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Resumo

Misobuchi, A.S. Gravidade de Lovelock e a correspondência AdS/CFT. Disser-
tação de mestrado - Instituto de Física, Universidade de São Paulo, São Paulo, 2016.

A correspondência AdS/CFT é uma notável ferramenta no estudo de teorias de gauge
fortemente acopladas que podem ser mapeadas em uma descrição gravitacional dual fra-
camente acoplada. A correspondência é melhor entendida no limite em que ambos N e
λ, o rank do grupo de gauge e o acoplamento de ’t Hooft da teoria de gauge, respectiva-
mente, são infinitos. Levar em consideração interações com termos de curvatura de ordem
superior nos permite considerar correções de λ finito. Por exemplo, a primeira correção
de acoplamento finito para supergravidade tipo IIB surge como um termo de curvatura
com forma esquemática α′3R4.

Neste trabalho investigamos correções de curvatura no contexto da gravidade de Love-
lock, que é um cenário simples para investigar tais correções pois as suas equações de
movimento ainda são de segunda ordem em derivadas. Esse cenário também é particular-
mente interessante do ponto de vista da correspondência AdS/CFT devido a sua grande
classe de soluções de buracos negros assintoticamente AdS.

Consideramos um sistema de gravidade AdS-axion-dilaton em cinco dimensões com
um termo de Gauss-Bonnet e encontramos uma solução das equações de movimento, o
que corresponde a uma black brane exibindo uma anisotropia espacial, onde a fonte da
anisotropia é um campo escalar linear em uma das coordenadas espaciais. Estudamos suas
propriedades termodinâmicas e realizamos a renormalização holográfica usando o método
de Hamilton-Jacobi. Finalmente, usamos a solução obtida como dual gravitacional de
um plasma anisotrópico fortemente acoplado com duas cargas centrais independentes,
a 6= c. Calculamos vários observáveis relevantes para o estudo do plasma, a saber, a
viscosidade de cisalhamento sobre densidade de entropia, a força de arrasto, o parâmetro
de jet quenching, o potencial entre um par quark-antiquark e a taxa de produção de fótons.

Palavras-chave: correspondência gauge-gravidade, holografia e o plasma de quark e glu-
ons, gravidade de curvatura mais elevada.
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Abstract

Misobuchi, A.S. Lovelock Gravity and the AdS/CFT correspondence 2016. Master
degree dissertation - Physics Institute, University of São Paulo, São Paulo, 2016.

The AdS/CFT correspondence is a remarkable tool in the study of strongly coupled
gauge theories which can be mapped to a dual, weakly coupled gravitational description.
The correspondence is best understood in the limit in which both N and λ, the rank of
the gauge group and the ’t Hooft coupling of the gauge theory, respectively, are infinite.
Accounting for higher curvature interactions allows one to begin to consider finite λ. For
example, the leading finite coupling corrections to type IIB supergravity arise as stringy
corrections with schematic form α′3R4.

In this work we investigate higher curvature corrections in a simpler scenario, the Love-
lock gravity. Lovelock gravity is a nice framework to investigate such corrections since its
equations of motion are still second order in derivatives and is particularly interesting from
the point of view of the AdS/CFT correspondence because a large class of asymptotically
AdS black holes solutions are known.

We consider five-dimensional AdS-axion-dilaton gravity with a Gauss-Bonnet term
and find a solution of the equations of motion which corresponds to a black brane exhibit-
ing a spatial anisotropy, with the source of the anisotropy being an axion field linear in
one of the spatial coordinates. We study its thermodynamics and we carry out the holo-
graphic renormalization using the Hamilton-Jacobi approach. Finally, we use the solution
as a gravity dual to a strongly coupled anisotropic plasma with two independent central
charges, a 6= c. We compute several observables relevant to the study of the plasma,
namely, the shear viscosity over entropy density ratio, the drag force, the jet quenching
parameter, the quarkonium potential and the thermal photon production.

Keywords: Gauge-gravity correspondence, Holography and quark-gluon plasmas, Higher
curvature gravity.
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Chapter 1

Overview

The AdS/CFT correspondence [1–3] represents a remarkable tool in the study of
strongly coupled gauge theories which can be mapped into a dual, weakly coupled grav-
itational description. For example, in ultra-relativistic heavy ion collision experiments,
large nuclei are collided and a state of matter with very high temperature and density,
the quark gluon plasma (QGP), is produced. Results obtained in experiments at the Rel-
ativistic Heavy Ion Collider (RHIC) [4, 5] and at the Large Hadron Collider (LHC) [6]
indicate that the QGP behaves as a strongly coupled system which cannot be studied by
traditional perturbation theory methods.

The correspondence is best understood in the limit in which both N and λ, the rank
of the gauge group and the ’t Hooft coupling of the gauge theory, respectively, are infinite.
Investigating departures from this limit implies introducing α′ and loop corrections for the
string and it is clearly of the utmost importance for a series of reasons, from achieving a
deeper understanding of how the correspondence works in larger regions of the parameter
space, to modeling more realistic gauge theory systems, where N and λ are obviously not
infinite. Accounting for higher curvature interactions allows one to begin to consider finite
λ corrections. For example, the leading finite coupling corrections to type IIB supergravity
arise as stringy corrections with schematic form α′3R4 [7].

One more modest approach is to consider simple generalizations of Einstein grav-
ity, where higher curvature corrections are under control and calculable, in the hope to
gain some qualitative understanding of the effects they might have and, perhaps, uncover
some universal properties. A well-studied family of corrections is represented by Love-
lock theories of gravity [8–11].1 These theories are defined as natural extensions of the
Einstein-Hilbert action to dimensions higher than four. The main characteristic of Love-
lock gravities is the fact that, albeit being defined in terms of higher curvature/derivative

1Reviews on Lovelock theories with an emphasis on their relevance in the AdS/CFT context can be
found in, e.g., [12–14].

1



1.0 2

terms, they yield second order equations of motion and are free of pathologies. The first
Lovelock correction, which is present already in five dimensions, is given by the Gauss-
Bonnet (GB) term, which is quadratic in the curvature. Another point of interest in
this correction is that, besides being calculable, it possesses a wealth of exact black hole
solutions with AdS asymptotics; see e.g. [15–17] for a comprehensive review.

It is clearly worthwhile to try to find as many new solutions as possible and increase
the arena of models where explicit computations can be performed. With this motivation
in mind, in this work we consider a GB correction to Einstein-Hilbert gravity in five di-
mensions with a negative cosmological constant and a coupling to an axion-dilaton field.
It is not clear whether this system might be obtained by some string theory compactifica-
tion, so that our philosophy in this work is ‘bottom-up’. At least, we know some aspects
of its holographic dual field theory in some limits. If the GB coupling is set to zero, the
dual field theory is known and corresponds to a deformation of N = 4 Super Yang-Mills
(SYM) theory by a theta-term. On the other hand, the exact field theory dual to pure
GB gravity is not currently known, but we know that the theory is dual to a CFT with
two different central charges [18–20].

The main goal of this thesis is to find a new solution of the equations of motion rep-
resenting a black brane with a translationally invariant but anisotropic horizon and then
explore the properties of the corresponding dual plasma. The force responsible for keep-
ing the horizon in an anisotropic state is furnished by the axion field, which we take to
have a fixed profile in the radial coordinate but to depend linearly in one of the horizon
coordinates. This is similar to what has been done in [21] and later in [22, 23]. This new
solution is interesting from a purely general relativity point of view, for it opens up the
possibility to study the thermodynamics of a black brane which depends on several pa-
rameters (the temperature, the GB coupling and an anisotropy parameter), presumably
giving rise to a rich phase space. In this work we move a first step toward the study
of such thermodynamics by computing the boundary stress tensor. This computation
requires the machinery of holographic renormalization. More specifically, we use a Hamil-
tonian approach to the problem, rather than the more commonly used Lagrangian one, in
the incarnation of the recursive Hamilton-Jacobi method developed in [24] for the AdS-
Einstein system with axion-dilaton (without higher derivative corrections). Holographic
renormalization of Einstein gravity with the GB term, but without any other field turned
on, has been performed in [25].

A more applied motivation for our work is given by the study of the QGP produced
in the ultra-relativistic collision of heavy ions at RHIC and LHC. Contrary to naïve
expectations, this plasma turns out to be a strongly coupled fluid [26,27]. This fact renders
a perturbative approach of limited applicability and motivates the use of the AdS/CFT
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correspondence; see [28] for a review of applications of AdS/CFT to the study of the
QGP. One of the diagnostics of the strongly coupled nature of this fluid is represented
by ‘elliptic flow’, i.e. the anisotropic evolution of the fluid in the initial stages before
isotropization. Recently, there has been some interest in modeling this anisotropy at strong
coupling [22, 23] and in studying how various observables may be affected by it. Some of
the studies that have been performed include the computation of the shear viscosity to
entropy density ratio [29, 30], the drag force experienced by a heavy quark [31–33], the
energy lost by a quark rotating in the transverse plane [34], the stopping distance of a
light probe [35], the jet quenching parameter of the medium [32, 36, 37], the potential
between a quark and antiquark pair, both static [32,36,38,39] and in a plasma wind [38],
including its imaginary part [40], Langevin diffusion and Brownian motion [41–43], chiral
symmetry breaking [44], the production of thermal photons [45–47] and dileptons [48],
and the introduction of a chemical potential [49,50]; see [51] for a review of some of these
computations and [52] for similar computations in a fluid with dilaton-driven anisotropy.

In order to achieve a more realistic model of the anisotropic plasma it is obviously
important to relax some of the assumptions (like the infinite coupling and infinite number
of colors) that go into the simplification of having a classical gravity dual. The GB cou-
pling that we introduce here corresponds to allowing for different central charges, a 6= c,
in the gauge theory [18–20]. We compute these two central charges for our particular so-
lution, verifying that they are indeed different. On general grounds, looking at how higher
derivative terms affect physical observables on the gauge theory might also be useful to
constrain the string landscape, e.g. by excluding regions of parameters that would result
in pathologies, as advocated for example in [16, 53]. As a final, concrete application of
our geometry we compute several observables relevant to study of the QGP, namely, the
shear viscosity over entropy density ratio, the drag force experienced by a heavy quark
moving through the plasma, the jet quenching parameter, the static potential between a
quark-antiquark pair (quarkonium) and the photon production rate.

This thesis is organized as follows. Chapter 2 is a standard review of AdS/CFT cor-
respondence. In Chapter 3, we review Lovelock gravity, emphasizing the properties that
motivate its study within the context of the AdS/CFT correspondence. Chapter 4 is de-
voted to a first simple computation in the framework of higher curvature gravity. More
precisely, we use GB (and also Quasi-topological) gravity as the holographic setup to com-
pute the so called Chern-Simons diffusion rate of the dual plasma [54]. Chapters 5 and
6 constitute the main results of this thesis [55, 56], where we find the anisotropic gravity
solution with the GB term and use it as the gravity dual of a strongly coupled anisotropic
plasma. Finally, our conclusions are presented in Chapter 7.



Chapter 2

AdS/CFT correspondence

Dualities have taught us a lot over the last centuries [57]. It is surprising when we find
two theories, at first not similar to each other, to be just two different descriptions of the
same physics. Perhaps this means there is something more fundamental behind it, and it
is clearly worth to explore them as much as we can. The AdS/CFT correspondence is one
such example of duality and one of the most important discoveries in theoretical physics of
the last decades. Maldacena proposed the correspondence in 1997, relating string theory
(a theory of gravity) to a gauge theory (without gravity) “living” in the boundary of the
space of the gravity theory.

One remarkable aspect of the AdS/CFT is that it is a strong/weak coupling duality.
As a consequence, a strongly coupled problem in the gauge theory, which is generally
difficult, can be mapped into an easier, weakly coupled problem in the gravity dual theory.
The converse is also true, i.e., we can use gauge theories to learn about string theory at
strong coupling. In fact, so far string theory is only well defined perturbatively, and
we do not know much about non-perturbative string theory. Therefore, we can use the
correspondence to actually define what non-perturbative string theory is.

In this Chapter, we motivate the AdS/CFT correspondence by giving heuristic argu-
ments that relate string/gravity theories to gauge theories. We then work on some general
aspects of string theory that are necessary to understand the correspondence. Finally, we
state the conjecture by equating two different pictures of a system of N coincident D3-
branes. The classical review about the AdS/CFT is [58], but there are many others at
an introductory level; see e.g. [59, 60]. There are also some nice recent books about this
subject [61,62].

4



2.1 ARGUMENTS FOR PLAUSIBILITY 5

2.1 Arguments for plausibility

In this section we give some heuristic arguments that point the connection of string
theory with gauge theories.

’t Hooft large N expansion

In the argument proposed by ’t Hooft in 1974 [63], we consider a U(N) gauge theory
with gauge coupling g and take a particular limit in which N →∞ while the parameter
λ ≡ g2N , the ’t Hooft coupling, is kept fixed. In this limit the expansion in terms of Feyn-
man diagrams simplifies drastically in such a way that only planar diagrams1 contribute.
It turns out that in this limit the amplitude expansion for the gauge theory has the same
structure of the genus expansion that appears in string theory, suggesting a connection
between gauge theory and string theory.

Let us review this argument for the case of a generic adjoint field Φ in a U(N) gauge
theory with Lagrangian given by

L =
1

g2
Tr
[
(∂Φ)2 + Φ3 + Φ4 + ...

]
. (2.1)

Here we are ignoring a possible mass term since it does not change the argument. We
emphasize that this argument holds in general, in particular for SU(N) N = 4 Super
Yang-Mills theory which is the case of interest for the statement of the AdS/CFT corre-
spondence. In the adjoint representation, Φ can be viewed as N × N matrix Φ b

a , where
a, b = 1, . . . , N . As we usually do in quantum field theory, we can use Wick’s theorem to
derive the Feynman rules. The rules are summarized below, where we also introduced the
double line notation for convenience.

1A planar diagram is a diagram that can be drawn on the plane without crossing lines. We can think
of planar diagrams as those who can be drawn on the surface of a sphere. On the other hand, a non-planar
diagram can only be drawn on a torus or a surface of higher genus.
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Propagator ∼ g2δdaδ
b
c

Vertices ∼ 1

g2

Loops ∼ δaa = N

With these rules we can now compute vacuum-to-vacuum amplitudes by summing over
all possible diagrams. One way to organize the diagrammatic sum is accordingly to their
number of vertices, propagators and loops. Using the Feynman rules, a general diagram
with V vertices, P propagators and L loops contributes with

A(V, P, L) ∼
(
g2
)P ( 1

g2

)V
NL = λP−VNV−P+L, (2.2)

where λ = g2N is the ’t Hooft coupling. Recall the Euler characteristic formula for graphs

V − P + L = 2− 2h, (2.3)

where h is the genus number, i.e., the number of “holes” (like an h-torus). Summing over
all connected vacuum-to-vacuum diagrams, we obtain the schematic form for the total
amplitude ∑

A =
∞∑
h=0

∞∑
n=0

ch,nλ
nN2−2h =

∞∑
h=0

fh(λ)N2−2h, (2.4)

where fh(λ) is the sum over the diagrams that can be drawn on a surface of genus h. In
the limit N →∞, the sum is clearly dominated by the term h = 0, which corresponds to
the planar diagrams. The higher genus terms are suppressed by powers of 1/N2.

This diagrammatic expansion in the gauge theory has the same structure of the
vacuum-to-vacuum amplitude of the genus expansion of Riemann surfaces in string theory
(Figure 2.1). Basically, strings can split and join into “pairs of pants”, where the interaction
is controlled by a parameter gs, the string coupling constant.
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genus 0 genus 1 genus 2

Figure 2.1: Genus expansion for an amplitude with two closed strings going into two closed
strings.

Holographic principle

The AdS/CFT can be viewed as a concrete example of the holographic principle.
The history behind the holographic principle begins with the “area theorem” by Hawking
in 1971 [64], stating that the area of the horizon of a black hole must always increase.
This behavior has an obvious analogy with the second law of thermodynamics, where the
entropy of a closed system must always increase. After some years, Bekenstein [65] took
a step forward and established that the entropy of the black hole is proportional to the
area of the horizon

SBH =
AH
4
. (2.5)

As a consequence of this remarkable fact we now should think about black holes as ther-
modynamical objects. However, there is a subtlety here: the entropy of a black hole scales
like area, instead of volume as one could naively expect. Susskind interpreted these results
as a holographic principle [66]: for a theory of quantum gravity, such as string theory, the
description of a volume of the space is encoded on its boundary, in the same way as a
hologram in 2d encodes the information of a 3d object. Therefore, we expect quantum
gravity to have the same number of degrees of freedom (d.o.f.) of a field theory without
gravity and black holes, in one lower dimension. Let us check it explicitly for the case of
gravity in the Anti-de Sitter space.

Counting degrees of freedom

Let NQFT and NGravity be the number of degrees of freedom of the quantum field theory
(QFT) and gravity theory, respectively. Of course, they are both infinite, so we need to
regularize. For a QFT in d spacetime dimensions, we introduce an IR cutoff by putting
the theory in a d− 1 dimensional box of length ` . Also, we put an UV cutoff assuming a
lattice site of size δ. Define N as the number of d.o.f per lattice site, so the total number
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of d.o.f. is N × (# of states). In this way we have

NQFT =

(
`

δ

)d−1

N. (2.6)

In the gravity side, the number of degrees of freedom is given by its maximum entropy
computed using the area law for a black hole that occupies all the volume

NGravity = Smax =
ABdry

4GN

. (2.7)

For the Anti-de Sitter space (AdSd+1) the metric is given by

ds2 =
L2

z2

(
−dt2 + d~x2 + dz2

)
(2.8)

and the area Abdry of the black hole, at fixed time, is

ABdry =

∫
dd−1x

√
−γ
∣∣∣
z=0

=

∫ `

0

dd−1x

(
L

z

)d−1 ∣∣∣
z=δ

=

(
`L

δ

)d−1

. (2.9)

Note that we also introduced two cutoffs because the integral is divergent for two reasons:(
L
z

)d−1 z→0→ ∞ and
∫
dd−1x = ∞. If we identify NQFT = NGravity, we obtain the same

parametric dependence on the cutoffs, provided the identification

Ld−1

GN

∼ N. (2.10)

Renormalization group flow

Quantum field theories are organized in energy scales. In general, the dependence on
the energy scale in a quantum field theory with coupling constant g is described by a
renormalization group flow equation,2 usually called beta function, of the form

β(g) = r
dg

dr
, (2.11)

where r is a parameter related to the energy scale of the theory. In units where ~ = c = 1,
energy has units of length−1, so we need to introduce an extra length scale L such that

E =
r

L2
. (2.12)

2For example, the beta in QED function is positive, meaning that the theory is weakly coupled at low
energies. On the other hand, in QCD the opposite happens: the beta function is negative and the theory
is strongly coupled at low energies. In the special case of a vanishing beta function, the coupling constant
does not depend on the energy scale and the theory is said to be conformal.
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The previous discussion about the holographic principle suggests the possibility to include
an extra dimension, z, where gravity lives. We can identify the extra dimension with the
inverse of the energy scale, with L being the curvature radius of AdS. We just arrived at
one of the most intuitive pictures of the AdS/CFT correspondence: the geometrization of
the renormalization group flow (Figure 2.2). From the hint of the holographic principle,
we can think of the theory of quantum gravity as being equivalent to a quantum field
theory, without gravity, living in the boundary of the space, at z = 0.

(Boundary)

Figure 2.2: Left: the renormalization group flow from the QFT point of view. Right: the energy
scale of the QFT identified as an extra dimension z.

2.2 Basics of string theory

This section is a very brief overview of string theory. For our purposes to establish the
AdS/CFT correspondence, we give emphasis to the construction of the massless spectrum
of closed superstrings. This will be important to understand the origin of the fields in type
IIB supergravity.

2.2.1 Generalities

String theory is a theory of relativistic, quantum, interacting one and higher dimen-
sional objects (strings and branes). It was originally proposed as a theory of the strong
interactions, but soon this idea was abandoned due to the success of QCD. Later, it was
found that string theory naturally incorporates gravity since a massless spin two state, the
graviton, appeared in the spectrum of quantized closed strings. String theory is therefore
a theory of quantum gravity, and over the past years it has been viewed as a promising
candidate of a theory that unifies all the forces in nature.



2.2 BASICS OF STRING THEORY 10

The string length ls is the only fundamental dimensional parameter in the theory, it
sets the scale at which string effects become relevant. The string tension is given by

T =
1

2πα′
, where α′ = l2s . (2.13)

There is also another parameter, the coupling constant gs, that controls the strength of the
string interactions. It is important to emphasize that gs is not a fundamental parameter
of the theory.3 The action for the bosonic string is given by the Nambu-Goto action

SNG = −T
∫
dτdσ

√
− det gαβ, (α, β = τ, σ), (2.14)

where gαβ = Gµν∂αX
µ∂βX

ν is the induced metric on the string world-sheet, with Xµ be-
ing the embedding coordinates and Gµν the target space metric. The spectrum of bosonic
string has a tachyon, an unstable vacuum state with negative mass. Moreover, the spec-
trum does not contain fermions, which requires the introduction of supersymmetry. Con-
sistency of the theory fixes the spacetime dimension to be 26 in bosonic string, while for
the superstring the dimension is fixed to 10.

2.2.2 Superstring

As we mentioned before, bosonic string is well described by the Nambu-Goto action
(2.14). However, there is an alternative action equivalent to the Nambu-Goto action,
called Polyakov action, that is more suitable to the construction and quantization of the
superstring. In the Ramond-Neveu-Schwarz (RNS) formalism of the superstring, we start
with the gauge-fixed Polyakov action with the addition of fermionic fields

S = −T
2

∫
dτdσ ηαβ(∂αX µ∂βXµ + iψ̄µγα∂βψµ), (2.15)

where X µ(τ, σ) and ψµ(τ, σ) are the bosonic and fermionic world-sheet fields, respectively.
Note that X µ are world-sheet scalars and ψµ are world-sheet spinors, but from the point
of view of the spacetime they are both vectors. This action is invariant under the global,
infinitesimal, world-sheet supersymmetry transformations

δεX µ = ε̄ψµ, δεψ
µ = −iρα∂αX µε, (2.16)

3In fact, it is given by gs = eφ0 , the exponential of the asymptotic value of a field of the theory.
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where ε is a constant, anti-commuting two-component spinor. The Dirac matrices can be
chosen as

γ0 =

(
0 −i
i 0

)
, γ1 =

(
0 i

i 0

)
. (2.17)

We can choose ψµ to be a world-sheet Majorana spinor, i.e., ψ =
(
ψ+

ψ−

)
, with ψ± both real.

With these choices, the fermionic part of the action becomes

Sf ∼
∫
dτdσ(ψ− · ∂+ψ− + ψ+ · ∂−ψ+), (2.18)

where we introduced world-sheet light-cone coordinates σ± = t ± σ, and ∂± = ∂
∂σ±

. The
equations of motions are

∂−ψ
µ
+ = 0, ∂+ψ

µ
− = 0. (2.19)

When deriving the equations of motion above, by varying the action w.r.t. the fields,
a boundary term arises and we need to impose suitable boundary conditions (b.c.) to
eliminate such term. The boundary term of the fermionic part is

δSf ∼
∫ τ1

τ0

dτ(ψ+ · δψ+ − ψ− · δψ−)|σ=π
σ=0 . (2.20)

We need to treat the cases of open and closed string separately now.

Boundary conditions: open string

For the open string, the contribution from the two endpoints have to vanish separately.
For the endpoint at σ = 0, we can choose without loss of generality

ψµ+(τ, 0) = ψµ−(τ, 0). (2.21)

This choice still leaves two possibilities at the other string endpoint (σ = π):

• ψµ+(τ, π) = +ψµ−(τ, π) Ramond (R) boundary condition

• ψµ+(τ, π) = −ψµ−(τ, π) Neveu-Schwarz (NS) boundary condition

With these boundary conditions we can write the mode expansion satisfying the equations
of motion and the appropriate boundary condition

ψµ±(τ ± σ) =
1√
2

∑
r∈Z

ψµr e
−ir(τ±σ) (R-sector)

ψµ±(τ ± σ) =
1√
2

∑
r∈Z+1/2

ψµr e
−ir(τ±σ) (NS-sector) (2.22)
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Additionally, the Majorana condition requires ψµ−r = (ψµr )∗. As it happens for the bosonic
string, quantization of the superstring requires us to solve some Virasoro constraints.
This is best done by introducing spacetime light-cone coordinates, leaving ψi (i = 1, ..., 8)
as the true degrees of freedom. In the quantization of the superstring, we promote the
coefficients ψµr to fermionic operators satisfying anti-commutation relations

{ψir, ψis} = δijδr+s,0. (2.23)

Let us now analyze the two different sectors. The NS-sector turns out to be simpler, be-
cause there are no zero modes ψi0. We define the NS vacuum |0〉NS as the state annihilated
by all positive modes ψir. This state turns out to be tachyonic, with negative mass. Ap-
plying each negative modes, we can construct the excited states. The first excited state is
massless and is obtained by applying ψi−1/2|0〉NS. This forms a vector of SO(8) that we
will denote by 8v.

The main difference of the R-sector with respect to the NS-sector is the presence of
zero modes ψi0. They do not contribute to the string state energy so the ground state is
degenerate. The anti-commutation relations for the zero modes have the form of a Clifford
algebra {ψi0, ψ

j
0} = δij, being a 16-component spinor representation of SO(8) which can be

reduced into two 8-component spinor representation of opposite chiralities. Let us denote
these representations by 8c and 8s.

The NS-sector brings a tachyon that we want to remove. This is done by introducing
the so called Gliozzi-Scherk-Olive (GSO) projection, that not only removes the tachyon
but also equates the number of fermionic and bosonic degrees of freedom. Acting on the
NS-sector, the GSO projection removes states with even number of fermionic modes. In
particular, it removes the tachyonic state |0〉NS. Acting on the R-sector, it projects out
one of the 8’s, leaving the one with opposite chirality.

Boundary conditions: closed string

Roughly speaking, we can think about the closed string as being composed by two
copies of the open string, referred to as left and right movers. We can impose the boundary
conditions for the closed string in four different ways. For each of the left and right movers
we can choose the boundary condition to be either Ramond or Neveu-Schwarz, giving rise
to the four sectors of the closed string

(Left b.c. - Right b.c.): (NS-NS), (NS-R), (R-NS), (R-R). (2.24)

As it occurred in the open string, we need to apply the GSO projection to remove the
tachyon on both left and right movers. Accordingly to the chirality left by the GSO
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projection when acting on the R-sector, we classify the theory as type IIA and type IIB.
In type IIB superstring, the right and left movers have the same 8c left by the GSO
projection, while in the type IIA the right and left movers are left with 8c and 8s, with
opposite chiralities. Since we want to focus on type IIB supergravity in the next subsection,
we summarize the massless spectrum of type IIB strings in Table 2.1.

Table 2.1: Massless closed string states.

Sector | 〉L ⊗ | 〉R SO(8) rep Fields

NS-NS 8v ⊗ 8v 1 + 28v + 35v φ,Bµν , Gµν

NS-R 8v ⊗ 8c 8s + 56s λ1
α, ψ

1
µα

R-NS 8c ⊗ 8v 8s + 56s λ2
α, ψ

2
µα

R-R 8c ⊗ 8c 1 + 28c + 35c C(0), C(2)µν
, C(4)

+
µνρσ

The particle content can be grouped accordingly with their bosonic/fermionic nature
and they have the following symmetry properties

Bosons



Gµν metric

C(0) + iφ axion-dilaton

Bµν + iC(2)µν
rank 2 antisymmetric

C(4)
+
µνρσ

rank 4 antisymmetric and self-dual

Fermions

ψIµα Majorana-Weyl gravitinos

λIα Majorana-Weyl dilatinos
, I = 1, 2. (2.25)

It is important to note that in this formalism of the superstring, we started with an
action with supersymmetry on the world-sheet, but supersymmetry in the spacetime is
not manifest. Moreover, the GSO projection may be somewhat artificial to remove the
tachyon and equate the number of bosons and fermions in spacetime. Another formalism of
the superstring, the Green-Schwarz (GS) formalism [67], makes spacetime supersymmetry
manifest, but the symmetries in the world-sheet are not. As a final comment, there is still
another formalism, called pure spinor and developed by Berkovits [68], that combines the
advantages of the RNS and GS formalisms, but we will not treat them here.

2.2.3 Type IIB supergravity

The reason for us to be focusing on the massless states is that, at low energies, the
massive modes of string theory are not excited so we can integrate them out, leaving only
the massless fields. Also, if we consider a weakly curved spacetime, we can treat strings
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essentially as point-like objects. In the low energy and low curvature limit, string theory
reduces to general relativity coupled to other fields,

S =
1

16πGN

∫
d10x
√
−g (R + massless modes) (2.26)

plus some calculable higher curvature corrections. This is the supergravity limit of string
theory. For type IIB superstring, the low energy effective action is given by

SIIB =
1

32πGN

[∫
d10x
√
−g e−2φ

(
2R + 8 ∂µφ ∂

µφ− |H(3)|2
)
−

−
∫
d10x

(
|F(1)|2 + |F̃(3)|2 +

1

2
|F̃(5)|2

)
−
∫
C+

(4) ∧H(3) ∧ F(3)

]
+ fermions,

(2.27)

where

F(1) = dC(0), H(3) = dB(2), F(3) = dC(2), F(5) = dC+
(4),

F̃(3) = F(3) − C(0) ∧H(3), F̃(5) = F(5) −
1

2
C(2) ∧H(3) +

1

2
B(2) ∧ F(3), (2.28)

and |F(p)|2 = 1
p!
Fµ1...µpF

µ1...µp . The action for type IIB supergravity above is not complete,
we still need to impose the self duality condition F(5) = ?F(5) by hand.

2.3 D-branes: the two pictures

String theory is not only a theory of strings, but also of branes. A p-brane is a p-
dimensional spatially object. An important class of p-branes are Dp-branes (D stands
for Dirichlet) where open strings can end. The study of branes, more specifically a stack
of N coincident D3-branes, was the main insight that led to the AdS/CFT correspon-
dence. In what follows, we study this system of branes from two different perspectives.
The AdS/CFT correspondence is, roughly speaking, the statement that both pictures are
equivalent.

2.3.1 Open string picture

A remarkable property about Dp-branes is that they contain gauge fields living on their
world-volume [69]. More precisely, if we quantize an open string ending on a Dp-brane, we
obtain in the massless modes of the spectrum an abelian gauge field Aµ (µ = 0, 1, . . . , p).
For more than a single D-brane, the structure is richer: we can have a string with endpoints
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on the same brane or with endpoints on different branes. In the case of N coincident D-
branes, what happens is that they contain a SU(N) non-abelian gauge theory .

For our purposes, it is convenient to define coordinates along the brane and transverse
to that

xµ = (x0, x1, . . . , xp) longitudinal coordinates,

yi = (xp+1, . . . , x9) transverse coordinates. (2.29)

Note that the presence of a p-brane breaks translational invariance in R9,1. In the case of
a flat Dp-brane,

SO(9, 1)︸ ︷︷ ︸
D=10

→ SO(p, 1)︸ ︷︷ ︸
flat Dp-brane

× SO(9− p)︸ ︷︷ ︸
transverse space

. (2.30)

All fields supported on the D-brane only depend on the xµ coordinates.
For the particular case of N coincident D3-branes, the massless spectrum is given by

a four dimensional gauge field Aµ, six scalars φi and four Weyl fermions χa. Surprisingly,
in the low energy limit, the effective action for these modes is the same as for N = 4

SYM theory with gauge group SU(N) in d = 4 spacetime dimensions [70]. To give an
idea about how this picture emerges, let us remember the action for Yang-Mills theory,

SYM =
1

g2
YM

∫
d4xFµνF

µν , Fµν = ∂µAν − ∂νAµ. (2.31)

On the other hand, the dynamics of a single D3-brane is governed by the Dirac-Born-
Infeld-Action (DBI)

SDBI = TD3

∫
d4xe−φ

√
− det(gµν + α′Fµν), TD3 ∼

1

gsl4s
, (2.32)

where here gµν is the induced metric on the D-brane world-volume. Let us see what
happens in the low energy limit, i.e., the limit in which we consider energies much smaller
than the energy scale 1/ls of string theory. Expanding to the lowest order in α′, one term
that arises is exactly the Yang-Mills term (2.31), provided the identification

g2
YM = 4πgs. (2.33)

The other terms of the low energy expansion correspond to the interactions with closed
string modes emitted and absorbed by the brane, and also the interaction of closed strings
with themselves. This means that, in total, the action for the coincident branes is effec-
tively described by

SSYM + Sclosed + Sclosed/open. (2.34)
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The strength of the interaction between closed strings is governed by the Newton constant
GN . But GN ∼ (α′)4 in ten dimensions, thus the interaction goes to zero in the low energy
limit. The interaction between open and closed strings is also controlled by GN and goes to
zero for the same reason. Therefore, in the low energy limit we obtain free closed strings,
i.e., free gravity.

However, the interactions for SSYM are controlled by gYM and not by GN , so they are
not turned off in the low energy limit. We conclude that at the end we obtain

SSYM + free gravity in R9,1. (2.35)

The next step is to consider another picture and see how we can relate the two pictures.

2.3.2 Closed string picture

D-brane can also be viewed as defects in spacetime: since D-branes gravitate, they
deform the space around them. We consider type IIB supergravity and we want to find
the spacetime metric sourced by N coincident D3-branes. The relevant part of the action
for type IIB supergravity is4

SIIB =
1

16πGN

∫
d10x
√
−g
[
e−2φ (R + 4 ∂µφ ∂

µφ)− 2

5!
|F(5)|2

]
, (2.36)

where φ is the dilaton scalar field and F(5) = ?F(5) is a self dual 5-form. Remember that
branes preserve SO(p, 1)×SO(9−p) symmetry, so we choose an Ansatz consistently with
the desired symmetries (and we set p = 3)

ds2 =
1√
H(y)

ηµνdx
µdxν︸ ︷︷ ︸

SO(3,1)

+
√
H(y)

6∑
i=1

dyidy
i

︸ ︷︷ ︸
SO(6)

,

φ = φ0 = const., F(5) = (1 + ?)dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dH−1. (2.37)

Note that the self-duality constraint of F(5) is satisfied by construction. The equation of
motion turns out to be of a Laplacian type and the solution reads

H(y) = 1 +
L4

y4
, (2.38)

where
L4 = 4πl4sgsN. (2.39)

4The other fields of the type IIB supergravity action (2.27) can be set to zero, consistently with the
equations of motion.
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Since we are in the supergravity limit, all this computation is valid when L� ls, i.e., in
the point-like limit of the strings. From (2.39), we see that this condition is equivalent to

gsN � 1. (2.40)

So far the solution we found for the metric sourced by N coincident D3-branes is

(
1 +

L4

y4

)− 1
2

ηµνdx
µdxν +

(
1 +

L4

y4

) 1
2 (
dy2 + y2dΩ2

5

)
. (2.41)

The parameter L can be considered as the characteristic length scale of the range of the
gravitational effects of the D3-branes. For y � L, we can neglect the L4/y4 term above
and we obtain flat space. For y � L, the geometry resembles a “throat” (Figure 2.3).
Defining z = L2

y
and taking z →∞, the geometry inside the throat turns out to be

ds2 =
L2

z2

(
ηµνdx

µdxν + dz2
)

+ L2dΩ2
5, (2.42)

where dΩ2
5 is the metric of a five-sphere. We recognize this solution as AdS5 × S5.

Figure 2.3: The closed string picture: inside the throat, we have interacting closed strings in
AdS5 × S5. Outside the throat, we have free strings in flat space.

Now we take two limits, the so called Maldacena limit (or near horizon limit):

• First, we take z � L (or equivalently y � L). In this case we have the spacetime
concentrated inside the throat.

• Then, we keep both gs and N fixed and we take α′ → 0. This is again a low-energy
limit: the string dynamics in the throat and in the asymptotic flat space decouple.
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After taking these two limits, we end up with free strings in flat space and strings inside
the throat. The strings in flat space are free, because as before, the interaction is controlled
by GN and it goes to zero in the low energy limit. The strings inside the throat do not
have enough energy to climb out, so they decouple from the strings outside the throat.
There are still interacting strings, just deep inside of the throat, where the geometry is
AdS5×S5. Therefore, in this particular limit, the system in the presence of N coincident
D3-brane is described by

Type IIB strings in AdS5 × S5 + free gravity in R9,1. (2.43)

This is the “closed string picture”. It is important to emphasize that this picture is valid
for gsN � 1, while on the other hand the open string picture was valid for gsN � 1. We
are now finally ready to state the conjecture of the AdS/CFT correspondence.

2.4 Statement of the AdS/CFT correspondence

To summarize, we have studied two different descriptions of a system of N coincident
D3-branes. In the open string picture, D-branes are hyperplanes where open strings can
end. The resulting low energy limit is N = 4 SYM with gauge group SU(N). On the
other hand, in the closed string picture, D-branes are viewed as defects in spacetime that
deform the geometry around them, and the low energy limit resulted in type IIB strings
propagating in AdS5 × S5. Note that both descriptions are low energy limits, but there
is a difference here: the open string picture holds for gsN � 1, while in the closed string
picture we had gsN � 1.

The AdS/CFT correspondence is the statement that the two descriptions, besides
derived in different regimes of the parameter gsN , are in fact equivalent, i.e.,

N = 4 SU(N) SYM theory = type IIB string theory in AdS5 × S5 . (2.44)

The relation between the parameters of the two sides are (2.33) and (2.39),

L4

l4s
= 4πgsN, g2

YM = 4πgs. (2.45)

We still need to specify in which conditions we expect the equivalence to hold. In
the strongest form of the conjecture, we assume the equivalence to hold entirely, for full
quantum string theory and gauge theory with any value of N and λ. A more conservative
approach is the weaker version of the AdS/CFT correspondence, in which we assume the
duality to hold only at the lowest level of the perturbation expansion. In this case we
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identify supergravity, the low energy limit of string theory, with the planar and large λ
limit of the gauge theory. There is still a mild level of the conjecture, where N →∞ but
λ is kept finite, corresponding to classical string theory. For the special case of large but
still finite λ, we have in the corresponding gravity side α′ corrections (involving higher
order curvature terms) to supergravity. We summarize the different forms of the AdS/CFT
correspondence in Table 2.2.

Table 2.2: Three levels of the AdS/CFT correspondence.

N = 4 SU(N) SYM IIB theory on AdS5 × S5

Strong ∀N and ∀gYM ⇔ Full quantum strings gs 6= 0, α′

L2 6= 0

Mild N →∞, λ fixed ⇔ Classical strings gs → 0, α′

L2 6= 0

Weak N →∞, λ→∞ ⇔ Classical supergravity gs → 0, α′

L2 → 0

An obvious check of the conjecture is to see if the global symmetries on both sides
match. The bosonic part of N = 4 SYM in four dimensions has a conformal symmetry
associated to the group SO(4, 2); see Appendix A. This matches exactly the isometry
group of AdS5. The easiest way to see that is to view AdS5 as embedded in R4,2. Moreover,
the N = 4 SYM displays a global SU(4) R-symmetry which is the symmetry that rotates
the six scalars and the four fermions of the theory. Since SO(6)R ∼ SU(4)R, this matches
the SO(6) symmetry of the S5 sphere part of AdS5 × S5.

2.5 Correlation functions

We also need to provide a prescription to map the observables of the two sides of
the duality. The prescription is known as the GKPW (Gubser, Klebanov, Polyakov and
Witten) formula and it is a one-to-one field/operator identification, i.e., gauge invariant
operators O of the boundary theory are mapped into bulk fields φ of the gravity theory.
For example, The bulk metric corresponds to the stress energy tensor of the boundary
theory. Basically, for each local operator Oi(x) of the gauge theory we add a term to the
action

S → S +

∫
d4xφi(0)(x)O(x), (2.46)

where φi(0)(x) is the boundary value of the bulk field φi dual to the gauge invariant operator
Oi. This means that the boundary value of the bulk field acts as a source to the gauge
invariant operator of the boundary theory. In the strongest form of the correspondence,
we assume the equivalence to hold at the level of the partition function

ZSYM[φ(0)] = ZIIB strings[φ(0)]. (2.47)
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The left hand side contains all the information about the gauge theory, since all correlation
functions can be computed by taking functional derivatives of the partition function.
Going to the weak form of the conjecture by taking the limit N → ∞ and λ → ∞, we
can approximate string theory by supergravity and compute the partition function using
saddle point approximation

ZSYM[J ] ' e−S
(on-shell)
SUGRA . (2.48)

In this way the on-shell gravitational action is identified as the generating functional of
connected diagrams and correlation functions are extracted via

〈O1(x1)...On(xn)〉CFT = − δnS
(on-shell)
SUGRA

δφ1
(0)(x1)...δφn(0)(xn)

∣∣∣
φi

(0)
=0
. (2.49)

In principle, the extraction of correlation functions seems to be straightforward using the
above prescription. However, divergences usually appear in the computation of the on-
shell gravity action and a regularization procedure is necessary. There are several methods
to remove those divergences, which are referredto as holographic renormalization. We will
explore one such method in Chapter 5, where we use and extend the Hamilton-Jacobi
approach developed in [24].



Chapter 3

Lovelock gravity

Einstein’s general relativity is considered by many as one of the most beautiful theories
of physics. The theory was proposed in 1915 to reconcile gravity with the principles of
special relativity. The theory relies on the simple, but profound, equivalence principle:
locally, we cannot distinguish the effects of gravity from the ones due to an accelerated
reference frame. The dynamics are governed by Einstein’s equations

Gµν ≡ Rµν −
1

2
gµνR + Λgµν = 8πGNTµν , (3.1)

where Gµν is the Einstein tensor. There are some important properties that fully char-
acterize the form of the Einstein’s equations above. First, the equations of motion are
second order in derivatives, i.e., Gµν is a function of the metric and its two first derivatives
only. Moreover, Gµν is symmetric and conserved, i.e., Gµν = Gνµ and ∇νGµν = 0, reflecting
the desired properties of the stress tensor Tµν of matter fields. Lovelock’s theorem [8]
concludes that, in four spacetime dimensions, these conditions are enough to fully fix the
form of Einstein’s equation. If we go to higher dimensions, however, David Lovelock also
showed that we can construct more general symmetric divergence-free tensors yielding
second order equations of motion, giving rise to Lovelock gravity.

In this Chapter, we review the general aspects of Lovelock gravity. We define the
Lovelock action and find the vacuum solutions of its equations of motion. We focus on
the black hole solutions and recent advances regarding Lovelock gravity in the context of
the AdS/CFT correspondence. Some of the remarkable results found so far include: the
violation of the KSS viscosity bound, the gravity interpretation of the unitarity condition
of the CFT, and causality constraints related to the positivity of energy.

21
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3.1 Non-coordinate basis

Lovelock gravity can be described in an elegant and compact way using the language of
differential forms. We can construct a non-coordinate basis which provides an orthonormal
basis for the tangent space at each point on the manifold,

d s2 = gµνdx
µ dxν = ηab e

aeb, (3.2)

where the vielbein 1-form is defined as ea ≡ eaµdx µ, so we can rewrite the metric as

gµν = ηab e
a
µe
b
ν . (3.3)

Latin indices are called flat or tangent space indices, while Greek indices are called curved
or spacetime indices. Another important object is the spin connection 1-form

ωab = ω a
µ bdx

µ . (3.4)

Roughly speaking, the spin connection plays the role of the Christoffel symbols of the
usual tensorial language. The information about the curvature is entirely encoded into
the Cartan’s structure equations

Riemann curvature 2-form: Rab ≡ dωab + ωac∧ωcb (3.5)

Torsion 2-form: T a ≡ d ea + ωab∧ eb = Dea. (3.6)

Note that Rab = 1
2
Rab

µν dxµ ∧ dxν , since it is a 2-form. The relation between the Riemann
curvature 2-form and the Riemann curvature tensor is given by

R λσ
µν = Rab

µνe
λ
ae
σ
b. (3.7)

3.2 Lovelock action

Lovelock gravity is the natural generalization of general relativity to more than four
spacetime dimensions. In d spacetime dimensions, the action of Lovelock theory is given
by a sum ofK ≤ [d−1

2
] terms, whereK is an integer that denotes the highest non-vanishing

coefficient ck ( i.e., ck>K = 0)

SLovelock =
1

16πGN(d− 3)!

K∑
k=0

ck
d− 2k

∫
Lk, (3.8)
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where
Lk ≡ εa1...adR

a1a2 ∧ ... ∧Ra2k−1a2k ∧ ea2k+1 ∧ ... ∧ ead (3.9)

and εa1...ad is the totally antisymmetric tensor. The parameters {ck} are the couplings of
the theory. To gain some intuition, let us see the first terms of the action explicitly:

• The term k = 0 has no curvature term, it is simply a term proportional to the
element volume: the cosmological constant;

• The term k = 1 includes one power of the curvature 2-form. The choice c0 = 1
L2

and c1 = 1 results in the usual Einstein-Hilbert action with negative cosmological
constant Λ = − (d−1)(d−2)

2L2 ;

• The term k = 2 gives the so called Gauss-Bonnet (GB) term

LGB = R2 − 4RµνR
µν +RµνρσR

µνρσ. (3.10)

Lovelock theories involve higher curvature terms in the Lagrangian, but are con-
structed in a special way such that the equations of motion are still second order in
derivatives so to avoid pathologies such as Boulware-Deser ghosts [10]. Indeed, the ab-
sence of ghosts, together with the fact that curvature squared terms appeared in the low
energy limit of heterotic string, as pointed out by Zwiebach [9], motivated the earlier
studies of Lovelock gravity in string theory.

One interesting feature of the action (3.8) is its connection to topological quantities
known as Euler densities. In fact, one recognizes the Lagrangian densities Lk as the
higher dimensional extensions of the Euler densities E2k that appear in the remarkable
Gauss-Bonnet theorem, that connects the Riemann curvature, a geometric quantity, to a
topological quantity known as the Euler characteristic; see for example [71].

For manifolds with a boundary, as it will be the case of interest in the next chapters,
the action (3.8) has to be supplied with boundary terms analogue to the Gibbons-Hawking
term, necessary in order to have a well posed variational problem. This is due to the fact
that, when varying the action w.r.t. the metric field, a boundary term containing the
normal derivative of the metric variation arises and, since we want to fix only the metric
variation at the boundary and not its normal derivative, a boundary term has to be
added to cancel such contribution. It was found in [72] that the necessary boundary terms
are exactly the higher dimensional extensions of the boundary terms of the generalized
Gauss-Bonnet theorem for manifolds with a boundary.

Let us now derive the equations of motion and check that they are indeed of second
order.
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3.3 Equations of motion and vacuum solutions

The equations of motions are derived by extremizing the action (3.8). We will apply
the first order formalism, in which we assume the vielbein and the spin connection as
independent variables, so we need to vary the action with respect to both vielbein and
spin connection, obtaining two equations. Before we do this computation, it is convenient
to introduce the notation

Ra1...a2n ≡ Ra1a2∧ ...∧Ra2n−1a2n , (3.11)

ea1...an ≡ ea1∧ ...∧ ean . (3.12)

First, varying the action with respect to the spin connection, we obtain

δωLk = εa1...adδ(R
a1...a2k)∧ ea2k+1...ad

= εab...adk δ(R
ab)Ra3...a2k∧ ea2k+1...ad

= εab...adk D(δωab)Ra3...a2k∧ ea2k+1...ad . (3.13)

Integrating by parts and using the fact that the boundary term does not contribute to
the equations of motion,

δωLk = −εab...adk(δωab)D(Ra3...a2k∧ ea2k+1...ad)

= −εab...adk(δωab)Ra2...a2k∧D(ea2k+1...ad), (3.14)

where we used DRcd = 0 (Bianchi identity). We note that D(ea2k+1...ad) is proportional to
the torsion. Thus, we can safely impose the torsion to vanishes as in standard Einstein’s
gravity. On the other hand, varying the action with respect to the vielbein,

δeLk = εa1...adR
a1...a2k∧ δ (ea2k+1...ad)︸ ︷︷ ︸

d−2k terms

= εa1...ad−1aR
a1...a2k(d− 2k)∧ ea2k+1...ad−1δea. (3.15)

Setting the variation to zero, the equation of motion we obtain is

Ea = εa1...a

K∑
k=1

ck(R
a1...a2k∧ ea2k+1...ad−1) = 0. (3.16)
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The above expression is a polynomial of degree K in the Riemann curvature 2-form.
Therefore, we can rewrite the equation as

Ea = εa1...aFa1a2

(1) ∧ ...∧F
a2K−1a2K

(K) ∧ ea2K+1...ad−1 = 0, (3.17)

where Fab(i) ≡ Rab−Λie
a∧ eb, with Λi’s as functions of the couplings {ck}. We can think of

the Λi’s as effective cosmological constants. We immediately see that the equation (3.17)
admits vacuum solutions of form

Fab(i) = Rab − Λie
a∧ eb = 0, i = 1, ..., K. (3.18)

Each solution Λi corresponds to a different vacuum, which can be positive, negative or zero
(dS, AdS or flat). In view of the AdS/CFT correspondence, we are particularly interested
in solutions with negative effective cosmological constant.

3.4 Black hole solutions

There are many known black hole solutions in Lovelock gravity; see, e.g., [13, 73]. In
particular, Lovelock theories admit a large class of asymptotically AdS black hole solutions
which are specially interesting in view of the AdS/CFT correspondence. Let us discuss the
simplest solution of static spherically symmetric black holes. It is convenient to introduce
the polynomial

Υ[Λ] ≡
K∑
k=0

ckΛ
k. (3.19)

Plugging (3.18) into the equation of motion (3.16), we see that the effective cosmological
constants Λi are the roots of Υ[Λ], i.e.,

Υ[Λ] = cK

K∏
i=1

(Λ− Λi). (3.20)

We choose an Ansatz for the metric of the form

ds2 = −N#f(r)dt2 +
dr2

f(r)
+
r2

L2
dΣ2

d−2,σ, dΣ2
d−2,σ ≡

dρ2

1− σ ρ2

L2

+ ρ2dΩ2
d−3, (3.21)

where dΩ2
d−3 is the unit (d−3)-sphere and σ parameterizes the different horizon topologies

(σ = +1→ spherical, σ = 0→ planar, σ = −1 → hyperbolic). An appropriate choice of
vielbein is

e0 = N#

√
f(r)dt, e1 =

1√
f(r)

dr, ea =
r

L
ẽa, (3.22)
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where a = 2, ..., d − 1 and ẽa is an vielbein for dΣ2
d−2,σ which explicitly form will not be

relevant here. Using the second Cartan equation d ea = −ωab∧ eb, valid in the absence of
torsion, we can determine the spin connection 1-form and compute the Riemann curvature
components

R01 = −1

2
f ′(r)e0∧ e1, R0a = −f

′(r)

2r
e0∧ ea, (3.23)

R1a = −f
′(r)

2r
e1∧ ea, Rab = −f(r)− σ

r2
ea∧ eb. (3.24)

Substituting into the equation of motion results in

E0 = 0⇒
K∑
k=0

ck
(−1)k

r2k

(
r(fk)′ + (d− 2k − 1)(f − σ)k

)
= 0. (3.25)

This equation can be rewritten as

[
r
d

dr
+ (d− 1)

] K∑
k=0

ck

(
σ − f(r)

r2

)k
= 0. (3.26)

The integration is straightforward and the solution for f(r) is obtained implicitly via a
polynomial equation

Υ

[
σ − f(r)

r2

]
=

K∑
k=0

ck

(
σ − f(r)

r2

)k
=

κ

rd−1
, (3.27)

where κ is a integration constant related to the ADM mass [74]. The position of the
horizon r+ is determined using the fact that f(r+) must vanish. This fixes the solution
entirely, except by N# that remains arbitrary from this analysis. The value of N# can be
fixed, e.g., by imposing the velocity of the speed of light to be unity at the boundary.

3.5 Gauss-Bonnet black holes

To be concrete, let us particularize the general solution found for Lovelock black
holes in the previous section to the case of five-dimensional Gauss-Bonnet gravity. With
appropriate choices of the constants c0, c1 and c2, the action for Gauss-Bonnet gravity can
be written as

S =
1

16πGN

∫
d5x
√
−g
(
R +

12

L2
+
L2

2
λGB(R2 − 4RµνR

µν +RµνρσR
µνρσ)

)
, (3.28)
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where λGB is referred to as the (dimensionless) Gauss-Bonnet coupling. Choosing a planar
horizon topology for simplicity, the polynomial (3.27) in this particular case reduces to a
quadratic polynomial in f(r) and the solution can be given explicitly by

f(r) =
r2

L2

1

2λGB

(
1−

√
1− 4λGB

(
1− r4

+

r4

))
. (3.29)

In this case we chose the root which is known to be smoothly connected with the Einstein-
Hilbert action in the limit λGB → 0. The other root is known to be unstable [10]. The
black hole solution reads

ds2 = −f(r)N2
#dt

2 +
dr2

f(r)
+
r2

L2

(
dx2 + dy2 + dz2

)
. (3.30)

Note that
f(r)

r→∞→ r2

a2L2
, with a2 ≡ 1

2

(
1 +

√
1− 4λGB

)
. (3.31)

This means that the radius of the asymptotic AdS space of this geometry is aL. We can
choose N# = a to fix the boundary speed of light to unity.

3.6 Lovelock and AdS/CFT correspondence

Supergravity is the low energy limit of string theory and higher curvature terms appear
as α′ corrections to this limit which correspond, in the dual gauge theory side, to finite
’t Hooft coupling corrections. It is not clear if Lovelock gravity arises as a low energy
limit of a string theory. The reason for us to consider Lovelock gravity within the context
of the AdS/CFT correspondence is because of its simplicity, using it as a simple model
to perhaps uncover some universal properties. For example, Lovelock theories represent
a nice framework to learn about higher dimensional CFTs, which are still a not well
understood subject. It is also important to remember that the Lovelock terms may still
appear as the α′ correction of some string theory due to the vast string landscape.

Many interesting results were obtained in the last few years regarding Lovelock gravity
and the AdS/CFT; see, for example, [13, 14, 17] for a review. Some of the remarkable
conclusions obtained so far include:

• The KSS bound of the shear viscosity over entropy density can be violated for
Gauss-Bonnet gravity and other higher curvature gravity theories;

• The requirement that Boulware-Deser instabilities (i.e., gravitons propagating with
kinetic terms of wrong sign) are absent in Lovelock gravity is equivalent to the
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positivity of the central charge, which corresponds to the condition of unitarity of
the dual CFT;

• The constraints that arise by imposing no causality violation in the boundary theory
are the same constraints that arise by demanding positivity of the energy flux in
the dual CFT.

In the last part of this chapter we will review the above conclusions in more detail.

3.6.1 Violation of the KSS bound

Amongst numerous results in the study of strongly coupled systems obtained via the
AdS/CFT duality, one of the most important is the computation of the ratio of the shear
viscosity over entropy density η/s. In quantum field theory, the shear viscosity is computed
by means of the Kubo formula

η = − lim
ω→0

1

ω
Im GR

ij,ij(ω, ~q = 0), (3.32)

where GR is the retarded Green’s function for the energy-momentum tensor

GR
µν,αβ(q) = −i

∫
d4xe−iqxθ(t)〈[Tµν(x), Tαβ(0)]〉, q = (ω, ~q). (3.33)

The shear viscosity can be computed holographically using the prescription of [75], and
early results led Kovtun, Son and Starinets (KSS) to conjecture a universal lower bound
for the shear viscosity over entropy density ratio [76]

η

s
≥ 1

4π
. (3.34)

The violation of the KSS bound was found some years later for Gauss Bonnet gravity,
where the result was found to be

η

s
=

1

4π
(1− 4λGB), (3.35)

which violates the bound (3.34) for positive values of λGB.

3.6.2 Unitarity of the dual CFT

Conformal symmetry is a powerful symmetry that highly limit the form of correlation
functions in a CFT. In fact, the two and three-point functions are fully fixed up to a few
parameters. For example, the two-point function of the stress tensor of a CFT in (d− 1)
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spacetime dimensions is constrained to have the form

〈Tab(x)Tcd(0)〉 =
CT

x2(d−1)
Iab,cd(x), (3.36)

where CT is known as the central charge and the explicit form of the structure Iab,cd(x)

will not be important for our discussion. The important point here is the observation that
requiring unitarity of the CFT implies CT to be positive. On the gravity dual side, the
unitarity condition is translated into avoiding the so called Boulware-Deser instabilities
[10] as we shall explain in more detail below.

The holographic dictionary relates the stress tensor with fluctuations around the met-
ric background gµν → gµν + hµν . Following the same notation as in Section 3.3, let us
assume without loss of generality that the AdS background has an associated cosmolog-
ical constant Λ1. Since we are interested in a two-point function, we need to expand the
action up to second order in the metric fluctuation, and then evaluate the on-shell action.
The two-point function is extracted by taking two functional derivatives of the on-shell
action.

In the vielbein formalism, the first variation of the action gives δSLovelock =
∫

(Eaδea),
where Ea is the equation of motion (3.16). Taking the second variation, we have

δ2SLovelock =

∫ (
Eaδ2ea +

∂Ea
∂eb

δeb ∧ δea
)
. (3.37)

The first term vanishes on-shell since it is simply the equation of motion. In the second
term, the derivative acting on Ea will supposedly give rise to many terms, but almost all of
them are proportional to Fab(1) = Rab−Λ1e

a ∧ eb and they vanish when evaluated on-shell.
The only non-vanishing contribution comes from the derivative acting on Fab1 . Therefore,
evaluating on-shell, we have

δ2SLovelock =
K∏
k 6=1

(Λ1 − Λk)

∫
εaa1...ad−1

∂Fa1a2

(1)

∂eb
∧ ea3...ad−1 ∧ δeb ∧ δea. (3.38)

We recognize the overall factor above as Υ′[Λ1], with Υ defined in (3.27), and the term
inside the integral is simply the second variation of the Einstein-Hilbert action, so that

δ2SLovelock = Υ′[Λ1]δ2SEH. (3.39)

We see that, in order to the solution of the Lovelock action be indeed a minimum, we need
to impose Υ′[Λ1] > 0, so avoiding gravitons propagating with the wrong sign of the kinetic
energy. These are known as the Boulware-Deser instabilities [10]. The positivity of Υ′[Λ1]
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has been proven in [15] for the EH-branch of solutions of Lovelock gravity.1 For example,
when we described the Gauss-Bonnet solution in Section 3.5 we had two possible solutions
and the one we picked was indeed the one that avoided the Boulware-Deser instability.

From the above analysis, the second order on-shell action is simply the same as in the
Einstein-Hilbert case [77] up to a factor Υ′[Λ1]. The central charge can be read off to be

CT =
d

2(d− 2)

Γ(d)

π
d−1

2 Γ(d−1
2

)

Υ′[Λ1]

(−Λ1)
d−2

2

. (3.40)

Therefore, we learned that
CT > 0⇔ Υ′[Λ1] > 0, (3.41)

reflecting the identification between avoiding Boulware-Deser instabilities and requiring
unitarity of the CFT boundary theory.

3.6.3 Positivity of the energy flux

Let us define the energy flux operator

E(n) ≡ lim
r→∞

rd−3

∫ ∞
−∞

dt niT 0
i (t, rn), (3.42)

where ~n is a unity vector characterizing the direction of flux measurement. Let O be a
given local gauge invariant operator. The expectation value of the energy flux on an initial
state O|0〉 created by O is given by

〈E(n)〉O =
〈0|O†E(n)O|0〉
〈0|O†O|0〉

. (3.43)

Intuitively, we can imagine that the operator O creates a localized perturbation at r = 0

that propagates in spacetime. Then we can think of 〈E(n)〉O as the energy associated
to the perturbation deposited in a calorimeter located far away (at r = ∞) along the
direction n. It is therefore reasonable to expect this quantity to be positive. Here, we
will be particularly interested in the case where the operator O is the stress tensor itself,
i.e., O = T ijεij, where εij is a symmetric traceless polarization tensor. So the expectation
value of the energy flux can be seen as the ratio of a three-point correlator over a two-
point correlator of the stress tensor. As we discussed in the previous section, conformal
symmetry highly constrains the form of the correlators in a CFT. Together with rotational
symmetry, the expectation value of the energy flux in a (d−1) dimensional CFT is almost

1By EH-branch we mean the solution that is smoothly connected to the corresponding EH solution
obtained by setting the other Lovelock couplings to zero.
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fixed up to coefficients t2 and t4, with

〈E(n)〉T ijεij =
E

Ωd−3

[
1 + t2

(
ninjε

∗
ikεjk

ε∗ikεik
− 1

d− 2

)
+ t4

(
|ninjεij|2

ε∗ikεik
− 2

d(d− 2)

)]
(3.44)

If we now impose the positivity of the energy flux for any direction n and polarization εij,
the coefficients t2 and t4 are constrained. The constraints can be obtained by fixing the
unit vector to be ni = (1, 0, . . . , 0) and organizing the polarization tensor εij accordingly
to their SO(d− 3) rotational symmetry around n . We obtain

• tensor (helicity 2), e.g., ε23 = ε32 = a and all other components vanish,

1− 1

d− 2
t2 −

2

d(d− 2)
t4 ≥ 0, (3.45)

• vector (helicity 1), e.g., ε12 = ε21 = a and all other components vanish,(
1− 1

d− 2
t2 −

2

d(d− 2)
t4

)
+

1

2
t2 ≥ 0, (3.46)

• scalar (helicity 0), e.g., εij = a× diag (−(d− 3), 1, . . . , 1),(
1− 1

d− 2
t2 −

2

d(d− 2)
t4

)
+
d− 3

d− 2
(t2 + t4) ≥ 0, (3.47)

3.6.4 Causality violation

Changing to the gravity point of view, let us see how to connect the positivity of the
energy flux to preventing causality violation. In higher curvature gravity, gravitons do not
propagate accordingly to the background metric, i.e., they do not follow geodesics, instead
they feel an effective background related to their equations of motion. In this analysis, we
will be concerned about gravitons emitted from the AdS boundary entering into the bulk
and bouncing back to the boundary.

It is important to emphasize what kind of causality violation we are referring to. As
we will see, when the graviton emitted towards the bulk goes back to the boundary, it
may return at some different point such that it lies outside its own light-cone. From the
point o view of the boundary theory, the graviton suddenly “pops out” its light-cone,
corresponding to a microcausality violation.

Brigante et al [78] found a first evidence for the possibility of causality violation in
higher curvature gravity, where they studied metric perturbations around five-dimensional
black holes in Gauss-Bonnet gravity. They found that for values of the Gauss-Bonnet cou-
pling λGB ≥ 9/100, the perturbations propagate with velocity higher than the speed of
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light from the point of view of the boundary theory. Subsequent works generalized this
result. Hofman [79] argued that the study of causality violation goes beyond the context
of black holes, and proposed the study of causality in shock wave backgrounds. Then, a
lower bound for the Gauss-Bonnet coupling was found and the result was also extended to
arbitrary dimensions. Finally, Camanho and Edelstein [15] extended the analysis to Love-
lock gravity in arbitrary dimensions and they found more general constraints, matching
precisely the ones derived from the positivity of the energy flux analysis.

Let us give a general idea about how these constraints were derived using shock waves.
Shock waves are a rich class of solutions of gravity, they have the interesting property of
not suffering corrections from higher curvature terms and are known to be exact solutions
of string theory [80]. The relevant shock wave background is given by

ds2
shock = ds2

AdS + δ(u)$0z
d−3du2, (3.48)

where z is the radial direction of AdS and we have defined light-cone coordinates u =

t+ xd−1 and v = t− xd−1. This solution corresponds to a localized shockwave at u = 0.
Before dealing with the problem of causality, let us just mention that the coefficients

t2 and t4 appearing in (3.44) can be extracted holographically. Considering fluctuations
around the shock wave and finding the cubic term of the on-shell action in the fluctuation,
the values found were [15]

t2 =
2(d− 1)(d− 2)

(d− 3)(d− 4)

Λ∗Υ
′′[Λ∗]

Υ′[Λ∗]
, t4 = 0. (3.49)

Now we consider the scattering of a graviton with the shock wave profile. The equation
of motion for a helicity 2 metric fluctuation φ ≡ h23 is

∂u∂vφ−$0Λ1δ(u)zd−1N2∂
2
vφ = 0, where N2 ≡ 1− 1

d− 2
t2. (3.50)

Away from u = 0, the delta function vanishes and the equation of motion reduces to the
wave equation ∂u∂vφ = 0, so the solution has the form of a wave packet with definite
momentum on both sides. The above equation can be integrated over the delta function
to give us a relation between the solution in the two sides (u < 0 and u > 0) of the shock
wave

φ> = φ<e
−iPv$0Λ1zd−1N2 , (3.51)

where Pv = −i∂v. A relation between the shift in the momentum can be derived acting
with Pz = −i∂z, so

P>
z = P<

z − (d− 1)Pv$0Λ1z
d−2N2. (3.52)



3.6 LOVELOCK AND ADS/CFT CORRESPONDENCE 33

For a particle going inside AdS, we have P<
z > 0. The perturbation will come back to the

boundary if its radial momentum changes sign. This condition is satisfied if

Pv$Λ1z
d−2N2 < 0. (3.53)

Now note that Pv = −1
2
P u < 0, since P u is related to the energy that has to be positive.

Since Λ1 is of course negative, the gravitons go back to the boundary when

N2 < 0 (3.54)

and from (3.51) we read the change in the v coordinate to be

∆v = −$0Λ1z
d−1N2 < 0. (3.55)

In this case the graviton goes back to the boundary outside its light-cone, so we conclude
that N2 ≥ 0 is a necessary condition in order to avoid causality violation (Figure 3.1).2

We can work out the same analysis for the other helicities, finding analogous constraints.
In the end, the constraints obtained in this analysis are exactly the same obtained by
imposing the positivity of the energy flux in the previous section. In the end of the day,
we discover that the condition to avoid causality violation corresponds to impose the
positivity of energy flux on the dual CFT.

Figure 3.1: The shock wave profile corresponds to the line u = 0. The graviton correponds to the
solid line v = const. After colliding with the shock wave, the graviton may return in a position
such that ∆v < 0, outside its own light-cone and thus violating causality.

2Note that the condition N2 ≥ 0 does not fully guarantee that causality is preserved. More tighter
constraints may still arise if we change the shock wave profile; see for instance [81].



Chapter 4

Chern-Simons diffusion rate from
higher curvature gravity

An important transport coefficient in the study of non-Abelian plasmas is the Chern-
Simons diffusion rate, which parameterizes the rate of transition among the degenerate
vacua of a gauge theory. We compute this quantity at strong coupling, via holography,
using two theories of gravity with higher curvature corrections, namely Gauss-Bonnet
gravity and quasi-topological gravity. We find that these corrections may either increase
or decrease the result obtained from Einstein’s gravity, depending on the value of the
couplings. The Chern-Simons diffusion rate for Gauss-Bonnet gravity decreases as the
shear viscosity over entropy ratio is increased.

4.1 Chern-Simons diffusion rate

Non-Abelian gauge theories enjoy a rich topological structure, as displayed for example
by the presence of infinitely many degenerate vacuum states. Transitions among these
vacua are possible through quantum tunneling or thermal jumps and are parameterized
by the change in the Chern-Simons number NCS, the topological invariant that classifies
the different vacua:

∆NCS =
g2
YM

8π2

∫
d4x trF ∧ F . (4.1)

Gauge field configurations responsible for a non-vanishing ∆NCS are either instantons,
which are suppressed in the coupling constant both at zero and finite temperature, or, at
finite temperature, thermal solutions called sphalerons [82–85], which are not necessarily
suppressed. The rate of change of NCS per unit volume V and unit time t is a transport

34
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coefficient called the Chern-Simons diffusion rate, ΓCS, which is defined as

ΓCS ≡
〈∆N2

CS〉
V · t

=

(
g2
YM

8π2

)2 ∫
d4x 〈O(x)O(0)〉 , O(x) = (trF ∧ F )(x) . (4.2)

The Chern-Simons diffusion rate is important in electroweak baryogenesis and in the study
of a wealth of CP-odd processes, as for example the chiral magnetic effect in QCD [86,
87]. A non-vanishing ΓCS indicates a chiral asymmetry and the subsequent formation of
domains with a non-zero net chirality. It has been computed at weak coupling for a SU(Nc)

Yang-Mills theory and its parametric behavior has been found to be [88–91]

Γweak
CS ∝ λ5 log

(
1

λ

)
T 4 , λ� 1 , (4.3)

where λ ≡ g2
YMNc is the ’t Hooft coupling and T is the temperature. Motivated by the

strongly coupled nature of the quark-gluon plasma (QGP) produced in relativistic heavy
ion collisions, this quantity has also been computed at strong coupling via holography in
Einstein’s gravity, with the result [75]

ΓEinstein
CS =

λ2

256π3
T 4 , Nc � 1 and λ� 1 . (4.4)

Other holographic studies of ΓCS include [92–95].
It is interesting to understand modifications to eq. (4.4) due to higher curvature cor-

rections. These are in principle dictated by string theory and would correspond, in the
gauge theory, to corrections in 1/Nc and 1/λ. In this note, we limit our attention to two
specific types of higher curvature extensions of Einstein’s gravity and compute the Chern-
Simons diffusion rate in Gauss-Bonnet (GB) gravity [8–11]1 and in quasi-topological (QT)
gravity [96].

These theories contain higher derivative terms, but are such that the equations of
motion for the metric are still second order,2 thus avoiding pathologies. It is not yet clear
whether they emerge as a low energy solution of some string theory, so that their ultimate
relevance is not yet established, but they do present very nice features. Besides being free
of pathologies, as mentioned already, they possess a large class of black hole solutions and
admit AdS boundary conditions, motivating their use in a ‘bottom-up’ approach to the
study of strongly coupled plasmas.

Various physical observables relevant in the study of the QGP have already been
computed from these theories. Notable examples are given by [97] and [98], where the

1For reviews of Gauss-Bonnet and, more generally, Lovelock gravity in the context of the AdS/CFT
correspondence see e.g. [13, 14]. A nice overview of black hole solutions can be found in [17].

2For quasi-topological gravity this is true for the linearized equations in an AdS5 background.
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shear viscosity to entropy ratio was studied. There it was found that higher derivative
terms may violate the famous bound η/s ≥ 1/4π proposed in [76].

4.2 Gravity setup and results

We consider gravity in 5-dimensions with a negative cosmological constant and the
inclusion of the GB and QT terms, with action given by

S =
1

16πG5

∫
d5x
√
−g
[
R +

12

L2
+
L2

2
λGB L2 + L4µΞ3

]
+ Sbdry . (4.5)

Here L is a length scale, later to be related with the AdS radius, λGB and µ are two
dimensionless couplings, the quadratic term L2 = R2 − 4RmnR

mn + RmnrsR
mnrs is the

Euler density of GB gravity, and Ξ3 is the cubic term of QT gravity, whose explicit
expression [96] won’t be needed in the following. Sbdry is a boundary term that makes the
variational problem well posed. Remarkably, this action admits3 planar AdS black hole
solutions, given by [8, 96]

ds2 =
L2

z2

(
−a2f(z)dt2 +

dz2

f(z)
+

3∑
i=1

dx2
i

)
, (4.6)

where xµ = (t, xi) are the gauge theory coordinates, z is the radial AdS coordinate, a is
a constant, and f(z) is a function that vanishes at the horizon, z = zH, and which will
be given below. The AdS boundary is located at z = 0. Requiring c = 1 in the boundary
theory fixes a = f(0)−1/2. The black hole temperature is given by T = a/πzH.

In the AdS/CFT correspondence, the operator O(x) of eq. (4.2) is coupled to a bulk
scalar field, χ(z, xµ), whose background value is zero in the present case. The (retarded)
2-point function of O(x) can be obtained by computing the fluctuations of this field,
δχ(z, xµ), subject to infalling boundary conditions at the horizon and plugging the result
into the corresponding boundary action, minimally coupled to eq. (4.5). This procedure
is detailed in [75], where, as a first step, the definition (4.2) is rewritten in Fourier space
as

ΓCS = −
(
g2
YM

8π2

)2

lim
ω→0

2T

ω
ImGR(ω,0) . (4.7)

GR(ω,0) is the retarded Green’s function associated to O(x), evaluated at zero spatial
momentum. It can be calculated as

GR(ω,0) =
N2

c

8π2L3

√
−ggzzf−k(z)∂zfk(z)

∣∣∣
z→0

, (4.8)

3This is true for appropriate values of the couplings. For example, it must be λGB <
1
4 .
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where fk(z) is the Fourier mode of the scalar field fluctuation

δχ(z, xµ) =

∫
d4k

(2π)4
eik·xfk(z) , (4.9)

which can be obtained as a solution of the equation

1√
−g

∂z(
√
−ggzz∂zfk(z))− gµνkµkνfk(z) = 0 , kµ = (−ω,k) . (4.10)

It is convenient to work with the dimensionless coordinate u defined as u = z2/z2
H, in

terms of which we have (setting already k = 0)

∂2
ufk(u) +

[
∂u ln

f(u)

u

]
∂ufk(u) +

w2

uf(u)2
fk(u) = 0 , (4.11)

where we have defined for convenience the dimensionless frequency w ≡ ω/2πT .
The ‘blackening factor’ f(u) is defined implicitly through the cubic equation [96]

1− f(u) + λGB f(u)2 + µ f(u)3 = u2 . (4.12)

Out of the three solutions, we select the one which is regular when µ→ 0 and reproduces
the expression f(u) =

(
1−

√
1− 4λGB (1− u2)

)
/2λGB of the GB case [15,17].4 We recall

that the couplings λGB and µ are constrained by requirements of unitarity, causality, and
positivity of energy fluxes in the dual conformal field theory. It turns out that it must
be [98]5

−0.36 . λGB . 0.12 , |µ| . 0.001 . (4.13)

In view of this, we will solve eqs. (4.11) and (4.12) exactly in λGB, but only approximately
to first order in small µ. This allows us to we write explicitly

f(u) =
1

2λGB

(
1−

√
1− 4λGB (1− u2)

)
+

+
1−

√
1− 4λGB (1− u2)− λGB(1− u2)

(
3−

√
1− 4λGB (1− u2)

)
2λ3

GB

√
1− 4λGB (1− u2)

µ+O(µ2) .

(4.14)

There is no known analytic solution to eq. (4.11), but this is not needed anyway,
4The GB case has also another solution for f(u), with a plus sign in front of the square root, which is

however known to be unstable and to contain ghosts.
5The constraints on λGB and µ are not independent; see Fig. 1 of [98]. In particular, in the case of pure

GB gravity (µ = 0), the allowed range of λGB is −7/36 ≤ λGB ≤ 9/100. For µ < 0 there are instabilities
in the graviton tensor channel for momenta above a certain critical value [98]. Since ΓCS is computed at
k = 0 we do not worry about this here.



4.2 GRAVITY SETUP AND RESULTS 38

since only the small frequency behavior w → 0 of the Green’s function enters in the
Chern-Simons diffusion rate. We can then make the following Ansatz:

fk(u) = f(u)−i
w
2

(
F0(u) + w

(
F

(0)
1 (u) + µF

(1)
1 (u) +O(µ2)

)
+O(w2)

)
. (4.15)

Here F0, F
(0)
1 , and F (1)

1 are regular functions at the horizon, u = 1. In fact, we can choose
them to be such that

F0(1) = 1 , F
(0)
1 (1) =

i

2
log 2 , F

(1)
1 (1) = 0 . (4.16)

The exponent of f(u) has been chosen to give infalling boundary conditions at the horizon,
which correspond to having a retarded Green’s function in the boundary. Expanding
around u = 1, one finds in fact that fk(u) ∼ (1− u)−i

w
2 (1 +O(w2)). Plugging the Ansatz

above in eq. (4.11), it is easy6 to find the following solutions which respect the boundary
conditions above:

F0(u) = 1 , F
(0)
1 (u) =

i

2

(
1 + log 2−

√
1− 4λGB(1− u2)

)
,

F
(1)
1 (u) = − i

8λ2
GB

1− 2λGB(1− u2)− 8λ2
GB(1− u2)2 −

√
1− 4λGB(1− u2)

1− 4λGB(1− u2)
.(4.17)

Using eqs. (4.7) and (4.8), and keeping only terms linear in µ, we finally arrive at

ΓCS = ΓEinstein
CS

(
H(0)(λGB) + µH(1)(λGB) +O(µ2)

)
, (4.18)

with

H(0)(λGB) =

(
1−
√

1− 4λGB

2λGB

)3/2

,

H(1)(λGB) =
3

4

√
1−
√

1− 4λGB

2λ7
GB (1− 4λGB)

(
1−

√
1− 4λGB − λGB

(
3−

√
1− 4λGB

))
.(4.19)

We stress that this result is fully non-perturbative in λGB, at any order in µ. We see that
the Chern-Simons diffusion rate in GB and QT gravity is a rescaling of the result in eq.
(4.4). The dependence on T is dictated by conformal invariance: ΓCS must be proportional
to T 4 for dimensional reasons, with the factor of proportionality depending solely on the
dimensionless parameters, which are λGB and µ.7 Fig. 4.1(Left) shows the two terms in
ΓCS as functions of λGB. Both terms are finite, monotonically increasing and positive in

6The equations simplify if one changes coordinates u→
√

1− 4λGB(1− u2) in intermediate steps.
7An interesting context where this does not happen is Improved Holographic QCD [95], where the

absence of conformal symmetry makes ΓCS/Γ
Einstein
CS depend on T .
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Figure 4.1: (Left) The factors H(0)(λGB) (red, solid curve) and H(1)(λGB) (blue, dashed curve)
as functions of λGB. (Right) The same factors as functions of η/s. The plots are exact in λGB

and in η/s, whose allowed ranges are obtained from eqs. (4.13) and (4.20). In these ranges, the
corrections to eq. (4.4) are finite and cannot make the diffusion rate arbitrarily small.

the allowed range of λGB, given in eq. (4.13). The GB contribution can be either smaller or
larger than 1, depending on the sign of λGB, and the corresponding Chern-Simons diffusion
rate can be either smaller or larger than the result obtained from Einstein’s gravity, but,
in the allowed range of eq. (4.13), cannot get arbitrarily small.

Fig. 4.1(Right) displays the two contributions H(0) and H(1) as functions of the shear
viscosity over entropy ratio, which is given by [97,98]

η

s
=

1

4π

[
1− 4λGB − 36µ(9− 64λGB + 128λ2

GB)
]

+O(µ2) . (4.20)

We observe that ΓCS for GB gravity decreases as η/s is increased (for QT gravity this
depends on the sign of µ, whose contribution is however suppressed). It would be very
interesting to understand if there is a microscopic interpretation of this behavior.

4.3 Discussion

Understanding corrections away from the infinite Nc and infinite λ limit is clearly of
the utmost importance in order to make contact with realistic systems. Unfortunately,
loop and stringy corrections are in general hard to compute, so that our philosophy in
this note has been to consider two simple extensions of Einstein’s gravity with higher
curvature terms, just to gain a qualitative understanding of how such terms might modify
the computation of an important observable in strongly coupled non-Abelian plasmas.8

8Besides making things more realistic, the study of how higher derivative terms affect the computation
of gauge theory observables might also be useful to put constraints on the string landscape, e.g. by
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This is similar in spirit to what has been done, in [97] for GB gravity and in [98] for
QT gravity, for the shear viscosity over entropy ratio, which turned out to be lower in
these theories than what it is in Einstein’s gravity. In [97] it was in fact found to be
η/s = (1 − 4λGB)/4π and in [98] to be η/s & 0.4140/4π, both cases in violation of the
bound proposed in [76].9 It is interesting to observe that a subsequent computation [105] in
a setting [106–108] where α′-corrections can be solved exactly yielded the same qualitative
behavior, with the bound η/s ≥ 1/4π being violated.

The presence of the new gravitational couplings λGB and µ corresponds on the bound-
ary to considering conformal field theories which are more generic than the ones usually
studied. In particular, a non-vanishing λGB results in having independent central charges
a 6= c [19, 20], whereas a non-vanishing µ also results in the breaking of supersymme-
try [96]. For these reasons, these theories, even if they turn out to be just toy models
without a UV completion, may still be useful in exploring situations which require an
understanding of holography in non-trivial backgrounds.

excluding ranges of parameters that would produce pathologies in the dual gauge theory, as suggested
in [16].

9See also, for instance, [99–103] and [22, 29] for violations of the bound in an anisotropic plasma. A
status report of the Kovtun-Son-Starinets conjecture can be found in [104].



Chapter 5

Anisotropic black branes in higher
curvature gravity

The AdS/CFT correspondence has been recently applied to the study of the quark
gluon plasma (QGP) produced in heavy ion collisions, motivated by the behavior of the
plasma as a strongly coupling system that makes the application of traditional perturba-
tion theory techniques inviable. It is clear that to study the real-world QGP one would
need the holographic dual to QCD, which is not currently known. Finite temperature
N = 4 SYM has given us good insight on the qualitative features of the strong coupling
dynamics of the plasma. Deform the N = 4 SYM to incorporate features present in the
real-world QGP is an obvious step towards a more reliable holographic description of the
QGP. For example, the QGP produced in heavy ion collisions is initially anisotropic due
to the preferred direction of the beam collision.

An anisotropic black hole solution in type IIB supergravity that can be used to describe
an anisotropic strongly coupled plasma was recently discovered in [22]. This solution
presents an anisotropic scaling of the coordinates in the interior of the space sourced by
an axion field, corresponding on the gauge theory side to a position-dependent theta-angle
term deforming the N = 4 SYM theory. The idea of this work is to find the equivalent
of the solution of [22] including the first Lovelock correction, motivated by the fact that
higher curvature terms appear as α′ corrections to supergravity, corresponding in the
gauge theory side, to finite ’t Hooft coupling constant.

This chapter is organized as follows. In Sec. 5.1 we present our solution and compute its
temperature and entropy density. In Sec. 5.2 we carry out the holographic renormalization,
obtaining general formulas for the expectation values of the stress tensor and of the axion
and dilaton operators. In Sec. 5.3 we specialize those formulas to the case at hand and
discuss the various features of energy density and pressures. We finally discuss our results
in Sec. 5.4. The explicit expressions of the solution can be found in Appendix B.

41
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5.1 Action and solution

We are interested in five-dimensional gravity with a negative cosmological constant and
the inclusion of a Gauss-Bonnet term, which we also couple to an axion-dilaton system
in the following way

S =
1

16πG

∫
d5x
√
−g
[
R +

12

`2
− 1

2
(∂φ)2 − e2φ

2
(∂χ)2 +

`2

2
λGBLGB

]
+ SGH . (5.1)

The scalar fields φ and χ are the dilaton and axion, respectively, λGB is the (dimensionless)
Gauss-Bonnet coupling and

LGB = R2 − 4RmnR
mn +RmnrsR

mnrs (5.2)

is the Gauss-Bonnet term. ` is a parameter with dimensions of length that we set to one
in what follows, without loss of generality. We use the Latin indices m,n, . . . for the five-
dimensional coordinates (t, x, y, z, u), with u being the radial coordinate. The term SGH is
the usual Gibbons-Hawking term, necessary to render the variational problem well posed.
When λGB = 0 the action above can be obtained from type IIB superstrings [22, 23], but
this is no longer true when the Gauss-Bonnet coupling is turned on. In fact, it is not clear
whether (5.1) can be obtained from any string theory compactification, so that our point
of view in the present work is ‘bottom-up’.

The field equations for the metric resulting from the action above are given by

Rmn−
1

2
gmnR+

λGB

2
δLGBmn =

1

2
∂mφ ∂nφ+

1

2
e2φ∂mχ∂nχ−

gmn
4

[
(∂φ)2 + e2φ(∂χ)2 − 12

]
,

(5.3)
where

δLGBmn = −gmn
2
LGB − 4R r

m Rrn + 2RmnR− 4RrsRmrns + 2R rst
m Rnrst (5.4)

is the variation of the Gauss-Bonnet term. The equations for the dilaton and axion read
instead

∂m(
√
−ggmn∂nφ) =

√
−ge2φ(∂χ)2 , ∂m(

√
−ge2φgmn∂nχ) = 0 . (5.5)

We want to obtain a solution which displays a spatial anisotropy. This is achieved by
singling out one direction, say the z-direction, which will be later identified with the
‘beam direction’ in a heavy ion collision experiment occurring in the boundary theory. To
get an anisotropy between the z-direction and the xy-directions (the transverse plane to



5.1 ACTION AND SOLUTION 43

the beam), we consider the following Ansatz1

ds2 =
1

u2

(
−FB dt2 + dx2 + dy2 +H dz2 +

du2

F

)
. (5.6)

All the metric components F , B, and H, as well as the dilaton φ, depend solely on the
radial coordinate u. This guarantees that the solution be static. In this parametrization
the boundary is located at u = 0. F is a ‘blackening factor’ that introduces an horizon in
the geometry at u = uH, where F (uH) = 0. There is a scaling symmetry in the coordinates t
and z that allows us to set BbdryFbdry = Hbdry = 1, thus recovering a canonically normalized
AdS metric in the UV region (with radius 1/

√
Fbdry). Here and in what follows we use

the subscript ‘bdry’ to denote the value of the fields at u = 0.
Following [21,22] we consider an axion field which has a constant profile in the radial

direction and depends linearly on z

χ = a z . (5.7)

The parameter a has dimensions of energy and controls the amount of anisotropy. It is
clear that this is a solution of the axion equation, since the metric is diagonal and the
metric and dilaton do not depend on z.

In this work we limit ourselves to considering the case of small anisotropy, which will
allow for an analytic solution of the equations of motion. To do this we expand all the
fields around the (isotropic) Gauss-Bonnet black brane solution2

φ(u) = a2φ2(u) +O(a4) ,

F (u) = F0(u) + a2F2(u) +O(a4) ,

B(u) = B0

(
1 + a2B2(u) +O(a4)

)
,

H(u) = 1 + a2H2(u) +O(a4) , (5.8)

where

F0(u) =
1

2λGB

(
1−

√
1− 4λGB

(
1− u4

u4
H

))
, λGB <

1

4
. (5.9)

This is a solution of the equations of motion when a = 0. In order to have a unit speed
of light at the boundary we set

B0 =
1

2

(
1 +

√
1− 4λGB

)
. (5.10)

1Note that this Ansatz is slightly different than the one used in [22,23].
2See e.g. [97] or [13] for a review.
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This is possible due to the scaling symmetry in t, which we have mentioned above. Note
that only even powers of a can appear in the expansion because of the symmetry z → −z.

Luckily it is possible to solve the equations analytically at order O(a2). The equations
at this order and the explicit solutions are detailed in App. B. A plot of representative
solutions is contained in Figure 5.1, where the regularity of the geometry is explicitly
exhibited.
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Figure 5.1: The metric functions at order O(a2) for λGB = 0.2 (left) and λGB = −0.2 (right).

Here we just mention that we have fixed the integration constants in such a way that
all the metric functions are regular at the horizon and moreover

φ2,bdry = F2,bdry = B2,bdry = H2,bdry = 0 , (5.11)

thus recovering AdS in the UV. A direct computation of the Kretschmann invariant
RmnpqR

mnpq shows no singularity in the geometry except for λGB = 1/4, which is however
excluded, as can be seen from (5.9).

Unfortunately, we have not been able to find analytic solutions beyond order O(a2) and
most likely a numerical analysis will turn out to be necessary to go to higher anisotropies.
This is however beyond the scope of the present work. It should be possible, in principle,
to consider arbitrarily large values of a, as in the pure Einstein-Hilbert case of [22,23].

The temperature of the solution can be computed as usual from the standard require-
ment that the (Euclideanized) metric be regular at u = uH. One finds that

T = −
F ′(u)

√
B(u)

4π

∣∣∣
u=uH

. (5.12)
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Specializing to our solution this becomes3

T =
√
B0

 1

πuH

−
2B0 − 6λGB +

√
λGB log

(
1+2
√
λGB

1−2
√
λGB

)
− log

(
4B0√

1−4λGB

)
48π(1− 4λGB)

uHa
2 +O(a4)

 .

(5.13)

This equation can be easily inverted to find uH as a function of T .
For planar black holes in GB gravity the entropy density is still given by the usual

formula in terms of the area of the horizon. We find (here V3 is the infinite volume∫
dx dy dz)

s =
Ahor

4GV3

=
π

4GB
3/2
0

(
π2T 3 +

1

8
TB0a

2 +O(a4)

)
. (5.14)

We notice that for λGB = 0 this matches the result obtained in [22,23].
A final comment on the IR behavior of the geometry is in order. The solution of [22,23]

was interpolating between AdS boundary conditions in the UV and a Lifshitz-like scaling
solution [21] in the IR. We believe that the finite λGB generalization discussed here does not
share this feature with [22, 23], although we have not been able to prove this rigorously.
More specifically, we have not been able to find a scaling solution in the IR (even for
T = 0), as done in [21] for the case λGB = 0. One obstruction might be that Lifshitz
solutions in GB gravity seem to require to tune the cosmological constant in ways that
are not compatible with our equations. For example, in the case of GB gravity coupled to
a massive vector field the condition for a Lifshitz scaling is that the cosmological constant
be half of the usual value [109].4 It would certainly be interesting to settle this point, but
this goes beyond the scope of this work.

5.2 Holographic renormalization

In this section we use holographic renormalization techniques to compute the 1-point
function of the boundary stress tensor associated to our gravitational system; see [111] for
a review. In fact, we consider a generalization of (5.1), where the coefficient of the axion
kinetic term is allowed to be a generic function Z(φ) of the dilaton. We also maintain the
metric and axion-dilaton generic. We use the recursive Hamilton-Jacobi method that was
introduced in [24] for axion-dilaton gravity without Gauss-Bonnet term. Our main result
are the expressions (5.57)-(5.60) for 〈Tij〉, 〈Oφ〉 and 〈Oχ〉, which are general and which

3Note that this expression is valid, and real, even for negative λGB.
4A flow between a Lifshitz solution in the UV and an AdS solution in the IR for GB-gravity coupled

to a massive vector field was discussed in [110].
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we specialize to our solution (5.8) in the next section.

5.2.1 Radial evolution Hamiltonian

The recursive Hamilton-Jacobi method of [24], which we follow closely in this section,
makes use of the ADM formalism, in which a manifoldM is foliated with hypersurfaces
Σr of constant radial coordinate, which we call r in this section. In this coordinate, which
plays the role of Hamiltonian time, the boundary is located at r =∞. The metric onM
takes the form

ds2 = (N2 +NiN
i)dr2 + 2Nidrdx

i + γijdx
idxj , (5.15)

where N and Ni are the lapse and shift function, respectively, and γij is the induced
metric on Σr. We use the Latin indices i, j, . . . to label the coordinates (t, x, y, z) on Σr.
In terms of these fields, the extrinsic curvature is given by

Kij =
1

2N
(γ̇ij −DiNj −DjNi) , (5.16)

with the dot denoting differentiation with respect to r and Di being the covariant deriva-
tive associated to γij.

The axion-dilaton part of (5.1), without Gauss-Bonnet contribution, turns out to be
given by5

Saxion-dilaton =

∫
M
ddx
√
−g
[
R+K2 −K2

ij + (d− 1)(d− 2)

−1

2

(
φ̇2 + Z(φ)χ̇2 + γij(∂iφ∂jφ+ Z(φ)∂iχ∂jχ)

) ]
.(5.17)

Here and in the following we leave the function in the axion kinetic term as a generic
function of the dilaton, Z(φ). Later we will specialize to Z(φ) = e2φ and to d = 5, which
is the case considered in the previous section. We denote with the calligraphic fonts R,
Rij, etc. the curvature on M computed in terms of N,Ni and γij. All the contractions
of the i, j, . . . indices are performed with γij. The Gauss-Bonnet contribution is (see for
example eq. (2.8) of [25])

SGB =
1

2

∫
M
ddx
√
−g
[
(R2 +K2 −K2

ij)
2 − 4(Rij +KKij −KikK

k
j )2

+(Rijkl +KikKjl −KilKjk)
2 − 4

3
K4 + 8K2K2

ij

−32

3
KKj

iK
k
jK

i
k − 4(K2

ij)
2 + 8Kj

iK
k
jK

l
kK

i
l

]
, (5.18)

5We gauge-fix N = 1 e Ni = 0 and set, for this section, 1
16πG = 1. Note that we use a different

normalization (a factor of 1/2) in our scalar kinetic terms compared to the scalar kinetic terms in [24].



5.2 HOLOGRAPHIC RENORMALIZATION 47

with K = γijKij. The Gibbons-Hawking terms have already been included in the actions
above, but they get canceled by boundary terms coming from the bulk actions. The total
action is then

S = Saxion-dilaton + λGBSGB . (5.19)

The next ingredient in the algorithm is to compute the Hamiltonian for radial evolu-
tion, which is associated to the Lagrangian L defined by S =

∫
drL. To this scope, we

need the canonical conjugate momenta

πij ≡ 1√
−γ

δL

δγ̇ij

= γijK −Kij + λGB

[
γij(RK − 2RklK

kl)−RKij − 2RijK + 4Rk(iK
j)
k

+2RikjlKkl +
1

3
γij(−K3 + 3KK2

kl − 2K l
kK

m
l K

k
m)

+K2Kij − 2KKi
kK

jk −KijK2
kl + 2Ki

kK
k
l K

jl
]
,

πφ ≡
1√
−γ

δL

δφ̇
= −φ̇, πχ ≡

1√
−γ

δL

δχ̇
= −Z(φ)χ̇ . (5.20)

In our solution it is clear that πχ = 0, but we keep this term in this section for full
generality. The Hamiltonian for radial evolution is then given by

H =

∫
Σr

dd−1x
√
−γ(2πijKij + πφφ̇+ πχχ̇)− L , (5.21)

where we used that Kij = γ̇ij/2 in the chosen gauge. To write the Hamiltonian in terms
of the canonical momenta and induced metric one needs to invert (5.20), which is a
complicated system of nonlinear equations. This has been done in [25], but only to first
order in λGB. In this section we also limit ourselves to this regime, for simplicity (although,
we repeat, our solution (5.8) is fully non-perturbative in λGB).

Let us derive the expression for the Hamiltonian of radial evolution in (5.26). The
starting point is

H =

∫
Σr

dd−1x
√
−γ(2πijKij + πφφ̇+ πχχ̇)− L , (5.22)

where we write L = L̃+ Laxion-dilaton, with

Laxion-dilaton = −1

2

∫
Σr

dd−1x
√
−γ
[
φ̇2 + Z(φ)χ̇2 + (∂iφ)2 + Z(φ)(∂iχ)2

]
. (5.23)
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We can then separate

H =

(∫
Σr

dd−1x
√
−γ 2πijKij − L̃

)
︸ ︷︷ ︸

≡H̃

+

(∫
Σr

dd−1x
√
−γ
(
πφφ̇+ πχχ̇

)
− Laxion-dilaton

)
︸ ︷︷ ︸

≡Haxion-dilaton

.

(5.24)
We note that H̃ is exactly the Hamiltonian in eq. (2.12) of [25] (up to an overall minus
sign). For Haxion-dilaton we have

Haxion-dilaton = −
∫

Σr

dd−1x
√
−γ
(
π2
φ +

π2
χ

Z(φ)
− 1

2
(∂iφ)2 − 1

2
Z(φ)(∂iχ)2

)
. (5.25)

Writing this in terms of the canonical momenta and induced metric leads to

H = −
∫

Σr

dd−1x
√
−γ
[
R+ (d− 1)(d− 2)− 1

d− 2
(πii)

2 + π2
ij + π2

φ +
π2
χ

Z(φ)

−1

2

(
(∂iφ)2 + Z(φ)(∂iχ)2

)
+
λGB

2

(
R2 − 4R2

ij +R2
ijkl −

16

d− 2
πkkRijπ

ij

+
2d

(d− 2)2
(πii)

2R− 2Rπ2
ij + 8Rijπ

jkπik + 4Rijklπ
ikπjl + 2πjiπ

k
j π

l
kπ

i
l − (π2

ij)
2

− 16

3(d− 2)
πllπ

j
iπ

k
j π

i
k +

2d

(d− 2)2
(πkk)2π2

ij −
3d− 4

3(d− 2)3
(πii)

4
)]

+O(λ2
GB) .(5.26)

5.2.2 Recursive method

Consider now a regularized spaceMr, whose boundary is Σr, with a fixed r which in
the end is meant to be taken to infinity. We add a generic boundary term Sb to the action
defined on this regularized space. In [24] it was shown that the variational problem is well
defined if

Sb
∣∣
r

= −Sr, (5.27)

where Sr is Hamilton’s principal functional, given by the on-shell action with arbitrary
boundary values for γij, φ, and χ on Σr.

It is well known that the canonical momenta can be obtained by taking functional
derivatives of Sr

πij =
δSr
δγij

, πφ =
δSr
δφ

, πχ =
δSr
δχ

. (5.28)

The Hamiltonian is constrained to vanish as a result of the equations of motion for N and
Ni

H = 0 . (5.29)

We can determine Sr by solving this constraint. The trick is to consider an expansion in
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eigenfunctions of the operator

δγ =

∫
Σr

dd−1x 2γij
δ

δγij
. (5.30)

One can verify that such an expansion is a derivative expansion

Sr = S(0) + S(2) + S(4) + . . . , (5.31)

with
δγS(2n) = (d− 1− 2n)S(2n) . (5.32)

Once we know the solution for S(0), we can compute corrections to the action in a system-
atic way by solving algebraic equations. In fact, having to deal with algebraic equations
instead of partial differential equations is the main advantage of the method of [24].

Now we write Hamilton’s principal functional as

Sr =

∫
Σr

dd−1x
(
L(0) + L(2) + L(4) + . . .

)
. (5.33)

From (5.28) we see that the canonical momenta also admit derivative expansions

πij = π(0)
ij + π(2)

ij + π(4)
ij + . . . ,

πφ = πφ(0) + πφ(2) + πφ(4) + . . . ,

πχ = πχ(0) + πχ(2) + πχ(4) + . . . . (5.34)

Translating (5.32) in terms of the momenta and the Lagrangian density we obtain

2π(2n) =
1√
−γ

(d− 1− 2n)L(2n) , (5.35)

where π(2n) = π(2n)
i
i
is the trace taken with respect to γij. This relation is crucial for the

algorithm to work. Note that we can obtain all canonical momenta at some given order
by just knowing the trace of the momentum conjugate to the induced metric.

We can now solve the Hamiltonian constraint H = 0. Substituting the above expan-
sions in the Hamiltonian and grouping terms with the same number of derivatives leads
to an equation of the form

H = H(0) +H(2) +H(4) + . . . = 0 , (5.36)

which must be satisfied order by order, imposing separately H(2n) = 0 for all n.
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Solution at zeroth order

We start by collecting terms with zero derivatives, which results in

H(0) = −(d− 2)(d− 1)− π2
(0)ij

+
π2

(0)

d− 2
− π2

φ(0)
−
π2
χ(0)

Z(φ)

+λGB

(
1

2
(π2

(0)ij
)2 −

d π2
(0)ij

π2
(0)

(d− 2)2
+

(3d− 4)π4
(0)

6(d− 2)3
− π(0)

k
i
πij(0)

(
π(0)

l
j
π(0)kl

+
8π(0)jk

π(0)

6− 3d

))
+O(λ2

GB) . (5.37)

Following [24], we try with the Ansatz for L(0)

S(0) = 2

∫
Σr

dd−1x
√
−γW(φ, χ) , (5.38)

and compute the corresponding canonical momenta

πij(0) =
δS(0)

δγij
= γijW , πφ(0) =

δS(0)

δφ
= 2∂φW , πχ(0) =

δS(0)

δχ
= 2∂χW . (5.39)

Substituting into H(0) this gives

H(0) = −(d− 2)(d− 1) +
(d− 1)W2

d− 2
− 4(∂χW)2

Z(φ)
− 4(∂φW)2

+λGB

(
(d− 4)(d− 3)(d− 1)W4

6(d− 2)3

)
+O(λ2

GB) . (5.40)

We know from [24] that in the limit λGB → 0 the solution for W is the constant d − 2.
We can then write

W(φ, χ) = (d− 2) + λGBV(φ, χ) +O(λ2
GB). (5.41)

Plugging (5.41) into (5.40) gives an equation for V(φ, χ), whose solution turns out to be
also a constant

V = − 1

12
(d− 4)(d− 3)(d− 2). (5.42)
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Solution at second order

Terms with two derivatives can be collected into the following expression

H(2) = −R− 2πij(0)π(2)ij
+

2π(0)π(2)

d− 2
− 2πφ(0)πφ(2) −

2πχ(0)πχ(2)

Z(φ)
+

1

2
(∂iφ)2 +

1

2
Z(φ)(∂iχ)2

−λGB

[
4Rijπ(0)

k
i
π(0)jk

+ 2Rikjlπ
ij
(0)π

kl
(0) +

dRπ2
(0)

(d− 2)2
+

2d πij(0)π
2
(0)π(2)ij(

d− 2
)2

−
8π(0)

k
i
πij(0)π(0)π(2)jk

d− 2
+ 4π(0)

k
i
πij(0)π(0)

l
j
π(2)kl

+
8π(0)

k
i
πij(0)π(0)jk

π(2)

6− 3d
+

8π3
(0)π(2)

3
(
d− 2

)3

−
2d π3

(0)π(2)(
d− 2

)3 − π(0)ij

(
8Rijπ(0)

d− 2
+ πij(0)

(
R+ 2πkl(0)π(2)kl

−
2d π(0)π(2)

(d− 2)2

))]
+O(λ2

GB) .

(5.43)

Substitution of the zeroth order solution in H(2) leads to the following simple algebraic
equation for π(2)(
−2 + (1 + (d− 4)(d− 3)λGB)R− 1

2
(d− 4)(d− 3)λGB

)
π(2)−

1

2
(∂iφ)2−1

2
Z(φ)(∂iχ)2 = 0 .

(5.44)
Solving the above equation and using (5.35), we obtain L(2)

L(2) =

√
−γ

2(d− 3)

(
2R− (∂iφ)2 − Z(φ)(∂iχ)2 + λGB

12− 7d+ d2

4

(
6R+ (∂iφ)2 + Z(φ)(∂iχ)2

))
+O(λ2

GB) . (5.45)

From this we can compute the momenta at second order

πij(2) = − 1

8(d− 3)

[
4(2Rij − ∂iφ∂jφ− Z(φ)∂iχ∂jχ)− 2γij(2R− (∂kφ)2 − Z(φ)(∂kχ)2)

+λGB(12− 7d+ d2)
(
6Rij + ∂iφ∂jφ+ Z(φ)∂iχ∂jχ− 1

2
γij(6R+ (∂kφ)2 + Z(φ)(∂kχ)2)

)]
+O(λ2

GB) ,

πφ(2) =
2− 1

2
(12− 7d+ d2)λGB

4(d− 3)

(
2DiD

iφ− Z ′(φ)(∂iχ)2
)

+O(λ2
GB) ,

πχ(2) =
2− 1

2
(12− 7d+ d2)λGB

2(d− 3)

(
Z(φ)DiD

iχ+ Z ′(φ)∂iχ∂
iφ
)

+O(λ2
GB) . (5.46)
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Solution at fourth order

Finally, at fourth order we have

H(4) = −π(2)ij
πij(2) +

π2
(2)

d− 2
− π2

φ(2)
−
π2
χ(2)

Z(φ)
− 2πij(0)π(4)ij

+
2π(0)π(4)

d− 2
− 2πφ(0)πφ(4) −

2πχ(0)πχ(4)

Z(φ)

− λGB

[
−2RijRij + 1

2
R2 + 1

2
(Rijkl)

2 − 2Rπij(0)π(2)ij
−

8Rijπ(0)π(2)ij

d− 2
+ 8Rijπ(0)i

kπ(2)jk

+
dπ2

(0)π(2)ij
πij(2)

(d− 2)2
−

8πij(0)π(0)π(2)i
kπ(2)jk

d− 2
+ 2πij(0)π

kl
(0)π(2)ik

π(2)jl
− 2πij(0)π

kl
(0)π(2)ij

π(2)kl

+ 4π(0)i
kπij(0)π(2)j

lπ(2)kl
+ 4Rikjlπ

ij
(0)π

kl
(2) − π(0)ij

πij(0)π(2)kl
πkl(2) −

8Rijπ(0)ij
π(2)

d− 2
+

2dRπ(0)π(2)

(d− 2)2

+
4dπij(0)π(0)π(2)ij

π(2)

(d− 2)2
−

8π(0)i
kπij(0)π(2)jk

π(2)

d− 2
+
dπ(0)ij

πij(0)π
2
(2)

(d− 2)2
+

4π2
(0)π

2
(2)

(d− 2)3
−

3dπ2
(0)π

2
(2)

(d− 2)3

+
2dπij(0)π

2
(0)π(4)ij

(d− 2)2
−

8π(0)
k
i
πij(0)π(0)π(4)jk

d− 2
+ 4π(0)

k
i
πij(0)π(0)

l
j
π(4)kl

− 2π(0)ij
πij(0)π

kl
(0)π(4)kl

+
8π(0)

k
i
πij(0)π(0)jk

π(4)

6− 3d
+

2dπ(0)ij
πij(0)π(0)π(4)

(d− 2)2
+

8π3
(0)π(4)

3(d− 2)3
−

2dπ3
(0)π(4)

(d− 2)3

]
+O(λ2

GB) .

(5.47)

Now we repeat the previous steps. We substitute the zeroth and second order solutions in
H(4), which leads to an algebraic equation for π(4) that can be readily solved. There is a
subtlety due to the fact that the relation (5.35) is ill defined for d = 5, which is our case
of interest. In fact

L(4) =
√
−γ 2

d− 5
π(4). (5.48)

However, the Hamilton-Jacobi method can still be applied (see the discussion in [24]) if
we set the radial cut-off to be

r =
1

d− 5
, (5.49)
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and define L̃(4) such that L(4)|r = −2rL̃(4)|r, namely L̃(4) = −
√
−γπ(4). Proceeding in this

way we finally arrive at

96

r
√
−γ
L(4) = −8R

(
R− (∂iφ)2 − Z(φ)∂iχ∂

iχ
)

+ 4(∂iφ)4 + 12Z(φ)(∂iχ∂
iφ)2

− 4Z(φ)(∂iφ)2(∂jχ)2 + 4Z(φ)2(∂iχ)4 + 24Rij

(
Rij − ∂iφ∂jφ− Z(φ)∂iχ∂jχ

)
+ 24

(
DiD

iφ− Z′(φ)
2

(∂iχ)2
)2

+ 24Z(φ)
(
DiD

iχ+ Z′(φ)
Z(φ)

(∂iχ∂
iφ)
)2

+ λGB

[
76R2 + 48RijklRijkl − 12R

(
(∂iφ)2 + Z(φ)(∂iχ)2

)
+ 2(∂iφ)4 + 6Z(φ)(∂iχ∂

iφ)2

− 2Z(φ)(∂iφ)2(∂jχ)2 + 2Z(φ)2(∂iχ)4 − 12Rij

(
23Rij − 3∂iφ∂jφ− 3Z(φ)∂iχ∂jχ

)
−36

(
DiD

iφ− Z′(φ)
2

(∂iχ)2
)2

− 36Z(φ)
(
DiD

iχ+ Z′(φ)
Z(φ)

∂iχ∂
iφ
)2
]

+O(λ2
GB) .

(5.50)

Up to some overall factor, this expression coincides with the conformal anomaly, as we
shall see in a moment.

5.2.3 Fefferman-Graham expansions

From the counterterms obtained using the Hamilton-Jacobi method we see that the
canonical momenta take the form

πij = πij(0) + πij(2) − 2rπ̃ij(4) + πij(4) + . . . ,

πφ = πφ(0) + πφ(2) − 2rπ̃φ(4) + πφ(4) + . . . ,

πχ = πχ(0) + πχ(2) − 2rπ̃χ(4) + πχ(4) + . . . . (5.51)

The fourth order terms πij(4), πφ(4), πχ(4) contain the information about the renormalized
one-point functions. In order to determine these terms, we proceed with the asymptotic
analysis. In Fefferman-Graham (FG) coordinates, the metric reads

ds2 = `2
AdS

(
dv2

v2
+ γij(x, v) dxidxj

)
. (5.52)

The AdS radius `AdS is given by

`AdS =
1√
Fbdry

, (5.53)
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and v = e−r/`AdS . Generically, the fields will have the following near-boundary expansions
in these coordinates

γij =
1

v2

(
g(0)ij + v2g(2)ij + v4

(
g(4)ij + 2h(4)ij log v

)
+O(v6)

)
,

φ = φ(0) + v2φ(2) + v4
(
φ(4) + 2 φ̃(4) log v

)
+O(v6) ,

χ = χ(0) + v2χ(2) + v4
(
χ(4) + 2 χ̃(4) log v

)
+O(v6) . (5.54)

The coefficients g(0)ij
, φ(0) and χ(0) remain undetermined from this analysis, but the other

coefficients can be obtained as functions of g(0)ij
, φ(0) and χ(0) by substituting the above

expansions in (5.20) and comparing order by order in v. For example, comparing terms
at order O(v2) we obtain

g(2)ij
= −1− λGB

2
Rij +

1

4
(1 + λGB)

(
∂iφ(0)∂jφ(0) + Z(φ(0))∂iχ(0)∂jχ(0)

)
+

1

24
g(0)ij

(
2(1− λGB)R− (1 + λGB)(∂kφ(0)∂

kφ(0) + Z(φ(0))∂kχ(0)∂
kχ(0))

)
+O(λ2

GB) ,

φ(2) =
1− λGB

8

(
2D(0)i∂

iφ(0) − Z ′(φ(0))∂iχ(0)∂
iχ(0)

)
+O(λ2

GB) ,

χ(2) =
1− λGB

4Z(φ(0))

(
Z(φ(0))D(0)i∂

iχ(0) + Z ′(φ(0))∂iχ(0)∂
iφ(0)

)
+O(λ2

GB) . (5.55)

Here and in the following the curvatures R and Rij are the ones for g(0)ij. Comparing the
logarithmic term, we obtain instead

π̃(4)ij = 2 (1− λGB)
(
h(4)ij

− h(4)
k
kg(0)ij

)
+O(λ2

GB) ,

φ̃(4) =
1

4
(1− λGB)π̃φ(4) +O(λ2

GB) , χ̃(4) =
1− λGB

4Z(φ(0))
π̃χ(4) +O(λ2

GB) . (5.56)

5.2.4 The 1-point functions

The order O(v4) leads to the following renormalized one-point functions, which repre-
sent the main result of our analysis in this section. For the stress tensor we get

〈Tij〉 = 2π(4)ij

= −2g(2)ij
g(2)

k
k + 4g(4)ij

+ 2h(4)ij
+ 2g(2)kl

g(2)
klg(0)ij

− 4g(4)
k
kg(0)ij

− 2h(4)
k
kg(0)ij

+1
2
g(2)

klg(0)ij
Rkl − 1

2
g(2)ij

R− 1
2
D(0)i

φ(2)D(0)j
φ(0) − 1

2
D(0)i

φ(0)D(0)j
φ(2)
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Z(φ(0))

2
g(0)ij
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where

TGBij = −4g(2)i
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(5.58)

For the dilaton and axion we get instead

〈Oφ〉 = −πφ(4)

= −(2 + λGB)(2φ(4) + φ̃(4))

+1
4
(2− λGB)

[
D(0)iD

i
(0)φ(2) + 1

2
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+O(λ2

GB) ,

(5.59)
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and

〈Oχ〉 = −πχ(4)

= −(2 + λGB)
(
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GB) .

(5.60)

We stress that these formulas are generic for any axion-dilaton system with GB term (to
first order in λGB) of the structure given in (5.19).

The zeroth order terms in λGB in these expressions reproduce the results of [24], while
the first order terms in λGB extend the results of [25] to a system with an axion-dilaton
field. As mentioned already, another difference with the analysis of [25] is that we employ a
recursive method which is more effective in cases where multiple fields, besides the metric,
are turned on.

5.2.5 Central charges

The trace of the stress energy tensor is related to the central charges a and c by the
following expression6 〈

T ii
〉

=
1

16π2
(cW − aE) + . . . , (5.61)

where E is the four-dimensional Euler density

E = R2 − 4RijRij +RijklRijkl , (5.62)

W is the square of the Weyl tensor

W = CijklCijkl =
R2

3
− 2RijRij +RijklRijkl , (5.63)

and where the ellipsis indicates the contribution by other fields (the axion-dilaton in our
specific setting). The trace of the stress energy tensor [24] is given by the L(4) written

6Notice that in this section a denotes one of the central charges and not the anisotropy parameter.
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above in (5.50)

〈
T ii
〉

=
1

r
√
−γ
L(4) . (5.64)

To isolate the metric contribution we set φ = χ = 0 in that expression and arrive at

〈
T ii
〉

= − 1

12
R2 +

1

4
RijRij +

(
19

24
R2 +

1

2
RijklRijkl − 23

8
RijRij

)
λGB +O(λ2

GB) . (5.65)

Comparing (5.61) and (5.65), we find that

a = π2(2− 15λGB) +O(λ2
GB) , c = π2(2− 7λGB) +O(λ2

GB) , (5.66)

thus confirming that indeed a 6= c for theories with GB corrections. These results are in
perfect agreement with previous literature, see e.g. [112].

5.3 Boundary stress tensor

Here we specialize the formulas above to our solution (5.8). As a first step, we need to
rewrite the fields in FG coordinates, to be able to extract the asymptotic behaviors close
to the boundary.

We define the FG radial coordinate v such that7

du2

u2F (u)
=

dv2

v2Fbdry

+O(v3) , Fbdry =
1−
√

1− 4λGB

2λGB

. (5.67)

The relation between the two radial coordinates u and v turns out to be given explicitly
by

u = v +
1

48
a2(λGB + 1)v3

−a
2u2

H(2λGB(log 32− 1) + 1 + log 4) + 12(λGB + 1)

96u4
H

v5 +O(a4, λ2
GB, v

7) .

(5.68)

In terms of v the fields have the following asymptotic expansions

φ(v) = −a
2

4
(1− λGB)v2 +

a2

8u2
H

(1− λGB) v4 +O(v6) ,

F (v) = 1 + λGB +
a2

12
(1 + 2λGB) v2

7Asymptotically, our metric approaches AdS5 with curvature radius given by `AdS = 1/
√
Fbdry, which

explains the factor of Fbdry in the formula, see (5.52).
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−
(

1 + 2λGB

u4
H

+
a2

12u2
H

(1 + 2 log 2− (1− 12 log 2)λGB)

)
v4 +O(v6) ,

B(v) = 1− λGB −
a2

12
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8u2
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v4 +O(v6) ,

H(v) = 1 +
a2

4
(1 + λGB)v2 − a2

8u2
H

(1 + λGB)v4 +O(v6) . (5.69)

From these expressions it is easy to find the expansions for the metric

gtt = −1 +
a2

24
(1 + λGB)v2

+
1

16u4
H

(
12(1 + λGB)− a2u2

H(1− 2 log 2 + 2λGB(2− 5 log 2))
)
v4 +O(v6) ,

gxx = gyy = 1− a2

24
(1 + λGB)v2

+
1

48u4
H

(
12(1 + λGB) + a2u2

H(1 + 2 log 2− 2λGB(1− 5 log 2))
)
v4 +O(v6) ,

gzz = 1 +
5a2

24
(1 + λGB)v2

+
1

48u4
H

(
12(1 + λGB)− a2u2

H(5− 2 log 2 + 2λGB(4− 5 log 2))
)
v4 +O(v6) ,

(5.70)

from which it is immediate to extract g(2)ij and g(4)ij.
In our solution the terms up to O(a2) are very simple:

〈Tij〉 = 4g(4)ij
− 6λGBg(4)ij

, πφ(4) = 0 , πχ(4) = 0 . (5.71)

Explicitly, the components of the stress tensor read

〈Ttt〉 =
3

u4
H

− 1− 2 log 2

4u2
H

a2 − 12 + a2u2
H(5− 14 log 2)

8u4
H

λGB +O(a4, λ2
GB) ,

〈Txx〉 = 〈Tyy〉 =
1

u4
H

+
1 + 2 log 2

12u2
H

a2 − 12 + a2u2
H(7− 14 log 2)

24u4
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〈Tzz〉 =
1

u4
H

− 5− 2 log 2

12u2
H

a2 − 12 + a2u2
H(1− 14 log 2)

24u4
H

λGB +O(a4, λ2
GB) . (5.72)

Using (5.13) we see that

uH =
1

πT
− 1− log 2

24π3T 3
a2 − 1

2πT

(
1− 5 log 2

24π2T 2
a2

)
λGB +O(a4, λ2

GB) , (5.73)

so that we can rewrite the expressions above in terms of the temperature, which is a
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physical observable, unlike the horizon location uH. We arrive at our final results:

〈Ttt〉 = 3π4T 4

[
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1

12π2

( a
T
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+
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3

2
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24π2
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+
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〈Tzz〉 = π4T 4

[
1− 1

4π2

( a
T

)2

+

(
3

2
− 1

8π2

( a
T
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]
+O(a4, λ2

GB) . (5.74)

These quantities correspond to the energy density and pressures of the dual gauge
theory

E =
N2

c

8π2
〈Ttt〉 , P⊥ =

N2
c

8π2
〈Txx〉 , P‖ =

N2
c

8π2
〈Tzz〉 , (5.75)

with Nc being the number of colors of the gauge theory and P⊥ and P‖ the pressures
along the transverse plane and the longitudinal direction, respectively. The comparison
with the energy density E0(T ) = 3π2N2

c T
4/8 and the pressure P0(T ) = π2N2

c T
4/8 of an

isotropic plasma at the same temperature and λGB = 0 is obvious from the expressions
above. We see in particular that the anisotropy has the effect of increasing the energy
density and perpendicular pressure compared to the isotropic case, while decreasing the
longitudinal pressure. This is consistent with the findings of [22,23] in the small anisotropy
limit (whose results we reproduce for λGB = 0, see eq. (168) of [23]).

These results show that the system is really anisotropic in the z-direction, as P⊥ 6= P‖.
Notice that at this order in a, the trace of the stress tensor is vanishing

〈
T ii
〉

= O(a4, λ2
GB) . (5.76)

This is in agreement with what found in [22, 23], where the conformal anomaly was also
vanishing at order O(a2) and appearing only at order O(a4) and beyond. We can also
check some basic thermodynamic relations. In particular, the free energy F = E − Ts, in
the limit of a = 0, matches perfectly the value found in [97] from evaluating the Euclidean
action on-shell. We can also check that F = −P⊥, as it should be [113].

Finally, let us comment about the conservation of the (expectation value of the) stress
tensor. Remember that to simplify our expressions we have gauge fixed the lapse and shift
functions (see footnote 5). As a consequence we can no longer derive the diffeomorphism
Ward identity that relates the divergence of 〈Tij〉 to the expectation values of the other
fields. Typically, in such an identity we expect a term of the form 〈Oχ〉∂jχ(0), see e.g.
eq. (B.20) of [24]. In the particular state we have considered, even though ∂jχ(0) 6= 0, we
do have that 〈Oχ〉 = 0, see (5.71). This contribution would then vanish, assuring that
Di

(0)〈Tij〉 = 0 and guaranteeing the translational invariance of the geometry. For a more
detailed study of the thermodynamics of this system, which is beyond the scope of the
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present work, one would need to derive this Ward identity.

5.4 Discussion

In this work we have explored the effects of higher curvature corrections (given by
the inclusion of a GB term) in a system of AdS-gravity in five dimensions coupled to an
axion-dilaton field. As we have explained above, these corrections correspond, on the gauge
theory side, to considering cases that are more generic than the ones usually considered,
e.g. conformal field theories with independent central charges, a 6= c. It is still unclear
whether our setup might be obtained in the low energy limit of some string theory, and
our philosophy has been ‘bottom-up’.

One of our main concerns has been to carry out holographic renormalization and
compute the 1-point function of the boundary stress tensor associated to our gravitational
theory. We have done this to first order in the GB coupling, which is however not a terribly
restrictive constraint, since requirements of unitarity, causality and positivity of energy
fluxes require [13]

−7/36 ≤ λGB ≤ 9/100 . (5.77)

We have also considered a particular black brane Ansatz, in which the axion field
is linearly dependent on one of the horizon coordinates, while being independent of the
radial coordinate. This has resulted in finding an anisotropic black brane solution to the
equations of motion, which is the GB-corrected equivalent of the geometry discovered
in [22, 23]. One point that remains to be settled in our analysis is whether our solution
might be interpreted as an interpolating solution between a Lifshitz-like scaling solution in
the IR and an asymptotically AdS space, as was the case for the λGB = 0 limit of [22,23].

One of the most interesting applications of the present work would be a detailed study
of the thermodynamics of this black brane and of its corresponding plasma. This analysis
was carried out, in the canonical ensemble, for the case of vanishing λGB in [22,23] and a
rich phase diagram was discovered, with, in particular, the presence of instabilities that
might turn out to be useful in understanding the fast thermalization time of the QGP. To
this regard it is relevant to observe that part of the richness of the solution in [22,23] was
due to a conformal anomaly, appearing in the renormalization process at order O(a4) and
beyond. In the present solution we also have an anomaly, which we expect to appear at the
fourth order in the anisotropy parameter, but we are not able to capture with our analytic
solution, which only goes up to second order. Extending our analytic solution to order
O(a4) seems unviable and presumably numerical methods would have to be employed to
explore larger values of the anisotropy. Given the large number of parameters in the game,
this might be cumbersome, but it surely is something worth pursuing.



Chapter 6

Probing strongly coupled anisotropic
plasmas from higher curvature gravity

One application of the solution we have found in the previous chapter is to model
higher curvature effects on the dual gauge theory plasma. Generically, heavy ion collisions
experiments are non-central, resulting in a spatial anisotropy of the QGP formed after the
collision. This represents one of the main motivations for our Ansatz. In the following we
will identify z as the anisotropic direction (or ‘beam’ direction), while x and y parametrize
the plane transverse to the beam.

Our aim is to study qualitatively how several observables relevant to the study of the
QGP are affected by the parameters (a, λGB). Anticipating the results of our analysis, we
found that the effect of the Gauss-Bonnet term in the observables of the gauge theory
is consistent with our physical intuition regarding the QGP as a fluid, interpreting the
results in terms of the mean free path which is associated to the shear viscosity.

We compute several observables relevant to the study of the QGP, namely, the shear
viscosity over entropy density, the drag force experienced by a heavy quark moving through
the plasma, the jet quenching parameter, the static potential between a quark-antiquark
pair (quarkonium) and the photon production rate. Most part of the analysis of our results
involves a comparison with the isotropicN = 4 SYM result, obtained by taking a→ 0 and
λGB → 0. We limit ourselves to the comparison at the same temperature, for simplicity,
but a comparison at the same entropy density is still possible, and it was done for the
observables computed in the model of [22, 23]. We summarize and discuss our results in
Section 6.7. For completeness, Appendix C presents an alternative derivation of the shear
viscosity using the Kubo formula, and Appendices D, E, and F contain the derivation of
the main formulas used in this work.

61
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6.1 Gravity setup

For easier reference we repeat the relevant aspects of the gravity solution we have
found in the previous in Chapter 5. The Ansatz for the metric and scalar fields takes the
form

ds2 = Gmndx
mdxn =

1

u2

(
−F (u)B(u) dt2 + dx2 + dy2 +H(u) dz2 +

du2

F (u)

)
,

χ = az, φ = φ(u). (6.1)

The axion field introduces a spatial anisotropy in the z-direction controlled by the anisotropy
parameter a. An analytical solution to the equations of motion can be obtained in the
limit of small anisotropy. Their expressions take the form

φ(u) = a2φ2(u) +O(a4) ,

F (u) = F0(u) + a2F2(u) +O(a4) ,

B(u) = B0

(
1 + a2B2(u) +O(a4)

)
,

H(u) = 1 + a2H2(u) +O(a4) . (6.2)

The explicit expressions for the functions φ2, F2, B2 and H2 can be found in Appendix B.
The leading terms F0(u) and B0 are known from pure Gauss-Bonnet gravity and they are
given by

F0(u) =
1

2λGB

(
1−

√
1− 4λGB

(
1− u4

u4
H

))
, B0 =

1 +
√

1− 4λGB

2
. (6.3)

The boundary conditions were fixed such that F vanishes at the horizon u = uH. At the
boundary u = 0 we have

φ2,bdry = 0, F2,bdry = 0, B2,bdry = 0, H2,bdry = 0. (6.4)

The solution is regular everywhere and asymptotically approaches AdS5. Thermodynam-
ical quantities such as temperature and entropy can be computed via standard formulas,
by requiring the regularity of the (Euclideanized) metric at the horizon and using the area
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law, respectively. One finds

T =
√
B0

 1

πuH

−
2B0 − 6λGB +

√
λGB log

(
1+2
√
λGB

1−2
√
λGB

)
− log

(
4B0√

1−4λGB

)
48π(1− 4λGB)

uHa
2 +O(a4)

 .

s =
π

4GB
3/2
0

(
π2T 3 +

1

8
TB0a

2 +O(a4)

)
. (6.5)

6.2 Shear viscosity

An important quantity to compute in a plasma is the ratio of shear viscosity over
entropy density.1 This is a rather universal quantity for theories with an Einstein dual,
which has been conjectured to obey the Kovtun-Son-Starinets (KSS) bound η/s ≥ 1/4π

[76]. This bound can however be violated by the inclusion of higher derivative corrections
[97] (see also [99–103,115–119]) and by the breaking of spatial isotropy [29, 30]; see [104]
for a status report on the viscosity bound.

In this section, we employ the membrane paradigm, proposed in [120] and used in [29]
for the anisotropic plasma of [22], to compute η/s for our geometry (6.2).2 Appendix C
contains an alternative derivation of the result in this section using the Kubo formula.
As in [29], we will be interested in two components of the shear viscosity tensor: ηxyxy,
which is entirely in the transverse (isotropic) plane, and ηxzxz = ηyzyz, which mixes the
anisotropic direction z with one of the directions in the transverse plane. We denote these
two components as

η⊥ = ηxyxy , η‖ = ηxzxz . (6.6)

To calculate these viscosities we consider the fluctuations hxy and hxz around the back-
ground (6.2). Given the symmetry in the transverse plane, we can take these fluctua-
tions to depend solely on (t, y, z, u). The equations of motion for ψ⊥ = hxy(t, y, z, u) and
ψ‖ = hxz(t, y, z, u) decouple from all other equations and from each other. In both cases,
they have the following form

a(u)ψ′′ + b(u)ψ′ + c(u)ψ = 0 , (6.7)

where a(u), b(u) and c(u) are functions of the background fields and ψ stands for either
ψ⊥ or ψ‖, depending on the case. Here the primes denote derivatives with respect to u.
To use the membrane paradigm, we need to write an effective action for ψ⊥ and ψ‖. To

1Other observables that have been computed in Einstein plus GB gravity can be found in, e.g., [54,114].
2The computation of the shear viscosity in an anisotropic superfluid with a GB term has recently been

presented in [121].
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this scope we write (6.7) in the form3

(n(u)ψ′)′ −m(u)ψ = 0 , (6.8)

with
n(u) = exp

(∫
u

du′
a(u′)

b(u′)

)
, m(u) =

c(u)

a(u)
exp

(∫
u

du′
a(u′)

b(u)

)
. (6.9)

The effective action that gives rise to the equation of motion above is

Seff = −1

2

1

16πG

∫
d4x du

[
n(u)(ψ′)2 −m(u)ψ2

]
. (6.10)

To compare this action with the one of [120], we need to transform it to Fourier space.
To do that, we write

ψ(t, y, z, u) =

∫
dω

2π

d3k

(2π)3
ψ(u)e−iωt+ikyy+ikzz , (6.11)

where we have used the axial symmetry to rotate k = (0, ky, kz). Plugging (6.11) into
(6.10) and using Plancherel’s theorem, it can be shown that

Seff = −1

2

1

16πG

∫
dω

2π

d3k

(2π)3
du
[
n(u)(ψ′)2 −m(u)ψ2

]
. (6.12)

Using the notation of [120], this can be recast in the following form

Seff = −1

2

∫
dω

2π

d3k

(2π)3
du
√
−g
[

guu

Q(u, k)
(ψ′)2 + P (u, k)ψ2

]
, (6.13)

with
1

16πG
n(u) =

√
−g guu

Q(u, k)
. (6.14)

The shear viscosity is then obtained as [120]

η

s
=

1

4π

16πG

Q(uH, k → 0)
. (6.15)

Writing the equations of motion for ψ⊥ and ψ‖, we can obtain explicit expressions for the
n(u)’s and m(u)’s. Putting these together with (6.14) and (6.15), it is readily found that

η⊥
s

=
1

4π

(
gxx
gyy
− λGB

2

g2
xxg
′
ttg
′
zz

g

)
,

3It is important to emphasize that n(u) and m(u) are not the same in the equations of motion for ψ⊥
and ψ‖. Here n(u) stands for either n⊥ or n‖, and m(u) stands for either m⊥ or m‖.
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η‖
s

=
1

4π

(
gxx
gzz
− λGB

2

g2
xxg
′
ttg
′
yy

g

)
. (6.16)

These results are completely generic for the system we have considered. In particular, we
can check them against the known results from pure Einstein-Hilbert gravity with a GB
term [97] and with the anisotropic background of [29], finding perfect agreement in both
cases. In the first case, we need to take the limit of a→ 0 of the equations above. We find

η⊥
s

=
η‖
s

=
1− 4λGB

4π
, (6.17)

as in [97]. To perform the second check we take the limit λGB → 0 and obtain4

η⊥
s

=
1

4π
,

η‖
s

=
1

4π

1

H(uH)
=

1

4π
− log 2

16π3

( a
T

)2

+O(a4) . (6.18)

Note how the longitudinal shear viscosity violates the KSS bound.
Specializing (6.16) to our solution (6.2) we find

η⊥
s

=
1− 4λGB

4π
+

B0

24π3

λGB(3− 4λGB)

(1− 4λGB)

( a
T

)2

+O
(
a4
)
,

η‖
s

=
1− 4λGB

4π
+

B0

32π3
G(λGB)

( a
T

)2

+O(a4) , (6.19)

where G(λGB) is given by

G(λGB) = −1 + 2λGB

(
8λGB

12λGB − 3
+ 1

)
+
√

1− 4λGB

+
√
λGB log

(
1 + 2

√
λGB

1− 2
√
λGB

)
+ log

(√
1− 4λGB − 1 + 4λGB

8λGB

)
.(6.20)

We emphasize that these results, despite being of second order in a, are fully nonpertur-
bative in λGB. The KSS bound might be violated in this setting both by the anisotropy
and by the GB coupling.

6.3 Drag force

When a heavy quark propagates through a strongly coupled plasma it loses energy
due to the interaction with the medium. One quantity related to the dissipation of energy
of the quark is the drag force. The study of drag force in a strongly coupled plasma was
initiated in [122, 123] for the case of (isotropic) N = 4 SYM and subsequently it was

4Note that to compare the expressions for η‖ one needs to take into account the different factors of
the dilaton in the Ansäzte of [22,29] and (6.1).
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extended in several ways. See, for instance, [32, 114, 124–129]. The two computations of
the drag force closely related to the present work were done in [31,130], corresponding to
the limits λGB = 0 and a = 0, respectively.

Following the standard prescription of the computation of the drag force, we consider
an external heavy quark moving through the strongly coupled plasma with constant ve-
locity v. Since the heavy quark loses energy due to the interaction with the plasma, an
external force is necessary to maintain the motion stationary. In the dual picture, we have
a classical string with an endpoint in the quark (at the boundary) and the other endpoint
in the bulk, in a picture usually referred to as “trailing string” [122, 123]. The derivation
of the general formula is presented in Appendix D. As a result, we first need to determine
a critical point uc by solving the equation[

2Gtt

v2
+Gxx +Gzz + (Gzz −Gxx) cos(2ϕ)

]
u=uc

= 0, (6.21)

where ϕ is the angle between the direction of motion of the quark and the z-direction. In
what follows, we will be interested in the cases where the motion of the quark is parallel (||)
and transversal (⊥) to the direction of anisotropy, corresponding to ϕ = 0 and ϕ = π/2,
respectively. Once the critical point is determined, it is straightforward to compute the
drag force using

F
||
drag = eφ/2Gzzv

∣∣∣
u=uc

, F⊥drag = eφ/2Gxxv
∣∣∣
u=uc

. (6.22)

Since we are working in the small anisotropy regime, the critical point can be written as

uc = u0c + a2u2c +O(a4). (6.23)

For our particular background, the equation for the critical point (6.21) expanded to
second order in a becomes

B0F0 − v2 + a2
(
B0B2F0 +B0F2 − v2 cos2 ϕH2 +B0u2cF

′
0

) ∣∣∣
u0c

= 0, (6.24)

Solving the equation order by order gives

u0c = uH

(
B2

0 − v2B0 + v4λGB

B2
0

) 1
4

,

u2c = −B0B2(u0c)F0(u0c) +B0F2(u0c)− v2H2(u0c) cos2 ϕ

B0F ′0(u0c)
. (6.25)

Plugging the solution for the critical point (6.25) into the formulas of the drag force (6.22),
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we obtain

F
||
drag =

v

u0c
2

+
a2v

2u0c
2

(
φ2(u0c)− 4

u2c

u0c

+ 2H2(u0c)

)
+O(a4),

F⊥drag =
v

u0c
2

+
a2v

2u0c
2

(
φ2(u0c)− 4

u2c

u0c

)
+O(a4). (6.26)

We do not report the full explicit expressions for the drag force here since they are too
long and not very illuminating. Since T is a function of uH, we can invert this relation to
express the drag force as a function of the temperature.5 We can then check that in the
limit λGB → 0 we recover the result of [31],

F
||MT
drag =

π2T 2v√
1− v2

+
a2v

(
−v2 +

√
1− v2 + (v2 + 1) log

(√
1− v2 + 1

)
+ 1
)

24 (1− v2)3/2
,

F⊥MT
drag =

π2T 2v√
1− v2

+
a2v

(
−v2 +

√
1− v2 + (4v2 − 5) log

(√
1− v2 + 1

)
+ 1
)

24 (1− v2)3/2
, (6.27)

and in the limit a→ 0 we recover the result of [130]

F GB
drag =

√
2π2T 2v√

(v2 − 1)
(
2 (v2 + 1)λGB −

√
1− 4λGB − 1

) . (6.28)

Of course, in the limit where both a and λGB go to zero we recover the isotropic N = 4

SYM result [122,123]

F iso
drag =

π2T 2v√
1− v2

. (6.29)

In the analysis of our results, it is useful to normalize the drag force by the isotropic
result (6.29). The normalized drag force here depends on v, λGB and a/T . The main result
is shown in Figure 6.1. Our results are, as expected, a combined effect of their limiting
cases [31,130]. The effect of the Gauss-Bonnet coupling is, in general, to enhance the drag
force for λGB > 0 and to decrease it for λGB < 0, for both longitudinal and transversal
motion. This is the same effect observed in the case of pure Gauss-Bonnet gravity [130],
but it is different from what happens with corrections of type α′3R4, where the drag force
is always enhanced [128]. The effect of the anisotropy is qualitatively the same found
in [31]: for the transversal motion the drag force can increase or decrease, while for the
parallel motion the drag force increases in general (except for sufficiently large negative
values of λGB). We also plotted the drag force as a function of the quark velocity (Figure
6.2). In general, the drag is increased for larger velocities and there is a divergence in the

5The easiest way to write the drag force in terms of the temperature is by noting that the critical
point scales as uc = uHγ0 + a2u3

Hγ2 +O(a4), where γ0 and γ2 are quantities that do not depend on uH.
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limit v → 1, similarly to what occurred in [31].

F
||
drag/F

iso
drag F⊥drag/F

iso
drag

λGB λGB

a/T a/T

Figure 6.1: Drag force normalized by the isotropic result as a function of (λGB,
a
T ). Here we

have fixed v = 0.3. Left: Motion along the anisotropic direction. Right: Motion along the direction
transversal to the anisotropy.

F
||
drag/F

iso
drag F⊥drag/F

iso
drag

λGB λGB

v v

Figure 6.2: Drag force normalized by the isotropic result as a function of (λGB, v). Here we have
fixed a

T = 0.2. Left: Motion along the anisotropic direction. Right: Motion along the direction
transversal to the anisotropy. For other values of a

T the results were qualitatively the same.

6.4 Jet quenching parameter

Results from RHIC [131–134] indicate a strong suppression of particles with high
transversal momentum pT in Au-Au collisions, but not in d-Au collisions. The explana-
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tion for this phenomenon is that in Au-Au collisions the hot and dense quark gluon plasma
is produced, and the jets lose energy due to the interaction with this medium before hadro-
nising. This energy loss effect is called “jet quenching” and can give valuable information
about the properties of the plasma. One important quantity related to jet quenching is
the jet quenching parameter q̂, which quantify the change of transverse momentum of the
parton per unit length when suffering multiple scattering with the medium. The change
in transverse momentum is usually referred to as “momentum broadening”.

The jet quenching parameter has been calculated at weak coupling for several models
(see [135] for a review) and has been consistent with data [136]. However, the assumption
of weak coupling is still not well justified, since different energy scales are involved in heavy
ion collision experiments and thus a calculation at strongly coupling may be necessary.
This motivates a non-perturbative definition of the jet quenching parameter. The non-
perturbative definition of the jet quenching parameter and its first computation using
holography was done in [137–139]. After that, it was extended in several directions.6 See,
for instance, [141–143].

The non-perturbative definition of the jet quenching parameter q̂ was inspired by its
perturbative calculation in the so called dipole approximation [144]

〈
WA(C)

〉
' exp

[
−L

−`2

4
√

2
q̂

]
, (6.30)

where WA(C) is a rectangular light-like Wilson loop in the adjoint representation with
sizes L− and `, with L− � `. Using the holographic dictionary the jet quenching parameter
is given in terms of the on-shell Nambu-Goto action whose string worldsheet boundary
coincides with the Wilson loop7

q̂ =
8
√

2

L−`2
Son-shell. (6.31)

In the case of pure (isotropic) N = 4 SYM, the result obtained was [137–139]

q̂iso =
π3/2Γ(3

4
)

Γ(5
4
)

√
λT 3. (6.32)

Here we compute the jet quenching parameter for the anisotropic background with
Gauss-Bonnet term. A detailed derivation of the formula we used here is presented in
Appendix E. The parameters involved are the Gauss-Bonnet coupling λGB, the ratio of

6There are also some attempts of non-perturbative computations of the jet quenching parameter on
the lattice (see, for instance, [140]).

7The extra factor of 2 comes from the fact that, for large Nc, the Wilson loop in the adjoint represen-
tation is roughly speaking the square of the Wilson loop in the fundamental representation.
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the anisotropy parameter to temperature a/T and the angles (θ, ϕ) associated with the
direction of motion of the quark and the direction of the momentum broadening, respec-
tively.8

Our results are summarized in Figure 6.3. Similarly to the drag force computation of
the previous subsection, the effect of the Gauss-Bonnet coupling is controlled by its sign:
the jet quenching parameter is increased for λGB > 0 and decreased for λGB < 0. The effect
of the anisotropy, in the small anisotropy limit, is to increase the jet quenching parameter
as it occurred in [32,37,51], with the highest increase taking place when the quark moves
in the anisotropic direction. We also verified that, for a fixed value of θ, the jet quenching
parameter is slightly larger for the momentum broadening taking place in the anisotropic
(ϕ = π/2) direction than in the transversal direction to the anisotropy (ϕ = 0).

θ
ϕ

λGB

a/T

q̂/q̂iso q̂/q̂iso

Figure 6.3: Left: Jet quenching parameter as a function of (θ, ϕ). We have set λGB = 0.1
and a/T = 0.33. Right: The jet quenching parameter as a function of (λGB,

a
T ). We have set

θ = ϕ = π/4. Both plots were normalized by the isotropic result (6.32).

As argued in [136], weak coupling models of jet quenching are in general lower than the
value obtained at strong coupling for N = 4 SYM (6.32). If we were expecting a smooth
interpolation between the weak and strong coupling values, the case λGB < 0 becomes par-
ticularly interesting since it decreases the N = 4 SYM result. The same decreasing effect
was also found in [145], where they considered fluctuations of the string worldsheet, and
in [146], where curvature corrections of type α′3R4 in the AdS-Schwarzschild background

8More precisely, θ is the angle between the direction of motion of the quark and the anisotropic
direction. The direction of the momentum broadening is transversal to the direction of motion of the
quark and forms an angle ϕ with the y-axis. Note that the same symbols θ and ϕ were used for other
observables, but with different meanings.
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were taken into account.

6.5 Quarkonium static potential

Quarkonium mesons are produced in the early stages of heavy ion collisions, before
the creation of the QGP. As they are much more tightly bound and smaller than ordinary
‘light’ hadrons, they can survive as bound states in the QGP at temperatures above the
deconfinement temperature up to some dissociation temperature. This property, together
with the fact that their interaction with the thermal medium is comparatively stronger
than their interaction with the hadronic matter formed after hadronization, makes the
quarkoniummesons excellent probes to study the QGP formed in heavy ion collisions [147].

Here we study the static quarkonium potential in a strongly coupled plasma dual to
the anisotropic gravity theory with the Gauss-Bonnet term. In particular, we analyze
how the anisotropy and the higher derivative terms affect the potential energy and the
screening length of a heavy quark-antiquark pair. The holographic studies of this quantity
were initiated in [148,149], for infinitely heavy quarks in the N = 4 SYM theory and, since
then, several extensions of this work have been performed. See, for instance, [38,150–159].
Higher derivative corrections to the quarkonium potential were considered in [154, 159]
and the effects of anisotropy were taken into account in [32,38].

The static quarkonium potential can be extracted from the expectation value of a
Wilson loop

lim
T →∞

〈W (C)〉 ∼ eiT (VQQ̄+2MQ), (6.33)

where C is a rectangular loop with time extension T and spatial extension L, VQQ̄ is the
quark-antiquark potential energy and MQ is the quark mass. The Wilson loop can be
viewed as a static quark-antiquark pair separated by a distance L. In the gravity side, the
pair is described by an open string with both endpoints attached to a D7-brane sitting at
some AdS radial position which determines the quark mass (MQ ∼ 1/u). For simplicity,
we will work in the case where the D7-brane is at the boundary of AdS and, consequently,
the quark is infinitely heavy and non-dynamical.

In the large Nc and large λ limits the Wilson loop of Eq. (6.33) can be calculated in
the gravity side by the expression

lim
T →∞

〈W (C)〉 = eiS
(on-shell)

, (6.34)

where S(on-shell) is the on-shell Nambu-Goto action of a U-shaped string whose worldsheet
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boundary coincides with the curve C. The quarkonium potential is thus obtained as

VQQ̄ =
S(on-shell)

T
− 2MQ, (6.35)

where the quark mass MQ is determined by evaluating the Nambu-Goto action of a
straight string connecting the boundary to the horizon. Given the rotational symmetry in
the xy-plane, we can assume the quark-antiquark pair to lie in the xz-plane, forming an
angle θ with the z-direction. Since we want to focus on the results, we leave the details
of the calculation of VQQ̄(L) in Appendix F.

First, let us discuss some general properties of VQQ̄(L). From Figure 6.4, we see that
VQQ̄ only exists up to a maximum separation length Lmax. For each value of L ≤ Lmax

there are two possible string configurations corresponding to the upper and lower parts of
VQQ̄. It turns out that only the lower part of VQQ̄ represents a physical solution [150]. Note
that VQQ̄ = 0 at some point L = Ls, usually referred to as “screening length”. Since VQQ̄
represents the difference between the energy and mass of the quarkonium, a negative value
of the potential (L ≤ Ls) represents a situation where the U-shaped string (bound state)
is energetically favorable over the configuration with two straight strings (unbound state).
On the other hand, when the potential is positive (L ≥ Ls), the opposite happens and the
unbound configuration is energetically favorable.9 Another point is that the screening of
a plasma is weaker for large Ls and stronger for small Ls. This is because Ls represents
the separation in which the interaction between the quark and the antiquark becomes
completely screened by the medium.

9However, we emphasize that the solution for VQQ̄ is not valid when L ≥ Ls. In this case the quark-
antiquark interaction is completely screened by the presence of QGP between them and, as a consequence,
their separation can be increased with no additional energy cost. This implies that the potential is actually
constant for L ≥ Ls. The dual gravity picture can be understood as follows: as we increase the quark-
antiquark separation, the U-shaped string connecting the quarks eventually touches the horizon. At this
point the string can minimize its energy by splitting into straight strings connecting the boundary of AdS
to the horizon.
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L
Figure 6.4: Quark-antiquark potential VQQ̄ as a function of their separation L for different
values of the Gauss-Bonnet coupling: λGB = −0.1 (red, dotted), λGB = 0 (black, solid) and
λGB = 0.1 (blue, dashed). For all curves a/T ≈ 0.3 and θ = π/4.

Figure 6.4 shows that positive values of λGB decrease the screening length, while neg-
ative values of λGB increase this quantity. This effect can be better visualized in Figure
6.5 (a), where the screening length is presented as a function of (λGB, a). Now let us dis-
cuss the effect of the anisotropy. Firstly, Figure 6.5 (b) shows that the screening length
for a quarkonium oriented along the anisotropic direction (θ = 0) is always smaller than
the corresponding quantity for a quarkonium oriented in the transverse plane (θ = π/2).
Secondly, the 2D plot of Figure 6.6 reveals that the screening length always decrease as
we increase a/T , for any orientation of the pair, at fixed λGB. These anisotropic effects
are also observed in holographic calculations at strong coupling when the anisotropy is
introduced by a magnetic field [158] and at weak coupling in calculations based on “hard-
thermal-loop” resummed perturbative QCD [160]. The limit λGB → 0 of the above results
agrees with the calculations of [32]. We also checked that the limit a→ 0 for VQQ̄ agrees
with the results of [159] when the Quasi-topological coupling constant is zero.10

10In the comparison of our results with [159], one should note that the potential of [159] is normalized
with 1/(πα′), while our results are normalized with 1/(2πα′).
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λGB

a/T

λGB

a/T

Ls/Liso L⊥/L||

(a) (b)

Figure 6.5: (a) Screening length Ls(λGB, a) normalized with respect to the isotropic result Liso =
Ls(λGB = 0, a = 0) for θ = 0. (b) Ratio L⊥/L||, where L⊥ is the screening length calculated at
θ = π/2, and L|| is the screening length calculated at θ = 0.
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Figure 6.6: Screening length Ls as a function of a/T for three different quarkonium orientations:
θ = 0 (black, solid), θ = π/4 (purple, dashed) and θ = π/2 (blue, dotted). The Gauss-Bonnet
coupling is fixed λGB = 0.

6.6 Photon production

The limited extension of the QGP created in heavy ion collisions and the weakness of
the electromagnetic interactions imply that this medium should be optically thin. There-
fore, the photons produced in the plasma escape from it without subsequent interactions,
providing an excellent probe of the conditions of the medium. The holographic stud-
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ies of this quantity were initiated in [161] and extended in several directions, see, for
instance [45, 46, 48, 162–172]. In this section we study how the anisotropy and higher
derivative corrections affect the photon production rate.

Let L0 be the Lagrangian of the field theory dual to the gravity theory described by
the action (5.1). The photon production rate is calculated by adding a dynamical photon
to L0 coupled to the electric charged matter fields, that is

L = L0 + eJEM
µ Aµ − 1

4
FµνF

µν , (6.36)

where Fµν = ∂µAν − ∂νAµ is the field strength associated to the photon field Aµ, e is
the electromagnetic coupling constant and JEM

µ is the electromagnetic current. At leading
order in e, the number of photons emitted per unit time and unit volume is given by [173]

dΓγ
d3k

=
e2

(2π)32|~k|
Φ(k) ηµνχµν(k)

∣∣∣
k0=|~k|

, (6.37)

where ηµν = diag(− + ++) is the Minkowski metric, kµ = (k0, ~k) is the photon null
momentum, Φ(k) is the distribution function and χµν is the spectral density. Assuming
thermal equilibrium, the distribution function reduces to the Bose-Einstein distribution
nB(k0) = 1/(ek

0/T − 1). The spectral density can be obtained as

χµν(k) = −2 Im GR
µν(k), (6.38)

where

GR
µν(k) = −i

∫
d4x e−ik·x Θ(t)

〈
[JEM
µ (x), JEM

ν (0)]
〉

(6.39)

is the retarded correlator of two electromagnetic currents JEM
µ and the above expectation

value is taken in the thermal equilibrium state. The Ward identity kµχµν = 0 for null
kµ implies that only the transverse spectral functions contribute in the calculation of the
trace of the spectral density, that is,

ηµνχµν =
∑
s=1,2

εµ(s)(
~k) εν(s)(

~k)χµν(k)
∣∣∣
k0=|~k|

. (6.40)

Using the above formula, the differential photon production rate can be rewritten as

dΓγ
d3k

=
e2

(2π)32|~k|
Φ(k)

∑
s=1,2

εµ(s)(
~k) εν(s)(

~k)χµν(k)
∣∣∣
k0=|~k|

, (6.41)
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where εµ(1) and ε
µ
(2) are mutually orthogonal polarization vectors that are also orthogonal

to kµ. By the SO(2) symmetry in the xy-plane of our model we can choose ~k to lie in the
xz-plane – see Figure 6.7. Following [45,48], we set

~k = k0(sinϑ, 0, cosϑ) . (6.42)

With this choice of ~k the polarization vectors can be chosen as

Figure 6.7: Momentum ~k and polarization vectors ~ε(1) and ~ε(2). The SO(2) rotational symmetry
in the xy-plane allows us to choose the momentum lying in the xz-plane, forming an angle ϑ
with the z-direction. Both polarization vectors are orthogonal to ~k. We chose ~ε(1) oriented along
the y-direction and ~ε(2) contained in the xz-plane.

~ε(1) = (0, 1, 0) , ~ε(2) = (cosϑ, 0,− sinϑ) . (6.43)

For later purposes we split the trace of the spectral density into two parts

ηµνχµν = χ(1) + χ(2), (6.44)

where χ(s) is proportional to the number of photons emitted with polarization ~ε(s). These
quantities are given by

χ(1) = εµ(1)ε
ν
(1)χµν = χyy

χ(2) = εµ(2) ε
ν
(2) χµν = cos2 ϑχxx + sin2 ϑχzz − 2 cosϑ sinϑχxz . (6.45)

We now proceed to explain how to compute the retarded Green’s function of two electro-
magnetic currents using holography. It turns out that the gravity theory dual to the field
theory described by the Lagrangian L is simply obtained by adding a U(1) kinetic term to
the action (5.1). As we are dealing with a bottom-up model, we consider a five-dimensional
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U(1) kinetic term of the form,

SU(1) = −K
∫
d5xFmnF

mn, (6.46)

where Fmn = ∂mAn − ∂nAm is the field strength associated to the gauge field Am (m =

0, 1, 2, 3, 4) and K is a constant.11 Let Aµ (µ = 0, 1, 2, 3) denote the components of this
gauge field along the gauge theory coordinates (t, ~x) and A4 = Au denote the component
along the radial coordinate of AdS. In order to simplify our calculations, we gauge fix
Au = 0. Our final results, however, will be written only in terms of gauge invariant
quantities, in such a way that this gauge choice will not be relevant.

Given the translation invariance of our model, we can Fourier decompose the gauge
field Aµ as

Aµ(t, ~x, u) =

∫
d4k

(2π)4
e−ik

0t+i~k·~xAµ(k0, ~k, u) . (6.47)

The equations of motion derived from (6.46) are given by

∂µ
(√
−ggµαgνβFαβ

)
= 0 . (6.48)

In terms of the gauge invariant quantities Ei = ∂0Ai−∂yAi, the above equations of motion
split into a decoupled equation for Ey,

E ′′y +
(
log
√
−gguugyy

)′
E ′y −

k
2

guu
Ey = 0 , (6.49)

and a system of two coupled equations for Ex and Ez,12

E ′′x +

[(
log
√
−gguugxx

)′ − (log
gxx

gtt

)′
k2
x

k
2 g

xx

]
E ′x −

k
2

guu
Ex −

(
log

gxx

gtt

)′
kzkx

k
2 gzzE ′z = 0 ,

E ′′z +

[(
log
√
−gguugzz

)′ − (log
gzz

gtt

)′
k2
z

k
2 g

zz

]
E ′z −

k
2

guu
Ez −

(
log

gzz

gtt

)′
kzkx

k
2 gxxE ′x = 0 ,

(6.50)

where the primes denote derivatives with respect to u and k2 ≡ gαβkαkβ. Note that the
above equations are written in momentum space.

11In top-down calculations, K is proportional to the number of electrically charged degrees of freedom
times the number of colors in the dual gauge theory. For instance, when photons are produced from adjoint
matter we have K ∝ N2

c [161], while for fundamental fields, K ∝ NcNf [45, 46, 48, 162]. In bottom-up
models, this constant can be chosen freely and, since we are only interested in ratios of spectral densities
(that are proportional to K), this constant will play no role in our analysis.

12In the derivation of the equations of motion for Ex and Ez we used the constraint gαβkαA′
β = 0.
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The action (6.46) can be written in terms of the gauge invariant fields Ei as

Sε = −2K

∫
dt d~x

√
−gguu

k2
0k

2

[(
−gttk2

0 − gzzk2
z

)
gxxExE

′
x − k

2
gyyEyE

′
y+

+ gxxgzzkxkz (ExEz)
′ +
(
−gttk2

0 − gxxk2
x

)
gzzEzE

′
z

]
u=ε

. (6.51)

The retarded correlators are obtained by taking functional derivatives of the above action
with respect to the boundary values of the gauge fields Aµ(0). In the computation of
χ(1) and χ(2) we only need the spatial correlators GR

xx, GR
yy, GR

zz and GR
xz = GR

zx. This
correlators can be obtained in terms of the Ei’s as

GR
ij =

δ2Sε
δAi(0)δAj(0)

= k2
0

δ2Sε

δE
(0)
i δE

(0)
j

, (6.52)

where E(0)
i is the boundary value of the gauge field Ei.

As the mode Ey does not couple to the other modes, the spectral density for photons
with polarization ~ε(1) can be obtained by applying the prescription of [75]. The retarded
correlator reads

GR
yy = k2

0

δ2Sε

δE
(0)2
y

= −4K

k2
0

√
−gguugyy

E ′y(k, u)

Ey(k, u)

∣∣∣
u→0

. (6.53)

The corresponding spectral density is then given by

χ(1) = χyy = −2ImGR
yy =

8K

k2
0

Im
[√
−gguugyy

E ′y(k, u)

Ey(k, u)

]
u→0

. (6.54)

The computation of χ(2) is more involved, because of the coupling between Ex and
Ez. We face this problem by following the technique developed in [45] to deal with mixed
operators. First, we write a near-boundary expression for the fields Ex and Ez,

Ex = E(0)
x + u2E(2)

x cosϑ+ u4E(4)
x +O(u6) ,

Ez = E(0)
z − u2E(2)

x sinϑ+ u4E(4)
z +O(u6) . (6.55)

The form of the second order coefficients was chosen such that the equations of motion
(6.50) are satisfied. The equations of motion also determine the coefficients E(4)

x and E(4)
z
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in terms of the lower order coefficients,

E(4)
x =

a2λGB cosϑ

96(1−B0)(1− 4λGB)

(
3k2

0(B0 − 2λGB)E(0)
x cosϑ+ 8(1− 2B0)E(2)

x

)
,

E(4)
z =

a2

192
√

1− 4λGB

[
3k2

0(λGB −B0)
(
E(0)
x sinϑ− E(0)

z cosϑ
)

cosϑ− 8B0E
(2)
x sinϑ

]
.

(6.56)

The remaining coefficients E(0)
x , E(0)

z and E(2)
x can be extracted from the numerical solu-

tion. With the above expressions the boundary action (6.51) takes the form

Sε =
√
B0K

[
−1

2

(
E(0)
x sinϑ+ E(0)

z cosϑ
)2 − 4

B0k2
0

(
E(0)
x E(2)

x cosϑ+ E(0)
z E(2)

x sinϑ
)]
.

(6.57)
Finally, using (6.38), (6.45) and (6.52) we can show that

χ(2) =
16K√
B0

Im

[
δE

(2)
x

δE
(0)
x

cosϑ− δE
(2)
x

δE
(0)
z

sinϑ

]
, (6.58)

where the functional derivatives δE(2)
x /δE

(0)
x and δE(2)

x /δE
(0)
z are calculated according to

the prescription given in [45].
The trace of the spectral density χµµ = χ(1) + χ(2) is a function of the parameters

(λGB, a, ϑ, uH, k
0). In order to study the effects of the anisotropy parameter and the Gauss-

Bonnet coupling, we computed χµµ for several values of (λGB, a, ϑ), choosing as normal-
ization the isotropic result

χiso = χµµ(λGB = 0, a = 0). (6.59)

Our comparison with the isotropic result was made at fixed temperature T0 = 0.32.13

The results for the ratio χµµ/χiso as a function of the dimensionless frequency w = k0/2πT0

are presented in Figure 6.8. For an anisotropic plasma, we have χ(1) 6= χ(2). However, in
our case the smallness of the anisotropy parameter a makes these two quantities almost
equal, presenting a very similar behavior as a function of w, so we chose to plot only the
total spectral density instead of plotting the two spectral densities separately. At least, we
observed that χ(1) is slightly bigger than χ(2), as was the case in [45,48]. We also verified
that our results reproduce the calculations of [171] in the limit a → 0 and that they are
consistent with anisotropic calculations of [45] in the limit λGB → 0 and small values of

13Doing this, one must note that the temperature T of the system is a function of (λGB, a, uH) and,
consequently, it changes as we vary these parameters. Therefore, we need to ajust uH in such a way that all
the spectral densities are calculated at same temperature T0, defined by T0 = T (λGB = 0, a = 0, uH = 1).
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Figure 6.8: The trace of the spectral density χµµ(λGB, a, ϑ) normalized with respect to the
isotropic result (6.59). All the spectral densities were calculated at the same temperature T0 =
0.316698. The color of the curves identify the value of the λGB parameter as: red curves
(λGB = −0.1), brown curves (λGB = −0.05), black curves (λGB = 0), purple curves (λGB = 0.05)
and blue curves (λGB = 0.1). In (a), the angle of emission is fixed (ϑ = 0) and we have solid
curves (a = 0.2), dashed curves (a = 0.1) and dotted curves (a = 0). In (b), the anisotropy is
fixed (a = 0.2) and we have solid curves (ϑ = 0), dot-dashed curves (ϑ = π/4) and dotted curves
(ϑ = π/2).

From Figure 6.8 it is clear that the effect of the Gauss-Bonnet coupling is to increase
or decrease the photon production rate, depending on whether λGB > 0 or λGB < 0, respec-
tively. The main effect of the anisotropy parameter is to increase the photon production
rate. At small frequencies, χµµ does not depend strongly on a. For generic frequencies, the
χµµ is higher for photons with longitudinal wave vectors (ϑ = 0) than for the ones with
transverse wave vectors (ϑ = π/2). One qualitative difference between the corrections
introduced by λGB and a is their dependence on the frequency. Looking at the curves for
a = 0 in Figure 6.8, we see that the Gauss-Bonnet correction reaches a constant value after
a sufficiently large value of w. On the other hand, the effect of the anisotropy parameter
a is enhanced as we increase w.

It is also interesting to analyze how the anisotropy and the Gauss-Bonnet term affects
the total photon production (6.37), which can be expressed as

−1

4Ke2T 3
0

dΓγ
d cosϑ dk0

=
w

32Kπ3T 2
0

1

e2πw − 1

(
χ(1) + χ(2)

)
(6.60)

This quantity is shown in Figure 6.9, for different values of λGB and ϑ. From Figure 6.9
we see that, for λGB > 0, the peak in the spectrum of photons becomes higher, widens
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and gets shifted to the right. For λGB < 0, the peak becomes smaller, sharpens and gets
shifted to the left. This should be contrasted with the results of [169] for a top-down higher
derivative correction of the form α′3R4, where the peak in the spectrum becomes higher,
sharpens and gets shifted to the left, approaching the weak coupling result [161], which
shows a very sharp peak at small w in the photon spectrum. Therefore, the inclusion of
the α′3R4 correction (which corresponds to a finite ’t Hooft coupling correction in the
gauge theory) goes into the direction of the weak coupling results, while this does not
seems to be possible in the case of Gauss-Bonnet. However, a partial agreement between
these two types of corrections is found when λGB < 0, where the peak in the photon
spectrum sharpens and moves to the left, but it also becomes smaller, contrary to what
happens at weak coupling. We can understand this partial agreement noting that, for
λGB < 0, the ratio η/s = (1 − 4λGB)/(4π) increases, which also happens with η/s when
finite ’t Hooft coupling corrections were taking into account. Since at weak coupling the
shear viscosity over the entropy density ratio is proportional to the mean free path of
momentum isotropization, we can associate the approaching of the weak coupling results
(negative λGB corrections or α′-corrections) with a larger mean free path in both cases.
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Figure 6.9: Total photon production rate as function of w = k0/2πT0. From top to bottom,
the value of the Gauss-Bonnet coupling is identified as λGB = 0.1 (blue), λGB = 0.05 (purple),
λGB = 0 (black), λGB = −0.05 (brown), λGB = −0.1 (red). We have fixed ϑ = 0 and a = 0.2.
The results for different angles are very similar to the plot above due to the smallness of the
anisotropy.
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6.7 Discussion

We have computed the shear viscosity over entropy density ratio for the dual plasma
and found that the KSS bound [76] is violated, as expected from previous works where
either the case (a = 0, λGB 6= 0) [97] or the case (a 6= 0, λGB = 0) [29] were considered.
We also have studied how the anisotropy and higher curvature terms affect several other
observables relevant to the study of the QGP, namely, the drag force, the jet quenching
parameter, the quarkonium static potential and the photon production rate. In the gravity
side, the anisotropy was introduced by an external source (an axion linear in the beam
direction) that keeps the system in an equilibrium anisotropic state, while the higher
curvature correction was chosen to be the Gauss-Bonnet term.

The effect of the Gauss-Bonnet term in our results are consistent with previous results
[159,171,174,175] and they are summarized in Table 6.1, where we specify if the value of
the observable increases or decreases compared to the case of isotropic N = 4 SYM. In
this table we also present the result for the shear viscosity over entropy density obtained
previously [55] and the finite ’t Hooft corrections of type α′3R4 for these observables
[114,169,176,177].

Table 6.1: Summary of the effect of the Gauss-Bonnet coupling λGB on several observables.
We also present the finite ’t Hooft corrections of type α′3R4. The comparison is taken w.r.t. the
respective N = 4 SYM result at same temperature.

η/s Drag force Jet quenching Screening length Photon prod.

λGB > 0 decrease increase increase decrease increase
λGB < 0 increase decrease decrease increase decrease
α′3R4 increase increase decrease decrease increase

A possible heuristic interpretation of the increasing/decreasing in the above observ-
ables is to correlate these results with the changes in the ratio η/s. At weak coupling,
η/s is proportional to the mean free path of momentum isotropization of the plasma
(η/s ∼ `mfp). Imagining a situation where the mean free path is decreasing, we should
expect an external probe to interact more with the medium, increasing the energy loss of
the probe and its probability to suffer scattering. As a result, we would obtain an increase
in the drag force and the jet quenching parameter. Moreover, a low mean free path would
break the connection between a quark-antiquark pair more easily, resulting in a low value
of screening length. Finally, a low mean free path would raise the number of collisions
per time and, consequently, the number of photons produced in these interactions would
increase. Note that this situation matches exactly the case of λGB > 0. Of course, the
opposite idea applies for λGB < 0. Although this reasoning seems to be consistent for the
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Gauss-Bonnet, it does not work when applied to the α′3R4 correction.
The effect of the anisotropy is similar to what was found previously [31,32,37,38,45,51].

The photon production rate and the quarkonium dissociation length in an anisotropic
plasma are bigger than the corresponding quantities in an isotropic plasma at the same
temperature. The drag force and the jet quenching parameter in an anisotropic plasma
can be bigger or smaller than its isotropic counterparts, depending on several parameters
like the quark velocity, the direction of the quark motion, and the direction of momentum
broadening. Below we also summarize the effects of the anisotropy with a comparison
between the value of the observables along the anisotropic direction (||) and along the
transverse plane (⊥):

• Shear viscosity: η⊥ > η||,

• Drag force: F⊥drag < F
||
drag,

• Jet quenching parameter: q̂⊥ < q̂||,

• Screening length: L⊥ > L||,

• Photon production rate: χ µ
µ ⊥ < χ µ

µ ||.

The same interpretation in terms of the mean free path for the Gauss-Bonnet term can
be applied here. Considering the mean free path in the anisotropic direction `||mfp and in
the transverse plane `⊥mfp, we note that the mean free path of an anisotropic system in
the transverse plane is larger than the corresponding quantity in the anisotropic direction,
because η⊥ > η||. This can be associated with a smaller drag force, a smaller jet quenching
parameter, less screening (larger screening length), a smaller drag force and less photon
production in the transverse plane when compared with the corresponding quantities in
the anisotropic direction.



Chapter 7

Conclusion

We have studied Lovelock gravity within the context of the AdS/CFT correspondence.
Lovelock gravity is interesting from a purely gravity point of view as a natural generaliza-
tion of Einstein’s general relativity to higher dimensions, but our main motivation here
relies on the fact that higher curvature terms arise as stringy corrections to supergravity
and they are related, via the AdS/CFT correspondence, to finite ’t Hooft coupling cor-
rections in the dual gauge theory. Lovelock gravity can then be used as a simple model
to study the effect of higher curvature terms in the dual field theory. Although we still
do not know whether Lovelock gravity can be obtained from a string theory compactifi-
cation, our phylosophy here is to work in this simpler scenario to gain insight about the
effects of these higher curvature terms and perhaps uncover some universal properties. As
reviewed in Chapter 3, Lovelock gravity has brought us significant results so far, such as
the first counter-example to the famous KSS bound of the shear viscosity over entropy
density. Moreover, it has revealed interesting connections between positivity of energy and
causality constraints, and also showed that the avoidance of ghosts can be mapped into
the requirement of unitarity in the dual CFT.

The first result of our work was the holographic computation of the so called Chern-
Simons diffusion coefficient, which is an important transport coefficient that parametrizes
the rate of transition among degenerate vacua of a gauge theory. We worked in the gravity
setup of Gauss-Bonnet gravity, and we also considered another class of higher curvature
gravity, namely, Quasi-topological gravity. We found that the transport coefficient can
increase or decrease the value obtained from pure Einstein’s gravity, depending on the
value of the couplings.

Next, in Chapter 5, we changed to a different gravity setup where the action is com-
posed by an axion-dilation system with the addition of the Gauss-Bonnet term. The axion
field was chosen to be linear in one of the spatial direction, corresponding to a dual gauge
theory displaying anisotropy. The combination of the anisotropy with the higher curva-
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ture term significantly increased the difficult of the equations of motion, but we still were
able to solve them analytically, for small anisotropies. One of our main concerns was to
carry out the holographic renormalization, which is crucial to the extraction of correlation
functions since the on-shell gravity action usually suffers from divergences. We employed
the Hamilton-Jacobi approach of holographic renormalization. From a practical point of
view, the main advantage of this method is that it is very general and the equations that
appear are simply algebraic, allowing us to sistematically implement the procedure in soft-
wares like Mathematica. Although the Hamilton-Jocobi approach showed itself to be very
powerful, we found some technical subtleties related to the construction of the Hamilto-
nian. Firstly, the renormalization was possible only for small values of the Gauss-Bonnet
coupling, and secondly we were not able to extract the Ward identities. This was due to
the difficulty to write the Hamiltonian as a function of canonical momenta instead of the
extrinsic curvature, requiring the inversion of nonlinear equations that unfortunately we
were not able to accomplish.

Finally, in the last chapter we focused on the phenomenological application of the
gravity solution that we obtained as the gravity dual of a strongly coupled anisotropic
plasma. Motivated by the fact that the plasma produced in heavy ion collision experi-
ments is anisotropic, we studied the effect of the Gauss-Bonnet term on several observ-
ables relevant to the study of the quark-gluon plasma. Our results were compatible to
what we would expect from previous studies regarding only the anisotropy and only the
Gauss-Bonnet term separately. Even though the results were not surprising, the main
contribution of this work is perhaps to put the results for each observable all together and
try to interpret them physically. Indeed, we presented a heuristic interpretation for the
effect on the observables in terms of the shear viscosity. One of the most noticeble points
of this analysis is that the results for Gauss-Bonnet gravity behave differently from those
obtained from the known type IIB supergravity correction with schematic form α′3R4.
Since higher curvature terms can have different effects on the observables, we can see how
important is to understand these terms if we want a quantitative holographic descrip-
tion of real-world QGP, since soon or later we will have to deal with higher curvature
corrections to have a plasma at non-infinite ’t Hooft coupling.

There are still much more interesting aspects left to explore. Regarding the new
anisotropic gravity solution we have found, we can still study how the anisotropy and
the higher derivative terms affect other observables like the imaginary part of the quarko-
nium potential, the quarkonium dissociation length in a plasma wind, Langevin diffusion
coefficients, the dilepton production rate or the elliptic flow of photons and dileptons, to
name a few. Also, it would be interesting to see how these observables behave for similar
models. As far as we are aware, the only model that incorporates both the anisotropy
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and the higher curvature correction is [121]. Besides the applications to strongly coupled
gauge theories, which were one of the main concerns of this thesis, it would be nice to
discover whether Lovelock gravity can be obtained from a string compactification, and of
course determine the exact dual field theory. This is probably the most difficult task to
accomplish, but centainly the most desirable one from a theoretical perspective.



Appendix A

Symmetries in quantum field theories

The Poincaré algebra

Symmetries play a central hole in physics. In nature, the Poincaré symmetry expresses
the homogeneity of spacetime and Lorentz invariance. The Poincaré group is the group
of isometries of R3,1 and it includes ten generators: the four generators of translations Pµ
and the six generators of the Lorentz transformations Mµν . The Poincaré algebra has the
form

[Pµ, Pν ] = 0

[Mµν , Pλ] = i(ηνλPµ − ηµλPν)

[Mµν ,Mρσ] = i(ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ). (A.1)

One immediate question would be if there is a more general symmetry behind the Poicaré
symmetry, i.e., if the Poincaré algebra can be extended to a maximal symmetry group. For
many years, that was believed to not be possible, due to the Coleman-Mandula theorem
that we state below.

Coleman-Mandula theorem

The Coleman-Mandula theorem assumes that the S-matrix is based on a local rela-
tivistic quantum field theory in four-dimensional spacetime and that there is a mass gap
between the vacuum and the one particle states. The conclusion of the theorem is that
we cannot extend the Poicaré group including internal symmetries and maintain at the
same time a non-trivial S-matrix. The proof of this theorem is obtained by considering
the S-matrix of the theory and its transformation properties under Lie algebras. However,
there is a loophole in this theorem: in the proof of the theorem it was implicitly assumed
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that the extension was bosonic, but we can consider fermionic generators as well. That
was exactly what brought us to supersymmetry.

Supersymmetry (SUSY)

The loophole in the Coleman-Mandula theorem allows us to enlarge the Poincaré
algebra by introducing supercharges

QI
α, α = 1, 2 Weyl spinor,

Q̄α̇I = (QI
α)†, α̇ = 1, 2 anti-Weyl spinor, (A.2)

where I = 1, . . . ,N . The case of N = 1 is referred to as the minimal SUSY. In four
dimensions, the maximal supersymmetry we can have in order to have only particles with
spin lower or equal than one is N = 4. In total we have 4N supercharges. In addition to
the Poincaré algebra, we have the commutation relations

[Pµ, Qα] = 0, [Pµ, Q̄
α̇] = 0,

[Mµν , Qα] = i(σµν) βα , [Mµν , Q̄
α̇] = i(σ̄µν)α̇β Q̄

β̇. (A.3)

where σµν = i
2
[γµ, γν ] with γ’s being the usual gamma matrices satisfying the Clifford

algebra {γµ, γν} = 2 ηµν . Spinorial generators, due to their fermionic nature, have anti-
commutation relations instead of commutation relations

{Qα, Q̄β̇} = 2(σµ)αβ̇Pµ, (A.4)

where σµ are the Pauli matrices.

Conformal symmetry

Another possibility to avoid the Coleman-Mandula is in the case where the theory
has only massless states, and so the Poincaré algebra can be enlarged to the conformal
algebra. A conformal transformation x 7→ f(x) is such that the metric transforms as

gµν(x) 7→ Ω2(x)gµν(x). (A.5)

In addition to the ten generators of the Poincaré algebra, the conformal algebra contains
one dilatation D and four special conformal transformations Kµ, summing to a total
of fifteen generators that represent the conformal group SO(4, 2). In addition to the
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commutation relations of the Poincaré algebra, we have

[Mµν , Kρ] = i(ηµρKν − ηνρKµ),

[D,Kµ] = −iKµ, [D,Pµ] = iPµ, [D,Mµν ] = 0,

[Kµ, Kν ] = 0, [Kµ, Pν ] = −2i(ηµνD −Mµν). (A.6)

Superconformal algebra

If the supersymmetric theory is also conformal, the algebra can be extended to the
superconformal algebra. In addition to the generators of the conformal group Mµν , Pµ, D

and Kµ and to the supercharges QI
α, Q̄

I
α̇, it is necessary to include additional fermionic

generators SIα, S̄Iα̇ in order to close the algebra. We can think the S fermionic generators
as the supersymmetric partners of Kµ, in the same way as the Q generators are the
supersymmetric partners of Pµ.

In the case N = 4 which is particularly interesting from the point of view of the
AdS/CFT correspondence, in this case we have sixteen Q’s plus sixteen S’s equal thirty
two supercharges. Putting all together we obtain the SU(2, 2|4) superalgebra.



Appendix B

Derivation of the anisotropic gravity
solution

In this Appendix we give some details on how we have found our solution (5.8) and
present its explicit expression.

The Einstein equations (5.3) are diagonal, as a consequence of the fact that the metric
only depends on u. We have then four equations for the metric (since the xx- and yy-
components are not independent) plus the equation for the dilaton in (5.5). There are
four fields to solve for: φ, F , B, and H. Plugging the Ansatz (5.6)-(5.8) into the equations
and expanding to order O(a2) one finds that the equation for φ2(u) decouples. It reads

φ′′2 +
uF ′0 − 3F0

uF0

φ′2 =
1

F0

, (B.1)

with F0 given by (5.9). This can be readily solved changing coordinates as

u→ U(u) =

√
1− 4λGB

(
1− u4

u4
H

)
(B.2)

in intermediate steps. The two integration constants are fixed in such a way that φ2 is
regular at the horizon and vanishes at the boundary, φ2,bdry = 0. One finds

φ2(u) = −u
2
H

8

[
α + U(u) + log

(
1 +

u2

u2
H

)2

−
√
λGB log

(
U(u) + 2

√
λGB

u2

u2
H

)2

− log

(
U(u) + 1− 4λGB

(
1 +

u2

u2
H

))]
,

(B.3)
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where

α ≡ −
√

1− 4λGB +
√
λGB log (1− 4λGB) + log

(
1− 4λGB +

√
1− 4λGB

)
, (B.4)

and U(u) is defined as above. We notice that U is always positive (since λGB < 1/4), and
so is the argument of the last logarithm in (B.3). When λGB = 0 we recover the result
of [23], see eq. (164) of that paper.

To find H2, we take the difference of the xx- and zz-components of (5.3). One obtains
a decoupled equation that reads

H ′′2 (u) + p(u)H ′2(u) = q(u) , (B.5)

with

p(u) =
3(1− 4λGB)(U(u)− 1) + 4λGB(3U(u)− 5)u4/u4

H

uU(u)2 (1− U(u))
,

q(u) =
2λGBU(u)

(1− 4λGB)(1− U(u))
. (B.6)

This equation can be integrated readily via (B.2), fixing the integration constants as
above. In particular we request that H2,bdry = 0. The final result is

H2(u) =
u2
H

8(1− 4λGB)

[
β + U(u) + log

(
1 +

u2

u2
H

)
+ 2λGB

u2

u2
H

(
u2

u2
H

− 2

)

−
√
λGB log

(
U(u) + 2

√
λGB

u2

u2
H

)2

− log

U(u) + 1− 4λGB

(
1 + u2

u2
H

)
U(u)− 1 + 4λGB

(
1 + u2

u2
H

)
1/2

 ,

(B.7)

where, again, we have left U(u) implicit in some places for compactness and where

β ≡ −
√

1− 4λGB +
√
λGB log(1− 4λGB) + log

(
1 +
√

1− 4λGB

2
√
λGB

)
. (B.8)

Similarly we can solve for the other fields. More specifically, now that we know φ2 and
H2, we can use the tt-component of (5.3) to obtain F2 and the uu-component to obtain
B2. One can finally check that the xx- and zz-components are also solved separately, as
expected because of the Bianchi identities. The explicit expressions for the equations are
not particularly illuminating, so that we limit ourselves to reporting the final results for
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the remaining fields, which are given by

F2(u) =
u2
H

12(1− 4λGB)U(u)

(
u

uH

)4 [
γ + U(u) + (1− 4λGB)

(uH

u

)2

+4λGB

(
u

uH

)2

− 6λGB

(
u

uH

)4

+ log

(
1 +

u2

u2
H

)2

−
√
λGB log

(
U(u) + 2

√
λGB

u2

u2
H

)2

− log

(
U(u) + 1− 4λGB

(
1 +

u2

u2
H

))]
,

(B.9)

with
γ ≡ −2 + 6λGB +

√
λGB log

(
1 + 2

√
λGB

)2

+ log

(
1− 4λGB

2

)
, (B.10)

and by

B2(u) =
u2
H

24(1− 4λGB)

[
α + U(u)

u2
H − u2

u2
H + u2

+ log

(
1 +

u2

u2
H

)2

− 2u2

u2
H + u2

(
1− 2λGB + λGB

(
u

uH

)2

+ 3λGB

(
u

uH

)4
)

−
√
λGB log

(
U(u) + 2

√
λGB

u2

u2
H

)2

− log

(
U(u) + 1− 4λGB

(
1 +

u2

u2
H

))]
.

(B.11)

Again, we have fixed the integration constants in such a way that the fields be regular at
the horizon and vanish at the boundary, F2,bdry = B2,bdry = 0. Notice also that F2(uH) = 0,
as it should be for a blackening factor. One can check that when λGB = 0 the results
from [22] are recovered.1

1In order to do so, one needs to take into account the different Ansätze and include a factor of the
dilaton in (5.6), according to eq. (8) of [23].



Appendix C

Shear viscosity from Kubo formula

In this Appendix we report a alternative derivation of the shear viscosity tensor (6.19).
As is well known (see e.g. [75, 178–180]), the shear viscosity can be also computed using
a Kubo formula

η = lim
ω→0

1

ω
ImGR(ω,~k = 0), (C.1)

where GR(k) is the retarded Green’s function for the stress tensor. First, we take metric
fluctuations hmn around our solution and linearize the equations of motion. Here, we are
interested in the modes ψ⊥ = hxy and ψ‖ = hxz. In momentum space, we have

ψ(u, x) =

∫
d4k

(2π)4
J(k)ψ(u; k)e−ikix

i

, ki = (−ω,k), (C.2)

where ψ denotes generically one of the modes ψ⊥ or ψ‖. The prescription tells us to solve
the equation for ψ(u; k) imposing infalling boundary conditions and regularity at the
horizon and satisfying ψ = 1 at the boundary.

To compute the shear viscosity, we can restrict ourselves to zero spatial momentum
and small frequency ω. For simplicity, we also consider small λGB. The linearized equations
for ψ(u;ω) have the form

K0(u)ψ′′ +K ′0(u)ψ′ = 0, (C.3)

where for ψ = ψ⊥ we have, up to orders O(a4, λ2
GB, ω

2),

K⊥0 (u) =
u4 (a2u2

H log 2 + 6)− a2u6
H log

(
1 + u2

u2
H

)
− 6u4

H

12u3u4
H

+
λGB

12u3u8
H

[
u8
(
a2u2

H(5− 6 log 2)− 18
)
− u4u4

H

(
a2u2

H(2− 5 log 2)− 6
)

−4a2u6u4
H + (12 + a2u2)u8

H + a2u2
H

(
3u8 − 2u8

H

)
log

(
1 +

u2

u2
H

)]
,

(C.4)
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and for ψ = ψ‖ we have

K
‖
0(u) = K⊥0 (u) +

a2 (u4
H − u4) log

(
1 + u2

u2
H

)
8u3u2

H

+
a2λGB

(
−7u8 + 10u6u2

H − u4u4
H − 2u2u6

H + 2 (3u8 − 5u4u4
H + 2u8

H) log
(

1 + u2

u2
H

))
16u3u6

H

.

(C.5)

The equations above can be solved by considering an Ansatz of the form

ψ(u;ω) =

(
1− u4

u4
H

)− iω
4πT [

1 +ω
(
f0(u) + λGB(f1(u) + a2f2(u))

)
+O(a4, λ2

GB, ω
2)
]
, (C.6)

where T is the temperature given by (5.13). The functions f0(u), f1(u) and f2(u) can be
determined by substituting the Ansatz into the linearized equation and solving order by
order. The resulting expressions are not particularly illuminating and we do not report
them here. The next step is to compute the quadratic on-shell action, which turns out to
be a surface term of the form

S
(2)
on-shell = −1

2

∫
d4k

(2π)4
J(k)F(u; k)J(−k)

∣∣∣u=uH

u→0
, (C.7)

with F(u, k) = 1
16πG

K0(u)ψ′(u; k)ψ(u;−k). The prescription of [75] instructs us to take
only the contribution of the boundary. The retarded Green’s function is then given by

GR(k) = lim
u→0
F(u; k). (C.8)

Finally, using (C.1) and the result for the entropy (5.14) we can compute the ratio of the
shear viscosity over entropy density

η⊥
s

=
1− 4λGB

4π
+ a2λGB

u2
H

8π
+O(a4, λ2

GB) ,

η‖
s

=
1− 4λGB

4π
+ a2 (3λGB − 2 log 2)

u2
H

32π
+O(a4, λ2

GB) . (C.9)

These results agree with the ones obtained via the membrane paradigm expanded to first
order in λGB.



Appendix D

Drag force for a general background
and arbitrary direction

In this appendix we derive a formula for the drag force. The metric background is
assumed to be of the form

ds2 = Gttdt
2 +Gxx(dx

2 + dy2) +Gzzdz
2 +Guudu

2. (D.1)

We will only assume rotational symmetry in the xy directions and consider the metric
to depend only on u. This is essentially what was done in [32], but here we consider the
motion of the quark along an arbitrary direction, as in [31].

The Nambu-Goto action for the string is given by

S = − 1

2πα′

∫
dτdσ eφ/2

√
− det g =

∫
dτdσL, (D.2)

where φ = φ(u) is the dilaton field. By rotational symmetry in the xy directions we can
set y = 0. We choose static gauge (t, u) = (τ, σ) and let us consider the motion of the
quark in the xz plane with a string embedding

x(t, u) = (vt+ ξ(u)) sinϕ, z(t, u) = (vt+ ζ(u)) cosϕ, (D.3)

where ϕ is the angle of the quark trajectory with the z axis, i.e., ϕ = 0 corresponds to the
motion parallel with the anisotropic direction and ϕ = π/2 corresponds to the motion in
the transversal direction. The boundary conditions are ξ(u → 0) = 0 and ζ(u → 0) = 0,
which are necessary in order to reproduce the stationary motion of the quark.

First, we need to compute the induced metric gαβ = Gµν∂αx
µ∂βx

ν on the string
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worldsheet,

gαβ =

(
Gtt + v2(Gzz cos2 ϕ+Gxx sin2 ϕ) v

(
Gzzζ

′(u) cos2 ϕ+Gxxξ
′ sin2 ϕ

)
v
(
Gzzζ

′ cos2 ϕ+Gxxξ
′ sin2 ϕ

)
Guu +Gzzζ

′2 cos2 ϕ+Gxxξ
′2 sin2 ϕ

)
,

(D.4)
where the prime denotes derivative w.r.t. u. Ignoring factors of 1

2πα′
, the Lagrangian takes

the form

L = −eφ/2
[
−Gzz cos2 ϕ(ζ ′2Gtt +Guuv

2 +Gxxv
2(ζ ′ − ξ′)2 sin2 ϕ)−

−Gxx sin2 ϕ(Gttξ
′2 +Guuv

2)−GttGuu

] 1
2
. (D.5)

And we have associated (conserved) momentum flow

Πx =
δL
δx′

= −e
φGxx sinϕ

L
(
Gttξ

′ −Gzzv
2(ζ ′ − ξ′) cos2 ϕ

)
, (D.6)

Πz =
δL
δz′

= −e
φGzz cosϕ

L
(
Gttζ

′ +Gxxv
2(ζ ′ − ξ′) sin2 ϕ

)
. (D.7)

The values of the momenta will be fixed by imposing that ξ′ and ζ ′ are both real. To do
this, we invert the above expression to write

ξ′(u) =
GzzNx

GxxNz

ζ ′(u), (D.8)

where we have defined the quantities

Nx = GttΠx csc(ϕ) +Gxxv
2(Πx sin(ϕ) + Πz cos(ϕ)), (D.9)

Nz = GttΠz sec(ϕ) +Gzzv
2(Πx sin(ϕ) + Πz cos(ϕ)). (D.10)

Then we can use, for example, the expression for Πz to obtain ζ ′. The final expressions
we found are given by

ξ′ = ±
√
− 2GuuGzz

GttGxxD
Nx, ζ ′ = ±

√
−2GuuGxx

GttGzzD
Nz, (D.11)

where

D = 2Gtt

(
GxxΠ

2
z +GzzΠ

2
x

)
+GxxGzz

[
Gtte

φ
(
2Gtt + v2(Gxx +Gzz)

)
+ v2

(
Π2
x + Π2

z

)]
+

+GxxGzzv
2
[(
−Gtt(Gxx −Gzz)e

φ − Π2
x + Π2

z

)
cos(2ϕ) + 2ΠxΠz sin(2ϕ)

]
. (D.12)

There is a sign ambiguity here, which we will fix later. The condition that ξ′ and ζ ′ are
always real can be satisfied only if D is positive for all u. But, in general, D has two
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zeros (turning points). Thus, in order to satisfy the positivity condition the two zeros
should coincide at some critical point uc. Also, the numerators Nx and Nz should vanish
at the same point uc, because otherwise ξ′ and ζ ′ would diverge. We begin the analysis
finding the zeros of the numerator. Imposing Nx and Nz to vanish at uc gives us a relation
between Πx and Πz,

Πx

Πz

=
Gxx

Gzz

tanϕ
∣∣∣
u=uc

. (D.13)

Using this relation, we can find the two zeros of D at uc. This gives us two equations, the
first one is [

2Gtt

v2
+Gxx +Gzz + (Gzz −Gxx) cos(2ϕ)

]
u=uc

= 0, (D.14)

which can be used to fix the value of the critical point uc. The second equation completely
fixes the values of Πx and Πz and gives us the drag force

Πx = eφ/2Gxxv sinϕ
∣∣∣
u=uc

, Πz = eφ/2Gzzv cosϕ
∣∣∣
u=uc

. (D.15)

We have fixed the sign of the momenta to be positive, thus ξ′ and ζ ′ are both negative,
which is consistent with the physical condition that the string “trails” behind the quark
[122, 123] and not in front of it. Two special cases are obtained from (6.22) by setting
ϕ = 0 and ϕ = π/2. This gives us the drag force parallel and transversal to the direction
of motion of the quark, respectively

F
||
drag = eφ/2Gzzv

∣∣∣
u=uc

, F⊥drag = eφ/2Gxxv
∣∣∣
u=uc

. (D.16)



Appendix E

Jet quenching parameter for an
arbitrary motion

In this appendix we derive a formula for q̂ considering a motion in an arbitrary direction
and generic background. The steps are basically the same of [37], but here the computation
is carried out in Einstein frame and the metric is left generic, with only a few assumptions
that we will specify below.

We assume a five-dimensional background displaying rotational symmetry in the xy
directions,

ds2 = Gttdt
2 +Gxx(dx

2 + dy2) +Gzzdz
2 +Guudu

2. (E.1)

From the rotational symmetry we can choose the direction of motion within the xz plane.
We define rotated coordinates

z = Z cos θ −X sin θ,

x = Z sin θ +X cos θ,

y = Y. (E.2)

The new coordinates (X, Y, Z) are obtained from the old coordinates (x, y, z) by a rotation
of an angle θ around the y-axis. We choose Z to be the direction of motion of the quark.
The direction of the momentum broadening takes place in the XY plane and it forms an
angle ϕ with the Y -axis. The prescription instructs us to consider a string with an endpoint
moving at the speed of light along the Z direction. The other endpoint is separated by a
small distance ` along the direction of the momentum broadening. Thus we have a string
worldsheet whose boundary is a rectangular light-like Wilson loop with sizes L− (along
the Z− direction) and `, where L− is assumed to be very large. Our task is to find a string
worldsheet that minimizes the Nambu-Goto action satisfying this boundary condition.
We then need to evaluate the on-shell Nambu-Goto action and expand it to second order
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in ` to obtain 〈
WA(C)

〉
' exp

[
−L

−`2

4
√

2
q̂

]
, (E.3)

from where we extract the jet quenching parameter. It is convenient to work in light-cone
coordinates

t =
Z− + Z+

√
2

, Z =
Z− − Z+

√
2

. (E.4)

The metric in these new coordinates takes the form

G(LC)
µν =


G++ G+− GX− 0 0

G+− G++ −GX− 0 0

GX− −GX− GXX 0 0

0 0 0 Gxx 0

0 0 0 0 Guu

 , (E.5)

where

G++ =
1

2

(
Gtt +Gxx sin2 θ +Gzz cos2 θ

)
,

G+− =
1

2

(
Gtt −Gxx sin2 θ −Gzz cos2 θ

)
,

GX− =
sin θ cos θ√

2
(Gxx −Gzz),

GXX = Gxx cos2 θ +Gzz sin2 θ. (E.6)

We choose the static gauge (τ, σ) = (Z−, u). Since we are assuming L− to be very large,
there is a translational symmetry in the Z− direction, and we can fix the string embedding
to only depend on u,

Z+ = Z+(u), X → X(u) sinϕ, Y → Y (u) cosϕ. (E.7)

The induced metric on the string worldsheet gαβ = Gµν ∂αx
µ∂βx

ν is given by

gττ = G++, gτσ = sinϕGX−X
′ +G+−(Z+)′,

gσσ = Guu + sin2 ϕGXXX
′2 − 2 sinϕGX−(Z+)′X ′ + cos2 ϕGxxY

′2 +G++(Z+)′
2
, (E.8)

where the primes denote derivative w.r.t. u. We can now write the Nambu-Goto action,1

S = −2
L−

2πα′

∫ uH

0

du eφ/2
√
− det g ≡ L−

πα′

∫ uH

0

duL, (E.9)

1The extra factor of 2 comes from the two branches of the string worldsheet.
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where φ = φ(u) is the dilaton scalar field and

L =− eφ/2
[
(G+− +G++)

(
2GX−X

′(Z+)′ sinϕ−GXX(Z+)′
2
)

−G++

(
Guu +GxxY

′2 cos2 ϕ
)

+X ′
2

sin2 ϕ
(
G2
X− −G++GXX

)] 1
2
. (E.10)

Since the Lagrangian does not depend on Z+, X and Y , we have three conserved quanti-
ties, given by the canonical conjugate momenta. Up to a constant factor, they are given
by

Π+ =
eφ

L
(G+− +G++)(GX−X

′ sinϕ−GXX(Z+)′),

ΠX =
eφ

L
sinϕ

[
GX−(Z+)′(G+− +G++) +X ′ sinϕ

(
G2
X− −G++GXX

)]
,

ΠY = −e
φ

L
G++GxxY

′ cos2 ϕ. (E.11)

We are interested in the limit where Π+, ΠX and ΠY are small.2 Working in first order in
the Π+, ΠX and ΠY , we can invert the above expressions to obtain (Z+)′, X ′ and Y ′, we
find that

(Z+)
′
= c++Π+ + c+XΠX cscϕ,

X ′ = cX+Π+ cscϕ+ cXXΠX csc2 ϕ,

Y ′ = cY Y ΠY sec2 ϕ, (E.12)

where

c++ =
e−φ/2Guu

(
G2
X− −G++GXX

)
(G+− +G++)

√
−G++Guu

(
G2
XX − 2G2

X−
) ,

c+X = cX+ =
e−φ/2GuuGX−√

−G++Guu

(
2G2

X− −G2
XX

) ,
cXX = − e−φ/2GuuGXX√

−G++Guu

(
G2
XX − 2G2

X−
) ,

cY Y = − e−φ/2Guu

Gxx

√
−G++Guu

. (E.13)

Integration of Z+′ gives zero. Integration of X ′ gives `/2. Integration of Y ′ also gives `/2.
2This is a consequence of ` be small, as explained in [37].
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The conclusion is that

Π+ =
` sinϕ

(∫ uH
0

c+X(u) du
)

2
((∫ uH

0
c+X(u) du

)
2 −

(∫ uH
0

c++(u) du
) ∫ uH

0
c+X(u) du

) ,
ΠX =

` sin2 ϕ
(∫ uH

0
c++(u) du

)
2
(∫ uH

0
c++(u) du

) ∫ uH
0

c+X(u) du− 2
(∫ uH

0
c+X(u) du

)
2
,

ΠY =
` cos2 ϕ

2
∫ uH

0
cY Y (u) du

. (E.14)

The on-shell action then takes the form, up to second order in the momenta,

S = 2i

√
λL−

4π

∫ uH

0

du

[
c++Π2

+ +
1

sin2 ϕ
cXXΠ2

X +
2

sinϕ
c+XΠ+ΠX +

1

cos2 ϕ
cY Y Π2

Y

]
.

(E.15)
Using the expressions for the coefficients the action can be rewritten as

S = 2i

√
λL−`2

16π

(
P̂ (θ) sin2 ϕ+ Q̂(θ) cos2 ϕ

)
, (E.16)

where

P̂ (θ) ≡
∫ uH

0
c++(u) du(∫ uH

0
c++(u) du

) ∫ uH
0

c+X(u) du−
(∫ uH

0
c+X(u) du

)
2
,

Q̂(θ) ≡ 1∫ uH
0

cY Y du
. (E.17)

From this we immediately extract the jet quenching parameter

q̂ =

√
2λ

π

(
P̂ (θ) sin2 ϕ+ Q̂(θ) cos2 ϕ

)
. (E.18)



Appendix F

Quarkonium static potential in generic
background

In this appendix we derive a formula for the static potential of a quark-antiquark
pair (quarkonium).1 Let L be the separation between the quarks and assume a generic
background of the form (D.1). The dual picture corresponds to an U-shaped open string
whose endpoints are located at the boundary and are identified with the quarks. Our
task is to find the string worldsheet that minimizes the Nambu-Goto action (D.2). By
rotational symmetry in the xy-plane we can assume the pair to live in the xz plane.
Putting the center of mass of the pair at the origin, let q be the polar radial coordinate
and θ the angle between the pair and the z direction. We fix the gauge (τ, σ) = (t, q). In
this way the string embedding has the form

Xµ = (τ, σ sin θ, 0, σ cos θ, u(σ)) (F.1)

The induced metric on the string worldsheet is given by

gττ = Gtt, gσσ = Gpp +Guuu
′2, gτσ = 0, (F.2)

where Gpp ≡ Gzz cos2 θ+Gxx sin2 θ and the prime denotes derivative w.r.t. σ. The Nambu-
Goto action takes the form

S = − T
2πα′

∫ L/2

−L/2
dσ eφ/2

√
−Gtt (Gpp +Guuu′2) ≡

∫ L/2

−L/2
dσL. (F.3)

1This computation is similar to what was done in [32], generalizing the prescription of [181] for an
anisotropic background.
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Since the Lagrangean L does not depend explicitly on σ, the Hamiltonian is a constant
of motion

H =
∂L
∂σ′

σ′ − L = − T
2πα′

eφ/2GttGpp√
−Gtt (Gpp +Guuu′2)

. (F.4)

Evaluating the Hamiltonian at the turning point u0 ≡ u(0), where u′ = 0, we find the
value of the constant to be

C =
T

2πα′
e
φ
2

√
−GppGtt

∣∣∣
u=u0

. (F.5)

In order to simplify the expressions, it is useful to define the auxiliary quantities

P ≡ e
φ
2

√
−GppGtt , Q ≡ e

φ
2

√
−GttGuu . (F.6)

Using (F.4) and(F.5) we can find an expression for u′,2

u′ = ±P
Q

√
P 2 − P 2

0

P0

, P0 ≡ P |u=u0 . (F.7)

Integrating the above expression we find that the separation between the quarks is given
by

L = −2

∫ u0

0

dσ

du
du = 2

∫ u0

0

Q

P

P0√
P 2 − P 2

0

. (F.8)

Before we compute the on-shell Nambu-Goto action to find the potential energy that keeps
the pair bounded, we need to take care of the ultraviolet divergence due to the infinite
mass of the quarks. The mass term corresponds to a string hanging down straight from
the boundary to the horizon. Note that in this case the string goes from 0 to uH while σ
is fixed, thus it effectively corresponds to u′ → ∞. Expanding the on-shell Nambu-Goto
action in powers of 1/u′ for this configuration we obtain

MQ = − T
2πα′

∫ uH

0

duQ+O

(
1

u′

)
. (F.9)

Finally, computing the on-shell Nambu-Goto action for the U-shaped configuration with
the mass subtraction we obtain the static potential

VQQ̄ =
S(on-shell)

T
− 2MQ = − 1

2πα′

[
P0L+ 2

∫ u0

0

du
Q

P

(√
P 2 − P 2

0 − P
)
− 2

∫ uH

u0

duQ

]
.

(F.10)

2One needs to be careful with the choice of sign here: when σ goes from 0 to L/2, then u goes from
u0 to 0 and thus u′ < 0.
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