of FFTLog
and Integral method are consistent with each other, even in a higher degree than with the
Integral method for the highest multipole considered, the hexadecapole (ℓ = 4), where the
differences between FFTLog (Hamilton) method with respect to Integral can reach 1%
for small scales. We argue that this difference can be related with the numerical error in
the computation of the spherical Bessel functions composed with the one comming from
numerical integration.

We also compare the time required for each method to compute each one of the
relevant distant observer multipoles on the same scales and for the same set of cosmological
parameters. Our results are shown in table 4.1.
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Multipole Method
order Integral Hamilton FFTLog
ℓ = 0 21.13 sec. 21.09 sec. 2.00× 10−2 sec.
ℓ = 2 24.66 sec. 19.64 sec. 2.00× 10−2 sec.
ℓ = 4 25.81 sec. 21.00 sec. 2.00× 10−2 sec.

Table 4.1: Comparison of the time required for the different methods presented for a
single distant observer multipole computation. Each column shows the time in seconds
required for a specific method to compute each one of the relevant multipoles, namely,
the monopole (ℓ = 0), the octupole (ℓ = 2) and the hexadecapole (ℓ = 4) The left panels
show the monopole ℓ = 0 the middle panel the octupole ℓ = 2 and the right panels the
hexadecapole ℓ = 4 on a single core processor of 2.4 GHz. The scales of the computation
are 20 < r < 200h−1 Mpc. The cosmological model used in the computation is given
by the results of WMAP7 mission [72].

We found that the FFTLog method increase the computational speed in 2-3 orders
of magnitude (in seconds) for all the relevant distant observer approximation multipoles
and consequently in the computation of the distant observer approximation of the 3D and
angular two–point correlation function in redshift space whithout a loss of accuracy when
compared with the other methods. For this reason on all the ACF analysis presented in
this work the FFTLog method is preferred to be used.

4.1.4 SDSS-III DR8 photometric luminous galaxies ACF

In the present section we present an analysis of the large scale angular correlation function
(ACF) of the CMASS luminous galaxies (LGs), a photometric-redshift catalog based on
the Data Release 8 (DR8) of the Sloan Digital Sky Survey-III. This catalogue contains
over 600 000 LGs in the range 0.45 ≤ z ≤ 0.65, which was split into four redshift shells of
constant width. Our analysis shows that the ACF can be efficiently applied to constrain
cosmology in future photometric galaxy surveys.

Photometric galaxy surveys will demand a full understanding of the angular cluster-
ing of the galaxy distribution in order to provide useful cosmological information. Con-
sequently, several studies have been performed in order to gauge the use of the galaxy
angular clustering at large scales, both on theoretical and observational grounds. Let us
begin by briefly review some of them below.

Clustering in SDSS

On the theoretical front, [76] performed the first study on the measurement of the baryon
acoustic oscillation (BAO) peak in the galaxy angular correlation function (ACF) in con-
figuration space using photometric redshifts. They emphasized the role of photo-z errors
in establishing the connection between the observed BAO position and the sound horizon
scale. [7] forecasted the cosmological constraints in a DES-like galaxy survey from the
ACF full shape information using the Fisher matrix formalism. They found that DES
will constrain the dark energy equation of state parameter w with a precision of ∼ 20%.
[8] verified the accuracy of the ACF theoretical covariance matrix against N -body simula-
tions, showing that, at scales larger than ∼ 20h−1Mpc, the Gaussian covariance is a good
approximation. [69] forecasted constraints on redshift-space distortion (RSD) parameters
for a DES-like survey from the ACF full shape information and [77] developed a method
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to apply the BAO peak position in the ACF as a standard ruler, overcoming some issues
outlined in [76].

On the observational front, only one galaxy survey had the characteristics to make
it possible to look into the large scale properties of the ACF using photo-zs: the SDSS.
This survey produced a series of data releases with four of them leading to a cosmological
analysis with photometric data: Data Release 3 [78]; the DR4 which was used to produce
the MegaZ photometric catalogue [79], the DR7 [80] and the recent DR8 luminous galaxies
(LGs) catalogue [69]. These four photometric catalogues resulted in a series of results on
the angular clustering of galaxies at large scales, mostly in the redshift range 0.45 ≤ z ≤
0.65.

[32] estimated the angular power spectrum in eight redshift shells, constraining RSD
parameters and Ωm. [81] used the MegaZ catalogue to produce the first cosmological
constraints directly from the galaxy angular clustering using the angular power spectrum.
[82] measured the large scale ACF, but did not constrain cosmological parameters due to
an excess power at these scales. [83] produced a similar analysis as that of [81], but for the
improved DR7. [8] used DR7 data to constrain the so-called RSD parameters with the
ACF full shape information, but did not estimate the cosmology. [84] used the BAO peak
position information in DR7 to find the sound horizon scale. [69] measured the large scale
ACF in DR8 in order to check the impact of systematics, reducing the excess of power
at these scales reported earlier [82, 85]. Using the DR8, [86] estimated the cosmological
parameters from the full information of the angular power spectrum and [87] found the
sound horizon scale also from the angular power spectrum. It is important to note that
the cosmological analysis in all of these studies was performed in harmonic space with the
angular power spectrum, not in configuration space with the ACF full shape information.

In our work we focus on the less explored approach of using the full shape of the
ACF in configuration space to derive constraints on cosmological parameters, following
the steps outlined in [7]. For these purposes we measure the ACF with the SDSS-III DR8
photometric data, using the so-called CMASS LGs catalogue [69]

The catalog

We use the imaging data from the SDSS-III DR8 [88], which is publicly available by the
SDSS team7. The total sky coverage of imaging data in DR8 is summarized on top-left
panel of figure 4.5 It had been calculated more carefully than DR7, covering a total unique
imaging area of 14.555 deg2, with a new area of ∼ 2.500 deg2 since DR7 and containing
469.053.874 objects in database [88]. This survey obtained wide-field CCD photometry
in five passbands: u, g, r, i, z

In order to obtain the spectroscopic redshifts, zspec, it was used spectroscopic data
from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) [89]. BOSS is a
spectroscopic survey running from Fall 2009 up to Summer 2014 over a sky coverage of
10.000 deg2 depicted on top-right panel of figure 4.5. It will target 1.5 × 106 massive
galaxies (z < 0.7, i < 19.9), 1.5×105 quasars (z ≥ 2.2 and g < 22.0) selected from 4×105

candidates, and 75, 000 ancillary targets [89]

7The data can be downloaded at http://portal.nersc.gov/project/boss/galaxy/photoz/

http://portal.nersc.gov/project/boss/galaxy/photoz/
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Figure 4.5: SDSS-III DR8 LG’s catalog. Top-left panel: sky coverage in imaging
data. The contiguous imaging coverage of the Southern Galactic Cap (centered roughly
at α = 0◦, δ = +10◦). The Galactic plane is the solid curve that snakes through the
figures. Right ascension α = 120◦ is shown at the center of the plots. Figure from
[88]. Top-right panel: planned footprint of the BOSS spectroscopic survey, showing
both the NGC (left) and SGC (right) regions. Each circle marks the location of a
spectroscopic plate. Blue circles represent plates that have been observed as of January
2011, while red circles represent plates that have been drilled but not yet observed.
Figure from [89]. Bottom panels: resulting density of objects in the LG’s catalog, in
equatorial coordinates (left panel) and Galactic coordinates (right panel), after masking
for imaging area, seeing, Galactic extinction, and bright stars. This masked footprint
occupies 9.913 deg2. The density increases from blue to red, with blue representing a
density that is less than 40% of the average and red representing a density that is 120%
greater than average. Figure from [69].

The construction of this photometric catalogue is detailed in [69, 90], where special
care was taken to identify and remove potential systematic errors that could affect the
measurement of the angular clustering of galaxies. The photometric catalog has the same
selection as the sample of BOSS targets chosen to have approximately constant stellar
mass, denoted “CMASS” as described by [89] and reviewed in [69]. The target selection
criteria produce a sample of over 1.6 × 106 objects over a sky coverage ∼ 11.000 deg2.
Following [69], we will call this objects as Luminous Galaxies (LG). The sample was cut
further down to the main SDSS imaging area. This area is defined as the data contained
in HEALPix [52] pixels with Nside = 1024, this choose of the resolution breaks down
the full sky into 12, 582, 912 equal-area pixels. Each one of this pixels is endowed with
a weight given its overlap with the imaging footprint (properly accounting for the area
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taken up by bright stars, stellar masking), and there was included only pixels with the
this weight > 0.9.

With the appropriate selection and cuts, one ends up with a LG’s catalogue containing
∼ 7.0×105 galaxies, mostly in the photometric redshift range zphot ∈ [0.45, 0.65], which is
going to be our limiting redshifts for the cosmological analysis. We split the catalog into
4 photo-z bins of width ∆zphot = 0.05 and use measurements of the ACF for each z-bin.

The true redshift distribution of tracers is one of the most important and challenging
quantities needed in order to produce results when investigating the projected angular
clustering within a redshift bin. For a cosmological analysis it is as important as the ACF
measurement itself. For the LG’s sample used in this work, the photo-z’s of the objects
are fairly accurate. They were estimated with the neural network ANNz code [91] using
as training set 112, 778 spectra, i.e. almost 10% of the final photometric LG’s sample.
The photo-z dispersion and the number of galaxies in each of the four z-bins used in this
work are displayed in table 4.2.

z-bin photo-z range Number of galaxies σph
1 [0.45, 0.50] 154531 0.043
2 [0.50, 0.55] 198132 0.044
3 [0.55, 0.60] 190603 0.052
4 [0.60, 0.65] 121181 0.063

Table 4.2: Redshift bins used in the analysis of SDSS-III DR8 catalog. Columns show,
for each bin, the photo-z range, the number of galaxies from [86] and the mean photo-z
dispersion from [69].

The selection function convolves the redshift distribution with the photo-z errors and
must be included in the ACF calculation as described in §4.1.2. In figure 4.6 we show the
selection functions for the four redshift bins as estimated by [69], which is also publicly
available. Note that, as expected, the selection functions overlap due to photo-z uncer-
tainties. In this work we properly account for this effect both in the ACF itself and its
covariance matrix, which accounts for the correlation amongst redshift and angular bins.

Figure 4.6: Radial selection functions for the different photo-z bins considered in the
SDSS-III DR8 analysis [69]. The details of the bins can be found on Table 4.2.
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Measuring and modeling the SDSS-III DR8 LG’s ACF

In this work the ACF has been measured in 35 angular bins of width ∆θ = 0.2 deg in
the range 1 < θ < 8 deg for all the photo-z bins. Such intervals were chosen in order
to approximately guarantee that the analysis is done on large scales, i.e. for comoving
distances in the range 20 < r < 200h−2 Mpc on all photo-z bins. This a basic requirement
in order to use our model for the covariance of the ACF, since it comes from the assumption
of Gaussianty at large scales [8], see 4.1.2.

This measurements were performed following [69] and [86]. This approach has the
tremendous advantage of incorporate systematics effects, such as spurious clustering power
due to extinction, seeing and star contaminations. In the present work we do not pretend
to explain in detail how this is done, however, in the following we review this systematic
effects and the practical implementation of the algorithm of estimation. The interested
reader can see the original references [69, 86].

We can begin by talking about the effect of stellar contamination in a galaxy sample,
it is well documented on literatire, see e.g. [92]. Stellar contamination is used to denote
the fact that stars may cause a systematic effect on the number density of objects by
occulting a small fraction of the sky. This area is on the order of 10−6 deg2 per star, but
with ∼ 104 (tens of millions) of stars, becomes substantial given the precision to which
clustering measurements can now be made.

Following one has Galactic extinction, it requires that magnitudes be corrected for the
effect of dust in our Galaxy. errors in this correction may cause a systematic effect on
the galaxy density field, as the effective depth of a survey would fluctuate. Further, The
expected magnitude error will vary as a function of the Galactic extinction. This is com-
monly understood as follows: constant (extinction corrected) magnitudes have different
fluxes (since the flux is directly related to the magnitude before extinction corrections).

Other further effect is Airmass which refers to the path length of the photons through
our atmosphere to the telescope, normalized to unity for observations at the zenith where
it is minimized. At higher airmass less photons reach the detector because more are
scattered/absorbed in the atmosphere and thus the error on a measured magnitude will
be related to the airmass. It has then similar consequences to galactic extinction effect.

Finally, it is considered seeing effect. The observed flux of an object is more spread
out at higher seeing. This implies an increase in the magnitude error and makes it more
difficult to distinguish between stars and galaxies. Either of these seeing-dependent effects
could cause spurious fluctuations in the observed density of galaxies and was consider in
detail on [69].

Coming back to the measurements of the ACF, the catalog was pixelized atNside = 256
using HEALPix [52] and each pixel i is assigned a weight wti related to its overlap with
the imaging footprint, and allowing for the account of the systematic effects discussed
above [69]. The estimated ACF ŵ(θ) is obtained as

ŵ(θ) =

∑
ij δiδjwtiwtj∑

ij wtiwtj
(4.62)

where θ is the angular distance between pixel i and pixel j and the overdensity in pixel i,
δi, is given by

δi =
ni

n̄wti
− 1, (4.63)

with ni is the number of galaxies in pixel i and n̄ =
∑
ni/
∑
wti.
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The results for the ACF in each photo-z bin is shown in black in figure 4.10. They
do not show the excess of power at large scales found previously by [83] and [82], also
remarkably is the fact that the BAO peak can be distinguished.

The model for the ACF used during this analysis is the one described in section 4.1.2,
i.e. the distant observer approximation is assumed along with the spatial flatness of the
FLRW cosmological model used to describe the observations. The former assumption is
supported by the facts that we are measuring the ACF on small angular scales and the
redshifts of LGs are small. By the other hand, the latter assumption has no other justi-
fication from simplicity on the analysis. Sometimes in the literature the phrase inflation
predicts ΩK = 0 is found, however, that is not true, what inflation predicts is ΩK → 0.
This discussion may seems academic, but it has far-reaching implications, for example,
K > 0 implies that the background FLRW Universe has closed constant time hyper-
surfaces, so it is finite (see section 1.1), besides, the two-point statistics on such models
now at linear perturbative level has interesting properties as long as the spectrum of the
spatial Laplace operator on the constant time hypersurfaces is discrete (see discussion in
Appendix B and chapter 2). All the relevant effects were taken into account, photo-z
uncertainties, according to the discussion in the previous paragraph, nonlinearities in the
clustering of galaxies, redshift-space distortions and galaxy biasing. For the nonlinearities
it was assumed rNL = 6.6h−1 Mpc and Amc = 1.5 in the RPT parametrization. The galaxy
biasing effect (see the begining of §1.4.1 for some discussion) was modeled assumed to be
constant on each photo-z bin. Thus hereinafter the bias of LGs for each of the photo-z
bins in the SDSS-III DR8 catalog described in table 4.2 are parametrized as b1, b2, b3 and
b4 in the order of increasing photometric redshift.

It is well known that the estimation of the covariance matrix for a galaxy clustering
analysis in configuration space is both a fundamental but a very difficult task. The stan-
dard way to construct the covariance matrix C(θi, θj), between angular bins i and j, is by
the use of bootstrap methods, i.e., applying the data itself in the estimation. The most
widely used approach is the so-called jack-knife method, see e.g. [69]. However, in order
to perform the cosmological analysis, we modeled theoretically the ACF covariance matrix
according to section 4.1.2, i.e. assuming Gaussianity at large scales as given by equation
(4.53). This approximation is in very good agreement with the covariance obtained from
N-body simulations, see e.g. [8]. Note that our model for the ACF covariance properly
account for partial sky coverage and shot noise as well as for the same effects consid-
ered for the ACF modeling, namely RSD, biasing, nonlinearities and the photo-z effects.
Nevertheless, we do not allow for a cosmology-dependent covariance analysis because of
computational time reasons, so we need to fix the cosmological parameters to a fiducial
model and choose an appropriate value for the galaxy bias according to the galaxy sample.
We assume as fiducial cosmological model a flat Λcold dark matter (ΛCDM) Universe with
parameters as determined by WMAP7 [72]: dark matter density parameter Ωc = 0.222,
baryon density parameter Ωb = 0.0449, Hubble parameter h = 0.71, primordial index of
scalar perturbations ns = 0.963, and normalization of perturbations σ8 = 0.801. We also
fix nonlinear RPT parametrization parameters to rNL = 6.6h−1 Mpc and Amc = 1.55 as
for the ACF. The galaxy bias is also assumed to be constant on each photo-z bin. A
natural problem arising from this approach is the determination of the values for the LGs
bias on each redshift bin to use in the covariance matrix. In order to solve this problem
the following strategy was adopted. First cosmology was fixed, in this case the WMAP7
just presented, and an initial constant value b = 2 for the bias was assigned on each
photo-z bin, from which a covariance matrix was generated. Next, the best-fit values for
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the bias was determined using the ACF full shape information as will be explained in the
following section. In our case the following results were encountered b1 = 1.94, b2 = 2.02,
b3 = 2.15, and b3 = 1.97. With the ingredients just listed above the resulting theoretical
covariance matrix used on our analysis is shown on figure 4.7.
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Figure 4.7: Theoretical ACF covariance matrix used in the SDSS-III DR8 analysis.
Since we do not allow for an analysis with a cosmology-dependent theoretical covariance
because of computational time reasons, we fix the theoretical covariance to a flat FLRW
model with parameters Ωc = 0.222, Ωb = 0.0449, h = 0.71, ns = 0.963, and σ8 = 0.801.
The galaxy bias is assumed to be constant on each of the photo-z bins (table 4.2) and
given by b1 = 1.94, b2 = 2.02, b3 = 2.15, and b3 = 1.97. Also nonlinearities are fixed
according to rNL = 6.6h−1 Mpc and Amc = 1.55. Here the z-bins refers to the four
photo-z bins used in the analysis.

Cosmological analysis from ACF full shape

We performed a Bayesian parameter inference analysis (see chapter 3) using two different
approaches for the sampling process from the posterior PDF of the model parameters,
the usual Metropolis-Hastings scheme and the parallel version of the stretch move. The
model parameters considered on our analysis are the total content of matter Ωm, the
fraction of baryons fb := Ωb/Ωm and the normalization of perturbations σ8. The rest of
the relevant cosmological parameters are held fixed at the WMAP7 values given above.
As nuisance parameters we consider the LGs bias on each of the photo-z bins, b1, b2,
b3 and b4. However, given the well known degeneracy between σ8 and the galaxy bias
discussed on section 4.1.2 (see figure 4.3), in the present work we constrain its product
for each photo-z bin, considering them as the actual nuisance parameters. Then, we can
write according to the notation of chapter 3

θ = (Ωm, fb) (4.64)

and
ψ = (σ8b1, σ8b2, σ8b3, σ8b4) . (4.65)

Note that here σ8 is assumed to have the same value in all the photo-z bins considered.



82 Results

The likelihood function used is given by

L(Θ) = L(θ,ψ) = |C|−1/2 exp

[
−1

2

(
dT ·C−1 · d

)]
, (4.66)

where d = ŵ − w(Θ) is a vector constructed with the difference between measured
(estimated) ACF, ŵ, and its theoretical model, w(Θ), model parameter-dependent. Since
the ACF was measured in four photo-z bins, this measured and modeled ACFs are in
fact a vector with the information of the four bins, i.e. ŵ = (ŵ1, ŵ2, ŵ3, ŵ4) and the same
for the modeled, and C is the full theoretical covariance matrix that takes into account
correlation between photo-z bins discussed above and given in figure 4.7.

As said above, the sampling process from the posterior PDF for the parameters was
done using two different approaches: (a) the implementation of the Metropolis-Hastings
algorithm given by the widely used by the cosmology community COSMOMC8 code [93]
running at the LIneA DES Scientific portal and (b) the implementation of the parallel
stretch move on the emcee9 [57] code running in the IAG/USP Alphacrucis Cluster with
144 cores.

Our results are displayed in figures 4.8 and 4.9 where the marginalized posterior PDFs
for each parameter considered are displayed for the Metropolis-hastings- and parallel-
stretch move-based samplings respectively. These figures also shows the contours of 68%
and 95% confidence from the marginalized posterior PDFs for every pair of parameters.
In the top right of each figure tables displaying the results found for each parameter are
presented. On these tables the second columns label the best fit of each parameter after
taking the maximum of the overall posterior PDF. After marginalizing over all the other
parameters (see chapter 3 for a discussion on marginalization) the third column displays
best fit of the marginalized posterior PDF for each parameter, finally, the fourth column
describes the 68% limit of the marginalized posterior PDF mean for each parameter. All
of these results are considered for each of the sampling techniques used. Note that we
quote results for all parameters, the ones associated with the cosmological model and the
nuisance ones.

8http://cosmologist.info/cosmomc/
9https://github.com/dfm/emcee

http://cosmologist.info/cosmomc/
https://github.com/dfm/emcee
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Figure 4.8: Posterior PDFs resulting from the analysis of the ACF of SDSS-III DR8
LGs catalog using the COSMOMC code, i.e. a Metropolis-Hastings algorithm-based sam-
pling technique. The off-diagonal contour plots show the 68% (1σ), blue lines, and 95%
(2σ), red lines, confidence regions for the two-parameters marginalized posterior PDFs.
The circles at the center of each one of these plots show the marginalized mean (blue),
marginalized best-fit (black) and overall best-fit (green) values for each parameter. The
diagonal plots show the marginalized one-parameter posterior PDFs, the dashed blue
lines show the marginalized mean values and 68% confidence regions. The numerical
values of these results are quoted on table on the top right of the figure.
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Figure 4.9: Posterior PDFs resulting from the analysis of the ACF of SDSS-III DR8
LGs catalog using the emcee code, i.e. a parallel stretch-move algorithm-based sampling
technique. The off-diagonal contour plots show the 68% (1σ), blue lines, and 95% (2σ),
red lines, confidence regions for the two-parameter marginalized posterior PDFs. The
circles at the center of each one of these plots show the marginalized mean (blue),
marginalized best-fit (black) and overall best-fit (green) values for each parameter. The
diagonal plots show the marginalized one-parameter posterior PDFs, the dashed blue
lines show the marginalized mean values and 68% confidence regions. The numerical
values of these results are quoted on table on the top right of the figure.

The marginalized posterior PDF found for all the parameters considered seem to be
well behaved in the sense that appear to be consistent with a Gaussian PDF. The results
obtained with the two different sampling techniques are consistent with each other within
1σ which indicate that our analysis seem to be robust. However, for all the parameters
the COSMOMC sampler (MH algorithm-based) gives error bars slightly lower than the emcee
sampler (parallel stretch move-based).

In figure 4.10 we show the theory prediction for the ACF in the different photo-z
bins evaluated at the mean value for the of the posterior PDF for each parameter, these
plots are overlaid on the measured data points. From this figure we can conclude that
our modeling for the ACF discussed on section 4.1.2 seems to reproduce fairly well the
observed data in the SDSS-III DR8 LGs catalog.
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Figure 4.10: Angular correlation functions measured for the SDSS-III DR8 catalog
LGs. The error bars correspond to the diagonal elements of the covariance matrix used
on the analysis (figure 4.7). The blue lines correspond to the best fit cosmology obtained
after a Bayesian inference analysis was performed.

In figure 4.11 we present a comparison for the smoothed PDFs of the cosmological
model parameters considered in our analysis θ = (Ωm, fb) for the two sampling technique
considered overlaid with the actual WMAP7 parameter PDFs (assumed on the compu-
tation of the theoretical covariance matrix) which are publicly avaliable by the WMAP
team10. The figure shows the 68% coinfidence regions from the PDF of each parameter
for each sampling technique and for the WMAP7 result. As stated before, the results of
the both sample techniques are consistent with each other and the error bars resulting
from COSMOMC method are always slightly lower than the ones coming from emcee. These
results are also consistent with the WMAP7 results for the content of total matter in the
Universe within 1σ, but not for the baryon fraction, however allowing for 2σ they become
consistent.

10The data can be downloaded at http://lambda.gsfc.nasa.gov/product/map/dr4/m_products.cfm

http://lambda.gsfc.nasa.gov/product/map/dr4/m_products.cfm
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Figure 4.11: Smoothed marginalized posterior PDFs for the cosmological model pa-
rameters considered in our analysis of the ACF for the LGs in the SDSS-III DR8 catalog.
At the bottom of each plot the 68% (1σ) coinfidence regions are shown as bars.

Given the fact that the error bars found by COSMOMC sampler are all systematically
smaller than those found by emcee sampler for all the parameters considered, while its
mean and best-fit values are all consistent with each other, we argue that the error bars
from emcee will decrease if we allow to draw more samples in order to have a better
statistics in the emcee sampling. By this reason we quote as final constrain results for
our analysis the results obtained by using the COSMOMC sampler (figure 4.8).

Although during our analysis we used the WMAP7 parameters defining the fiducial
cosmology [72], the Planck collaboration recently released its first cosmological results
[17]. The main difference between the model parameters found by this two analysis is on
the content of total matter Ωm and the Hubble parameter h. The former is ∼ 10% higher
with Planck’s data and the latter is ∼ 4% lower. Since Ωm is left as a free parameter in
our analysis, it is not an issue, but h was fixed to the WMAP7 value. As shown in [81] the
major effect of changing h is in the Ωm constrain because the clustering characteristics
are driven mostly by the combination Ωmh. Lowering h implies an increase of Ωm, this
degeneracy can also be seen on the figure 4.3. We argue that taking into account this fact
our results seem consistent. In fact, since our constrained value for the matter content
with WMAP7 Hubble parameter is Ωm = 0.28, if we instead use h = 0.68, as found by
Planck, we would expect to found a higher value, in better agreement with Ωm = 0.32 as
quoted by Planck.

It is extremely important to note that the quoted errors of 8% for Ωm and 12% for fb
are underestimated since they do not take into account the proper marginalization over
all the other cosmological parameters that in our analysis were fixed. For more realistic
errors, we should have varied all parameters, including the Hubble parameter h, spectral
index ns, the dark energy equation of state parameter w and the spatial curvature K, and
marginalized over them. Unfortunately the statistical significance of our data set alone
is not sufficient to obtain useful constraints. Combining our results with other probes, as
for example, the recent CMB Likelihood provided for the Planck collaboration will offer
a more complete analysis and therefore better constraints due to the complementarity of
these probes. Related to this underestimation of the errors for fb, and the proper effect
of taking into account the impact of all cosmological model parameters should be the
problem encountered on the higher value encountered for the baryon fraction.

Nonetheless, our results point out that the methods applied to extract information
from measurements of ACF in configuration space are able to yield competitive cosmo-
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logical constraints. This indicates that these methods will be even more useful when
applied to future data sets with greater constraining power. In fact this will be showed
in this work by considering a more complete catalog from simulated data for the DES in
the next section. Besides, The combination with other probes of large scale structure and
CMB should provide additional consistency checks and even better constraints.

4.1.5 BCC-Aardvark-v1.0 red galaxies ACF

Recently two different simulations, part of the so-called Blind Cosmology Challenge
(BCC), were provided to the DES collaboration. They are the BCC-Aardvark-v1.0 and
the BCC-Buzzard-v1.0 catalogs. The former is a flat ΛCDM cosmology simulation with
available truth tables for galaxies and halos, whereas the latter is the first catalog of a
totally unknown cosmology with only observed quantities provided.

In this section we present some preliminary cosmological results obtained from the
analysis of the angular correlation function of red galaxies of the Blind Cosmology Chal-
lenge Aardvark-v1.0 catalog.

The catalog

The BCC-Aardvark-v1.0 catalog was released on April 11, 2013. It is a 10313 deg2 (one
quarter of the sky) catalog to DES full depth. This represents a semi-blind cosmology
challenge since it simulates a flat ΛCDM cosmological model, i.e. it is already known
that the dark energy equation of state is described by a parameter w = 1 and that the
constant time hypersurfaces have an Euclidean (flat) geometry, ΩK = 0. All the other
parameters describing the full FLRW model are unknown. In addition to the so-called
observed catalogs, where the true properties of the sources are perturbed by simulated
errors, the truth tables for halos and galaxies were also made available. The catalog
contains 1.36 billion galaxies passing the DES 5-sigma signal-to-noise limit in at least
one DES band. In the catalog release a mask for the 5000 deg2 DES footprint was also
provided.
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Figure 4.12: Sky coverage in the BCC-Aardvarkv1.0 catalog corresponding to the
DES Round82 hybrid footprint, see table 4.3 and text for details.
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Figure 4.13: Number of objects in the BCC-Aardvarkv1.0 catalog in the i-band as a
function of the magnitude.

The observed catalogs with DES grizY magnitudes and errors comprise 175 GB of
data and were downloaded from SLAC at approximately 150 Mbps in about 2.5 hours.
The 10313 deg2 catalog was ingested into LIneA database and then vertically partitioned
into seven smaller tables, representing the Round82 DES footprint, to improve the reading
performance.

Sample selection

The VAC (Value-Added Catalog) for large scale angular correlation function analysis
was created at the DES science Portal by the DES-Brazil team selecting the DES area
according to the Round82 hybrid footprint. It includes SPT, Viking, Round 82 and Stripe
82 surveys as is shown in table 4.3. The resulting selected BCC footprint is shown in figure
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RA [deg] DEC [deg]
SPT −60 ≤ α ≤ 105 −65 ≤ δ ≤ −40
Viking −30 ≤ α ≤ 60 −40 ≤ δ ≤ −25
Round82 −3 ≤ α ≤ 45 −25 ≤ δ ≤ 3
Stripe82 −43 ≤ α ≤ −3 −1 ≤ δ ≤ 1

Table 4.3: Selection of DES footprint in BCC (Round82 hybrid). The first column
especifies the different surveys composing it, the following two columns gives the corre-
sponding footprint of each one in terms of its limiting angular coordinates on the sky,
RA for Right Ascension (α) and DEC for Declination (δ) (see figure 4.12).

4.12.
In addition to the limited area described above, it had been applied the mangle mask

supplied by the BCC team with bright star holes corresponding to the BCC current stellar
catalog.

Besides selecting objects with a signal-to-noise ratio larger than 3 in all bands, we
adopted a limiting magnitude of 22.6 in the i-band, corresponding to the peak of the
counts, in the redshift range 0.2 < zphot < 1.4, see figure 4.15.

In order to separate Blue (Late) and Red (Early) types of galaxies LePhare photo-z
code was used. LePhare was run on a subsample of 100.000 galaxies randomly taken from
BCC in a small area of 100 deg2 with coordinates 40 < α < 50 and 50 < δ < 40. A
suitable set of templates was used, encompassing 21 spectral energy distributions (SED)
among those used by [94] in the CFHTLS analysis, covering all galaxy types avaliable
(ellipticals, spirals, irregulars and starburst). The best fitting SED was firstly taken to be
the galaxy type. Types were grouped as Early (ellipticals) and Late (spirals, irregulars
and starbursts), consistently with the expected distribution in a color (g − r) versus i-
magnitude diagram of real data (CFHTLS). Using a plot showing the color (g− r) versus
redshift, a separation line between Early and Late types was visually estimated in redshift
bins and a second order polynomial was fitted to the line. The final galaxy classification as
Early or Late was made if the galaxy is redder or bluer than the separation line according
to figure 4.14 and obey the following equation:

(g − r)sep = −1.215z2 + 1.795z + 0.8607. (4.67)

zphot

(g
-r
)

Figure 4.14: BCC-Aardvarkv1.0 galaxy type separation into early-type, ellipticals
(red) and late-type, spirals, irregulars, starbursts (blue). The separation was done
following the criteria of (4.68).

The In this way, de definition for each type follows

Early: (g − r) > (g − r)sep , Late: (g − r) < (g − r)sep , (4.68)
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In an over-simplified approach, we assumed during this analysis the conditional prob-
ability for a measured a photometric redshift zphot of a given galaxy to corresponds to a
true redshift z, P (z|zphot), which is related to the error in photo-z measurements and to
intrinsic magnitude-redshift degeneracies, to be Gaussian according to equation (4.44). In
addition zero bias (zbias = 0) was also assumed, so that all photometric uncertainties were
assumed to be given in terms of the photo-z error dispersion (scatter) which was assumed
to have an usual redshift dependence given by σz = σ0 (1 + z), where the photo-z error
at redshift zero, σ0, was estimated from the BCC catalog itself, following the method
developed by [95]. This empirical method is based on the assumption that close pairs
of galaxies on the sky have a significant probability of being physically associated, and
therefore, of lying at nearly the same redshift. In such a way that, the difference in photo-
metric redshifts in close pairs is therefore a measure of the redshift uncertainty. Applied
to the red and blue galaxy sample, this method yields σred

0 = 0.024 and σblue
0 = 0.027,

respectively.

Since the BCC catalog supplies the photometric redshift information for each galaxy,
the number of galaxies N(z) per unit of true redshift z, n(z) = dN(z)/dz, was estimated
for the red and blue galaxies samples according to equation (4.41) where dN(zphot)/dzphot
is the number of galaxies per unit of photometric redshift, obtained by simply binning
galaxies in photo-z on the catalog.

Using the estimated number density of galaxies, in figure 4.15 the selection functions
for the photo-z bins considered in this analysis are shown. This selections were computed
according to equation (4.42), where the window function in photo-z takes into account
only the binning process, i.e. it is given by equation (4.43). Hereinafter we restrict our
analysis to the red sample catalog obtained with the methods discussed above.

Figure 4.15: Non-normalized selection functions as function of the true redshift z for
the red galaxy sample of the BCC-Aardvark-v1.0 for bins of ∆zphot = 0.1 over the range
0.6 < zphot < 1.2. These selection functions account for a Gaussian approximation of
photo-z errors.

The photo-z dispersion and the number of galaxies in each of the four photo-z bins
used in this work are displayed in table 4.4
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z-bin photo-z range Number of red galaxies
1 [0.2, 0.3] 1.683.345
2 [0.3, 0.4] 3.561.715
3 [0.4, 0.5] 4.674.176
4 [0.5, 0.6] 4.206.681
5 [0.6, 0.7] 3.286.862
6 [0.7, 0.8] 2.551.088
7 [0.8, 0.9] 1.846.046
8 [0.9, 1.0] 1.146.531
9 [1.0, 1.1] 682.652
10 [1.1, 1.2] 400.139
11 [1.2, 1.3] 191.405
12 [1.3, 1.4] 79.534

Table 4.4: Photometric redshift bins used in the analysis of the ACF of BCC-Aardvark-
v1.0 red galaxies catalog.

Measuring and modeling the BCC-Aardvark ACF

We measure the angular correlation function in the selected red galaxy sample using
the Landy-Szalay pair counting–based method (see section 2.1.2). In order to speed
the computation we use the CUTE11 code [96], a robust parallel implementation of the
LS measurement method, running in the LIneA DES Science Portal. We analyzed red
galaxies in 6 photo-z bins of width ∆zphot = 0.1 on the range 0.6 < zphot < 1.2. In
all the photo-z bins the ACF was measured on 30 angular bins of width ∆θ = 0.2 deg
on the range 1 deg < θ < 7 deg, such intervals were chosen in order to approximately
guarantee that the analysis is done on large scales, i.e. for comoving distances in the
range 20 < r < 200h−1 Mpc on all photo-z bins.

The model for the ACF used during this analysis is the one described in section 4.1.2,
i.e. the distant observer approximation is assumed along with the spatial flatness of the
FLRW cosmological model used to describe the observations. The latter assumption is
exact for the BCC-Aardvark-v1.0 catalog since was assumed for the simulation. All the
relevant effects were taken into account, photo-z uncertainties, according to the discus-
sion in the previous paragraph, nonlinearities in the clustering of galaxies, redshift-space
distortions and galaxy biasing. For the nonlinearities it was assumed rNL = 6.6h−1 Mpc
and Amc = 1.5 in the RPT parametrization. The galaxy biasing effect (see the begining
of §1.4.1 for some discussion) was modeled according to the following parametrization

bg(z) = b0 + b1z + b2z
2, (4.69)

i.e. as a second order polynomial in redshift around z = 0.
In order to perform the cosmological analysis, we modeled theoretically the ACF

covariance matrix according to section 4.1.2, i.e. assuming Gaussianity at large scales
as given by equation (4.53). This approximation is in very good agreement with the
covariance obtained from N-body simulations, see e.g. [8]. Note that our model for the
ACF covariance properly account for partial sky coverage and shot noise as well as for the
same effects considered for the ACF modeling, namely RSD, biasing, nonlinearities and the
photo-z effects. However, we do not allow for a cosmology-dependent covariance analysis

11http://members.ift.uam-csic.es/dmonge/CUTE.html

http://members.ift.uam-csic.es/dmonge/CUTE.html
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because of computational time reasons, so we need to fix the cosmological parameters
to a fiducial model and choose an appropriate value for the galaxy bias according to the
galaxy sample. As a fiducial cosmology we adopt a flat CDM universe with the parameters:
Ωm = 0.272, Ωb = 0.0456, ns = 0.963, σ8 = 0.801, h = 0.704 and wDE = −1. We also fix
nonlinear RPT parametrization parameters to rNL = 6.6h−1 Mpc and Amc = 1.55 as for
the ACF. The galaxy bias is also parametrized according to equation (4.69). In order to
determine the appropriate values for the coefficients b0, b1 and b2 on (4.69) we adopted
the following strategy: First we fixed the parameters to the fiducial cosmology and find
the best fit for the growth factor and galaxy bias (redshift space distortions methodology)
considering σ8 = 0.801 for all the photo-z bins. Here we are not interested on discuss in
detail this method, we refer the interested reader to [12]. For the red galaxies catalog the
obtained coefficients are b0 = 1.90, b1 = 0 and b2 = −1.67. With the ingredients listed
above the resulting theoretical covariance matrix used on our analysis is shown on figure
4.16.
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Figure 4.16: Theoretical ACF covariance matrix used on the BCC analysis. Since
we do not allow for an analysis with a cosmology-dependent theoretical covariance
because of computational time reasons, we fix the theoretical covariance to a flat FLRW
model with parameters Ωm = 0.272, Ωb = 0.0456, ns = 0.963, σ8 = 0.801, h = 0.704
and wDE = −1. The galaxy bias is assumed to be given by equation (4.69) with
coefficients b0 = 1.90, b1 = 0 and b2 = −1.67. Also nonlinearities are fixed according to
rNL = 6.6h−1 Mpc and Amc = 1.55. Here the z-bins refers to the six photo-z bins used
in the analysis.

Our corresponding results for the measurements of the ACF en each photo-z bin are
shown in black in figure 4.18, where the error bars correspond to the diagonal elements
on the covariance matrix (figure 4.16).

Cosmological analysis from ACF full shape

We performed a Bayesian parameter inference analysis (see chapter 3) using the parallel
version of the stretch move for sampling the posterior PDF of the model parameters. The
model parameters considered on our analysis are the total content of matter, the content
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of baryons, the primordial power spectrum spectral index and amplitude of perturbations,
and the Hubble factor, so that (see chapter 3 for the notation used)

θ = (Ωm,Ωb, ns, As, h) . (4.70)

As nuisance parameters we consider the introduced coefficients of the parametrization for
the galaxy bias, equation (4.69).

ψ = (b0, b1, b2) . (4.71)

during our analysis we also quote the results of an important derived parameter of the
model, the variance of linear fluctuations at 8h−1 Mpc, σ8.

The likelihood function used is given by

L(Θ) = L(θ,ψ) = |C|−1/2 exp

[
−1

2

(
dT ·C−1 · d

)]
, (4.72)

where d = ŵ − w(Θ) is a vector constructed with the difference between measured
(estimated) ACF, ŵ, and its theoretical model, w(Θ), model parameter-dependent. Since
we measured the ACF in six photo-z bins, this measured and modeled ACFs are in fact a
vector with the information of the six bins, i.e. ŵ = (ŵ1, ŵ2, ŵ3, ŵ4, ŵ5, ŵ6) and the same
for the modeled, and C is the full theoretical covariance matrix that takes into account
correlation between photo-z bins (figure 4.16).

The sampling process from the posterior PDF for the parameters was done using
the implementation of the parallel stretch move on the emcee12 [57] code running in the
IAG/USP Alphacrucis Cluster with 144 cores.

Ours results are displayed in table 4.5. The second column labels the best fit of each
parameter after taking the maximum of the overall posterior PDF. After marginalizing
over all the other parameters (see chapter 3 for a discussion on marginalization) the third
column displays best fit of the marginalized posterior PDF for each parameter, finally,
the fourth column describes the 68% limit of the marginalized posterior PDF mean for
each parameter. Note that we quote results for all parameters, the ones associated with
the cosmological model, the nuisance and the derived parameters.

Overall Marginalized
Parameter Best-fit Best-fit 68% limits

Ωm 0.254 0.240 0.238+0.014
−0.014

Ωb 0.056 0.045 0.047+0.005
−0.006

ns 0.905 0.996 0.998+0.052
−0.065

As(10
−9) 1.570 2.122 2.090+0.272

−0.320

h 0.885 0.704 0.730+0.051
−0.072

b0 3.064 2.437 2.491+0.481
−0.432

b1 −3.664 −2.222 −2.232+0.957
−1.322

b2 3.403 2.516 2.627+0.780
−0.391

σ8 0.748 0.734 0.740+0.058
−0.070

Table 4.5: Results for the ACF analysis of the BCC-Aardvarkv1.0 red galaxy sample.
The second column labels the best fit of each parameter after taking the maximum
of the overall posterior PDF, the third column displays best fit of the marginalized
posterior PDF for each parameter and the fourth column describes the 68% limit of the
marginalized posterior PDF mean for each parameter.

12https://github.com/dfm/emcee

https://github.com/dfm/emcee
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The figure 4.17 shows the marginalized posterior PDFs for each parameter considered,
including nuisance and derived ones. This figure also shows the contours of 68% and 95%
confidence from the marginalized posterior PDFs for every pair of parameters. Except for
the b1 parameter, the marginalized posterior PDFs found for all the parameters are well
behaved, in the sense that appears to have a Gaussian form. Thus the actual cosmological
model parameters θ were all found to be well behaved.

Figure 4.17: Posterior PDFs resulting from the analysis of the ACF of BCC-Aardvark-
v1.0 red galaxies. The off-diagonal contour plots show the 68% (1σ), blue lines, and 95%
(2σ), red lines, confidence regions for the two-parameters marginalized posterior PDFs.
The circles at the center of each one of these plots show the marginalized mean (blue),
marginalized best-fit (black) and overall best-fit (green) values for each parameter. The
diagonal plots show the marginalized one-parameter posterior PDFs, the dashed blue
lines show the marginalized mean values and 68% confidence regions. The numerical
values of these results are quoted on table 4.5.

In figure 4.18 we show the theory prediction for the ACF in the different photo-z
bins evaluated at the mean value of the posterior PDF for each parameter, these plots are
overlaid on the measured data points. From this figure we can conclude that our modeling
for the ACF discussed on section 4.1.2 seems to reproduce fairly well the observed data.
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Figure 4.18: Angular correlation functions measured for the red galaxies in the BCC-
Aardvark-v1.0 catalog. The error bars correspond to the diagonal elements of the co-
variance matrix used on the analysis (figure 4.16). The blue lines correspond to the
best fit cosmology obtained after a Bayesian inference analysis was performed.

We stress that our results are quite preliminary at this point. However, the true cosmo-
logical values for Aardvark-v1.0 (the ones used on the simulations) where made available
to the DES-Brazil team recently, and we are certain that our results are consistent with
all of them within 1σ confidence, except for σ8. We argue that this could be related to the
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obtained behavior of the posterior PDF for b1 (one of the coefficients used to parametrize
the galaxy bias) because of the well known degeneracy between σ8 and the galaxy bias
discussed on section 4.1.2 (see figure 4.3). We hope to repeat these analysis to obtain a
better understanding of this issues. One possible variation is to use other parametrization
or a better physically-motivated model for the bias. Along, of course, with understanding
of potential problems with our methods and codes. In any case, the fact that just one
parameter results inconsistent with the actual simulation parameters indicates that our
analysis is robust.

From this preliminary analysis many steps remain for the future, one initial further
step is the inclusion of more realistic photo-z uncertainties, one fundamental issue for
the application of our methods to the real data coming. This will be done by replacing
the assumption of Gaussian photo-z errors by real analysis of photo-zs based on current
available codes using techniques as machine learning or template fitting formulas.

Another further step is related to the proper inclusion of the spatial curvature as a
model parameter in the analysis. We can see, for example, if after its inclusion we still
obtain results consistent with the ones presented here and with the fact that Aardvark-
v1.0 catalog is based on a simulation of a spatially flat FLRW model. To this point
the present work offers the basic tools, the remaining work is related with the proper
implementation of the theoretical developments presented here.

Once these issues have been understood and worked out, we will repeat these studies
for the BCC-Buzzard-v1.0, a truly blind catalog, where even the spatial curvature is
unknown.

One further step that remains as an interesting challenge is the consistent combination
of the different probes. This dissertation also present some preliminary work related
with weak lensing-based probes that we want to properly implement and combine with
the analysis of the ACF in the future. But we are also interested on combination with
other DES probes as, for example, the abundance of galaxy clusters which is currently
receiving much attention inside the DES-Brazil group. We want to properly including the
correlations between probes in order to better constrain cosmological parameters.

4.2 Two-point statistics in harmonic space

In §2.2 the two-point angular power spectrum Cℓ for arbitrary 3D fields projected in
the observer sky in FLRW Universe models was found in terms of the underlying power
spectrum of the 3D field, equations (2.15) and (2.21).

In the present section some preliminary work on the application of this theoretical
results to the modeling of the three two-point statistics that can be considered from
observations of weak lensing and clustering of galaxies on large scales, namely the auto-
and cross-correlations of lensing and galaxy positions, is presented. In particular we use
the naive estimator for the angular power spectra developed in section 2.2.2 to measure
this three APSs on simulated data from the Onion simulations [13]. This simulations owe
their names to the fact that are design to offer catalogs picturing the universe as a set
of concentric radial shells of finite width around the observer, i.e, an onion-like structure.
Such catalogs are very useful in the context of modern wide-area photometric galaxy
surveys, like the DES, where a fundamental characteristic is the lack of radial accuracy
and then splitting the data into redshift shells will be a standard method in the analysis.
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4.2.1 The onion simulation maps

The Onion simulations [13] are the first of a new generation of very large scale N-body sim-
ulations developed at the Marenostrum supercomputer in Barcelona using the GADGET-
2 code. Such simulations are named as Marenostrum Institut de Ciencies de l’Espai or
MICE simulations and have been being developed for studying clustering statistics of the
large scale structure in the context of the modern wide-area photometric galaxy redshift
surveys.

In this work we use the first reported of such simulations. A simulation with 20483

dark-matter particles in a box-size of Lbox = 3072 Mpc, that assume a flat concordance
LCDM model with Ωm = 0.25, ΩΛ = 0.75, Ωb = 0.044, ns = 0.95, σ8 = 0.8 and h = 0.7.
The resulting particle mass is M = 2.34× 1011M⊙ using a softening length of 50 Kpc/h.
Thus, the Onion simulation has a dynamic range close to five orders of magnitude: from
Gpcs to tens of Kpcs. The run start at zi = 50 displacing particles using the Zeldovich
dynamics. Noticible is that this MICE simulation has a similar number of particles to the
Millenium simulation but 63 = 216 times more volume (and corresponding larger particle
mass). This makes the MICE simulation more adequate than the Millenium for very large
scale statistical analyses, such as the search of the baryon acoustic scale [13].

In order to mimic the onion-like structure of real data from galaxy surveys the these
first MICE simulations were used to built an all-sky light-cone which in turn had been
compressed into a set of radial shell maps of given redshift resolution. These all-sky
angular maps have been pixelized using the convenient HEALPIX tessellation [52] with
high spatial resolution, Nside = 2048, which pixelices the sky with 12N2

side ≈ 50 million
cells of size θpix ≃ 1.7 arcmin size13. Noticeable from this novel approach is that it provides
an effectively lossless method to compress simulated data by a factor ∼ 1000 for arcminute
resolution angular maps [13]. This allows Terabyte-sized simulations containing tens of
billions of particles to be analyzed in a regular laptop.

4.2.2 Angular power spectra measurements and modeling

We will adopt the HEALPIX conventions [52]. We are also assuming full sky coverage.
This assumption will be adopted throughout this work because it is valid in the case of the
simulated Onion maps considered. We also implicitly assumed that the power spectrum
of the pixelized map x was equal to that of the continuous signal x. This approximation
is only true at high resolution when the pixel size is small compared with 180/ℓ, and
the integrals in the spherical harmonic transform are correctly approximated by matrix
multiplications through quadrature [52]. Here we will be using the same resolution of the
Onion maps, Nside = 2048, which pixelices the sky with 12N2

side ≈ 50 million cells of size
θpix ≃ 1.7 arcmin size.

In this work we consider two pixelized signals from Onion simulations, the total matter
density fluctuations at mean redshift 0.45 and width 0.1, i.e. dark matter particles in the
simulation with redshift between 0.4 and 0.5 and the weak lensing convergence by large
scale structure in the Universe of sources at zs = 0.993. This two signals are associated
with the fields studied on section 1.4. For the case of angular clustering, since we are
dealing directly with DM particles in the simulation we can assume no biasing effect, i.e.
bg = 1.

13Projected matter density and weak lensing maps from the MICE simulations are publicly available
at http://www.ice.cat/mice
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The two point angular auto- and cross-correlation power spectra of this two signals
were estimated using the method depicted on 2.2.2, i.e. by using the ANAFAST routine of
HEALPix for 20 values of ℓ between ℓ = 5 and ℓ = 250. Such scales are considered in
order to guarantee that we are working on large scales were the Gaussian approximation
is expected to hold and that the effect of shot noise can be considered negligible, see [13]
for a discussion about this point.

Thus, the measurements of the PASs in our analysis are assumed to be uncorrelated
and having a Gaussian distribution, and so a variance given by equation (2.68). This
over-simplification of the problem constitutes a first approximation to test our methods.
As stated before, the present work does not intend to be compete by no means, by the
contrary it constitutes a very preliminary first approximation to the real application of
the methods developed on section 2.2. The results for the power spectra considered are
shown on figure 4.21 with dark filled circles, the error shown in the figures as stated above
corresponds to the theoretical Gaussian error.

The model assumed for the APSs in this analysis is the one described in section (2.2),
i.e. basicaly a spatially flat FLRW model. The effect of redshift space distortions is not
taken into account.

4.2.3 Simple cosmological analysis of APSs from Onion simula-
tions

We begin by showing the essential ingredients on the theoretical modeling of the weak
lensing convergence and angular clustering of matter, namely, its corresponding window
functions (1.63) and (1.87) for the Onion Universe Cosmology parameters. Our results
are shown on figure 4.19

Figure 4.19: Left panel shows the window function for the projected total matter
fluctuation in the Onion simulations on a redshift shell with mean redshift 0.45 and
width 0.1 (equation (1.63) with bg = 0), assumed to have constant density in the
redshift shell. Right panel shows the weak lensing convergence window function for
sources at zs = 0.993 (equation (1.87)) in the Onion simulation

In the matter case, since the distribution in the shell is considered is homogeneous, the
behavior of the window is dominated by the growth function term (see equation (1.63)).
In the convergence case, the behavior is the expected for sources located at an specific
redshift (see e.g. section 1.4.2 and/or [11]).
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We perform a Bayesian parameter inference analysis using the emcee sampler. The
model parameters considered in our analysis are the total content of matter Ωm, the
fraction of baryons Ωb and the normalization of perturbations σ8, i.e.

θ = (Ωm, fb, σ8). (4.73)

Note that no nuisance parameters are needed. The remaining parameters for the model
are fixed to the actual Onion cosmology.

The likelihood function used in the analysis was assumed Gaussian,

L(Θ) = L(θ,ψ) = |C|−1/2 exp

[
−1

2

(
dT ·C−1 · d

)]
, (4.74)

where d := Ĉgg
ℓ −C

gg
ℓ (θ) represents the vector with the difference between the estimated

and modeled galaxy position APS (in fact matter fluctuations instead of galaxies in the
context of the Onion simulations) and C is the covariance matrix associated, assumed
Gaussian and then diagonal containing the variance of equation (2.68).

Note that this is not the better approach to the problem, a better possibility could
be, for example, split the sky in different equal area disjoint regions and measure the Cℓ

using some Jacknife method. However, the exercise in this section was done only to test
our methods.

Our results are presented in table 4.6. The second column labels the best fit of each
parameter after taking the maximum of the overall posterior PDF. After marginalizing
over all the other parameters (see chapter 3 for a discussion on marginalization) the third
column displays best fit of the marginalized posterior PDF for each parameter, finally,
the fourth column describes the 68% limit of the marginalized posterior PDF mean for
each parameter.

Overall Marginalized
Parameter Best-fit Best-fit 68% limits

Ωm 0.263 0.265 0.260+0.025
−0.026

fb 0.154 0.167 0.148+0.047
−0.031

σ8 0.754 0.753 0.753+0.010
−0.009

Table 4.6: Results for the analysis of the Onion simulation APS of matter on a redshift
shell with mean redshift 0.45 and width 0.1. The second column labels the best fit
of each parameter after taking the maximum of the overall posterior PDF, the third
column displays best fit of the marginalized posterior PDF for each parameter and the
fourth column describes the 68% limit of the marginalized posterior PDF mean for each
parameter.

The figure 4.20 shows the marginalized posterior PDFs for each parameter considered.
This figure also shows the contours of 68% and 95% confidence from the marginalized
posterior PDFs for every pair of parameters.
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Figure 4.20: Posterior PDFs resulting from the analysis of the APS of matter in
the Onion simulation in a redshift shell with mean redshift 0.45 and width 0.1. The
off-diagonal contour plots show the 68% (1σ), blue lines, and 95% (2σ), red lines,
confidence regions for the two-parameters marginalized posterior PDFs. The circles at
the center of each one of these plots show the marginalized mean (blue), marginalized
best-fit (black) and overall best-fit (green) values for each parameter. The diagonal
plots show the marginalized one-parameter posterior PDFs, the dashed blue lines show
the marginalized mean values and 68% confidence regions. The numerical values of
these results are quoted on table 4.6.

In figure 4.21 we show the theory prediction for the matter APS in a redshift shell
with mean redshift 0.45 and width 0.1 for the Onion simulation together with the weak
convergence APS for sources at z = 0.993 and its cross correlation. The three APSs are
evaluated at the Onion simulation cosmology, the PDF mean for each parameter, the best
fit of each parameter after taking the maximum of the posterior PDF and the best fit of
the marginalized posterior PDF for each parameter.

From this figure we can conclude that our modeling for the APS, as discussed on
section 2.2 seems to do not reproduce the observed data.
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Figure 4.21: Top-left panel shows the matter APS in a redshift shell with mean redshift
0.45 and width 0.1, top left weak lensing convergence APS for sources at z = 0.993
and bottom panel the cross correlation between the in them. For each APS the black
continuous line represents the Onion simulation cosmology, the blue continuous line
represents the posterior PDF mean for each parameter, the blue dotted line the best fit
of each parameter after taking the maximum of the posterior PDF and the dashed blue
line the best fit of the marginalized posterior PDF for each parameter.

We stress that our results are quite preliminary at this point. We found results that
are consistent up to 1σ for Ωm and fb with the original Onion Simulation parameters.
However, for the amplitude of perturbations, measured in σ8 the results are inconsistent
up to 1σ. This inconsistency is in fact related to the fact that, as can be seen from figure
4.21 the normalization of the measured spectra disagree with the normalization of the
modeled spectra computed on the Onion cosmology. We argue that this inconsistency
should be related with our method of measurement of the Angular Power Spectra.

We hope to repeat these analysis to obtain a better understanding of this issues after
developing a better estimation technique for the APS. After this step was completed,
we would like to add to our analysis all the features included on the analysis presented
for the ACF, physical effects as RSD and nonlinearities. A major goal for the future is
also to properly implement the combination of these tree APSs. As previously stated
the combination is needed in order to improble the contraints in the context of Bayesian
inference.
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Chapter 5

Conclusions and outlook

The advent of wide-area photometric galaxy surveys brings new practical and theoretical
challenges in cosmological analysis. These surveys will gain in area and depth, in exchange
for a poorer determination of radial positions and have been planned to focus on the
measure of four sets of cosmological observables, in order to study mainly the problem of
cosmic acceleration. These probes are (a) the large scale distribution of galaxies, (b) the
weak lensing shear induced on their shapes, (c) the abundance of galaxy clusters and (d)
Type Ia supernovae (see e.g. [1]). From the first two of these observables, three types of
two-point correlations can be constructed: the angular correlations between the positions
of the foreground galaxies, the correlations of the lensing shear/convergence between
background galaxies, and the galaxy-shear/convergence cross correlations induced by the
association of dark matter with foreground galaxies.

In this context, and considering the great success of the Standard Cosmological Model
(the concordance ΛCDM model) in describing most of the cosmological observations up
to date, in principle, one can describe most statistical properties of cosmological structure
observables in terms of a single quantity: the power spectrum of total mass fluctuations
in the Universe. In fact, within this theoretical framework, structure in the Universe
originates from nearly Gaussian random density fluctuations in the initial conditions and
its evolution depends on the energy/matter content according to standard GR, which
imply its dependence on the properties of the dark energy and dark matter. An important
remaining task in order to extract dark-sector information from cosmological structures is
the determination of the relationship between observables and the underlying mass power
spectrum.

In section 1.4 a revision of the theoretical interpretation of angular galaxy clustering
and weak lensing convergence as main cosmological observables in the context of wide-
area photometric galaxy surveys was presented. The philosophy of the approach presented
here was to develop these concepts in the most general scenario possible theoretically.

The statistical interpretation of the cosmic fields allows us to connect theoretical inter-
pretations with large-scale measurements in the Universe. The fundamental hypothesis
of statistical homogeneity and isotropy implies the equivalence between statistics in both
configuration and harmonic spaces. In sections 2.1 and 2.2 a review of basic statistical
tools in configuration and harmonic space was presented, and the general definition of the
power spectrum of a statistically homogeneous and isotropic random field was given. A
general description for angular power spectra that comes from fields on the unit sphere
(sky) as the result of projection of a 3D cosmological field was also discussed, which al-
lowed for the introduction of auto- and cross- correlations between statistical fields on the
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sphere.

The increasing amount and quality of information from large galaxy redshift surveys
demands models capable of describing the clustering of the galaxy distribution with high
accuracy. Two-point statistic correlators of the matter content in the Universe constitute
the most commonly used tools to analyze galaxy clustering, and their shape, both in
configuration and harmonic spaces, is distorted by non-trivial effects such as non-linear
dynamics, bias and redshift-space distortions. Moreover, astrophysical issues related with
the observations themselves must be included in data analyses as systematics for the differ-
ent cosmological observable measurements. These effects complicate the relation between
the observations and the predictions of cosmological perturbation theory at linear level,
making the interpretation of these measurements in terms of constraints on cosmological
parameters more difficult.

In §4.1.1 a general theory for the redshift-space two point correlation function in FLRW
universes was presented based on the early work of [35]. It accounts simultaneously
for wide-angle effects and cosmological redshift-space distortions. The final result is a
general formula applicable for any pair of points in our past light-cone with arbitrary
angular separation between the lines of sight, arbitrary redshifts and for any of the three
different spatial geometries allowed in FLRW models. This general expression may be
contrasted and compared to the commonly used formula, which is only valid under the
assumptions of a spatially flat background and the distant observer approximation. The
proper interpretation of these two assumptions was then given in light of the general
formula as proper limiting cases.

In the context of the general treatment of the two-point correlation function, a re-
view the modeling of the angular correlation function of galaxies (in configuration space)
accounting for linear redshift-space distortions, photometric redshift errors, non-linear
gravitational dynamics and local linear bias was presented. Finally, under the assump-
tions of a flat FLRW background and the distant observer approximation the results
present on the literature [7, 92] were recovered.

In §4.1.4 an analysis of the large-scale ACF of luminous galaxies from SDSS-DR8
photometric data was presented. The ACF was measured in four photo-z bins with the
novel approach developed by [69, 86], which makes an effort to incorporate systematics
effects as stellar contamination and masking, galactic extinction, airmass and seeing,
succeeding in the challenge of removing the excess of power at large scales reported by
previous photometric studies [82, 83].

A cosmological analysis of the CMASS luminous galaxies, a photometric-redshift cat-
alogue based on the Data Release 8 of the Sloan Digital Sky Survey-III with the ACF full
shape information was presented accounting for the correlation between redshift shells
and effects of photo-z errors encoded in the selection function. This represents, to the
best of our knowledge, the first cosmological analysis performed with the ACF in con-
figuration space and has been published in [12]. Constraints in Ωm and fb were found
performing a Bayesian inference analysis with the information contained on each redshift
bin independently. It was found that the best–fit values oscillate around the WMAP7
values, but are all consistent within 2σ. When combining the information contained on all
the redshift bins, with the full covariance matrix accounting for the redshift correlations,
the constraints found were: Ωm = 0.280 ± 0.022 and fb = 0.211 ± 0.026 in reasonable
agreement with WMAP7. Perhaps the most important conclusion taken from this work
was the fact that it was possible to demonstrate that the ACF estimated from photomet-
ric data can be efficiently applied to constrain cosmological parameters. The ACF results
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for the photometric SDSS–III DR8 data are clearly not as competitive as those from the
spatial correlation function, which already provides stronger constraints with the BOSS
DR9 data [97]. Nonetheless, the results presented are encouraging for future photomet-
ric galaxy surveys, such as the DES, PanSTARRS and LSST, which will probe larger
redshifts and measure significantly more galaxies. In this case, the ACF measurements
have the potential to accurately constrain a larger number of cosmological parameters [7],
allowing for extra consistency checks with other independent probes.

In §4.2, as a very naive application of the statistical methods in harmonic space,
measures of the galaxy-galaxy (position), convergence-convergence (lensing) and galaxy-
convergence (position-lensing) angular power spectra from the Onion Universe Simulations
were presented. The measurements were performed for a redshift bin of foreground dark
matter particles at ẑ = 0.45 with ∆z = 0.1 homogeneously distributed in redshift and
source or background galaxies at zs = 0.993, also homogeneously distributed in redshift.
As a simple exercise we applied a Bayesian inference MCMC method only on the angular
power spectrum of galaxies assuming Gaussian errors. Our results were summarized in
§4.2.3. Our major inconsistency was on the σ8 constraint, which was incompatible with the
actual Onion Simulation value. We argue that this result may be due to the oversimplified
method used on the measurements of the spectra and for not taking into account properly
non-linear gravitational effects on the theoretical modelling.

As future lines of research, we would like to extend our analysis of weak lensing
observables in harmonic space to configuration space, i.e. we will compare the results
obtained with both the angular power spectra and the angular correlation functions, not
only of convergence but also of the shear field, its decomposition on E/B modes and the
aperture mass statistics [11]. We would also like to investigate in detail the full impact of
the assumptions of the distant observer approximation and spatial flatness that support
usual analyses of the two-point correlation function in photometric galaxy surveys.
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Appendix A

Cosmological perturbations

The present Appendix is intended to review cosmological perturbation theory. We begin
by reviewing some results for the background FLRW spacetime needed for some devel-
opments presented on the dissertation. Then, the gauge problem is discussed and gauge
invariant first order EFE for a pure dust fluid under scalar perturbations are considered.
The latter constitutes the basic theoretical basis to understand the large scale structure
of the Universe within GR in the linear regime.

A.1 Background Geometry

In this section we present some geometrical quantities for the background FLRW Universe
relevant for the development of the present work. In particular we are interested on
the connection coefficients (Christoffel symbols) for different chooses of comoving spatial
system of coordinates considered on §1.1.

Starting from the RW metric, equation (1.3), one can derive the Christoffel symbols
of the metric connection from its definition [14, 2],

Γ̄µ
νσ =

1

2
ḡµτ (−∂τ ḡνσ + ∂ν ḡτσ + ∂σḡντ ) , (A.1)

as
Γ̄0

00 = H, Γ̄0
ij = Hγij, Γ̄i

0j = Γ̄i
j0 = Hγij, Γ̄i

jk =
3Γi

jk, (A.2)

where 3Γi
jk denotes the Christoffel symbols associated to the spatial metric γ. On this

work the forms (1.4) and (1.6) are considered. The non–null symbols for this chooses of
coordinates are

Γ̄2
12 = Γ̄3

13 =





cosh(χ)/ sinh(χ) K < 0,

χ−1 K = 0,

cos(χ)/ sin(χ) K > 0,

Γ̄2
33 = − cos(θ) sin(θ), (A.3a)

Γ̄1
33 =





− cosh(χ) sinh(χ) sin2(θ) K < 0,

−χ sin2(θ) K = 0,

− cos(χ) sin(χ) sin2(θ) K > 0,

Γ̄3
23 =

cos(θ)

sin(θ)
, (A.3b)

Γ̄1
22 =





− cosh(χ) sinh(χ) K < 0,

−χ K = 0,

− cos(χ) sin(χ) K > 0,

(A.3c)
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for xi = (χ, θ, ϕ), equation (1.4), and

Γ̄2
12 = Γ̄3

13 = f ′
K(r)/fK(r), Γ̄1

22 = −fK(r)f ′
K(r), (A.4a)

Γ̄1
33 = −fK(r)f ′

K(r) sin
2(θ), Γ̄3

23 = cos(θ)/ sin(θ), (A.4b)

Γ̄2
33 = − cos(θ) sin(θ), (A.4c)

where the fK is given by equation (1.7), for xi = (r, θ, ϕ), equation (1.6).

A.2 Perturbation theory and the gauge problem

In perturbation theory the main goal is to find approximated solutions to Einstein field
equations which can be considered as small deviations from a known exact solution, the
background spacetime solution. The perturbation of any tensorial field T should then be
given by the difference between its value in the physical spacetime T and its corresponding
value on the background spacetime T̄. However, its a basic fact of in differential geometry
that in order to perform comparisons of such quantities one should consider them at the
same point on a manifold. Since the manifolds representing the physical and background
spacetimes are different the necessity for a prescription to identify events between them
emerges. Such a prescription is what should be understood as a gauge choice, see [23, 25, 2]
and references therein.

One then ends with a definition of gauge choice as a diffeomorphism between the
background and physical spacetimes. Different choses for this diffeomorphism and its
relations should define gauge transformations and the freedom to choose it is equivalent
to the freedom to chose the functional forms for the perturbation of any tensor field. This
statement constitutes a framework to specify the gauge problem.

A way to put on formal grounds the previous ideas is to introduce a family of differen-
tial manifolds as models of the spacetime {(Mλ,gλ)|λ ∈ Λ}, hereMλ defines its topological
structure and gλ represents its associated metric, see §7.5 of [22]. There is a natural way
to treat this situation, by introducing a (4 + 1)–dimensional manifold N defined as the
product manifold N =M ×R, where each Mλ is a 4–dimensional manifold, Mλ =M×λ,
so that N can be interpreted as a foliation, N = ∪λ∈RMλ. This formulation is clearly
explained in [25]. Here we present a review of the main concepts and ideas in presented
there in order to obtain the perturbed EFE in first order gauge invariant variables.

Since the natural differential structure over R consist of charts (U, id)1, there is a
natural form for the chart over N formed by charts (U, hU) around q = (p, λ) ∈ N2 such
that h(q) = (x0, x1, x2, x3, λ) ∈ R5, where the coordinates xa with a = 0, 1, 2, 3 are the
ones associated to the local chart on M around p.

If a tensorial field Tλ is defined on each model of spacetime Mλ a tensorial field is
defined on N . In fact,

∀q = (p, λ) ∈ N, Tq = T(p,λ) := Tλ(p) (p ∈Mλ). (A.5)

Particularly, on each spacetime model a metric tensor and a set of matter and radiation
fields exist satisfying the Einstein field equations.

In order to formally define a perturbation of a tensorial field, as was previously dis-
cussed, the basic requirement is a way to compare Tλ with T0 := T̄ for every λ. This

1Here U is an open set on R and id represents the identity application.
2Here p ∈M and λ ∈ R.
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is equivalent to define a diffeomorphism between each model Mλ and the background
spacetime M̄ := M0. Therefore, one can consider all the diffeomorphisms ϕλ : N → N
such that its restriction to M0 cover Mλ, i.e., ϕλ|M0 : M0 → Mλ is a diffeomorphism. By
choosing each ϕλ as a member of the group of diffeomorphisms associated to the flux of
a vectorial field over N one can instead to deal with the diffeomorphism itself to deal
with the field whose flux over N is given by ϕλ. The condition ϕλ|M0 :M0 →Mλ for the
diffeomorphism translates to the field as the condition that on the natural charts for N
discussed above the fifth component of the field should be the unity.

Summarizing, one can define a gauge vector field as a vector field X over N = M ×
R such that on the differential structure induced by the natural differential structure
on R have the property X4 = 1 for each q ∈ N . That is because such fields define
trough its fluxes over N the way to identify events on the spacetime models Mλ and M0

diffeomorphically.

A.2.1 Taylor expansion of a tensor field

A Taylor expansion is a convenient way to write the value of a function on some given
point of its domain in terms of its value and the value of all its derivatives on some other
near point. This is impossible for a tensor field defined on a manifold just because its value
at different points on the manifold, Tq and Tq′ for q 6= q′ ∈ N , are objects belonging to
different spaces by definition. However, a Taylor–like expansion can be defined when an
application between tensors on different points of a manifold is given, and in particular,
when this application is viewed as induced by the flux of a vector field on the manifold.

Given ϕX : R×N → N , the flux of a vector field X over N , q ∈ N and T a tensor field
on N . Since for every λ ∈ R, ϕX

λ defines a diffeomorphism of N onto N , the pull–back of

TϕX

λ (q) trough ϕ
X
λ (the tensor field T evaluated at ϕX

λ (q) ∈ N), ϕX∗
λ

(
TϕX

λ (q)

)
3, defines a

tensor evaluated at q ∈ N . Such a tensor admits the following Taylor expansion around
λ = 0, lemma 1 in [25]:

ϕX∗
λ

(
TϕX

λ (q)

)
=

∞∑

n=0

λn

n!
(Ln

XT)q , (A.6)

where (LXT)q denotes the tensor over N given by the Lie derivative of Tq both at q ∈ N
and (Ln

XT)q denotes the n–th Lie derivative under the same of T at q. For a good review
of induced maps (pull-back and push-forward maps) and Lie derivatives see e.g. chapter
5 of [98].

The general Taylor expansion (A.6) allows to define the perturbation of a tensor field.
Let X be a gauge field on the family of spacetime models N = R ×M and T a tensor
field defined on each model and extended to N according to (A.5), then the perturbation
of T can be defined as a tensor field on the background spacetime M̄ as

δ
(n)
X [T] := Ln

XT|M̄ , (A.7)

in such a way that, according to (A.6), the tensor field associated with the tensor in any
model of spacetime, since is given in the background by the pullback of ϕX

λ , can be written
as

ϕX∗
λ (T) = T̄+

∞∑

n=1

λn

n!
δ
(n)
X [T] . (A.8)

3Here the superscript * denotes the pull–back induced mapping.
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Note that the perturbations of T, δ
(n)
X [T], are tensor fields on the background, this formal-

izes the common statement in the literature that perturbations are tensor fields defined
on the background. The parameter λ used to label different models of spacetime also
works as perturbative parameter according to the gauge field definition.

A.2.2 Gauge transformations and gauge invariance

The natural question that remains from the previous construction is how the perturbation
of a tensor fields changes under a change of gauge.

Consider two gauge fields X and Y generating fluxes ϕX
λ and ψY

λ over N , respectively.
This two fields, through the pullback of its fluxes, allow to define two background repre-
sentations of the same tensor field T, ϕX∗

λ (T) and ψY∗
λ (T), and thus two perturbative

expansions of the form of (A.8).
Define a family of diffeomorphisms

Ψλ := ϕX
λ ◦ ψY

λ : N → N (∀λ ∈ R). (A.9)

Then this family satisfies the following properties: (a) for each λ ∈ R Ψλ|M̄ defines a
diffeomorphism of M̄ onto itself, (b) {Ψλ|λ ∈ R} is not an uniparametric group and (c)
for each tensor field T

ψY∗
λ (T) = Ψ∗

λ

(
ϕX∗
λ (T)

)
. (A.10)

Properties (a) and (b) follow from the construction of family (A.9), while property (c)
follows from the property of pullbacks (ϕ ◦ ψ)∗ = ψ∗◦ϕ∗, and allow to formally connect the
two background representations of any tensor field, thus defining a gauge transformation
from X to Y.

Having formalized the idea of gauge transformation is convenient to introduce the
concept of gauge invariant tensor field. Given X and Y gauge fields, a tensor field T is
said to be totally invariant if its background representations on both gauges coincide, i.e.,
if ϕX∗

λ (T) = ψY∗
λ (T).

On any practical application one is interested on perturbations up to some given order,
so that it is convenient to have a more relax definition of gauge invariance up to some
order. A tensor field T is said to be gauge invariant up to order n if all its perturbations
on both gauges, up to order n coincide, i.e., if

(∀k ≤ n) δ
(k)
X [T] = δ

(k)
Y [T] . (A.11)

For n ≥ 1 the condition for a tensor field to be gauge invariant up to order n, equation
(A.11), is equivalent to say that for every vector field V on M̄ and for all k ≤ n,

LVδ
(k)
X [T] = 0. (A.12)

This result can be probed by induction over n. For n = 1, follows from the definition of
the perturbations, equation (A.7), that

δ
(1)
X [T] = δ

(1)
Y [T] ⇔ LVT|M̄ = 0, (A.13)

so that, since X and Y define arbitrary vector fields on M̄ the field V := X −Y is an
arbitrary vector field on M̄ . By supposing (A.12) is true for some n > 1 then from the
definition of perturbations,

δ
(n+1)
X [T] = δ

(n+1)
Y [T] ⇔ LVδ

(n)
X [T] |M̄ = 0. (A.14)
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This probes the result.
The result (A.12) is a generalization of the Stewart–Walker lemma [99]. Defining a

useful way to probe for a tensor degree of freedom to be gauge invariant.
Although the result (A.12) answers to the question of how to determine whether a

tensor field is gauge invariant up to some order, the question of how do change this
perturbations under gauge transformations, equation (A.10), remains open.

In order to consider this problem, one have to introduce the concept of Knight dif-
feomorphism [25]. Let

{
V(n)|n ∈ N

}
a non–numerable family of vector fields over N

and {
φ
(n)
λ := ϕ

V(n)

λ : R×N → N |n ∈ N
}

the family of its corresponding generated fluxes. A uniparametric family of Knight dif-
feomorphisms is defined to be formed by the applications

Ψλ : R×N → N

(λ, p) 7→ Ψλ(p) := φ
(1)
λ ◦ φ

(2)
λ2

2

◦ · · · ◦ φ(n)
λn

n!

◦ · · · (q). (A.15)

That is, a Knight diffeomorphism over N is a suitable composition of the fluxes of a
non–numerable family of vector fields over N . The vector fields V(1),V(2), . . . are called
generators of the Knight diffeomorphism Ψλ. It can be probed that in general a family of
Knight diffeomorphisms (A.15) does not form a uniparametric group of diffeomorphisms.

Knight diffeomorphisms has two important properties: (a) the pullback of a tensor field
T on N induced by a uniparametric family of Knight diffeomorphisms with gerenators{
V(n)|n ∈ N

}
can be expanded around λ = 0 as, lemma 2 in [25]:

Ψ∗
λ

(
TΨλ(q)

)
=

∞∑

ℓ1=0

∞∑

ℓ2=0

· · ·
∞∑

ℓn=0

· · ·
[

∞∏

n=1

1

ℓn!

(
λn

n!

)ℓn
](
· · · Lℓn

V(n)
· · · Lℓ2

V(2)
Lℓ1

V(1)
Tq

)
,

(A.16)
∀q ∈ N . The proof of this property follows from the expansion for the pullback of the
flux of a vector field on a tensor T, equation (A.6). In fact, given q ∈ N

Ψ∗
λ

(
TΨλ(q)

)
=

(
· · ·φ(n)∗

λn

n!

◦ · · · ◦ φ(2)∗
λ2

2!

◦ φ(1)∗
λ

)

T

[

φ
(1)
λ ◦φ

(2)

λ2
2

◦···◦φ
(n)
λn
n!

◦···

]

(q)




=

(
· · ·φ(n)∗

λn

n!

◦ · · · ◦ φ(3)∗
λ3

3!

◦ φ(2)∗
λ2

2!

) ∞∑

ℓ1=0

λℓ1

ℓ1!

(
Lℓ1

V(1)
T

)
[

φ
(2)

λ2
2!

◦φ
(3)

λ3
3!

◦···◦φ
(n)
λn
n!

◦···

]

(q)

=

(
· · ·φ(n)∗

λn

n!

◦ · · · ◦ φ(4)∗
λ4

4!

◦ φ(3)∗
λ3

3!

) ∞∑

ℓ2=0

λ2ℓ2

(2!)ℓ2ℓ2!

×
∞∑

ℓ1=0

λℓ1

ℓ1!

(
Lℓ2

V(2)
Lℓ1

V(1)
T

)
[

φ
(3)

λ3
3!

◦φ
(4)

λ4
4!

◦···◦φ
(n)
λn
n!

◦···

]

(q)

=
∞∑

ℓ1=0

∞∑

ℓ2=0

· · ·
∞∑

ℓn=0

· · ·
[

λℓ1λ2ℓ2 · · ·λnℓn · · ·
(2!)ℓ2(3!)ℓ3 · · · (n!)ℓn · · · ℓ1ℓ2 · · · ℓn · · ·

]

×
(
· · · Lℓn

V(n)
· · · Lℓ2

V(2)
Lℓ1

V(1)

)
q
,
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which reduces to (A.16); and (b) given Ψ : R × N → N an uniparametric family of
diffeomorphisms over N , exist φ(1), . . . φ(2), . . . , φ(n), . . . uniparametric groups of diffeo-
morphisms over N , such that each diffeomorphism Ψλ can be written as the composition

Ψλ = φ
(1)
λ ◦ φ

(2)
λ2

2

◦ · · · ◦ φ(n)
λn

n!

◦ · · · , (A.17)

in other words, every uniparametric family of diffeomorphisms Ψλ can always be written
as a family of Knight diffeomorphisms, theorem 2 in [25].

To see a little bit better how the expansion (A.16) works, one can consider it explicitly
up to second order,

Ψ∗
λ

(
TΨλ(q)

)
≈ Tq + λ

(
LV(1)

T

)
q
+
λ2

2!

(
L2

V(1)
T+ LV(2)

T

)
q
+ · · · (A.18)

Properties (a) and (b) combined allow to treat the gauge transformation law X→ Y
given by the uniparametric family of diffeomorphisms

Ψλ = ϕX
−λ ◦ ψY

λ : M̄ → M̄, (A.19)

according to equation (A.10) as a Knight diffeomorphism. Therefore, given T a tensor
field on M , by comparing the expansions of the expression (A.10) using (A.6) and (A.16)
(or (A.18) to go up to second order only) one can determine the relations between its
perturbation on two different gauges (X and Y) up to second order as

δ
(1)
Y [T]− δ(1)X [T] = LV(1)

T, (A.20a)

δ
(2)
Y [T]− δ(2)X [T] = LV(2)

T+ L2
V(2)
T+ 2LV(1)

δ
(1)
X [T] , (A.20b)

where the V(n) are the vector generators of Ψλ seen as a Knight diffeomorphism given
according to the perturbation definiton, equation (A.7), by (proposition 3 in [25])

V(1) = Y −X, (A.21a)

V(2) = [Y,X] . (A.21b)

A.3 First order perturbations

A.3.1 Scalar–vector–tensor decomposition

Scalar–vector–tensor decomposition principle establish that for a three–dimensional dif-
ferential manifold equipped with a metric tensor γ, and a covariant derivative D, every
vector field X can be decomposed in a unique manner on a scalar mode S and one trans-
verse vector mode V, that is, the components of X are given as

X i = DiS + V i; DiVi = 0. (A.22)

Here, X has three degrees of freedom (its three components) which are distributed as one
on the scalar mode, and two on the vector mode, because of the transversal condition.
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Analogously, every second rank symmetric tensor X can be decomposed in a unique
manner on two scalar modes S1 and S2, one transverse vector mode V and a symmetric,
transverse and trace–free tensor mode T as

Xij = DiDjS1 + S2γij +D(iVj) + Tij ; DiVi = 0, DiTij = γijT
ij = 0. (A.23)

Here the six T degrees of freedom are distributed in one on each scalar mode, two on the
vector mode, because of the transverse condition, and the remaining four on the tensor
mode, because of the transverse and trace–free conditions.

A very common practice in the literature is to redistribute the scalar degrees of freedom
into the trace of X and S1, i.e., to change S2 for the trace

X = γijX
ij = ∇2S1 + 3S2, (A.24)

where ∇2 is the Laplace operator on the three–dimensional manifold, ∇2 := γijD
iDj.

In terms of the trace X the decomposition of a symmetric second rank tensor, equation
(A.23), is given by

Xij =
1

3
γijX +∆ijS1 +D(iVj) + Tij ; DiVi = 0, DiTij = γijT

ij = 0, (A.25)

where the trace–free differential operator ∆ was introduced as

∆ij = DiDj −
1

3
γij∇2 (A.26)

The most important property of the decompositions (A.22) and (A.23) or (A.25) is its
uniqueness. It is not the propose here to discuss about the conditions for this property
to be satisfied, the interested reader can see e.g. [23].

A.3.2 Metric perturbations

Consider a gauge field X. The most general way to parametrize the n–th order perturba-
tion of the metric tensor around an FLRW background (in conformal time), on the light
of scalar–vector–tensor decomposition for fields over the constant time hypersurfaces, is
given by

δ
(n)
X [g] = a2(η)

[
−2XΦ(n)dη ⊗ dη +

(
DiXB

(n) + XB
(n)
i

) (
dη ⊗ dxi + dxi ⊗ dη

)

+
(
−2XΨ(n)γij +DiDjXE

(n) +D(iXE
(n)
j) + 2XE

(n)
ij

)
dxi ⊗ dxj

]
, (A.27)

where the notation XT
(n) := δ

(n)
X [T] was introduced for simplicity. On the metric per-

turbation (A.27) the temporal component (00) defines a scalar mode parametrized as
−2XΦ(n), the mixed components (0i) and (i0) defines a vectorial field on the constant
time hypersurfaces expanded according to (A.22) into a scalar mode XB

(n) and a trans-

verse vector mode XB
(n)
i , finally, the spatial components (ij) define a symmetric tensor on

the constant time hypersurfaces decomposed according to (A.23) into two scalar modes

XΨ
(n) and XE

(n), one transverse vector mode XE
(n)
i and one symmetric, transverse and

trace–free tensor mode XE
(n)
ij .
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A.3.3 First order scalar perturbations

During this work only linear perturbation scalar modes are considered. Let XS repre-
sents the vector gauge field in wich the perturbations are purely scalar. The first order
perturbation for the metric tensor according to (A.27) is given by

δ
(1)
XS

[g] = a2
[
−2Φdη ⊗ dη +DiBdη ⊗ dxi +DiBdxi ⊗ dη

+2 (DiDjE −Ψγij) dx
i ⊗ dxj

]
, (A.28)

where for all the scalar modes S the notation is relaxed via S := XS
S(1) = δ

(1)
XS

[S].

The contravariant components of the first order perturbation to the metric tensor can
be computed by considering the identity gµν = ḡµν − ḡµλ (gλσ − ḡλσ) gσν . By perturbing
this relation up to first order one can find for a general gauge specified by X the relation

δ
(1)
X [gµν ] = −ḡνρḡµσδ(1)X [gσρ] . (A.29)

Choosing XS gauge, one finds

a2δ
(1)
XS

[
g00
]
= 2Φ, (A.30a)

a2δ
(1)
XS

[
g0i
]
= a2δ

(1)
XS

[
gi0
]
= DiB, (A.30b)

a2δ
(1)
XS

[
gij
]
= 2

(
γijΨ−DiDjE

)
. (A.30c)

The perturbations to the Christoffel symbols of second kind, equation (A.1), can
obtained by perturbing its definition directly,

δ
(1)
X [Γα

µν ] =
1

2
ḡαβ

(
−∂βδ(1)X [gµν ] + ∂νδ

(1)
X [gβµ] + ∂βδ

(1)
X [gβν ]

)

+
1

2
δ
(1)
X

[
gαβ
]
(−∂β ḡµν + ∂ν ḡβµ + ∂β ḡβν) , (A.31)

so that, on the XS gauge

δ
(1)
XS

[
Γ0

00

]
= Φ′, (A.32a)

δ
(1)
XS

[
Γ0

0i

]
= δ

(1)
XS

[
Γ0

i0

]
= Di (Φ +HB) , (A.32b)

δ
(1)
XS

[
Γ0

ij

]
= − [2H (Φ + Ψ) + Ψ′] γij −DiDj (B − 2HE − E ′) , (A.32c)

δ
(1)
XS

[
Γi

00

]
= Di (Φ + B′ +HB) , (A.32d)

δ
(1)
XS

[
Γi

0j

]
= δ

(1)
XS

[
Γi

j0

]
= −Ψ′δij +DiDjE

′, (A.32e)

δ
(1)
XS

[
Γi

jk

]
= γjkD

iΨ− γikDjΨ− γijDkΨ− γjkHDiB

+DiDjDkE.
(A.32f)

In analogous way one can compute the perturbation of the mixed components of the
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Ricci tensor as

a2δ
(1)
XS

[
R0

0

]
= −6H′Φ− 3H (Φ + Ψ)− 3Ψ′′ +∇2 [−Φ−H (B − E ′)− B′ + E ′] ,

(A.33a)

a2δ
(1)
XS

[
R0

i

]
= 2Di (−HΦ−Ψ′ +KB) , (A.33b)

a2δ
(1)
XS

[
Ri

0

]
= 2Di

[
HΦ +Ψ′ +

(
H2 −H′

)
B
]
, (A.33c)

a2δ
(1)
XS

[
Ri

j

]
= γij

{
−2Φ

(
2H2 +H′

)
+ 4KΨ−H (Φ′ + 5Ψ′)

+∇2 [Ψ−H (B − E ′)]
}

+DiDj [−Φ +Ψ− 2H (B − E ′)− (B′ − E ′′)− 4KE] ,

(A.33d)

and of the Ricci curvature scalar

a2δ
(1)
XS

[R] = −12
(
H2 −H′

)
Φ− 6H (Φ′ + 3Ψ′) + 12KΨ− 6Ψ′′

+∇2 [2 (−Φ + 2Ψ)− 3H (2B − E ′)− 2 (B′ − E ′′)− 4KE] .
(A.34)

With this results the mixed components of the first order perturbation for the Einstein
tensor are given by

a2δ
(1)
XS

[
G0

0

]
= 6H2Φ− 6KΨ+ 6HΨ′

+∇2 [−2Ψ + 2H (B − E ′) + 2KE] ,
(A.35a)

a2δ
(1)
XS

[
G0

i

]
= 2Di (−HΦ−Ψ′ +KB) , (A.35b)

a2δ
(1)
XS

[
Gi

0

]
= 2Di

[
HΦ +Ψ′ +

(
H2 −H′

)
B
]
, (A.35c)

a2δ
(1)
XS

[
Gi

j

]
=

1

3
γijG̃

(1)
XS

+∆i
j [− (Φ−Ψ)− 2H (B − E ′)

− (B′ − E ′′)− 2KE] ;
(A.35d)

where the trace–free part had been separated from the trace–full part given by:

G̃
(1)
XS

= 6
(
H2 + 2H′

)
Φ + 6H (Φ′ + 2Ψ′)− 6KΨ+ 6Ψ′′

+ 2∇2 [(Φ−Ψ) + 2H (B − E ′) + (B′ − E ′′)] .
(A.35e)

Gauge invariant variables

The gauge transformation law for first order perturbations of a tensor, equation (A.20a),
can be used to determine the transformation properties of the scalar fields XS

Φ(1),XS
Ψ(1),XS

B(1),XS
E(1),

defining the metric perturbations. Consider a second gauge field YS parametrized as
(A.28) but with scalar fields YS

Φ(1),YS
Ψ(1),YS

B(1),YS
E(1) and consider the vector field

generator of the Knight diffeomorphism of the gauge transformation XS → YS given by

V(1) = YS −XS = T (1)∂0 +
(
DiL(1) + L(1)i

)
∂i; DiL

(1)
i = 0, (A.36)

according to the scalar–vector–tensor decomposition (A.22).



118 Cosmological perturbations

Thus, by computing the Lie derivative of ḡ along V1 LV(1)
ḡ and separating the scalar

modes for each component one can find

YS
Φ(1) − XS

Φ(1) = HT (1) + T (1)′ , (A.37a)

YS
Ψ(1) − XS

Ψ(1) = −HT (1), (A.37b)

YS
B(1) − XS

B(1) = L(1)′ − T (1), (A.37c)

YS
E(1) − XS

E(1) = L(1). (A.37d)

Therefore, it is not so difficult to see that the combinations

Φ̂(1) = XS
Φ(1) +

(
XS
B(1) − XS

E(1)′
)′
+H

(
XS
B(1) − XS

E(1)′
)

(A.38a)

Ψ̂(1) = XS
Ψ(1) −H

(
XS
B(1) − XS

E(1)′
)

(A.38b)

are gauge invariant scalar modes for the metric perturbations. However it is important
to remark that there are other possible choses for this two variables, this is, another kind
of combinations giving rise to gauge invariant quantities, see e.g. §5.2 in [2].

A.3.4 Matter–energy perturbations

The energy–momentum tensor at background level on a FLRW model is given by a perfect
fluid one, see the discussion in section 1.1.

T̄µν = (ρ̄+ p̄) ūµūν + p̄ḡµν , (A.39)

where ūµ is the 4–velocity of fundamental observers, ρ̄ the energy density and p̄ the
pressure of the fluid. On a perturbed model, it can be generalized to have the form

Tµν = (ρ+ p)uµuν + pgµν + πµν , (A.40)

where πµν accounts for anisotropic stress and therefore is a symmetric trace–free second
rank tensor on the constant time hypersurfaces.

The up to first order four velocity is given by

uµ =
dxµ

dt
=

1

a

dxµ

dη
= ūµ + δuµ, (A.41)

where ūµ = a−1δµ0 and should be a time–like four–vector, gµνu
µuν = −1. This normal-

ization condition allows to derive the actual expressions for the components of the four
velocity (covariant and contravariant) as

uµ =
1

a

(
1− Φ, Div

)
,

uµ = a (−1− Φ, Div +DiB) .
(A.42)

Therefore, the mixed components of the first order perturbations of the energy–momentum
tensor should be found to be

δT 0
0 = −δρ, (A.43a)

δT 0
i = (ρ̄+ p̄) (Div +DiB) , (A.43b)

δT i
j = δpγij + a2δπi

j. (A.43c)
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Here the anisotropic stress perturbation δπij can be decomposed according to scalar–
vector–tensor decomposition (A.25) as

δπi
j = ∆i

jΠ+D(iΠj) +Πi
j; DiΠi = DiΠij = γijΠ

ij = 0, (A.44)

because the anisotropic stress is trace–free by construction.
Here the interest is on the scalar modes of first order perturbations. One can define a

gauge fixing only scalar perturbations to the energy–momentum tensor by writting

δ
(1)
XS

[
T 0

0

]
= −δρ, (A.45a)

δ
(1)
XS

[
T 0

i

]
= (ρ̄+ p̄) (Div +DiB) , (A.45b)

δ
(1)
XS

[
T i

j

]
= δpγij + a2∆i

jΠ. (A.45c)

Gauge invariant variables

As for the metric perturbations, the gauge transformation law for first order perturbations
of a tensor field, equation (A.20a), can be used to determine the transformation laws of the
scalar modes of the components of the first order perturbation of the energy–momentum
tensor, δρ, v, δp and Π. By computing the Lie derivative of the background energy–
momentum tensor along the vector field generator of the Knight diffeomorphism of gauge
transformation V(1) (equation (A.36)) LV(1)

T̄ one can find

YS
δρ− XS

δρ = ρ̄′T (1), (A.46a)

YS
v − XS

v = −L(1)′, (A.46b)

YS
δp− XS

δp = p̄′T (1), (A.46c)

YS
Π− XS

Π = 0. (A.46d)

Therefore, by also using the transformation laws for the metric scalar modes, equations
(A.37), one can verify that the combinations

δ̂ρ = XS
δρ+ ρ̄′

(
XS
v + XS

B(1)
)
, (A.47a)

δ̂p = XS
δp+ p̄′

(
XS
v + XS

B(1)
)
, (A.47b)

v̂ = XS
v + XS

E(1)′, (A.47c)

Π̂ = XS
Π, (A.47d)

are gauge invariant quantities. Again, these are just one possible set of combinations
giving rise to gauge invariant quantities, there are other that we do not mention here
because they are outside of the scope of the present work. See e.g. §5.2 in [2].

A.3.5 First order Einstein field equations

The first order Einstein field equations,

δ
(1)
XS

[Gµ
ν ] = κδ

(1)
XS

[T µ
ν ] (A.48)

determine the evolution of the scalar modes of perturbations. Four independent scalar
equations can be found from (A.48), given by the (00) and (i0) components and the trace
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and trace free part of (ij) components. According to equations (A.35) and (A.43) one
ends up with the system

(
∇2 + 3K

)
Ψ− 3H (Ψ′ +HΦ) +H∇2 (E ′ −B) = a2

κ

2
δρ, (A.49a)

HΦ +Ψ′ −KB = −a2κ
2
(ρ̄+ p̄) (v +B) ,(A.49b)

Φ′′ + 2HΦ′ −KΦ +HΨ′ +
(
2H′ +H2

)
Ψ = a2

κ

2
δp, (A.49c)

(E ′ −B)
′
+ 2H (E ′ −B) + (Φ−Ψ) = a2κΠ. (A.49d)

Total matter (pure dust) fluid

For a pure dust–like energy–momentum tensor, pressure–less fluid, p = πij = 0 so the
system (A.49) can be reduced to

(
∇2 + 3K

)
Ψ− 3H (Ψ′ +HΦ) +H∇2 (E ′ −B) = a2

κ

2
δρ, (A.50a)

HΦ +Ψ′ −KB = −a2κ
2
ρ̄ (v + B) , (A.50b)

Φ′′ + 2HΦ′ −KΦ +HΨ′ +
(
2H′ +H2

)
Ψ = 0, (A.50c)

(E ′ − B)
′
+ 2H (E ′ −B) + (Φ−Ψ) = 0. (A.50d)

This is a system of four equations for six degrees of freedom, four metric perturbations and
two fluid quantities, the perturbation to the energy density δρ and the peculiar velocity
potential v. However, taking into account the gauge freedom to choose this potentials,
one knows from §A.3.3 and §A.3.4 that from the four metric degrees of freedom it can be
constructed two gauge invariant quantities given by (A.38) and the two fluid ones can be
combined to give the gauge invariant quantities (A.47).

Therefore, introducing the gauge invariant scalar modes of (A.38) and (A.47) and the
gauge invariant fluctuation of matter, δ̂ := δ̂ρ/ρ̄, the system (A.50) is equivalent to

(
∇2 + 3K

)
Φ̂− 3H

(
Φ̂′ +HΦ̂

)
= a2

κ

2
ρ̄
(
δ̂ − 3Hv̂

)
, (A.51a)

Φ̂′ +HΦ̂ = −a2κ
2
ρ̄v̂, (A.51b)

Φ̂′′ + 3HΦ̂′ +
(
2H′ +H2 −K

)
Φ̂ = 0. (A.51c)

This system of equations together with the background EFE, equations (1.11),

2H′ +H2 +K = −a2κp̄ = 0, (A.52a)

H2 +K = a2
κ

3
ρ̄, (A.52b)

can be combined to eliminate terms with explicit dependence of conformal time derivatives
of H and Φ, this is, to obtain evolution equations for δ, v and Φ,

δ̂′ +
(
∇2 + 3K

)
v̂ = 0, (A.53a)

v̂′ +Hv̂ + Φ̂ = 0, (A.53b)
(
∇2 + 3K

)
Φ̂ = a2

κ

2
ρ̄δ̂. (A.53c)
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Since GR was assumed on top of the derivation of the system (A.53) the first two
equations can be shown to be equivalent to the first order perturbations to the local
conservation of energy–momentum tensor ∇µT

µ
ν = 0. That is because the EFE formally

contain this equations according to the Bianchi identities.
The evolution equations (A.53) are equivalent in form to fluid equations obtained

via the Poisson–Vlasov system in Newtonian theory. However, as long as they are a
relativistic result according to the treatment presented, they have another interpretation.
The system (A.53) accounts for evolution equations to gauge invariant, then physically
observable degees of freedom, first order perturbations of matter fluid around a FLRW
background model.
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Appendix B

Scalar harmonic modes in the
Universe

In the present appendix we consider the problem of determine and characterize the scalar
harmonic modes in FLRW Universes properly accounting for its spatial curvature. In
order to do so, we closely follow the treatment of [35].

The goal is to construct the spherical harmonic decomposition of a scalar field defined
on the constant time hypersurfaces of FLRW models. Such a decomposition represents
a natural generalization of the standard Fourier decomposition used in the spatially flat
analysis and is at the heart of the definition of two-point statistics for scalar fields in the
Universe, see the chapter 2.

In order to construct an orthonormal complete set of harmonic functions one need to
obtain a set of scalar functions satisfying the Helmholtz equation

(
∇2 + k2

)
Q = 0 (B.1)

on the constant time hypersurfaces of an FLRW model, where the action of the Laplacian
operator, ∇2Q := γijDiDjQ

1, can be expanded using the identity (see e.g. §32.2.4 of
[100])

∇2Q = γij
(
∂i∂jQ− Γk

ij∂kQ
)
. (B.2)

In spherical coordinates xi = (χ, θ, ϕ),

∇2Q =





−K
sinh2(χ)

[
∂

∂χ

(
sinh2(χ)

∂Q

∂χ

)
+

1

sin(θ)

∂

∂θ

(
sin(θ)

∂Q

∂θ

)
+

1

sin2(θ)

∂2Q

∂ϕ2

]
,

1

χ2

[
∂

∂χ

(
χ2∂Q

∂χ

)
+

1

sin(θ)

∂

∂θ

(
sin(θ)

∂Q

∂θ

)
+

1

sin2(θ)

∂2Q

∂ϕ2

]
,

K

sin2(χ)

[
∂

∂χ

(
sin2(χ)

∂Q

∂χ

)
+

1

sin(θ)

∂

∂θ

(
sin(θ)

∂Q

∂θ

)
+

1

sin2(θ)

∂2Q

∂ϕ2

]
,

(B.3)

for K < 0, = 0 and > 0 respectively.

Separating variables, Q = Xℓ(χ)Y
m
ℓ (θ, ϕ), it is not so difficult to see that the angular

part solution is given by the Spherical Harmonic functions Y m
ℓ (θ, ϕ) and the radial part

1remember that Di denote the ith component of the covariant derivative of a tensor in the constant
time hypersurfaces.
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Xℓ(χ), associated with Y m
ℓ , should satisfy the radial equation

1

sinh2(χ)

∂

∂χ

[
sinh2(χ)

∂Xℓ

∂χ

]
+

[
ν2 + 1− ℓ (ℓ+ 1)

sinh2(χ)

]
Xℓ = 0 K < 0, (B.4a)

1

χ2

∂

∂χ

(
χ2∂Xℓ

∂χ

)
+

[
ν2 − ℓ (ℓ+ 1)

χ2

]
Xℓ = 0 K = 0, (B.4b)

1

sin2(χ)

∂

∂χ

[
sin2(χ)

∂Xℓ

∂χ

]
+

[
ν2 − 1− ℓ (ℓ+ 1)

sin2(χ)

]
Xℓ = 0 K > 0, (B.4c)

where the adimensional eigenvalue ν was introduced by convenience via

k2 = −K
(
ν2 + 1

)
or ν2 := −

(
k2/K + 1

)
, K < 0, (B.5a)

k2 = ν2 or ν2 := k2, K = 0, (B.5b)

k2 = K
(
ν2 − 1

)
or ν2 :=

(
k2/K − 1

)
, K > 0. (B.5c)

The solutions for this equations are known in the literature, see e.g. [101, 102] and the
recent work in the context of Boltzmann codes [103], which we also follow closely in our
treatment. For the K = 0 case, the equation is nothing but the spherical Bessel equation,

d2Xℓ

dχ2
+

2

χ

dXℓ

dχ
+

[
ν2 − ℓ(ℓ+ 1)

χ2

]
Xℓ = 0; (B.6)

while for the K 6= 0 cases, both equations can be reduced to the associated Legendre
equation,

d2Yℓ
dξ2

+
cos(ξ)

sin(ξ)

dYℓ
dξ

+

[
λ(λ+ 1)− µ2

sin2(ξ)

]
Yℓ = 0. (B.7)

In Equation (B.4a) the changes of variables χ =: iξ and Xℓ(χ) =: sin−1/2(ξ)Yℓ(ξ) should
be introduced together with the identifications µ = 1

2
+ℓ and λ = −1

2
+ iν; while in (B.4c)

the corresponding changes are χ =: ξ and Xℓ(χ) =: sin−1/2(ξ)Yℓ(ξ) and the identifications
µ = 1

2
+ ℓ and λ = −1

2
+ ν.

The solutions for the K = 0 case are spherical Bessel functions, two linearly indepen-
dent solutions are then given by the first and second kind of this functions, jℓ(χ) and
nℓ(χ); while for the K 6= 0 cases, solutions are given by associated Legendre functions
P µ
λ (cos(ξ)). Since for both cases (K negative or positive) µ is non–integer, one can choose
P µ
λ (cos(ξ)) as P−µ

λ (cos(ξ)) as two linearly independent solutions. By imposing for the
solutions to be regular at the origin, the part of the solutions proportional to nℓ and P

−ν
λ

for the K = 0 and K 6= 0 should necessarily vanish, so that one end up with conical or
Mehler, spherical Bessel and toroidal or ring functions [104, 105] for negative, zero and
positive curvature, respectively:

X
(−)
ℓ (χ, ν) = (−1)ℓM (−)

ℓ (ν)

√
π

2 sinh(χ)
P

−1/2−ℓ
−1/2+iν (cosh(χ)) , (B.8a)

X
(0)
ℓ (χ, ν) = (−1)ℓνℓjℓ(νχ), (B.8b)

X
(+)
ℓ (χ, ν) = (−1)ℓM (+)

ℓ (ν)

√
π

2 sin(χ)
P

−1/2−ℓ
−1/2+ν (cos(χ)), (B.8c)
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where the normalization coefficients, given by

M
(±)
ℓ (ν) :=





1 ℓ = 0,

ℓ∏

i=1

(
ν2 ± i2

)
ℓ 6= 0,

(B.9)

were chosen taking into account the recursion relations for the spherical Bessel and associ-
ated Legendre functions in order to keep simple its corresponding forms for the harmonic
modes Xℓ. In fact, with these normalizations the derivatives and recursion relations
acquire particularly symmetric forms:

∂

∂χ

[
X

(−)
ℓ (χ, ν)

sinhℓ(χ)

]
=
X

(−)
ℓ+1(χ, ν)

sinhℓ(χ)
, (B.10a)

∂

∂χ

[
X

(0)
ℓ (χ, ν)

χℓ

]
=
X

(0)
ℓ+1(χ, ν)

χℓ
, (B.10b)

∂

∂χ

[
X

(+)
ℓ (χ, ν)

sinℓ(χ)

]
=
X

(+)
ℓ+1(χ, ν)

sinℓ(χ)
; (B.10c)

and

(
ν2 + ℓ2

)
X

(−)
ℓ−1(χ, ν) + (2ℓ+ 1)

cosh(χ)

sinh(χ)
X

(−)
ℓ (χ, ν) +X

(−)
ℓ+1(χ, ν) = 0, (B.11a)

ν2X
(0)
ℓ−1(χ, ν) +

2ℓ+ 1

χ
X

(0)
ℓ (χ, ν) +X

(0)
ℓ+1(χ, ν) = 0, (B.11b)

(
ν2 − ℓ2

)
X

(+)
ℓ−1(χ, ν) + (2ℓ+ 1)

cos(χ)

sin(χ)
X

(+)
ℓ (χ, ν) +X

(+)
ℓ+1(χ, ν) = 0; (B.11c)

respectively [35, 102].
The K > 0 case has an important special property. To cover the spacetime the radial

coordinate χ must lie on the interval [0, π] on the K > 0 case, see 1.1. This introduces a

boundary condition to be satisfied by the harmonic modes X
(+)
ℓ (χ, ν), the limits χ → π

and χ→ 0 should coincide. The limit χ→ π can be thought as x := cos(χ)→ −1+ and
χ → 0 as x → 1−. Then, In order to relate the two limits one can use the connection
formula (see e.g., §14.9 of [104])

P µ
λ (−x) = cos ((λ+ µ)π)P µ

λ (x)−
2

π
sin ((λ+ µ)π)Qµ

λ(x), (B.12)

which establish the parity properties of Legendre functions. As was already mentioned,
one can see that in the limit x → 1− (χ → 0) P µ

λ (x) is regular while Qµ
λ(x) diverges,

therefore, for the boundary condition to be regular at χ = π the coefficient of Qµ
λ(x)

in (B.12) should be identically zero for all possible values of µ and λ, i.e., introducing
µ = −1

2
−ℓ and λ = −1

2
+ν (as should be for K > 0 case) one finds the following condition

to hold:
sin ((ν − ℓ− 1)π) = 0. (B.13)

So that one should conclude that the possible values for ν must be integer. This is, for
closed FLRW models the Laplace operator has a discrete spectrum.
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The above property is unique of the K > 0 case. For the open and flat cases, K < 0
and K = 0 respectively, the radial coordinate should lie on [0,∞) in order to cover the
spacetime, so no boundary condition should be imposed.

The expression (B.12) together with the above result that ν should be integer allow

to study the parity properties of X
(+)
ℓ functions. Let χ ∈ [0, π], then

X
(+)
ℓ (π − χ, ν) = (−1)ℓM (+)

ℓ (ν)

√
π

2 sin(π − χ)P
− 1

2
−ℓ

− 1
2
+ν

(− cos(χ))

= (−1)ℓM (+)
ℓ (ν)

√
π

2 sin(χ)
cos ((ν − ℓ− 1)π)P

− 1
2
−ℓ

− 1
2
+ν

(cos(χ))

= (−1)ν−ℓ−1X
(+)
ℓ (χ, ν). (B.14)

Thus, Xℓ(χ, ν) is symmetric/anti-symmetric around χ = π/2 for (ν − ℓ− 1) even/odd.

For ν a positive integer the X
(+)
ℓ functions can be represented in terms of the Gegen-

bauer (or ultraspherical) polynomials as

X
(+)
ℓ (χ, ν) =

(−2)ℓℓ! sin(χ)
ν

Cℓ+1
ν−ℓ−1 (cos(χ)) . (B.15)

This relation can be probed by using the general relation between Legendre and Gegen-
bauer functions (see e.g., §14.3 of [104]),

P µ
λ (x) =

2µΓ(1− 2µ)Γ(λ+ µ+ 1)

Γ(λ− µ+ 1)Γ(1− µ)(1− x2)µ/2C
1
2
−µ

λ+µ (x), (B.16)

noting that in the K > 0 case λ + µ = ν − ℓ − 1, which is the order of Gegenbauer
polynomial, is a natural number; together with the fact that the normalization factor
M

(+)
ℓ (ν) can be written in terms of factorials as

M
(+)
ℓ (ν) =

[
ℓ∏

n=1

(ν − n)
][

ℓ∏

n=1

(ν + n)

]
=

(ν − 1)!

(ν − ℓ− 1)!

(ℓ+ ν)!

ν!
=

(ν + ℓ)!

ν(ν − ℓ− 1)!
. (B.17)

Computing explicitly,

X
(+)
ℓ (χ, ν) = (−1)ℓM (+)

ℓ (ν)

√
π

2 sin(χ)
P

− 1
2
−ℓ

− 1
2
+ν

(cos(χ))

= (−1)ℓ (ν + ℓ)!

ν(ν − ℓ− 1)!

√
π

2 sin(χ)

× 2−
1
2
−ℓΓ(2ℓ+ 2)Γ(ν − ℓ)

Γ(ν + ℓ+ 1)Γ(ℓ+ 3
2
) sin− 1

2
−ℓ(χ)

Cℓ+1
ν−ℓ−1 (cos(χ))

=
(−1)ℓ
ν

2ℓ sinℓ(χ)ℓ!Cℓ+1
ν−ℓ−1 (cos(χ)) , (B.18)

where in the last line the Legendre duplication formula (see e.g. §7.4.2 from [100]) was
applied to write

Γ (2(ℓ+ 1)) =
22ℓ+1

√
π

Γ(ℓ+ 1)Γ

(
ℓ+

3

2

)
. (B.19)



127

The recurrence relations for the derivatives, Equations (B.10), can be rewritten as

1

sinh(χ)

∂

∂χ

[
X

(−)
ℓ (χ, ν)

sinhℓ(χ)

]
=
X

(−)
ℓ+1(χ, ν)

sinhℓ+1(χ)
, (B.20a)

1

χ

∂

∂χ

[
X

(0)
ℓ (χ, ν)

χℓ

]
=
X

(0)
ℓ+1(χ, ν)

χℓ+1
, (B.20b)

1

sin(χ)

∂

∂χ

[
X

(+)
ℓ (χ, ν)

sinℓ(χ)

]
=
X

(+)
ℓ+1(χ, ν)

sinℓ+1(χ)
; (B.20c)

so that it follows that

[
1

sinh(χ)

∂

∂χ

]m [
X

(−)
ℓ (χ, ν)

sinhℓ(χ)

]
=
X

(−)
ℓ+m(χ, ν)

sinhℓ+m(χ)
, (B.21a)

[
1

χ

∂

∂χ

]m [
X

(0)
ℓ (χ, ν)

χℓ

]
=
X

(0)
ℓ+m(χ, ν)

χℓ+m
, (B.21b)

[
1

sin(χ)

∂

∂χ

]m [
X

(+)
ℓ (χ, ν)

sinℓ(χ)

]
=
X

(+)
ℓ+m(χ, ν)

sinℓ+m(χ)
. (B.21c)

This relations are valid for all m, ℓ ∈ N and χ, ν on the specific domains for each case. In
particular, for ℓ = 0, they express a relation between X0 and Xm for every m ∈ N. This
relations can be rewritten on the following convenient way:

X
(−)
ℓ (χ, ν) = sinhℓ(χ)

(
1

sinh(χ)

∂

∂χ

)ℓ

X
(−)
0 (χ, ν), (B.22a)

X
(0)
ℓ (χ, ν) = χℓ

(
1

χ

∂

∂χ

)ℓ

X
(0)
0 (χ, ν), (B.22b)

X
(+)
ℓ (χ, ν) = sinℓ(χ)

(
1

sin(χ)

∂

∂χ

)ℓ

X
(+)
0 (χ, ν). (B.22c)

The relations between Xℓ and X0 given by Equations (B.22) can be used to properly
construct all the harmonic modes Xℓ. By solving the ℓ = 0 case of Equations (B.4) can
be easily found that

X
(−)
0 =

sin(νχ)

ν sinh(χ)
, (B.23a)

X
(0)
0 =

sin(νχ)

νχ
, (B.23b)

X
(+)
0 =

sin(νχ)

ν sin(χ)
. (B.23c)
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Thus, the following closed form for the harmonic modes holds:

X
(−)
ℓ (χ, ν) =

sinhℓ(χ)

ν

dℓ

d (cosh(χ))ℓ

(
sin(νχ)

sinh(χ)

)
, for ν2 ≥ 0, K < 0; (B.24a)

X
(0)
ℓ (χ, ν) =

χℓ

ν

(
1

χ

∂

∂χ

)ℓ(
sin(νχ)

χ

)
, for ν2 ≥ 0, K = 0; (B.24b)

X
(+)
ℓ (χ, ν) =

(−1)ℓ sinℓ(χ)

ν

dℓ

d (cos(χ))ℓ

(
sin(νχ)

sin(χ)

)
, for ν = 2, 3, 4 . . . , K > 0. (B.24c)

In the limit χ → 0 all the Xℓ functions behave like χℓ, irrespective of the sign of K;
of course, with appropriate constants of normalization. In other words,

lim
χ→0

Xℓ ∝ χℓ. (B.25)

It follows then that at χ = 0 the only non–zero harmonic mode is the one with ℓ = 0, i.e.,

Xℓ(χ = 0, ν) = δℓ0. (B.26)

Orthogonality and completeness relations for the Xℓ functions follows from the same
relations for the spherical Bessel and Legendre functions. It is convenient to introduce
a different normalization from that adopted on (B.8). Define new normalized harmonic
modes

X̂
(−)
ℓ (χ, ν) :=

X(−)(χ, ν)√
M (−)(ν)

= (−1)ℓ
√
πM

(−)
ℓ (ν)

2 sinh(χ)
P

− 1
2
−ℓ

− 1
2
+iν

(cosh(χ)) , (B.27a)

X̂
(0)
ℓ (χ, ν) :=

X(0)(χ, ν)

νℓ
= (−1)ℓjℓ(νχ), (B.27b)

X̂
(+)
ℓ (χ, ν) :=

X(+)(χ, ν)√
M (+)(ν)

= (−1)ℓ
√
πM

(+)
ℓ (ν)

2 sin(χ)
P

− 1
2
−ℓ

− 1
2
+ν

(cos(χ)) ; (B.27c)

then orthogonality and recurrence relations can be written as:

4π

∫
dχ sinh2(χ)X̂

(−)
ℓ (χ, ν)X̂

(−)
ℓ (χ, ν ′) =

2π2

ν2
δD (ν − ν ′) , (B.28a)

4π

∫
dχχ2X̂

(0)
ℓ (χ, ν)X̂

(0)
ℓ (χ, ν ′) =

2π2

ν2
δD (ν − ν ′) , (B.28b)

4π

∫
dχ sin2(χ)X̂

(+)
ℓ (χ, ν)X̂

(+)
ℓ (χ, ν ′) =

2π2

ν2
δνν′ ; (B.28c)

and
∫

dν ν2

2π2
X̂

(−)
ℓ (χ, ν)X̂

(−)
ℓ (χ′, ν) =

δD (χ− χ′)

4π sinh2(χ)
, (B.29a)

∫
dν ν2

2π2
X̂

(0)
ℓ (χ, ν)X̂

(0)
ℓ (χ′, ν) =

δD (χ− χ′)

4πχ2
, (B.29b)

∞∑

ν=2

dν ν2

2π2
X̂

(+)
ℓ (χ, ν)X̂

(+)
ℓ (χ′, ν) =

δD (χ− χ′)

4π sin2(χ)
, (B.29c)
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respectively. Note that for the K > 0 case the discreteness of the spectrum should be
taken into account.

Since according to the normalization coefficients, equation (B.9), irrespective of the
curvature sign of the curvature, Mℓ=0(ν) = 1 for all possible values of ν, the property of
the scalar harmonic modes Xℓ to be non–null only for ℓ = 0 (the lowest mode), Equation
(B.26), also holds on the new normalization convention of Equations (B.27),

X̂ℓ(χ = 0, ν) = δℓ0. (B.30)

Figure B.1: Scalar harmonic modes Xℓ, ℓ = 0, 1, 2, 3, for ν = 5, as a function of the
radial coordinate χ. The red, green and blue lines represent K < 0, K = 0 and K > 0
cases respectively.

In order to illustrate some of the properties studied, from Equations (B.24) the ℓ =
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1, 2, 3 modes are constructed to be (the ℓ = 0 are given by Equations (B.23)):

X
(−)
1 =

1

ν sinh2 χ
[− cosh(χ) sin(νχ) + ν sinh(χ) cos(νχ)] , (B.31a)

X
(−)
2 =

1

ν sinh3 χ

{[
3− (ν2 − 2) sinh2(χ)

]
sin(νχ)− 3ν sinh(χ) cosh(χ) cos(νχ)

}
,

(B.31b)

X
(−)
3 =

1

ν sinh4(χ)

{
cosh(χ)

[
−15 + 6(ν2 − 1) sinh2(χ)

]
sin(νχ)

+ν sinh(χ)
[
15− (ν2 − 11) sinh2(χ)

]
cos(νχ)

}
,

(B.31c)

for K < 0;

X
(0)
1 =

1

νχ2
[− sin(νχ) + νχ cos(νχ)] , (B.32)

X
(0)
2 =

1

νχ3

[(
3− ν2χ2

)
sin(νχ)− 3νχ cos(νχ)

]
, (B.33)

X
(0)
3 =

1

νχ4

[(
−15 + 6ν2χ2

)
sin(νχ) + νχ

(
15− ν2χ2

)
cos(νχ)

]
, (B.34)

for K = 0; and

X
(+)
1 =

1

ν sin2(χ)
[− cos(χ) sin(νχ) + ν sin(χ) cos(νχ)] , (B.35a)

X
(+)
2 =

1

ν sin3(χ)

{[
3− (ν2 + 2) sin2(χ)

]
sin(νχ)− 3ν sin(χ) cos(χ) cos(νχ)

}
, (B.35b)

X
(+)
3 =

1

ν sin4(χ)

{
cos(χ)

[
−15 + 6(ν2 + 1) sin2(χ)

]
sin(νχ)

+ν sin(χ)
[
15− (ν2 + 11) sin2(χ)

]
cos(νχ)

}
,

(B.35c)

for K > 0.

Figure B.1 shows the radial harmonic modes ℓ = 0, 1, 2, 3, for ν = 5, as a function of
the radial coordinate χ, Xℓ. The red, green and blue lines represent K < 0, K = 0 and
K > 0 cases respectively. It can be seen how the three different curvature cases for the
different ℓ’s converge to be consistent with the flat case Universe model as χ → 0. The
special feature of the closed Universe introduced by the boundary conditions at χ = 0 and
χ = π are shown, together with its special property of being symmetric around χ = π/2
for ν − ℓ − 1 even, so in the cases shown (ν = 5), for ℓ even. Also, it can be seen that
the ℓ = 0 multipoles are the only ones to go to the unity when χ→ 0 and all the others
converge to zero.

B.1 Harmonic decomposition of a scalar field

As a direct consequence of the completeness and orthogonal relations for the Harmonic
Modes X̂ℓ follows the proper generalization for curved spaces of the harmonic expansion
for a general scalar field defined on the constant time hypersurfaces of FLRW models.
Let f = f(χ, θ, ϕ) be a scalar field on the constant time hypersurfaces of a FLRW model
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with spatial constant curvature K. The field f can be expanded on the harmonic modes
Xℓ depending on the sign of K as:

δ(χ, θ, ϕ) =
∞∑

ℓ=0

ℓ∑

m=−ℓ

∫
dν ν2

2π2
δℓm(ν)X̂

(−)
ℓ (χ, ν)Y m

ℓ (θ, ϕ), for K < 0; (B.36a)

δ(χ, θ, ϕ) =
∞∑

ℓ=0

ℓ∑

m=−ℓ

∫
dν ν2

2π2
δℓm(ν)X̂

(0)
ℓ (χ, ν)Y m

ℓ (θ, ϕ), for K = 0; (B.36b)

δ(χ, θ, ϕ) =
∞∑

ℓ=0

ℓ∑

m=−ℓ

∞∑

ν=2

ν2

2π2
δℓm(ν)X̂

(+)
ℓ (χ, ν)Y m

ℓ (θ, ϕ), for K > 0. (B.36c)

The associated inverse expansions are given by:

δℓm(ν) = 4π

∫ ∞

0

dχ sinh2(χ)

∫
d2Ω δ(χ, θ, ϕ)X̂

(−)
ℓ (χ, ν)Y m∗

ℓ (θ, ϕ), for K < 0; (B.37a)

δℓm(ν) = 4π

∫ ∞

0

dχχ2

∫
d2Ω δ(χ, θ, ϕ)X̂

(0)
ℓ (χ, ν)Y m∗

ℓ (θ, ϕ), for K = 0; (B.37b)

δℓm(ν) = 4π

∫ π

0

dχ sin2(χ)

∫
d2Ω δ(χ, θ, ϕ)X̂

(+)
ℓ (χ, ν)Y m∗

ℓ (θ, ϕ), for K > 0; (B.37c)

where the ∗ notation denotes complex conjugate.



132 Scalar harmonic modes in the Universe



Appendix C

Linear redshift space distortions in
the Universe

As discussed on §A.3 the evolution of the matter density fluctuations during structure
formation in the Universe sources coherent motions in the matter described by the linear
perturbations to the Einstein field equations (A.53). These peculiar velocities introduce a
radial anisotropic distortion in redshift–space via a Doppler effect. This collective effect
for all matter is known as redshift–space distortion (RSD) and provide a handle on the
peculiar velocity field.

For a review of RSD see e.g. [106]. In general terms, the overall picture of RSD can be
summarized as follows: in the linear regime (i.e., on sufficiently large scales), the distortion
is a “squashing ” in the radial (line of sight) direction, while in the nonlinear regime there
is a stretching (“finger of god”) effect. On large scales, the peculiar velocity of an infalling
shell is small compared to its radius, causing the shell to appear squashed. On smaller
scales, not only is the radius of a shell smaller, but also its peculiar infall velocity tends to
be larger. For the shell that is just at turnaround, its peculiar velocity cancels the Hubble
expansion, and it appears collapsed to a single velocity in redshift space. On even smaller
scales, shells that are collapsing in proper coordinates appear inside out in redshift space.
The combination of collapsing shells with previously collapsed, virialized shells gives rise
to the finger of god shape.

The goal of the present appendix is to provide analytic results for the configuration–
space representations of the redshift–space distortion operator, which determines the re-
lation between real– and redshift–space matter fluctuations in the linear regime in the
context of FLRW Universe models. In order to do so we closely follow the treatment
of [35]. The Appendix begins with a brief discussion of redshift effect in the context of
GR, then redshift–space radial distance r(rs) and (adimensional) coordinate χ(rs) are in-
troduced as the actual radial coordinates accessible with observations of the redshift of
objects on the past ligh cone of an observer in FLRW models. The redshift–space matter
fluctuation field δ(rs) is then studied up to first order in cosmological perturbation theory
and its relation with its real–space analog δ is used to define the redshift–space distortion
operator R̂ and, finally introducing the biasing effect of tracers, the operator for galaxies
R̂g is constructed.
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C.1 Redshift

The redshift z of a light emitting source as measured by an observer is defined in terms
of the wavelength λ of light by

z :=
λobs − λem

λem
=

∆λ

λem
, (C.1)

where the subscripts “obs” and “em” refers to observer and emitter, respectively. On
astrophysical observations the measurement of redshifts is done by identifying absorption
or emission lines for particular elements in spectra of distant objects, measuring their
observed wavelength, and comparing this with with the known (laboratory) wavelength
of the same lines for a source at rest. The interpretation depends on the assumption
these spectra were the same in the past, i.e., that atomic physics does not change over
cosmological scales.

The connection with GR is done via the optical limit of electrodynamics theory. The
rate of change of any signal g(ψ), described as an arbitrary function of the phase of
radiation ψ (see the discussion in §D.1), and measured by an observer moving with four–
velocity uµ = dxµ/dτ is given by

dg

dτ
= g′kµu

µ ∝ ν, (C.2)

where τ is the proper time of the observer and ν the frequency of the photon being
propagated, kµ is the propagation vector of radiation and uµ is the four-velocity of the
emitter/observer.

If two observers (emitter/observer) measure the rate of change of the same signal g(ψ),
the ratio of the respective measurements is given by

1 + z =
λobs
λem

=
νem
νobs

=
(uµk

µ) |em
(uσkσ) |obs

. (C.3)

This relation is valid irrespective of the separation between emitter and observer and
holds independent of any interpretation of redshift as Doppler or Gravitational.

C.2 Redshift–space radial distance and coordinate

The actual observed redshift of a source on FLRW models can be computed using first
order perturbation theory. A first order redshift perturbation δz can be written according
to

1 + zobs = (1 + z̄) (1 + δz) =
νs
νobs

, (C.4)

where the background redshift is given by z̄ = aobs/as. Here (and from now on) the
subindex “s” is used to refer the source, as a synonym of emitter.

In consistency with GR, expanding the equation (C.3) up to first order, one should
recognize three main contributions for the observed and source (emitter) rate of change
of the signal, equation (C.2): the metric perturbations δ(1) [gµν ] k̄

µūν , matter velocity
perturbations ḡµν k̄

µδ(1) [uν ], and light trajectory perturbations ḡµνδ
(1) [kµ] ūν . During the

present treatment of redshift space distortions the latter will be neglected, i.e., it will
be assumed that light rays moves on unperturbed null–geodesics, δ(1) [kµ] = 0. In other
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words, the comoving angular coordinates are assumed to be common in redshift and
real space, only the radial coordinate and then distances are distorted in redshift space.
Note that this assumption corresponds to a non fully relativistic treatment, because in a
general treatment on cosmological perturbation theory up to first order one should take
into account effects as convergence of light rays by lensing and the Integrated Sachs–Wolfe
effect, both with physical origin on the full perturbed solutions to photon trajectories [2].
This approximation is made also to be consistent with present day analysis and literature
on RSD.

Writing the perturbations in terms of the gauge–invariant scalar gravitational potential
Φ, peculiar velocity v and the background light ray direction n (line of sight to the source)
one finds

δz = Ws −W0 + (Φ|0 − Φ|s) , (C.5)

where
Ws = γijn

iDjv and W0 = γijn
iDjv0 (C.6)

are the line of sight components of the peculiar velocities of source and observer, respec-
tively. Its difference on (C.5) represent a Doppler term contribution. Ws is a quantity
to be determined by observations on the light cone, unlike W0 which is related with the
reference system in which the measurements are done. W0 can be estimated from CMB
anisotropies measurements, since in the standard interpretation of CMB observations the
harmonic dipole of temperature–temperature correlation function on the sky is directly
related with this quantity [4, 2].

The term in brackets on the redshift perturbation (C.5) represents a Sachs–Wolfe
contribution from the difference of the gravitational potential at observer and source. It
will be neglected on the present discussion. Under this assumptions one should recover
the standard results in the literature coming from analysis of pure Doppler contribution
[33].

For convenience, one introduce the redshift–space comoving distance as

s(z) := r(zobs) =

∫ z+(1+z)(W−W0)

0

dz′

H(z′)
, (C.7)

physically it represents the apparent comoving distance of an object in redshift space that
is originally at redshift z in real space and is shifted by its own peculiar velocity.

From the redshift–space comoving distance a redshift–space analog of the comoving
radial coordinate χ can be constructed as

χ(rs) = χ(zobs) =

{
|K|1/2 s(z) K 6= 0

s(z) K = 0,
(C.8)

defining the (adimensional) redshift–space radial coordinate.
Then, one can obtain the up to first order perturbative expansion of the redshift–space

radial comoving distance (Ws,0 are in fact perturbations of first order),

s(z) =

∫ z

0

dz′

H(z′)
+

∫ z+(1+z)(W−W0)

z

dz′

H(z′)
= r(z) +

1 + z

H(z)
(W −W0), (C.9)

and its adimensional equivalent, the redshift–space radial comoving coordinate,

χ(rs)(z) = χ(z) +
1 + z

H(z)
(U − U0), (C.10)
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where

U :=

{
|K|1/2W K 6= 0

W K = 0.
(C.11)

C.3 Redshift–space distorted fluctuations of matter

Here we construct an up to first order perturbation of the fluctuation of the number
density of objects in redshift space. Begin by assuming the number density of objects
in a specific observation and in real space n is given by the underlying matter density
ρ(χ, θ, ϕ) multiplied by a selection function Φ, i.e.

n(χ, θ, ϕ) = Φ(χ, θ, ϕ)ρ(χ, θ, ϕ). (C.12)

Therefore, for the real–space fluctuations of the number density of objects one have

δ =
n

ρ̄Φ
− 1. (C.13)

This relation inspire the definition of the redshift–space number of objects fluctuation,

δ(rs)(χ, θ, ϕ) :=
n(rs)(χ(rs), θ, ϕ)

ρ̄Φ(χ(rs), θ, ϕ)
− 1, (C.14)

that is, the number of object fluctuation evaluated on the redshift–space radial coordinate
χ(rs).

The number density of observed objects in real–space n(χ, θ, ϕ) and its redshift–space
analogue n(rs)(χ(rs), θ, ϕ) should be related according to a number conservation by

n(rs)(χ(rs), θ, ϕ) sinh
2(χ(rs))dχ(rs)d

2Ω = n(χ, θ, ϕ) sinh2(χ)dχd2Ω for K < 0,

n(rs)(χ(rs), θ, ϕ)χ
2
(rs)dχ(rs)d

2Ω = n(χ, θ, ϕ)χ2dχd2Ω for K = 0,

n(rs)(χ(rs), θ, ϕ) sin
2(χ(rs))dχ(rs)d

2Ω = n(χ, θ, ϕ) sin2(χ)dχd2Ω for K < 0,

where n is evaluated on the light cone. Therefore one may conclude that

n(rs)(χ(rs), θ, ϕ) = n(χ, θ, ϕ)×





[
sinh2(χ(rs))

sinh2(χ)

(
∂χ(rs)

∂χ

)]−1

K < 0

[
χ2
(rs)

χ2

(
∂χ(rs)

∂χ

)]−1

K = 0

[
sin2(χ(rs))

sin2(χ)

(
∂χ(rs)

∂χ

)]−1

K > 0.

(C.15)

Now proceed to expand up to first order the expression for the fluctuation in redshift-
space, (C.14). In order to perform a perturbative expansion of the selection function term
in (C.14) one can formally perform a taylor expansion around χ of the right hand side,
considered as a function of χ(rs); that’s because the difference χ(rs) − χ is a perturbation
of first order according to (C.10). The expansion of Φ can then be written as

Φ(χ(rs), θ, ϕ) = Φ(χ, θ, ϕ) +
∂Φ(χ, θ, ϕ)

∂χ

(
χ(rs) − χ

)

= Φ(χ, θ, ϕ)

{
1 +

∂ ln Φ(χ, θ, ϕ)

∂χ

[
1 + z

H(z)
(U − U0)

]}
,

(C.16)
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so that we can write

1

Φ(χ(rs), θ, ϕ)
=

1

Φ(χ, θ, ϕ)

{
1− ∂ ln Φ(χ, θ, ϕ)

∂χ

[
1 + z

H(z)
(U − U0)

]}
. (C.17)

Now consider the perturbative expansion of the relation between the number densities
in redshift– and real–space n(rs) and n, equation (C.15). The derivative term on the
right–hand–side of (C.15) can be computed by nothing

∂χ(rs)

∂χ
= 1 +

∂

∂χ

[
1 + z

H(z)
(U − U0)

]
, (C.18)

so that (
∂χ(rs)

∂χ

)−1

= 1− ∂

∂χ

[
1 + z

H(z)
(U − U0)

]
. (C.19)

The rest of the factor follows by expanding around χ, as for the selection function above.
Considering

sinh2(χ(rs)) = sinh2(χ) + 2 cosh(χ) sinh(χ)
[
χ(rs) − χ

]
; (C.20a)

χ2
(rs) = χ2 + 2χ

[
χ(rs) − χ

]
; (C.20b)

sin2(χ(rs)) = sin2(χ) + 2 cos(χ) sin(χ)
[
χ(rs) − χ

]
, (C.20c)

one has

[
sinh2(χ(rs))

sinh2(χ)

]−1

= 1− 2
cosh(χ)

sinh(χ)

[
χ(rs) − χ

]
= 1− 2

cosh(χ)

sinh(χ)

[
1 + z

H(z)
(U − U0)

]
; (C.21a)

(
χ2
(rs)

χ2

)−1

= 1− 2
1

χ

[
χ(rs) − χ

]
= 1− 2

1

χ

[
1 + z

H(z)
(U − U0)

]
; (C.21b)

[
sin2(χ(rs))

sin2(χ)

]−1

= 1− 2
cos(χ)

sin(χ)

[
χ(rs) − χ

]
= 1− 2

cos(χ)

sin(χ)

[
1 + z

H(z)
(U − U0)

]
. (C.21c)

Therefore, by combining equations (C.19) and (C.21) one has, up to first order,

[
sinh2(χ(rs))

sinh2(χ)

(
∂χ(rs)

∂χ

)]−1

= 1− 2
cosh(χ)

sinh(χ)

[
1 + z

H(z)
(U − U0)

]

− ∂

∂χ

[
1 + z

H(z)
(U − U0)

]
;

(C.22a)

[
χ2
(rs)

χ2

(
∂χ(rs)

∂χ

)]−1

= 1− 2
1

χ

[
1 + z

H(z)
(U − U0)

]
− ∂

∂χ

[
1 + z

H(z)
(U − U0)

]
; (C.22b)

[
sin2(χ(rs))

sin2(χ)

(
∂χ(rs)

∂χ

)]−1

= 1− 2
cos(χ)

sin(χ)

[
1 + z

H(z)
(U − U0)

]

− ∂

∂χ

[
1 + z

H(z)
(U − U0)

]
.

(C.22c)
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Combining the results (C.17) and (C.22) one can arrive to

1

Φ(χ(rs), θ, ϕ)

[
sinh2(χ(rs))

sinh2(χ)

(
∂χ(rs)

∂χ

)]−1

=
1

Φ(χ, θ, ϕ)

{
1− cosh(χ)

sinh(χ)[
2 +

∂ ln Φ(χ, θ, ϕ)

∂ ln sinh(χ)

] [
1 + z

H(z)
(U − U0)

]

− ∂

∂χ

[
1 + z

H(z)
(U − U0)

]}
;

(C.23a)

1

Φ(χ(rs), θ, ϕ)

[
χ2
(rs)

χ2

(
∂χ(rs)

∂χ

)]−1

=
1

Φ(χ, θ, ϕ)

{
1− 1

χ
[
2 +

∂ ln Φ(χ, θ, ϕ)

∂ lnχ

] [
1 + z

H(z)
(U − U0)

]

− ∂

∂χ

[
1 + z

H(z)
(U − U0)

]}
;

(C.23b)

1

Φ(χ(rs), θ, ϕ)

[
sin2(χ(rs))

sin2(χ)

(
∂χ(rs)

∂χ

)]−1

=
1

Φ(χ, θ, ϕ)

{
1− cos(χ)

sin(χ)[
2 +

∂ ln Φ(χ, θ, ϕ)

∂ ln sin(χ)

] [
1 + z

H(z)
(U − U0)

]

− ∂

∂χ

[
1 + z

H(z)
(U − U0)

]}
.

(C.23c)

In order to simplify this expressions it is convenient to write

∂

∂χ

[
1 + z

H(z)
(U − U0)

]
=

∂

∂χ

[
1 + z

H(z)
U

]
− ∂

∂χ

[
1 + z

H(z)

]
U0, (C.24)

where the fact that the peculiar velocity of the observer does not depend on the radial
comoving coordinate was used (note that it clearly can not depend on the redshift) and
to absorv the selction function dependent term into a function,

A(χ) :=





cosh(χ)

sinh(χ)

[
2 +

∂ ln Φ(χ, θ, ϕ)

∂ ln sinh(χ)

]
K < 0

1

χ

[
2 +

∂ ln Φ(χ, θ, ϕ)

∂ lnχ

]
K = 0

cos(χ)

sin(χ)

[
2 +

∂ ln Φ(χ, θ, ϕ)

∂ ln sin(χ)

]
K = 0.

(C.25)

By doing this one finally arrives to the following relation between redshift– and real–space
linear matter fluctuations:

δ(rs)(χ, θ, ϕ) = δ(χ, θ, ϕ)− ∂

∂χ

[
1 + z

H(z)
U

]
− 1 + z

H(z)
A(χ)U

+

{
1 + z

H(z)
A(χ) +

∂

∂χ

[
1 + z

H(z)

]}
U0.

(C.26)
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C.4 Redshift–space distortion operator

It is possible to formally introduce a redshift–space distortion operator R̂ as the operator
that transforms the density contrast at present time in real space to that in redshift–space
in the reference frame for which the observer velocity is null. From equation (C.26)

δ(rs)(χ, θ, ϕ) = D(t)R̂ [δ0(χ, θ, ϕ)] +

{
1 + z

H(z)
A(χ) +

∂

∂χ

[
1 + z

H(z)

]}
U0, (C.27)

where the action of the operator,

D(t)R̂ [δ0(χ, θ, ϕ)] = δ(χ, θ, ϕ)− ∂

∂χ

[
1 + z

H(z)
U

]
− 1 + z

H(z)
A(χ)U

= D(t)

{
δ0(χ, θ, ϕ)−

1

D(t)

[
∂

∂χ

1 + z

H(z)
+

1 + z

H(z)
A(χ)

]
U

}
,

can be simplified to

R̂ [δ0(χ, θ, ϕ)] = δ0(χ, θ, ϕ)− f
[
∂

∂χ
+ α(χ)

] [
U

aHDf

]
, (C.28)

with α(χ) a function encoding the selection effects,

α(χ) := A(χ) +
∂ ln(Df)

∂χ
=





cosh(χ)

sinh(χ)

[
2 +

∂ ln(DfΦ)

∂ ln sinh(χ)

]
K < 0,

1

χ

[
2 +

∂ ln(DfΦ)

∂ lnχ

]
K = 0,

cos(χ)

sin(χ)

[
2 +

∂ ln(DfΦ)

∂ ln sin(χ)

]
K = 0.

(C.29)

Note that equation (C.28) is nothing but a generalization of the original formula deduced
by Kaiser in 1987 (equation (3.3) in [33]).

From the equation (C.28) it is clear that in order to find a closed expression for the R̂
operator it is necessary to find a relation between the line of sight derivative of the matter
velocity field U and the fluctuation of matter field today δ0. Such a relation appears
naturally in linear cosmological perturbation theory where the peculiar velocity field has
the solution

v = −aHGf
(
∇2 + 3K

)−1
δ0, (C.30)

were G is the linear growing factor and f = d lnG/d ln a, see section 1.2.1.
Therefore, the line of sight derivative for the velocity field W can be written as

W = γijn
iDjv = −aHDf ∂

∂r

(
∇2 + 3K

)−1
δ0, (C.31)

where the photon trajectory from the source was assumed purely radial (without loss of
generality) and spatial coordinates xi = (r, θ, ϕ) was chosen. Thus, after changing the
spatial coordinates to xi = (χ, θ, ϕ), one has

U(χ, θ, ϕ) = −aHDf
{
|K| ∂χ

(
∇2 + 3K

)−1
δ0(χ, θ, ϕ) K 6= 0

∂χ
(
∇2
)−1

δ0(χ, θ, ϕ) K = 0.
(C.32)
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Combining (C.32) and (C.28) one finally arrive to

R̂ = 1̂ + f(z)

{
|K| [∂χ + α(χ)] ∂χ

(
∇2 + 3K

)−1
K 6= 0

[∂χ + α(χ)] ∂χ
(
∇2
)−1

K = 0.
(C.33)

The redshift–space distortion operator R̂ relates the fields δ(rs) and δ0, which are
associated to the total matter in the Universe, including barionic matter and cold dark
matter. However, astrophysical observations do not allow to directly probe this fields of
fluctuations. Observations can be done of luminous matter in the Universe, observed in
some astrophysical objects such as galaxies or quasi stellar objects (QSO), a.k.a quasars.
In order to relate the observed quantities for such objects with the fluctuation fields one
assume such objects to be biased tracers of the total matter distribution in the Universe.
that is, consider them as tracers e.g. galaxies, the galaxy fluctuation field in the Universe
δg, whose properties can be inferred from astrophysical observations, is assumed to have
a relation with the underlying total matter fluctuation of the form

δg(η, x
i) = bg(z, x

i)δ(η, xi) = bg(z, x
i)G(z)δ0(x

i), (C.34)

specified by a bias function, bg(z, x
i), which in principle should be a function of the

redshift to the object on the observer’s past lightcone and the object position, giving
rise to different clustering scales and strengths for different tracers on different epochs
and scales in the Universe. For simplicity, the bias function is usually assumed scale
independent, that is independent of the position, bg = bg(z), see the discussion on section
1.4.1.

By taking into account the bias of specific tracers it is possible to construct redshift–
space operator for such tracers according to (compare with equation (C.27))

δ(rs)g (χ, θ, ϕ) = bg(z)D(z)R̂g [δ0(χ, θ, ϕ)] +

{
1 + z

H(z)
A(χ) +

∂

∂χ

[
1 + z

H(z)

]}
U0, (C.35)

from which one can see that (compare with equation (C.33))

R̂g = 1̂ + βg(z)

{
|K| [∂χ + α(χ)] ∂χ

(
∇2 + 3K

)−1
K 6= 0

[∂χ + α(χ)] ∂χ
(
∇2
)−1

K = 0.
(C.36)

Note that here the basic effect is the change of the logarithmic derivative of the growth
function f , controlling the linear evolution of the velocity field, by the so called redshift–
space parameter

βg(z) :=
f(z)

bg(z)
, (C.37)

controlling the strength of RSD on the fluctuations of tracers. Taking into account that f
controls the amplitude of the peculiar velocity field in linear theory, see section 1.2.1, the
greater the velocity field, the greater the redshift space distortion effect and the greater
the bias of some kind of tracers with respect to the total matter field, the lower the redshift
space distortion effect.



Appendix D

Deflection of light rays by LSS in the
Universe

The present Appendix is devoted to the computation of the deflection of a light ray in the
context of an up to first order perturbed FLRW Universe model as the basis of the weak
lensing phenomena by large-scale structures in the Universe. During all the Appendix
spatial coordinates xi = (r, θ, ϕ) are choosen, where r is the radial comoving distance
(with dimension of length). We closely follow the treatment of chapter 7 in [3].

D.1 Geometric optics approximation

Astronomical observations interpretation is based on the geometric optics limit of Maxwell
equations for the electromagnetic field, plus its quantum mechanical interpretation giving
rise to the concept of photon. The description of propagation of electromagnetic radiation
through a curved spacetime is done under this approximations.

Electromagnetic phenomena is described by the Faraday Tensor Fµν , an antisymmetric
second rank tensor satisfying

3F[µν;σ] = Fµν;α + Fνα;µ + Fαµ;ν = 0, (D.1)

where the semicolon notation is used here to denote covariant derivative components and
the square brackets denote total antisymmetrization process [14, 2]. The Faraday tensor
can be defined in terms of a vector potential Aµ as its curl,

Fµν = 2A[µ;ν] = Aµ;ν − Aν;µ, (D.2)

except for a gauge freedom Aµ → Aµ + ∂µf , with f an arbitrary scalar field.
Electrodynamics follows from the electromagnetic action

Sem = −1

4

∫
d4x
√−g [F µνFµν + Aµj

µ] , (D.3)

where g := det [gµν ] and jµ is a four–current describing the sources of electromagnetic
field. The equations of motions associated with Sem are the Maxwell equations,

∇µF
µν = jν . (D.4)

The propagation of electromagnetic radiation in vacuum obeys the source–free Maxwell
equations,

∇µF
µν = 0, (D.5)
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Taking advantage of the gauge freedom for Aµ, one can fix the Lorentz gauge, ∇µA
µ = 0,

and then use the commutation rule for covariant derivatives of a vector field in the form
[14]

Rµ
σµνA

σ = RσνA
σ = (∇µ∇ν −∇ν∇µ)A

µ, (D.6)

where Rµ
σµν and Rµν are the components of the Riemann and Ricci tensors, respectively;

to obtain the equations of motion for Aµ

∇µA
µ = 0, ∇ν∇νAµ +RµνA

ν = 0. (D.7)

The geometric optics limit resides on the assumption of a solution to (D.7) of the form

Aµ = g(ψ)αµ + tail terms, (D.8)

where (a) g(ψ) is an arbitraty function of the phase of radiation ψ, (b) g varies rapidly
compared with the amplitude αµ, in the following sense

∣∣g′k[µαν]

∣∣≫
∣∣g∇[µαν]

∣∣ , (D.9)

and (c) the tail terms are small compared with the first term in solution (D.8), i.e., the
latter defines the dominant part of the solution. On equation (D.9) the propagation vector
of electromagnetic radiation kµ was introduced as the spacetime variation of the phase,

kµ := ∇µψ. (D.10)

Note that since the phase is a scalar field the propagation vector is curl–free, i.e.,

k[µ;ν] = 0. (D.11)

The condition (a) tells that arbitrary information can be propagated by the signal,
while (b) tells that solution (D.8) represents a high–frequency wave with relatively slow
varying amplitude.

Substituting the geometric optics solution (D.8) on the vacuum Maxwell equations
(D.7), ignoring the tail terms and equating to zero the coefficients of g, g′ and g′′, because
g is arbitrary according to (a), one obtains the equations

kµα
µ = ∇µα

µ = 0, (D.12a)

kµk
µ = 0, (D.12b)

2kν∇να
µ = 0, (D.12c)

∇ν∇ναµ +Rµνα
ν = 0. (D.12d)

equation (D.12b) shows that kµ is a null four–vector, therefore the first of (D.12a)
shows that the amplitude αµ is a space-like four–vector. Taking the covariant derivative
of (D.12b) one see that ∇ν (kµk

µ) = 0, so that kµ∇νk
µ = 0, therefore, equation (D.11)

implies
kµ∇µk

ν = 0. (D.13)

This is, the integral curves of the propagation vector, say xµ(s), i.e., those tangent to kµ,
kµ = dxµ

ds
, are null geodesics of the spacetime (here s is an arbitrary affine parameter for

the integral curves of kµ).
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By equation (D.12b) kµ∇µψ = 0, i.e., the covariant derivative along the integral curves
of kµ, xµ(s), of the phase ψ of radiation is null. This implies that ψ(xµ(s)) = const, along
this curves or equivalently kµ is orthogonal to the wave surface, were ψ = const.

The above results allow one to interpret the integral curves of kµ as light–rays, i.e.,
photon trajectories on the spacetime. They are null geodesics as is expected by foun-
dational principles of GR and the surfaces ψ = const are the future ligh–cones of the
emitter’s world line [22, 14]. This results are also the basis of gravitational lensing phe-
nomena, they imply that light–rays are differentially bent by inhomogeneous gravitational
fields, according to the null geodesic equation.

equation (D.12c) imply that the amplitude of radiation αµ is parallely propagated
along light–rays, telling that the polarization state is non–affected by gravitational fields.
Since αµ should be orthogonal to kµ and space–like, there are only two degrees of free-
dom determined by (D.12c). They should be properly interpreted as determining the
polarization of radiation.

D.2 Background null geodesics

The goal here is to solve the null geodesic equation,

kν∇νk
µ = 0; kµ =

dxµ

ds
; gµνk

µkν = 0, (D.14)

on the RW metric, which accounts for the background model of FLRW Universe models.
Without loss of generality (because of the homogeneity and isotropy of space) one can

assume that photon trajectory is radial, i.e., ∀s x̄2(s) = x̄3(s) = 0. Then the geodesic
equation (D.14) reduces to the following two equations

d2η

ds2
= −Γ̄0

µν
dx̄µ

ds

dx̄ν

ds
= −Γ̄0

00

(
dη

ds

)2

− Γ̄0
ij
dx̄i

ds

dx̄j

ds
= −H

[(
dη

ds

)2

+

(
dr

ds

)2
]
,

(D.15a)

d2r

ds2
= −Γ̄1

µν
dx̄µ

ds

dx̄ν

ds
= −2Γ̄1

0i
dη

ds

dx̄i

ds
− Γ̄1

ij
dx̄i

ds

dx̄j

ds
= −2Hdη

ds

dr

ds
; (D.15b)

together with the null–condition, which reduces to

(
dη

ds

)2

=

(
dr

ds

)2

. (D.16)

Combining this equations, one ends with the following equation for the conformal time
coordinate of the photon’s trajectory:

d2η

ds2
= −2H(η)

(
dη

ds

)2

, (D.17)

which can be solved by using the chain rule to write d2η
ds2

= −
(
dη
ds

)3 d2s
dη2

in order to obtain

d2s

dη2
= 2H(η)ds

dη
. (D.18)
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Then, one ends up with the following relation between the conformal time η and the affine
parameter s along the photon’s trajectory:

ds = a2(η)dη. (D.19)

For an incoming to the observer photon, the null condition, equation (D.14), tells that
dη = −dr, so that by imposing the final conditions to the photon trajectory to arrive
at the observer (assumed located at the origin, without loss of generality) at present
conformal time η0, the solution for the tangent vector to the photon trajectory are given
by

k̄µ(s) =
dx̄µ

ds
= a−2 (1,−n̂) , (D.20)

where n̂ denotes a general unit vector defining the spatial direction of the photon. During
this work, and without loss of generality, it only has radial component, i.e., n̂ = ∂r.

It is particularly useful to use the radial coordinate as affine parameter, note that this
is possible because the solution for the radial coordinate is linear on the affine parameter,

k̄µ(xν) = k̄µ(r) =
dx̄µ

dr
= (−1, n̂) . (D.21)

D.3 First order perturbed null geodesics and deflec-

tion angle

Having the background solution for incoming trajectories of photons (light rays) given by
equation (D.21) it is convenient to define first order perturbations of this trajectories by
writing the photon geodesic as

xµ(r) = x̄µ(r) + δxµ(r), (D.22)

such that the tangent vector (choosing as affine parameter the radial comoving distance),

kµ =
dxµ

dr
= (−1 + δν, n̂+ δe) , (D.23)

where the fractional frequency perturbation, δν := dδx0

dr
, and the fractional perturbation

to the photon momentum, δei := dδxi

dr
, were introduced.

Since at the background level from equation (D.21) it is clear that x̄µ = (η0 −
r, r, θ0, ϕ0), with θ0 and ϕ0 constants that specify the position of the source (emission
point) on the observer sky, one can write the perturbation to the photon trajectory as
δxµ = (δη(r), δr(r), θ(r), ϕ(r)). This is, the deflection of the photon trajectory, which is
given by the angles θ(r)− θ0 and ϕ(r)−ϕ0, is directly related to the angular components
of the fractional change in the photon momentum, which can be expanded as

δe = δe1∂r +
dθ

dr
∂θ +

dϕ

dr
∂ϕ. (D.24)

Note that here the assumption that the unperturbed photon geodesic is radial was used.
The first order perturbation of the null geodesic equation (D.14) should determine the

dynamics for the fractional frequency perturbation and the fractional perturbation to the
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photon momentum as long as it describes the perturbed photon trajectory (D.22).

d

dr
δν = −δΓ0

µν
dx̄µ

dr

dx̄ν

dr
− 2Γ̄0

µν
dx̄µ

dr

dδxν

dr
, (D.25a)

d

dr
δei = −δΓi

µν
dx̄µ

dr

dx̄ν

dr
− 2Γ̄i

µν
dx̄µ

dr

dδxν

dr
. (D.25b)

Working the equations (D.25) one can proof that

δΓ0
µν
dx̄µ

dr

dx̄ν

dr
= δΓ0

00

(
dη

dr

)2

+ 2δΓ0
01
dη

dr
+ δΓ0

11

= δΓ0
00 − 2δΓ0

01 + δΓ0
11

= (Φ + Ψ)′ + 2H (Φ + Ψ)− ∂rΦ,

Γ̄0
µν
dx̄µ

dr

dδxν

dr
= Γ̄0

00
dη

dr
δν + Γ̄0

0i
dη

dr
δei + Γ̄0

10δν + Γ̄0
1jδe

j

= −Hδν +Hδe1,

δΓi
µν
dx̄µ

dr

dx̄ν

dr
= δΓi

00

(
dη

dr

)2

+ 2δΓi
01

(
dη

dr

)
+ δΓi

11

= δΓi
00 − 2δΓi

01 + δΓi
11

= γij∂j (Φ + Ψ) + 2γi1Ψ
′ − 2γi1∂rΨ

and

Γ̄i
µν
dx̄µ

dr

dδxν

dr
= Γ̄i

00
dη

dr
δν + Γ̄i

0j
dη

dr
δej + Γ̄i

10δν + Γ̄i
1jδe

j

= −Hδei +Hγi1δν + Γ̄i
1jδe

j,

so that

d

dr
δν = (Φ + Ψ)′ − 2H (Φ + Ψ) + ∂rΦ + 2Hδν − 2Hδe1, (D.26a)

d

dr
δei = −γij∂j (Φ + Ψ)− 2γi1Ψ

′ + 2γi1∂rΨ+ 2Hδei − 2Hγi1δν − 2Γ̄i
1jδe

j, (D.26b)

Since the interest here is on solve for θ(r) and ϕ(r), one can consider only the i = 2, 3
equations on (D.26). Begin by see that

Γ̄2
1jδe

j = Γ̄2
11δe

1 + Γ̄2
12δe

2 + Γ̄2
13δe

3 = Γ̄2
12δe

2 =
∂rfK(r)

fK(r)

dθ

dr
,

Γ̄3
1jδe

j = Γ̄3
11δe

1 + Γ̄3
12δe

2 + Γ̄3
13δe

3 = Γ̄3
13δe

3 =
∂rfK(r)

fK(r)

dϕ

dr
,

so that, by nothing that all terms involving γi1 on equation (D.26b) should vanish for the
angular components i = 2, 3, one ends up with the equations

d2θ

dr2
= − 2

fK
∂θΨW + 2

∂rfK
fK

dθ

dr
, (D.27a)

d2ϕ

dr2
= − 2

fK sin2(θ)
∂ϕΨW + 2

∂rfK
fK

dϕ

dr
, (D.27b)
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where the lensing or Weyl gravitational potential was introduced according to1

ΨW :=
1

2
(Φ + Ψ) . (D.28)

The equations (D.27) can be written on a more symmetric way as

− d

dr

(
f 2
K

dθ

dr

)
= 2∂θΨW , (D.29a)

− d

dr

(
f 2
K

dϕ

dr

)
= 2 sin−2(θ)∂ϕΨW . (D.29b)

Integrating along the photon trajectory, from some arbitrary r to the observer’s position
r0 = 0 one have

f 2
K(r)

dθ

dr
(r)− f 2

K(r0)
dθ

dr
(r0) = −2

∫ r0

r

dr′ ∂θΨW (xµ(r′)), (D.30a)

f 2
K(r)

dϕ

dr
(r)− f 2

K(r0)
dϕ

dr
(r0) = −2

∫ r0

r

dr′

sin2(θ)
∂ϕΨW (xµ(r′)). (D.30b)

In order to compute the integrals on the right–hand side of (D.30) the Born approxima-
tion is introduced. This is, the integration will be performed at a first approximation over
the unperturbed photon trajectory solution, equation (D.21). This assumption decouples
the angular components of the first order perturbation to the null geodesic equation from
its corresponding radial and temporal counterparts, expressed on the full system (D.26).

f 2
K(r)

d

dr
θ(r) = −2

∫ r0

r

dr ∂θΨW (x̄µ(r)) = 2

∫ r0

r

dr′ ∂θΨW (η0 − r′, r′, θ0, ϕ0)

= −2
∫ r

r0

dr′ ∂θΨW (η0 − r′, r′, θ0, ϕ0),

(D.31a)

and

f 2
K(r)

d

dr
ϕ(r) = −2

∫ r

r0

dr′

sin2 θ0
∂ϕΨW (η0 − r′, r′, θ0, ϕ0), (D.31b)

remember that here xµ0 = (η0, r0 = 0, θ0, ϕ0) are the coordinates of the photon reception
event. Integrating one more time this equations we can arrive to

θ(rs) = θ0 − 2

∫ rs

0

dr
fK(rs − r)
fK(rs)fK(r)

∂θΨW (η0 − r, r, θ0, ϕ0), (D.32a)

ϕ(rs) = ϕ0 −
2

sin2 θ0

∫ rs

0

dr
fK(rs − r)
fK(rs)fK(r)

∂ϕΨW (η0 − r, r, θ0, ϕ0), (D.32b)

where it was introduced the subindex “s” notation to refers the source (emission of the
light ray) coordinates.

1The name comes from the fact that this potential appears as responsible for the linear perturbations
of the Weyl tensor, see [3].
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In order to proof that the expressions (D.32) are in fact first integrals of (D.31) one
can simply evaluate the derivative

d

drs

∫ rs

0

dr
fK(rs − r)
fK(rs)fK(r)

F (r, 0) =

∫ rs

0

dr
fK(rs)f

′
K(rs − r)− fK(rs − r)f ′

K(rs)

fK(rs)2fK(r)
F (r, 0)

+ ✟✟✟✟✯
0

fK(0)

fK(x)2
F (r, 0)

then, the result is a consequence of the following identity

fK(rs)f
′
K(rs − r)− fK(rs − r)f ′

K(rs) = fK(r), (D.33)

valid for all values of the spatial curvature K and the corresponding ranges of the radial
comoving distance, r, rs ∈ [0,∞) for K ≤ 0 and (rs − r) ∈ [0, K1/2π] for K > 0; and
follows from the definition of fK(r), equation (1.7).

The solutions (D.32) allows to conclude that the deflection angle of a light ray in the
Born approximation in the Universe is given by

α := (θ − θ0, ϕ− ϕ0) = −2
∫ rs

0

dr
fK(rs − r)
fK(rs)fK(r)

∇⊥ΨW (η0 − r, r, θ0, ϕ0), (D.34)

where ∇⊥ :=
(
∂θ, (sin θ0)

−2 ∂ϕ
)
is the covariant gradient on the unit sphere S2.
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Appendix E

FFTLog method

The present appendix review the construction of the FFTLog algorithm used to compute
the distant observer multipoles of the two–point correlation function, equation (4.35). We
closely follow the original treatment of [74].

First, a very brief review of the basic ingredients of a discrete Fourier transform for a
sequence of linearly spaced points are considered. Then, in an analogous way, the discrete
Hankel transform equations (4.57) is presented for a sequence of logarithmically spaced
points. Thus, it is showed that the main point on the FFTLog method is the fact that
the intrgration on the Hankel transform definition is translated to the computation of the
Mellin transform of the Bessel function of the first kind, which is finally showed to be
analytically given in terms of the Gamma function.

Since there exists a good numerical approximation for the Gamma function, namely
the Lanczos approximation [73], the FFTLog algorithm can be constructed on the basis
of a Fast Fourier Transform [75] and an implementation of such approximation according
to the pseudocode on Algorithm 4.

E.1 Discrete Fourier transform

Given a periodic and analytic function a : R→ R with period R, i.e., a(r+R) = a(r), the
periodicity property ensures that its continuous Fourier transform should contain only
discrete Fourier modes of the form [73, 37]

exp
[
2πim

r

R

]
; m ∈ Z. (E.1)

Consider as the fundamental interval where a is defined the interval [−R/2, R/2] and
suppose further that a is smooth in the sense that can be expanded by a finite number of
modes, the lowest N (assumed even here for simplicity),

a(r) =
∑

m

′
cm exp

[
2πim

r

R

]
, (E.2)

with c−N/2 = cN/2. Here the following notation for the summation was introduced

∑

m

′
xm :=

N/2∑

m=−N/2

wmxm; wm :=

{
1/2, m = ±N/2,
1, otherwise.

(E.3)
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The Sampling Theorem [73] states that given a function a with the described properties
and satisfying the relation (E.2) its Fourier coefficients are given by

cm =
1

N

∑

n

′
an exp

[
−2πim n

N

]
; an := a(rn), rn :=

nR

N
. (E.4)

Where the discrete values {an} themselves satisfy

an =
∑

m

′
cm exp

[
2πim

n

N

]
. (E.5)

Equations (E.4) and (E.5) constitute the discrete Fourier transform pair that relates
the two periodic and linearly spaced sequences {an} and {cn} of length N and they are
the basis of standard FFT methods. [75]

E.2 Discrete Hankel transform and FFTLog method

Consider a function a : R→ R analytic and periodic in logarithmic space with period L,
i.e.,

a(reL) = a(r). (E.6)

In analogy with the discrete Fourier transform, let us consider a fundamental interval as
[ln(r0)− L/2, ln(r0) + L/2]. Note that r0, the central point of the interval, is left as a free
parameter. The periodicity of the function imply that its continuous Fourier transform
should contain only discrete Fourier modes. Now suppose further that the function is
smooth in the sense that it only contains the lowest N (assumed even for simplicity)
Fourier modes,

a(r) =
∑

m

′
cm exp

[
2πim

ln (r/r0)

L

]
, (E.7)

where c−N/2 = cN/2. Then, the Sampling Theorem [73] guarantees that the coefficients cm
satisfy

cm =
1

N

∑

n

′
an exp

[
−2πim n

N

]
; an := a(rn), rn := r0 exp

[
L
n

N

]
. (E.8)

Consider now the Hankel transform, equation (4.57), of a(r), ã(k). Since a is given by
the expansion (E.7) ã can be written as

ã(k) =
∑

m

′
cm

∫ ∞

0

dr k(kr)qJµ(kr) exp

[
2πim

ln(r/r0)

L

]
, (E.9)

so that, rewriting the exponential inside the integrand as

exp

[
2πim

ln(r/r0)

L

]
= r

−2πim/L
0 r2πim/L

and introducing the change of variables t := kr one has

ã(k) =
∑

m

′
cm(kr0)

−2πim/L

[∫ ∞

0

dt t(q+2πim/L)Jµ(t)

]
. (E.10)
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Now, by introducing k0 in order to write

k−2πim/L = k
−2πim/L
0 exp

[
−2πim ln(k/k0)

L

]

one finally arrives to

ã(k) =
∑

m

′
cmum exp

[
−2πim ln(k/k0)

L

]
, (E.11)

where the coefficients um were introduced as

um(µ, q) := (k0r0)
−2πim/LUµ(q + 2πim/L)

:= (k0r0)
−2πim/L

∫ ∞

0

dt t(q+2πim/L)Jµ(t),
(E.12a)

where the complex–valued function Uµ was introduced as

Uµ(x) :=

∫ ∞

0

dt txJµ(t). (E.12b)

The key point of the FFTLog method lies here, on the function Uµ(x). The first thing
to note is that it is the Mellin transform [37] of the Bessel function of the first kind Jµ,
Uµ(x) =M[Jµ](x + 1). Such a Mellin transform can be computed analytically in terms
of the Gamma function Γ. The explicit computation is presented on §E.3 and allows one
to write, equation (E.29),

Uµ(x) = 2x
Γ [(1 + µ+ x)/2]

Γ [(1 + µ− x)/2] . (E.13)

Thus one ends up with an expansion for the Hankel transform of a(r) in the form of
a Fourier expansion. Note that the functions um(µ, q) satisfy

u∗m = u−m,

property that guarantees that if a(r) is real–valued, its Hankel transform is also real–
valued. Also, in the development, the variable k0 was introduced, it should be understood
as the center of the fundamental interval where the Hankel transform ã(k) is defined,
[ln(k0)− L/2, ln(k0) + L/2].

In the following, the goal is to derive a sequence of discrete samples for the Hankel
transform ã(k) at the discrete points k0e

Ln/N , in analogy to the discrete Fourier transform.
By looking at the expansion (E.11) one can think in use the Sampling theorem [73] to
complete this goal. However, the sampling theorem requires the outermost coefficintent on
the expansion to be equal, i.e., c−N/2u−N/2 = cN/2uN/2. From construction, c−N/2 = cN/2

so the condition reduces to
u−N/2 = uN/2. (E.14)

This condition can not be guaranteed only from the definition of the um coefficients,
equations (E.12). however, one can see that the sum of the terms with m = −N/2 and
m = N/2 evaluated at the discrete points kn = k0e

Ln/N is given by [74]

(−1)ncN/2

(
uN/2 − u−N/2

)
= (−1)ncN/2

(
uN/2 + u∗N/2

)
= (−1)ncN/22ℜ

[
uN/2

]
,
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so that the expansion (E.11) remains valid for all discrete points kn = k0e
Ln/N if one

replaces

u±N/2 → ℜ
[
uN/2

]
. (E.15)

This replacement guarantees the condition (E.14) and therefore sampling theorem asserts
that the coefficients cmum in the expansion (E.11) of the Hankel transform of a(r) at the
N discrete points

{
kn = k0e

Ln/N |n ∈ {−N/2,−N/2 + 1, . . . , N/2}
}
determine a discrete

Fourier pair with the sequence ãn = ã(kn), i.e.

cmum =
1

N

∑

n

′
ãn exp

[
2πim

n

N

]
, (E.16a)

ãn =
∑

m

′
cmum exp

[
−2πim n

N

]
. (E.16b)

By combining the equations (E.8) and (E.16) we can arrive to the discrete Hankel
transform pair

an =
∑

m

′
ãm

{
1

N

∑

k

′ 1

uk
exp

[
2πik

n+m

N

]}
, (E.17a)

ãm =
∑

n

′
an

{
1

N

∑

k

′
uk exp

[
2πik

n+m

N

]}
, (E.17b)

The discrete Hankel transform pair in the form of equations (E.16) constitutes the
basis of the FFTLog algorithm [74] which is summarized in the form of pseudocode on
Algorithm 4. Note that the second line on Algorithm 4, the key result in the FFTLog
method, can be accomplished in practice by using a numerical routine for the Gamma
function Γ. A well known and well behaved routine for Γ, and the one implemented on
this work, is the Lanczos approximation, see e.g. §6.1 of [73].

Algorithm 4 The FFTLog Algorithm.

1: FFT {an} to obtain {cm} (eq. (E.8)).
2: Construct the sequence {cmum} using the analytic expression (E.12).
3: FFT back the sequence {cmum} to get {ãn}, the discrete Hankel transform (eq.

(E.16)).

E.3 Mellin transform of Bessel functions of the first

kind

The Mellin transform of a function f is defined as the integral transform [37]

M [f ] (s) :=

∫ ∞

0

dz zs−1f(z). (E.18)

The goal of the present section is to compute the Mellin transform of first kind Bessel
functions Jµ(z) and particularly, to show the basic relation in which the FFTLog method
rests, equation (E.13).
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Begin with the integral representation for Jµ

Jµ(z) =
21−µ

√
πΓ
(
µ+ 1

2

)zµ
∫ 1

0

dt
(
1− t2

)µ− 1
2 cos(zt), ∀ z ∈ C and ∀ ℜ(µ) > −1.

(E.19)
This relation is a direct consequence of the Sonin integral relations, see equations (14.171)–
(14.174) of [100].

One can then interchange the two occurring integrals in the Mellin transform compu-
tation to get

M [Jµ] (s) =
21−µ

√
πΓ
(
µ+ 1

2

)
∫ 1

0

dt (1− t2)µ− 1
2

∫ ∞

0

dz zµ+s−1 cos(zt). (E.20)

The external integral is the Mellin transform of the trigonometric cosine function [37],

M [cos(ax)] (s) :=

∫ ∞

0

dx xs−1 cos(ax) = a−sΓ(s) cos
(πs
2

)
, (E.21)

valid ∀ a > 0 and ∀ 0 < ℜ(s) < 1. Therefore, as in (E.20) by construction t > 0, the only
restriction that should be done is 0 < ℜ(µ+ s) < 1 to get

M [Jµ] (s) =
21−µ

√
πΓ
(
µ+ 1

2

) cos
[
(µ+ s)

π

2

]
Γ(µ+ s)

∫ 1

0

dt
(1− t2)µ− 1

2

tµ+s
. (E.22)

The integral in t can be evaluated by introducing the change of variable sin(ϑ) := t
for ϑ ∈ [0, π

2
]. In fact, by using the representation of the beta function, see e.g., §7.4 of

[100],

B(p, q) = 2

∫ π
2

0

dϑ cos2p−1(ϑ) sin2q−1(ϑ), ∀ ℜ(p),ℜ(q) > 0, (E.23)

it is possible to write

∫ 1

0

dt
(1− t2)µ− 1

2

tµ+s
=

∫ π
2

0

dϑ cos2µ(ϑ) sin−µ−s(ϑ) =
1

2
B

(
µ+

1

2
,
−µ− s+ 1

2

)

=
Γ
(
µ+ 1

2

)
Γ
(
1−µ−s

2

)

2Γ
(
2+µ−s

2

)

under the restrictions ℜ(µ) > −1
2
and ℜ(s + µ) < 1, which together with the restriction

of equation (E.22) can be simplified to −ℜ(µ) < ℜ(s) < 3
2
.

Thus,

M [Jµ] (s) =
cos
[
(µ+ s) π

2

]
√
π2µ

Γ (µ+ s) Γ
(
1−µ−s

2

)

Γ
(
2+µ−s

2

) . (E.24)

In order to simplify this expression and leave it in terms of Gamma functions only, one
can use the Euler reflection formula on the form (see e.g., §7.4.1 [100])

cos(πz)

π
=

1

Γ
(
1
2
− z
)
Γ
(
1
2
+ z
) (E.25)

to write
cos
[
(µ+ s)

π

2

]
=

π

Γ
(
1−µ−s

2

)
Γ
(
1+µ+s

2

) ; (E.26)
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and the Legendre duplication formula (see e.g., §7.4.2 from [100]),

Γ (z) Γ

(
z +

1

2

)
= 21−2z

√
πΓ (2z) , (E.27)

with z = (µ+ s)/2 to write

Γ (µ+ s) =
2µ+s−1

√
π

Γ

(
µ+ s+ 1

2

)
Γ

(
µ+ s

2

)
(E.28)

Then, inserting (E.26) and (E.28) into (E.24) one ends up with the desired result

M [Jµ] (s) = 2s−1 Γ
(
µ+s
2

)

Γ
(
2+µ−s

2

) , ∀ − ℜ(µ) < ℜ(s) < 3

2
. (E.29)
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[49] M.-J. Pons-Bordeŕıa, V. J. Mart́ınez, D. Stoyan, H. Stoyan, and E. Saar,
Comparing Estimators of the Galaxy Correlation Function, The Astrophysical
Journal 523 (Oct., 1999) 480–491, [astro-ph/9906344].

[50] W. Hu and B. Jain, Joint galaxy-lensing observables and the dark energy, Physical
Review D 70 (Aug., 2004) 043009, [astro-ph/0312395].

[51] B. Leistedt, H. V. Peiris, D. J. Mortlock, A. Benoit-Lévy, and A. Pontzen,
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P. Pandey, I. Pâris, W. J. Percival, P. Petitjean, R. Pfaffenberger, J. Pforr,
S. Phleps, C. Pichon, M. M. Pieri, F. Prada, A. M. Price-Whelan, M. J. Raddick,
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