
Universidade de São Paulo
Instituto de Física

Otimização da distribuição de fluidos em meios
porosos usando padrões de venações de folhas

Caio Martins Ramos de Oliveira

Orientador: Prof. Dr. Adriano Mesquita Alencar

Dissertação de mestrado apresentada ao Instituto de
Física para a obtenção do título de Mestre em
Ciências

Banca Examinadora:

Prof. Dr. Adriano Mesquita Alencar (IF-USP)
Prof. Dr. Claudimir Lucio do Lago (IQ-USP)
Prof. Dr. Caetano Rodrigues Miranda (IF-USP)

São Paulo
2017

FICHA CATALOGRÁFICA
Preparada pelo Serviço de Biblioteca e Informação
do Instituto de Física da Universidade de São Paulo

Oliveira, Caio Martins Ramos de

 Otimização da distribuição de fluídos em meios porosos usando
padrões de venação de folhas. São Paulo, 2017.

 Dissertação (Mestrado) – Universidade de São Paulo. Instituto
 de Física. Depto. de Física Geral

 Orientador: Prof. Dr. Adriano Mesquita Alencar

 Área de Concentração: Física

 Unitermos: 1. Mecânica dos fluídos; 2. Dinâmica dos fluídos computacional; 3.
Venação de folhas; 4. Rede de canais.

USP/IF/SBI-027/2017

Universidade de São Paulo
Instituto de Física

Fluid distribution optimization in porous media
using leaf venation patterns

Caio Martins Ramos de Oliveira

Supervisor: Prof. Dr. Adriano Mesquita Alencar

Master's dissertation presented to Instituto de Física to
obtain the Master of Science degree

Master's Committee:

Prof. Dr. Adriano Mesquita Alencar (IF-USP)
Prof. Dr. Claudimir Lucio do Lago (IQ-USP)
Prof. Dr. Caetano Rodrigues Miranda (IF-USP)

São Paulo
2017

“...our small planet, at this moment, here we face a critical
branch-point in the history. What we do with our world,
right now, will propagate down through the centuries and
powerfully affect the destiny of our descendants. It is well

within our power to destroy our civilization, and perhaps our
species as well. If we capitulate to superstition, or greed, or
stupidity we can plunge our world into a darkness deeper
than time between the collapse of classical civilization and

the Italian Renaissance. But, we are also capable of using our
compassion and our intelligence, our technology and our

wealth, to make an abundant and meaningful life for every
inhabitant of this planet. To enhance enormously our

understanding of the Universe, and to carry us to the stars.”
-Carl Sagan

Acknowledgments

I would like to thank all lab members for creating a particularly stimulating work
evironment. Their feedback and cooperation was very helpful and much appreciated.
I would like to thank Juan for giving me a hand with the experiments and for being
such a helpful, generous and kind person.
I would like to thank prof. Murilo for the valuable OpenFOAM-related suggestions
he gave me.
I would like thank my aunt, Mary Christine, and a dear friend, Pedro, for correcting
some of my most awful English mistakes.
I would like to thank all my friends and everyone from Yoga ao ar livre group
who supported throughout the writing of this dissertation. All of them greatly
contributed to my emotional and spiritual devolopment.
I would like to thank Elliot Hulse for sharing his life experience in his awesome
videos. They have certainly helped me become a stronger version of myself.
I would like to thank my supervisor, Adriano, for the patience and encouragement
he demonstrated in all of our conversations, as well as the invaluable insights he
always provided.
I would like thank my parents, Nilton and Eneida, for the help and love they have
always offered me. Their encouragement allowed me to pursue my truth.
I also would like to thank my wife, Juliana, for supporting me and encouraging me
in every way even during my darkest hours.
Last but not the least, I would like to thank me, for having the self-love, the self-
respect and the courage to keep on fighting. I am grateful for believing that I could
still succeed even when the odds were against me.
Done.

Resumo

Diversos exemplos de redes de transporte quase ótimas podem ser encontradas na
natureza. Essas redes distribuem e coletam fluidos através de um meio. Evidências
sugerem que os vasos sanguíneos do sistema circulatório, as vias respiratórias nos
pulmões e as veias das venações em folhas são exemplares de redes que evoluiram
para se tornarem efetivas em suas tarefas sendo, ao mesmo tempo, eficientes ener-
geticamente. Dessa forma, não chega a ser surpreendente que recentes melhorias de
performance em dispositivos de geração de energia modernos ocorrem devido ao uso
de arquiteturas de canais inspiradas na natureza. Guiados por estas observações,
nesse trabalho, investigamos a aplicação de padrões de venações verossímeis geradas
por computador em um tipo de dispositivo fotovoltaico. Resolvemos o problema
de escoamento através do dispositivo usando ferramentas de Dinâmica de Fluidos
Computacional (CFD). Além disso, procuramos desenvolver modelos experimentais.
Em última instância, estamos em busca das propriedades da rede que afetam sua
performance.
Palavras-chave: Mecânica dos fluidos, Dinâmica dos fluidos computacional, ve-
nação de folhas, redes de canais

Abstract

Several examples of nearly optimal transport networks can be found in nature. These
networks effectively distribute and drain fluids throughout a medium. Evidence
suggests that blood vessels of the circulatory system, airways in the lungs and veins
of leaf venations are examples of networks that have evolved to become effective
in their tasks while simultaneously being energy efficient. Hence, it does not come
as a surprise that recent performance improvements of modern power generating
devices occur due to the use of nature-inspired channel architectures. Guided by
this observations, in this work, we investigate the application of visually realistic
computer-generated leaf venation patterns to a type of photovoltaic device. We
solve the flow through the device problem using Computational Fluid Dynamics
(CFD) tools. Moreover, we attempt to develop experimentals models. Ultimately,
we seek to single out the network properties that affect their performance.
Keywords: Fluid mechanics, Computational fluid dynamics, leaf venations, chan-
nel networks

Nomenclature

ADI Alternating direction implicit

BC Boundary condition

BST Binary search tree

CAD Computer aided design

CFD Computational Fluid Dynamics

CV Control volume

DCEL Doubly-connected edge list

DNS Direct numerical simulation

DSSC Dye-Sensitized Solar Cell

emf electromotive force

FCS Fluorescence correlation spectroscopy

FCV Fuel cell vehicle

FV Finite volume

GUI Graphical user interface

SOR Successive over-relaxation

IC Initial condition

m-FGPV Microfluidic gel photovoltaics

NMR Nuclear magnetic ressonance

NN search Nearest neighbor search

NS equations Navier-Stokes equations

PDE Partial differential equation

PEMFC Proton-membrane exchange fuel cell

PIMPLE merged PISO-SIMPLE

PISO Pressure Implicit with Splitting of Operator

PLA Polylactic acid

REV Representative elementary volume

RNG Relative neighborhood graph

SIMPLE Semi-Implicit Method for Pressure Linked Equations

STL STereoLithography

VLA Vein length per area

Contents

Nomenclature

1. Introduction 1
1.1. Outline . 1
1.2. Target applications . 3

1.2.1. Dye-sensitized solar cell variant 3
1.2.2. Proton-Exchange Membrane Fuel Cells 4

1.3. Partial differential equations classification 5
1.3.1. Transport equation . 6
1.3.2. Navier-Stokes equations . 7

1.4. Statistical concepts . 7
1.4.1. Terminology and basic concepts 8
1.4.2. Hypothesis testing . 9
1.4.3. Confidence intervals . 10

2. Generating interdigitated leaf-like channel network patterns 13
2.1. Overview . 13

2.1.1. Leaf venation descriptions . 14
2.1.2. Vein development: canalization hypothesis 19
2.1.3. Venation functions . 20

2.2. Remarks on the use of venation designs on possible targets 21
2.3. Algorithm for open venation pattern generation 22
2.4. Algorithm for closed venation pattern generation 27

2.4.1. Relative neighborhood graphs 27
2.4.2. Closed venation pattern algorithm implementation 30

2.5. Algorithm adjustments for design generation 30
2.6. Results . 34

3. Solving the fluid flow problem through the generated geometries 39
3.1. 3D venation model construction . 39
3.2. Mesh construction . 42

3.2.1. Geometry preparation . 43
3.2.2. SnappyHexMesh . 47

3.3. Solving the fluid flow problem . 48
3.3.1. Porous Medium region inclusion 49
3.3.2. Input parameters . 50

i

3.3.3. Boundary conditions . 50
3.4. Results . 50
3.5. Discussion and statistical analysis 57

4. Experimental models 65
4.1. OpenSCAD mold generation . 65
4.2. 3D printed molds . 66
4.3. Experimental set-up . 67
4.4. Discussion and challenges . 69

5. Final considerations 73
5.1. Achievements . 73
5.2. Follow-up studies . 74
5.3. Models for PEMFCs . 75
5.4. Application to 3D cell cultures . 75

A. Appendix: Voronoi diagrams and the Nearest Neighbor search 77
A.1. Overview . 77
A.2. Constructing Voronoi diagrams: Fortune’s sweepline algorithm 78

A.2.1. Site and circle events, breakpoints and beachline 78
A.2.2. Algorithm data structures . 79
A.2.3. Fortune’s sweepline algorithm implementation 84

A.3. Doubly-connected edge list (DCEL) 86
A.4. Voronoi diagram validation . 91
A.5. Point location, Voronoi diagrams and the Nearest-neighbor search . . 93

B. Appendix: Computational Fluid Dynamics - CFD 95
B.1. CFD Overview . 95

B.1.1. OpenFOAM Overview . 96
B.1.2. Solving CFD problems using OpenFOAM 97

B.2. Incompressible Navier-Stokes equations 98
B.3. Transport equation . 101
B.4. Darcy-Brinkman equation for porous media 102
B.5. Meshes . 106

B.5.1. Orthogonal and Non-orthogonal meshes 106
B.5.2. Structured, Block-Structured and Unstructured meshes 107
B.5.3. Collocated and Staggered arrengements 108
B.5.4. Convergence criterion . 109

B.6. Finite Volume Methods . 109
B.6.1. Methods for approximating the integrals 110
B.6.2. Interpolation methods . 111
B.6.3. Truncation and discretization errors 112
B.6.4. Discretization of the diffusion equation 113
B.6.5. Explicit vs. Implicit methods and Stability 116

ii

B.6.6. Solving the algebraic system of equations 119
B.6.7. Coupled Equations, Sequential solution and Under-relaxation . 122

B.7. Solving the coupled Pressure-Velocity equations 123
B.7.1. SIMPLE algorithm . 124
B.7.2. PISO algorithm . 128
B.7.3. Merged PISO-SIMPLE - the PIMPLE algorithm 129

Bibliography 131

iii

1. Introduction

1.1. Outline

The search for efficient transport networks has been the subject of multiple studies
across numerous fields [1–3]. The high degree of interest stems partially from the
need to minimize the cost of transport in a large number of human-designed dis-
tribution networks while maintaining, or perhaps improving, distribution efficacy.
Highways, roads, railroads, electric power supply, water distribution and drainage
networks are all instances that could benefit from transport optimization [1, 4–6].
Nature provides abundant examples of irrigation and drainage systems ranging from
the cardiovascular’s arteriovenous and lymphatic systems to the respiratory system
involving the lungs [1, 7–12]. These natural transport networks are similar to the
transport networks designed and constructed by humans. In addition to serving an
analogous purpose, they are also subject to energy saving requirements and topolog-
ical constraints [1, 13]. The natural networks, however, are a product of evolution,
which has been solving the optimization problem for millions of years. Therefore,
it is not unreasonable to suppose that these networks, found in nature, are highly
optimal in their tasks [2, 7, 8].
Pursuing the validity of this reasoning, in this work, we make an attempt to optimize
the transport by employing channel networks with similar structure and properties
to the ones found in nature, in a procedure known as biomimetics [8, 14, 15]. In
particular, we generate networks inspired in leaf venation patterns using a computer
algorithm and later estimate their performance. By doing this, we focus not only
on optimizing the properties of each individual network, but also on identifying
the venation-inpired networks with optimal geometrical traits. This approach is in
contrast to the optimization problem of fixing a geometry and varying the properties
of the network, a problem which has already been extensively treated in the literature
and, in graph theory, goes by the name of Minimum Concave Cost Flows [1,16,17].
Therefore, observe that the problem we engage in is still quite open [6], as the
configuration of the network itself is also at stake.
We have already listed some possible targets that would benefit from an improvement
in transport performance. Although different optimal networks may be governed by
similar underlying principles [1,7], notice that their performance ultimately depends
on the particular target. That is because each target has its own peculiarities. This
may influence what is estimated to be a good performance. Hence, a reasonable
approach for an empirical study aiming to identify optimal transport networks is to

1

Chapter 1 Introduction

have the networks be designed for the applications of interest. Generally, experience
and intuition are used to design the networks [6]. In our case, we set out aiming
to increase the performance of a particular application, finding inspiration in leaf
venations, at least at a fundamental level. Ultimately, we seek attributes of the
geometries which correlate strongly with their performance. Once our understanding
grows, we hope to be able to optimize the target’s performance [18].

The generated venation-inspired configurations are presented in Chapter 2, includ-
ing a description of how we produced them. Subsequently, in Chapter 3, we detail
how we estimated the geometry performance using Computational Fluid Dynamics
(CFD), also offering a statistical analysis of the results. In Chapter 4, we show-
case the efforts that went into producing an experimental model that can validate
the CFD results. A flowchart illustrating the steps described in these chapters is
presented in Fig. 1.1. Finally, in Chapter 5, we lay out some of our plans for fu-
ture work, as later, with a more systematized knowledge about the properties that
make a network efficient for the targets, we hope to gain insight on how to im-
prove its performance. A thorough discussion on the implemented algorithms and
data structures that played a supporting role in leaf venation generation is provided
in Appendix A, while in Appendix B the CFD tools used to solve the governing
equations are presented.

 Venation
generation

 Adaptation Selected
properties

Performance
 analysis

 Computational
 fluid dynamics

Experimental
 models

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

4sd83743

Volume Murray Murray Fractal Fractal Performance VLA_total VLA_total

Open
FOAM

Figure 1.1.: Flowchart describing the methodology employed to reach the objec-
tives of this work.

In the remainder of this chapter, we introduce topics which are relevant to the
discussion in the upcoming chapters. Next, we present some possible applications
of our work.

2

1.2 Target applications

1.2. Target applications

As previously stated in the last section, optimal design of channel architectures is
application-dependent. Hence, as we focused on improving geometries which are
venation-inspired, we narrowed down the targets to the ones which have at least
one component with properties that are similar to leaves. In particular, leaves, may
be regarded, to some degree, as a bidimensional porous medium with a channel
network embedded on it to distribute water and nutrients [19–21]. Taking this
into account, we were able to select two targets for the venation-like geometries.
Next, we introduce the target applications, present their features and discuss how
including a venation-inspired channel network might be beneficial to them. For
now, we only state that, for both applications, there is a need for the inclusion of an
additional complementary geometry to drain the solvent. A discussion clarifying how
we accomplished this as well as the reason why leaves do not require the additional
geometry will be offered in Chapter 2.

1.2.1. Dye-sensitized solar cell variant

The first application, the one that in fact motivated this work, is a variant of dye-
sensitized solar cells (DSSCs). DSSCs are a third generation type of solar cell
that have the potential to be both cheap and efficient [22]. In DSSCs, photons
are absorbed by dye molecules, as opposed to the band gap excitation of electrons
mechanism in standard semiconductor solar cells. The excited dye molecules then
transfer the charges to the semiconductor TiO2 nanoparticles on which they are
adsorbed. The charges are then transported to the anode. From there, they make
their way along the circuit until they reach the cathode. The circuit is completed
with the aid of an electrolyte solution which absorb the electrons and restore the
dye molecules to their ground state [22, 23]. As long as the device is exposed to
light, it will produce an electromotive force (emf).

In the variant we mentioned a method was devised to regenerate the cells after
dye degradation, which can happen after long-term UV exposure [22], for instance.
The degraded dye is then collected and replenished with new dye. An effective
way to distribute the new dye across the device was introduced by inserting an
agarose hydrogel slab containg the electrolyte solution between the electrodes [24],
see Fig. 1.2a. In order to facilitate the dye molecule distribution, allowing for them
reach and be adsorbed by the TiO2 nanoparticles, a channel network was formed on
one of the hydrogel slab faces. Therefore, in theory, optimizing the channel networks
present in the hydrogel porous medium could improve the regeneration process of
the device. This fact makes this variant of DSSCs, named µ-fluidic gel photovoltaics
(µ-FGPVs) [24], the primary target of our study for reasons that will be discussed
in Chapter 3.

3

Chapter 1 Introduction

anode

cathode

H
2

e-

H
+

H
+

e-

e-

e-

H
2 H

2

H
2

H
+

H
+

H
+

H
2

unused fuel

fuel

flow field

e-

H
+

H
+

H
+

O
2

air

O
2

H
2
O

H
2
O

air

H
2
O

unused

flow field

electrolyte

heat

Proton exchange
membrane fuel cell

load

a

b

μ-FGPV Dye
sensitized solar cell

FTO glass

Photoanode

Counter Electrode

Hydrogel

Draining
channels

Source
channelsTi

2
O

Pt

electrolyte

light

e-

e-

load

Dye

Po
ro

u
s

M
e
d

ia

Figure 1.2.: Devices that employ channel networks embedded in a porous medium.
Both devices are presented as solutions to the current need for greener power
supply demand. (a) is a sketch of the DSSC variant, the µ-FGPVs [24]. This
arrangement includes a hydrogel layer, which is used in the distribution of dye
molecules. The molecules are adsorbed onto the surface of the Ti2O nanoparticles.
This design enables solar cell regeneration after the dye degradation. (b) is a
diagram of a proton exchange membrane fuel cell (PEMFC) [25]. Fuel cell vehicles
(FCVs), which make use of this technology, are already a reality [26].

1.2.2. Proton-Exchange Membrane Fuel Cells

A second even more promissing target of the bidimensional venation-inspired geome-
tries was envisioned later, after a more systematic literature seach. Proton-exchange
membrane fuel cells (PEMFCs) are devices that convert the chemical energy of a
fuel into a emf [25]. The fuel cells are similar to batteries, but require a continuous
supply of fuel, typically hidrogen, to produce the emf. PEMFCs, in particular, have
a proton-conducting polymer membrane containing electrolyte confined between the
electrodes. Finally, attached to both the anode and cathode are two porous flow
field plates with bidimensional channel networks carved onto them, see Fig. 1.2b. It
has been shown that improvements on the arquitecture of the channels may enhance
distribution and collection of reactants across the electrodes ultimately increasing
cell performance [18,27–29]. This makes PEMFCs an excellent target of our study.

4

1.3 Partial differential equations classification

We will cover more details about PEMFCs in Chapter 2.

1.3. Partial differential equations classification

Throughout upcoming chapters, in particular Chapter 3, we will encounter many
partial differential equations (PDEs). These equations govern the flow through the
target systems. Therefore, understanding the behavior of the PDEs and knowing
the boundary and initial conditions which are appropriate to each system will be of
great importance during the forecoming discussion.
PDEs may be classified into three types: elliptic, parabolic or hyperbolic equa-
tions [30–33]. While parabolic and hyperbolic PDEs are associated with marching
problems, that is, problems where the solution varies in time, elliptic PDEs describe
equilibrium problems. The canonical examples for the elliptic, parabolic and hy-
perbolic PDEs are, respectively, the Laplace, the diffusion and the wave equations.
The greatest difference between each of the PDE types are the boundary conditions
(BCs) as well as the initial conditions (ICs) required for a unique and stable solu-
tion. The properties of each PDE category is summarized in Tab. 1.1 [30, 33]. As a
last remark, we stress that hyperbolic equations possess an additional trait, which is
the limited speed with which the solution propagates throughout the system. This
has to do with both real characteristics defining the domain of dependence of the
solutions [31, 33]. For further details on this topic, the reader may refer to Arfken
or other CFD textbooks [30–33]. For now, we present a method used to classify the
second-order PDEs.

Table 1.1.: Table classifying PDE types according to the problem type, boundary
conditions and solution domain.

Equation type Problem type Conditions Solution domain
Hyperbolic Marching Cauchy BCs Open
Parabolic Marching Dirichlet/Neumann BCs Open
Elliptic Equilibrium Dirichlet/Neumann BCs Closed

In two dimensions, the most general second-oder PDE for a scalar field φ can be
written as:

a
∂2φ

∂x2 + b
∂2φ

∂x∂y
+ c

∂2φ

∂y2 + d
∂φ

∂x
+ e

∂φ

∂y
+ fφ+ g = 0 (1.1)

Classification PDE can be performed by evaluating the following discriminant D
and by verifying Tab. 1.2:

D = b2− 4ac (1.2)

5

Chapter 1 Introduction

Table 1.2.: Second-order PDE classification in 2D [33].

D Equation type Characteristics
> 0 Hyperbolic Two real characteristics
= 0 Parabolic One real characteristic
< 0 Elliptic No characterics

Classification of the PDEs is possible by considering the value of D makes and its
relation with the charcteristic equation:

a

(
dy

dx

)2

− b
(
dy

dx

)
+ c = 0 (1.3)

In case D is positive, the characteristic equation has two real roots and the solution
φ exhibit a simple wave form, a typical hyperbolic trait [33]. Additional aspects
are summarized in Tab. 1.2. Moreover, notice that it is possible to reduce the more
complex PDEs to the respective canonical form through a change of variables, that
is, one can reduce a complex hyperbolic equation to a wave equation. Finally, even if
the coefficients a, b, c, etc. depend on the variables x and y or possibly on the solution
φ itself, the PDEs may still be classified using this approach. In this complex case,
however, the behavior of the PDE is local and may change throughout the solution
domain, exhibiting a parabolic behavior in a certain region, while showcasing a
hyperbolic behavior in another.
If the second-order PDE depends on N variables, then Eq. 1.1 becomes:

N∑
j=1

N∑
k=1

Ajk
∂2φ

∂xj∂xk
+H = 0 (1.4)

where Ajk = Akj and H accounts for the other terms [33, 34]. Classification of the
PDEs using this matrix approach then requires the evaluation of the eigenvalues λ
of the matrix with elements Ajk. When at least one eigenvalue λ is null, the PDE
is parabolic. When all eigenvalues are of the same sign and non-zero, the PDE is
elliptic. Finally, when all eigenvalues but one are of the same sign, with all of them
being non-zero, the PDE is hyperbolic.

1.3.1. Transport equation

The transport equation or convective-diffusion equation is one of the PDEs we will
encounter throughout this work. It can be written as:

∂φ

∂t
= D∇2φ− u · ∇φ (1.5)

6

1.4 Statistical concepts

where φ is a scalar field representing the reactant concentration, D is the diffusion
coefficient of the medium and u is the velocity field. We observe by examining
Eq. 1.5 that putting aside the second term on the right side, we retrieve the diffusion
equation, a parabolic PDE. The convective term, v · ∇φ, on the other hand, has a
hyperbolic nature. This can easily be verified, for intance, by factoring the second-
order one dimensional wave equation, a hyperbolic equation, into two first-order
equations [30, 35]. A more detailed discussion on the transport equation in the
context of CFD can be found in Sec. B.3.

1.3.2. Navier-Stokes equations

The Navier-Stokes equations is a set of non-linear equations describing momentum
conservation for a control volume. In this work, we will use the incompressible
Navier-Stokes equations, which may be expressed in the following form:

ρ
∂u

∂t
+ ρu · ∇u = −∇p+ µ∇2u+ ρg (1.6)

where u is the velocity field, ρ is the fluid density, p is the pressure, µ is the dynamic
viscosity of the fluid and g is the gravity acceleration. A thorough discussion on
Eq. 1.6, how derivate it, and additional properties such as flow types may be found
in Sec. B.2.
We realize, by examining Eq. 1.6, that classifying the Navier Stokes is not straigh-
forward at all. Nevertherless, it can be done using the matrix approach described
earlier in this section, see Eq. 1.4. Classification of the behavior of the Navier-Stokes
equations has been made according to the type of flow and the mach number M ,
the ratio between the flow velocity u and the speed of sound of the medium, see
Tab. 1.3. Further details on how the classification process is performed are out of
the scope of this text, but can be encountered in the references [33,34].

Table 1.3.: Outline of the classification of the Navier-Stokes equations based on
the flow type and mach number M .

Steady flow Unsteady flow
Vicous flow Elliptic Parabolic

Inviscid flow M < 1 Elliptic Hyperbolic
M > 1 Hyperbolic

Thin shear layers Parabolic Parabolic

1.4. Statistical concepts

In this section we briefly present some basic statistical concepts which will be useful
when we discuss the results in Chapter 3.

7

Chapter 1 Introduction

1.4.1. Terminology and basic concepts

Here, we define the basic concepts and terminology which must be considered when
evaluating the results later on. We start by making a distinction between the term
population and sample. A population, in general, is a large collection of similar items
we seek information about. A sample, on the other hand, is representative a group
of items taken from the population. In this context, the information describing the
entire population, usually provided in the form of summary numbers, e.g., the mean,
variance, etc., are called parameters, while the summary numbers of the samples
are called statistics. In practice, the parameters are desired, but not known, so one
usually seeks to infer information about the parameters using statitics. There are at
least two forms of learning about the parameters in this fashion: hypothesis testing
and confidence intervals [36, 37]. We discuss more about them later in this section.
For now, we present the relations for some of the fundamental summary numbers,
which are useful when describing the data attributes later on.
Commonly used summary numbers when one is dealing with the a single attribute
are the mean x and the standad deviation σ. The mean of a random variable x
representing an attribute can be calculated by:

x = 1
N

N∑
i

xi (1.7)

where xi are the sampled values of the attribute, that is, the measurements and N
is the number of measurements. The standard deviation of x, in turn, is given by:

σ =

√√√√ 1
N

N∑
i

(xi − x)2 (1.8)

Other important summary numbers when more than one random variable is being
considered are the covariance and correlation coefficients. These are important be-
cause they reveal whether two attributes exhibit a linar relationship or not. The
covariance between the random variables x and y is of the form:

cov(x, y) = 1
N

N∑
i

(xi − x) (yi − y) (1.9)

The closer the covariance is to being null, the weaker is the linear relationship
between the two attributes. However, if the attributes have two different scales, it is
possible that a weak linear relationship may yield a high covariance. This problem is
solved by dividing Eq. 1.9 by the standard deviation of the of the random variables
x and y, which yields:

corr(x, y) = cov(x, y)
σxσy

(1.10)

8

1.4 Statistical concepts

where corr(x, y) is known as the Pearson correlation coefficient and σx and σy are the
standard deviation of the random variables x and y respectively. This correlation
coefficient varies from −1 to 1 [36–38]. When corr(x, y) is close to 1, there is a
positive linear relationship between the attributes, or a positive correlation. When
it is close to −1, there is a negative linear relationship, or anticorrelation. At
last, when it is close to 0, there is not a linear relationship between the variables,
and, thus, no correlation. In Chapter 3, the Pearson correlation coefficient will be
extensively employed when we present some correlograms of the constructed data
base.

Finally, when one is seeking to display the data without making any assumptions
about the population parameters, such as the summary numbers above, it is possible
to use boxplots, see Fig. 3.16. The median, the second quartile Q2, is represented
by the band inside the box. The lower and upper region of the box are defined by
the first Q1 and third quartile Q3 of the data set. Quartiles are the three points
that divide the data set in four equal parts. The standard definition for the boxplot
whiskers cut-offs is given by the following relation:

upper whisker : Q3 + 1.5IQR

lower whisker : Q1 − 1.5IQR

where,

IQR = Q3 −Q1

Boxplots defined this way are also known as Tuckey boxplots [39]. Outliers are
depicted as dots in the region above or below the whiskers.

1.4.2. Hypothesis testing

Hypothesis testing is one of the most common forms of learning about the parameters
of a populations from the statistics of a sample. It consists in making an initial
assumption, the null hypothesis H0, collecting data to test the hypothesis and then
rejecting H0 or not based on the evidence in favor of an alternative hypothesis. In
practice, the method used is usually the p-value approach [36–38]. This hypothesis
testing method is coupled with a test statistic, for instance, the t-value, used in
t-tests.

The t-value, the test statistic used in this work, is a scalar function t of the observa-
tions. Its calculation depends on the type of test being made. In a one-sample t-test
we test whether a population mean has a value defined in H0. In a two-sample t-test,
we test whether the means of two populations are equal, H0, or not, the alternative

9

Chapter 1 Introduction

hypothesis. The t-value relation for the latter case, which is frequently used to test
different model types have similar attributes later in this work, is:

t = x1 − x2√
s2

1
N1

+ s2
2
N2

(1.11)

where x1 and x2 are the sample means, s1 and s2 are the sample standard deviations
and N1 and N2 are the sample sizes. The t-test defined with the t-value given by
Eq. 1.11 is known as the Welch’s t-test [40]. This t-test’s only assumption is that the
two populations from which the samples were withdrawn have normal distributions.
It is possible to notice that the greater the value of t, the more unlikely H0 is.
That is because the greater the difference between the sample means, the lesser
their standard deviations and the greater the sample sizes, the more evident any
difference between the two population means become. Next, after the t-value is
determined, we must calculate the degrees of freedom ν. This statistic is used later
to determine the t-distribution we need to employ in the hypothesis test. The value
ν can be approximated by the following relation:

ν ≈

(
s2

1
N1

+ s2
2
N2

)2

s4
1

N2
1 ν1

+ s4
2

N2
2 ν2

(1.12)

where ν1 = N1 − 1 and ν2 = N2 − 1 are the degrees of freedom associated with the
first and second variance estimates. Once ν has been computed, we can calculate
the t-distribution, a distribution associated with t-values. If t-values for different
samples of same size were taken from the same populations, the values would follow
a t-distribution, see Fig. 1.3. The t-distribution probability density function f (t)
for a particular ν is given by:

f (t) =
Γ
(
ν+1

2

)
√
νπΓ

(
ν
2

) (1 + t2

ν

)− ν+1
2

(1.13)

where Γ is the gamma function. It is then possible to determine the probability,
the p-value, of a t-value with Eq. 1.13. Naturally, the lower the p-value, the more
unlikely H0. Generally, the null hypothesis is rejected when the p-value is under a
threshold value, see Fig. 1.3. The most common thresholds are 0.01,0.05 and 0.1. In
this work, we employ the 0.05 threshold.
T-tests for other statistics such as the correlation coefficient also exist, but are out
of the scope of this text [38].

1.4.3. Confidence intervals

Confidence intervals can be calculated using different methods. The one we use
is based on the t-distribution, given by Eq. 1.13. Hence, the assumption that the

10

1.4 Statistical concepts

ν

2.5%

95%

2.5%

Figure 1.3.: Comparison between a t-distribution with ν = 10 and a normal dis-
tribution. The area under the two tails of the t-distribution are highlighted in
red. The total area under the tails corresponds to a probability of 5%.

population have normal distributions is also made. The confidence interval is defined
by the two t-values delimiting the area symmetrically centered at the t-distribution
mean, which accumulates most of the probability. The two tails of the distribution,
depicted in red, see Fig. 1.3, are outside the confidence interval range, due to their
unlikelyhood. The cumulative probability of each tail is 0.025, considering a 0.05
threshold. Hence, the confidence interval is defined by the t-values that separate
the center from the tail regions of the distribution. In the case where we seek to
determine the confidence intervals for population mean from a sample, for instance,
we first compute the t-distribution using Eq. 1.13 using a simple relation for the
degrees of freedom v, v = N−1 [38]. Finally, the confidence intervals t′ are expressed
beside the sample mean, x±t′. This means the population mean is inside the interval
with 95% certainty.
At last, we emphasize that, in this work, all t-tests and confidence intervals were
computed using the R programming language [41].

11

2. Generating interdigitated leaf-like
channel network patterns

2.1. Overview

Several examples of channel networks are present in nature as well as in modern
devices. In many cases, the functions performed by naturally occuring channel
networks are analogous to the ones performed by transport systems in man-made
gadgets. We came across two power generating devices that make use of channel
networks embbeded in porous medium to effectively distribute key substances to
the electrodes: PEMFCs and µ-FGPVs, see Fig. 1.2 [24, 25]. In particular, in the
case of PEMFCs, it has been demonstrated in previous studies that the design of
flow field patterns, the channel networks embedded in the device, has a considerable
influence on the performance of these cells [18, 29]. Consequently, it seems natural
to investigate the impact of nature inspired channel arquitectures on these devices.

As a matter of fact, fractal-like, biomimetic desings are currently under investigation
for PEMFCs, a more established technology, with recent results showing a substan-
tial increase in performance [27,42] when compared to the other conventionally em-
ployed flow field patterns, the pin-type, parallel, serpentine and interdigitated [43],
see Fig. 2.1. In fact, in one of these studies, which showcased a leaf venation in-
spired design, a 20-25% improvement was observed [18]. The improved efficiencies
are justified by the more uniform distribution of the reactants.

Motivated by these results, we set out to employ a myriad of channel network de-
signs with even more realistic patterns. In order to do that, we first implement an
algorithm capable of generating visually realistic venations [44]. Later, to generate
some of the final designs, we add another step to the algorithm, which generates
a complementary interdigitated venation pattern, see Fig. 2.2. In later chapters,
we present the results of computational fluid dynamics (CFD) simulations and ex-
periments performed on the generated geometries. Ultimately, we seek correlations
between key venation properties and the uniformity of reactant distribution in a
slab-like system.

13

Chapter 2 Generating interdigitated leaf-like channel network patterns

a b

c d

Figure 2.1.: The most commonly encountered flow fields in PEMFCs. Each one
has their own advantadges and drawbacks. The designs are, in order, known as
(a) serpentine, (b) parallel, (c) interdigitated and (d) pin-type.

2.1.1. Leaf venation descriptions

2.1.1.1. Systematic description

The complexity of leaf venations have marveled and intrigued people since antiq-
uity. That curiosity has driven many researchers to catalogue the different venations
encountered in nature [19, 45]. Among the classification systems there is a widely
employed one proposed by Hickey [46], which is based on the venations of dicotyle-
donous plants. Hickey’s description stands out due to it considering several venation
properties including aspects other than the leaf venation itself, such as leaf shape
and structure of the leaf margin [19, 46], see Fig. 2.3. The disposition of the ve-
nation relative to the margin is also considered. Due to these and other factors,
Hickey’s systematic description plays an important role in classifying and identify-
ing taxa [19]. His classification may even help determine acient climate from known
correlations. For instance, it has been observed that leaves with brochidodromous
venation are predominant in tropical floras while non-brochidodromous patterns
prevail in northern temperate floras [47].

Vein hierarchy is another feature accounted for in Hickey’s description [19,46,48,49].

14

2.1 Overview

Primary venation
Complementary venation

Figure 2.2.: Results from the algorithm we implemented: venation inspired design
generated computationally. The primary pattern, in black, is similar to open
venations found in leaves. The complementary pattern, in red, is constructed in
a subsequent step using the primary venation as a mold. For further information
on these results, see Sec. 2.6.

As is the case with other classifications, that is accomplished by introducing the
concept of vein orders. In most angiosperm leaves, the venation starts with the
primary order vein, or midvein, which starts at the leaf base from the petiole and
crosses the leaf blade towards the apex, see Fig. 2.4a. Primary veins are the ones
with largest diameter. Secondary veins, on the other hand, ramify directly from
the midvein towards the leaf margin and possess a smaller diameter compared to
the midvein, Fig. 2.4b. Veins of first and second orders usually form at the first
stage of leaf development, a slow expasion phase which occurs mainly due to cell
division. Third order veins, in turn, ramify from secondary veins and have an even
smaller diameter. These three categories comprise the lower order veins [48, 50].
Minor veins, veins of fourth order onwards, are also present in most angiosperms
forming a reticulate which covers the whole lamina, Fig. 2.4b. Minor vein formation
takes place during the second stage of leaf development, a ’rapid’ growth phase that
occurs mostly due to cell expansion. As a result, classification of veins based on
orders is also indicative of different stages of leaf development [48,50,51].

The usefulness of vein order classification is much broader though. In a recent study,
for instance, a correlation between the vein densities (vein length per area - VLA) of
lower order veins and total leaf size has been demonstrated [50]. The study not only
singled out these correlations by employing a large and diverse database, but pro-
posed a method to estimate total leaf size from the venation found in leaf fragments,
making the prediction of leaf sizes from fossil fragments possible. Fundamentally,

15

Chapter 2 Generating interdigitated leaf-like channel network patterns

a b c

2°
2°

2°

1°

1° 1°

2°

Figure 2.3.: Some of the different categories of leaf venation as proposed and de-
picted by Hickey. In these sketches, redrawn from Hickey’s article [46], only the
first and second order veins are portrayed. (a) represents a brochidodromous vena-
tion: notice that second order veins are joined close to the margin. (b) illustrates
an Eucamptodromous leaf venation, with second order veins ending before they
reach the leaf margin. The last venation pattern (c) is an example of Craspe-
dodromous venation: second order veins end only at the leaf margin and may
bifurcate as they approach it.

that allows the prediction of the acient climate, since leaf size correlates with the
rainfall patterns of a given location. Interestingly enough, when all vein orders are
considered no correlation between VLA and leaf size is observed.

2.1.1.2. Topological and geometrical description

Hickey’s systematic description of venation patterns provides an exceptional method
of identifying taxa. Unfortunately, it is limited to dicotyledonous plants [46]. On
the other hand, when determining the link between form of venations and their
function, the topological-geometric description has the upper hand. One of the
reasons behind this is that it can be applied to any type of venation, including, for
example, venations of monocotyledons, such as grass leaves [19].

The topological description resorts to graph theory to represent venation patterns.
Venations are then considered as graphs [19, 52]. The nodes of the graph designate
points where ramification occurs while the edges portray the veins between two
ramification points. It is important to notice that when describing a system in a
solely topological manner, the angles and distances between edges and nodes are
neglected. Hence, when using the topological framework, the features that receive

16

2.1 Overview

leaf apex

petiole

 leaf
margin

midvein or
 1st order
 vein

 leaf
margin

a b

2nd order
veins

2nd order
 veins

minor
veins

3rd order
veins

leaf blade
or lamina

midvein or
 1st order
 vein

Figure 2.4.: Illustration identifying vein orders in real leaves. The leaf apex, lam-
ina, petiole and margin are also singled out. (a) a leaf with an Eucamptodromous
venation type. The second order veins stretch from the midvein towards the leaf
margin without reaching it. (b) an example of Acrodromous venation, with two
veins running parallel to the margin in convergent arcs towards the leaf apex.

emphasis are the interrelationships between edges and nodes. For instance, the
graph representation of venation patterns enables the study of the reticulation of a
pattern by observing the redundancy of the graph [19,53], a graph parameter which
allows for the distinction between open and closed graphs [19], see Fig. 2.5. In case
the redundancy of the graph is zero, the graph is labeled as open or tree-like, see
Fig. 2.5a. In case the redundancy is greater, the graph is denominated closed, see
Fig. 2.5b.

There are, however, subtleties when distinguishing between open and closed vena-
tions. When considering all of the vein orders of dicotyledonous plants, for example,
venations tend to belong to the closed category, although they are not completely
closed, since minor veins may sometimes end freely in the lamina. On the other
hand, if only first and second vein orders are considered, the scenario becomes more
diverse. Brochidodromous venations, for instance, are designated as closed whear-
eas craspedodromous and eucamptodromous venations are open, see Fig. 2.3. Both
venation types have different adaptive capacities, which are throughly discussed in
the literature [19, 48].

Finally, geometric traits of the venation graphs may be accounted for by embedding
them in the Euclidian plane. Nodes of the graph become points in the plane while
edges become segments. Distances and angles become relevant, in contrast with the

17

Chapter 2 Generating interdigitated leaf-like channel network patterns

a b

Figure 2.5.: Graphs illustrating the different graph types and the redundancy pa-
rameter: (a) open graph, since the graph redundancy is zero and (b) closed graph,
since the redundancy is greater, meaning there may be more than one path to
reach a node n1 from a node n2.

topological description. This resulting graphs are called Euclidian graphs [54]. Us-
ing the Euclidian metric is fundamental to maintain the visual resemblance between
venation patterns and their respective graph representation, as discussed in Sec. 2.3.
Hence, we use this decription when implementing the algorithms for venation con-
struction [44].

2.1.1.3. Fractal dimension description

Statistical self-similiarity is a property of many natural processes and objects, such
as coastlines, skylines, wall cracks, etc. In particular, ramifying structures, e.g.,
venations, also present this trait. Self-similar objects under varying degrees of mag-
nification are known as fractals, a term coined by Benoit Mandelbrot, referred to by
many as the father of fractal geometry [55,56].

Among the tools fractal geometry leaves at our disposal is the concept of fractal
dimension. The most usual definitions of dimension, such as the Euclidian and
topological dimensions, lead to integer values. Fractal dimensions, on the other
hand, allow for the possibility of objects having non-integer dimensions. For in-
stance, a line has the topological dimension DT of 1, while the coastline of Britain
has a fractional dimension D of 1.25 [56]. In a sense, the fractal dimension of an ob-
ject may be seen as a measure of how well it fills the space containing it: the greater
its value the better it fills up the space. Interestingly, from this remark, it follows
that the coastline of Norway (D = 1.52) [57], for example, is better at covering up
the two dimensional plane than the coastline of Australia (D = 1.13) [56].

18

2.1 Overview

The fractal dimensions of venations patterns of different species have been deter-
mined in many studies. For instance, Acer trautvetteri presents a fractal dimension
of 1.55 [58], while Macropeplus ligustrinus possesses a fractal dimension of 1.4 [59].
Not only these results confirm that venations do a good job of covering up a plane,
but they hint at a method to identify different plant species based on the fractal di-
mension parameter. Indeed, a study aiming to identify different plant species of the
Brazilian Atlantic forest and Cerrado did just that. It used the fractal dimensions
of venations and leaf shape, in conjunction with pattern recognition techniques, to
successfully identify the different taxa [60].
The numerical definition of fractal dimension, however, is not unique. In fact, there
are quite a few definitions, each with its own set of advantages and drawbacks. In
this work, we employed the box counting method to determine the fractal dimension
of the venation patterns. In order to determine the box counting fractal dimension
DB of a 2 dimensional object, for instance, the plane may be covered with a square
grid with cells of side length δ. Next, the number N(δ) of boxes which capture a
part of the curve is counted. The following definition may then be used to compute
DB:

DB ∼ −
lnN(δ)

ln δ (2.1)

In practice, N(δ) changes depending on the side length of the grid cells chosen. In
particular, if δ is large the estimate for DB might be innacurate as well as if δ is too
small, since self-similar objects that appear in nature are not true fractals, meaning
they are not self-similar under all scales. Hence, to circumvent this problem, the
fractal is covered with a sequence of grids with decreasing δ. The best fit for the
data may be subsequently determined by applying the method of least squares for
a more reliable estimate of DB [55].

2.1.2. Vein development: canalization hypothesis

In this work, a set of algorithms able to produce visually accurate patterns serve
as the steppingstone to channel network generation. The algorithms, proposed by
Runions et al. [44], find their inspiration on previous models of vein formation, some
of which are based on a hypothesis of leaf vascular development, the canalization
hypothesis [44,61–65]. Consequently, the model itself is consistent with the biological
knowledge of venation development.
The canalization hypothesis states that vein differentiation occurs in response to a
signal, and that at least part of the signal is composed of auxin, a hormone inherent
in plants [44,61–64]. Auxin produced throughout the leaf blade must be removed for
leaf development to resume. Although diffusion takes place, auxin removal from the
leaf also occurs due to a directional transport of the hormone. The PIN family of
integral membrane proteins, in particular, the PIN1 protein play a major role in that

19

Chapter 2 Generating interdigitated leaf-like channel network patterns

directionality [48,51,66]. As auxin is driven out from regions of high concentration,
it induces new veins in their direction, which aim to eliminate the signal surplus by
carrying it towards the leaf base. As a rule, vein differentiation is oriented towards
existing vein tissues with excess draining capacity. As a result, a feedback process is
established: cell differentiation increases their capacity to transport the signal which
induces the differentiation [44,61–64].

A formal analogy between rain water forming channels as it moves down a sandy
slope and the induced veins can facilitate the understanding of the process of gradual
vein development [62]. Indeed, the carved channels canalize liquid from its surround-
ings, discharging it into larger channels. The leaf veins, in turn, canalize the excess
auxin into narrow strands, discharging it into larger veins that ultimately conduct
it to the leaf base.

Finally, the last remark relevant to the algorithm functioning involves observations
of auxin sources shape in the leaf. It turns out they tend to be localized in space, to
the extent that they may be assumed as discrete [44, 67]. These observations may
have in fact shed light on some aspects of vascular formation formerly unexplained by
the canalization hypothesis. Nevertheless, many questions concerning vein pattern
formation remain unanswered [68].

2.1.3. Venation functions

The leaf venation has two primary functions. It plays a part in the mechanical
stabilization of the leaf and it is also responsible for the transport of substances
throughout the lamina [19, 48, 49]. Concerning the first, it has been investigated
how veins, in conjunction with other tissues, combine to display the observed me-
chanical properties of leaves. For intance, it has been demonstrated that the angle
formed between the second order veins and the midvein has an impact on the overall
mechanical stability of the leaf. Moreover, aspects such as leaf size, the E-modulus
of the leaf tissue or structures along the leaf margin are also significant [19].

Regarding the second role of venations, it is clear that they are the main structure
responsible for providing water and the nutrients necessary for normal leaf func-
tioning and are also responsible for removing the products of photosynthesis [19].
Venations, as well as the rest of the vascular system of plants, are comprised by two
types of tissue, each type responsible for addressing one of these tasks. These are the
xylem, which performs the water and other nutrients transport from the root to the
leaves and the phloem, which carries the organic products (sap) from the leaves to
other parts of the plant that require it [69]. Water enters the leaf via the venations,
accounting for the major portion of material transported in the xylem. In addition,
it leaves the leaf through evaporation at the stomata. Indeed, evaportation is the
driving force that drags water from the root upward until it reaches the leaf. This
is in contrast with the mechanical pumping of blood in animals performed by the

20

2.2 Remarks on the use of venation designs on possible targets

heart. This difference has cast many doubts on the validity of Murray’s law to the
vascular system of plants [19,70–72], as discussed in Sec. 2.3.

A last remark worth discussing is related to the differences between water transport
in closed and open venations. The redundancy associated with closed venations,
for example, protects leaves from a possible injury which a eliminates a vein path
[2, 18, 19]. While in an open pattern, this elimination could potentially result in
leaf death, the damage in a closed pattern is compensated by other available paths.
Moreover, studies suggest that the pressure profiles of open and closed venations
differ [19]. Flow in leaves can be simulated treating leaf parenchyma as a porous
medium [19–21]. The simulations show that closed systems tend to display a more
uniform pressure distribution when compared to open venations with the same VLA.

2.2. Remarks on the use of venation designs on
possible targets

In light of the discussed in Sec. 2.1, we consider potential issues to the direct applica-
tion of venation patterns as the channel network designs in PEMFCs and µ-FGPVs.
Moreover, we present some modifications to the venation pattern designs, which are
expected to solve the issues. In Sec. 2.5, we briefly examine how these adjustments
were implemented.

First off, leaf venations comprise both source and collecting channels, which are,
correspondingly, the xylem and the phloem tissues of the plant vascular system.
Thus, flux occurs simultaneously towards and away from the lamina in different
sections of the same veins. The water and nutrients are carried via the xylem
while the phloem transports the products [69]. When only the upward transport of
water is considered, the vein segment at the petiole can be considered as the single
inlet of the leaf system. In contrast, multiple outlets spread throughout the blade
exist, the stomata where evaporation occurs. In the target of the venation pattern
designs, however, there is a single flux direction, which carries both the reactants and
products in the same ducts. Moreover, the inlet and outlet are located at different
parts of the system [18]. In order to solve this issue, a second channel network was
introduced. With the second network, the complementary venation, see Sec. 2.5, the
listed requirements are met: flow is established from one network to the other in
a single direction, reactants and product are tranported by both channel networks
and the inlet and outlet are placed at opposing locations of the system.

Secondly, as pointed out in Sec. 2.1.3, the pressure distribution in closed venations
is more homogeneous than in open venations due to path redundancy [19]. Further-
more, the presence of loops make areas of stagnant flow more likely to occur [18]. In
plants, the drawbacks of closed arquitechtures are largely offset by their many adap-
tive advantadges over open patterns, such as the reduced impact of vein injury [2,19].

21

Chapter 2 Generating interdigitated leaf-like channel network patterns

On the other hand, these adaptive capabilities are irrelevant when considering ap-
plications such as PEMFCs, for instance. Thus, we focus on the generation of open
interdigitaded patterns, as open patterns have already been shown to be optimal
when efficiency is considered [2, 19]. In future work, we plan to consider patterns
which are closed from the third vein order onwards, in order to study the effects of
redundancy on reactant distribution.
Another aspect to be discussed concerns the boundary shape of the target applica-
tions, see Fig. 2.1 . Generated venation architectures can be affected by the border
and growth type chosen [44]. Hence, while a myriad of leaf shapes exist in na-
ture, we are constrained by the boundary type of the target applications. There-
fore, we developed venation patterns embedded exclusively in a rectangular shaped
system, since this was by far the most common configuration found in the litera-
ture [18, 24,27,42,43].
Lastly, we again highlight that it is the sun that promotes the transport in the
plant vascular system through evaporation, i. e., an external source does the work,
meaning that plants themselves do not spend energy to induce transport [19]. In
the vascular system of humans, however, the picture changes, since it is the heart
that pumps the blood and generates the flow [73]. This fundamental difference has
cast a doubt on the applicability of Murray’s law to venations in order to describe
vein diameter relations at ramifications [70]. Nonetheless, the target applications
resemble the our circulatory system in regard to flow induction. In PEMFCs, for
instance, air compressors are generally used to pump reactant gases into the cell,
playing a role analogous to the heart. As a result, we employed Murray’s law to
define vein diameters despite the uncertainty of its validity to venations. Moreover,
application of Murray’s law seemed to play a significant role in the performance
increase observed in a recent study about venation inspired-geometries [18]. The
exponent n employed in equation Eq. 2.2 was set as a parameter of the model.

2.3. Algorithm for open venation pattern generation

The algorithm we implemented for open venation patterns generation proposed by
Runions et al. [51] is grounded on a set of key assumptions. The first is that vein
induction and insertion tends to occur between the auxin sources and nearby veins.
That is in agreement with the model proposed by Mitchison for vein induction [44,
74]. The second key aspect is that the algorithm not only computes vein induction,
but actual vein insertion takes place. Moreover, to accurately simulate the vein
development, leaf blade growth is also considered [44]. Auxin sources are deemed as
discrete, as that assumption is supported, to some extent, by experimental data [67].
Furthermore, the model proposed by Runions et. al. is set up on the continuous
space instead of a grid, as occcured in a previous model proposed by Gottlieb [44,75].
This modification allows for the generation of venation patterns strinkingly similar
to the ones found in actual leaves, see Fig. 2.2.

22

2.3 Algorithm for open venation pattern generation

a b

edges

nodes

Figure 2.6.: A venation pattern example (a) and its corresponding embedded
graph representation (b). Edges represent the veins, while the nodes are placed
at ramification points or locations where veins change direction.

Graph theory’s framework grant us all of the features which are essential for the
implementation of the algorithm in the continuous space. Venation patterns may
be viewed as a graph G = (V,E) embedded in the Euclidian space, see Sec. 2.1.1.2,
where E, the set of edges, correspond to the veins of the pattern and V , the set
of vertices, denote the channel bifurcations or points where change of orientation
occurs, see Fig. 2.6. It is clear from this comparison that the vertices, or vein nodes,
are the building blocks of the simulated venation patterns and, as consequence,
it follows that vein node placement has a great impact on the overall generated
venation architecture. Therefore, in a nutshell, what the algorithm does is essentially
handle vein node placement as simulated leaf growth occurs. Observe that the rules
regulating vein node positioning are generally in accordance with the discussed in
Sec. 2.1.2, meaning that veins are induced by discrete auxin sources embedded in
the plane [44]. Finally, the complete tree-like graph G, as well as the auxin sources,
which can be assumed as edgeless nodes, are confined to the leaf perimeter.

The graph G representing the venation is directed and all of its edges are oriented
away from the tree data structure’s root, which corresponds to the node at the leaf
base. In fact, that is the definition of an out-tree or arborescence, Fig. 2.7 [76].
The corresponding data structure is similar to binary trees, which are discussed
in Sec.A.2.2.1, except for the fact that each internal node may have more than
2 children, see Fig. 2.7. As such, many of the recursive algorithms utilized in the
binary tree context (e.g., tree search, traversal, insertion, etc.) [77] can be readily
adapted to treat the data structure that stems from G.

Before proceeding to the nuts and bolts of the algorithm, we consider a final key
point: the initial state of the leaf. In general, each simulation starts by placing a

23

Chapter 2 Generating interdigitated leaf-like channel network patterns

1

2
4

3
5

6

9

8
7

Out-tree

5 8

3

1

2

4

76

9

Figure 2.7.: Graph represenation of the venation pattern data structure: the ar-
borescence or out-tree.

single vein node, the seed, within the leaf contour. Customarily the seed is inserted
in the vicinities of the leaf boundary, although that is not a requirement. The
region the seed is placed, referred to as the leaf base, gives rise to the primary vein
of the leaf. Nevertheless, more than one seed can be utilized to produce different
leaf varieties (e.g., grass leaves) [44]. Consequently the initial configuration of seeds
within the simulated leaf blade may be compared, to a certain degree, to the leaf
primordiums of different species [62].
Finally, we discuss practical details of the algorithm. One of its main aspects is
that it is structured upon a main loop, see Fig. 2.8 [44]. We stress that the first loop
iteration begins with no auxin nodes and some specified seed arrengement, but aside
from that, there is nothing differentiating it from the other iterations. Hence, we
set out by examining the group of instructions contained in a single loop iteration,
as that suffices for the comprehension of the overall geometry evolution.
The first step within each iteration is the insertion of new auxin nodes throughout
the leaf blade. Auxin nodes are, thus, placed randomly in space, see Fig. 2.8b.
We highlight that even though individual nodes are placed randomly, the resulting
density of the auxin node distribution, however, must obey a density parameter
ρauxin, as discussed in Sec. 2.5. In addition, there can be neither vein nor auxin
nodes within a distance threshold value kd, the kill distance, see Fig. 2.8b, another
input parameter provided by the user. As a result, the auxin node candidates which
do not fit the last criterion, i.e., auxin nodes candidates which possess other nodes
within the specified limit are readily discarded, see Fig. 2.8b,c.
The next steps consist in determining the effect of the current auxin node distri-
bution on new vein segments induction. Each auxin source, in the open venation
pattern algorithm, influences only the vein which is closest to it. The effect of this
choice is in accordance with the canalization hypothesis. Computationally that is

24

2.3 Algorithm for open venation pattern generation

a b c

d e f g

h i j

nth loop iteration

(n+1)th loop iteration

Figure 2.8.: Diagram representing the steps of a loop iteration of the open venation
algorithm.

translated into auxin nodes influencing only their nearest vein node, see Fig. 2.8c.
Notice that many vein nodes may not be influenced by an auxin node and that,
meanwhile, some vein nodes may be influenced by one or more auxin nodes. In the
latter case, the program determines the direction of the resultant of the vectors de-
fined from the vein node to each auxin influencing it, see Fig. 2.8c,d. Subsequently,
new vein nodes are inserted onto the plane along the directions computed in the
previous step, see Fig. 2.8e. The distance from the inserted node to parent vein
node is set as another input parameter.

Provided vein nodes were introduced in the last step, the next natural procedure
amounts to removing the auxin nodes which had their immediate neighborhood
invaded by the new nodes, Fig. 2.8f,g. Node removal is dependent on a vein node
violating the same minimum distance threshold kd mentioned earlier. Verifying
threshold violation is achieved by computing the distance from the auxin to the

25

Chapter 2 Generating interdigitated leaf-like channel network patterns

nearest vein node. All of the aspects regarding the search for nearest nodes in this
and the previous steps are accomplished via a point location algorithm [78] and
Voronoi diagram space partitioning [79], so as to optimize nearest neighbor search
time performance, as thoroughly explained in Appendix A.
The last step encompasses simulation of leaf growth, Fig. 2.8g,h. Although other
types of growth could have been selected, we have chosen to simulate uniform
isotropic growth for all geometries, due to its straightforward implementation. Hence,
leaf blade shape is mantained while all vein and auxin node positions are updated.
The repetition of this set of instructions, see Fig. 2.8i,j, produces the sought open
venation patterns. As the loop advances further, the venation becomes more de-
tailed [44].
After the venation pattern is generated, vein widths were assigned to each vein
node of the arborescence data structure [44]. This was done recursively, using a
traversal algorithm. Due to this we had to assign the same minimum width to
every venation free ends. The width choice is arbitrary and is performed to simplify
computations. Once the algorithm assigns a minimum width to the free end veins, it
computes the widths of parent vein nodes as the out-tree is traversed. This process
is concluded when the primary vein at the base of the leaf is reached, that is, the
arborescence root. The only constraint imposed on the vein widths is, naturally,
Murray’s law [44, 73], which establishes the following relation between the radii of
the parent vein and its children whenever a ramification occurs:

rnp = rnc1 + rnc2 + rnc3 + . . . =
N∑
i

rnci (2.2)

where rp is the radius of the parent vein, N is the number of children veins at the
ramification point, rci is child vein radius and n is the Murray’s law exponent [44,52].
Once the relation between the parent and children veins is determined according to
minimum width free end vein criterion and Murray’s law, the algorithm goes through
the tree again from the root to the ends, this time assigning an input diameter
of 2 mm to the root vein and changing the vein node widths accordingly, always
keeping the radius relations between parent and children veins determined in the
first traversal. A minimum vein diameter of 0.25 mm was also enforced, meaning
that whenever a vein width is computed to have a lower value, Murray’s law is
disregarded. This threshold was chosen due to the limited resolution of the 3D
printer at LabM2.
Murray’s law was proposed initially for channels of circular cross section in a famous
1926 article [73]. The relation was obtained by applying the principle of minimiza-
tion of work to the circulatory system of a human being. Two opposing factors play
a role in the energy consumption by the circulatory system of a living organism: the
energy necessary to mantain the blood, a living fluid, proportional to its volume,
and the energy required to overcome the viscous forces that arise in the channels,
which is known to obey Poisseuille’s equation. The exponent n for circular cross

26

2.4 Algorithm for closed venation pattern generation

section case, in Eq. 2.2, was shown to be 3. The vascular system of leaves has been
demonstrated to follow Murray’s law in some cases, when the lower vein orders
are considered. In theory, that shouldn’t necessarily, as the energy necessary to
overcome the viscous forces inside the veins comes from the Sun, an external energy
source. These considerations may be neglected in our case, however, since the source
of energy in the target applications of our work are internal and therefore, in theory,
should obey Murray’s law. This has been discussed in Sec. 2.2. The exact value of
n, however may vary. Hence, as proposed by Runions et al. [44], n is treated as a
parameter of the model. Further considereations on the relevance of Murray’s law
are made in Sec. 2.6.

2.4. Algorithm for closed venation pattern generation

The implemented algorithm for closed venation pattern generation, also proposed
by Runions et al. [44], closely resembles the one for open venation patterns discussed
in Sec. 2.3. The only major different assumption between the two involves the zone
of influence of auxin sources. In the algorithm for open patterns, auxin sites only
influence its nearest neighbor vein site. Comparatively, in the algorithm for closed
patterns, auxin sources may induce more than one vein node simultaneously. Such
situations are hypothesized to occur in nature whenever the induced veins are close
to the auxin source, but relatively far from each other [44]. In order to simulate this
process, the model employs the relative neighborhood criterion, see Eq. 2.3 [44,80].
As a result, vein loops (anastomoses) may form when several vein sites are caught
in an auxin source zone of influence.

2.4.1. Relative neighborhood graphs

Briefly, given a set S of points, a point p is a relative neighbor of another point s
(with both p and s ∈ S) if it obeys the following mathematical definition:

∀u ∈ S with u 6= p, s d(p, s) < max(d(p, u), d(s, u)) (2.3)

where d denotes the Euclidian distance. Intuitively, points are ’relatively close’ if
they are at least as close to each other as they are to any other point in the set [80].
A visual representation that follows from the definition of relative neighborhood
of a point s is presented in Fig. 2.9. Lastly, the graph of any set of points S,
constructed using the relative neighborhood criterion (Eq. 2.3), is called the relative
neighborhood graph (RNG) of that set.
Notice that the definition given in Eq. 2.3 offers a straighforward method for building
RNGs. In practice, all that need to be done would be verifying whether each pair

27

Chapter 2 Generating interdigitated leaf-like channel network patterns

b

a

Figure 2.9.: A visual representation of the relative neighborhood criterion. In the
figure, the relative neighborhood of point b with respect to point a is being decided.
In fact, a fits the relative neighborhood criterion, since there are no points in the
yellow region. In case there were, that would automatically exclude a from b’s
relative neighborhood. Additionally, point a excludes all points in the blue region
from b’s relative neighborhood.

of points in the set S obeys Eq. 2.3. Naturally, for each pair checked, this ’naive’
method demands that every other point in the set S (excluding the pair points)
be assessed. Considering the previous remarks, we proceed to analyze the time
complexity of this RNG construction approach as the number n of points in the set
S increases. That is done to determine the feasibility of this method. First, observe
that the number of pairs in a set with n points is 1

2(n2 − n), which translates to
O(n2) in the big O notation 1. Moreover, the inspection of n − 2 points is needed
in order to evaluate whether the points of each pair are relative neighbors or not.
Taking that into account, we find that the time complexity of this approach goes
with O(n3) [44], since the total number of tests executed to generate the RNG is
1
2(n2 − n)(n− 2). In other words, that is a very time-consuming algorithm.

Aiming to improve the performance of relative neighborhood assessment, one can
resort to a property of RNGs: the relative neighborhood graph of any set of points S
is a subset of the Delaunay triangulation of that set [80]. Consequently, all relative
neighbors of a point are also Delaunay neighbors, although the reverse is, in general,
not true. That means that if the Delaunay triangulation of S is known, it is possible
to narrow the search for relative neighbors. Instead of testing every pair in the set, it
is possible to check only the Delaunay neighbors to see whether they fit the relative
neighborhood criterion. Considering this and the fact that there is an upper limit of

1The big O notation is widely employed in the analysis of algorithm efficiency [77]. It captures
the way number of operations grow as n goes to infinity. Multiplying constants are disregarded.
A detailed discussion explaing why and a formal definition of the big O notation can be found
in Drozdek [77].

28

2.4 Algorithm for closed venation pattern generation

at most 6 to the average number of Delaunay neighbors per point2, we observe that
the number of pairs we must verify only increases linearly (6n), i.e., the number
of pairs that must be checked go with O(n), as opposed to the O(n2) quadratic
behavior of the naive approach. Observe, however, that we must be in possession of
the Delaunay triagulation of the set to make use of these attributes. Fortunately,
all Delaunay neighbors can be readily identified from the Voronoi diagram of the set
S, which, in turn, can be generated by employing Fortune’s algorithm in O(n lnn)
time, as discussed in Sec.A.2 [79]. Hence, through this method, originally proposed
by Toussaint [80], we can construct the exact RNG of the set S in O(n2) time, a
substantial improvement on the O(n3) of the straighforward approach previously
considered.

a b

c

b

a

s

d

Figure 2.10.: (a) Relative neighborhood graph, (b) Urquhart graph and (c) De-
launay triangulation of the same set of points. (d) shows why the RNG and the
Urquhart graph are not the same. Point a, which is not a Delaunay neighbor of
neither s nor b, is excluding s from the relative neighborhood of b. This situation,
however, rarely occurs in a set of randomly distributed points across the plane.

The O(n2) performance may be further enhanced by resorting to an approxima-
tion, first proposed by Urquhart [83]. Generally, we must verify every point in S
to determine whether a Delaunay neighbor p of the point s fits the relative neigh-
bor criterion. The approximation suggests that, instead, only the other Delaunay
neighbors of s should be verified. The idea is that those Delaunay neighbors have
a higher chance of excluding p from the relative neighborhood of s, as opposed to
other points of the set S. Consequently, the number of tests that must be per-
formed to contruct the graph is reduced to a finite number that does not grow as n

2This property stems directly from Theorem 1, discussed in Sec.A.4. In order to prove this, we
must recall that Voronoi diagrams and Delaunay triangulations are, in fact, dual graphs [81,82].
It follows from this fact that there is correspondency between edges of a Voronoi diagram and
pairs of Delaunay neighbors. Since the upper limit on the average number of edges per face is 6,
and, consequently, the average number edges per site (f = n), the average number of Delaunay
neighbors per site is also, at most, 6. Naturally, we must take into account that faces share
edges, so we must consider every edge twice to accurately compute these averages.

29

Chapter 2 Generating interdigitated leaf-like channel network patterns

increases. That follows from the property of Delaunay triangulations, which state
that the average number of Delaunay neighbors per point is at most 6. Therefore,
the approximated graphs can be generated in O(n lnn) time, much faster than the
original O(n3) behavior. Finally, it has been demonstrated by Andrade and De
Figueiredo [84] that graphs generated employing this method are, in fact, excellent
approximations to RNGs for random samples, see Fig. 2.10. In addition, Runions et
al. [44] has stated that no striking differences in produced venations appear when
this modification is used. Thus, Urquhart’s algorithm was the preferred method for
encountering the approximate relative neighborhood of the auxin sites, even though
there are methods available in the literature for the construction of exact RNGs
from the Delaunay triangulations of any point set in linear time O(n).

2.4.2. Closed venation pattern algorithm implementation

Provided the aspects discussed in Sec. 2.4.1 are understood, adapting the algorithm
for the open venation generation to the closed venation case becomes straightfor-
ward. The major modification has to do with the algorithm’s response to vein nodes
entering an auxin source’s kill distance kd threshold. Instead of immeadiately re-
moving the auxin node from the leaf blade, a procedure that ultimately produces
open patterns such as the ones from Sec. 2.3, we monitor the evolution of the veins
induced by auxin sources until they either reach the auxin node or leave their zone
of influence. Computationally, that is accomplished by attaching identifiers to all
vein nodes under the influence of the auxin source as soon as the first vein node
is placed within the kill distance kd perimeter around the auxin. Naturally, being
under the influence of an auxin node means being part of its relative neighborhood.
In the subsequent simulation steps, the identifiers are passed on to the children of
the marked vein nodes. The transmission of the identifiers stops when a child either
crosses the kd limit or until it leaves the relative neighborhood of the auxin source.
Lastly, when no vein nodes under influence of the auxin source remain, the node is
finally removed and the induced veins are joined at its last location [44].
The recursive computation of the vein widths in this algorithm start at the vein
nodes corresponding to the free ends of the venation, as in the case for open venation
patterns, or it starts at the nodes where two or more veins were joined together.
As in the algorithm for open patterns, we employed Murray’s law, see Eq. 2.2, to
determine the radii of the ramifying veins.

2.5. Algorithm adjustments for design generation

At this point, we have already presented the most fundamental aspects of the algo-
rithm which generates the final geometries. In this section, we consider the imple-
mentation details of the necessary algorithm adjustments discussed in Sec. 2.2.

30

2.5 Algorithm adjustments for design generation

The main modification we examine is related to the complementary venation con-
struction, see Fig. 2.11, which may be connected to either the inlet or outlet. De-
pending on the degree of reticulation of the closed pattern, creating a non-overlaping
interdigitated is simply not possible. Therefore, the interdigitated geometry was only
generated when the primary pattern is an open venation, since it is crucial to stop
veins of different patterns from crossing each other. The closed venation case is only
considered later on.

Primary venations
Complementary venation

Figure 2.11.: An open three-venation design. There are two primary venations
running in parallel in this arrengement.

It is clear from Sec. 2.3, that a second venation can be generated by placing a second
seed at any location along the border from where the venation will grow. In fact, it
is possible to use this method to generate a design with more than two venations,
such as the three venation system we have formed, see Fig. 2.11. The procedure of
placing an additional seed is also used by Runions et. al. [44] to form venations of
grass leaves, which, in contrast to dicotyledonous venations, consist in a number of
first order veins running in parallel along the blade from the leaf base towards the
appex. However, there are two elements specific to complementary interdigitated
pattern generation.
The first one is that the second seed is only placed after the primary pattern is
formed. That is done in order to avoid venations ’sensing’ each other, an effect that
occurs whenever they are generated simultaneously. In case the seeds are placed
at the onset of the run, both venations quickly expand and define their area of
influence, making it impossible for the other to enter its zone. This has to do with

31

Chapter 2 Generating interdigitated leaf-like channel network patterns

the inner workings of the algorithm for open pattern generation, already discussed
in the previous sections.
The second element stems from the need to avoid venation overlapping. In other
words, in order to generate an effective interdigitated pattern, it is desirable that the
second pattern penetrate the area of influence of the first, without any veins crossing
or becoming too close. We achieve this via a square grid. The cells occupied by
the first pattern and its neighbors are disabled when the second venation grows, see
Fig. 2.12a-d. Aside from this changes, the primary and the interdigitated venation
are formed in the same manner. Patterns generated through this method can be
seen in Fig. 2.13a,b and e. This result showcases the usefulness of the grid. The
square grid, however, has two additional functions.

a b

c d

Figure 2.12.: (a) The same diagonal venation pattern covered by a (b) 15x15 cell,
a (c) 30x30 cell and a (d) 100x100 cell grid. Figure (d) additionally shows cells
that are disabled for interdigitated venation growth, in black, and cells which are
allowed, in white.

Another of its roles is related to auxin source placement. Although the employed
pseudo-random number generator (PRNG) [85] draws numbers from an uniform

32

2.5 Algorithm adjustments for design generation

distribution, the amount of auxin sources is often not large enough to produce the
desired regularity and uniformity of nodes in the plane. Specially when the total
number of nodes is very low, many regions appear where the local auxin density
is much higher or much lower than the average. Hence, the grid is introduced to
provide support in the process, such that the random distribution of auxin nodes
of any given step of the simulation is as uniform and regular as possible. After the
implementation of these changes, the grid cell size δ and auxin source density ρauxin
are the input parameters which allows the user to control the distribution of nodes,
ultimately controlling the final produced pattern, see Fig. 2.12.

a b

c d

e

Figure 2.13.: The five different design categories generated. They are, respectively,
the (a) open diagonal, (b) open centered, (c) closed diagonal, (d) closed centered
and (e) open three-venation setups.

The last remaining grid function to be discussed has to do with the determination
of the fractal dimension of the patterns. As hinted at in Sec. 2.1.1.3, one of the
methods employed in the computation of the box counting fractal dimension relies

33

Chapter 2 Generating interdigitated leaf-like channel network patterns

on square grids. In this method, the fractal is covered with a sequence of grids of
different cell length and the number of cells occupied by it is, then, counted, see
Fig. 2.12. Subsequently, equation Eq. 2.1 can be used to estimate the object’s box
counting fractal dimension. Naturally, the functions associated with square grid
construction are conveniently exploited in this whole process, making it particularly
straighforward. Some of the results are shown in Sec. 2.6.
Finally, we also have generated closed patterns using the algorithm presented in
Sec. 2.4. Again a second venation pattern is generated. In this case, however, the
second venation is not interdigitated. In fact, the first venation and second venation
are generated concomitantly and in a similar fashion. Simultaneous generation is
performed in order to allow both networks to join each other, see Fig. 2.13c,d. To
a certain degree, the closed venation design type resemble the pin-type flow fields,
see Fig. 2.1d, which are commonly found in PEMFCs [28].

2.6. Results

In this section we present the results related to the venation-based geometries. We
have generated a database with 18 different designs. All designs have square borders
with identical area equal to 50 cm2 . In order to make the database more compre-
hensible, we have also divided it two categories: open centered, open diagonal, see
Fig. 2.13a,b. The criterion that separates diagonal from centered patterns is the
position where first order veins intersect the margin. In case the intersection points
are not at the center of square border edges we define the pattern as a diagonal
geometry. In case the opposite occurs, we label it as a centered geometry. The
intersection points in the case of diagonal geometries were introduced very close to
the square boder corners, always in a simmetrical fashion, see Fig. 2.13a. Finally,
the number of generated samples for both the open centered and diagonal categories
was 9. Their quantified properties, combined with the results from CFD, may give
us an idea of whether one venation type, if any, is more efficient at distributing the
reactants.
The implemented algorithms, as discussed in previous sections of this chapter, also
allow the generation three additional types of venation patterns: the closed cen-
tered, closed diagonal and open three-venation designs types, see Fig. 2.13c-e. These
catagories will be analyzed in future work, see Chapter 5.
The geometry properties we have quantified, were already discussed in previous sec-
tions, particularly in Sec. 2.1.3. They have been chosen due to either their impor-
tance in the study of venation patterns or their relevance in the target applications.
The selected properties are the fractal dimension, the vein length per area (VLA),
the bifurcation number and Murray’s law exponent n.
The box counting fractal dimension DB of each separate venation as well as the joint
fractal dimension of every design has been computed using the method discussed in

34

2.6 Results

3

4

5

6

7

8

-3 -2 -1 0 1

DB = 1.04422

Fractal dimension of the complete pattern
Least squares method fit

Fractal dimension of the complete pattern

log(1/δ)

lo
g
(N

(δ
))

a

3

4

5

6

7

8

-3 -2 -1 0 1

DB = 1.04073

Fractal dimension of the complete patternb

Fractal dimension of the complete pattern
Least squares method fit

log(1/δ)

lo
g
(N

(δ
))

Figure 2.14.: Example plots employed in the determination of the box counting
fractal dimension of our geometries. (a) was constructed from the complete diago-
nal design, see Fig. 2.13a, whereas (b) correspond to a complete centered arrenge-
ment, see Fig. 2.13b. Both plots stem from the application of the box counting
method to the whole pattern.

Sec. 2.1.1.3 and Sec. 2.5. The plots used to compute DB for designs a and b from
Fig. 2.13 are shown in Fig. 2.14. The initial section of the plots were not used to
determine the angular coefficients. Boxplots with the estimated ranges for the box
counting fractal dimension based on design type are shown in Fig. 2.16.
In addition to the box counting dimension DB, the VLAs of the patterns have also
been computed. The venation volume, on the other hand, is not considered as
property of our database, although it has been computed for every geometry after
the 3D venation models of our designs were constructed and rendered. The reason
is that we have purposedly chosen to keep the volume constant for all venations,
primary and complementary. All volumes were forced to be equal to 150± 0.5 mm3.
This was achieved by modifying the Murray’s law exponent n, a parameter which
affects the volume and the surface area of the venations, but not their total length.
The justification for this is that we wanted to compare the different geometries, by
performing an statistical analysis on the instances of the database. A more detailed
discussion validating this choice will be offered in Chapter 3.
The venation volume was estimated by the internal routines of the Netfabb program,
a free, proprietary mesh editing software. The measurements could only be perfomed
after the geometries were rendered with the OpenSCAD program, as discussed in
Sec. 3.1. Additionally, the geometries had to be fixed before the Netfabb routines
were used, since they require manifold geometries as input. The 3D geometry treat-
ment was done according to the procedure presented in Sec. 3.2. Unfortunately,
there is no way of estimating the total volume before rendering. Hence, n had to
be adjusted by trial and error. Due to the time it took to render each geometry
model, as well as the additional effort to fix them, we had to restrict ourselves to the
current sample number. Were it not for this bottleneck, the database would contain
more geometries. A thorough explanation about the construction and rendering of

35

Chapter 2 Generating interdigitated leaf-like channel network patterns

Figure 2.15.: Vein length per area (VLA) for two different designs. The VLA
values shown take into all account both the primary and interdigitated venation.

the 3D models, as well as the procedure for estimating their volumes will be given
in Sec. 3.2.
As for the VLA, we were able to determine it for each venation separately by in-
cluding a simple recursive traversal function in our algorithm. Unfortunately, the
final VLA is actually a little less than this estimate. There are two reasons behind
this. The first is that minor veins are often enclosed by lower order veins after the
rendering phase, specially when when the spacing between them is less than the
vein diameters. This results in a lower VLA. Additionally, problematic rendering
also requires some minor veins to be deleted, again resulting in a lower VLA. While
the latter error source is much easier to estimate, since deleted vein’s lengths are
known, the former is not as easy to assess. Hence, a large error margin must be
considered for each of these measurements.
We have also estimated the VLA based on vein order criterion for each venation.
We have done this, because the separate study of VLA of different orders may reveal
’hidden’ correlations [50] between these properties and dye concentration distribu-
tion efficacy later on, as discussed in Sec. 2.1.1.1. VLA mean values of centered and
diagonal designs Fig. 2.13 have been determined and are shown in Fig. 2.15 based
on vein order. We summarize the VLA values of the different designs and venation
types in Fig. 2.17.
Ramification numbers were also computed for each venation with the values ranging

36

2.6 Results

design

Figure 2.16.: Boxplots displaying the variation of fractal dimension per design
type, right, and venation type, left.

Figure 2.17.: Boxplots displaying the variation of VLA per design type, right, and
venation type, left.

from about ten to over a thousand, see Fig. 2.18. The same type of recursive function
used in the VLA computation was employed to determine the ramification number.
Again, errors appeared due to the same reasons already discussed when the VLA
measurements were considered.
The last thing we consider is the impact of a varying Murray’s law exponent n. As
already discussed, when we vary n for a given geometry, the final volume and surface
area of the 3D model change, although the unidimensional traits of the design remain
the same, see Fig. 2.19. Additionally, n for a given venation was chosen so that the
volume of the venation would be as close to a fixed constant value of 150 mm3 as
possible. Since the choice of n varied from venation to venation, we also considered
it as a discriminating property of the venations in our database. The impact of the
n value choice will be analyzed in chapter Chapter 3, along with the results from
CFD.

37

Chapter 2 Generating interdigitated leaf-like channel network patterns

Prim. diagonalPrim. centered Comp. diagonalComp. centered

Figure 2.18.: Boxplots displaying the variation of bifurcation number per primary
venation type, right, and complementary venation type, left.

Figure 2.19.: The same geometry with varying Murray’s law exponent n. Notice
that the higher the value of n, the closer the end veins are to the midvein in
diameter. Remember that Murray’s law dictates the relation between parent and
children veins at ramification points. The actual thickness of the venations has to
do with the deliberate choice of diameter for the vein segment at the base of the
midvein, a parameter specified by the user, which is the same for the three cases.

38

3. Solving the fluid flow problem
through the generated geometries

After having constructed the venation-based designs presented in Chapter 2, we
continue on our quest to assess whether the nature-inspired networks have a positive
impact on reactant distribution across the targets. In this chapter, we focus on
solving numerically the flow through the µ-FGPVs problems, which involve only a
single phase, the dye solution [24]. Solving this problem was a great opportunity to
learn many CFD techniques.
Next, we describe the most important steps taken to solve problem of fluid flow
through the nature-inspired geometries employing CFD. Later, the results from
the numerical methods are displayed in a concise fashion, see Sec. 3.4. All results
were gathered in a database and an statistical analysis was performed. Finally, the
highlights of the analysis are presented in Sec. 3.5 along with a discussion.

3.1. 3D venation model construction

The first step of the CFD procedure began with the construction of the geometries,
see Chapter 2. There, we have shown how an out-tree data structure was generated
as the output of the implemented algorithm, see Sec. 2.3. We have described how,
in addition to the pointers to children vein nodes, each node stores its coordinates
and the diameter of the vein segment spanning from the it to its parent, see Sec. 2.3.
The data contained in the out-tree then allowed us to generate the 2D sketches
of the channel arquitecture such as the one presented in Fig. 2.13. These sketches
were constructed using OpenGL [86] and were exported in the Enhanced PostScript
format using the GL2PS library [87]. In order to create the 3D models shown in
Fig. 2.19, however, we have employed a CAD software. Next, we specify some of the
basics of the program used.
The first aspect we had to consider is that the all of the channel designs gener-
ated by the algorithm were complex, meaning that manually constructing the 3D
models from scratch using convetional CAD programs would be an extremely time
consuming and inefficient process. As a result, most CAD programs, which were
initially considered as an option, were ruled out. That is because they only offered

39

Chapter 3 Solving the fluid flow problem through the generated geometries

the option of manually constructing the designs. Nevertheless, one of the options,
OpenSCAD, provided a mechanism for constructing and rendering the 3D models
via a script file [88]. That is the reason why it was chosen. In contrast with the inter-
active modelers, OpenSCAD has its own descriptive language, which is interpreted
by the software to render the models. Among other things, this feature greatly
supported the automation of the whole process, since the OpenSCAD scripts could
be immediately produced from our C++ venation program.

Figure 3.1.: Solid combinations used in the construction of the 3D venation models.
The figure shows the problems encountered in the first attempts (a,b) and how
the issues were solved (c,d).

The automation strategy, however, still presented a few challenges before it was suc-
cessfuly implemented. The obstacles mainly revolved around the fabrication of 3D
venation models with smooth surfaces and no sudden discontinuities from the solid
building block collection available [88]. For instance, in our first attempts, we have
tried using a simple combination of rotated and translated cylinders to generate the
geometry. Many discontinuities appeared specially at the points of intersection of
two different veins segments, see Fig. 3.1a. Furthermore, when ramification points
were examined, we also observed a diameter discontinuity from a vein segment to the
next in the same vein, see Fig. 3.1b. The inaccuracies similar to the one of Fig. 3.1b
were immediatelly solved by employing conical frustums instead of cylinders. The
radii of both extremes were then specified using the radius from the vein segment
node and the radius from its parent node. Through this modification, smoother
results were obtained, see Fig. 3.1d. Likewise, in order to fix the innacuracies of
the type seen in Fig. 3.1a, we resorted to another conical frustum solid to fill the
gap. Only the solid part which correctly fills the region is selected, see Fig. 3.1c.
Although the final result still presents discontinuities, the overall product is con-
siderably smoother. In particular, the cylinder base walls, which would block the
flow, resulting in stagnant regions, are no longer present. Consequently, simulation
of fluid flow becomes possible.

Other options exist within OpenSCAD to generate even smoother results [88]. Nev-
ertheless, the functions used in the process take a substantially longer time to ren-

40

3.1 3D venation model construction

der. Due to the great complexity of some of the designs, the rendering time went
from a couple of hours to more than three weeks when the functions which pro-
duce smoother results were applied. Another simplification analogous to the one
just described goes along these lines: by changing a parameter, the user is able to
choose the number of faces used to generate the solid [88]. Hence, the surfaces of
the frustums could be smoothed further. Again, when the number of faces becomes
to high, rendering the geometry unfortunately becomes unfeasible. As a result, we
preferred simplicity, practicity and time efficiency over smoother surfaces.

Simple interdigitated models

Aside from the 3D venation models we are considering, we have also generated two
additional simple interdigitated 3D models during this construction phase. One of
the models was based on an interdigitated geometry, see Fig. 2.1c. The other one
was inspired on the geometry proposed in the µ-FGPVs article [24], see Fig. 3.2.
Both models were constructed manually, but since they are relatively simple, the
generation process was straightforward. They were created with the intent of being
compared later to the other venation models. That is because they offer the nec-
essary contrast for a fair assessment of the performance of the generated venation
models.

Figure 3.2.: Simple geometry inspired on the design presented in the µ-FGPVs
article [24].

Final remarks

Here, we consider the last aspects of the 3D venation-based models before proceeding
to the next phase of the flow problem solving process. Instead of rendering the vein
channels as solids, we subtracted the channels from a solid square slab, see Fig. 3.3.
As a result, the venation patterns become holes in the solid 3D rectangular prism.

41

Chapter 3 Solving the fluid flow problem through the generated geometries

The importance of these choices will become clear in the next sections. For now,
suffices to say that the 3D slab represent the porous media while the hollow channels
are where the fluid is injected and collected. The channels are where most of the
advective transport occurs. Finally, the slab dimensions for all models were set as
equal. Width and depth were defined as 50 mm and height as 3 mm exactly. Once
the models were rendered, they were exported in the .STL (STereoLithography)
file format. This format is accepted as input by the majority of the CAD, mesh
editor and 3D printing programs. Note that the surfaces described by the .STL files
are triangulated and, consequently, only triangle faces and the coordinates of their
vertices are specified. At last, we highlight that .STL files describe only the surface
of the 3D models and the volumes.

Figure 3.3.: Final 3D slab models constructed with OpenSCAD. The .STL files
are being visualized with a mesh editing tool, MeshLab. In (a), the faces are
transparent and only the edges are represented, while in (b) the faces are shown.
The venation channels were subtracted from the slab and, therefore, are hollow.

3.2. Mesh construction

In this section, we finally enter the domain of the CFD procedure: by performing
pre-processing, a step which mainly deals with mesh generation [32,89]. Indeed, the
actual first step when solving the equations which govern fluid flow computationally
is mesh generation. The mesh is simply a representation of the geometric domain
of a system by a finite set of nodes [32, 33, 90]. Variable values, e.g., pressure and
velocity field values, are stored and computed at those nodes, as opposed to the
continuum space of a system. Thus, this approach allows for the discretization of
the governing equations and ultimately, makes solving the flow problems numerically
possible. After the solution is obtained for all nodes of the mesh, the values at any
other point can be inferred via interpolation [32, 91]. Note that mesh construction
cannot be done carelessly, as the mesh considerably impacts the solution [32]. In
fact, not only the mesh, but many other aspects may affect the results [32, 33].

42

3.2 Mesh construction

Hence, estimation of errors and result validation are an essential part of the CFD
process [32]. A thorough discussion of meshes, the CFD approach in general and
result validation can be found in the many sections of Appendix B, along with an
overview of the CFD software chosen to tackle our problems, OpenFOAM. Next, in
this section, we discuss key points regarding mesh construction.

3.2.1. Geometry preparation

The first obstacle encountered when trying to generate meshes for our geometries
was the sheer complexity of the designs. Again, as in the case of 3D model ren-
dering, handling simple geometries manually is straighforward, but this approach
rapidly becomes unfeasible when the complexity increases. In particular, Open-
FOAM, offers an utility called blockMesh, which allows the construction of simple
meshes, such as slabs, or cubes, for instance [89]. The constructing mechanism is
cumbersome, however, as it is done by specifying manually some parameters in a
text file [89]. Although possible in theory, generating the mesh of our designs using
this method would be long and tedious. Fortunately, OpenFOAM provides another
utility, snappyHexMesh, which generates meshes automatically from .STL or .OBJ
files of a geometry [89]. As a result, construction of the meshes for our designs is
more easily achieved. There are, in practice, some points we had to address, before
successfully creating the meshes for our complex geometries with this method.

The main challenge before actually using the snappyHexMesh utility concerns the
quality of the .STL file containing the geometry. Although OpenSCAD enables
the automated generation of the 3D models of our designs, more often than not, it
produces .STL files with an overabundance faces, many of which are totally pointless.
Many faces have either virtually zero area or simply do not represent any important
feature of the geometry. Moreover, a vast number of defects such as holes in the
surface, intersecting faces and other problems which cause the geometry to be non-
manifold are frequently present. This has to do with both the many details of the
design and with the approach used in the construction of the 3D models, which
was discussed in Sec. 3.1. These issues are usually harmless when the files are used
for the purpose of 3D printing. On the other hand, when they are used as input
to the snappyHexMesh utility without any pre-processing the outcome is disastrous
as the output mesh is completely unusable due to the great amount imperfections.
Therefore, fixing the .STL files before mesh generation is paramount.

To that end, two different programs were successfully employed: MeshLab [92], a
free, open-source software and Autodesk MeshMixer [93], a free, proprietary soft-
ware, see Tab. 3.1. MeshLab was chosen due to some of its filters, that when applied
to the files, quickly eliminate the vast majority of the geometry problems. In partic-
ular, the quadric edge collapse decimation and merge close vertices filters proved to
be extremely useful in drastically reducing the number of vertices, edges and faces
of the models without any noticeable loss in details and primary surface features.

43

Chapter 3 Solving the fluid flow problem through the generated geometries

Moreover, it is possible to create scripts and run them from the terminal to fix the
files, further automating the process. MeshMixer’s tools, on the other hand, excel
at manual refinement of the surfaces, making fine adjustments possible. Both tools
played a major role in fixing the inacurracies of the .STL geometries.

Table 3.1.: Table summarizing the mesh editing tools employed in this work along
with their usage.

Mesh editing tool Software Usage
MeshLab free, open-source Coarse refinement of .STL files

Autodesk MeshMixer free, proprietary Fine refinement of .STL files
Netfabb free, proprietary Determine venation volumes

Volume constraint

Another aspect worth mentioning is that we have chosen to maintain the volume of
all the generated venations fixed and as close as possible to the 150 mm3 value, as
pointed out in Sec. 2.6. The value, to a certain extent, is arbitrary, but the choice to
fix the volume of the channels for all venations, both primary and complementary,
was not. This choice stems from the need to compare the geometries later on, when
performing the statistical analysis. For some of the boundary conditions selected,
we would not know whether a difference observed in the injected volume would be
due to properties of the venations, e.g., bifurcation number, venation density, or
due to the variation of total volume across the venations. Even in the case of a
constant injection rate, we again would not know if the determined pressure profile
would be due to differences in total volume of the networks. Hence, we placed
the fixed volume constraint on the venations, assuming that differences observed
in performance were consequences of differences in the geometric and topological
properties of the channel networks, and not a result of arbitrary disparities in the
total volume among them.

The decision to keep the total volume property fixed forced us to vary the Murray’s
law exponent n for both the primary and complementary venations until their vol-
umes matched the 150 mm3 value to a narrow margin of 0.5 mm3. Unfortunately,
estimating the final volume of the channel networks with enough accuracy during
the venation generation phase would be a formidable undertaking. Many details
which only become clear after rendering the 3D models are vary hard to predict.
Truth be told, even after rendering and repairing of the .STL files, implementing
an algorithm which determines the volume of the closed surfaces is no easy task.
Luckily, another free mesh editing proprietary software, Netfabb [94], is distributed
with internal functions which estimate the volume and surface area of the .STL files
with precision much greater than the required. Hence, through trial and error, we
modified n until the venation volumes fell into the desired range. This was a time

44

3.2 Mesh construction

consuming undertaking, but a very important step towards the generation of our
database. Lastly, we state that the simple interdigitated models were also forced to
satisfy this constraint.

Inlet and outlet constraint

Another constraint we have placed on the venation geometries as well as simple
interdigitated models was a fixed diameter condition for the inlet and outlet of the
systems. The inlet and outlet are, respectively, the entrance and exit channels,
meaning they are the only places where fluid enters and leaves the system. In the
case of our geometries they can be ther vein at the base of either the primary or
complementary venation. The diameter we have chosen for them was exactly 2 mm.
Again, the reasoning behind this choice was to avoid the results and the statistical
analysis to be affected by non-geometrical properties.

Final step of .STL file pre-processing

After we certified ourselves that the geometries met the constraints above, we pro-
ceeded to the step of fine manual repairing. In this phase, all defects of the .STL files
were fixed with the Autodesk MeshMixer software. Later, after the manifold geome-
tries were produced, we used MeshLab once more to further modify the files. We
manipulated each geometry file to create .STL files for all three different regions of
the system. Different regions are governed by different equations. For instance, the
original geometry from Fig. 3.3 will represents the porous region, meaning the flow
inside them will obey Eq. B.20. Files containing the venation models, see Fig. 3.4,
where most of the advective transport occurs, are non-porous. Therefore, inside
the venation channels, Eq. B.7 must be obeyed. The importace of creating an .STL
file for each domain is that we would not be able assign the appropriate governing
equations to each region during the CFD solving process otherwise. This is due to
the way snappyHexMesh works. Fortunately, separating the regions into different
files in this fashion greatly simplifies mesh generation down the road.
Finally, a last file containing the whole outer surface, which is literally a slab with
no holes, is also produced, see Fig. 3.5. This last file is created with special care.
The faces forming this slab are split into different groups, the patches. Defining
the patches is vital since they facilitate the assignment of boundary conditions to
different regions later on. Normally, the patches specified in this last file are the
outlet, inlet, upper wall, bottom wall and side walls.
We stress that creating the venation files from the original file, as opposed to gen-
erating them from scratch, was crucial due to two reasons. The first one is because
it saved us rendering time. The second, even more important aspect is that the
venation faces from both the original and venation files would overlap. Were it not
for this, snappyHexMesh would not be successful in defining a glitch-free boundary

45

Chapter 3 Solving the fluid flow problem through the generated geometries

Figure 3.4.: Representation of both the primary and complementary venation.
Two files, one containing each venation, were merged to produce this image.

Figure 3.5.: Representation of the last slab file generated. The file is divided in 5
patches which are depicted in the figure.

between the channels and the porous medium. Needless to say that any attempt to
solve problem the flow using problematic mesh would pointless.
The outer boundary file was also created from the original file, except for the inlet
and outlet patches, which were naturally obtained from the venation files. The
reasons for creating the files in this fashion were the same. One last thing worth
mentioning is that we used a script to label each patch accordingly. This could
be done because it is possible to name each patch, when the .STL geometries files
are saved in the ASCII format. Naturally, it is possible for a single file to contain
more than one patch. In particular, this was the case for the slab files, whichis the
product of a file merging process. It is possible to see that all outer patches were
combined into this single file, see Fig. 3.5.
Lastly, before actual mesh generation, we rescaled the coordinates of all .STL input

46

3.2 Mesh construction

files. That is paramount since in OpenSCAD models are constructed in millimeter
units, whereas OpenFOAM employs meter units [89]. We successfully used surface-
TransportPoints, another utility provided by the OpenFOAM toolkit, to accomplish
the coordinate rescaling [89]. Moreover, we used the surfaceCheck tool, an utility
which checks the validity of the mesh, to browse for problematic faces [89]. When
not a even a single bad face was encountered, the .STL files were finally ready for
the mesh generation phase.

3.2.2. SnappyHexMesh

In this last step, we conclude the mesh generation process. This was accomplished
using snappyHexMesh, an utility offered by OpenFOAM to construct meshes from
.STL files in an automated fashion [89, 95]. This capability was so critical, that all
of the processing through which the .STL files underwent was so that we could use
this tool and obtain meshes that met the most important quality criteria.

The actual steps for mesh generation with snappyHexMesh are the following: cre-
ation of a background mesh using the blockMesh utility, extraction of the edgeMesh
from each geometry file using the surfaceFeatureExtract utility and mesh generation
with snappyHexMesh [89]. The parameters used by the other utilities, blockMesh
and surfaceFeatureExtract, must be specified in their respective dictionary files,
blockMeshDict and surfaceFeatureExtractDict, as discussed in Sec. B.1.2. A discus-
sion on the purpose of both utilities, as well as their usage, are out of the scope of
this text, but an in-depth explanation of why using them is important can be found
in the OpenFOAM user guide [89]. Once these steps were taken, snappyHexMesh
was finally applied.

Next, we briefly discuss the stages of the mesh construction process using snappy-
HexMesh, which can be divided into three parts [89]. The control parameters for
each stage must be specified in their corresponding subdictionaries present in the
snappyHexMeshDict dictionary file. Each stage can be set to on or off by modifying
a boolean parameter at the beginning of the dictionary file. The first stage, the
castellatedMesh phase, covers the generation of a very crude mesh, which serves a
steppingstone to final mesh construction. The produced mesh is orthogonal and has
a jagged aspect due to the construction process [89]. The product can be further
refined in the next steps. The second stage, the snapping phase, has to do with
vertex displacement at the mesh surface so that the resulting mesh resembles the
input geometry as much as possible [89]. If this phase is successfully executed, it
eliminates the jagged aspect. The mesh produced in this step is already fit for usage
in our case. The additional stage concerns the addition of new layers at the surface
to further smooth out and refine the grid close to the surface [89]. Additional infor-
mation on the three steps and the parameters specified in the snappyHexMeshDict
file can be found in the OpenFOAM user manual [89]. Here, we only stress that it is
paramount to specify each domain of the mesh, the venations and the porous region,

47

Chapter 3 Solving the fluid flow problem through the generated geometries

under the refinementSurfaces keyword during the castellatedMesh stage. We specify
the regions according to the patch names they were given earlier. In particular, it
is critical to specify the mode inside on the cellZoneInside keyword for each region,
except the outer boundary patch. This has to be done, otherwise snappyHexMesh
will not mesh all three regions.

Figure 3.6.: Mesh generated with the snappyHexMesh utility. This mesh was vi-
sualized using the paraFoam utility.

Once the meshing process is complete, the final mesh can be checked using paraFoam,
a post-processing tool that comes along with OpenFOAM toolkit [89], see Fig. 3.6.
With the mesh created, we proceed to the second step of the CFD procedure, the
solving phase [32,89].

3.3. Solving the fluid flow problem

In this section, with a valid mesh finally at our disposal, we were able to run the
OpenFOAM solver application for transient problems, pimpleFoam, and determine
the flow through the system [89]. The reason why pimpleFoam was chosen was be-
cause it uses the PIMPLE algorithm, which combines traits from both the SIMPLE
and PISO algorithms implemented in OpenFOAM [32, 33, 89]. SIMPLE and PISO
are highly popular algorithms for solving the velocity-pressure coupled equations
and are available in most CFD packages [32, 33]. In Appendix B, a thorough ex-
planation of these algorithms and many other aspects regarding CFD and the finite

48

3.3 Solving the fluid flow problem

volume scheme is provided. The discussion is guided towards making the fundamen-
tal features of the PIMPLE algorithm comprehensible by the end of the chapter, in
Sec. B.7.3.

We stress here that our goal was to determine the reactant concentration field φ
profile after a time period. In principle, the velocity and pressure fields could vary
for quite some time before reaching the steady state. In addition, they could possibly
not even reach the steady regime during the selected duration. Naturally, that would
influence the φ profile, as the tranport of the scalar field does depend on the velocity,
see Eq. B.27 [31–33, 91]. Hence, we ended up using pimpleFoam, a transient solver
[89]. We learned, however, that the flow very quickly reaches the steady regime,
as will be shown in Sec. 3.4. Hence, the SIMPLE algorithm, which is implemented
to solve steady problems in OpenFOAM, could have been applied to our case [89].
However, we did not know that beforehand. Moreover, there were no benefits to
switching to SIMPLE, as the PIMPLE algorithm offers all features SIMPLE does,
including the possibility to employ under-relaxation [96], see Sec. B.6.7. Therefore,
we kept using pimpleFoam to solve the pressure-velocity coupled equations and the
scalarTransport solver to solve the general transport equation for φ, see Sec. B.3.
The instructions for the scalarTransport solver were introduced at the end of the
controlDict file, under the system folder of the case. The solving order is clear, first
the pressure-velocity coupled equations were solved and then the transport of the
scalar φ was calculated at each time step [33]. This is done because the coupling
is one-way. Next, we discuss important aspects of the flow problems, including the
boundary conditions and the input parameters to the solver.

3.3.1. Porous Medium region inclusion

Here we discuss how the inclusion of the porous region is performed. In OpenFOAM
the porous properties of a region are simulated by adding a source term to the
momentum equations, see Sec. B.4. That is accomplished by including a fvOptions
dictionary in the system folder of the case, with a porosity subdictionary in it. The
most important property that must be specified in our case is the tensor d, see
Sec. B.4. For a homogeneous porous medium, such as the media found in this work,
all entries of d are equal and the tensor acts as a scalar. In this case, d = 1

k
, where k

is the permeability. Thus, we see that the source term is, in fact, the Darcy term for
porous media. Additional details of how the addition of this source term translates
into the well-known governing equations of porous media can be found in Sec. B.4.

Finally, in the channel regions of the system, the flow is governed by the incom-
pressible Navier-Stokes equations, see Eq. B.7. Moreover, the mass conservation
restraint, given by the continuity equation for incompressible fluids, see Eq. B.6, is
also satisfied in both the porous media and the channels. Naturally, all body forces
were neglected, meaning the action of gravity on the fluid CVs ρg was disregarded.

49

Chapter 3 Solving the fluid flow problem through the generated geometries

3.3.2. Input parameters

The fluid and porous properties specified as input for the solver were the kinematic
viscosity of water ν, set as 1×10−6 m2/s, the effective diffusion coefficient for the agar
hydrogels 5× 10−10 m2/s and the permeability of the medium, set to 1.77× 10−11 m2

[18, 24]. As for the time step length, it was set to 0.2 s for all models, a feat
only possible due to the use of pimpleFOAM [96], given the considerable step size.
Moreover, we defined the initial and ending times to 0 and 3 s respectively. In
this short time span no significant changes in the velocity nor pressure profiles were
observed. Later, in order to speed up the solution for the concentration field, we
have used a version of the pimpleFOAM solver modified to copy the steady solution
for the pressure and velocity fields to the next time step and then solve the transport
problem for φ. In this manner, we were able to determine the evolution of the dye
profile for another 3600 s in under 10 min of processing. Finally, we set a threshold
value of 5 × 10−4 for the pressure and velocity residuals at the end of each inner
iteration. The threshold for the residuals at the end of the time step was set to
1 × 10−6 for the pressure and 1 × 10−5 for the velocity, meaning the solutions at a
time step would only be accepted when the residual values went below these number,
refer to Sec. B.6.6 [32, 96]. We highlight that the residuals are all normalized so as
to make the analysis problem independent [89].

3.3.3. Boundary conditions

The chosen boundary conditions (BCs) for the velocity field u and the pressure field
p are depicted in Fig. 3.7. They follow from our discussion in Sec. 1.3, noting that
the flow regime of our problem is laminar. We set a no-slip BC for the velocity field,
that is, u = 0, since the patches are fixed, and a zero gradient BC for the pressure,
∇p = 0, at the upper, bottom and side walls of all the models. Moreover, we have
chosen to solve the flow problem using two different groups of BCs for the inlet of
each model. The first BC set was a constant volumetric flow rate Q of 10 µl/min
and a fixed pressure at the oulet [24]. The second group of BCs chosen was a fixed
pressure at both the inlet and oulet of the system, with a pressure difference ∆p
of 0.02 Pa. This value for ∆p was chosen based on the solutions with constant Q.
Finally, the BCs for φ at the walls were all set to zero gradient and at the inlet we
have chosen a contant concentration value of 5 mol/L. Naturally, the flux in and
out is conserved in all cases.

3.4. Results

In this section, we present the most important results obtained from the CFD nu-
merical solutions. We have also performed a statistical analysis with these results,
which will be shown in this chapter later along with a brief discussion.

50

3.4 Results

Figure 3.7.: Boundary conditions for u and p at the different surface patches of
the mesh.

Histogram of volume of primary venation

Volume m³

N
u
m

b
e
r

o
f
v
e
n
a
ti
o
n
s

1.460e−07 1.470e−07 1.480e−07 1.490e−07

0
2

4
6

8

Histogram of volume of complementary venation

Volume m³

N
u
m

b
e
r

o
f
v
e
n
a
ti
o
n
s

1.430e−07 1.440e−07 1.450e−07 1.460e−07

0
2

4
6

8

Figure 3.8.: Histograms of primary and complementary venation volumes. The
mean mesh volume values of the primary and complementary venations are 147.5
and 144.5 mm3 respectively.

We begin highlighting that the number of cells in most meshes of this study was
in the 850000-1000000 range. At first, this mesh resolution was chosen due to it
being the lowest resolution which preserved the main geometrical features of the
models. Moreover, hardware limitations also prevented us from further refining the
mesh enough to perform a convergence analysis. We were able, however, to refine
the mesh of one of our models, producing an approximately 4000000 cell mesh. A
comparison between the coarse and refined mesh is shown in Tab. 3.2. Although
the difference in percentage between the mean solutions values for p, ux and uy are
acceptable, the difference in percentage for uz is still very large. Even considering
the fact that the magnitude of uz is very small, about 4-5 orders of magnitude lower
than the other components due to the symmetry of the problem, further refinement
of the mesh is urgent. Ideally, a separate convergence study for each of the models
is required to validate the results [32]. We will further refine the mesh and perform

51

Chapter 3 Solving the fluid flow problem through the generated geometries

the appropriate convergence analysis in future work. That will be possible since,
recently, a workstation has been purchased by our group, see Chapter 5.

Table 3.2.: Comparison between solutions in a coarse and a refined mesh for the
same geometry. The differences between the solutions are not negligible.

mesh cells p ux uy uz

coarse 946796 8.61E-010 9.42E-012 1.06E-011 -3.67E-016
refined 3820824 8.61E-010 9.38E-012 1.05E-011 -5.05E-016

difference 75.22% 0.0084% 0.44% 0.34% -27.5%

1e-05

0.0001

0.001

0.01

0.1

1

0 0.5 1 1.5 2 2.5 3

R
e

si
du

al
s

pr
io

r
to

 fi
rs

t i
nn

er
 it

er
a

tio
n

Evolution of residuals p
Ux
Uy
Uz

Iterations

1e-05

0.0001

0.001

0.01

0.1

1

0 500 1000 1500 2000 2500 3000

P
re

s
s
u

re
 r

e
s
id

u
a

l

Iteration

Evolution of residual for pressure

p

Figure 3.9.: Residuals prior to the first inner iteration vs. time, left, and all resid-
uals prior to every inner iteration vs. the iteration step.

Residuals that stem from the use of iterative solvers, see Sec. B.6.6, can offer an
idea about the magnitude of the iteration errors [32]. Ferziger states that when the
residual norms fall by a given order of magnitude, it is likely that the iteration error
falls by a comparable amount [32]. Iterative solvers in OpenFOAM yield normalized
residual values during the solving process. We display the output residuals prior to
the first inner iteration at a time step for p, ux, uy and uz, see Fig. 3.9. The pressure
field requires a much greater number of iterations before the threshold value criteria
is satisfied. Thus, we showcase all pressure residuals prior to every inner iteration for
p, see Fig. 3.9. The periodic nature of the pressure residual graph is due to the use
of the PIMPLE algorithm [96], see Sec. B.7.3. Each cycle correspond to a time step.
Initial residual values for the ux and uy components are acceptable, below 10−4. The
magnitude of the p and uz residuals, however, are still far from ideal, being above
10−3, see Fig. 3.9. In particular, the value for the initial pressure residuals are in the
10−2 range could be considered high. Nonetheless, the residuals remained stable and
did not grow. Moreover, analysis of the continuity errors have shown values in the
10−10 to 10−11 order range, near the 10−12 reference used by many as the machine
epsilon. Hence, we took the results as acceptable. Ideally, however, all residuals
should be below 10−4 for proper convergence.

52

3.4 Results

Figure 3.10.: Velocity and pressure profiles for one of the centered geometries.

Figure 3.11.: Velocity and pressure profiles for one of the diagonal geometries.

Another aspect we have not mentioned earlier is that the channel volumes in .STL
files and in the meshes were not the same. That has to do with the way snappy-
HexMesh generates the mesh. The venation volumes in the meshes were always lower
than the volumes defined for the .STL files. As a rule, complementary venations
exhibited lower volumes than primary venations. Finally, primary and complemen-
tary venations, respectively, had volumes that could be found in a narrow range of
3 mm3. That can be seen in their corresponding histograms, see Fig. 3.8.
We can now display examples of the determined velocity and pressure profiles for
the centered, diagonal and simple models, see Fig. 3.10 and Fig. 3.11 respectively.
The darker the blue/red, the lower/higher the field values are. All of the profiles
shown represent the solution at the z = 0 plane for the constant Q BC at the inlet.
The corresponding concentration profiles for centered and diagonal models after a
time t equal to 3600 s may also also be observed in Fig. 3.12 and Fig. 3.13. Notice
how the highest values of φ lie inside and in the surroundings of the channel pattern
connected to the inlet. That occurs due to very low velocity values inside the porous
medium, where most of the transport has a diffusive nature. The transport inside

53

Chapter 3 Solving the fluid flow problem through the generated geometries

Figure 3.12.: Concentration profile at t = 3600 s for the centered geometries when
the inlet is connected to the primary or the complementary venation.

Figure 3.13.: Concentration profile at t = 3600 s for the diagonal geometries when
the inlet is connected to the primary or the complementary venation.

the channels, however, are dominated by advection. Thus, we can observe relatively
high concentration values inside the inlet pattern rather quickly, while we must wait
much longer to see a change in concentration in its immediate surroundings. We
quantified this by tracking the concentration along some lines in the z = 0 plane
which are perpendicular to a channel. Concentration profiles along lines crossing
first and second order veins can be seen in Fig. 3.14. Notice the sharp decay in the
porous region in the immediate surroundings of the channels.

A useful quantity for characterizing the performance of the geometries is the volume
coverage percentage, defined simply as the volume of the system above a threshold
concentration value over the total volume:

Volume coverage = Volume above a concentration threshold in mol/L
Total volume

54

3.4 Results

Midvein
 regionPorous

 region
Porous
 region

Porous
 region

Porous
 region 2º order

 vein
 region

Figure 3.14.: Comparison between the concentration profiles at different times over
a line cross-sectioning a midvein, left, and a second order vein, right. Notice the
typical diffusive behavior in the porous regions, in contrast with the advection in
the vein region. The concentration in the veins already have a high value for the
first measurements.

A similar criterion was used in one of our references, where the area coverage per-
centage was defined [24]. This type of criterion is appealing because it offers some
information about the distribution profile of the dye. In case most of the dye is
confined in a small volume, the geometry will tend to score less than in a scenario
where the dye is well distributed in all directions. Naturally, this will also depend
on the threshold value. In case the threshold chosen is high, geometries with con-
fined dye may in fact have greater coverage than the others. That can be seen in
one of our results shown in Fig. 3.15. When high threshold values are used, the
complementary centered venation model type, which concentrates a great amount
of dye near the inlet, performs much better than the others, see Fig. 3.12. When
lower thresholds are employed, on the other hand, the primary centered venation
models have a better performance. This becomes even more evident we we display
the same results in another fashion, see Fig. 3.16.

The differences between results with the different BCs at the inlet were not negligible.
Although some models did present some a slight better performance when constant
Q at the inlet was used, their overall performance was quite similar, see Fig. 3.17.
On the other hand, when the pressure at the inlet was fixed instead, differences
between the models were striking under the same 3600 s time period, see Fig. 3.18.
In part, that is likely connected to the fact that the amount of dye that entered the
system was equal for all models when the constant Q BC was employed, but not
equal when the constant pressure drop BC was applied. Due to these variations,
we proceeded with an analysis of the models under the constant pressure drop BCs
for a longer time period, see Fig. 3.15. These results further confirmed the observed
perfomance diversity between the different models. Motivated by these results, in
the next section, we will present an analysis of the solutions with the constant

55

Chapter 3 Solving the fluid flow problem through the generated geometries

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
.0

0
.2

0
.4

0
.6

Volume coverage percentage per threshold value

Concentration threshold mol/L

V
o

lu
m

e
 c

o
ve

ra
g

e
 p

e
rc

e
n

ta
g

e

Diagonal

Complementary centered

Primary centered

Simple models

Figure 3.15.: Volume coverage percentage per threshold value graph for the con-
tant pressure BC at the inlet after 7200 s. Diagonal models are represented
in purple, the models where the primary centered venation is the inlet channel
network is depicted in green, and the ones where the complementary centered
venations is connected to the inlet are shown in red. The simpler models are
represented by dashed lines in black. The concentration at the inlet is 5 mol/L.

pressure BC at the inlet.

Finally, we present the variation of the mean velocity components and pressure fields
during the initial 3s period for one of the models, see Fig. 3.19. Notice that the values
remain practically constant during the whole period, except for uz, which rapidly
converges at the end, indicating that the steady solution has been reached. Analysis
of all models have shown a similar behavior. Furthermore, we observed the pressure
and velocity profiles along many lines in this time range and observed no variation.
Hence, we felt justified in the chosen procedure described earlier in Sec. 3.3.2 of
halting further computations of velocity and pressure fields and determining only
the φ profile in subsequent time steps. This approach is extremely important as
it considerably sped up the solving process and allowed us to obtain a significant
amount of data.

56

3.5 Discussion and statistical analysis

0
.0

2
5

0
.0

3
5

0
.0

4
5

V
o

lu
m

e
 c

o
v
e

ra
g

e
 p

e
rc

e
n

ta
g

e

Coverage per model for a 4 mol/L threshold

Simple modelsDiagonal

Pr
im

ar
y

ce
nt

.

C
om

p.
 c
en

t. Simple modelsDiagonalce
nt

.

en
t.

0
.4

5
0
.5

0
0
.5

5

V
o

lu
m

e
 c

o
v
e

ra
g

e
 p

e
rc

e
n

ta
g

e

Coverage per model for a 0.5 mol/L threshold

Simple modelsDiagonal

Pr
im

ar
y

ce
nt

.

C
om

p.
 c
en

t.

Figure 3.16.: Boxplots of the coverage percentage per model type for the contant
pressure BC at the inlet after 7200 s. Only the Boxplots for the thresholds of
4 mol/L and 0.5 mol/L were displayed. The concentration at the inlet is 5 mol/L.

3.5. Discussion and statistical analysis

In this section, we discuss our findings after probing the data for correlations. We
also offer some possible interpretations for the results.
The main analysis we performed was a search for significant correlations between
volume coverage percentages with varying threshold and other attributes we com-
puted. This was achieved through the use of correlograms. A correlogram is a simple
and comprehensive method of displaying correlations between different attributes of
database in graphical form [97]. In this way, significant correlations between two
properties can be quickly spotted. In order to generate the correlograms, we em-
ployed the corrgram package of the R programming language. The correlograms for
the different centered models can be seen in Fig. 3.20 and Fig. 3.21. The Pearson cor-
relation at each matrix element is represented with colors: dark blue indicates high
positive correlation, dark red indicates anticorrelation and light colors and white
indicate there is no significant correlation between the attributes.
The first significant correlations we were able to single out from the data are the
ones between the coverages with lower threshold values and the average dye con-
centration, see Fig. 3.20 and Fig. 3.21. That came as no surprise, since high average
concentration indicates a higher amount of dye in the slab, which, in turn, is ex-
pected to produce an increase in coverage percentages. In addition to this, when we
considered the actual amount of dye that entered the slabs for all models, we found
that the poor performance of the diagonal models could be attributed to this, as a
considerably lesser amount of dye enters the slabs in these, see Fig. 3.15. Likewise,
the good performance of the simple models can also be attributed to this correla-
tion, as an appreciably greater amount enters slab in these models. The second
correlations we address are the ones between the coverages themselves: the closer
two threshold values are, the stronger the correlation between coverages. Again,
this is expected, as this is an indicator of linearity, meaning that a small change in

57

Chapter 3 Solving the fluid flow problem through the generated geometries

Figure 3.17.: Volume coverage percentage per threshold value graph for the con-
tant Q BC at the inlet after 3600 s. Primary networks of simple models performed
slightly better than other models when the 0.5 threshold was used. Primary cen-
tered and complementary diagonal venations, in sequence, performed better than
remaing ones. We verified this via one t-tests, see Sec. 1.4.

threshold value will not produce a completely different coverage behavior.

Next, when the complementary centered models were considered, meaning that the
complementary venation was the one connected to the inlet, we observed strong
correlations between most coverages and the Murray’s law exponent n for the inlet
venation, see Fig. 3.20. This is an interesting finding, as Murray’s law, which origi-
nates in the context of minimization of work, also seems to play a role in the increase
in coverage percentage of these geometries. There may be a limit to this, however,
for when we observed the same correlations for the primary centered venations, the
correlations found were much weaker, see Fig. 3.20. An explanation for this may
be that n for complementary venations varied between 1.63 to 1.95, while n for
primary venations ranged from 2.48 to 2.82, refer to Sec. 2.6. This means that the
end channels in the case of complementary venations are significantly thinner than
the primary ones. Perhaps, when the channels are very thin, an increase in channel
diameter may improve the coverage, but when the channels are thicker, there may
be no longer a benefit from this increase. Naturally, the Murray exponent of the
inlet venation also correlates strongly with the amount of dye in the slab, which, in
turn, correlates strongly with the coverages. Finally, when the diagonal models were
considered, the same correlations were again weak. We speculate, however, that the
reason behind this could be the same reason behind their overall poor perfomance

58

3.5 Discussion and statistical analysis

Figure 3.18.: Volume coverage percentage per threshold value graph for the con-
tant pressure BC at the inlet after 3600 s. Differences between the models could
already be observed. Diagonal models had a lower performance. That is confirmed
by analyzing the results after 7200 s, see Fig. 3.15.

when compared to other models. Moreover, the average distance between the pri-
mary and complementary venations is greater for diagonal models than for centered
ones.
A similar discussion may also be applied to the correlations found between the low
threshold value coverages and fractal dimensions, bifurcation numbers and some of
the computed venation lengths per area (VLAs). Specially when the diagonal models
are not considered, see Fig. 3.22 and Fig. 3.23. Again, high threshold values coverages
behave in a generally different way then low threshold value ones. At times, in
particular when we the primary centered model is considered, strong anticorrelations
may be observed between many properties and the high value threshold coverages
while a simultaneous strong correlations between the same properties and low value
threshold coverages exist, see Fig. 3.22 and Fig. 3.23. All things considered, we feel
that more conclusive remarks can only be made once additional data is gathered
and assessed.
Finally, when we evaluated the diagonal model correlograms, we observed a differ-
ence between the complentary and the primary venation models. While significant
anticorrelations between many properties and high threshold value coverages were
present in the primary models correlogram, the complementary models correlogram
exhibited only weak correlations and anticorrelations between all coverages and other
properties, see Fig. 3.24 and Fig. 3.25. The strong anticorrelations in the primary

59

Chapter 3 Solving the fluid flow problem through the generated geometries

Figure 3.19.: Pressure and velocity component field mean values normalized by
the last value. All components quickly converge at the end of the 3 s time period.

models, however, again seemed to be dominated by the total dye attribute, which
also had strong anticorrelations with the same attributes. When we examined the
low threshold value coverages, however, we found that they had weak correlations
with the other attributes. Possibly, an increase in VLAs, fractal dimension or bi-
furcation number do indeed have a positive impact on the low threshold coverages.
Determining what are the properties that have an effect on them, however, is a still
difficult at this point. Hence, we believe that more data and further studies are
necessary before we obtain a definitive answer.

60

3.5 Discussion and statistical analysis

Cov4

Cov3

Cov2.5

Cov2

Cov1

Cov0.5

ConVol

Mexp1

Mexp2

Correlogram of primary centered models

Cov4

Cov3

Cov2.5

Cov2

Cov1

Cov0.5

ConVol

Mexp1

Mexp2

Correlogram of complementary centered models

Figure 3.20.: Correlogram of the primary and complementary centered models,
when the constant pressure BC at the inlet was used. Data was extracted at
t = 7200 s. Dark blue represents a correlation close to 1, while dark red represents
a anticorrelation near -1. White represents no correlation: pearson coefficient of
0. The matrix is simmetric and the upper and lower triangular regions are simply
displayed in a different fashion. Cov stands for volume coverage percentage and
the number at its side is the threshold. ConVol is an abbreviation for the average
dye concentration. Mexp is the murray exponent and 1 and 2 correspond to inlet
network and outlet network respectively.

Cov4

Cov3

Cov2.5

Cov2

Cov1

Cov0.5

ConVol

Mexp1

Mexp2

Correlogram of primary diagonal models

Cov4

Cov3

Cov2.5

Cov2

Cov1

Cov0.5

ConVol

Mexp1

Mexp2

Correlogram of complementary diagonal models

Figure 3.21.: Correlogram of the primary and complementary diagonal models.
Both were constructed in a fashion similar to the ones in Fig. 3.20.

61

Chapter 3 Solving the fluid flow problem through the generated geometries

Cov4

Cov3

Cov2.5

Cov2

Cov1

Cov0.5

ConVol

BNum1

VLATot1

Fdim1

Correlogram of primary centered models

Cov4

Cov3

Cov2.5

Cov2

Cov1

Cov0.5

ConVol

BNum1

VLATot1

Fdim1

Correlogram of complementary centered models

Figure 3.22.: Correlogram of the primary and complementary centered models.
Both were constructed in a fashion similar to the ones in Fig. 3.20. Here, however,
BNum1 stands for bifurcation number of the inlet network, VLATot1 corresponds
to the total VLA, considering all vein orders, of the inlet network and, finally,
FDim1 stands for its fractal dimension.

Cov4

Cov3

Cov2.5

Cov2

Cov1

Cov0.5

ConVol

VLA1_1

VLA2_1

VLA3_1

VLA1_2

VLA2_2

VLA2_3

Correlogram of primary centered models

Cov4

Cov3

Cov2.5

Cov2

Cov1

Cov0.5

ConVol

VLA1_1

VLA2_1

VLA3_1

VLA1_2

VLA2_2

VLA2_3

Correlogram of complementary centered models

Figure 3.23.: Correlogram of the primary and complementary centered models.
Only the VLA attributes are considered together with the coverages in these
correlograms. VLA1_1 stands for the VLA of first order veins of the inlet network,
while VLA1_2 corresponds to the VLA of first order veins of the outlet network.
Other traits follow the same nomenclature but correspond to the secondary and
tertiary vein VLAs respectively.

62

3.5 Discussion and statistical analysis

Cov4

Cov3

Cov2.5

Cov2

Cov1

Cov0.5

ConVol

BNum1

VLATot1

Fdim1

Correlogram of primary diagonal models

Cov4

Cov3

Cov2.5

Cov2

Cov1

Cov0.5

ConVol

BNum1

VLATot1

Fdim1

Correlogram of complementary diagonal models

Figure 3.24.: Correlogram of the primary and complementary diagonal models.
Both were constructed in a fashion similar to the ones in Fig. 3.22.

Cov4

Cov3

Cov2.5

Cov2

Cov1

Cov0.5

ConVol

VLA1_1

VLA2_1

VLA3_1

VLA1_2

VLA2_2

VLA2_3

Correlogram of primary diagonal models

Cov4

Cov3

Cov2.5

Cov2

Cov1

Cov0.5

ConVol

VLA1_1

VLA2_1

VLA3_1

VLA1_2

VLA2_2

VLA2_3

Correlogram of complementary diagonal models

Figure 3.25.: Correlogram of the primary and complementary diagonal models.
Both were constructed in a fashion similar to the ones in Fig. 3.23.

63

4. Experimental models

In this section, we discuss our attempts to validate the results from the CFD step
via experimental models. The models built were based on the experimental set up
of the µ-fluidic gel photovoltaics (µ-FGPVs) target application, the variation of the
dye-sensitized solar cells (DSSCs). Although validation was not yet succesful, we
strongly felt it was necessary to briefly showcase our efforts towards it, as validation
of the results from CFD is an important part of the modeling procedure [32]. Next,
we present the steps taken in order to fabricate our set-up. Subsequently, we consider
our plans for further enhancing the current configuration so as to eliminate the
obstacles encountered.

4.1. OpenSCAD mold generation

The construction of the 3D molds with the patterns considered in Chapter 2 was
again performed using the OpenSCAD software [88]. The whole process for gen-
erating the 3D molds .STL files is analogous to the one from Sec. 3.1. This time,
however, we generated a stamp-like mold instead of a hollow slab, see Fig. 3.3. We
have adopted this approach to generate the molds as it would be unfeasible to 3D
print the venation patterns without a scaffold to maintain the structural integrity of
the networks. Moreover, many other defects could arise in the subsequent phases of
model fabrication, a possibility that only further justifies our choice. All molds are
square and have the same size as the meshes generated in the CFD process, 50 mm.
In contrast to the 3D models generated for the CFD procedure, this time, we have
chosen to improve the quality of the channels, even though rendering time was
longer and a greater number of defects appear in the surface of the .STL causing
the geometry to be non-manifold. In particular, what we mean by improving the
quality of the channels is an increase in the number of faces of the frustrum solids
that form the venation, further smoothing their surfaces. This could be done because
we have only attempted generate an experimental setup for one geometry, as the
validation process is still in its early stages. Additionally, we plan to use tools
to generate molds with higher resolution in future work. Hence, molds generated
that way could benefit from the increase in quality, see Sec. 4.4. Finally, filtering of
the .STL files for 3D printing purposes can be much less rigorous, as the software
for 3D printing accepts non-manifold geometries and no observable gain by using
completely fixed geometries was detected.

65

Chapter 4 Experimental models

Next, we showcase the molds produced from the .STL files and briefly decribe their
fabrication using the 3D printer.

4.2. 3D printed molds

After the .STL files of the molds were generated, we proceeded with the construction
the molds with the 3D printer readily available at LabM2, see Fig. 4.1. As we are
attempting to produce our first prototypes, this low resolution 3D printer was used.
As discussed in Sec. 4.4, however, we expect to employ either 3D printers of higher
resolution or use different techniques to fabricate the molds altogether.
In the first step, we use the files as input to the 3D printing software Repetier-Host
[98]. Next, we slice the geometry with the CuraEngine. This step is fundamental,
as it transforms the .STL surfaces into individual layers and creates the code the
3D printer uses to fabricate the object [98]. Finally, we raise the temperature of the
extruder, which melts the 3D printing material and ejects the polylactic acid (PLA)
filaments to produce the molds. Only then, we start the printing phase.

Figure 4.1.: 3D printer present at LabM2. The picture showcases some of the 3D
printer components.

66

4.3 Experimental set-up

The only challenge we encountered while 3D printing the molds was that due to the
high temperature of the extruder, the molds tend to deform and become irregular
when low filament densities are used. Moreover, large mold thickness also seemed
to cause the same problem. Fortunately, we were able to bypass these issues by
simply setting the filament density of the molds to 100% and reducing the mold
thickness as much as we could. This way the molds visibly did not display the same
irregularities observed earlier. One of 3D printed molds contructed in this fashion
can be seen in Fig. 4.2.

Figure 4.2.: 3D printed mold with venation-inpired geometry.

4.3. Experimental set-up

In this section, we offer an overview on how we assembled the current configuration
of the experimental models, see Fig. 4.3.

Figure 4.3.: Current experimental model set-up.

67

Chapter 4 Experimental models

In the first stage, we employed the 3D printed molds to form the generated patterns
on the agar slabs, see Fig. 4.4. We have utilized agar instead of purified agarose, due
to cheaper cost of the former. Moreover, their properties are somewhat similar, as
agar is composed of agarose and a smaller portion of agaropecting [99]. Hence, we felt
justified in opting for agar to produce the prototypes. Later on, when we fabricate
a successful set-up, we plan on switching to purified agarose, as its properties are
characterized due to its extensive use in gel electrophoresis [100]. That will be a
necessity when aiming to generate quantitative results.

Figure 4.4.: Agar slab generated using a 3D printed mold.

The 3D printed molds were fixed at the bottom of a petri dish coated with an alu-
minum sheet. We then heated an agar solution in a microwave for about 1-2 minutes
eventually halting the heating to stir up the solution to minimize bubble formation.
Next, we waited for the agar solution to cool as much as possible without becoming
jelly-like and only then we poured it on the coated petri dish. We proceeded remov-
ing the remaining bubbles from the region immediately above the mold, before the
solution solidified. Finally, we carefully extracted the now solidified gel slab from
the petri dish without damaging it and then discarded the undesired regions of the
gel retrieving the pattern seen in Fig. 4.4.

In the next stage, we carefully placed the gel slab on top of a glass plate, with
the pattern facing upward, and at each vertex we positioned a 3D printed support.
Next, we poured water on the slab surface to fill the channels and prevent bubble
formation. We then placed a second glass plate over the slab cautiously so as to
avoid the appearance of bubbles. The final step was to attatch two binder clips at
the two opposing sides of the apparatus, see Fig. 4.3. The clips exert great pressure
on the slab and were it not for the 3D printed support pieces, the high pressure
could damage or completely crush the gel. Lastly, we used screw threads and nuts
to make the pressure exerted by the clips ajustable, see Fig. 4.3.

68

4.4 Discussion and challenges

Figure 4.5.: Microfluidic pump developed by a fellow group member Juan Enrique
Rivero Cervantes at LabM2.

In our first tests, we employed a microfluid pump injecting a dye solution at a
constant volumetric rate of 10 µl/min. The microfluidic pump was developed by a
fellow group member Juan Enrique Rivero Cervantes at LabM2, see Fig. 4.5. The
pump uses a stepper motor attatched to a screw thread as a mechanism to precisely
control the force applied onto a syringe. The motor, in turn, is controlled by a
microcontroller allowing us to adjust the injected rate, which can be considered
constant, even though, in practice, the motor does not rotate continously. A rubber
tube connects the syringe to the inlet of the system, see Fig. 4.3. Naturally, in this
configuration, the pressure at the outlet equals the atmospheric pressure.

4.4. Discussion and challenges

Overall, we attempted to mimic the traits of interest from the µ-FGPVs original
set-up as much as possible. We have even employed the same parameters whenever
we could, e.g., the constant volumetric rate of 10 µl/min [24]. That is because the
variant of DSSCs was the main target of the CFD simulations from Chapter 3.
Nevertheless, a valid comparison between our experimets and the ones from the
article is not possible as we are not aware of all the parameters of the original
device.
Another obstacle we face is that the current configuration of the CFD meshes cannot
be validated by the set-up we fabricated. That is because the channels are inside
the slab in the CFD simulations, see Fig. 3.3, and not at one of its faces, see Fig. 4.4.
As it would be a formidable challange to construct an experimental model with an
interdigitated pattern inside the slab precisely adjusted to be parallel to both faces,

69

Chapter 4 Experimental models

the more reasonable approach is to construct meshes with the pattern at one of
the faces to solve the flow. We have assessed this approach and concluded that it
is feasible, although challanges are still present. Thus, in future work, we plan on
adopting this methodology.

Figure 4.6.: Experiment performed using the current set-up. (a) picture 10 s after
injection was initiated. (b) picture after 1min. (c) picture after 2min. (d) picture
after 7 min.

As for the fabricated models, we were able perform some experiments with them, see
the results in Fig. 4.6. The concept of the current model works. The dye profile at
the end, however, did not meet the more uniform distribution we expected among
the veins. The reason for this that the slab does not have a constant thickness.
Although the bottom face of the slab can be considered plane, the upper face, the
one which was in contact with the 3D printed mold, was very irregular. Hence,
regions with lower thickness formed regions of low pressure, which attracted most of
the solution, while thicker regions repelled the dye solution. The result is the uneven
dye distribution we observed. As for the upper face, it became irregular due to the
mold deforming when in contact with the heated agar solution. The mold deformed
because it is made of PLA, as previously mentioned in Sec. 4.2. This is the current
challenge that kept us from performing accurate experiments. The solution around
this problem may be to either coat the mold with a thermal insulation material,
e.g., silicone. In case the coating process works, we will employ 3D printers of
higher resolution to produce the molds. In case it does not, we can use a completely
different material altogether to fabricate the molds. The material could be a metal,
so that it does not deform when subjected to the temperatures of the agar solution.
In particular, our collaboration with the Laboratório de Micromanufatura (LMI) at
the Instituto de Pesquisas Tecnológicas (IPT) may aid us in fabricating molds with
different materials. In fact, we have already assessed the feasibility of the process

70

4.4 Discussion and challenges

and obtained very sactisfatory results, see Fig. 4.7. Moreover, the mold fabricated
there, has a much higher resultion than the 3D printed molds we constructed.

Figure 4.7.: Mold fabricated at Instituto de Pesquisas Tecnológicas (IPT) using
machining technique. The mold has a different material and higher resolution.

After we produce a proper model, switch from an agar to an agarose gel and stan-
dardize the fabrication procedure, the next step will be to develop a tool that allows
us to perform quantitative measurements of dye concentration in the different re-
gions of the hydrogel. The simplest approach seems to be imaging techniques. It
has been shown that it is possible to determine the concentration at each pixel of an
image after calibration with solutions of known concentration, making this a viable
option [101, 102]. Another tool that can further aid us in obtaining data from the
experiments are optical techniques. Laser speckle flowmetry experiments that may
be performed at LabM2 could help us in determining the velocity of the flow at
different regions of the channels [103]. This data can be compared with the results
from CFD and help us validate the models.
As a last remark, we are also striving to implement a technique to maintain constant
pressure at both the inlet and outlet of the system. In Chapter 3, the constant
pressure boundary condition at the inlet yielded interesting results which must be
validated using experimental models.

71

5. Final considerations

In this chapter, we outline the advances of our research. In addition, we list a
number of possible directions future reasearch may take based on the current work.
We present options which are essentially the natural next steps of this research as
well as exciting longer-term ideas that could possibly guide our future efforts.

5.1. Achievements

In this section, we summarize the most important achievements of this work. In the
upcoming sections, we will present some possibilities for upcoming research.
In the first stages of this work, we successfully implemented Fortune’s algorithm in
C++ for optimal Voronoi diagram construction in 2D, see Appendix A. Next, we
implemented the slab decomposition algorithm to perform Nearest neighbor searches
in optimal time using the previously constructed diagrams. We then implemented
both algorithms proposed by Runions et. al. [44] for open and closed venation
generation. Finally, we added another step to the open venation program, in which
a second, complementary venation was generated. As discussed in Chapter 2, that
was done because two networks, one connected to the inlet and another to the
outlet, are necessary in the target applications we were inspired by. The results can
be seen in Fig. 2.13. Algorithms that computed the fractal dimension, VLAs and
bifurcation numbers for the geometries were also developed and incorporated into
the code. The user can retrieve the data at the end of the geometry construction
process, see Sec. 2.5. Diameters for each of the veins were assigned based on Murray’s
law [73] and the input diameters for the inlet and oulet channels, see Sec. 2.6.
In the next phase, we successfuly generated 3D models for 18 geometries using
the OpenSCAD program [88]. The construction and repairing of the models was
thoroughly described in Sec. 3.1. These models served as the foundation for the
subsequent fabrication of our current experimental set-up. They were also important
in the meshing stage of the CFD process.
Next, we focused on employing CFD methods to solve the flow problem in the slab-
shaped porous systems, see Fig. 3.3. We successfuly employed the OpenFOAM CFD
toolkit to obtain the numerical solutions for each of the geometries in our database.
Mesh generation was executed using the snappyHexMesh utility and computation
of the solutions was done using both the pimpleFoam and the scalarTransportFoam

73

Chapter 5 Final considerations

solvers. Solutions for two different types of boundary conditions were added to
the database along with the corresponding properties of the geometries. A brief
statistical analysis of the results was done employing the R programming language
and while it may still be early to offer definitive remarks, we observed that centered
geometries have seemed to perform better than diagonal ones when the constant
pressure drop BC was used, see Sec. 3.4 and Sec. 3.5. In addition, models where
the primary centered venations were connected to the inlet distributed the solution
more uniformly based on our current results.
Finally, we have created the first experimental models which will be used for em-
pirical validation in future work. Although, we were still not able to employ these
models in the validation of the CFD results, we feel that we have proved that the
concept of this design works. Moreover, the main obstacles we came across may
be overcome using other mold fabrication techniques which are available to us, as
outlined in Sec. 4.4.

5.2. Follow-up studies

Among the most urgent steps for subsequent work is the improvement of the ex-
perimental models and development of the equipment necessary for the empirical
validation of the CFD solutions. An in-depth discussion on this topic can be found in
Sec. 4.4. Here, we add that measurements using the imaging techniques could ben-
efit greatly from use of microcontrollers, as they not only can assist in controlling
important parameters, e.g., temperature [102], injection rate, etc., but also can be
employed to automate parts of the experiments, potentially reducing measurement
errors. In view of this, the efforts to employ of microcontrollers seem justified.
Along the same lines, validation of the CFD solutions through mesh refinement
can be started right away. That is specially true as very recently our group has
purchased a workstation capable of handling finer meshes. As a result, hardware
limitations are no longer an issue.
In parallel with the validation of the current geometries, the inclusion of new entries
in the database is also an option. We expect to obtain more robust results with
the additional entries. Moreover, we plan to add entries for different models to
the database, e.g., the closed architectures or the interdigitated patterns with three
venations, which were presented in Sec. 2.6. We hope that an analysis including
the new models will enable us to gain further insight into what makes a geometry
efficient. Another aspect we have not covered in our study was how the average
distance between the primary and complementary venations affects performace of
the geometry, as discussed in Sec. 3.5. Future studies considering this aspect are
also in our plans.
In the subsequent sections, we present two ideas that, while incorporating many
aspects of the current work, also include new challanges. Hence, either one or both

74

5.3 Models for PEMFCs

could serve as our next goals.

5.3. Models for PEMFCs

The first possible target could be to create models of PEMFCs with the current
geometries. In this process, in the first stages, we could employ CFD to compute
the field solutions in the flow field plates, for instance [18]. Achieving this is not as
straighforward as employing CFD techniques to solve the flow inside the µ-FGPV
devices, as there are two-phases in the of the flow field plates, liquid and water-vapor.
Therefore, this could be an excellent opportunity to incorporate more advanced
aspects of CFD in our research.
In later stages, we could eventually fabricate actual PEMFCs prototypes, not only
to validade the CFD results, but to measure a possible improvement in performace
of these cells.

5.4. Application to 3D cell cultures

The second target we have thought of are 3D cell cultures. 3D cell cultures have
been gaining ground recently, as they represent more realistic models for real living
tissues than conventional 2D cultures. In part, that is because many of the complex
cell-to-cell and cells-to-matrix interactions only arise in a 3D environment [104,105].
In addition, studies have shown other inadequacies of 2D cultures, offering evidence
that gene expression of cell grown in 2D and 3D are different [105]. Hence, 3D cell
cultures is a still fresh and compelling area of reasearch.
The particular topic in this vast research field that mostly relates to our work is the
problem of vascularization in 3D cell cultures, specifically in dense cultures [106,107].
In order for a culture to be an accurate representation of a living tissue, to a certain
extent, the availability of nutrients and of gas exchange must be similar to that of
a living tissue. That generaly is only possible with the aid of channel networks to
perform these needed funtions. As there are many similarities between this problem
and our research, we consider it would be an excellent opportunity, for instance, to
move from the realm of 2D to 3D. We could conceivably develop efficient geometries
that could serve as the vascular system of these cultures, while acquiring expertise
in this stimulating field of research in the process.

75

A. Appendix: Voronoi diagrams and
the Nearest Neighbor search

A.1. Overview

In brief, a Voronoi diagram is a form of space partitioning, in which an Euclidian
plane, or any other metric space1, containing a set S of sites s, a.k.a. Voronoi sites,
is divided so that points which lie closer to a site s than to any other site of S define
that site’s corresponding cell, a Voronoi face in 2D. Points whose two closest sites are
equidistant define an edge, the boundary between two faces. Finally, points which
possess three or more equidistant closest sites are called vertices or nodes2 [81, 82].
All of those definitions are summarized in Fig.A.1.

faces

edges

vertices

sites

Figure A.1.: Chart of a Voronoi diagram illustrating the definitions of edges, sites,
vertices and faces.

Voronoi diagrams find a wide range of uses throughout many different fields in sci-
ence from astronomy and physics to social geography and biology [81, 109,110]. Its
importance stems from the simple property of partitioning space so as to have all of

1Notice that neither the metric space needs to be an Euclidian space nor the metric used neces-
sarily needs to be the Euclidian distance [108]. In fact, the Voronoi diagram can be defined in
a general manner although a more rigorous definition is out of the scope of this text.

2More properties of Voronoi diagrams are discussed in Sec.A.4.

77

Chapter A Appendix: Voronoi diagrams and the Nearest Neighbor search

the points inside a partition lying closer to the corresponding partition site. That
property makes encountering the nearest neighbor site of a new query point, an ubiq-
uitous problem in science and one we face in this work, remarkably straightforward.
Aside from this, another reason Voronoi diagrams are utilized to solve the nearest
neighbor search problem is due to the possibility of generating these diagrams com-
putationally in O(n lnn) time [79], where n is the number of Voronoi sites. Once
the Voronoi diagram related data structures are generated, a point location query
can be done in O(lnn) time [78,111]. All things considered, that elevates the Vornoi
diagram approach to one of the optimal solutions to the nearest neighbor search
(NN search) problem in 2D. Naturally, it is much faster than the naive linear search
O(n) time complexity.

A.2. Constructing Voronoi diagrams: Fortune’s
sweepline algorithm

Fortune’s sweepline algorithm, proposed by Steven Fortune [79, 81], is the optimal
method for generating Voronoi diagrams computationally in 2D for any set S of
Voronoi sites. It possesses a time complexity of O(n lnn). Essentially, the algorithm
sweeps the plane once in one direction, stopping at specific sites called events [81],
where calculations and some other considerations need to be made. Once all events
are handled, Voronoi diagram construction ends.
It is interesting to note that, computationally, the sweeping is not continuous, but
discretized. In other words, the algorithm jumps from one event to the next without
wasting any processing at sites inbetween them, since that would not have any
impact on the final output. The position in the plane where the processing occurs
at a given instant is labeled sweepline and it moves only in the direction of the
sweeping. The events are not evenly spaced and since one does not know all of them
beforehand, some must be identified on the fly. The only restriction placed on the
location of the newly idenfied events is that they must be ahead of the sweepline [81],
otherwise the sweeping direction would turn back and forth many times during one
run, something unnecessary which could, in fact, yield an incorrect output.

A.2.1. Site and circle events, breakpoints and beachline

As far as the Fortune’s algorithm is concerned, there are only two types of events:
site events and circle events [79,81]. They are labeled differently due to their distinct
nature. The site event type deals with the complications that stem whenever the
sweepline reaches a Voronoi site. Since all Voronoi sites are known initially, the
site events don’t have to be determined during the run and therefore are simply
stored and dealt with in order whenever the sweepline arrives at them [81]. The
other class of events, the circle events, are more subtle. Each one of those events are

78

A.2 Constructing Voronoi diagrams: Fortune’s sweepline algorithm

related to the possible occurence of a Voronoi vertex during the algorithm execution.
The reason they receive that name is due to the vertex being equidistant from the
Voronoi sites that generated it, i.e., if one traces a circumference around the vertex,
with the radius being the distance from the vertex to one of the Voronoi sites, it
follows the other sites will also reside at the circumference. Possible circle events
are spotted on the fly whenever three consecutive Voronoi sites are encountered by
the sweepline. Circle events happen when the line reaches the outermost point of
the circumference around its associated Voronoi vertex. We emphasize these events
may not happen, being discarded whenever the sweepline encounters a Voronoi site
inside a circumference associated with a would-be Voronoi vertex [81].
In addition, two other concepts are further introduced due to their crucial role in
the algorithm: the beachline and the breakpoints. In order to comprehend what
those are, one must recall that a point and a line can be used to define a parabola
and when they do, they’re named focus and directrix respectively. With that given,
we may proceed establishing an analogy between the Voronoi sites and focuses and
between the sweepline and the directrix, as sketched in figure Fig.A.2. Sites not
yet reached by the sweepline do not define parabolas. Therefore, new parabolas ap-
pear only when site events occur. In fact, those new parabolas are simply straight
lines perpendicular to the sweepline when the correponding Voronoi sites are being
intersected, see Fig.A.2. As the sweepline moves, those straight lines become sharp
parabolas and as the sweepline moves further the sharp parabolas become broader
and broader. A number n of parabolas can be defined after the sweepline crosses
a number n of sites, however the beachline comprises only the parabola segments
which are closest to the sweepline along the Voronoi diagram width [81]. The rea-
son behind the name beachline is quite evident after one analyses its countour, see
Fig.A.2. It does ressemble a real beachline or shoreline. Points that separate two
consecutive parabola segments in the beachline are denominated breakpoints [81].
If two consecutive breakpoints can be associated with only two parabolas, i. e., only
two Voronoi sites, then a Voronoi edge is defined by tracing a line between those
points. In contrast, two consecutive breakpoints which are associated with three
different parabolas will not have an edge defined inbetween them. By definition,
whenever circle events occur, a Voronoi vertex is placed where two (or more) con-
secutive breakpoints meet. Furthermore, two or more Voronoi edges meet at the
vertex and one or more parabola segment cease to exist. Everytime a circle event
occurs a new Voronoi edge segment leaving the vertex is created and associated
with the remaining breakpoint. In Fig.A.2, all points discussed in this section are
illustrated.

A.2.2. Algorithm data structures

In this section, key data structures used by the program are discussed. Some knowl-
edge of computational geometry algorithms, which can be readily found in any
computational geometry book [77,81,82], is expected.

79

Chapter A Appendix: Voronoi diagrams and the Nearest Neighbor search

site invalidating
potential circle event

vertices

sites (events)

edges

sweep line

beach line
circumference
defined by sites

valid circle event

invalid circle event

invalid vertex

Figure A.2.: Chart summarizing some of the main aspects of the Sweepline algo-
rithm. The sweepline (in green) is handling a circle event in the picture. Observe
that the next event to be handled in the diagram is a site event, which will in-
validate a future circle event. It follows from the properties of Voronoi diagrams
that no Voronoi site (in red) can exist inside a vertex defining circumference (in
orange).

When implementing the algorithm, both event types instances are stored in a priority
queue data structure [77, 81]. A priority queue allows for data storage in a vector-
like structure. In general, its implementation uses dynamic memory allocation,
and thus, usage does not demand initial knowledge of maximum vector size [77].
In addition, the priority queue data structure sorts queue elements according to a
comparison funtion, the priority criterion. The top element of the queue, the next
instance to be removed by definition, can, for instance, always be the one with
lesser value in the x-direction. Hence the next element must have a greater value
in the x-direction since the priority queue data structure always sorts the elements
everytime a new element is included in the queue [77]. This is how the one-way
sweeping is implemented [81]. The basic structure of the algorithm, therefore, is to
simply process all events, site or circle types, in the order they appear on top of the
priority queue. After all sites are processed, the run is completed and the diagram
built. In the C++ programming language, one can use the default implementation
of the priority queue data strutcture by including the queue library in the header.

One of the great achievements of the algorithm is its ability to recognize that ev-
erything prone to changing lies on beachline. The section of the plane which still
hasn’t been sweeped has no effect on the diagram construction until it is reached.

80

A.2 Constructing Voronoi diagrams: Fortune’s sweepline algorithm

Meanwhile, the section which was already sweeped and no longer belongs to the
beachline, is already part of the final output and, thus, does not affect the diagram
construction, see Fig.A.2. Therefore, the real bottleneck is the beachline. The al-
gorithm cleverly takes advantadge of this fact and implements the beachline as a
binary search tree (BST) [81], an optimal data structure which allows for the dele-
tion and insertion of new elements in O(ln k) time [77], whereas other more naive
implementations in general waste O(k) time in the processing. Here, k is the av-
erage number of sites and breakpoints in the beachline, which in general is a small
fraction of the total number of Voronoi sites. Thus, the BST implementation is the
key factor which reduces the processing time from O(n2) to O(n lnn), where n is
the total number of Voronoi sites in the diagram. This is the actual computational
reason Voronoi diagrams can be used solve NN search problem. BSTs are readily
implemented in C++ even though they are not part of the standard library. It
is convenient to employ dynamic memory allocation when implementing them, by
using the new and delete3 operators, since frequently one does not know what the
size of the tree will be [77].

A.2.2.1. Binary search trees

A brief introductory example of BSTs will be given, so as to guide the understanding
of the actual implementation of the beachline as a BST data structure.
Suppose there is a set of n integers stored in the computer memory and one wants
to find a specific integer among them. Provided the integers are stored in an array
or vector, the more obvious and naive approach would be to simply sweep the
array for the sought element, checking each and every instance of the array until the
desired one is found, see Fig.A.3. Considering the time to check one array element is
constant, on avarage, the time it takes to find the wanted integer grows linearly with
array size. Since, in general, one is interested in the behavior for very large n, unless
the behavior of the functions is similar, e.g., linear, logarithmic, etc., proportionality
constants are unimportant when judging efficiency of different algorithms. Hence,
in the big O notation, the time complexity of this naive search approach is simply
O(n), which means performance is acceptable if the array is not very long. However,
as the array grows, the approach becomes increasingly unfeasible.
In order to enhance search speed, one may employ a different storage method. In-
stead of simply storing the integers in an array or vector, one may store them in a
binary search tree. BSTs are data structures which store data in its nodes according
to a simple comparison rule [77,113]. When constructing a BST, given the previous
example, one starts by picking an integer and storing it in the first node, also known

3It is of utmost importance to utilize the delete operator before deleting all pointers that refer
to a memory section in the heap, since, otherwise, that would characterize a memory leak and
bad programming. Too many memory leaks can result in memory crashes if the operational
system runs out of RAM. We employed the Valgrind utility to discover and eliminate memory
leaks [112].

81

Chapter A Appendix: Voronoi diagrams and the Nearest Neighbor search

5

7

8

6

4

2

3

1

9

10

Binary search tree

11

Linear array

2 3 4 5 6 7 8 9 10 11

1

slow

quick

vs.

O(ln n)

O(n)performance

performance

Figure A.3.: Comparison between the naive linear search and binary search. In
the case illustrated, aside from number 1 and 2, binary search has a performance
at least similar to the linear one.

as the root node. All searches, insertions and deletions start at the root. In the
BST arrangement, every node of the tree, including the root, has at most one parent
and at most two children nodes, see Fig.A.3. Hence the name binary. In addition,
one or both children nodes may be void. If a node has no children, it is called a
leaf node, and in case it has at least one child, it is referred to as an internal node.
Children nodes are usually labeled as right or left node and the criterion which de-
fines whether a new data is to be stored in the left or right node will depend on the
comparison rule and on data value. In this example, starting at the root, the integer
value of tree nodes are examined and compared to the new value as one moves down
the tree until a void node is reached. In case the new value is greater one moves
down to the right child node, and in case it is lesser, one moves down to the left child
one. That is the comparison rule. Since the root, in this example, is also a leaf node
because both children are void, a new child node is created, either the left or right
one, and the new integer is stored in it. The procedure is followed until every integer
is stored. Once the storage process is completed, one is able to search for an integer,
the query, by using the same comparison rule used to construct the BST. Whether
the query is in the tree or not is irrelevant. The key feature of BSTs is that query
searches, insertions or deletions can be done, roughly, in O(lnn)4 time [77,113], i.e.,
for large n it completely outperforms the naive method.

As a final remark, in graph theory, BSTs are analogous to arborescences or out-
trees, since they are directed graphs, with all of its edges pointing away from a

4A remark needs to be made: if the order which numbers are inserted into the tree when building
it is roughly crescent or decrescent, then the BST will behave approximately as an array, and
BST performance will dramatically decrease. In contrast, if the order which the data is inserted
is random, tree performace will be acceptable on average.

82

A.2 Constructing Voronoi diagrams: Fortune’s sweepline algorithm

single node, the root node [76]. It follows that it is possible to reach any node from
the root. However it is not possible to reach the root from another node. That is in
contrast with data structures that originate from undirected graphs, for instance, a
doubly-connected edge list, discussed in Sec.A.3 [77].

A.2.2.2. Beachline BST

The data structure utilized to represent the beachline is a BST. Therefore, it pos-
sesses the same basic properties which characterize all BSTs. Nevertheless, it bears
some peculiarities which will be discussed in this subsection.
In the preceeding case with the integer BST, for instance, the comparison rule was to
proceed to the right child node whenever the query value was greater than the value
of the current node or to continue to the left child, in case it was lower. However,
in the Voronoi diagrams present in this work, we are not handling integers in 1D,
but points in the 2D Euclidian plane, meaning that there are two real numbers
assigned to each data element, which, consequently, allows for a greater variety of
comparison choices. The chosen comparison criterion, for the beachline BST case,
is to decide between children nodes based only on the coordinate normal to the
sweepline moving direction, e.g., the y coordinate in Fig.A.4 [81]. Furthermore,
leaf nodes and other nodes represent different features of the beachline: leaf nodes
correspond to parabola segments, the arcs, while internal nodes play the role of the
breakpoints, see Fig.A.4 [81].

vertices

sites (events)

edges

sweep line

beach line

breakpoints

x

y

p1

p2

p3

p2

p1

p3

<p1,p2>

<p1,p3>

beach line BST

arc nodes

breakpoint nodes

Figure A.4.: Chart representing a beachline section and the corresponding beach-
line binary search tree.

Implementation-wise and in contrast with the integer BST, where the number is
simply stored in the node along with pointers to both children, storing breakpoint
coordinates in the beachline BST internal nodes would be pointless, since they
change at every step during the run. Hence, to change all nodes of the BST at

83

Chapter A Appendix: Voronoi diagrams and the Nearest Neighbor search

Listing A.1: Main data structures used by Fortune’s algorithm.
1
2 typedef pair <double , double> point ;
3 #define x f i r s t
4 #define y second
5
6 pr ior i ty_queue <point , vector <point >, siteAscendingXComparison> s i t e e v e n t s ; // s i t e

event s p r i o r i t y queue
7 pr ior i ty_queue <c i r c l e e v e n t ∗ , vector <c i r c l e e v e n t ∗>, circleAscendingXComparison>

c i r c l e e v e n t s ; // c i r c l e event s p r i o r i t y queue
8
9 struct beach l inenode {

10 beach l inenode ∗ l e f t , ∗ r i ght , ∗ parent ; // l e a f , r i g h t and parent node p o i n t e r s
11 po int p1 , p2 ; // f o c u s e s o f both i n t e r s e c t i n g breakpoint−genera t ing parabo las .

Only one po in t i s v a l i d in case t h i s i s a l e a f node
12 bool breakpo int1or2 ; // a l l o w s program to t e l l which breakpo in t i s be ing

handled
13 c i r c l e e v e n t ∗ p o t e n t i a l ; // p o i n t e r to p o t e n t i a l c i r c l e event : only p o s s i b l y

non−n u l l f o r l e a f n o d e s
14 beach l inenode (po int pp1 , po int pp2 , bool b1orb2 , b e a c h l i n e ∗ prt)
15 : p1 (pp1) , p2 (pp2) , l e f t (0) , r i g h t (0) , parent (prt) , breakpo int1or2 (b1orb2) ,

p o t e n t i a l (0) {} // b e a c h l i n e node c o n s t r u c t o r
16 } ;
17
18 struct c i r c l e e v e n t {
19 double c i rc l emaxx ; //x coord inate a s s o c i a t e d with the c i r c l e event : c i r c l e

center x coord inate p l u s c i r c l e rad ius
20 po int c i r c l e c e n t e r ; //Voronoi v e r t e x coord ina te s a s s o c i a t e d with the c i r c l e

event
21 beach l inenode ∗ arc ; // employed in b e a c h l i n e BST manipulation , e . g . , arc

d e l e t i o n or new p o t e n t i a l c i r c l e event s a f t e r d e l e t i o n
22 bool v a l i d ; // used to i n v a l i d a t e the c i r c l e event when deemed necessary
23 c i r c l e e v e n t (double x , po int p , beach l inenode ∗ l e a f a r c)
24 : c i rc l emaxx (x) , c i r c l e c e n t e r (p) , arc (l e a f a r c) , v a l i d (true) {}// c i r c l e

event c o n s t r u c t o r
25 } ;

every step would be so time consuming it would render the beachline BST itself
useless. Thus, the focuses, the sites, of both intersecting parabolas are stored in
every internal node, making it possible to compute the two breakpoints positions,
points where the parabolas intersect at a given step [81]. An additional parameter
is stored in breakpoint nodes, so the program is able to distinguish between the two
possible breakpoints.
An outline with key features of the beachline BST data structure and event priority
queues implemented in C++ are shown in Listing A.1.

A.2.3. Fortune’s sweepline algorithm implementation

In this section, detailed flowcharts representing the implemented algorithm are pre-
sented, along with their respective explanations. In Fig.A.5, the backbone of the
algorithm is sketched. The discretized motion of the sweepline along a direction in
the plane, which from now on will be taken as parallel to the x direction, is repre-
sented by the loop showcased in the flowchart. Each interation of the loop amounts

84

A.2 Constructing Voronoi diagrams: Fortune’s sweepline algorithm

Figure A.5.: Event queue handling flowchart [81].

to a step taken by the sweepline along the x direction, since events in the queue are
sorted on increasing x-coordinate [81].

In the following, flowcharts are provided detailing the set instructions executed by
the algorithm whenever it handles site or circle events. In other words, when the
algorithm reaches the handle event instruction in the flowchart of Fig.A.5, it is in
fact executing the instructions in either the flowchart of Fig.A.6, if the event is a
site event, or of Fig.A.7, in case the event is a circle event [81].

It is worthwhile noting that in order to check the existance of a potential circle
event, brought about by arc deletions or site events, one does not have to check all
arcs, leaf nodes of the beachline BST, but only the triples, three consecutive arcs
which possess arcs that were submitted to change in that given step of the main
loop.

After all events of the priority queue have been dealt with, only a beachline BST
with no associated potential circle events will remain. Nevertheless, the remaining
beachline will contain breakpoints with affiliated edges. Each of those affiliated edges
could be extended to infinity, since there are no more circle events defining its second
extreme left. Therefore, in order to complete the crafting of the Voronoi diagram,
the algorithm must deal with the remaining dangling edges. That is accomplished
by defining a bounding box encompassig the diagram. The bounding box is allowed
to have any shape, as long as it terminates all dangling edges at the points where
they intersect with the bounding box curve.

85

Chapter A Appendix: Voronoi diagrams and the Nearest Neighbor search

Locate the leaf representing the
 arc containing the y coordinate

 of the site

No

Yes

Yes

No
 Return to
 main loop

Is there a
potential a circle event

being invalidated be the
new site?

Delete the potential
circle event in the event priority
queue and nullfy pointer to the

event

Split the arc into three by
replacing the leaf node by a

subtree representing the new
arcs and breakpoints

Add new edge entry
to the data structure representing

the Voronoi diagram

Is there a
new potential circle event

which appeared due to
the site event?

Create circle event, add it to the
 event queue and store a pointer

in the arc leaf node linking it
to the event

Main loop site
event instruction

Figure A.6.: Flowchart representing how the algorithm handles site events [81].

A.3. Doubly-connected edge list (DCEL)

In previous subsections of this appendix chapter, concepts underlying Voronoi dia-
gram construction with the Sweepline algorithm were presented along with a detailed
description of the algorithm itself. Notably, a description of the data structure em-
ployed in the Voronoi diagram representation was not provided. This subsection
aims to scrutinize the features of this data structure, the Doubly-connected edge
list (DCEL) [77,81].

Before the DCEL data structure is thoroughly discussed, an elementary, but indis-
pensable, linked list introduction is furnished. Linked lists are array-like data struc-
tures consisting of nodes, which are connected to the next node by a pointer [77].
They are not necessarily sorted and can store any data type inside them. Their
single most important feature is that they form a chain of nodes, which are always
connected to the next via a pointer. The entrance pointer to the linked list is called
head, and it always points to the first node in the list. The list, evindently, ends at

86

A.3 Doubly-connected edge list (DCEL)

Add Voronoi vertex entry to
the Voronoi diagram data

structure

Yes

No

Main loop circle
event instruction

 Return to
 main loop

Delete the arc leaf node
and associated breakpoints

from the BST

Is there a
new potential circle event

which appeared due to
the arc deletion?

Create circle event, add it to the
 event queue and store a pointer

in the arc leaf node linking it
to the event

Create new breakpoint node
in the BST diving previous arc

neighbor arcs

Add new edge entry
to the data structure representing
the Voronoi diagram and link it to

the created breakpoint node

Figure A.7.: Flowchart representing how the algorithm handles circle events [81].

the node which contains the null pointer (if the head is null, then the list is empty).
In a similar linked list arrangement, the nodes are not only linked the next ones, but
to the previous nodes as well by a second pointer. These linked lists are known as
doubly linked lists, as opposed to the first type, that contain only the next pointers
and which are known as singly linked lists [77].

As the reader might have guessed, DCEL data structures hold a ressemblance to
doubly linked lists, even though they possess many other unrelated key features.
DCEL data structures, in general, can efficiently describe and facilitate manipulation
of planar graphs, in particular, planar straight-line graphs (PSLGs) [82]. PSLGs are
comprised of nodes embedded in a plane and of edges, straight line segments, which
might connect pairs of nodes, see Fig.A.8. In contrast to nonplanar graphs, the
edges of PSLGs do not intersect each other except at the end points, namely, the

87

Chapter A Appendix: Voronoi diagrams and the Nearest Neighbor search

nodes or vertices [114]. That property is critical, since it assures that all kinks in
the boundary defining each face are nodes of the graph. Naturally, the faces of the
graph are merely space partitions bounded by the edges.

a b

Figure A.8.: Planar straigh-line graphs. Nodes are depicted in blue and edges, in
black. Edges intersect only at the nodes. Notice how nodes may or may not be
linked to other nodes via edges. The graph is labeled disconnected (a) in case
there is at least one pair of nodes {x, y} without a path leading from x to y, and
connected (b), otherwise. The exception is a single node in the plane, which is
considered a connected graph. Finally, in the second graphs, for instance, one can
count 3 faces, 2 enclosed by graph edges and the outer face, which encloses the
graph itself.

As a side note, it follows that Voronoi diagrams in the 2D Euclidian space can be
regarded as PSLGs, allowing them to be implemented as DCELs [77, 82]. Observe,
however, that due it its nature, Voronoi diagrams place additional restrictions on
the angles of two consecutive edges delimiting a face. Faces of Voronoi diagrams
in the Euclidian space can be accounted as convex polygons, meaning its interior
angles must be less than 180 degrees [109].

Among the many features of DCELs, the concept of half-edges, faces and vertices
stand out. As a matter of fact, the complete implementation of a DCEL requires
that these three different structures be defined accordingly in the C++ code header,
as shown in Listing A.2.

Half-edges are utilized to assign orientations to the edges with no orientation in
undirected planar graphs. In doing so, they allow and support the usage of next
and previous pointers, as was the case with doubly linked lists. Each original edge
of the undirected graph is split into two half-edges with opposing orientations and
with the same length as the original edge [77, 81]. The specification of half-edge
orientations is accomplished by imposing the condition that the half-edges enclosing
a face form a closed counterclockwise directed path, see Fig. A.9. In other words,

88

A.3 Doubly-connected edge list (DCEL)

faces

edges

vertices

sites

half-edges

selected half-edge

next half-edge

previous half-edge

twin half-edge

Figure A.9.: Voronoi diagram with five sites (in red) and a hexagonal bounding
box. The half-edges, face and vertex associated via pointers with the selected
half-edge (in green) are highlighted with different colors. Observe that half-edges
delimiting a face always form a closed counterclockwise path. The only exception
to this is the half-edge path demarcating the bounding box, the ’outer face’, which
forms a clockwise path.

after a half-edge of any face of the DCEL is selected, one is able to reach any other
half-edge of that face by advancing enough steps via the next or previous half-edge
pointers at each half-edge node [77,81]. It is interesting to notice that if one moves
forward enough times by using next pointers in each node, the original half-edge
node can be selected multiple times. Conversely, the previous pointer allows one
to move along the same half-edge path, but in the clockwise direction. In order to
leave the half-edge path surrounding a face, one must resort to the twin pointer,
which points to the twin of that half-edge [77, 81]. As already stated, the twins
have the same length as the original edge but aim at opposing directions, meaning
that they posses different origin vertices. Moreover, each one belongs to a different
face. Pointers to both face and origin vertex nodes are stored on each half-edge node
(see Listing A.2), and since they are unique to every single half-edge, they allow the
program to distinguish half-edges, even twins [77, 81]. Note, that aside from the
pointers aformentioned, no data is in fact stored on half-edge nodes.

Faces also receive their own class due to their importance, as is the case with half-
edges. In general, in its defining struct, only a single pointer to any half-edge node
belonging to the face is stored [77,81]. In case the pointer does not link the face node
to the sought half-edge, one can simply resort to previous or next pointers. In our

89

Chapter A Appendix: Voronoi diagrams and the Nearest Neighbor search

Listing A.2: Possible DCEL data structure C++ implementation.
1 struct h a l f e d g e {
2 h a l f e d g e ∗next , ∗ prev , ∗ twin ; // p o i n t e r s to next , prev ious and twin h a l f e d g e s
3 ver tex ∗ o r i g i n ; // p o i n t e r to the o r i g i n v e r t e x o f t h i s h a l f e d g e
4 f a c e ∗ f ; // p o i n t e r to the face t h i s h a l f e d g e be longs to
5 h a l f e d g e () : next (0) , prev (0) , twin (0) , o r i g i n (0) , f (0) {} // h a l f e d g e

c o n s t r u c to r : a l l p o i n t e r s are f i r s t de f ined as n u l l to avoid
segmentat ion f a u l t i s s u e s

6 } ;
7
8 struct f a c e {
9 h a l f e d g e ∗ hedge ; // p o i n t e r to any h a l f e d g e o f t h i s face

10 po int s i t e ; // s i t e o f corresponding Voronoi face : not a requirement !
11 f a c e (h a l f e d g e ∗ edge) : hedge (edge) , s i t e (0 , 0) {}// face c o n s t r u c t o r : any

face edge can be prov ided when the new operator i s c a l l e d
12 } ;
13
14 struct ver tex {
15 po int o r i g i n ; // v e r t e x po in t coord ina te s
16 h a l f e d g e ∗ hedge ; // p o i n t e r to any h a l f e d g e emerging from t h i s v e r t e x
17 ver t (po int p) : o r i g i n (p) , hedge (0) {}// v e r t e x c o n s t r uc t o r : po in t p must be

prov ided when new operator i s c a l l e d
18 } ;

implementation of Voronoi diagrams, face nodes additionally keep the Voronoi site
coordinates which define the cell. That is done to subsequently simplify the point
location query algorithm, even though it is not a prerequisite to its implementation.

Finally, we discuss the vertices, the last of the three constituents, that, when com-
bined, form the DCEL. The vertices, as well as the faces and half-edges, are also
managed by a struct specified in the code header, see Listing A.2 [77, 81]. Vertex
nodes are the ones responsible for storing the Voronoi vertices coordinates, which
are, in reality, the only data, apart from pointers, maintained by the DCEL. Vertex
nodes are joined to the rest of the DCEL data structure through a single pointer
to any half-edge emerging from it, that is, any half-edge that possesses the vertex
as its origin in space [77, 81]. Observe that more than one half-edge can have the
same vertex as its origin. As a result, there can be many vertex pointer in different
half-edge nodes pointing to the same vertex node. The converse, however, is gen-
erally not true. Therefore, in order to select a half-edge node emerging from some
vertex, which is not pointed to by any pointer, one can use the following instruc-
tions: first, proceed to the half-edge stored in the vertex node, then move to the
previous half-edge node and finally reach for its twin half-edge. The vertex pointer
stored on the selected half-edge node points to the same orginal vertex. In case
the retrieved half-edge is not the one sought, the process can be repeated until the
desired half-edge is found. Thus, the apparent limitation of the data structure is
overcome. In a similar fashion, any other possible inquiry can be worked out with
an appropriate algorithm, due to the practical and convenient nature of the DCEL
data structure.

90

A.4 Voronoi diagram validation

A.4. Voronoi diagram validation

As discussed in Sec.A.1, a Voronoi diagram of a set S of sites possesses a collection
of properties which guide its construction. As a rule, a general planar graph does not
fit this restrictive number of characteristics. Consequently, if one were to manually
determine the corresponding Voronoi diagram of any set S it would be reasonable
and wise to perfom validity checks, to ascertain whether the produced diagram is in
fact the Voronoi diagram of that set. Visually, for a small set of sites it is easy to
observe whether the formed Voronoi diagram is at least plausible or not. For a large
number of sites, however, this qualitative method of validation becomes impractical.
Hence, a quantitative and easy-to-apply method of validation must be employed. As
a matter of fact, although, computationally, an error free Voronoi diagram output is
expected, implementation mistakes can lead to inacurracies, such as missing vertices
or edges, for instance. As a result, validity checking computer generated diagrams
is imperative to avoid obtaining unreliable results. Fortunately, to circumvent this
problem, it is possible to take advantadge of a theorem, which follows from the
Voronoi diagram definition.

Theorem 1. Let v be the number of vertices and e, the number of edges of a Voronoi
diagram with s sites over the plane. For diagrams with v ≥ 3, it always follows that
v ≤ 2s− 5 and that e ≤ 3s− 6 [81].

The proof, which can be found in most computational geometry textbooks [81, 82],
resorts to Euler’s formula for planar graphs, a well-known relation applicable to any
connected, finite planar graph, see Fig.A.8b. Finite graphs are bounded, i. e., all
edges are depicted as segments, as opposed to half-lines, e.g., the Voronoi diagram
of Fig.A.9. Euler’s formula states that:

v − e+ f = 2 (A.1)

where f is the number of faces in the graph, including the outer face [81]. That
relation can be shown to hold for any finite, connected graph through the following
reasoning: if the graph is not a tree-like graph, that is, f > 1 for that graph, remove
any edge completing a cycle from the graph; notice that when that is done, both
f and e decrease by 1 and, consequently, v − e + f remains constant; repeat the
process until only the outer face remains, i. e., a tree-like graph is produced (f = 1);
since e = v− 1 for all tree-like graphs, it immediately follows that v− e+ f = 2 for
any such graphs; as a result, the original graph complies with relation Eq. A.1 by
induction; finally, since no assumptions were made about the form of the original
graph, it follows the relation must hold for any finite, connected graph.
Considering that bounded Voronoi diagrams are finite, connected graphs, they, as
a consequence, satisfy Eq. A.1. It turns out that verifying whether the generated
Voronoi diagram obeys Euler’s formula is already a fast and effective validity check,
as f ,v and e can be readily obtained after DCEL construction. Nonetheless, Euler’s

91

Chapter A Appendix: Voronoi diagrams and the Nearest Neighbor search

formula is more general, while Theorem 1 invokes the following, more particular
property of Voronoi diagrams:

e ≥ 3
2(v + 1) (A.2)

it can be demonstrated that Voronoi diagrams always obey this result [81]. However,
in contrast to the Euler’s formula, relation Eq. A.2 cannot, in general, be applied
directly to a bounded diagram, since boundary vertices and edges only serve the pur-
pose of enclosing the diagram and do not stem from the Voronoi diagram properties.
Having excluded the boundary edges and vertices, some edges become half-lines. In
order to be able to apply relations Eq. A.1 and Eq. A.2 to the remaining diagram,
a vertex placed at infinity is conceived, where the half-line edges terminate, see
Fig.A.10. Provided this modification is made, it is straightforward to see that there
is a maximum to the number of edges in the diagram. As discussed in Sec.A.2.1,
every vertex is connected to at least 3 edges, including the vertex placed at infinity,
hence the v + 1 in Eq. A.2. Therefore, the minimum number of edges in Voronoi
diagrams must be 3(v + 1) divided by 2 so that each edge is not computed twice.
After all, each vertex is connected to at least 3 others through the edges. Finally,
Theorem 1, can be easily demonstrated substituting Eq. A.1 into Eq. A.2 and keep-
ing in mind that f is equal to s for a Voronoi diagram [81]. We must also consider
the fact that a vertex at infinity must be introduced (v → v+ 1), so Eq. A.1 can be
applied.

Figure A.10.: Unbounded Voronoi diagram with a vertex introduced at infinity
where the half-line edges terminate.

Recalling the considerations made at the beginning of this section, we stress that
every Voronoi diagram generated using the algorithm presented in Sec.A.2 was
validated using both Theorem 1 and Euler’s formula, before being utilized with
other purposes.

92

A.5 Point location, Voronoi diagrams and the Nearest-neighbor search

A.5. Point location, Voronoi diagrams and the
Nearest-neighbor search

In this section, we take the last step towards the implementation of a program
capable of solving the NN search problem with an optimal time complexity. To
accomplish that, a simple and quick point location algorithm is presented [78]. Once
the associated point location data structure is in place, it will provide us with the
capacity to carry out NN searches in O(lnn) time.
In computational geometry, point location refers to the problem of identifying which
partition a query point resides in, among the many partitions of a planar subdivision
[81]. When the planar subdivision is, in fact, a Voronoi diagram, point location
becomes an efficient and clear-cut method of performing NN searches, since all points
inside a face lie closer to its corresponding Voronoi site, as discussed in Sec.A.1.
Among the set of algorithms available that tackle the point location problem, the
easy-to-follow slab decomposition algorithm was the earliest to achieve optimal point
location search time, O(lnn) [78]. However, it falls short when comparared to
other more recent point location algorithms, such as the Kirkpatrick or trapezoidal
decomposition algorithms [111,115]. That is a result of the inefficient O(n2) memory
storage performance associated with the slab decomposition data structure, which
is in constrast to the optimal O(n) behavior of the latter algorithms. Nonetheless,
seeing that the search time behavior of the slab decomposition algorithm is optimal
and taking into account the fact we had a virtually unlimited memory pool at
our disposal, there was no reason to adopt a memory efficient algorithm which,
in contrast, entailed an ardous implementation. Therefore, due to its conceptual
simplicity and straightforward implementation, it turned out to be the preferred
one in this work.
The essence behind slab decomposition is the slicing of the planar subdivision into
several parallel slabs [78]. That is done so as to facilitate subsequent binary searches
based on the query coordinate normal to the sliced interfaces. Once the slab con-
taining the query point is identified, another binary search is performed to locate
which section of the slab encloses it, see Fig.A.11. Finally, after that section is
determined, the algorithm immeadiately traces the section back to one of the faces
of the planar subdivision, ultimately determining the query point location.
Notice that the slicing is performed by demanding that interfaces intersect each
vertex of the planar subdivision, see Fig.A.11. As a result, slabs widths are non-
uniform and no vertices reside within them. Moreover, partitions inside each slab
stem naturally from the presence of edges crossing them. The algorithm takes
advantadge of this fact by associating a binary search tree with each slab. Therefore,
by its very nature, the slab decomposition data structure can be understood as a
binary search tree of binary search trees. The first BST bases its search criterion
solely on one of the plane coordinates, e.g., the x coordinate in the case shown
in Fig.A.11, while the searches on slab BSTs must resort to both coordinates to

93

Chapter A Appendix: Voronoi diagrams and the Nearest Neighbor search

Figure A.11.: (a) Slab decomposition of the Voronoi diagram presented in Fig.A.1.
The slab, face and face section containing the query point are shown in a different
colors. The slab interfaces enclosing the highlighted slab are also stressed. (b)
Chart representing both binary search trees which enabled the identification of
the query point location. The path followed during the search down the trees
is indicated with arrows. The numbers inside the tree nodes do not represent
the actual coordinates. They are simply presented so as to facilite algorithm
understanding.

unequivocally locate the query point. For instance, examine the middle face sections
enclosed by interfaces 7 and 8 in Fig.A.11. Recognition that both the y and x
coordinates are needed is immediate.
The last tricky point when building the slab decomposition data structure is iden-
tifying which face of the planar subdivision contains the encountered slab section.
Pointers to planar graph faces are stored on the leaf nodes of the second-tier BSTs to
settle this problem. The faces, for instance, may be defined as a class, in accordance
with the DCEL data structure, as discussed in Sec.A.3. Once the face is found, the
search is over.
As for Voronoi diagrams, this concludes our discussion regarding its application to
the NN search. Finally, we analyze the search performance of the slab decomposition
algorithm. Considering that two binary searches are necessary to determine the
query point location and that binary searches are perfomed in O(lnn) time, it is
possible to conclude that search behavior of the algorithm itself is O(lnn). That
follows from the fact that proportionality constants are not explicit in the using the
big O notation [77,78,81].

94

B. Appendix: Computational Fluid
Dynamics - CFD

B.1. CFD Overview

Computational fluid dynamics is a field dedicated to solving the equations governing
fluid flow numerically [32, 33]. It offers many method to solve the equations and
powerful tools to the study of flows in a wide range of systems. The CFD approach
is particularly useful in engineering designs, since, very frequently, constructing
small models which scale the flows may be, at times, nearly impossible for real
systems, such as the flow around an aircraft or a ship [32]. Flow through porous
media is no exception [116]. Needless to say that creating physical models for porous
media, which mimics real systems can be a difficult problem, e.g., the modeling of
porous bed rocks to determine the petroleum flow [116,117]. Hence, employing CFD
techniques to porous media problems may be of great use.
The CFD approach, however, has its limitations. It is important to consider that
the obtained numerical solutions are ultimately approximations [32, 33]. In fact,
there are at least three types of approximations performed to solve the equations
numerically. The first type is related to the approximations and idealizations in
the equations that govern the flow. Examples are the mathematical model equa-
tions for incompressible, inviscid, potential or Stokes flows, or even the boundary
layer approximation [31–33]. The second category of approximations stems from
the discretization of the equations of the mathematical models over the mesh rep-
resenting the system [32, 33]. Generating a mesh is an essential procedure when
solving the equations numerically as it enables solution computation at a finite set
of nodes [31]. Solving the governing equations numerically would otherwise be im-
possible. Discretization methods and mesh properties will be discussed later in this
chapter. Finally, the last type of approximations originates from the use of iter-
ation methods to solve the discretized equations. Solving the algebraic equation
systems with direct methods is costly and generally pointless [32]. Errors due to
discretization are much larger than machine precision, leaving no reason to solve
the discretized equations that accurately [32]. These approximations, in general,
can be accounted for and treated. Defining appropriate criteria for solution con-
vergence, stability, equation consistency, conservation of physical quantities,
boundedness and accuracy of solutions helps estimate and minimize the impact
of systematic errors and ensure the validity of the solutions [32,33]. All things con-

95

Chapter B Appendix: Computational Fluid Dynamics - CFD

sidered, we have chosen to employ CFD to solve the problem of fluid flow through
the target applications, due to the great flexibility and simplicity that it provides.

B.1.1. OpenFOAM Overview

The CFD package used in this work was OpenFOAM, a powerful, free, open-source
CFD toolkit [89]. OpenFOAM has been successfuly employed to solve a variety of
problems relevant both to the industry and the scientific community [118–121]. It
offers many utilities, applications and tools for all three major steps that appear in
any CFD approach for solving fluid flow numerically: pre-processing, solving and
post-postprocessing [89], see Fig. B.1. Pre-processing involves geometry preparation
and mesh generation. The solving step encompasses the discretization of the gov-
erning equations and actual solving of the corresponding algebraic equation system.
Finally, the post-processing part covers the analysis of the results.

OpenFOAM CFD toolbox

Pre-processing
 utilities

Meshing
 tools

 Solver
applications ParaFoam

Pre-processing
 stage

 Solving
 stage

Post-processing
 stage

Figure B.1.: Different application categories OpenFOAM provides for each step of
the CFD process [89].

In this work, we have used pre-processing tools such as surfaceCheck to verify the va-
lidity of the .STL geometry files and snappyHexMesh for mesh generation. Moreover,
in the solving step we have employed a standard OpenFOAM solver application,
pimpleFOAM, and a user modified version of the same application. We highlight
that solver applications are codes provided within the OpenFOAM package and
they differ from the normal usage word solvers has in the context of CFD, refer to
methods used to solve the algebraic system of equations [32,89]. As a matter of fact,
solver applications can even use different solvers for each field [89]. Finally, it is also
important to stress that OpenFOAM solvers uses the finite volume (FV) method to
discretize the governing equations [89], which will be discussed in Sec. B.6. Regard-
ing the post-processing step, OpenFOAM provides the paraFoam tool to visualize
the solution and manipulate the data [89].

96

B.1 CFD Overview

B.1.2. Solving CFD problems using OpenFOAM

OpenFOAM is not provided with a graphical user interface (GUI) [89]. Aside from
paraFoam, which has a GUI, all other steps are generally run from the terminal.
Before running the commands, however, we set up a case with the directory structure
shown in Fig. B.2 in order to solve our problem in OpenFOAM 3.0.0. The most
important folders are the constant, the system and the 0 folder1 [89]. Many text
files must be included in each of these folders. They are important since they allow
the user to edit simulation parameters by modifying the text files.

0
Con

T
p

U

.c

.c

.c

.c

system
.c

.c

.c

.c

constant
triSurface

turbulenceProperties

.c

.c

venation1.stl

.c

.c

.c

.c

transportProperties

venation2.stl

main.stl
slab.stl

fvSchemes

blockMeshDict

controlDict

fvOptions

fvSolution

meshQualityDict

snappyHexMeshDict

surfaceFeatureExtractDict

.c

.c

.c

.c

case

Figure B.2.: Initial directory structure of each of our OpenFOAM cases.

In this work, the most important files employed in the pre-processing step are
the blockMeshDict, the surfaceFeatureExtractDict, the snappyHexMeshDict and the
MeshQualityDict dictionary files, all located in the system folder of the case, see
Fig. B.2. The solving phase uses other equally important dictionaries. Under the
system folder there are the fvSolution, fvSchemes, fvOptions and controlDict
dictionaries. They define solver and algorithm choices, discretization properties,
porous medium traits and important simulation features respectively. In the constant
folder, there are the transportProperties and turbulenceProperties, which allow the
user to set important material properties of the fluid and flow regime, which for our
problem was set to laminar, see Fig. B.2. Lastly, under the 0 folder, we specify the
boundary conditions (BCs) and initial conditions of the problem. Each field has its
own file, see Fig. B.2. The velocity field boundary conditions can be altered in the U
file while the pressure field boundary conditions may be modified editing the p file.
Additional fields will have their corresponding file. For instance, in this work, we
have included an additional scalar field which corresponds to reactant concentration.
Its corresponding BC file is Con, see Fig. B.2.

1The 0 folder is named after the initial time we chose. The initial time could be different though.

97

Chapter B Appendix: Computational Fluid Dynamics - CFD

A detailed explanation of the procedure necessary to set up a case, as well as a
description of each dictionary file and its parameters are out of the scope of this
text, but can be found in the OpenFOAM user guide [89]. Throughout this appendix
chapter, however, some of the most important aspects regarding solver and algorithm
choice will be discussed and additional features of some of the dictionary files will
be presented.
Lastly, we declare that the examples in the following sections were adapted from
material found in our references, mostly from Ferziger, Versteeg, Lomax or Pozrikidis
[32,33,90,91]. This was done in an attempt to make this review of the CFD approach
and the FV method as brief and comprehensive as possible.

B.2. Incompressible Navier-Stokes equations

In this section, in Sec. B.3 and Sec. B.4 we briefly describe the equations governing
the flow in the target applications of this work. Here, we offer a quick derivation
of the incompressible Navier-Stokes equations, which are central to most studies of
fluid flow.
The Navier-Stokes equations can be obtained by a careful analysis of conservation
of momentum acting on a fluid parcel moving along a streamline2. Although there
are other ways to derive the Navier-Stokes equations, we choose this method, which
can be found in Pozrikidis [91], due to its simplicity. We start the derivation by
observing that the rate of change of momentum of a fluid parcel dMp

dt
must be equal

to the surface and body forces acting on the fluid parcel, in agreement with Newton’s
second law,

dM p

dt
= F S + FB =

¨
Parcel

n · σdS +
˚

Parcel

ρgdV (B.1)

where σ · n is the traction f which is exerted on the surface of the fluid parcel,
while σ is the stress tensor. The unit vector n is normal to the surface of the parcel
and points outwards. Notice the only body force being considered is the one due to
gravity. The next step consists in rewriting the rhs of Eq. B.1 by recalling that the
momentum M p is

M p =
˚

Parcel

ρudV

Inserting the equation above into the rhs of Eq. B.1, we obtain,
2For definitions of what is a fluid parcel, control volume, streamline, traction and stress tensor
refer to [91].

98

B.2 Incompressible Navier-Stokes equations

dM p

dt
= d

dt

˚
Parcel

ρudV =
˚

Parcel

d(ρudV)
dt

We stress that the interchange between the time derivative and the volume integral
is possible since the time derivative in question is the total derivative. In other
words, we are using the Lagrangian approach, which follows the fluid parcel along
its trajectory. This approach takes into account any observable change in time of
parcel volume and is in contrast to the Eulerian approach, in which the study of the
flow is done by fixing control volume to a position [91]. By exploiting the simple
form of the conservation of mass in the Lagrangian formalism dδmp

dt
= d(ρdV)

dt
= 0,

which simply states that the mass of a fluid parcel cannot change in time, we obtain
the following:

dM p

dt
=
˚

Parcel

d(ρudV)
dt

=
˚

Parcel

(
ρ
du

dt
dV +ud(ρdV)

dt

)
=
˚

Parcel

ρ
du

dt
dV

Finally, we use the Gauss theorem to transform the surface integral of the traction
in Eq. B.1 into a volume integral. We are, then, allowed to express the conservation
of parcel momentum only in terms of volume integrals,

˚
Parcel

ρ
du

dt
dV =

˚
Parcel

∇ · σdV +
˚

Parcel

ρgdV

Since the volume of integration is arbitrary and the combined integrals yield zero,
it follows the integrand itself must be null. We, thus, retrieve a differential equation
known as Cauchy’s differential equation [91]:

ρ
du

dt
= ∇ · σ + ρg (B.2)

Expanding the total derivative of the velocity field u in terms of partial derivatives,
we derive an alternative form of Cauchy’s differential equation,

ρ
∂u

∂t
+ ρu · ∇u = ∇ · σ + ρg (B.3)

The stress tensor σ must be specified, so we can solve the equations above for a
particular case and obtain the evolution of the velocity field with respect to time and
spatial coordinates. The relations which specify the components of the stress tensor
σ are known as the constitutive relations for the fluid in question [91], since they
establish the way the fluid properties are modeled. The Navier-Stokes equations

99

Chapter B Appendix: Computational Fluid Dynamics - CFD

(NS equations) are retrieved by employing the Newtonian model for a viscous fluid
[91]. The components of σ for a Newtonian viscous fluid according to the Einstein
summation convention are:

σij = −pδij + µ

(
∂ui
∂xj

+ ∂uj
∂xi
− 2

3δij
∂uk
∂xk

)
(B.4)

where µ is the dynamic viscosity of the fluid and p is the static pressure exerted on
the parcel surface. If we take the fluid as being incompressible, then the condition
∇ · u = 0 must be satisfied. That follows from the continuity equation:

∂ρ

∂t
+∇ · j = ∂ρ

∂t
+∇·(ρu) = ∂ρ

∂t
+u · ∇ρ+ ρ∇ · u = dρ

dt
+ ρ∇ · u = 0 (B.5)

where j is the mass flux, and from the definition of an incompressible fluid as a
fluid which has its parcel volume conserved along the flow. From the conservation
of mass of the fluid parcel in the Lagrangian formalism, we obtain:

d(ρδV)
dt

= δV
dρ

dt
+ ρ

dδV

dt
= −ρδV∇ · u+ ρ

dδV

dt
= 0⇒∇ · u = 1

δV

dδV

dt

For this reason the divergence of the velocity field is also called expansion coefficient.
Since parcel volume is preserved for an incompressible fluid, the incompressibilty
condition takes the sought form:

∇ · u = 0 (B.6)

In other words, the density ρ of the fluid parcel remains constant as it is convected
in a flow. Naturally, that occurs because we are dealing with an incompressible
fluid. Using this condition, we can compute the divergence of the stress tensor of a
Newtonian fluid with uniform viscosity and retrieve:

∇ · σ = −∇p+ µ∇2u

Combining this result with Eq. B.3, we find the NS equations for an incompressible
fluid in the Eulerian form [91]:

ρ
∂u

∂t
+ ρu · ∇u = −∇p+ µ∇2u+ ρg (B.7)

We can rewrite the advection term in the above equation, using the continuity
equation for incompressible flows ∇ · u = 0 as

u · ∇u =∇·(uu)− (∇ · u)u =∇·(uu)

100

B.3 Transport equation

In its integral form, the NS equations may then be written as [31]:

∂

∂t

˚

V

ρudV +
¨

S

(ρuu · dS) = −
¨

S

σ· dS +
˚

V

ρgdV (B.8)

where the stress tensor σ takes the form of Eq. B.4, and V and S represent the
volume and surface of the fluid parcel.
The incompressible Navier-Stokes equations along with the continuity equation and
an energy conservation equation are sufficient to determine many types of flows,
ranging from laminar to turbulent regimes [91]. That occurs whenever the incom-
pressibilty assumption is valid, which is usually the case for liquids. The set of
equations are non-linear due to the advective term. Hence, turbulent flow tends to
occur whenever the advective term ρu · ∇u is much greater than the vicous term
µ∇2u [31, 91]. In fact, a method to analyse when the flow transitions from the
laminar to the turbulent regime is to simply observe the ratio between the advective
term and the viscous term. When the typical dimensions of the problem are used
this ratio becomes the widely known Reynolds number [31,91]:

ρu · ∇u
µ∇2u

⇒ ρU2L2

µLU
= ρUL

µ
= Re (B.9)

where U and L are the typical velocities and length scale of the flow problem. Many
flow types can be estimated by determining the Reynolds number Re [31, 32, 91].
For instance, the Reynolds number is important in engineering designs. In order to
simulate a real scale flow with a small model, the Re in the small model must match
the Re of the normal scale flow [32]. Typically, the transition between the laminar
and turbulent regime occurs when 103 < Re < 104. In the target applications
considered in this project the Re is much lower than 103. Hence, we will be working
in the laminar regime [31].
As a last remark, we highlight that the Navier-Stokes equations provide us with an
accurate mathematical model, which can account for and describe real flows. How-
ever, for turbulent flows, two-phase flows, combustion etc., the difference between
the actual flow and the behavior predicted by the mathematical models, the model-
ing error, may be very large, resulting in a qualitatively wrong solution. Fortunately,
in the laminar regime these errors are neglibible [32].

B.3. Transport equation

In order to study the transport of a scalar field φ, which can be a measure of reactant
concentration, for instance, we must make sure that the field satisfies the transport

101

Chapter B Appendix: Computational Fluid Dynamics - CFD

equation given below [31]:

∂(φ)
∂t

+∇·(uφ) =∇·(D∇φ) + qφ (B.10)

where ρ is the density of the fluid, D is the diffusion coefficient and qφ is a source
term, which can account for sources and sinks in the system. This relation allows
the evolution of φ in time to be determined. We may rewrite the above equation as:

∂(φ)
∂t

+ u · ∇(φ) + φ∇ · u =∇·(D∇φ) + qφ

Considering the diffusivity D as constant and the fluid as incompressible, we may
write:

∂φ

∂t
+ u · ∇φ = D∇2φ+ qφ (B.11)

The main properties of the transport are the advection, represented by the second
term on the left side, which is a measure of the tendency of φ to be transported along
the flow and the diffusion transport, accounted for by the first term on the right
side. The diffusion coefficient D is a property of the medium but it also depends
on the geometrical features of the colloids which are being diffused. The famous
Stokes-Einstein-Sutherland equation allows one to estimate D for spherical particles
by knowing their radius r and the viscosity µ of the fluid [122]:

D = kBT

6πµr (B.12)

where kB is Boltzmann constant and T is the thermodynamic temperature. The
theoretical estimate of the effective diffusion coefficient Deff in a porous medium is
an even more complex problem. It involves properties such as the porosity, per-
meability, tortuosity and etc. which are in general very hard to predict. Hence,
the determination of Deff of porous media is in most cases made empirically using
methods such as fluorescence correlation spectroscopy (FCS) or nuclear magnetic
ressonance (NMR) microscopy [123], for example.
In OpenFOAM, the transport equation is solved using a scalarTransport algorithm
[89], always after the momentum equations are solved at that time step [33].

B.4. Darcy-Brinkman equation for porous media

In a previous section, we have discussed the incompressible Navier-Stokes equations.
With these equations, the appropriate boundary conditions and the continuity equa-
tion, it is possible to determine a wide range of flows. In the case of the geometries

102

B.4 Darcy-Brinkman equation for porous media

solid phase σ

fluid phase β

Figure B.3.: Representation of a porous media cross-section. The fluid phase is in
white, while the solid phase is in gray.

discussed in Chapter 2, it is possible to simulate the flow within the channels using
them. Inside the porous medium, on the other hand, the situation calls for greater
attention.
A porous medium is a complex structure comprising, in general, a solid phase σ
and at least one fluid phase β, see Fig. B.3 [116]. The fluid phases reside inside
the pores, which are the void spaces whose volume will be called Vβ when the fluid
phases completely fill the pores. Naturally, flow occurs through these spaces. The
volume of the solid phase, on the other hand, is Vσ. That said, in principle, it
is possible to determine the flow through a porous medium using the momentum
and continuity equations and the appropriate boundary conditions [116]. In fact,
this is one of approaches used to model porous media. It is called direct numerical
simulation (DNS) and has been employed successfully in some fields [116]. For in-
stance, in the petroleum industry, rock samples from oil reservoir can be extracted
from the ocean floor and their structure can be determined in high resolution using
techniques such as X-ray computed microtomography [124]. DNS is then possible
since the boundary conditions are known. The greatest drawback of DNS is that
the boundary conditions tend to be extremely complex [116]. Solving such prob-
lems using CFD demands a very fine mesh, which, in turn, requires considerable
computing power. Solving the flow through very large samples is simply unfeasible.
To make matters worse, the boundary conditions may even depend on time, mak-
ing the solving process even more cumbersome. Sometimes solving the flow with a
high degree of detail is completely unnecessary or even undesirable. In these cases,
another approach has to be used.
The alternative is to use a macroscopic approach [116]. The quantities of interest
such as the velocity and pressure fields are averaged according to the Representative
Elementary Volume (REV) appropriate to the problem. The details of the complex
structure of the pores, that is, the internal geometry features of the porous medium
and the associated boundary conditions can then be disregarded [116]. That makes

103

Chapter B Appendix: Computational Fluid Dynamics - CFD

the solving process much more straighforward. The boundary conditions are enor-
mously simplified. For instance, specifying the boundary conditions at inlet, oulet
and the system walls, together with the continuity of the fields at the interface be-
tween the channels and the porous media are enough to solve the problems in this
work. The difference is that the fields determined are macroscopic fields, in other
words, they are averaged fields and do not contain any local details of the flow in
the actual medium.
When the averaging procedure is performed an additional term naturally arises in
the governing equations for the macroscopic fields. In order to see this observe
the following. For a Stokes flow, the governing equations for the local fields are
[31,32,91,116]:∇ · v = 0 in Vβ

−∇p+ ρg + µ∇2v = 0 in Vβ
(B.13)

where these equations govern the flow that occurs in the β phase. It can be shown
that when the Stokes equations are averaged, the following equation is retrieved
[116]:

−∇〈p〉β + ρg + µ∗∇2 〈v〉 − µK−1 · 〈v〉 = 0 (B.14)

where the average operator 〈.〉 is the average of the field over the control volume of
volume V , e.g., 〈φ〉 = 1

V

´
vβ
φdV , where µ∗ is an effective viscosity, where K−1 is the

inverse of the permeability tensor and where 〈.〉β obeys the following relation:

〈φ〉 = ε 〈φ〉β (B.15)

where ε is the volume ratio between the void spaces and the total volume ε = Vβ
V
,

which is also known as the porosity, a property that varies from one porous medium
to another [117]. Equation Eq. B.14 is known as the Darcy-Brinkman equation [116].
It was proposed by Brinkman [125], who used a theoretical approach to determine
it. Moreover, it is closely related to the Darcy equation, which was formulated by
Henri Darcy in 1856 on the basis of empirical evidence [126]:

〈v〉 = −K
µ
·
(
∇〈p〉β − ρg

)
(B.16)

whereK is the permeability tensor, which is a property specific to the porous medium
one is working with [117]. Although there are theoretical models that can be used to
calculate the permeability K and the porosity ε [127], these are limited, sometimes
even producing inaccurate results [128]. Due to this reason, these material properties
are usually determined experimentally as was the case with the effective diffusion
coefficient Deff [123], discussed in Sec. B.3.

104

B.4 Darcy-Brinkman equation for porous media

The extra term which appears in Eq. B.14, µ∗∇2 〈v〉, is often negligible in magnitude
when compared to the Darcy term µK−1 · 〈v〉 [116], as was the case for the flow
through beds of sand measured by Darcy. The extra term, which is, in fact, the
vicous term that appears in the NS equations with a modified viscosity, is related
to the drag forces that arise when one layer of fluid moves in relation to another. In
contrast, the Darcy term has to do with the drag forces due to the viscous friction
at the interface between the fluid and solid phases of the medium [116]. These
forces can, in general, slow down the flow considerably. The greater the interface
area between the solid and fluid phases, the greater the Darcy term becomes in
comparison to the viscous term. In commom porous media, the interface area tends
to be large and, more often than not, it is possible to disregard the viscous term to
a first approximation.
In OpenFOAM, the porous media is modelled by including a source term in the
Navier-Stokes equations [129]:

∂u

∂t
+ u · ∇u = −∇p′ + ν∇2u+ g + S (B.17)

where ν is the kinematic viscosity, p′ is the pressure divided by the fluid densisty ρ
and S is a source term given by the following equation:

S =
(
νd+ 1

2f |v|
)
·v (B.18)

where both d and f are tensors of the porous medium which are defined in a local
set of coordinates. The tensor d is related to the Darcy term, while f is related
to the Forchheimer term, which is only siginificant for flows with greater velocities,
where the inertial terms play a greater role. Hence, in our case, we consider f
as null. Moreover, in the case of a homogeneous porous medium, which is the
case of our study, the tensor d becomes a constant, d. We can then relate it to
the permeability of the homogeneous medium k, which, naturally, is also constant
through the following relation:

d = 1
k

(B.19)

Hence, the incompressible Navier-Stokes equations in the porous medium becomes:

∂u

∂t
+ u · ∇u = −∇p′ + ν∇2u+ g + ν

k
v (B.20)

where the Darcy term now becomes evident. Except for the inertial terms, the terms
in Eq. B.20 have a counterpart in Eq. B.14. These terms do not appear in Eq. B.14
because we had initially considered a creeping flow. Although the advective terms

105

Chapter B Appendix: Computational Fluid Dynamics - CFD

appear in Eq. B.20 even inside the porous medium, the terms on the right side
dominate the flow and we retrieve Eq. B.14. Additionally, Eq. B.20 can account for
transient problems as well due to the transient term on the left side, a trait which
benefits us. Inside the channels, on the other hand, d is null and the laminar flow
can be determined with the unmodified NS equations.
Finally, one must bear in mind that the velocity and pressure fields that appear in
Eq. B.20 are locally averaged [127], that is, we are favoring the macroscopic approach
over the DNS approach. At last, all that is required for the solving procedure to
start are the boundary conditions. At the interface between the porous medium and
the channels they are the continuity of the velocity and pressure fields as well as the
continuity of the stress tensor [127]. Although that is an approximation, as there is
no pressure jump, the approach can be considered as valid [127]. In OpenFOAM,
the porous medium properties, such as the d and f tensors, can be assigned to a
region of the mesh, or cellZone, by setting up a fvOptions dictionary in the system
folder of the case [129].

B.5. Meshes

Meshes or grids define discrete locations where the variables, that is, the unknown
field values, must be computed [32]. Hence, they make possible the partitioning of
the geometric domain of some target problem. That is important as this allow for
discretization of the governing equations, making them solvable numerically. Each
point location of the mesh, the nodes, can be associated with some subdomain of
the space, a cell [32]. In the finite volume approach, the nodal points are associated
with the center of mass of the control volumes, in other words, the cells are the
CVs [32]. In order for the mesh to be considered valid, it must satisfy different
levels of constraints, which are imposed on the points, edges, faces and cells [32].
Presenting the criteria for mesh validity, in particular, mesh validity in OpenFOAM,
is out of the scope of this text, but a thorough explanation may be found in the user
manual [89]. Here, we only stress that mesh treatment in OpenFOAM is very robust
and general and that it can account for cells of arbitrary shape with an unlimited
arbitrary number of polygonal faces [89]. Next, we discuss additional properties of
the meshes, which influence how a geometrical domain is represented.

B.5.1. Orthogonal and Non-orthogonal meshes

An important trait of the mesh, which influences the overall discretization process,
is whether the cells of the mesh are orthogonal or not [32]. There are different
definitions of orthogonality. Here, we consider that two cells are orthogonal with
respect to each other if the line connecting two nodes inside them is parallel to
the vector normal to the face dividing the cells [32]. In contrast, if the line is not

106

B.5 Meshes

parallel to the face normal, the cells are considered non-orthonal. Following this
definition, the mesh is considered orthogonal if all cells are orthogonal with respect
to their neighbors and non-orthongal otherwise. For instance, cartesian grids are
orthogonal, see Fig. B.5, while the meshes shown in Fig. B.4 are not. Although the
treatment of non-orthogonal meshes is more cumbersome, they do a much better
job at accurately representing the complex geometries generated [32]. Therefore, all
of the meshes generated in this work using OpenFOAM tools are non-orthogonal.
Fortunately, OpenFOAM is equipped not only to generate these meshes with tools
such as snappyHexMesh, but to treat these arbitrary meshes efficiently [89].

B.5.2. Structured, Block-Structured and Unstructured meshes

(i,j)

(i,j+1)

(i-1,j)

ba

(i,j-1)
(i+1,j)

Figure B.4.: Structured (a) and unstructured (b) non-orthogonal meshes.

Meshes can also be classified according to another property. In order to understand
what that property is, first observe that some meshes can be depicted by families
of lines running from one end of the mesh to the other [32]. Such meshes may
possess a property dictating that all lines, members of one family, cross members
of another family only once, while not crossing a member of the same family even
once, see Fig. B.4a. The meshes that possess this property are called structured.
This trait allows for the nodes to be uniquely identified according to their position
within the domain by a number of indices which equals the number of dimensions of
the problem, that is, (i, j) for 2D or (i, j, k) for 3D. This ability makes representing
these meshes numerically a straightforward task. The downside is that meshes with
this property, in general, are not ideal for representing complex geometries.
A second possibility, which can account for more complex geometries, are block-
structured meshes. These are simply various structured meshes, representing do-
mains of the geometry, which are assembled to represent the system. This addi-
tional partitioning allows for a critical domain of the geometry to be represented
with additional detail, improving the overall efficiency with which the computational

107

Chapter B Appendix: Computational Fluid Dynamics - CFD

resources are used. Inside each domain, the mesh is treated as structured. Only at
the interfaces between the different domains, some care must be taken. Frequently,
the benefits of this type of mesh out-weigh this drawback [32]. OpenFOAM offers the
blockMesh utility, with which the user may generate structured and block-structured
meshes [89].

Finally, the most arbitrary type of mesh, which can represent complex geometries
with an even greater accuracy, is the unstructured mesh, see Fig. B.4b. Nodes cannot
be recovered using a simple set of indices and, thus, more complex data structures
must be employed to manage the mesh. This type of mesh can be employed with
finite volume schemes without major problems [32]. OpenFOAM, a CFD package
which uses the finite volume approach, has all of the built-in functions necessary to
deal with these meshes [89]. In fact, it even provides the snappyHexMesh utility, a
mesh generating tool which can create unstructured meshes from CAD geometries
[89].

B.5.3. Collocated and Staggered arrengements

Another aspect of the meshes we must analyze is whether we choose to store all
field variables at the same nodes or not. In particular, that is important when
discretizing the momentum equations. In case we store all field variables at the
same nodal points, the mesh is called collocated [32,33]. Although collocated meshes
are simple, they have some disadvantages. For instance, difficulties with velocity-
pressure coupling arise in collocated arrengments [32, 33]. Oscillations in pressure
can also occur. Finally, highly non-uniform pressure fields can act as uniform [33].
Part of the reason is that in order to estimate the pressure gradient at a given node
using the central differencing scheme, pressure values will have to be previously
interpolated to the CV faces [33]. Information about the non-uniformity of the field
is generally lost in the process. A detailed discussion of how this occurs is given in
Versteeg Chapter 6 [33]. Collocated arrengements, however, offer some advantages
when dealing with complex geometries which use non-orthogonal meshes. It gained
popularity when better pressure-velocity coupling algorithms, discussed in Sec. B.7,
were developed in the 1980’s [32]. Meshes in OpenFOAM employ the collocated
arrengement.

Alternatively, it is possible, for instance, to store the components of velocity values
at the cell face centers instead, while continuing to store the pressure field values at
the CV center nodes. Now, to compute the pressure gradient at the velocity nodes,
interpolation of pressure is not required [33]. This arrengement is called staggered
and it offers a great advantadge, which is the strong coupling between the velocity
and pressure fields [32,33]. The problem of evening out the non-uniform pressure is
eliminated in this configuration. On the other hand, when this arrengement is used
to deal with complex non-orthogonal meshes, curvature terms which are troublesome
to treat numarically arise [32]. This may cause undesired non-conservative errors.

108

B.6 Finite Volume Methods

Hence, this approach lost some popularity in the 80’s when the improved pressure-
velocity coupling algorithms were developed [32].

B.5.4. Convergence criterion

Here we discuss one final aspect. Naturally, when creating a mesh, the finer the mesh
representing a system is, the greater the computational effort required to solve the
problem. Additionally, as one would guess, the mesh choice has an influence over the
solution [32]. For instance, the solution depends on mesh refinement. The solution
on a coarse mesh usually differs from the solution on a finer mesh representing the
same problem. However, if the numerical experiments are performed on meshes
with successive levels of refinement for a linear problem, one generally finds that the
solution converges to a mesh-independent solution if the numerical method used the
problem is stable and consistent [32]. Finding the mesh-independent solution is
therefore related to this convergence problem, being part of the result validation
procedure [32]. As a rule, care must be taken, as bad choices of mesh can lead to
innacurate results [32, 127].

B.6. Finite Volume Methods

The main trait of finite-volume discretization methods is that they stem from the
integral form of the governing equations, see, for instance, Eq. B.8 [31–33]. Although
finite volume discretization methods have some drawbacks, they offer two great ad-
vantadges over the finite difference and finite element discretization approaches. The
first advantadge has to do with the conservation of physical quantities. Naturally,
the governing equations are in their differential are conservative. That may not
the case for the discretized equations [32]. The FV discretization method, however,
is conservative by construction and conservation is generally assured as long as the
fluxes through the faces of adjacent CVs are identical [32,90]. The second advantadge
refers to coordinate transformations. Generally, employing coordinate transforma-
tions is necessary when irregular meshes are used. Again, that is not required when
the FV formulation is employed, making straightforward the process of applying FV
methods to unstructured meshes consisting of arbitrary polyhedra [90]. Hence, it is
not surprising to learn that the OpenFOAM package is able to handle any type of
polyhedra, since the discretization method used by it is the FV formulation [89].
In the FV formulation, computational nodes are assigned to the center of each CV in
the mesh [32]. The integrals in the governing equations are then computed in terms
of the field values at these nodes. Whenever field values at points other than the
mesh nodes are needed, they are determined using an interpolation method. Hence,
one of the drawbacks of the FV approach is that it has three levels of approximation:
differentiation, integration and interpolation [32]. In this section, we discuss, to some

109

Chapter B Appendix: Computational Fluid Dynamics - CFD

extent, schemes for each of these three levels of approximation. In particular, we
present some of the schemes used to solve the flow in the target applications of this
work.

B.6.1. Methods for approximating the integrals

As discussed above, in order to solve the integral governing equations numerically,
the volume and surface integrals must be approximated in terms of the field val-
ues at the mesh nodes. Initially, we discuss the simplest approximation for the
surface integral over the faces of a CV in a Cartesian 2D grid, see Fig. B.5. The
generalization for 3D non-orthogonal and unstrutured meshes can be encountered in
Ferziger [32]. Next, we offer another simple approximation for the volume integral
over a CV. The approximation methods presented for both the surface and volume
integrals are second-order schemes.

A B

D

E

C face

Figure B.5.: 2D Cartesian mesh. The nodes in black store the field values of
the CV. Nodes in red correspond to the field values calculated at the faces via
interpolation.

A surface integral for a CV contaning N faces can be written as
ˆ
S

fdS =
N∑
k

ˆ
Sk

fdS =
N∑
k

Fk

where f is the component normal to the faces of the CV in the integrands of any
surface integrals, such as the advection and stress tensor surface integrals in Eq. B.8.
Next, the integrals over each face that appear in the sum must be approximated.
The simplest approximation is the midpoint rule. In this approximation, the integral
over the face is taken as the product of the face area and the value of the integrand

110

B.6 Finite Volume Methods

at the center fk [32]. Notice that, in fact, it is the mean value of the integrand fk
over the face that is being approximated for the value at the face center fk. This
leads to:

Fk =
ˆ
Sk

fdS = fkSk ≈ fkSk (B.21)

Naturally, the value fk is not initially known and must be approximated employing
some interpolation method which uses the values of f at the CVs center [32]. Observe
that the interpolation method must also have second order-accuracy so that the
overall approximation may be considered a second-order scheme [32].
The approximation employed to compute the volume integrals over the CV volumes
is even simpler. The integral of a source term q over a CV volume ∆V , for instance,
is approximated as the product of the source term at the center of the CV and
∆V . Observe that, in this approximation method, the mean value of q over the CV
volume is being approximated by the value of q at the center of the CV [32]. Thus,

Q =
ˆ
V

qdV = q∆V ≈ qcenter∆V

where Q is a volume integral term over any CV volume and qcenter is the value of q
at the center of the CV. This time, the values of the source terms qcenter are already
available at the mesh nodes and do not need to be interpolated. In higher-order
schemes, however, that is not the case. A discussion on higher-order schemes is of
no interest here since they were not employed in our work. The approximations
schemes presented here already provide a good compromise between accuracy and
efficiency [32]. In particular, they are excellent for complex geometries. Finally, note
that only the principles of the approximations schemes are being presented. Here,
these schemes are shown in the context of an orthogonal mesh, although they still
apply even when non-orthogonal or arbitrary unstructured meshes are used. When
they are used for such meshes, care must be taken, since there are many additional
features which were not described here which are out of the scope of this text. A
detailed discussion on this topic, however, may be found in textbooks on CFD [32].

B.6.2. Interpolation methods

Interpolation is necessary when computing field values at points other than the CV
centers [32,33,91]. It becomes specially important when computing the contribution
to the flux of a surface integral term over a CV face, see Sec. B.6.1. Nevertheless,
interpolation may also be necessary depending on the approximation scheme used to
compute the volume integrals. In this section, we present two simple interpolation
methods. Both were used in this work and are widely employed in CFD.
In order to understand both schemes, imagine we seek the value φface of a scalar
field φ at the face dividing the CV A from CV B, see Fig. B.5. The field values at

111

Chapter B Appendix: Computational Fluid Dynamics - CFD

the CV centers φA and φB are known here as well as the velocity field v at the face.
The first method we analyze is known as the upwind interpolation [32], given by the
following equation:

φface =
φA if (v · n)face > 0;
φB if (v · n)face < 0.

(B.22)

where n is the unit vector normal to the CV A pointing towards the CV B. Notice
that this method approximates the value at the face by the upstream value: if the
flow is leaving CV A, φface is approximated to φA and vice-versa. The value of
the velocity field v was assumed known here, but in practice it must be computed
as well. In a collocated arrengement, such as the one used by OpenFOAM, each
velocity component must be interpolated at the cell center.
The second interpolation method that can be employed to find the field value φface
is the linear interpolation. Again the interpolation is performed between values at
the center of the CVs which the face connects. In the case of Fig. B.5, for instance,
one may compute the value φface using the linear interpolation scheme with the
following formula:

φface = αfaceφA + (1− αface)φB (B.23)

where the coefficient αface is given by:

αface = xface − xA
xB − xA

Other interpolation methods are discussed thoroughly on the references [32]. Gen-
eralizations of the methods discussed above for non-orthogonal meshes are out of
the scope of this text but can be found in Ferziger [32].

B.6.3. Truncation and discretization errors

We analyze here the truncation and discretization errors associated with the approx-
imation schemes. The upwind interpolation is a first-order scheme, while the linear
interpolation has a second-order accuracy. This is easily demonstrated for the case
shown in Fig. B.5. We analyze the upwind interpolation scheme first. To do so, we
take the velocity field direction at the face as (v · n)face > 0 and expand the field
φface about the node a using a Taylor series:

φface = φa + (∆x)
(
∂φ

∂x

)
a

+ (∆x)2
(
∂2φ

∂x2

)
a

+O((∆x)3) (B.24)

where ∆x, which, in fact, is xface − xa, can be taken as a measure of the mesh
spacing [33]. Moreover, O ((∆x)3) represents terms of higher order. When compar-
ing equations Eq. B.22 and Eq. B.24, we see that the lowest order term we throw

112

B.6 Finite Volume Methods

away is the first order term. That is the reason why the upwind scheme is a first
order scheme [33]. The terms thrown away, the truncated terms, are reponsible for
the error associated with the approximation, known as the truncation error [32,33].
Naturally, the lower the value of the mesh spacing ∆x, that is, the more refined the
mesh is, the lower the truncation error tends to be if the discretization method is
consistent [32, 33]. Hence, it is seems wise to refine the mesh as much as possible.
On the other hand, hardware limitations impose a restriction on refinement. Ideally,
it is desirable to analyze the convergence and determine the mesh-independent so-
lution [32]. In order to do so, we can estimate the the discretization errors, which
are the difference between exact solution of the differential and the exact solution
difference equation generated for a given mesh [32]. The discretization errors tend
to zero as the mesh spacing goes to zero if the numerical method is convergent [32].
Analizing the convergence is part of the validation procedure and, in general, that
is done by computing the solution first on a coarser mesh and subsequently refining
the mesh [32,127].
Another more general way to look at the truncation and discretization errors is in
the following. We express, for instance, the transport equation for a scalar field φ
in the form [32]:

L(φ) = Lmesh(φ) + τmesh = 0 (B.25)

Here the operator L represents the differential equation, Lmesh is the operator asso-
ciated with the discretized equation in a particular mesh, now a difference equation,
and where τmesh is the truncation error. We see that τmesh is the difference between
the differential and the difference equations. It considers, of course, contributions
from all approximations done during the discretization procedure. Notice that the
scalar field φ here is the exact solution of the differential equation. The exact so-
lution of the difference equation φmesh, on the other hand, satisfies the following
equation:

Lmesh(φmesh) = 0

The relation between φ and φmesh can be expressed as:
φ = φmesh + εmesh (B.26)

where εmesh is the discretization error. More details on truncation and dicretization
errors, as well as the validation procedure may be found in many CFD textbooks
[32,33].

B.6.4. Discretization of the diffusion equation

The general transport equation for the scalar field φ in its differential form is given
by the following expression [32,33]:

∂(ρφ)
∂t

+∇·(ρuφ) =∇·(D∇φ) + qφ (B.27)

113

Chapter B Appendix: Computational Fluid Dynamics - CFD

where ρ is the density of the fluid, D is the diffusion coefficient and qφ represents
sources and sinks of the scalar φ in the CV. The first term on the left side, the one
responsible for the time evolution of φ, is the transient term, w̧hile the second one
is the advective term, which accounts for the transport of φ along the flow. For
the sake of simplicity, following an example from Versteeg [33], we neglect both of
these terms and consider the simplest transport process possible: pure diffusion in
the steady state. The diffusion process, which is accounted for the first term on the
right side, is given by the following equation:

∇·(D∇φ) + qφ = 0 (B.28)

The equation above is always valid when describing the transport of φ at any given
point. When working with CFD, however, we discretize the space by generating a
mesh. For FV methods, in particular, we are interested in the integral form of the
Eq. B.28 over the CVs of the mesh. Equation Eq. B.28 then becomes:ˆ

CV

∇· (D∇φ)dV +
ˆ

CV

qφdV =
ˆ

A

n· (D∇φ)dS +
ˆ

CV

qφdV = 0 (B.29)

where A is the closed surface of the CV. The problem then consists in obtaining the
solution for a set with N of coupled integral equations, where N is the number of
CVs in the mesh [33]. Naturally, the boundary conditions must be provided. In this
case, the PDE is elliptical, meaning that either Dirichilet or Neumann boundary
conditions must be specified along the closed surface encompassing the system, see
Tab. 1.2. Finally, in order to solve the integral equations numerically, we can resort
to the approximation methods discussed in Sec. B.6.1 and Sec. B.6.2. The gradient
at the faces of the mesh is usually approximated using central differencing, which is
simply a linear interpolation [33]. For the 1D problem, see Fig. B.6, extracted from
Versteeg [33], Eq. B.29 becomes, when applied to the CV P :

ˆ

A

d

dx

(
D
dφ

dx

)
dS +

ˆ

CV

qφdV =
(
DA

dφ

dx

)
e

−
(
DA

dφ

dx

)
w

+ q∆V = 0 (B.30)

P EW x

Figure B.6.: 1D mesh utilized to obtain a numerical solution for the 1D diffusion
problem.

In case D varies along the mesh, the values of the diffusion coefficient at the faces
can be averaged using the values at the nodal points v:

Dw = DW +DP

2

114

B.6 Finite Volume Methods

De = DP +DE

2

The gradients are evaluated using central differencing as [33]:(
DA

dφ

dx

)
e

= DeAe

(
φE − φP
δxPE

)
(
DA

dφ

dx

)
w

= DwAw

(
φP − φW
δxWP

)

The source term can depend on φ in many situations. In these cases, the FV
method usually approximates the term by using a source model with the following
linear form [33]:

q∆V = qP + q′PφP

We may then insert these expressions back into Eq. B.30, rearrange the terms and
retrieve the following algebraic equation [33]:

aPφP = aWφW + aEφE + qP (B.31)

where:

aW aE aP

Dw
δxWP

Aw
De
δxPE

Ae aW + aE − q′P

We may rewrite equation Eq. B.31 as:

aPφP +
∑
l

alφl = qP (B.32)

where the sum runs over the neighbor nodal points of P and the coefficients al in-
corporate the minus sign [33]. The node P and its neighbors form the computational
molecule, which may be generalized to 2 and 3 dimensions [32].
After discretizing all N integral equations, we see that this approach yields a system
of N algebraic equations, one for each CV of the mesh. In this case, in which we treat
a diffusion problem, the governing equation is linear and the discretization process
clearly produces a linear system of algebraic equations, that is, the coefficients a
and the source term q do not depend on the unknowns. Here, the unknowns are
the nodal values of the scalar field φ. The linear sytem may then be written in the
matrix form as:

AΦ = Q (B.33)

115

Chapter B Appendix: Computational Fluid Dynamics - CFD

For the one-dimensional structured mesh of the preceeding diffusion problem and
its corresponding computational molecule, we may choose to write the matrix A in
a tridiagonal form [32] whereas for the problems in 2 or 3 dimensions, which require
the use of some type of 2D or 3D computational molecule, A adopts other forms.
For structured meshes A has a banded structure [32] while for unstructured meshes,
which are used to represent complex geometries, that is not the case. In all cases,
A is sparse and techniques which exploit this trait are generally employed in order
to save computer memory [32].
Finally, we stress that most of the work in CFD revolves around solving equations
of form given in equations Eq. B.32 and Eq. B.33. There are many methods which
can be used to solve a linear system of equations [32]. Solvers with either a direct
or iterative approach may be employed [32]. When dealing with a more general
non-linear problem, such as the one described by the NS-equations, only iterative
approaches are employed, as the coeffiecients and source terms may depend on
the unknown variables [32]. Moreover, when using unstructured meshes, different
iterative solvers must be used. Later in this appendix chapter, we will sketch out
the main concepts behind iterative methods.
As a last remark, we stress that the approximation techniques used in this section
to discretize the diffusion equation, the midpoint rule, the central difference ap-
proximation and linear interpolation are often the best option when dealing with
unstructured meshes with CVs of an arbitrary number of faces, as they offer a good
compromise between accuracy and efficiency, generality and simplicity [32]. Hence,
these discretization schemes have been selected to solve the transport in the ge-
ometries of this work. OpenFOAM allows the user to chose between the different
discretization schemes in the fvSchemes dictinary located in the system folder of
the case [89].

B.6.5. Explicit vs. Implicit methods and Stability

Up until now, we have only analyzed the steady problem governed by Eq. B.28.
In this subsection, we will briefly inspect fundamental traits of unsteady problems
which will be important when discussing the algorithms used to solve the momentum
equations. Moreover, we will offer a very concise introduction to stability analysis.
Again, if a more thorough explanation is sought, it can be found in some of the CFD
textbooks used as references. We also declare that much of the upcoming discussion
was extracted from Ferziger [32].
We start the discussion with a simple first order ordinary differential equation with
respect to time. The initial condition is also provided. Hence,

dφ(t)
dt

= f(t, φ(t)) ; φ(t0) = φ0 (B.34)

where our problem is that we seek the solution φ(t) for a time greater than t0.
Naturally, in order to solve the equation numerically, time discretization is necessary.

116

B.6 Finite Volume Methods

Therefore, we discretize time using a very short uniform spacing ∆t, the time step.
So as to simplify the following discussion, we introduce the notation for future
discrete times t1 = t0 + ∆t, t2 = t1 + ∆t and so on, as well as the respective
solutions at those times φ1, φ2 and etc.
Integrating Eq. B.34 in time from tn to tn+1, we obtain the following exact relation:

tn+1ˆ
tn

dφ

dt
dt = φn+1 − φn =

tn+1ˆ
tn

f(t, φ(t))dt

The second integral above could be exactly evaluated if the correct choice of time
τ was made, yielding f(τ, φ(τ))∆t as a result. That is guaranteed by the mean
value theorem of calculus. Unfortunately, τ is not known and, therefore, it must be
approximated. If it is approximated by tn, we obtain the following result:

φn+1 = φn + f(tn, φn)∆t (B.35)

The equation above offers a method to obtain the solution at the next time step,
allowing for time advancement. The method illustrated in Eq. B.35 is known as the
forward or explicit Euler method [32]. Explicit methods are characterized by allowing
one to determine the solution at the next time step, based only on the solution and
on variables values from the previous time step. Here, φn+1 is evaluated using the
φn and tn values. This usually makes time advancement a straightforward process.
On the other hand, if τ is approximated using tn+1 instead, we have:

φn+1 = φn + f(tn+1, φ
n+1)∆t (B.36)

Equation Eq. B.36 provides a different method to determine φn+1 called backward
or implicit Euler [32]. Implicit methods, as opposed to explicit ones, require that
the solution is computed in terms of itself an the variables at the current time step.
Notice that in Eq. B.36, φn+1 is computed in terms of φn, φn+1 and tn+1. As one
would guess, computing φn+1 using implicit methods is usually a much more cum-
bersome process, requiring φn+1 at all nodes of the mesh to be solved simultaneously
in the best case scenario [31]. Nevertheless, this extra trouble sometimes pays off,
as implicit methods often allow large time steps to be used without instability, a
property that can reduce the computational cost of the numerical method consid-
erably, specially when solving steady problems. That is because the implicit Euler
method is unconditionally stable [32].
There are many other different approximations methods available depending on the
choice of τ . They will not be discussed here, as they are out of the scope of this
text, which only aims to offer a succint introduction.
Observe that both the explicit and implicit Euler method produce good results when
∆t is small [32]. When a larger ∆t is chosen, the error associated with the discretiza-
tion increases in the same manner, as both are first order methods. If the errors

117

Chapter B Appendix: Computational Fluid Dynamics - CFD

at a given time step are not magnified as the computation of φ at the next time
steps proceeds, the numerical method is called stable [32]. Naturally, the stabil-
ity depends on the whole discretization process, including mesh resolution and the
equations governing the flow problem. In particular, the stability of complicated,
non-linear problems are difficult to analyze. Therefore, one usually investigates the
stability of the methods for linear problems with constant coefficients and no bound-
ary conditions and then extrapolates the analysis to the more complex problems [32].
More oftern than not, this approach does work [32]. In fact, one of the most widely
employed methods of stability analysis proposed by John von Neumann includes
some of these ideas. For instance, Neumann argued that boundary conditions are
seldom the source of stability problems and that ignoring them so as to simplify the
analysis is justified [32].
Next, in order illustrate this discussion, we will analyze the stability of the one di-
mensional transport equation with constant velocity and fluid properties and with-
out any sources nor sinks:

∂φ

∂t
= −u∂φ

∂x
+ D

ρ

∂2φ
∂x2 (B.37)

Discretizing the above equation using the upwind differencing scheme (UDS) for the
spatial derivatives, which is an approximation for the first derivative is analogous
to the upwind interpolation method presented in Sec. B.6.2, and the explicit Euler
scheme for the time derivative, we obtain the following difference equation:

φn+1
i = φni +

[
−u

φni − φni−1
∆x + D

ρ

φni+1 + φni−1 − 2φni
(∆x) 2

]
∆t (B.38)

where i is the index of the mesh node being considered. The equation may be
rewritten in the following manner:

φn+1
i = (1− 2d− Co)φni + dφni+1 + (d+ Co)φni−1 (B.39)

where the dimensionless parameters d and Co are:

d = D∆t
ρ (∆x) 2 (B.40)

Co = u∆t
∆x (B.41)

where d is the ratio between the time step and the characteristic diffusion time
and where Co, the Courant number, an important parameter in CFD, is the ratio
between the time step and the characteristic advective time [32]. In general, if the

118

B.6 Finite Volume Methods

method is stable, a quantity such as the measure given below must decrease with
time:

ε =
√∑

i

(
φni − φn−1

i

)
2 (B.42)

In this context, the norm must decrease through dissipation due to the form of the
differential equation Eq. B.37. It follows that if one of the coefficients in Eq. B.39 is
negative, the norm could potentially increase as time goes on. Hence, it is desirable
that 1− 2d− Co > 0. Therefore, the condition below must be satisfied:

∆t < 1
2D

ρ(∆x)2 + u
∆x

(B.43)

When there is no advection, the restriction on the time step for stability becomes:

∆t < ρ (∆x) 2
2D (B.44)

In contrast, when diffusion is negligible, the stability condition is:

Co < 1 (B.45)

Or simply:

∆t < ∆x
u

(B.46)

When employing the actual von Neumann stability analysis similar conclusions are
reached [32]. Equation Eq. B.45 is an important result. In OpenFOAM, the user
may actually monitor the Courant number during the solving process so as to ob-
serve whether the stability condition is being met [89]. The condition may also be
interpreted as a restriction on the movement of a fluid parcel. If Co > 1, it will
move more than one mesh spacing ∆x per time step [32]. As information could
be lost in the process, the condition seems very reasonable, but unfortunately it is
restrictive. In OpenFOAM, there is an algorithm which does not require Eq. B.45
to be satisfied [96]. The reasons will be discussed in Sec. B.7.3. Finally, we stress
that the stability analysis for other implicit methods can be found in many CFD
textbooks [31,32,90] and are out of the scope of this text.

B.6.6. Solving the algebraic system of equations

In the Sec. B.6.4, we saw that one of the central problems in CFD is to solve equations
of the type Eq. B.33 numerically. To that end, either direct or iterative methods

119

Chapter B Appendix: Computational Fluid Dynamics - CFD

can be employed. Direct methods yield exact solutions to a system of linear al-
gebraic equations, while iterative methods offer an approximate solution, which is
obtained by taking an initial guess and improving the guessed solution using the
governing equations [32]. The sources of error when using the direct approach are
the modeling (see Sec. B.2) and discretization errors (see Sec. B.6.3). The drawback
when employing direct methods is that they are generally more expensive compu-
tationally. Iterative methods, on the other hand, introduce another source of error,
in addition to the other two: the iteration errors [32]. In pratice, a solution with
iteration errors smaller than the discretization errors may often be reached with a
lower computational cost. Whenever that is possible, there is no reason to solve the
algebraic system exactly [32]: the discretization errors present in the solution off-
set the possible benefits of obtaining an exact solution to an already approximated
algebraic system. Moreover, when dealing with a non-linear systems, employing
iterative methods is a must [32]. Hence, as iterative methods are generally more
cost-effective, being applicable to non-linear problems, they can be found in virtu-
ally all CFD packages, OpenFOAM being no exception. In the following discussion,
we provide a basic of analysis of iterative methods. These can be applied not only
to more relatively simple problems such as the linear transport equation for a scalar
field, but may be extented to the much more complex problem of solving the non-
linear incompressible Navier-Stokes equations to obtain the pressure and the velocity
fields [32]. Later, in this chapter, we will go into the details of how to solve the in-
compressible NS-equations using common pressure-corretion algorithms, such as the
SIMPLE and PISO algorithms. Finally, we will present the algorithm employed in
this work, the PIMPLE algorithm, a mixture of both the SIMPLE and PISO, which
is additionally a standard solver implemented in the OpenFOAM toolbox.
We start the discussion of the iterative methods where we left off a previous subsec-
tion: with the algebraic system of equations in the matrix form,

AΦ = Q (B.47)

As stated, when employing iterative methods, an initial solution guess is made and
then improved upon every iteration. After n iterations, we obtain an approximate
solution Φn, which does not satisfy the system of algebraic equations exactly. In
addition to Q, a leftover term ρn, which is a non-zero residual, arises when we apply
A to Φn. Mathematically, we can express this statement as:

AΦn = Q− ρn (B.48)

Subtracting Eq. B.48 from Eq. B.47, we obtain:

A (Φ−Φn) = ρn (B.49)

where the difference between the exact solution to the system of algebraic equations
Φ and the approximate solution Φn is the iteration error εn:

εn = Φ−Φn

120

B.6 Finite Volume Methods

From Eq. B.49, we see that, in principle, when the residual ρn tends zero, so does
εn. In fact, driving the residuals to zero is the main goal of the iteration process.
The following iteration scheme for a linear system allows us to see how the process
works [32]:

MΦn+1 = NΦn +B (B.50)

where Φn+1 is the solution at n + 1th iteration step, and Φn, naturally, is the
approximate solution at nth iteration step. At convergence, Φn+1 = Φn = Φ.
Thus, since the converged solution must satisfy Eq. B.47, we obtain the following
relations [32]:

M −N = A

B = Q

It is also possible to use a pre-conditioning matrix P and rewrite the equations
above:

M −N = PA

B = PQ

Moreover, if we subtract MΦn from both sides of Eq. B.50, we obtain the following
relation [32]:

M(Φn+1 −Φn) = B − (M −N)Φn (B.51)

The difference Φn+1−Φn is referred to as the correction δn. If we use the relations
obtained for M −N and B and compare Eq. B.51 with relation Eq. B.49, we reach
[32]:

Mδn = ρn (B.52)

The correction δn, which is an approximation for the iteration error, will be dis-
cussed later on when we analyze the SIMPLE and PISO algorithms. For a more
thorough explanation on the criteria for convergence, please refer to Ferziger chapter
5 [32], from which most of the previous discussion was extracted. For now, it suffices
to say that one of the main goals of iteration methods is to reach convergence fast,
since the more iteration steps used to reach the solution, the more inefficient the
method becomes.
Finally, we highlight that it is possible to monitor and control many of the pa-
rameters discussed in this section when employing an iterative method to solve a
CFD case in OpenFOAM [89]. For instance, it is possible to plot the residual ρn
on the fly with progams such as gnuplot. Moreover, the convergence criteria must

121

Chapter B Appendix: Computational Fluid Dynamics - CFD

be defined in the fvSolution dictionary under the system folder [89]. That is ac-
complished by defining a threshold value below which the residuals must go for the
iterative solver to stop [89]. The threshold value is set on the tolerance keyword
under the subdictionary of each field [89]. There are also a number of different op-
tions for solvers and Pre-conditioners which the user may draw from. For instance,
a popular iterative solver, which is implemented in OpenFOAM, is the Gauss-Seidel
method. A detailed analysis on this and other solvers is out of the scope of this
text. An in-depth look at the Gauss-Seidel method, some its enhancements, such as
the successive over-relaxation (SOR), and splitting methods can be found in many
CFD textbooks, including Fezinger, Versteeg, Lomax and others [31–33,90].

B.6.7. Coupled Equations, Sequential solution and
Under-relaxation

Up until now we have mostly discussed how to obtain a solution for a scalar field φ,
governed by a linear equation, such as diffusion equation in Sec. B.6.4. Naturally,
this discussion also extends to non-linear equations and vector-fields as well. Solving
the flow governed by continuity equation and the non-linear incompressible Navier-
Stokes equations, however, possess an additional feature: the equations are coupled
[32, 33]. Each component of the velocity vector field v and the pressure field p are
unknown. To make matters worse, the pressure field p does not even appear in the
continuity equation for an incompressible fluid, see Eq. B.6 [32, 33]. In Sec. B.7, we
will discuss in detail how to circumvent this problem. For now, we briefly present
two approaches to solve coupled equations: the simultaneous and the sequential
method.

As the name suggests, simultaneous solutions are obtained by solving all variables
simultaneously. Simultaneous solutions with iterative solvers have been developed
by many authors and are better applied to problems with linear and tightly coupled
equations [32]. Using the simultaneous methods with complex, non-linear equa-
tions, such as the ones we face in this work, is too expensive computationally. The
preferred approach, in these cases, is to solve each equation as if there was only a
single unknown, taking all of the other variables as known [32]. The best values for
each variable at a given iteration are used. The equations are solved sequentially,
forming cycles that stop only when all equations are satisfied. The iterations on
each equation are called inner iterations. However, it must be noted that after the
cycle of iterations performed on each equation of the system, the coefficients al and
the sources ql must be updated [32], see Eq. B.32. That is due to the dependence
of the coefficients on the unknown variables, which occurs specially in the case of
non-linear equations that have been linearized [32]. A new cycle of iterations is then
executed after the update on these values. The process is repeated until convergence
is reached. The cycles are called outer iterations [32]. The choice of inner per outer
iterations ratio may optimize performance [32].

122

B.7 Solving the coupled Pressure-Velocity equations

Another property that must be controlled in order to stabilize the solution are the
under-relaxation factors [32]. Under-relaxation is employed to limit the change in
the variables from one outer iteration to the next. Mathematically, this can be
performed in the following fashion [32]:

φn = φn−1 + αφ
(
φnew − φn−1

)
(B.53)

where n is the index of the outer iteration, φnew is the solution for the variable φ
determined at the end of an outer iteration and αφ is the under-relaxation factor,
whose value must be between 0 and 1. The closer αφ is to 1, the more the newly
determined φnew influences φn. Notice that at convergece, φn−1 = φn = φnew = φ
and, therefore, the choice of αφ does not influence the solution in that limit, since
the term involving it becomes null [32]. An optimal choice of under-relaxation
factors may speed up convergence greatly, but, alas, the optimal number is hard to
predict [32]. A bad choice, on the other hand, may even prevent convergence [32].
Under-relaxation factors may be set in OpenFOAM in the fvSolution dictionary
under the system folder for each field separately [89], see Fig. B.2. More on under-
relaxation may be found in the CFD textbooks mentioned earlier [32,96]. Next, we
discuss in more detail common algorithms used to solve the Navier-Stokes equations.

B.7. Solving the coupled Pressure-Velocity equations

In this section, we present some of the most common algorithms utilized to obtain
the velocity and pressure fields from the coupled pressure-velocity equations. Of
great importance to this discussion are the conservation laws. By guaranteeing that
the flows satisfy them, we ensure the physical validity of the results. Conversation
of momentum is enforced by making the variables satisfy the momentum equations,
the discretized incompressible Navier-Stokes equations, while mass conservation is
enforced by making the variables satisfy the continuity equation. Conservation of
energy for isothermal flows and angular momentum, on the other hand, are con-
sequences of the momentum equations and the choice of discretization [32]. They
cannot be enforced independently [32]. Hence, special care must be taken when
selecting a discretization method. A thorough discussion on energy and angular
momentum conservation is out of the scope of this text. More details can be found
in Ferziger chapter 7 [32].
When using a sequential iterative method to obtain the solution, the role of the
momentum equations are clear: determining the components of the velocity field u.
After all they are the dominant variables in their respective equations [31,32]. That
leaves as with the continuity equation to determine the pressure p. The problem
is that the pressure does not appear in the continuity equation for incompressible
flows:

∇ · u = 0 (B.54)

123

Chapter B Appendix: Computational Fluid Dynamics - CFD

In order to circumvent this, we take the divergence of the momentum equations
[31,32]:

∇·∇p =∇·
[
−ρ∂u

∂t
− ρu · ∇u+ µ∇2u+ ρg

]

Using the assumptions that both the density ρ and the viscosity µ are constant,
already made back in Eq. B.7, and the continuity equation, we obtain [31,32]:

1
ρ
∇2p = −∇· (∇ · uu) +∇·g (B.55)

where we have used the following vector calculus identities to discard the viscous
term: ∇2A =∇(∇ ·A)−∇×(∇×A) and ∇·(∇×A) = 0. Using the Einstein
notation and neglecting the body force term we may rewrite the equation above as:

∂i(∂i(p)) = −∂i(∂j(uiuj)) (B.56)

This is a Poisson equation for the pressure and it is the starting point of the algo-
rithms we will discuss next [31, 32]. By making the pressure satisfy the equation
above, we enforce the mass conservation [32]. Equation Eq. B.56, in addition to the
momentum equations, see Eq. B.7, the appropriate boundary and initial conditions,
allows us to determine the flow of an incompressible fluid through a system.

B.7.1. SIMPLE algorithm

The SIMPLE method is an algorithm developed by Patankar and Spalding in 1972
[130], whose name stands for Semi-Implicit Method for Pressure-Linked Equations.
It is essentially a guess-and-correct procedure used to determine the pressure and
velocity field, by making them satisfy both the mass and momentum constraints [32,
33]. It can be constructed to solve both steady and unsteady flows. In OpenFOAM,
the SIMPLE algorithm is implemented to solve steady problems [89]. Many standard
solvers in OpenFOAM make use of the SIMPLE algorithm. Parameters of the
algorithm can be set in the SIMPLE subdictionary, which, in turn, can be found in
the fvSolution dictionary under the system folder of the case, see Fig. B.2.

B.7.1.1. Explicit time advancement

Before examining the algorithm itself, we use, as our starting point to the algorithm
introduction, the semi-discretized momentum equations [32], which are discrete in
space but not time:

∂(ui)
∂t

= −δ(uiuj)
δxj

− 1
ρ

δp

δxi
+ 1
ρ

δσij
δxj

124

B.7 Solving the coupled Pressure-Velocity equations

where the terms with δ/δx represent some discretization scheme and where we have
considered the densisty ρ of the fluid as a constant. A non-uniform density, however,
could have been easily be accounted for [32]. When using an explicit method for time
advancement such as the explicit Euler method, we obtain the following equations:

un+1
i − uni = ∆t

(
−δ(uiuj)

n

δxj
− 1
ρ

δpn

δxi
+ 1
ρ

δσnij
δxj

)
(B.57)

Notice that the velocities at the n+ 1th time step can be computed in terms of the
known values of the variables at the nth time step. The computed velocities usually
do not satisfy the continuity equation. In order to guarantee that the velocity
components satisfy the mass conservation constraint, we force the pressure pn to
satisfy the Poisson equation of the type shown in Eq. B.56 before computing the
velocities at the new time step [32]. Hence:

δ

δxi

(
δpn

δxi

)
= −ρ δ

δxi

(
δ(uiuj)n
δxj

)

B.7.1.2. Implicit time advancement

Now, instead of using an explicit scheme for time advancement, we could have
employed some implicit method. Implicit methods have the benefit of allowing the
use of large time steps without instability [32]. For the implicit Euler method, we
have:

un+1
i − uni = ∆t

(
−δ(uiuj)

n+1

δxj
− 1
ρ

δpn+1

δxi
+ 1
ρ

δσn+1
ij

δxj

)
(B.58)

With the corresponding Poisson equation for the pressure:

δ

δxi

(
δpn+1

δxi

)
= −ρ δ

δxi

(
δ(uiuj)n+1

δxj

)
(B.59)

Obtaining the velocities at the new time step (n + 1) from equations Eq. B.58 and
Eq. B.59, this time, is a much more difficult problem. The pressures at the new time
step can only be computed when the velocities are known and vice-versa. Hence, the
equations must be solved simultaneously via an iteration procedure. Additionally,
even if the pressures pn+1 were known, equations Eq. B.58 are still a large non-linear
system of equations. In order solve them, one can either linearize the solutions about
the preceeding time step to obtain a linear system, or use the converged solutions
from the previous time step as input to an iteration method which will converge the
solution at the new time step [32]. If one chooses to linearize the solutions, then:

un+1
i = uni + ∆ui

125

Chapter B Appendix: Computational Fluid Dynamics - CFD

pn+1 = pn + ∆p

By inserting the expressions above back into equations Eq. B.58, neglecting the
second order term ∆ui∆uj, we obtain:

∆ui = ∆t
(
−δ(uiuj)

n

δxj
− δ(uni ∆uj)

δxj
−
δ(∆uiunj)
δxj

− 1
ρ

δpn

δxi
−

−1
ρ

δ∆p
δxi

+ 1
ρ

δσnij
δxj

+ 1
ρ

δ∆σij
δxj

)
(B.60)

The system is now linear with respect to the velocity correction terms. A reasonable
approach that can be used to solve the system of equations and obtain the fields
at the new time step is to first determine a velocity field u∗i which does not include
the pressure-correction term from Eq. B.60 [32]. The alternating direction implicit
(ADI) method, which splits the equations tranforming them into a one dimensional
problem may be used to compute u∗i [32]. Naturally, the velocity field u∗i does not
satisfy the continuity equation. After u∗i has been computed, we can determine un+1

i

. First, however, observe that u∗i can be expressed as:

u∗i = uni + ∆ui + ∆t
ρ

δ∆p
δxi

(B.61)

Hence:

un+1
i = u∗i −

∆t
ρ

δ∆p
δxi

(B.62)

By taking the divergence of Eq. B.62, we obtain the following Poisson equation for
the pressure-correction, knowing the velocity un+1

i does satisfy the mass conservation
constraint [32]:

δ

δxi

(
δ∆p
δxi

)
= ρ

∆t
δu∗i
δxi

(B.63)

where we again stress that the fluid density ρ taken as constant. Wrapping up,
in order to determine un+1

i using the implicit time advancement scheme, we first
compute u∗i , then we determine the pressure-correction gradient from Eq. B.63 and
finally use Eq. B.62 to calculate un+1

i [32]. Computation of the variables at the new
time steps then proceeds. The error made in linearizing the problem and using large
time steps is unfortunately not negligible. Hence, when computing steady state
flows, where the common approach is to solve the unsteady problem until a steady
solution is reached, algorithms such as SIMPLE and PISO are preferred [32].

126

B.7 Solving the coupled Pressure-Velocity equations

B.7.1.3. The Algorithm

The SIMPLE algorithm holds some resemblance to the method from the previous
section. To observe this, our starting point is the semi-discretized momentum equa-
tions about the CV nodal point P , with an implicit time advance scheme [32]:

auiP u
n+1
i,P +

∑
l

auil u
n+1
i,l = qn+1

ui
−
(
δpn+1

δxi

)
P

(B.64)

where the sum with the index l is about the neighbor nodal points, where the source
term qn+1

ui
incorporates all terms that contain the velocities uni and, finally, where

other linearized terms that may depend on un+1
i . The coefficients auil also depend

on the solution un+1
i . Again, the term with δ/δx represents a discretization choice

for the pressure gradient at the new time step. The coefficients a and possibly the
source q depend on un+1

i due to the non-linearity of the momentum equations, see, for
instance, Eq. B.58. Moreover, notice the similarity between Eq. B.64 and Eq. B.32.
The exact values of the coefficients and source term depend on the discretization
and interpolation choices, but can always be written in this manner [32].

The iterative procedure used for solving Eq. B.64 is a sequential method. Coefficients
are considered fixed for inner iterations, while being updated for outer iterations,
see Sec. B.6.7. The equations solved on outer iterations are as follows:

auiP u
m∗
i,P +

∑
l

auil u
m∗
i,l = qm−1

ui
−
(
δpm−1

δxi

)
P

(B.65)

where we replaced the index n + 1 with m and where um∗i is an estimate for umi
which still does not satisfy the mass conservation. Again, this somewhat resembles
the situation from Sec. B.7.1.2, see Eq. B.61. Next, we find a Poisson equation
for the pressure pm and then enforce the mass conservation on the velocities by
subtracting the pressure gradient term in a fashion similar to the previous subsection,
see Sec. B.7.1.2. This time, however, after the gradient has been subtracted from
the estimated velocity, the momentum conservation is no longer satisfied [32]. We
then proceed to the next outer iteration, until the pressure and velocity fields satisfy
both the momentum and mass conservation equations. It is important to stress that
when computing unsteady flows, the fields must satisfy the conservation equations
to a narrow tolerance in a given time step [32]. For steady flows, the tolerance can be
more generous [32]. In the SIMPLE algorithm, after determining provisional values
of the velocity field from Eq. B.65, instead of proceeding with a Poisson equation for
the actual pressure, correction terms are used alternatively, as given below [32,33]:

umi = um∗i + u′

pm = pm−1 + p′

127

Chapter B Appendix: Computational Fluid Dynamics - CFD

where u′ and p′ are the corrections that must be added to the fields um∗i and pm−1

so that they satisfy the mass conservation constraint. Replacing these back into
equation Eq. B.65, yields the following:

u′i,P = ũ′i,P −
1
auiP

(
δp′

δxi

)
P

(B.66)

where ũ′i is given by:

ũ′i,P = −

∑
l
auil u

′
i,l

auiP
(B.67)

The Poisson equation for the pressure-correction derived from Eq. B.66 and the
continuity equation applied to the velocity field umi is [32]:

δ

δxi

[
1
auiP

(
δp′

δxi

)]
P

=
[
δ (um∗i)
δxi

]
P

+
[
δ (ũ′i)
δxi

]
P

(B.68)

In the SIMPLE algorithm, the ũ′i part of the velocity corrections are neglected
since they are unknown. That is the main approximation of the algorithm and
probably the main reason why the solution is not even faster to converge [32,33]. The
solving procedure is similar to the one described in the beginning of this section,
which uses a sequential approach. The fields then alternate satisfying either the
momentum or mass conservation constraint until both are satisfied to narrow range
[32]. Finally, one proceeds to the next time step. In OpenFOAM, the SIMPLE
algorithm is implemented to solve steady problems, employing under-relaxation to
ensure stability and a faster convergence [89, 96]. Therefore, the time steps, which
are, in fact, the outer iterations, do not correspond to actual time lengths, as under-
relaxation makes the solution converge faster, by losing the time consistency in the
process [96]. All that matters is the solution at convergence, which is when it
reaches the steady state, see Sec. B.6.7. When running a solver which uses the
SIMPLE algorithm in OpenFOAM, such as simpleFOAM, the time step size is a
dummy parameter: the important aspect is the number of iterations [96]. A diagram
illustrating the basic steps of the algorithm can be found in Versteeg Chapter 6 [33].

B.7.2. PISO algorithm

The anacronym PISO stands for Pressure Implicit Split-Operator. The PISO al-
gorithm serves the same purpose the SIMPLE algorithm does, that is, it solves
the momentum and continuity equations [131]. In OpenFOAM, it is implemented
as an algorithm for transient problems [89, 96]. Similarly, it is used by many of
the standard OpenFOAM solvers. Parameter changes can be made in the PISO
subdictionary under the fvSolution dictionary of the case, see Fig. B.2.

128

B.7 Solving the coupled Pressure-Velocity equations

The PISO algorithm follows the exact same steps the SIMPLE algorithm does to
solve the momentum equations Eq. B.65 sequentially and then, just as in SIMPLE,
a correction step is performed neglecting the ũ′i part of the velocity correction in
equations Eq. B.66 and Eq. B.68. At this point, in the PISO method, before carrying
on to the next outer iteration, additional correction steps are performed [32,33]. In
OpenFOAM, the outer iterations for the PISO algorithm are the time steps [96].
Hence, in a fashion similar to Eq. B.66, the second correction to the velocity u′′ is
given by:

u′′i,P = ũ′i,P −
1
auiP

(
δp′′

δxi

)
P

(B.69)

where ũ′i,P is calculated using the Eq. B.67 and where second pressure correction p′′
is determined by the following Poisson equation:

δ

δxi

[
1
auiP

(
δp′′

δxi

)]
P

=
[
δ (ũ′i)
δxi

]
P

(B.70)

More correction steps can be employed in a manner analagous to the one showcased
in equations Eq. B.69 and Eq. B.70 [32]. In OpenFOAM, typically the number of
correction steps chosen is not greater than 4 [96]. This number can be set in the PISO
subdictionary under the nCorrectors keyword [89, 96]. In case the number chosen
is 1, the implemented PISO algorithm would in theory work in a manner similar to
the SIMPLE algorithm described in the previous section. In practice, it does not,
since the SIMPLE algorithm is implemented to solve steady-state problems and to
make use of under-relaxation factors, while PISO is designed for transient problems,
and makes no use of explicit under-relaxation factors. An additional requirement
of PISO is that the Courant number should be less than one for the solution to be
stable [96]. A diagram outlining the main steps of the PISO algorithm can be found
in Versteeg Chapter 6 [33].
Finally, in OpenFOAM, there is an additional type of correction that accounts for the
non-orthogonality of the meshes [89]. A detailed discussion on how this is performed
is out of the scope of this text. The number of non-orthogonal correction steps can
be specified under the nNonOrthogonalCorrectors under the SIMPLE, PISO or
PIMPLE subdictionary, which can be found, in turn, in the fvSolution dictionary
of the case, see Fig. B.2.

B.7.3. Merged PISO-SIMPLE - the PIMPLE algorithm

In OpenFOAM, the PIMPLE algorithm merges aspects from both the implemented
SIMPLE and PISO algorithms, yielding a robust method to solve transient prob-
lems quickly by employing large time steps [89,96]. The feature which the PIMPLE
algorithm shares with the SIMPLE algorithm implemented in OpenFOAM is that

129

Chapter B Appendix: Computational Fluid Dynamics - CFD

both of them make use of under-relaxation to reach convergence faster [96]. Outer
iterations in PIMPLE do not correspond to time steps, as in the SIMPLE algorithm.
In PIMPLE, outer iterations occur within the time steps and can be set next to the
nOuterCorrectors keyword in the PIMPLE subdictionary in the fvSolution file of
the case, see Fig. B.2. In PIMPLE, as in SIMPLE, the solution is always under-
relaxed when proceeding from an outer iteration to next, see Sec. B.6.7, except for
the last outer iteration within a time step [96]. This ensures time consistency be-
tween time steps, making PIMPLE suitable for transient problems [96]. Aside from
this aspects, the PIMPLE resembles the PISO algorithm at everything else. For
instance, additional pressure-correction steps can be set with nCorrectors keyword
and both are suitable for solving transient flow problems. In fact, if one sets nOuter-
Correctors to 1 without including under-relaxation, the PIMPLE algorithm operates
in PISO mode [96].
In many situations, a great advantage of employing solver applications which make
use of the PIMPLE algorithm, e.g., pimpleFOAM, is that PIMPLE can handle
Courant numbers of magnitude greater than one, see Sec. B.6.5 [96]. For instance,
PIMPLE greatly outperfoms PISO when complex geometries are used, for in those
cases the stability condition for PISO (Co < 1) would require a very small time
step to be used, considerably increasing the computational effort necessary to solve
the problem [96]. In that case, if one uses a large time step with PISO regarless,
the solution becomes unstable and may diverge [96]. Moreover, the solver will of-
ten crash. Meanwhile, the PIMPLE algorithm allows for much larger time steps
to be used without any stability issues, tremendously reducing the computational
cost [96]. That can be accomplished by setting a high number of outer iterations
ranging from 50 to 200. Between 1 to 4 pressure-correction steps are also set in
conjunction with the appropriate convergence criteria in the fvSolution dictionary.
The computational cost reduction is the main reason why the PIMPLE algorithm
was used to solve the flow problems in this work [96].
The other reason for employing PIMPLE is that PIMPLE-based solvers, such as
pimpleFOAM, allow for the inclusion of porous regions by adding a source term to
the momentum equations, which is, in fact, the Darcy term [129]. As discussed in
Sec. B.4, that is done by including a porosity subdictionary defining the properties
of the porous medium in the fvOptions file under the system folder, see Fig. B.2.

130

Bibliography

[1] M. Bernot, V. Caselles, and J.M. Morel. Optimal Transportation Networks:
Models and Theory. Number no. 1955 in Lecture Notes in Mathematics.
Springer, 2009.

[2] Eleni Katifori, Gergely J. Szöllősi, and Marcelo O. Magnasco. Damage and
fluctuations induce loops in optimal transport networks. Phys. Rev. Lett.,
104:048704, Jan 2010.

[3] Oliver Tamm, Christian Hermsmeyer, and Allen M Rush. Eco-sustainable
system and network architectures for future transport networks. Bell Labs
Technical Journal, 14(4):311–327, 2010.

[4] Robertus Van Nes. Design of multimodal transport networks: A hierarchical
approach. TU Delft, Delft University of Technology, 2002.

[5] Kenneth J Button. Economics of transport networks. In: Handbook of trans-
port systems and traffic control. 2001.

[6] Raul P Lejano. Optimizing the layout and design of branched pipeline water
distribution systems. Irrigation and Drainage Systems, 20(1):125–137, 2006.

[7] Antonio Heitor Reis, Antonio Ferreira Miguel, and M Aydin. Constructal
theory of flow architecture of the lungs. Medical physics, 31(5):1135–1140,
2004.

[8] Geoffrey B West, James H Brown, and Brian J Enquist. A general model for
the origin of allometric scaling laws in biology. Science, 276(5309):122–126,
1997.

[9] JS Andrade Jr, AM Alencar, MP Almeida, J Mendes Filho, SV Buldyrev,
S Zapperi, HE Stanley, and B Suki. Asymmetric flow in symmetric branched
structures. Physical review letters, 81(4):926, 1998.

[10] Adriano M Alencar, Zoltán Hantos, Ferenc Peták, József Tolnai, Tibor Aszta-
los, Stefano Zapperi, José S Andrade Jr, Sergey V Buldyrev, H Eugene Stan-
ley, and Béla Suki. Scaling behavior in crackle sound during lung inflation.
Physical Review E, 60(4):4659, 1999.

[11] Adriano M Alencar, Sergey V Buldyrev, Arnab Majumdar, H Eugene Stanley,
and Béla Suki. Avalanche dynamics of crackle sound in the lung. Physical
review letters, 87(8):088101, 2001.

131

Bibliography

[12] Hiroko Kitaoka, Ryuji Takaki, and Béla Suki. A three-dimensional model of
the human airway tree. Journal of Applied Physiology, 87(6):2207–2217, 1999.

[13] Adrian Bejan. Constructal tree network for fluid flow between a finite-size
volume and one source or sink. Revue generale de thermique, 36(8):592–604,
1997.

[14] Daniel P Bebber, Juliet Hynes, Peter R Darrah, Lynne Boddy, and Mark D
Fricker. Biological solutions to transport network design. Proceedings of the
Royal Society of London B: Biological Sciences, 274(1623):2307–2315, 2007.

[15] Robert W Barber and David R Emerson. Optimal design of microfluidic
networks using biologically inspired principles. Microfluidics and Nanofluidics,
4(3):179–191, 2008.

[16] Willard I Zangwill. Minimum concave cost flows in certain networks. Man-
agement Science, 14(7):429–450, 1968.

[17] Lester R Ford and Delbert R Fulkerson. Maximal flow through a network.
Canadian journal of Mathematics, 8(3):399–404, 1956.

[18] Nannan Guo, Ming C. Leu, and Umit O. Koylu. Bio-inspired flow field designs
for polymer electrolyte membrane fuel cells. International Journal of Hydrogen
Energy, 39(36):21185 – 21195, 2014.

[19] Anita Roth-Nebelsick, Dieter Uhl, Volker Mosbrugger, and Hans Kerp. Evo-
lution and function of leaf venation architecture: a review. Annals of Botany,
87(5):553–566, 2001.

[20] AA Jeje. The flow and dispersion of water in the vascular network of dicotyle-
donous leaves. Biorheology, 22(4):285–302, 1984.

[21] Park S Nobel. Physicochemical and environmental plant physiology. Academic
press, 1999.

[22] K. Kalyanasundaram. Dye-sensitized Solar Cells. Fundamental Sciences:
Chemistry. EFPL Press, 2010.

[23] Janne Halme. Dye-sensitized nanostructured and organic photovoltaic cells:
technical review and preliminary tests. Master’s thesis, Helsinki University of
Technology, 2002.

[24] Hyung-Jun Koo and Orlin D. Velev. Regenerable Photovoltaic Devices with
a Hydrogel-Embedded Microvascular Network. SCIENTIFIC REPORTS, 3,
AUG 5 2013.

[25] F. Barbir. PEM Fuel Cells: Theory and Practice. Energy-Engineering. Aca-
demic Press, 2013.

[26] Ulrich Eberle, Bernd Müller, and Rittmar von Helmolt. Fuel cell electric
vehicles and hydrogen infrastructure: status 2012. Energy & Environmental
Science, 5(10):8780–8798, 2012.

132

Bibliography

[27] Jason P. Kloess, Xia Wang, Joan Liu, Zhongying Shi, and Laila Guessous.
Investigation of bio-inspired flow channel designs for bipolar plates in proton
exchange membrane fuel cells. Journal of Power Sources, 188(1):132 – 140,
2009.

[28] BH Lim, EH Majlan, WRW Daud, Teuku Husaini, and Masli Irwan Rosli.
Effects of flow field design on water management and reactant distribution in
pemfc: a review. Ionics, 22(3):301–316, 2016.

[29] K Tüber, A Oedegaard, M Hermann, and C Hebling. Investigation of fractal
flow-fields in portable proton exchange membrane and direct methanol fuel
cells. Journal of Power Sources, 131(1):175–181, 2004.

[30] George B Arfken and Hans J Weber. Mathematical methods for physicists
international student edition. Academic press, 2005.

[31] T. Cebeci, J.P. Shao, F. Kafyeke, and E. Laurendeau. Computational Fluid
Dynamics for Engineers: From Panel to Navier-Stokes Methods with Com-
puter Programs. Springer Berlin Heidelberg, 2005.

[32] J.H. Ferziger and M. Peric. Computational Methods for Fluid Dynamics.
Springer Berlin Heidelberg, 2001.

[33] H.K. Versteeg and W. Malalasekera. An Introduction to Computational Fluid
Dynamics: The Finite Volume Method. Pearson Education Limited, 2007.

[34] CAJ Fletchet. Computational techniques for fluid dynamics; vol 1. 1991.
[35] D.W. Peaceman. Fundamentals of Numerical Reservoir Simulation. Develop-

ments in Petroleum Science. Elsevier Science, 2000.
[36] B.J. Winer, D.R. Brown, and K.M. Michels. Statistical Principles in Experi-

mental Design. McGraw-Hill series in psychology. McGraw-Hill, 1991.
[37] R.L. Mason, R.F. Gunst, and J.L. Hess. Statistical Design and Analysis of

Experiments: With Applications to Engineering and Science. Wiley Series in
Probability and Statistics. Wiley, 2003.

[38] J. Cohen. Statistical Power Analysis for the Behavioral Sciences. Elsevier
Science, 2013.

[39] Robert McGill, John W Tukey, and Wayne A Larsen. Variations of box plots.
The American Statistician, 32(1):12–16, 1978.

[40] Bernard L Welch. The generalization ofstudent’s’ problem when several dif-
ferent population variances are involved. Biometrika, 34(1/2):28–35, 1947.

[41] M.J. Crawley. Statistics: An Introduction Using R. Wiley, 2014.
[42] A Chapman and I Mellor. Development of biomimetic flow field plates for

pem fuel cells. In Eighth grove fuel cell symposium, 2003.
[43] Xianguo Li and Imran Sabir. Review of bipolar plates in pem fuel cells: Flow-

field designs. International Journal of Hydrogen Energy, 30(4):359–371, 2005.

133

Bibliography

[44] Adam Runions, Martin Fuhrer, Brendan Lane, Pavol Federl, Anne-Gaëlle
Rolland-Lagan, and Przemyslaw Prusinkiewicz. Modeling and visualization
of leaf venation patterns. ACM Trans. Graph., 24(3):702–711, July 2005.

[45] R Melville. The terminology of leaf architecture. Taxon, pages 549–561, 1976.
[46] Leo J Hickey. Classification of the architecture of dicotyledonous leaves. Amer-

ican journal of botany, pages 17–33, 1973.
[47] Irving W Bailey and Edmund W Sinnott. The climatic distribution of certain

types of angiosperm leaves. American journal of botany, pages 24–39, 1916.
[48] Lawren Sack and Christine Scoffoni. Leaf venation: structure, function, devel-

opment, evolution, ecology and applications in the past, present and future.
New Phytologist, 198(4):983–1000, 2013.

[49] Katherine Esau. Anatomy of seed plants. 1977.
[50] Lawren Sack, Christine Scoffoni, Athena D McKown, Kristen Frole, Michael

Rawls, J Christopher Havran, Huy Tran, and Thusuong Tran. Developmen-
tally based scaling of leaf venation architecture explains global ecological pat-
terns. Nature Communications, 3:837, 2012.

[51] Adam Runions, Richard S Smith, and Przemyslaw Prusinkiewicz. Compu-
tational models of auxin-driven development. In Auxin and its role in plant
development, pages 315–357. Springer, 2014.

[52] Norman MacDonald. Trees and networks in biological models. 1983.
[53] Gilbert Strang and LB Freund. Introduction to applied mathematics. Journal

of Applied Mechanics, 53:480, 1986.
[54] Robert Sedgewick and Kevin Wayne. Algorithms and data structures. Prince-

ton University, COS, 226, 2007.
[55] P.S. Addison. Fractals and Chaos: An illustrated course. Taylor & Francis,

1997.
[56] Benoıt B Mandelbrot. How long is the coast of britain. Science, 156(3775):636–

638, 1967.
[57] Jens Feder. Fractals. Springer Science & Business Media, 2013.
[58] Astrid Herbig and Ulrich Kull. Leaves and ramification. 1992.
[59] V Mosbrugger. Constructional morphology as a useful approach in fossil plant

biology. Cour. Forsch.-Inst. Senckenberg, 147:19–29, 1992.
[60] Odemir Martinez Bruno, Rodrigo de Oliveira Plotze, Mauricio Falvo, and

Mário de Castro. Fractal dimension applied to plant identification. Informa-
tion Sciences, 178(12):2722–2733, 2008.

[61] Tsvi Sachs. The control of the patterned differentiation of vascular tissues.
volume 9 of Advances in Botanical Research, pages 151 – 262. Academic Press,
1981.

134

Bibliography

[62] Tsvi Sachs. Collective specification of cellular development. BioEssays,
25(9):897–903, 2003.

[63] Sang-Woo Lee, Francois Gabriel Feugier, and Yoshihiro Morishita.
Canalization-based vein formation in a growing leaf. Journal of theoretical
biology, 353:104–120, 2014.

[64] René Benjamins and Ben Scheres. Auxin: the looping star in plant develop-
ment. Annu. Rev. Plant Biol., 59:443–465, 2008.

[65] Anne-Gaëlle Rolland-Lagan and Przemyslaw Prusinkiewicz. Reviewing models
of auxin canalization in the context of leaf vein pattern formation in arabidop-
sis. The Plant Journal, 44(5):854–865, 2005.

[66] Enrico Scarpella, Danielle Marcos, Jiří Friml, and Thomas Berleth. Control
of leaf vascular patterning by polar auxin transport. Genes & development,
20(8):1015–1027, 2006.

[67] Roni Aloni, Katja Schwalm, Markus Langhans, and Cornelia I Ullrich. Gradual
shifts in sites of free-auxin production during leaf-primordium development
and their role in vascular differentiation and leaf morphogenesis in arabidopsis.
Planta, 216(5):841–853, 2003.

[68] Enrico Scarpella, Michalis Barkoulas, and Miltos Tsiantis. Control of leaf
and vein development by auxin. Cold Spring Harbor Perspectives in Biology,
2(1):a001511, 2010.

[69] Katherine Esau et al. Plant anatomy. Plant anatomy, (2nd Edition), 1965.
[70] Michael LaBarbera. Principles of design of fluid transport systems in zoology.

Science, 249(4972):992–1000, 1990.
[71] Charles A Price, Scott Wing, and Joshua S Weitz. Scaling and structure of

dicotyledonous leaf venation networks. Ecology letters, 15(2):87–95, 2012.
[72] Charles A Price, Sarah-Jane C Knox, and Tim J Brodribb. The influence of

branch order on optimal leaf vein geometries: Murray’s law and area preserving
branching. PloS one, 8(12):e85420, 2013.

[73] Cecil D. Murray. The physiological principle of minimum work: I. the vascular
system and the cost of blood volume. Proceedings of the National Academy of
Sciences, 12(3):207–214, 1926.

[74] GJ Mitchison. A model for vein formation in higher plants. Proceedings of the
Royal Society of London B: Biological Sciences, 207(1166):79–109, 1980.

[75] Marc E Gottlieb. Angiogenesis and vascular networks: complex anatomies
from deterministic non-linear physiologies. In Growth patterns in physical
sciences and biology, pages 267–276. Springer, 1993.

[76] Kenneth H Rosen and Kamala Krithivasan. Discrete mathematics and its
applications, volume 6. McGraw-Hill New York, 1995.

135

Bibliography

[77] Adam Drozdek. Data Structures and algorithms in C++. Cengage Learning,
2012.

[78] David Dobkin and Richard J Lipton. Multidimensional searching problems.
SIAM Journal on Computing, 5(2):181–186, 1976.

[79] Steven Fortune. A sweepline algorithm for voronoi diagrams. Algorithmica,
2(1-4):153–174, 1987.

[80] Godfried T Toussaint. The relative neighbourhood graph of a finite planar
set. Pattern recognition, 12(4):261–268, 1980.

[81] Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Cheong
Schwarzkopf. Computational geometry. In Computational geometry, pages
1–17. Springer, 2000.

[82] Franco P Preparata and Michael Shamos. Computational geometry: an intro-
duction. Springer Science & Business Media, 2012.

[83] RB Urquhart. Algorithms for computation of relative neighbourhood graph.
Electronics Letters, 14(16):556–557, 1980.

[84] Diogo Vieira Andrade and Luiz Henrique de Figueiredo. Good approximations
for the relative neighbourhood graph. In CCCG, pages 25–28, 2001.

[85] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number generator.
ACM Transactions on Modeling and Computer Simulation (TOMACS),
8(1):3–30, 1998.

[86] Mason Woo, Jackie Neider, Tom Davis, Dave Shreiner, et al. Opengl program-
ming guide, 1999.

[87] Christophe Geuzaine. Gl2ps: an opengl to postscript printing library, 2006.
[88] Wikibooks. Openscad user manual/using openscad in a command line en-

vironment — wikibooks, the free textbook project, 2016. [Online; accessed
5-December-2016].

[89] CJ Greenshields. Openfoam user guide, 2015.
[90] H. Lomax, T.H. Pulliam, and D.W. Zingg. Fundamentals of Computational

Fluid Dynamics. Scientific Computation. Springer Berlin Heidelberg, 2013.
[91] C. Pozrikidis. Fluid Dynamics: Theory, Computation, and Numerical Simu-

lation. Springer US, 2009.
[92] Paolo Cignoni, Massimiliano Corsini, and Guido Ranzuglia. Meshlab: an

open-source 3d mesh processing system. Ercim news, 73(45-46):6, 2008.
[93] Ryan Schmidt and Nobuyuki Umetani. Branching support structures for 3d

printing. In ACM SIGGRAPH 2014 Studio, page 9. ACM, 2014.
[94] Kudo3D Titan. Printing guide. 2014.

136

Bibliography

[95] C Peralta, H Nugusse, SP Kokilavani, J Schmidt, and B Stoevesandt. Vali-
dation of the simplefoam (rans) solver for the atmospheric boundary layer in
complex terrain. In ITM Web of Conferences, volume 2. EDP Sciences, 2014.

[96] Tobias Holzmann. Mathematics, Numerics, Derivations and OpenFOAMÂ®.
Holzmann CFD, 2016.

[97] Jan Graffelman. Linear-angle correlation plots: new graphs for revealing corre-
lation structure. Journal of Computational and Graphical Statistics, 22(1):92–
106, 2013.

[98] Tyler Finnes. High definition 3d printing–comparing sla and fdm printing
technologies. The Journal of Undergraduate Research, 13(1):3, 2015.

[99] Glyn O Phillips and Peter A Williams. Handbook of hydrocolloids. Elsevier,
2009.

[100] Janaky Narayanan, Jun-Ying Xiong, and Xiang-Yang Liu. Determination of
agarose gel pore size: Absorbance measurements vis a vis other techniques. In
Journal of Physics: Conference Series, volume 28, page 83. IOP Publishing,
2006.

[101] Mark Robert. Kemp. The enhancement of mass transfer in foods by alternating
electric fields. PhD thesis, University of Birmingham, 2000.

[102] K. Samprovalaki, P.T. Robbins, and P.J. Fryer. Investigation of the diffusion
of dyes in agar gels. Journal of Food Engineering, 111(4):537 – 545, 2012.

[103] Annemarie Nadort, Koen Kalkman, Ton G van Leeuwen, and Dirk J Faber.
Quantitative blood flow velocity imaging using laser speckle flowmetry. Sci-
entific reports, 6, 2016.

[104] Jungwoo Lee, Meghan J Cuddihy, and Nicholas A Kotov. Three-dimensional
cell culture matrices: state of the art. Tissue Engineering Part B: Reviews,
14(1):61–86, 2008.

[105] Francesco Pampaloni, Emmanuel G Reynaud, and Ernst HK Stelzer. The
third dimension bridges the gap between cell culture and live tissue. Nature
reviews Molecular cell biology, 8(10):839–845, 2007.

[106] Luiz E Bertassoni, Martina Cecconi, Vijayan Manoharan, Mehdi Nikkhah,
Jesper Hjortnaes, Ana Luiza Cristino, Giada Barabaschi, Danilo Demarchi,
Mehmet R Dokmeci, Yunzhi Yang, et al. Hydrogel bioprinted microchannel
networks for vascularization of tissue engineering constructs. Lab on a Chip,
14(13):2202–2211, 2014.

[107] Nitish Peela, Feba S Sam, Wayne Christenson, Danh Truong, Adam W Wat-
son, Ghassan Mouneimne, Robert Ros, and Mehdi Nikkhah. A three dimen-
sional micropatterned tumor model for breast cancer cell migration studies.
Biomaterials, 81:72–83, 2016.

137

Bibliography

[108] Der-Tsai Lee. Two-dimensional voronoi diagrams in the l p-metric. Journal of
the ACM (JACM), 27(4):604–618, 1980.

[109] Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, and Sung Nok Chiu. Spatial
tessellations: concepts and applications of Voronoi diagrams, volume 501. John
Wiley & Sons, 2009.

[110] MacGayver da S Castro. Efeito mecÃ¢nico da exposiÃ§Ã£o aguda de compo-
nentes encontrados na poluiÃ§Ã£o atmosfÃ©rica em amostras de mÃºsculo
liso. Master’s thesis, Universidade de SÃ£o Paulo, 2012.

[111] David Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on
Computing, 12(1):28–35, 1983.

[112] Nicholas Nethercote and Julian Seward. Valgrind: A program supervision
framework. Electronic notes in theoretical computer science, 89(2):44–66, 2003.

[113] Thomas H Cormen. Introduction to algorithms. MIT press, 2009.

[114] Richard J Trudeau. Introduction to graph theory. Courier Corporation, 2013.

[115] Raimund Seidel. A simple and fast incremental randomized algorithm for
computing trapezoidal decompositions and for triangulating polygons. Com-
putational Geometry, 1(1):51–64, 1991.

[116] Cyprien Soulaine. On the origin of darcy’s law.

[117] K. Vafai. Handbook of Porous Media, Third Edition. CRC Press, 2015.

[118] Hrvoje Jasak, Aleksandar Jemcov, Zeljko Tukovic, et al. Openfoam: A c++
library for complex physics simulations. In International workshop on coupled
methods in numerical dynamics, volume 1000, pages 1–20. IUC Dubrovnik,
Croatia, 2007.

[119] Hrvoje Jasak. Openfoam: open source cfd in research and industry. Inter-
national Journal of Naval Architecture and Ocean Engineering, 1(2):89–94,
2009.

[120] Martin Beaudoin and Hrvoje Jasak. Development of a generalized grid in-
terface for turbomachinery simulations with openfoam. In Open source CFD
International conference, volume 2, 2008.

[121] Pablo Higuera, Javier L Lara, and Inigo J Losada. Realistic wave generation
and active wave absorption for navier–stokes models: Application to open-
foam®. Coastal Engineering, 71:102–118, 2013.

[122] TÃ¢nia TomÃ© and MÃ¡rio J de Oliveira. DinÃ¢mica estocÃ¡stica e irre-
versibilidade. Edusp, 2014.

[123] Songmiao Liang, Jian Xu, Lihui Weng, Hongjun Dai, Xiaoli Zhang, and Lina
Zhang. Protein diffusion in agarose hydrogel in situ measured by improved
refractive index method. Journal of controlled release, 115(2):189–196, 2006.

138

Bibliography

[124] Veerle Cnudde and Matthieu Nicolaas Boone. High-resolution x-ray computed
tomography in geosciences: A review of the current technology and applica-
tions. Earth-Science Reviews, 123:1–17, 2013.

[125] HC Brinkman. A calculation of the viscous force exerted by a flowing fluid on
a dense swarm of particles. Applied Scientific Research, 1(1):27–34, 1949.

[126] R Allan Freeze. Henry darcy and the fountains of dijon. Ground Water,
32(1):23–30, 1994.

[127] C Soulaine. Direct numerical simulation in fully saturated porous media.
[128] Pierre Adler. Porous media: geometry and transports. Elsevier, 2013.
[129] Haukur Elvar Hafsteinsson. Porous media in openfoam. Chalmers University

of Technology, Gothenburg, 2009.
[130] Suhas V Patankar and D Brian Spalding. A calculation procedure for heat,

mass and momentum transfer in three-dimensional parabolic flows. Interna-
tional journal of heat and mass transfer, 15(10):1787–1806, 1972.

[131] R. I. Issa. Solution of the implicitly discretised fluid flow equations by operator-
splitting. Journal of Computational Physics, 62:40–65, January 1986.

139

	Instituto de Física
	Otimização da distribuição de fluidos em meios porosos usando padrões de venações de folhas
	Caio Martins Ramos de Oliveira
	Universidade de São Paulo
	Instituto de Física (1)
	Fluid distribution optimization in porous media using leaf venation patterns
	Caio Martins Ramos de Oliveira (1)
	Nomenclature
	Contents

	1 Introduction
	1.1 Outline
	1.2 Target applications
	1.2.1 Dye-sensitized solar cell variant
	1.2.2 Proton-Exchange Membrane Fuel Cells

	1.3 Partial differential equations classification
	1.3.1 Transport equation
	1.3.2 Navier-Stokes equations

	1.4 Statistical concepts
	1.4.1 Terminology and basic concepts
	1.4.2 Hypothesis testing
	1.4.3 Confidence intervals

	2 Generating interdigitated leaf-like channel network patterns
	2.1 Overview
	2.1.1 Leaf venation descriptions
	2.1.2 Vein development: canalization hypothesis
	2.1.3 Venation functions

	2.2 Remarks on the use of venation designs on possible targets
	2.3 Algorithm for open venation pattern generation
	2.4 Algorithm for closed venation pattern generation
	2.4.1 Relative neighborhood graphs
	2.4.2 Closed venation pattern algorithm implementation

	2.5 Algorithm adjustments for design generation
	2.6 Results

	3 Solving the fluid flow problem through the generated geometries
	3.1 3D venation model construction
	3.2 Mesh construction
	3.2.1 Geometry preparation
	3.2.2 SnappyHexMesh

	3.3 Solving the fluid flow problem
	3.3.1 Porous Medium region inclusion
	3.3.2 Input parameters
	3.3.3 Boundary conditions

	3.4 Results
	3.5 Discussion and statistical analysis

	4 Experimental models
	4.1 OpenSCAD mold generation
	4.2 3D printed molds
	4.3 Experimental set-up
	4.4 Discussion and challenges

	5 Final considerations
	5.1 Achievements
	5.2 Follow-up studies
	5.3 Models for PEMFCs
	5.4 Application to 3D cell cultures

	A Appendix: Voronoi diagrams and the Nearest Neighbor search
	A.1 Overview
	A.2 Constructing Voronoi diagrams: Fortune's sweepline algorithm
	A.2.1 Site and circle events, breakpoints and beachline
	A.2.2 Algorithm data structures
	A.2.3 Fortune's sweepline algorithm implementation

	A.3 Doubly-connected edge list (DCEL)
	A.4 Voronoi diagram validation
	A.5 Point location, Voronoi diagrams and the Nearest-neighbor search

	B Appendix: Computational Fluid Dynamics - CFD
	B.1 CFD Overview
	B.1.1 OpenFOAM Overview
	B.1.2 Solving CFD problems using OpenFOAM

	B.2 Incompressible Navier-Stokes equations
	B.3 Transport equation
	B.4 Darcy-Brinkman equation for porous media
	B.5 Meshes
	B.5.1 Orthogonal and Non-orthogonal meshes
	B.5.2 Structured, Block-Structured and Unstructured meshes
	B.5.3 Collocated and Staggered arrengements
	B.5.4 Convergence criterion

	B.6 Finite Volume Methods
	B.6.1 Methods for approximating the integrals
	B.6.2 Interpolation methods
	B.6.3 Truncation and discretization errors
	B.6.4 Discretization of the diffusion equation
	B.6.5 Explicit vs. Implicit methods and Stability
	B.6.6 Solving the algebraic system of equations
	B.6.7 Coupled Equations, Sequential solution and Under-relaxation

	B.7 Solving the coupled Pressure-Velocity equations
	B.7.1 SIMPLE algorithm
	B.7.2 PISO algorithm
	B.7.3 Merged PISO-SIMPLE - the PIMPLE algorithm

	Bibliography

