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Abstract

In the present work, Current Reversal Equilibrium Configurations (CRECs) in the context

of Magnetohydrodinamic (MHD) equilibrium are considered. The hamiltonian nature of

the magnetic field lines is used to introduce the concept of magnetic surfaces and their

relation to the Grad-Shafranov (G-S) equation. From a geometrical perspective and the

Maxwell equations, it is shown that current reversal configurations in two-dimensional

equilibrium do not generate the usual nested topology of the equilibrium magnetic sur-

faces. The concept of intersecting critical curves is introduced to describe the CRECs

and recently published equilibria are shown to be compatible with such description. The

equilibrium with a single magnetic island is constructed analytically, through a local suc-

cessive approximations method, valid for any choice of the source functions of the G-S

equation. From the local solution, an estimate of the island width in terms of simple

quantities is deduced and verified to a good accuracy with recently published CRECs; the

accuracy of this simple model suggests the existence of strong topological constraints in

the formation of the equilibria. Lastly, an instability mechanism is conjectured to explain

the lack of conclusive experimental evidence of reversed currents, in favor of the current

clamp hypothesis.
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Resumo

No presente trabalho, as configurações de equiĺıbrio com corrente reversa (CRECs), são

consideradas no contexto de Equiĺıbrio Magnetoidrodinâmico. A natureza hamiltonia-

na das linhas de campo magnético é usada para introduzir o conceito de superf́ıcies

magnéticas, e sua relação com a equação de Grad-Shafranov (G-S). Desde uma perspec-

tiva geométrica e usando as equações de Maxwell, é demonstrado que as configurações de

corrente reversa em equiĺıbrios bidimensionais não é compativel com as topologias ani-

nhadas usuais para as superf́ıcies magnéticas de equiĺıbrio. O conceito de curvas cŕıticas é

introduzido para descrever as CRECs e é observado que os equiĺıbrios recetemente publi-

cados satisfazem esta descrição. O equiĺıbrio com uma única ilha magnética é constrúıdo

analiticamente, por meio de aproximações sucessivas locais, este é válido para qualquer

escolha das funções arbitrárias da equação G-S. A partir da solução local, se desenvolve

uma estimativa do tamanho da ilha magnética em termos de quantidades simples. Esta

estimativa concorda bem com as CRECs da literatura recente, sugerindo pela simplicidade

do modelo, que existem fortes restrições topológicas no estabelecimento do equiĺıbrio. Fi-

nalmente, na forma de conjectura, introduzimos um mecanismo para instabilidades que

tenta dar conta da falta de evidência experimental conclusiva em relação às CRECs em

favor da hipótese de corrente unidirecional (current clamp).
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Chapter 1

Introduction

Fusion devices has been pursued by physicists since the early 1950’s, when the concept of

tokamak1 was first introduced by A. Shakarov and I. Tamm [1]. In essence, a tokamak is

a toroidal metallic chamber, immersed in a suitable array of magnetic fields. Those fields

are intended to confine the charged particles of a ionized gas at high temperatures inside

the chamber.

A successful fusion reactor must confine a sufficiently dense plasma at high tempera-

tures for a considerable long time, so that we can extract thermonuclear power from it [2].

Such power is due to the energy difference, between the rest-energy of two light nuclei and

the rest-energy of the resulting nucleus (lighter that its components) after fusion. The

Deuterium-Tritium (D-T) reaction is considered most efficient for fusion devices. Deu-

terium occurs naturally, is widely abundant and can be efficiently extracted from water;

meanwhile, Tritium can be produced from Lithium when submitted to a neutron beam,

which is one sub-product of the fusion reaction. The recent Lithium Tokamak Experi-

ment2 (LTX) incorporates in its design a liquid Lithium plasma-facing component (PFC),

that reduces impurities and the need of recycling, it also suggests an on-the-way Tritium

production [3].

If sustained, fusion promises to be a clean, cheap and efficient source of energy and

tokamaks appears have the most promising design for confinement. During the last 50

years, the tokamak has been improved, but the confinement problem has proven extremely

difficult, involving several research fields. The self-sustained fusion reaction and stable

confinement problem has then become an strictly interdisciplinary task, only solvable if

many considerations take place.

The plasma state is a highly dynamical one, since atoms are split in their charged

components that moves in response to the long range Coulomb forces produced by other

1Transliteration from the Russian, acronym for ”Toroidal Chamber with Magnetic Coils”.
2See http://pst.pppl.gov/ltx/
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charged particles in the system. Now, the self-consistency problem comes due to the

electromagnetic field produced by the moving charges, that affects back their own orbits,

creating thus a very complex picture of a magnetohydrodynamic system. In general we

have a nonlinear free-boundary problem, since the shape of the plasma border depends

strongly on its internal configuration, therefore it must be found self-consistently. Also,

the study of plasma dynamics involves several time scales and strong assumptions about

the regime of the system are mandatory.

Although the plasma state generally changes in time, one of the most fundamental

questions is about its equilibrium configurations. This comes as a generalization of the

basic method in Dynamical Systems Theory, where the fixed points on the phase space

give important information about the topology of the phase flow, in addition to its stability

in the nearby regions. Then, before undertake any serious attempt to solving the general

magnetohydrodynamic problem, the equilibrium configurations must be known and their

stability parameters as well. In this context, the Grad-Shafranov (G-S) equation appears

as a cornerstone of the equilibrium theory for two-dimensional plasmas3; its solution

provides the topology of the so called magnetic surfaces, where the equilibrium magnetic

field winds on surfaces with constant poloidal magnetic flux. However to solve the G-

S equation, a couple of arbitrary functions must be provided and the relevant physical

quantities depend strongly on this choice, establishing again self-consistency issues.

In general, after solving the G-S equation, we are able to describe the equilibrium

through relevant scalar fields, like the pressure and current density. Knowing these,

we can determine if the given equilibrium presents good features for a fusion reactor,

as high energy confinement (pressure), and stability. In standard equilibria, monotonic

current profiles decrease from the magnetic axis to the plasma edge, where the density

of charged particles is expected to vanish. This configuration presents some desirable

features for fusion, as a maximum pressure at the center, but has a strong dependence

on the externally produced magnetic fields and its improvement is limited by stability

considerations. Another fundamental issue comes from the basic mechanism to drive the

toroidal current inside the tokamak, that relies on the electromotive force induced by

a varying magnetic flux from an external transformer, limiting the tokamak operation,

at constant plasma current, to the time required to ramp the external current to its

saturation value. This, among other reasons, compels to search for advanced tokamak

scenarios that may allow a continuous operation of fusion power plants. As expected,

in those advanced scenarios, most of the plasma current is non-inductive [4], and other

sources of current must be provided. For instance, the bootstrap current [5] is internally

produced by particle trapping effects, due to variations in the magnetic field intensity

3Two-dimensional here refers to the structure of the problem when a symmetry is imposed.
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along the field lines. It is driven by the geometry of the equilibrium and the pressure

gradients, which makes it naturally hollow, with an off-axis minimum. There are also

externally driven currents, which can be pumped continuously, like the LH-driven current

produced by externally excited Lower-Hybrid waves.

From the hollow nature of the bootstrap current, it is natural to think of advanced

operation schemes involving non-monotonic current profiles. These are closely related to

non-monotonic safety factors that have a number of advantages in regard to transport

properties. In the context of advanced operation regimes, hollow current profiles have

been studied experimentally [6–8], and high confinement due to internal transport barriers

(ITB) was evidenced. In the context of axisymmetric equilibrium configurations, strong

invariant surfaces appears when the safety factor has a non-monotonic profile [9]. This

strong torus are robust against non-axisymmetric magnetic perturbations, reducing the

magnetic lines transport that drives the charge carriers. The same effects are observed in

related discrete models or nontwist mappings [10].

In recent works, the so called Current Reversal Equilibrium Configurations (CRECs),

a natural extension of the hollow scenarios, allows a small part of the current density to

become negative. The conjectured current reversal [11, 12] has been studied numerically

and analytically. In both cases, non-nested structures appear around some critic magnetic

surface, producing an equilibrium topology with a finite number of saddle points and

magnetic islands. If a negative current density is attainable, then it is most probable that

topological changes in the equilibrium may have a major influence in the viability of these

configurations. Understanding of the conjectured current reversal is relevant to define the

limits of advanced scenarios and their stability under current drive mechanisms.

An important issue of the known analytical descriptions of CRECs is the choice of a

unique set of arbitrary source functions for solving the G-S equation in the whole domain.

This approach is in general valid for nested topologies, but, in nonested equilibria, different

families of nested surfaces exist, so that actually different source functions may apply to

different families of nested magnetic surfaces. This introduces the extra difficulty, in a

more rigorous equilibrium calculation, of establishing internal boundary conditions for

self-consistency.

In the present work it is shown that any reversed current density is a mechanism

for magnetic island formation in the axisymmetric case and that the relevant equilibrium

geometry is almost independent of the choice of arbitrary sources. This can be understood

directly from the fundamentally two-dimensional nature of the equilibrium. Then, the

Grad-Shafranov equation is solved locally for a generic current profile containing the

main desired features. This simple model reproduces the most relevant topology of the

one-island cases reported in the literature. After recognizing the basic features of CRECs,
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their stability is discussed in the non-axisymmetric case, where some concepts from chaotic

hamiltonian systems are used to lighten an apparently basic mechanism for instability.

The present work is organized as follows. In Chapter 2, the basic properties of magnetic

fields and tokamaks are introduced; then in Chapter 3 a short digression in Magnetohy-

drodynamics and equilibrium theory introduces the basic tools to confront the problem

of CRECs in Chapter 4, where the topology of equilibrium and its stability are studied.

Chapter 5, contains some conclusions and a short discussion.



Chapter 2

Tokamaks and Magnetic Fields

2.1 Toroidal Geometry

Due to the high temperatures needed to maintain an ionized plasma, about 109K in a

usual configuration, the confinement of plasmas by material walls is out of question, not

because of heating them to melting temperatures, because plasma densities are usually

low, between 1019 − 1020m−3 [13], but for the sputtering process that may take place,

introducing heavy impurities in the plasma, and, eventually cooling it down below ignition.

The idea of magnetic confinement comes from the fact that the orbits of charged particles

curl in presence of magnetic fields, and to a first order approximation, their gyrocenter

follows the magnetic field lines. This suggests that magnetic fields may be used to confine

charged particles in a small volume (Fig 2.1), so that they can collide without going very

far, therefore sustaining the density-temperature conditions for ignition to take place.

The Lawson criterion defines the conditions needed to maintain the plasma temperature

with the fusion products alone, balancing the energy losses without external power [14].

nTτE > 3× 1021KeV s/m3, (2.1)

where n, T are the density and temperature, and τE is the confinement time given by

τE =
3
2

∫
n(Ti + Te)

P
, (2.2)

with P the power input of the system and i, e stands for ions and electrons1. This criterion,

however, does not guarantee the sustainment of such configuration, only establishes a

break-point for power production.

In order to simplify the confinement problem, the magnetic field configuration must

1Ions and electrons have different temperatures since collisions between them is less frequent that the
electron-electron and ion-ion collisions.
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Figure 2.1: Magnetic lines driving charges to a collision.

be simple, to enhance the experimental control and reduce the number of parameters for

the experimental setup. To understand the basic topology of tokamaks we just have to

recall Ampere’s law.

∇×B = µ0j ⇒
∮

Γ

B · dl = µ0I. (2.3)

In our context, we may think that the current density j is produced by the electron-

ion flow inside the plasma, so that the net flux through a given open surface gives a net

circulation of the magnetic field in its border. The most simple configuration is that of a

straight cylinder of moving charges, producing a solenoidal field about it, but this defines

an unbounded volume for the plasma. Thus we may simply blend the cylinder identifying

both ends to define a closed volume containing the particles. This is the most simple

geometry allowing a net circulation of the magnetic field about the plasma current. Now,

from

∇ ·B = 0, (2.4)

we know that there are no sources of magnetic field, so that the magnetic lines must

always encircle the toroidal shape (Fig. 2.2).

...

...

...

...

Figure 2.2: A toroidal current defines the most simple volume with net circulation of
magnetic field around it.
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2.2 Need of External Fields

Until now we have thought of the plasma currents as sources of the magnetic field, however,

it is easy to show that to confine the plasma we need external magnetic fields [15, 16].

The most resumed equilibrium condition is given by

∇ · T = 0, (2.5)

with the definition,

T = p⊥(I− bb) + p‖bb, (2.6)

where b = B
B

, p⊥ = p + 1
2
B2, p‖ = p− 1

2
B2 and p the plasma pressure. We can integrate

over a given volume the expression ∇ · (T · r) = Tr(T) + (∇ · T) · r, and after Gauss

theorem is applied we get∫ (
3p+B2/2

)
dV =

∮
σ

[
(p+B2/2)r · dS − (B · r)(B · dS)

]
. (2.7)

In the left side, the integrand is positive definite and so is the integral. Now, if we take

the containing surface to go to infinity, recalling that B falls like 1/r3 or faster, the

surface integral vanishes and we get an absurd result. This comes from the equilibrium

equation (2.5), that only considers fields produced by the plasma current, neglecting

any external source of field. The conclusion is clear, the local equilibrium condition in

absence of external fields is not compatible with the global equilibrium equations, then

the equilibrium requires the introduction of external fields.

Toroidal field coils

Poloidal field coils

Transformer core

Conducting chamber

Plasma

Figure 2.3: Basic design of a tokamak.

In Figure 2.3 we can see the basic coil structure, used to create the vacuum magnetic

field where the plasma is introduced. A central iron core is part of a transformer used

to create the toroidal plasma current by Faraday Induction. Also, the vacuum magnetic
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field has both poloidal and toroidal components, the latter are produced by a suitable set

of current rings. In equilibrium, a consistent configuration of magnetic fields and plasma

currents gives the desired confinement of charged particles.

2.3 Nature of Magnetic Fields

Until now, a combination of externally and internally produced magnetic fields appear to

be the most fundamental tool to confine plasmas. Magnetic fields possesses remarkable

geometric properties coming from its divergenceless nature, like an intrinsic symplectic

structure. In the following, a short survey of fundamental properties relevant to this work

will be presented.

2.3.1 Passive tracers

In Electrodynamics we study the structure of electromagnetic fields and their relation to

the sources, charges and currents. The electromagnetic field is as an entity with physical

properties of its own, but in practice, this fields serve to define the long-range forces acting

on charged particles under the influence of other charges and currents, i.e. fields may be

considered a means, not an end. Nonetheless, it is possible to show that, under some

averaging conditions, the motion of charged particles in electromagnetic fields may be

decomposed into a fast gyromotion about a slow guiding centre motion [17]. The guiding

centre motion has its main component along the magnetic field2 and there are several

drifts (E × B, perpendicular, ∇B, inertial and polarization), driving the center off the

magnetic lines.

By studying the magnetic field lines, we can understand to first order, the average

motion of charged particles in a slowly varying (in space and time) electromagnetic field.

For this, let us introduce the concept of passive tracers [18]. Assume a vector field V (r),

and a set of three independent, arbitrary functions {u1, u2, u3}; the vector field may be

written in the covariant basis as3

V = V iei, (2.8)

with ei = ∂r/∂ui, V i = V · ei and ei = ∇ui. Now, lets consider a line element dl, also in

the covariant basis

dl = duiei. (2.9)

If the line element dl is always parallel to the magnetic field, then we can write V ×dl = 0,

2For near equilibrium plasmas, the projection of the electric field over the magnetic one is small,
leading to a small drift across magnetic lines.

3Einstein’s convention will be used through this text.



21

or by components

V idujei × ej = 0, (2.10)

using the basic relations between covariant and contravariant basis, ei × ej =
√
gεijke

k,

with
√
g = ei · (ej × ek), we get by the linear independence of the contravariant basis

V iduj − V jdui = 0⇒ dui

duj
=
V i

V j
. (2.11)

Then we are left with a system of differential equations, relating the change in each

variable with the changes in the other two, so that the curve is always parallel to the

vector field V .

2.3.2 Divergenceless Fields

From the divergenceless nature of the magnetic field, it can be written as B = ∇ × A
[19], where we are considering A and B as time-independent vector fields in the three

dimensional space. In general, the position vector r can be regarded as a function of

three independent arbitrary functions r(α, β, γ), such that each point in the space may

be identified uniquely by the three numbers (α, β, γ). The magnetic potential and in

general, any vector may be written

A = Aα∇α + Aβ∇β + Aγ∇γ. (2.12)

Now, consider the scalar field χ(r) = χ(α, β, γ) and its gradient

∇χ = ∂αχ∇α + ∂βχ∇β + ∂γχ∇γ. (2.13)

Equating the α-components of A and ∇χ, we get Aα = ∂αχ. Then we can write

Aα∇α = ∇χ− ∂βχ∇β − ∂γχ∇γ. (2.14)

Replacing in the expression for A

A = ∇χ+ (Aβ − ∂βχ)∇β + (Aγ − ∂γχ)∇γ, (2.15)

introducing the functions ϕ = −Aβ + ∂βχ, and ψ = Aγ − ∂γχ the vector potential may

be generally written as

A = ∇χ+ ψ∇γ − ϕ∇β, (2.16)
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clearly, the last form is valid for any vector field. Taking the rotational, we have the

magnetic field

B = ∇ψ ×∇γ −∇ϕ×∇β. (2.17)

This is also true for any divergenceless vector field.

2.3.3 Hamiltonian Magnetic Lines

In (2.17) we have related the magnetic field with the gradients of four scalar fields. Two

of them are by hypothesis independent, {β, γ}. The remaining fields are quite arbitrary,

since they depend on the β and γ derivatives of some arbitrary scalar field χ satisfying

Aα = ∂αχ only; however we can not say they are always independent from β and γ, since

a number of degeneracies may have been introduced through χ.

Now, let us assume that {γ, ϕ, β} are independent functions in several connected

domains, those will be established in the particular problem of interest, then or course,

we are assuming that ψ is a well defined function of (ϕ, β, γ) in the interest domain. With

this, we can rewrite Eq. (2.17) like

B = ∇ψ × eγ − eϕ × eβ. (2.18)

Using ∇ψ = ∂γψe
γ + ∂ϕψe

ϕ + ∂βψe
β, and ei × ej = εijkek/

√
g we obtain the magnetic

field in the covariant basis.

√
gB = −eγ + ∂βψeϕ − ∂ϕψeβ. (2.19)

Now we can use Eq. (2.11) to write down the differential equations governing the magnetic

tracers or magnetic lines.

dβ

dγ
=

∂

∂ϕ
ψ(ϕ, β, γ), (2.20)

dϕ

dγ
= − ∂

∂β
ψ(ϕ, β, γ). (2.21)

This are clearly the Hamilton equations, just that the phase space variables and the time,

are all spatial variables, which means that this system evolves in two spatial coordinates

(ϕ, β) as we change the third one γ, and the orbits will fulfill the conditions imposed by

the Hamiltonian mechanics.

Due to arbitrariness of β(r) and γ(r), this result is quite general and the meanings of

ψ(r) and ϕ(r) are usually related to different magnetic fluxes, established in the particular

geometry of interest.
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2.4 Hamiltonian Systems

In the context of Classical Mechanics, the introduction of the Hamiltonian formulation,

gives to the problem of motion a geometrical perspective. For a given physical system,

it is possible to find a Hamiltonian function H(p, q, t) that characterizes its motion with

the dynamical law

q̇k =
∂H

∂pk
, ṗk = −∂H

∂qk
; (2.22)

where q = (q1, ..., qn) and p = (p1, ..., pn), are the generalized coordinates and momenta for

a n-degrees of freedom system. This vector field drives all solutions in the phase space,

and due to its symplectic nature [20], all Hamiltonian systems have similar geometric

properties. The power of this formulation goes beyond finding the differential equations

that rules a given system; it brings to light important conservation rules that must be

followed by the phase flow (integral invariants), and leads to powerful theorems regarding

the stability of the motion and robustness against perturbations.

In general, the motions can be classified into regular (fixed, periodic or quasiperiodic)

or irregular (wandering/chaotic), depending on the integrability of the system. For a n-

dimensional integrable system, there is a set of functions {Fk(p, q), k = 1, ..., n} that does

not change during the motion (constants of motion), these functions are independent, and

must be in involution

[Fα, Fβ] =
n∑
k=1

∂Fα
∂qk

∂Fβ
∂pk
− ∂Fβ
∂qk

∂Fα
∂pk

= 0. (2.23)

The existence of this set induces the existence of another one, {Ik(p, q), k = 1, ..., n},
called action variables and a transformed Hamiltonian H̄(I), that only depends on the

actions I = {I1, ..., In}. The new Hamiltonian may be obtained through a canonical

transformation of the old one [21], and continues to represent the original system, just in

a more natural way. Under this transform, the system preserves its Hamiltonian structure

and can be integrated directly, since eq. (2.22) is now

θ̇k =
∂H̄

∂Ik
= ωk(I), (2.24)

İk = −∂H̄
∂θk

= 0, (2.25)

with {θk, k = 1, ..., n}, the conjugated coordinates to the new momenta {Ik}. Clearly, the

actions are constant during the motion, or Ik(t) = Ik(0) = I0
k and the angular velocities
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too, with values ωk(I0), leading to the complete solution of the problem

θk(t) = θ0 + ωk(I0)t. (2.26)

However, the existence of the integrals of motion is not generally guaranteed and integrable

systems are more the exception, that the rule. The nonexistence of a complete set of

integrals of motion leads to wandering or chaotic motion [22], that is quite complex and

still not fully understood.

To understand the concept of integrability we can use a simple geometrical approach

provided by the Poincaré section. If there are several independent constants, then the orbit

must be defined in the intersection of several level sets. When the number of constants of

motion equals the number of degrees of freedom, the intersection of all level sets may be

mapped to a n-dimensional surface or n-torus, where the motion is described by n-angles

changing uniformly. The relation between the frequencies makes the motion periodic or

cuasiperiodic, and a single orbit may fill the entire torus if the relation between frequencies

is incommensurate. In practice, there is no method to finding constants of motion, so the

transformations leading to the action-angle variables are not generally available, and the

integrability of the system must be evidenced in other ways.

Figure 2.4: Intersection of several trajectories in a torus, with a surface of section.

The Poincaré section consists of a surface in the phase space, that intersects a bunch

of orbits of interest. Each intersection in the surface may be considered as an initial

condition, now, if the system is bounded, we expect the orbit to return and cross again

the surface of section. As each point in the section leads to a single new one, then exist

an invertible mapping linking the points over the surface; this is called a Poincaré map,

and it possesses most of the dynamical properties of the total system.

When the Hamiltonian is integrable, the orbits rests in a n-torus, that intersects

the surface in a continuous, dim = n − 1 manifold. In the practice we can integrate the

equations of motion numerically, and collect the intersections of the orbit with the surface
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of section, then we can see if those points appears to lie in a continuous manifold (fig.2.4).

In such case, the Poincaré map moves the points over the manifold and can densely fill

it, if the orbit is irrational.

Figure 2.5: Orbits intersection the surface of section, to form an ergodic region.

Chaotic behavior comes from the lack of enough constants of motion. As a consequence

the motion can only be restricted to several level sets, but not to a single surface. This

means that the orbit is allowed to wander inside a volume in complicated ways and

sensitivity to initial conditions appears.

In the Poincaré section of a non-integrable flow, the orbit intersects the surface without

being attached to a continuous manifold (Fig. 2.5). This creates ergodic regions where

making predictions for a single orbits is ephemeral. Actually, from the recurrence theorem

of Poincaré [20], ergodic orbits must fill the volume where they are defined, therefore a

statistical description seems to be more appropriate.

A way to better understand chaotic behavior is by introducing quasi-integrable sys-

tems, usually composed from a principal integrable Hamiltonian and a small, time-

dependent, perturbing potential [23]. The size of the perturbation allows to control the

effect on the topology of the integrable system. According to the Kolmogorov-Arnold-

Moser (KAM) theorem [20], it is possible to show that for a small intensity, there is no

full destruction of the regular surfaces; but all the rational ones4 are destroyed. By the

nature of rational numbers, the phase space is layered by chaotic regions, with invariant

surfaces, between them. The increase of the perturbation leads to further destruction of

invariant surfaces, starting about the separatrixes that connects two hyperbolic points

(heteroclinic orbits), or an hyperbolic point to itself (homoclinic orbits). The Poincaré-

Birkhoff theorem for fixed points [24], ensures that under a perturbation, points are born

in pairs (elliptic-hyperbolic), at the resonant surfaces, where the unperturbed frequencies

4Those with commensurate frequencies respect to the perturbation
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and the perturbation frequency are commensurate, this is why all rational surfaces are

destroyed by the perturbation.



Chapter 3

MHD Equilibrium

Under suitable approximations the plasma can be described as a single fluid, governed

by the Magnetohydrodinamic (MHD) model [2]. To derive this model we can combine

the statistical descriptions of the species in the plasma with a description of the fields

produced by their charges and their motion. If we consider the phase space distribution

function describing the state of the plasma specie α for a given time, fα(r,u, t), we can

couple the Boltzmann equation to the Maxwell equations for the electromagnetic field

∂fα
∂t

+ u · ∇fα +
qα
mα

(E + u×B) · ∇ufα =

[
δfα
δt

]
coll

, (3.1)

∇×E = −∂B
∂t
, (3.2)

∇ ·B = 0, (3.3)

∇×B = µ0j +
1

c2

∂E

∂t
=

1

c2

∂E

∂t
+ µ0

∑
α

qα

∫
ufαdu, (3.4)

∇ ·E =
σ

ε0

=
1

ε0

∑
α

qα

∫
fαdu. (3.5)

Here, the electric and magnetic fields are produced by the mean distributions of current

and charge density inside the plasma, and those fields affect back the distributions fα

through the forces they exert on the particles. Although complete, this model is exceed-

ingly complex, and analytical, even numerical approximations are impossible in general

cases.

Lets start by considering that the plasma is constituted by electrons and ions only (α =

e, i), and that ions are once charged (i.e. their charge is e). Also, instead of considering the

Boltzmann distribution fα, we can consider the moments of the distribution, obtained by

averaging in the velocity space the quantities Q1 = 1, Q2 = mα, Q3 = 1
2
mαu

2, related to

the density of particles, momentum and energy in a given point of the space. Taking into

consideration the usual contributions to the distribution function by collisions between

27
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particles of the same and different species, together with the conservation of momentum,

energy and particles, and defining the means

nα ≡
∫
fαdu, (3.6)

vα ≡
1

nα

∫
ufαdu, (3.7)

we obtain the set of two-fluid equations.

dnα
dt

+ nα∇ · vα = 0, (3.8)

nαmα
dvα
dt
− qαnα(E + vα ×B) +∇ · Pα = Rα, (3.9)

3

2
n
dTα
dt

+ Pα : ∇vα +∇ · hα = Qα, (3.10)

∇×E = −∂B
∂t

, (3.11)

∇×B = µ0e(nivi − neve) +
1

c2

∂E

∂t
, (3.12)

∇ ·E =
e

ε0

(ni − ne), (3.13)

∇ ·B = 0. (3.14)

Where the temperature, scalar and tensorial pressure were defined like

pα ≡
1

3
nαmα < w2

α > , Pα ≡ nαmα < wαwα > , Tα ≡
pα
nα
, (3.15)

with wα = u− vα a relative velocity and <> the velocity space mean. In the equations

also appears the quantities Rα, Qα,hα, related to, the mean momentum transfer between

unlike particles due to collisions, the heat produced in such events, and the heat flux by

random motions (details in [2]), respectively.

3.1 Single Fluid Equations

The most tractable model of a plasma, corresponds to that of a single fluid, whose prop-

erties may be averaged from the two fluid model. To obtain this description, a number

of considerations are in order. First, the plasma is considered to be locally quasi-neutral

(ni = ne = n) and the displacement current is neglected (ε0∂E/∂t), which amounts to

consider waves with velocities much less that light speed. Also, the neutrality may be

understood as doing ε0∇ ·E = 0, valid for frequencies much less that plasma frequency

ωpe ≡
√
ne2/meε0, and lengths much larger that the Debye length λd = vTe/ωpe (vte is
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the electronic thermal velocity). The inertia of the electron is also neglected me → 0, in

comparison with that of the ions (∼ 4000 times larger). Under this approximations, and

the following definitions

ρ = min, (3.16)

v = vi, (3.17)

J = en(vi − ve), (3.18)

p = nT = pe + pi, (3.19)

T = Te + Ti; (3.20)

a the single fluid equations are found, and after another number of approximations [2],

related to the collisionality of the plasma, and the spatial scale of interest we get:

∂ρ

∂t
+∇ · ρv = 0, (3.21)

ρ
dv

dt
= j ×B −∇p, (3.22)

d

dt

p

ργ
= 0, (3.23)

E + v ×B = 0, (3.24)

∇×E +
∂B

∂t
= 0, (3.25)

∇×B − µ0j = 0, (3.26)

∇ ·B = 0; (3.27)

where the time derivative is a convective derivative, or d/dt = ∂/∂t + v · ∇, to be taken

in the fluid’s reference frame. This set of equations is valid for a long-wavelength, low-

frequency, dynamics in a macroscopic plasma.

3.2 Equilibrium

In Dynamical Systems theory, even when the main concern is about dynamics, the evolu-

tion of the system is strongly affected by the types of equilibria that can be achieved. The

search for fixed points is important, because the evolution of sufficiently near conditions

can be described by a linear system, and time-dependent solutions adjust themselves to

satisfy the local conditions imposed about equilibrium configurations.

As an example, in Fig.3.1, there is a representation of the local linear dynamics in a

two-dimensional dynamical system. Assuming we have four kind of fixed points: a center

(a), two saddles (b,c), a spiral source (c) and a spiral sink (e), and knowing the local
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dynamics about them, we can construct a good model of the global flow of solutions.

The local manifolds of the fixed points restricts some of the global topology, of course

depending on the relative positions of those equilibria in the phase space, and on the

stability of each one.

a

b

c

d

e

a e

d
b

Figure 3.1: Fixed points and their relation to the global flux.

In the context of plasmas, there is a set of functions (ρ, p,B,E, j,v), depending on

the position r and time t, that describes the plasma state. We also have a set of equations

(eqs.(3.21)-(3.27)), that defines the change on each variable as a function of the others,

i.e. the system’s dynamics. This is a more general dynamical system, where the state

variable is the set of functions describing the plasma at each point in the space. We can

expect that a local linear analysis about an equilibrium configuration may give impor-

tant information about the stability of the system in near configurations. Despite the

clear differences between this dynamical system and the most elementary ones (described

by a countable set of state variables), we can start the analysis of the plasma with its

equilibrium configurations.

The single fluid equations describe only ”slow” phenomena in a ”smooth” plasma,

but still a very good model for macroscopic plasmas, even going beyond its scope of

application; using the fluid equations, we can assume the existence of an equilibrium

configurations of the plasma. This amounts to make ∂/∂t = 0, in all quantities, and

asking for v = 0, so that the convective derivative vanishes, leading to the reduced set of

equations

∇p = j ×B, (3.28)

∇×B = µ0j, (3.29)

∇ ·B = 0. (3.30)

Any equilibrium configuration of the plasma must satisfy this set of equations. Al-

though this system is much simpler that the dynamical one, its solution is quite difficult,

and still a serious issue on the problem of confinement. Before constructing the formal

description of equilibrium, we can make some elementary observations.
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Figure 3.2: Simply connected isobaric surfaces violate the equilibrium condition (3.28).

Assume we manage to confine a given volume of plasma in a finite region of space.

From the macroscopic point of view, the kinetic pressure is a smooth function, then the

equation p = const. defines a smooth isobaric surface in the space. If the plasma is

actually confined, we require the p = const. surfaces to be closed. From eq. (3.28), the

current and magnetic field lines clearly extends over an isobaric surface, so that j ×B
is always normal to it. However this introduces a restriction on the shape of the isobaric

surfaces, that can not be simply connected (see fig.3.2). If the isobaric surface is simply

connected, and simultaneously satisfies (3.28), then two crossing stream lines define a

direction normal to the surface, but if they cross again as they move over the surface, the

normal direction will be reversed introducing a contradiction. This problem is solved if

we consider that the isobaric surfaces are not simply connected, and the simplest example

of such geometry is the torus T 2; this is another verification of the basic statements made

in previous sections, about the minimal model allowing to confine plasmas. In the right

of fig.3.2 we can see that the magnetic and current stream lines always cross in a way

compatible with the surface orientation.

3.2.1 Grad-Shafranov Equation

In the following, the last set of equations will be summarized in a single well known

equation describing the plasma equilibria for any axisymmetric system. To do this, we

have to adopt a convenient representation of the quantities, here, cylindrical coordinates

(R, φ, z) are adequate. In this representation, axisymmetry means that all quantities are

independent of the toroidal angle φ. From eq. (3.30) we can introduce a vector potential

A such that, B = ∇ × A, where ∂Aα/∂φ = 0 and α = R, φ, z. Then, in cylindrical

coordinates we have

B = −R̂∂zAφ + φ̂(∂zAR − ∂RAz) + ẑR−1∂R(RAφ). (3.31)
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Defining Bφ(R, z) = ∂zAR − ∂RAz, and reordering we get

B =
[
ẑR∂zAφ + R̂∂R(RAφ)

]
× (R−1φ̂) + φ̂Bφ, (3.32)

using the gradient in cylindrical coordinates, noting that ∇φ = R−1φ̂, and defining

ψ(R, z) = RAφ(R, z), we have

B = ∇ψ ×∇φ+ φ̂Bφ. (3.33)

This type of representation was already expected, but here takes a more specific form

in terms of known coordinates and quantities. Before keep going, lets give a physical

meaning to the quantity ψ. Recall that B = ∇×A, then, the magnetic flux through a

given surface σ, limited by a closed curve δσ, is by the Stokes theorem:

ΦB(σ) =

∫
σ

B · dS =

∫
δσ

A · dl. (3.34)

Considering a boundary δσ, whose line element has only toroidal component, (dl = dlφ̂ =

Rdφφ̂), and using ψ = RAφ, we have

ΦB(σ) =

∫
δσ

ψdφ = 2πψ, (3.35)

where was considered that ψ is axisymmetric. Then ψ is proportional to the magnetic

poloidal flux through a surface limited by boundaries with constant R and z.

Figure 3.3: Surface to calculate the poloidal magnetic flux, and the poloidal current.

In fig.3.3 we can see the basic shape of the surface used to calculate the magnetic flux.

As the magnetic field is expected to rest in a toroidal surface, then the surface σ must

be limited by two closed curves, so that the net flux of magnetic field is not zero. One of

the loops is kept fixed at (R0, z0), where we usually have a magnetic axis, i.e. a purely
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toroidal magnetic field.

As the current density j, can be written, j = µ−1
0 ∇ × B, we can apply the same

reasoning and write

µ0j = −R̂∂zBφ + φ̂(∂zBR − ∂RBz) + ẑR−1∂R(RBφ). (3.36)

The toroidal current is clearly µ0jφ(R, z) = ∂zBR − ∂RBz, reordering we have

j = µ−1
0

[
ẑR∂zBφ + R̂∂R(RBφ)

]
× (R−1φ̂) + φ̂jφ, (3.37)

now we introduce the quantity F (R, z) = RBφ(R, z), to get

j = µ−1
0 ∇F ×∇φ+ φ̂jφ. (3.38)

Here, F has the meaning of the poloidal current density flux, or poloidal current, through

a surface like in fig.3.3. The topology of the plasma is defined by the family of surfaces

ψ = const. Clearly we expect those surfaces to be closed although not simply connected.

In general, any vector field may be decomposed in poloidal and toroidal components,

where the poloidal direction lies on a plane φ = const. and therefore is perpendicular to

the toroidal one; with this, the force balance equation (3.28) is written

∇p = (jp + jφ)× (Bp +Bφ). (3.39)

As we are dealing with a axisymmetric configuration, the pressure is φ-independent, then

∇p lies also in a φ = const. plane and the previous equation may be decomposed into

jp ×Bp = 0, (3.40)

∇p = jp ×Bφ + jφ ×Bp. (3.41)

Then the poloidal components of the magnetic field and the current density are parallel.

Identifying the poloidal components in (3.33) and (3.38) as Bp = ∇ψ × ∇φ and jp =

µ−1
0 ∇F ×∇φ; then using the identity (a× b)× (c× d) = (a× b · d)c− (a× b · c)d, we get

∇F ×∇φ · ∇ψ = 0⇒ ∇ψ ×∇F · ∇φ = 0; (3.42)

as ψ and F , are φ-independent, their gradients rest in the φ = const. plane, so ∇φ×∇F
must be in direction φ, then the eq.(3.42) means

∇ψ ×∇F = 0⇒ ∇ψ ‖ ∇F (3.43)
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As ∇ψ is always orthogonal to any ψ = const. surface, then ∇F is too; but ∇F is

orthogonal to the F = const. surfaces. This implies that the surfaces ψ = c1 and F = c2

are equal. For each surface there is a unique value of ψ and a unique value of F , and both

change continuously from surface to surface, then, exists a continuous function relating

them and we can write

F (R, z) = F (ψ(R, z)). (3.44)

This means that F is a surface quantity.

Now, replacing the poloidal components of B and j into (3.41), using the relation

a× (b× c) = (a · c)b− (a · b)c, we have

R∇p = jφ∇ψ − µ−1
0 Bφ∇F, (3.45)

from (3.44) we have ∇F = (dF/dψ)∇ψ, so we have

∇p = R−1(jφ − µ−1
0 BφF

′)∇ψ. (3.46)

This equation indicates that ∇p is always parallel to ∇ψ, then p is also a surface quantity.

In a toroidal confinement scheme, we expect the isobaric surfaces to be toroidal, then the

flux surfaces will be toroidal as well. We can write ∇p = (dp/dψ)∇ψ, then for ∇ψ 6= 0,

(3.46) reduces to

jφ = R
dp

dψ
+ µ−1

0 R−1F
dF

dψ
. (3.47)

Then, to know the toroidal current density we need to know the functions F (ψ) and

p(ψ); but those are not generally available, and their form depends on the equilibrium.

The choice of this functions is made so as to simplify the analytical treatment of the

system, but they are mathematically arbitrary, and physically they must guarantee the

self-consistency of the solution.

To finalize the derivation of the Grad-Shafranov (G-S) equation, lets use the Ampere’s

law (3.29), in terms of the magnetic potential A. Then we have

µ0j = ∇× (∇×A) = ∇(∇ ·A)−∇2A. (3.48)

In the Coulomb gauge ∇ ·A = 0, then ∇2A = −µ0j; then we can take the φ-component

of this equation, to use the representation of jφ in (3.47). In cylindrical coordinates we

have (∇2A)φ = ∇2Aφ + 2R−2∂φAR − R−2Aφ; from axisymmetry we have ∂φ() = 0, and

the φ-component of eq. (3.48) is

−µ0jφ = ∇2Aφ −R−2Aφ. (3.49)
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Expanding the laplacian as, ∇2Aφ = R−1∂R(R∂Aφ) + ∂2
zAφ, and replacing Aφ = ψ/R, it

is easy to show that

R∇ · (R−2∇ψ) = −µ0jφ, (3.50)

so, after replacing (3.47), we obtain the Grad-Shafranov equation:

−R2∇ · (R−2∇ψ) = µ0R
2 dp

dψ
+ F

dF

dψ
, (3.51)

or

−(∂2
Rψ −R−1∂Rψ + ∂2

zψ) = µ0R
2 dp

dψ
+ F

dF

dψ
. (3.52)

It is also customary, to define the elliptic operator ∆∗() = R2∇ · (R−2∇()).

The G-S equation, is a second order elliptic partial differential equation. It also may

be linear or nonlinear, depending on the choice of the source functions p(ψ), F (ψ). As

the non-homogeneity jφ depends intrinsically on the solution ψ(R, z), the flux ψ is both

an independent and dependent variable, since the problem is nonlinear it must be solved

self-consistently to match the boundary conditions. Another difficulty arises, because

there is no way to establish the edge of the plasma before actually solving the problem, in

general the boundary conditions are not available, making this, a free boundary problem.

Albeit all the problems establishing a proper set of conditions for the poloidal flux

ψ(R, z), we expect the solutions of the G-S equation to be smooth, so that the magnetic

field lines wind kindly over the level surfaces ψ = const. This is a consequence of asking

for axisymmetry, that automatically makes the Hamiltonian of the magnetic lines an inte-

grable one, and the phase flow (eqs. (2.20-2.21)) becomes stationary respect to φ. In fact,

without axisymmetry we must solve the full 3-dimensional problem, where the magnetic

surfaces existence is not guaranteed, and the problem is in general non-integrable. A great

advantage of assuming axisymmetry is that we can introduce the asymmetric effects as a

small perturbation that destroys some of the magnetic surfaces, but leads some invariant

surfaces where the magnetic field still integrable, and we can study the transition from

laminar fields to ergodic ones.

For any Hamiltonian bounded system, depending just on two variables, there are

local transformations leading to action-angle formalism. In other words, we expect the

magnetic surfaces to be smooth and nested, at least locally. Then the equilibria from the

G-S equation must consist in general of sets of nested surfaces with axial symmetry, but

there is no formal restriction on the total number of magnetic axis (fig.3.4).
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mag. axis

Figure 3.4: The equilibrium field lines wind on sets of nested magnetic surfaces about a
finite number of magnetic axes.

3.3 Equilibrium Solutions

Given the arbitrariness of the source functions F (ψ) and p(ψ), there are several ways to

solve the Grad-Shafranov equation by choosing particular forms of the toroidal current jφ.

Some choices of F (ψ) and p(ψ) lead to linear G-S equations, then, provided a suitable set

of boundary conditions, we can obtain analytical solutions that may be used to describe

experimental results [25, 26]. From Sturm-Liouville theory [27], we know that a linear

differential operator, has associated a full set of eigenfunctions, that may be used to ex-

pand any general solution matching the boundary conditions and obeying the differential

equation containing the operator; then it is expected that, for separable G-S equations,

linear solutions model accurately the plasma shape, while their most serious limitation

is in describing the kinetic pressure, and toroidal magnetic field, that usually have over-

simplified dependences on the magnetic flux ψ. Clearly, choosing a more accurate form

of the ”arbitrary” functions, lead to nonlinearity of the G-S equation, where analytical

solutions are not generally available and numerical methods must be used to solve for

general boundary conditions.

3.3.1 Boundary Conditions

Before introducing the successive approximation method lets review the usual boundary

conditions for plasmas confined inside conducting chambers. First of all, a vacuum mag-

netic field is needed to confine the plasma. If successful confinement is reached, the plasma

occupies a finite volume in space (that we expect to be toroidal), and in equilibrium it

has a well defined edge (free boundary). There is also a toroidal conducting chamber

containing the plasma, that helps to balance the outward hoop forces produced by the

current loop inside the plasma [2]. The poloidal magnetic flux ψ is defined inside the
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plasma region, and ψv in the vacuum between the plasma and the conducting wall (fig.

3.5).

In the most simple case, we have a circular cross section chamber. As magnetic fields

are normal to perfectly conducting surfaces, the poloidal field in the surface σ2 must

vanish. In terms of the poloidal flux, Bp = ∇ψ ×∇φ, then we have ∂ψv/∂n2 = 0, with

n̂2 the normal direction to σ2.

plasma

conducting chamber

vacuum

Figure 3.5: Regions of interest and boundaries.

As in the vacuum there are not moving (or still) charges, the current density vanishes

and the G-S equation is reduced to ∆∗ψv = 0. Considering only the magnetic field

produced by the plasma, it is clear that the conducting shell must be over a magnetic

surface; and by continuity of ψv the vacuum magnetic surfaces must be a set of nested

tori. As ψ has the meaning of a flux, it must be continuous, then we can match ψ(σ1) =

ψv(σ1). Also, an induced current in the plasma surface leads to a discontinuity on the

magnetic field given by n̂1 × (Bout − Bin) = µ0js; the toroidal component of this is,

∂ψv/∂n1− ∂ψ/∂n1 = jφ(σ1). The toroidal current may be written in terms of the change

in the arbitrary functions F (ψ) and p(ψ). If we allow the pressure to vanish smoothly at

the plasma edge, and consider that F does not change there, since there is no contribution

to the poloidal current in the vacuum; then jφ(σ1) = 0 and ∂ψv/∂n1 = ∂ψ/∂n1. When

we allow discontinuities on the pressure at the edge, we also introduce discontinuities in

the magnetic field. From equilibrium we have

∇p = µ−1
0 (∇×B)×B = µ−1

0 B · ∇B − µ−1
0 ∇(B2/2). (3.53)

Taking a dot product with a differential vector δr normal to the magnetic surfaces (then

to the magnetic field), we have

∇
(
p+

B2

2µ0

)
· δr = δ

(
p+

B2

2µ0

)
= 0, (3.54)
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where δα, represents the change in α, after an infinitesimal displacement δr. This must

also hold at the boundary σ1, then can be used as a boundary condition.

3.3.2 Successive Approximations

Now, lets introduce a successive approximation method, valid for large aspect ratio toka-

maks and generic choices of source functions. Lets write the G-S equation in local polar

coordinates (fig. 3.5). This coordinates are defined by the transformations

R = R0 + r cos θ , z = r sin θ , φ = φ; (3.55)

clearly, the transformation is one to one only if r < R0, which is sufficient to describe the

equilibrium in tokamaks.

Figure 3.6: Local polar coordinate system.

In the elliptic operator ∆∗ = ∂2
R + ∂2

z − R−1∂R, the first terms ∂2
R + ∂2

z act like the

Laplace operator ∇2 in a plane. The action of ∇2 does not change by changing the origin,

then we can write ∆∗ = ∇2−R−1∂R where R must be written in local polar coordinates.

It can be shown that ∂r/∂R = cos θ and ∂θ/∂R = − sin θ/r, then replacing R and ∂/∂R

in ∆∗ we get

∆∗ = ∇2 − 1

R0 + r cos θ

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
. (3.56)

Let us assume that the plasma edge is about the circle r = a, introducing the non

dimensional radius r̃ defined by r = ar̃, the G-S operator may be written ∆∗ = a−2∆̃∗,

where

∆̃∗ = ∇̃2 − ε

1 + r̃ε cos θ

(
cos θ

∂

∂r̃
− sin θ

r̃

∂

∂θ

)
. (3.57)

Here ∇̃2 is a non dimensional laplacian, and ε = a/R0 is a geometric property of equi-

librium called inverse aspect ratio. We can also write the poloidal flux in terms of a

characteristic magnetic flux and a non dimensional variable ψ = aR0B̄p(a)ψ̃, where
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B̄p(a) = µ0Ip/2πa is the poloidal field on the surface of a cylindrical uniform current

of radius a. Finally, the pressure may be written as p(ψ) = p0p̃(ψ̃), with p0 the maxi-

mum plasma pressure and F (ψ) = R0B0F̃ (ψ̃), where B0 is the vacuum magnetic field at

the origin (of the local coordinates). The Grad-Shafranov, may then be written in non

dimensional form as

∇̃2ψ̃ − ε

1 + εr̃ cos θ

(
cos θ

∂ψ̃

∂r̃
− sin θ

r̃

∂ψ̃

∂θ

)
= −1

2

[
β̃(1 + εr̃ cos θ)2 dp̃

dψ̃
+
B2

0

B̄2
p

dF̃ 2

dψ̃

]
. (3.58)

Where β̃ = 2µ0p0/B̄
2
p(a) [28], is defined in analogy to β ≡ p/(p+B2/2µ0), that measures

the effectiveness of plasma confinement [2], and varies little inside the plasma. From here,

the non dimensional form will be used, then we will exclude the ∼ in the calculations

(except for β̃).

Until now, no approximations have taken place, eq.(3.58) is exact. Then we can

perform a perturbative expansion of the poloidal flux in powers of the inverse aspect ratio

ε. This is strictly valid for large aspect ratio tokamaks where the toroidal effects are small.

Modern tokamaks have a small aspect ratio, but the use of the perturbative expansion

gives a good insight about the toroidal effects on the equilibrium. Clearly, when ε → 0

we recover the cylindrical limit, that is, essentially, an unidimensional problem, then we

require the first term on the perturbarive expansion to depend only on r. We have

ψ(r, θ) = ψ0(r) + εψ1(r, θ) +O(ε2). (3.59)

Introducing this into eq.(3.58), expanding the operator in powers of ε and matching powers

of the inverse aspect ratio, we obtain the zero and first order equations

∇2ψ0 = −J(ψ0), (3.60)

∇2ψ1 − cos θ
dψ0

dr
= − dJ

dψ0

ψ1 − β̃r cos θ
dp

dψ0

, (3.61)

where the non dimensional current is

J(ψ) =
1

2

(
β̃
dp

dψ
+
B2

0

B̄2
p

dF 2

dψ

)
. (3.62)

As the first equation is purely radial, we can write ∇2 = r−1d/dr(rd/dr). The solution

to (3.60) depends entirely on the choice of the source functions. Although this equation

is, in general, nonlinear, the existence of solutions is always guaranteed for a reasonable

choice of J(ψ). The first order equation may be simplified by the introduction of the
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ansatz ψ1(r, θ) = f(r) cos θ and after some manipulations [28], we obtain

f(r) =
dψ0

dr

[
C +

∫ r

0

dx
1

x
(
dψ0

dx

)2

∫ x

0

dy

[
y

(
dψ0

dr

)2

− β̃y2

(
dp(ψ0)

dy

)]]
. (3.63)

The value of C is defined from the boundary conditions. For instance, we can ask for the

last magnetic surface of the plasma to be the circle r = a. This means that the angular

dependence must vanish for r = a or f(a) = 0. Now, if we define g(r) = f(r)/r the first

order solution may be written

ψ(r, θ) = ψ0(r) + g(r)r cos θ = ψ0(r) + g(r)x, (3.64)

with x = r cos θ. Taking the gradient of this quantity we have

∇ψ = ψ′0r̂ + g′xr̂ + gx̂, (3.65)

where ”′” indicates radial derivative. Recalling that the poloidal field is Bp = ∇ψ ×∇φ,

the magnetic axis will appear when the field is purely toroidal or ∇ψ = 0. In terms of

(3.65), the condition for the existence of magnetic axis reads

(ψ′0 + g′x)r̂ + gx̂ = 0. (3.66)

This equation can be satisfied in two ways, the first is that the conditions g(rc) = 0 and

ψ′0(rc) + g′(rc)xc = 0 occur simultaneously. If rc 6= xc, this condition leads to symmetric

up-down magnetic axes relative to the plane z = 0. For simplicity lets hold up the analysis

of this configuration to further sections.

mag. axis

plasma

vacuum

Figure 3.7: Shafranov shift, in the case of a single magnetic axis.

The second way to get a vanishing poloidal flux is that the unit vector r̂ points in the
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same direction that x̂. This is true for θ = 0, π, leading to the conditions

ψ′0(rc) + g′(rc)rc ± g(rc) = 0. (3.67)

Clearly, the choice of the source functions defines the topology of the solutions. Those

may lead to the existence of several magnetic axis and hyperbolic points in the plasma

domain. For now, lets assume that the tokamak behavior does not differ much from that

of a straight plasma current surrounded by a cylindrical conducting wall.

If we ask for (3.67) to be satisfied just once, say for θ = 0, then we have just one

magnetic axis shifted from the origin (fig.3.7), this is called Shafranov shift, and is one of

the experimentally recognizable toroidal effects. In general terms, the equilibrium problem

is a two dimensional one, a realistic poloidal flux ψ is not expected to have any remarkable

symmetries about its magnetic axes, mostly today, that most of working tokamaks have

ε > 1/4.

3.3.3 Safety Factor

The safety factor is an important function characterizing an equilibrium configuration.

Its value is well defined over any closed magnetic surface, so it is a flux function. The

function q(ψ) is defined as the number of toroidal turns performed by a magnetic line in

its magnetic surface as it performs a poloidal cycle. The value of q(ψ) may be rational

or irrational entailing the fact that the corresponding magnetic lines are closed or not.

When q(ψ) is irrational we name the corresponding torus an irrational surface and the

magnetic lines fill it ergodically.

This function may be calculated by evaluating the integral

q(ψ) =
1

2π

∫ 2π

0

[
rBφ

RBp

]
ψ

dθ, (3.68)

with (r, θ) the local polar coordinates about the magnetic axis, and R the cylindrical

coordinate. Bp and Bφ are the poloidal and toroidal magnetic fields respectively and the

integral is to be calculated on a fixed magnetic surface.

The safety factor have some relevant properties in terms of robustness of the magnetic

surfaces against nonaxisymmetric perturbations. For ideal plasmas q(ψ) is the analogue

in to the canonical period of the orbits in hamiltonian systems, the helicity of a given

invariant torus. In absence of reconnection the presence of nonaxisymmetric perturbations

is expected to destroy the rational surfaces, creating resonant magnetic islands in a sea

of chaos. Also, most of the irrational surfaces are expected to survive under a sufficiently

weak perturbation.
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Chapter 4

Current Reversal Equilibrium

Results

Over the last few years, the experimental realization of non-monotonic current profiles

in tokamaks has attracted ever increasing attention. A reduction in the toroidal cur-

rent density, near the magnetic axis, leads to a non-monotonic safety factor q(ψ), that,

in the context of hamiltonian dynamics, is related to the existence of a shearless torus.

For non-integrable systems this is important, for instance, when considering the local-

ized asymmetries implicit to the tokamak design (like discreteness of the toroidal field

coils, diagnostic elements, etc), periodic perturbations1 of the poloidal flux appear and

destruction of rational magnetic surfaces occurs. For q(ψ) monotonic, the destruction

of magnetic surfaces follows the description given by the KAM theory [20], where the

most irrational tori preserve their topology under perturbations. When the perturbation

strength is increased, chaotic regions near two different resonances may fuse, leading to

the wandering of magnetic lines over broad regions inside the tokamak; this means that

charged particles may be transported to external regions by the field lines themselves,

giving rise to a zero order lost of fusion material.

In the non-monotonic scenario, a very robust transport barrier appears and encloses

the internal region of the tokamak [9, 29]. Numerical studies, using discrete maps, have

shown that this structure is persistent under a wide range of values of the control param-

eters [30]. Even after its destruction, the barrier region affects dramatically the evolution

of orbits, that spend large times in one region without crossing the shearless barrier.

Hollow current profiles may provide some basic mechanisms for particle confinement in

tokamaks, even when magnetic surfaces have been destroyed. Understanding this ”frozen

time transport” may lead to better understanding of some enhanced confinement regimes.

The current reversal equilibrium is an hypothetical configuration, in which the toroidal

1Recall that the toroidal angle is related to the time in the hamiltonian formulation.
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current density may reach negative values at some regions of the tokamak; it appear as a

natural extension of current hollow configurations, allowing the hollow to reach negative

values. The existence of this negative hollow is conjectured from the fact that, for some

experimental hollow configurations, the current density near the magnetic axis attains

almost zero values, and the error in the measurement includes negative values in a finite

region. In the present work, our aim is to show that current reversal equilibrium, if

possible, must present a global change in the equilibrium topology.

4.1 Comments on Stability

As was pointed in the previous chapter, the G-S equation describes a wide variety of equi-

librium configurations, but it does not provide information about their stability. Then,

before starting with the fundamentals of equilibrium in current reversal scenarios, a little

digression on stability is in order.

Assume we have a single loop of toroidal current. As this is an axisymmetric config-

uration, the poloidal flux ψ can be used to describe the topology of the field lines. It

can be shown [19], that for a single loop of radius a at the plane z = 0, the poloidal flux

function becomes

ψa(R, z) =
µ0I

2π

√
aR

k
[(2− k2)K(k)− 2E(k)], (4.1)

with k2 = 4aR/[(a + R)2 + z2] and {E(k), K(k)}, complete elliptic integrals. In the

plane φ = const., the magnetic field lines encircles the current loop (fig.4.1), then any

test toroidal current2 experiences, locally, a force orthogonal to the magnetic surfaces; in

the whole ring, the net force is along the symmetry axis. As expected, a test current of

the same sign that the source of the magnetic field will tend to approach to it, and an

opposite test current will tend to move away from the field source.

Considering two current loops, from the action-reaction law, the rings will suffer equal

but opposite forces (fig. 4.2). In the case of opposite currents the system only finds equi-

librium if both current loops are in the same plane, but an arbitrarily small displacement

introduces a destabilizing force that separates both rings along the symmetry axis; also

an arbitrarily small rotation about any line in the plane z = 0, introduces a stabilizing

torque that tends to line up the currents in a stable configuration.

The presence of this effects may lead us to think that current reversal equilibrium

configurations may be highly unstable against the unavoidable perturbations in any ex-

perimental setup. Nevertheless, this assumptions comes from the discrete nature of the

considered currents; in the previous scheme, a well localized current produces a well

2This means that the magnetic field created by the test current is not considered, since it does not
affect its own equilibrium (clearly we are talking about a rigid ring).
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Figure 4.1: Magnetic field due to a finite radius current loop.

defined field in the points occupied by another well known current distribution. In equi-

librium, a plasma is a self-consistent structure, the plasma currents distributes over a

finite domain and the magnetic and kinetic forces balance at each point in the space;

we can not consider that the magnetic field produced by a given region of the plasma

directly affects the currents in other region, since the plasma is not a linear medium, and

the field produced is subjected to local variations due to the plasma current. We can only

make safe comments about stability of an equilibrium configuration by performing a first

order expansion of the one-fluid equations (3.21- refdivergenceless), about a previously

calculated current reversal equilibrium configuration; however, in this work we will be

concerned with the equilibrium and its topology, so a stability analysis goes beyond the

scope of the present work.

+

+

+
_

_

+

Figure 4.2: Stabilizing and destabilizing effects

4.2 Topology of the CRECs

Assuming equilibrium and axisymmetry, we are in the integrable case, meaning that we

have well defined magnetic surfaces, and we can label them with the poloidal flux value3

ψ. The magnetic lines remains attached to such surfaces, that are also isobars of the

3Such labeling is only possible for families of nested magnetic surfaces, so that it is not unique when
more that one magnetic axis exists.



46

plasma. With this basic properties common to all equilibrium solutions it is possible to

perform a geometrical study of the magnetic surfaces in presence of a negative current

density. To do this, lets start with the Ampere’s law in its integral form.

∇×B = µ0j ⇒
∮
γ

B · dl = µ0It, (4.2)

where the circuit γ encloses a region in some plane φ = const., through which a net

toroidal current It flows. Now, if the toroidal current density may become negative, we

can build several circuits enclosing regions through which the net toroidal current vanishes

(fig. 4.3).

Figure 4.3: Circuits containing zero plasma current.

We expect the solution to the Grad-Shafranov equation to be a smooth axisymmetric

function, then its level surfaces defines families of smooth curves in any plane φ = const.

This set of curves may be labeled with the magnetic flux, so we will name them ”magnetic

circuits”. For a magnetic circuit the Ampere’s law is written∮
ψ

Bpdl = µ0It(ψ), (4.3)

where clearly It is, by construction, a function of ψ. Now, if reversed current densities

are possible in equilibrium, there is a closed circuit enclosing a vanishing toroidal current.

By consistency of the magnetic surfaces orientation, the poloidal field attached to a given

magnetic surface can not reverse its direction, then
∮
Bpdl can only vanish if the poloidal

field is zero everywhere on the circuit; this implies that the total magnetic field is toroidal

on the whole magnetic surface. Lets assume for a while that such circuit exists; in previous

sections has been shown that the poloidal field may be written as

Bp = ∇ψ ×∇φ =
∇ψ × φ

R
. (4.4)
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Then, a vanishing poloidal field implies directly ∇ψ = 0, given that ∇ψ does not have

a toroidal component. Then, the zero current circuit is defined over a magnetic surface

with zero gradient everywhere. Before going on, recall that the equilibrium problem is

intrinsically two-dimensional, and the poloidal flux function is in general a two-variables

function ψ(R, z). If we ask for a vanishing ∇ψ, this means, in cylindrical coordinates

∂ψ

∂R
= 0 ,

∂ψ

∂z
= 0. (4.5)

The first equation establishes a relation between R and z, defining one or several curves

where the condition ∂Rψ = 0 is satisfied, similarly, the second equation leads to another

set of curves. The intersections of this two families of curves defines the points where

∇ψ = 0. In general, two different families of curves intersect at a number of isolated

points; continuous intersections are a signature of a highly degenerated situation induced

by the two-dimensional representation of a intrinsically unidimensional problem. An

infinite degeneracy is, of course, possible for scalar fields with special symmetries; but,

asking for ψ = const and ∇ψ = 0 over the same curve is just too restrictive, for any

general scalar field without very remarkable symmetries. If we expect the reversed current

configurations to be robust, they must be possible in non-symmetric configurations of the

magnetic flux.

After this, the most general way to obtain a vanishing plasma current is to find a mag-

netic surface where the poloidal field reverses its direction. As was told before, this can’t

happen for a regular magnetic circuit, unless that the magnetic surface is not uniquely

defined at a given toroidal curve. Lets assume for a while that this actually happens.

+

-

a b c

Figure 4.4: Creation of magnetic islands due to the reversed current.

Assume, by consistency, that we have a magnetic circuit with two critical points where

the poloidal field vanishes (Figure 4.4a). As the magnetic field is conservative, those

critical points can not be sources or sinks, and of course are not elliptic, since the magnetic

circuit goes through them; then we have two hyperbolic points, implying the existence

intersecting magnetic surfaces that correspondingly meet at the zero poloidal field points
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(Figure 4.4b). Now, as we are in the integrable case those new magnetic surfaces must

connect the zero points by inside and probably outside4 the initially considered magnetic

circuit. In conclusion, we have formation of magnetic island structures due to the existence

of a reversed current density (Figure 4.4c). Finally, as we expect the poloidal flux ψ(R, z),

to be a continuous function, the pair of curves {γ, γ′} linking the hyperbolic points must

be labeled by the same poloidal flux value, even more, each of the intersecting circuits are

expected to be smooth.

Recall that the initial circuit γ encloses a zero toroidal current, then the total toroidal

current passing through the whole islands structure is provided by the region inside γ′

and outside γ. From the orientation of the poloidal field respect to the curve enclosing

this region, is clear that the toroidal current of the whole system is positive.

Figure 4.5: The toroidal current as a function of the poloidal flux, for different families
of nested surfaces.

In fig.4.5, we can see the different domains where we can define the functions It(ψ),

about each of the three magnetic axes. Each current start in zero, and changes when

moving out in each family of nested islands. At the surface ψc two of the currents (I+, I−)

must reach opposite values. The remaining current (I), is continuous over any path, going

from ψ0, to the surfaces outside the system, without passing through the other families

of nested surfaces.

4.2.1 Generalization

Now that we have introduced the basic mechanisms for magnetic island formation in

reversed current scenarios we can generalize the idea and consider different geometries that

may contain current reversals. The most simple scenarios come from the intersection of

two simple circuits; a principal one, enclosing a vanishing plasma current and a secondary

one intersecting the first, an even number of times. This leads to an even system of

4This is true whenever there are not other hyperbolic points in the system.
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magnetic islands about a central structure with negative plasma current (Figure 4.6).

Note that the resulting current of the full structure is always positive, since the poloidal

field just outside the island chain winds oppositely to that in the central region. This is

due to the contribution to the current inside the secondary magnetic circuit and outside

the primary one.

Figure 4.6: Even systems of islands, from the intersections of two simple magnetic circuits.

In fig.4.6, we can see the three first systems of islands that may be created from the

intersections of two simple smooth curves. The arrows shows the overall behavior of the

poloidal field for each domain of the plane. Outside the islands system, the poloidal field

encloses the whole structure and further magnetic surfaces in outer regions, show less the

shape influence of the nonested magnetic surfaces.

4.2.2 Non-simple circuits

Slightly more complicated geometries may appear if we allow a single circuit to self-

intersect. In this case the circuit remains differentiable, but does not have a well defined

internal region. The most simple case is shown in fig. 4.7, where a self-intersecting circuit

“encloses” a zero plasma current; but to perform any calculation we must split the circuit

in two simple (non-differentiable) ones.

+

Figure 4.7: The most simple self-intersecting geometry.
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Integration of Bp over γ1 gives the total current enclosed by the structure; but as

γ = γ1 + γ2, then the current “enclosed” by the circuit γ satisfies I = I1 + I2. As γ was

chosen so that I = 0 we get I2 = −I1, then the total current enclosed by the structure is

the negative of the current enclosed by the internal structure, in other words, a positive

current. This result is similar to that obtained in the intersections of two differentiable

circuits.

In Figure 4.8 we can see a generalization of this structure to include more magnetic

islands produced by a self-intersecting circuit. Obviously, a single smooth curve can only

self-intersect an odd number of times, to form odd island systems. This complements the

structures of fig. 4.6. Again the total current through the whole structure is the negative

of the internal one, i.e. is positive.

Figure 4.8: Odd systems of islands from a self-intersecting differentiable magnetic circuit.

Noticeably, the assumption of a current reversal inside an axisymmetric plasma, gives

naturally the obtained topologies. Only the Maxwell equations and the existence of a

smooth poloidal flux function are required. It is expected then, that the Grad-Shafranov

equation leads naturally to this topologies when negative hollow current profiles are con-

sidered; this will be explored in the next chapter. An important feature of this equilibria,

may be the chaotic behavior of the magnetic field near the critic surfaces, since hyperbolic

points are most sensitive to the introduction of periodic perturbations, due to homoclinic

or heteroclinic chaos. Under the influence of external perturbations, the magnetic field

lines are allowed to wander between the internal and external regions of the chain of

magnetic islands.

In recent works [31–33], after the choice of particular source functions, the reduction

of the G-S equation to the linear case makes available analytical forms of the poloidal flux

function (or the toroidal one in [31]). In the 2003 Martynov et. al. [32], linearization is

used as a starting point for driving a numerical approach to the equilibrium by means of

the caxe code [34]. In each case, after the introduction of a current reversal configuration,

the magnetic islands appears, always under the scheme of two intersecting or one self-

intersecting critic magnetic circuit (fig. 4.9). However, the restrictions of this methods
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Figure 4.9: Equilibrium configurations for a particular choice of the source functions
(from [31]), the normalized current density (open circles) exhibit a negative hollow and
the normalized pressure (open triangles) is maximum at the magnetic axis. In the small
boxes we show the corresponding structures of critic curves leading to each topology.

comes from the particular choices of the source functions, that sometimes makes the

current hollow too wide and the negative value of the current, too large, which is an

overestimation of the expected effects near a positive hollow configuration; also, strong

assumptions about the global structure of the plasma and its edge are introduced. In the

following, our aim is to show that the magnetic islands may be addressed in a local way,

and there is no need to assume a particular form of the source functions nor establishing

boundary conditions at the plasma edge.

4.3 Local Solution to the Grad-Shafranov Equation

In the following, we will develop an scheme formally similar to the successive approxima-

tions method, just that in our case we are not interested in describing the global behavior

of the flux function, but just a small region of the plasma.

We start by assuming that there is a tiny region in the tokamak where the current

density is negative. This implies that there is a closed curve in the poloidal plane where

the current density vanishes (fig. 4.10). As we know, the toroidal current density may be

written

jφ = R
dp

dψ
+

F

µ0R

dF

dψ
, (4.6)

where p(ψ) and F (ψ) are arbitrary functions depending on the particular equilibrium.

The condition jφ = 0 becomes µ0R
2p′ + FF ′ = 0, where was used that in the plasma

region R 6= 0. As we expect the negative hollow to be small, R must change very little in

the previous expression. This means that the condition jφ = 0 is approximately satisfied

in a flux surface.
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flux surface

mag. axis

Figure 4.10: In a small region inside the tokamak, the large aspect-ratio approximation
is very accurate.

Somewhere inside the region, there is a critical point of the toroidal current density,

a point where ∇jφ = 0. Also, near the curve jφ = 0, there is a closed magnetic surface,

so that in the region is also a magnetic axis. This axis, in general, is not at the same

position that the critical point of the current density; but those are expected to be near,

so we will perform our expansions about the critical point in the toroidal current den-

sity. We can introduce a characteristic distance a, within which this local description is

expected to be valid (i.e. the expansions about the magnetic axis are good), then we can

nondimensionalize the problem. Notice that this local description can be made for any

configuration under the assumption of current reversal and here the inverse aspect ratio

ε is a truly small parameter (fig.4.10).

The G-S equation may be written as

∆∗ψ = −µ0Rjφ. (4.7)

Since we are near a minimum in the current density, we can perform a Taylor expansion

about this critical point, where the linear term (in the position) vanishes. To quadratic

terms in r we have:

jφ(r0 + δr) = jφ(r0) + (δr · ∇)jφ +
1

2
(δr · ∇)2jφ = j0 + δrTH(jφ)δr. (4.8)

A further simplification suggests the current to be parabolic, then the Hessian matrix

H(jφ) is proportional to the identity. In the more general case, the local description of

the current density is an elliptic paraboloid, with its symmetry axes rotated. To introduce

the basic mechanisms leading to magnetic island formation, this accuracy is not necessary,

but when considered, some more topological devises are available. However, for the time

being, in local polar coordinates we can write jφ(r) = j0 + ιr2. Using R = R0 + r cos θ
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and introducing nondimensional variables, r = ar̃, ψ = ψcψ̃, we have

∆̃∗ψ̃ = α(1 + εr̃ cos θ)(1 + ηr̃2), (4.9)

where we defined α = −µ0j0R0a
2/ψc, η = ιa2/j0 and ∆̃∗ is like in (3.57). Clearly, this

is a local description, since the current density can not keep growing to the plasma edge.

Removing all the tildes, we are left with the following dimensionless problem

∇2ψ − ε

1 + εr cos θ

(
cos θ

∂ψ

∂r
− sin θ

r

∂ψ

∂θ

)
= α(1 + εr cos θ)(1 + ηr2), (4.10)

with ∇2 the Laplace operator in a plane. Asking for ε to be small, we write the pertur-

bative expansion

ψ(r, θ) = ψ0 + εψ1(r, θ) +O(ε2). (4.11)

To zero order we have
1

r

d

dr

(
r
dψ0

dr

)
= α(1 + ηr2), (4.12)

integrating between 0 and r
dψ0

dr
=
α

4
(2 + ηr2)r, (4.13)

and integrating again, asking for ψ0(0) = 0 we obtain

ψ0(r) =
α

4

(
1 +

η

4
r2
)
r2. (4.14)

To first order we have

∇2ψ1 − cos θ
dψ0

dr
= αr cos θ(1 + ηr2); (4.15)

using (4.13), and defining x = r cos θ, the equation becomes

∇2ψ1 = αx

(
3

2
+

5

4
ηr2

)
. (4.16)

Now, by simplicity, let us assume that ψ1 can be separated as ψ1(r, θ) = xf(r); otherwise

we have to solve a non-separable elliptic ODE. This ansatz leads to ∇2ψ1 = x(∇2f +

2f ′/r), where ”′”, indicates r-derivative. With this, and the radial part of the ∇2 operator

we get
d2f

dr2
+

3

r

df

dr
= α

(
3

2
+

5

4
ηr2

)
; (4.17)
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multiplying by r3 and reordering

d

dr

(
r3 df

dr

)
= αr3

(
3

2
+

5

4
ηr2

)
. (4.18)

This can be integrated straightforwardly to obtain

ψ1(r, θ) =
α

16

(
3 +

5

6
ηr2

)
r3 cos θ. (4.19)

Then we can write the full solution, to the first order in ε as

ψ(r, θ) =
α

16
Φ(r, θ). (4.20)

Here, the function Φ(r, θ), contains the geometrical aspects of the flux function and may

be written

Φ(r, θ) = (4 + ηr2)r2 + ε

(
3 +

5

6
ηr2

)
r2x, (4.21)

with x = r cos θ. This is the desired analytical form of the poloidal flux function inside

the small region of interest containing a critical point of the current density. With this,

we can investigate the topology of the flux surfaces by finding the critical points of Φ

where ∇Φ = 0 is satisfied.

As the dependence on θ is only through the function cos θ, we may think that the

poloidal flux is a function of r and x, then we can write the gradient of Φ like

∇Φ =
∂Φ

∂r
∇r +

∂Φ

∂x
∇x. (4.22)

In general (θ 6= 0, π), the vectors ∇r = r̂ and ∇x = x̂ are independent, then the condition

∇Φ = 0 is satisfied when ∂rΦ = 0 and ∂xΦ = 0 simultaneously. For ∂xΦ = 0 we require

r1 = 0 or r2 =
√
−18/5η, that is only possible for η < 0. The first condition corresponds

to the elliptic point at the magnetic axis. Inserting r2 into the condition ∂rΦ = 0 leads to

x2 = −16/15ε; however, this is only meaningful if |x2| ≤ r2, that leads to the condition

|η| < 3.164ε2 for the simultaneous vanishing of the x and r parts of the gradient. This

condition defines a bifurcation in which two critical points, mirrored through the x axis,

collide with a third one (to be found) in y = 0 as η is increased in magnitude but kept

negative. Notice that those critical points are at a distance of order 1/ε from the magnetic

axis, then they are outside the reliable region, and the plasma will not necessarily exhibit

them.

Now, we must consider the cases in which ∇r and ∇x are dependent; this occurs for

θ = 0, π; where x = ±r. This critical points are horizontally aligned with the magnetic
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axis at r = 0. To obtain them we can replace x = ±r in ∂rΦ + ∂xΦ = 0, that after some

manipulations leads to
2 + ηr2

9
4

+ 25
24
ηr2
± εr = 0, (4.23)

where the ± indicates either θ = 0 or π for the direction of the critical point. We can

understand this result by studying the intersections of the function g(r) = (2 + ηr2)/(9
4

+
25
24
ηr2) with the lines y = ±εr (fig.4.11).

Figure 4.11: Illustration of the function g(r) (continuous curves) for η > 0 (sigmoid)
and η < 0 (asymptotic to r = 3

√
6/5
√
|η|) and the lines ±εr (dotted curves). The

intersections between continuous and dotted curves, represents fulfillment of condition
(4.23)

When η > 0, g(r) is like a sigmoid starting at 8/9 and growing monotonically to

24/25, as depicted in fig. 4.11; then it just intersects the line θ = π and such intersection

occurs at a position of order 1/ε (d in the figure). This point is outside the region of

interest, then in the area of interest the flux function exhibits a single magnetic axis at

r = 0 with the usual Shafranov shift of the magnetic surfaces. This is expected, since

η > 0 indicates a parabolic current profile without current reversal. When η < 0, g(r) is

no longer monotonic, diverging at r = 3/5(
√

6/|η|) to −∞ from the left and ∞ from the

right (fig. 4.11). In this case g(r) intersects the lines y = ±εr three times. For θ = π

we have two intersections; one at a radius of order 1/ε like in the previous case (c in

fig. 4.11), and the other before the divergence of g(r) (a in fig. 4.11). For θ = 0, we

have another intersection before the divergence (b in fig. 4.11); then for a current reversal

equilibrium (η < 0), two new critical points appears about the magnetic axis, at distances
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of the order
√

2/|η|, so that |η| ≥ 2 ensures the existence of such structures in a region

where the description is valid.

From the Hessian matrix of Φ(r, θ), it is also possible to show that b is an elliptic

point, and a an hyperbolic one. The point c, changes from elliptic to hyperbolic after its

collision with the two mirrored hyperbolic ones when η exceeds 3.164ε2. In absence of

other structures, the separatrixes merging at the hyperbolic point a, enclose the elliptic

points (i.e. the magnetic axis r = 0 and b), leading to a smooth self-intersecting magnetic

circuit as predicted in the previous section.

6 4 2 0 2 4 6
6

4

2

0

2

4

6

Figure 4.12: Topology for ε = 0.2, η = −0.075936, before merging of the O(1/ε) critical
points, exhibiting a self-intersecting magnetic circuit γ, about two magnetic axis r = 0
and a.

In fig. 4.12 the control parameters were chosen so that the system exhibits most of

its topology in a ”large” region. The existence of two mirrored hyperbolic points off the

plane y = 0 is guaranteed since |η| < 3.164ε2; however this small value of η moves the

critical points {a, b} outside the range of validity (r . 1) of the model.

Further increase in the magnitude of η, (keeping it negative) leads to the collision of

c and the mirrored c′ and moves a and b near the origin. As ε is reduced the inclination

of the lines εr and −εr (fig. 4.11) becomes smaller, approaching the critical points a and

b in the radial direction, reducing the size of the magnetic island about a.

In a more realistic situation (fig. 4.13), the hyperbolic point c is far away from the

critical points a and b; and for those to be inside the reliable region, we require η & 2.

Recalling that η = ιa2/j0, we see that reducing the size of the current density at the

magnetic axis, leads to magnetic island formation inside the accuracy region. This is

interesting, since experimental evidence only suggests the existence of a small negative

current if any, due to the error bars of the current density at the zero density region in a

hollow configuration.
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Figure 4.13: Global topology for ε = 0.1, η = −2 and zoom to the region of interest,
after merging of the critical points at r ∼ O(1/ε). The system continues to present a
self-intersecting magnetic circuit γ.

4.3.1 Magnetic island width

With the devised mechanisms, it is possible to estimate the width of the magnetic island.

Lets start by noting that the function Φ(r, θ) (eq. (4.21)) may be written

Φ(r, θ) = f(r) + g(r) cos θ; (4.24)

this function has a critical point at a (fig. 4.13), then we can expand it like

Φ(ra + δr, 0) = Φa +
1

2
Φ′′aδr

2, (4.25)

in the horizontal direction. Given that the island is limited by the separatrixes coming

from the hyperbolic point b, we must find δr such that Φ(ra+ δr, 0) = Φ(rb, π) = Φb, then

we can write (4.25) as

Φb = Φa +
1

2
Φ′′aδr

2. (4.26)

By performing a linear approximation about r0 =
√

2/|η|, it is possible to show that

rb − ra ∼ ε/6η (fig. 4.11), then in practice we can use ra ∼ rb ∼ r0; and using (4.24) for

the points a and b we have

δr2 = −4g(r0)

Φ′′0
, (4.27)

then from (4.21) is easy to get Φ′′0 = −(16 + ε46r0/3) and g(r0) = ε4r3
0/3. Inserting those

in the previous equation we have

δr2 =
ε

3

r3
0

1 + 46
48
εr0

, (4.28)
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but we expect r0 . 1, and ε� 1. Also, the total width ∆ will be twice δr and the island

width is estimated about

∆2 ∼ 4

3
εr3

0. (4.29)

Then ∆ goes like
√
ε/η3/2, as expected the island width reduces by increasing η, that

means to increase the grow rate of the current density, or reduce the size of the minimum

current density; then the nonested configuration effects would become more apparent for

a wider current hollow. This result gives a good estimate in our configurations. Notice

that (4.29) is written in terms of r0, that can be easily measured for any CREC. It

nearly coincides with the distance between the principal and secondary magnetic axes.

Also ε may be defined from the region of interest where the previous approximations are

considered good.

As an example, we take several one-island CRECs, and measure the relevant quantities

in the arbitrary units provided in each publication (fig. 4.14). To use (4.29) we must

measure all the lengths in terms of the size of the region of interest a. The value of a

may be fixed from the current profile, so that it covers a region where the current may be

approximated by a paraboloid as in our model. However this condition can be relaxed,

since our model is appropriate when the magnetic island is formed inside the region of

interest, then a may be chosen more or less arbitrarily; with the condition that a circle

with radius r = a from the magnetic axis, contains the magnetic islands as a “relevant”

structure. This appears to weaken our result, but several testings with different values

of a have shown that the resulting value of ∆ does not strongly depends on this choice.

In (fig 4.14), the size of a has been taken, deliberately, as one-half the width of the plots

frame in their respective units. With the chosen a we can nondimensionalize the other

quantities in each case, and calculate ε as well. Then we can insert the nondimensional

critic radius r0 and local aspect ratio ε into (4.29) and get the nondimensional ∆. Finally,

each value of ∆ is multiplied by the corresponding a, to return to the arbitrary units.

Wang, 2004

x

z,
j,
p

Martynov, 2003Ciro et al., (Unpublished)
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Figure 4.14: Relevant sizes of the one island structure in three different equilibria (from
this work, [31] and [32], respectively.)
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From left to right in fig.4.14, island widths of a∆ = 0.33, 0.16 and 0.26 (arbitrary

units), were obtained with corresponding errors of 5.7%, 6.7% and 7.1%. The robustness of

(4.29) comes from the freedom in the construction of our equilibrium, that is independent

of the actual aspect-ratio of the plasma, and redefines the region of interest to satisfy our

own aspect-ratio conditions; this improves the accuracy of the successive approximation

method and leads to more general properties of the CRECs with one island. Another

advantage of this formulation is that we do not need to choose the arbitrary functions

or know the particular profiles of the pressure and toroidal magnetic field, improving the

generality of the results.

4.3.2 Safety Factor

The safety factor will provide us information about the helicity of the magnetic field lines

in the equilibrium configuration. In local polar coordinates this can be calculated through

q(ψ) =
1

2π

∫ 2π

0

[
rBφ

RBp

]
ψ

dθ, (4.30)

where the integral is to be calculated over a given magnetic surface. Near the magnetic

axis, the flux surfaces are almost circular and may be considered as centered circles under

integration, also we can consider the toroidal magnetic field as a constant along the small

region we are considering. To zero order we can estimate the safety factor by its cylindrical

form

q(r) =
rBφ

|∇ψ|
=

16a2B0

α

r̃

|∇̃Φ|
, (4.31)

with B0 the magnetic field at the magnetic axis, Φ as defined in (4.21) and the values

with tilde are dimensionless. This leads simply to

q(r) =
q0

1 + η
2
r2
, (4.32)

where q0 = 2a2B0/α. This representation is expected to be valid for r small, away from

the critical region, however the predicted divergence at r0 =
√

2/|η| for negative current

hollows (η < 0) actually happens. Recalling that the safety factor may be interpreted as

the ratio between the number of toroidal cycles to the poloidal ones for any magnetic line

on a given magnetic surface, then the safety factor diverges at the critical surface exactly.

This comes from the existence of an hyperbolic point, such that the magnetic lines on

the corresponding surfaces will never be able to fulfill a poloidal cycle, like a pendulum

in its movement along the separatrix in the phase space. The inversion of the sign after

the divergence indicates an inversion in the direction of the poloidal field after the critic



60

region (fig. 4.15), that is also expected from the analysis performed in the Section 4.2.2.

local solution extension

Figure 4.15: Appearance of the safety factor (zero order) about the principal axis for a
reversed configuration (continuous curve), and a positive hollow one (dashed curve).

The sign of q(r) in (4.32) keeps the information about the orientation of the poloidal

field in a φ=const. plane. In fig. 4.15 the magnitude of the safety factor in the current

reversed case, is compared with the corresponding to a positive hollow current; both are

extended to the outer region (r > O(a)) by admitting that the current density drops

near the plasma edge, this leads to the creation of a stationary point of q(r); the basic

characteristic of a shearless surface. It is easy to prove at zero order, that the existence

of a current reversal increases the minor radius of the shearless torus, inducing a larger

transport barrier for the magnetic lines.

Note that magnetic lines inside the magnetic island does not encircle the principal

magnetic axis, so that the safety factor appears to be undefined there; nevertheless, as

this is an equilibrium axisymmetric configuration, the magnetic lines on surfaces inside

the island have a well defined behavior, encircling the secondary magnetic axis (the one

inside the island), for those, the safety factor must be calculated about the corresponding

axis. This is of course a first order feature, and that is why it does not appear in the

previous calculations.

In the following, an accurate scheme alternative to (4.30) is used to calculate the safety

factor numerically. Recall that in this context, the magnetic field may be written as

B = ∇ψ ×∇φ+ φ̂Bφ (4.33)

Considering the toroidal field Bφ as a constant in the small region of interest, we can

write in the local polar coordinates (r, θ), Bφφ̂ = ∇(Bφr
2/2)×∇θ. Defining ϕ = Bφr

2/2,

(4.33) becomes

B = ∇ψ ×∇φ−∇θ ×∇ϕ. (4.34)

This puts in evidence the hamiltonian structure of the magnetic field. Comparing with
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(2.17), the Hamilton equations governing the magnetic lines are

dϕ

dφ
=
∂ψ

∂θ
,
dθ

dφ
= −∂ψ

∂ϕ
. (4.35)

Happily, adaptive symplectic integrators provide accurate numerical solutions to problems

of this kind. Using the previously defined constants and dimensionless variables, the

problem may be casted like

dr

dφ
=

1

4q0

∂Φ

∂θ
,
dθ

dφ
= − 1

4q0

∂Φ

∂r2
, (4.36)

using (4.21) we are left with the system

dr

dφ
= − ε

4q0

(
3 +

5

6
ηr2

)
r2 sin θ, (4.37)

dθ

dφ
= − 1

q0

[(
1 + η

r2

2

)
+ ε

(
9

8
+

25

48
ηr2

)
r cos θ

]
. (4.38)

Note that as r → 0 we get dθ/dφ→ −1/q0 as expected from the earlier model (the minus

sign comes from the choice of the positive sense in the local polar coordinates).

To extract the safety factor profile from the last system, it is integrated numerically for

different initial conditions. When the poloidal angle performs one cycle or libration the

toroidal angle divided by 2π gives the safety factor. In fig. 4.16 the results of this numerical

procedure for a particular choice of parameters is depicted. The initial conditions are

chosen over the line passing through both elliptic points.
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Figure 4.16: Local safety factor for η = −2, ε = 0.1 and q0 = 1/2. In the line θ = 0.

The minimum in the safety factor inside the island should not be confused with a

shearless point, since it corresponds to the value of the local safety factor at the sec-

ondary magnetic axis, not to a vanishing shear as one moves transversely to the magnetic

surfaces. This method to calculate the safety factor does not provide false divergences at

the axisymmetric islands, like in [32], and introduces the possibility of local resonances
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for magnetic surfaces about the secondary axis in the non-axisymmetric case.

4.3.3 The current clamp hypothesis and the instability conjec-

ture

In the experimental realization of a zero current density region and its subsequent nu-

merical description, it is observed that the current density avoid negative values. Hawkes

et.al. in its 2001 PRL [11] claims, ”Simultaneous current ramping and application of

lower hybrid heating and current drive (LHCD) have produced a region with zero current

density(...) However, the core current density is clamped at zero, indicating the existence

of a physical mechanism which prevents it from becoming negative.”. Although here

we deal with a non-equilibrium configuration, the introduced equilibrium is an expected

fixed point of the full dynamical system, and the described experimental setup may be

away the basins of attraction of our configuration. The mechanism preventing the density

to become negative may be the topological breakdown needed for the formation of the

magnetic islands; so that, in general, nonested configurations may require a different ex-

perimental prelude to be attained. Current reversal configurations are expected to be an

extension of the hollow scenarios, a nested topology; however, the formation of a negative

current density brings a radical change in the equilibrium geometry.

In the following, our aim is to develop a conjecture, containing a possible mechanism

that prevents the formation of a negative current, or makes it difficult to be attained. First

of all, recall that our equilibrium configuration exhibit two elliptic points encircled by a

self-intersecting circuit γ (fig. 4.13). This defines a couple of homoclinic orbits starting

and ending at the hyperbolic point. Magnetic lines in critical surfaces are very sensitive

to any periodic perturbation of the poloidal flux. In the integrable case, these orbits

spend an infinite time (toroidal cycles) near the hyperbolic points without being able to

close. From this, in the non-integrable case, these orbits wind at mercy of the periodic

perturbations. In fact, periodic perturbations split the homoclinic orbit into an stable

and unstable invariant manifolds that cross instead of merge. Of course when a weak

perturbation is added, the system is no longer integrable, and only irrational magnetic

surfaces survive between layers of chaotic field lines about resonant surfaces.

As the system still deterministic, there is a conservative invertible Poincaré map T (x),

that after each iteration gives the subsequent intersections of the magnetics lines with

a φ = const. plane. The stable and unstable manifolds of the hyperbolic point are the

collections of every initial condition evolving, to or from, this critical point, respectively.

Those manifolds are the same for the Poincaré map. A simple consequence of this is that

a single intersection of the stable (W s) and unstable (W u) manifolds implies the existence

of infinitely many intersections (fig. 4.17 - center).
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Figure 4.17: Homoclinic scenario in the integrable case (left). Intersections of W s and
W u in the non-integrable case (center). Preservation of the lobe area after iteration of
the Poincaré map (right).

This property, together with the symplectic area preservation of the hamiltonian sys-

tems compound a well understood mechanism for chaos production about the hyperbolic

point. In fig. 4.17 (right) we can see how the lobe produced between two intersections of

W s and W u is stretched to maintain its area, leading to intersection with an earlier lobe,

defining regions containing a densely packaged set of unstable periodic orbits [18].

The homoclinic orbits of the axisymmetric case are easily destroyed by any small

perturbation, creating a chaotic sea about the opposite current channels (fig. 4.18). In

the rest of the system, rational surfaces (those with q rational) are destroyed to bring

resonant islands of different sizes (usually small for q 6= 1), and most of the irrational

ones are slightly deformed but preserve their topology.

0

layered

layered

layered

chaotic

Figure 4.18: Homoclinic chaos about the hyperbolic point and zones of total and partial
destruction of magnetic surfaces.

Periodic perturbations are intrinsic to the tokamak design. For instance, the discrete-

ness of the toroidal field coils makes the plasma a little bumpy, and the existence of

diagnostic elements at fixed points in the torus introduces small variations in the physical

quantities that are periodic in the hamiltonian formulation of the field, etc. It is then

important to consider this unavoidable effects specially when hyperbolic points appears in

the equilibrium, since they will be an important source of chaotic behavior of the magnetic

lines.
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To illustrate this point, we can integrate numerically the equations for the magnetic

lines under a small disturbance of the magnetic poloidal flux. In this case the perturbation

behaves like δΦ ∝ r2 sinφ, the details of its derivation can be found on the Appendix of

this work. This represents a single toroidal mode of a fluctuation in the poloidal flux,

corresponding to a local bump in the magnetic surfaces due the lack of some toroidal field

coils in a small region of the tokamak. This introduces a small correction in the hamilton

equation for the poloidal angle of the magnetic line

dθ

dφ
=

1

4q0

∂

∂r2
(Φ0 + δΦ) =

1

4q0

(
∂Φ0

∂r2
+ εk cosφ

)
, (4.39)

making the system non-autonomous, and non-integrable. The addition of such pertur-

bation assumes the equilibrium still existing, and most of its basic properties does not

change drastically (like the pressure and current profiles). However dissipative events, like

reconnection of magnetic lines, may alter the equilibrium topology in a time-dependent

description.

After the introduction of this correction, the equations ruling the evolution of the

magnetic field lines are

dr

dφ
= − ε

4q0

(
3 +

5

6
ηr2

)
r2 sin θ, (4.40)

dθ

dφ
= − 1

q0

[(
1 + η

r2

2

)
+ ε

(
9

8
+

25

48
ηr2

)
r cos θ + ε cosφ

]
. (4.41)

This simple non-integrable system exhibits the main features of homoclinic chaos exposed

previously, and the control parameter ε defines the size of the chaotic region between the

current channels.
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Figure 4.19: Poincaré section of the magnetic lines for a simple perturbation with intensity
10% to the equilibrium with η = −2, ε = 0.1.
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In fig. 4.19 we plot a numerical Poincaré section of this system, where we can clearly

appreciate the coexistence of quasi-periodic and chaotic regions. In regard to homoclinic

chaos, it is not really important the particular form of the perturbing flux, the horseshoe

mechanism [18] is not very sensitive to the variation of the perturbation in the radial

direction (i.e. the action variable). Now that we are conscious of the intimate relation

between hyperbolic points and chaos, lets address a quite simple, but remarkable property

of chaotic magnetic fields in perfectly conducting, time independent plasmas.

In equilibrium (it does not matter if integrable or not) the equation ∇p = j ×B is

satisfied. This imply ∇p ·B = 0, in words, the pressure is constant along a magnetic line.

If such line is chaotic, it pierces densely a given region of the Poincaré section (fig. 4.20

- left), bringing at each point the same value of the pressure. From this, ∇p = 0 and the

kinetic forces vanishes in the chaotic regions between the invariant surfaces. Obviously,

the equilibrium theory does not provide means to calculate the pressure in the chaotic

region; but assuming that it is constant through it, we have some interesting consequences.

First, we can not guarantee that the pressure at the last invariant surfaces in the edge

of the current channels is the same as that in the chaotic region; in fact, as we vary the

perturbation intensity, homoclinic chaos proceeds from the separatrix absorbing invariant

surfaces in both sides. Those invariants are not consumed in an ordered fashion relative

to the pressure, but to the safety factor.

Now, the small perturbation to the poloidal magnetic flux is a smooth function, then,

it is related to a smooth magnetic field. The total field B + δB is smooth as well, even

if the magnetic lines are chaotic. This means that there are no discontinuities in the

magnetic field, at least inside the plasma.

From the last two paragraphs, in the non-axisymmetric case we may have disconti-

nuities in the kinetic pressure with no discontinuity in the magnetic field. However, in

equilibrium, the boundary condition δ(p+B2/2µ0) = 0 must be verified at any magnetic

surface, including the one separating the chaotic from the regular regions. This suggests

that the described situation does not correspond to an equilibrium one, since there are

unbalanced forces acting on the boundaries of the current channels.

To recover the equilibrium under this circumstances a somewhat subtle element must

be introduced. A surface current at the last invariant surface in the form µ0K = n̂×∆B;

where ∆B is a discontinuity in the magnetic field that balances the step in the kinetic

pressure. However, ∆B is not provided by the model and should be obtained from a

different approach. Another possible consideration, is that in the non-axisymmetric case,

the pressure plateau matches exactly the pressure in the last invariant surfaces of the

current channels; but this introduces a strong restriction on the types of axisymmetric

equilibria that remains stable under azimuthal disturbances. Clearly, it appears more
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reasonable to restrict the types of integrable CRECs that assume self-sustained surface

currents in the non-axisymmetric case.

4.4 Concluding Remarks

Due to the pressure flattening the equilibrium in the central region must be attained only

from magnetic forces. This is a very unfavorable situation, since we don’t have full domain

of the internal magnetic field. In fact, the contribution to the magnetic field from the

positive current channel tends to eject the negative one (fig. 4.20 - right) and vice versa.

We can think of a downwards external field to balance the situation, but variations on the

vertical field may alter drastically the overall equilibrium outside the region of interest,

subsequently changing the conditions under which the internal equilibrium was reached.

From the lack of kinetic force in the chaotic region, and forces at the boundary of the

current channels, we may think that the system is left in a self-organizing situation, where

the invariant surfaces are able to move seeking for a more favorable configuration.

= con
stant

Figure 4.20: A chaotic field line fills a region with constant pressure, where the kinetic
forces can’t balance the magnetic ones produced by one current channel on the other.

Also, it is worth to mention that in developing the MHD equilibrium equations, small

terms related to non-uniformities of the velocity field, and tensorial structure of the pres-

sure were neglected. This additional terms may enable the existence of equilibrium con-

figurations where the kinetic pressure is not uniform along the magnetic lines, conceiving

∇p 6= 0 in chaotic regions; so that the force balance may be reached from this small

terms [35]. Also, in a more general picture, reconnection of magnetic lines may alter

the global topology by altering the magnetic surfaces about the hyperbolic point as it

transforms the magnetic energy into kinetic one [36], leading to an unstable situation.
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Conclusions

The response of the equilibrium topology to the existence of a small reversed toroidal cur-

rents was studied. From a simple geometrical approach, based on the Maxwell equations

and integrability of the magnetic field lines, we showed the incompatibility with usual

nested configuration. In summary, a nested topology requires strong symmetries of the

equilibrium, restricting severely the generality of the results. In a constructive fashion,

we showed that the CRECs lead naturally to nonested magnetic surfaces, or better, to

several families of nested magnetic surfaces separated by intersecting or self-intersecting

critical surfaces. After this, we obtained the one-island topology from the Grad-Shafranov

equation. Here, a prototypical parabolic current with a small negative minimum removes

the choice of arbitrary functions. To solve the G-S equation we have introduced a modi-

fied successive approximations mechanism, wherein the aspect ratio was defined from the

”region of interest” instead of the plasma radius, making the solution a local one.

From the local solution, we found the characteristic size of the island as a simple

function of the critical radius, where the island is formed. We also tested the result

with some published one-island CRECs. These where obtained from different numerical

treatments or a linearizion of the G-S equation. Reasonable accuracy (about 7%) prevailed

after changes of the somewhat arbitrary size of the region of interest. As was pointed

before, the equilibrium structure have some strong topological bounds, and the particular

choice of a given pair of source functions does not affect deeply the main features of the

local equilibrium; this is why our simplified model gives good account of other results.

Finally, the necessary existence of hyperbolic points in the relevant domain of the

CRECs, is pointed to be an important source of chaotic fields in the nonintegrable case.

The chaotic magnetic lines, mainly located about the hyperbolic point, creates (in first

approximation) a flat pressure region between the opposite current channels, demanding a

vanishing of the product j×B in the chaotic region. From this, the equilibrium between

the channels must be attained just from the internal magnetic fields, an overwhelming
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technological challenge if the system does not evolve naturally to such state. Moreover,

the current channels naturally tends to throw out each other and without the kinetic

force balancing the equation the scenario is probably unstable. This conjectures are in

agreement with most of experimental observations, that suggest that the toroidal current

is clamped at zero, and some ”unknown” mechanism prevents it from becoming negative.



Chapter 6

Appendix

6.1 Poloidal flux perturbation model

In tokamaks, a discrete set of current loops around the toroidal chamber produces a

toroidal magnetic field inside the plasma. This discrete structure make the system non-

axisymmetric, introducing small perturbations to the toroidal magnetic field. However,

the effect due to discreteness of toroidal field coils is small compared to the introduced by

the absence of some coils; this absence is most times necessary for positioning diagnostic

components.

toroidal field ringsbumpy region

Figure 6.1: Bumpy region of the magnetic surfaces due to toroidal field weakening

In the case of an infinite cylindrical plasma, the absence of some coil creates a small

bumpy region where the plasma edge grows (fig. 6.1). However, the system remains

axisymmetric about the z-axis, so that the problem remains integrable and bumpy versions

of the magnetic surfaces continue to exist. To simplify this model, lets assume that the

current density in z is uniform in the plane z = const. Then to conserve the plasma

current we require jz to be a function of z only. From the Ampere’s law is easy to get

Bθ(r, z) =
µ0

2
jz(z)r. (6.1)
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In a toroidal geometry the poloidal field can be written as

Bp = ∇ψ ×∇φ (6.2)

that in the large aspect ratio approximation gives

Bθ =
1

R

dψ

dr
. (6.3)

Comparing with (6.1) and integrating in r we have

ψ =
µ0R

4
jz(z)r2; (6.4)

where the poloidal flux was considered zero at the magnetic axis, and R was kept constant

during the integration. Finally, we can write the current density like:

jz(z) =
Ip

π(a+ δa(z))2
≈ Ip
πa2

(1− 2
δa(z)

a
), (6.5)

where δa(z) is a small correction to the plasma edge radius, as a function of z. Defining

δa(z0) = δa as the maximum deformation of the edge, and defining ε = δa/a, inserting

(6.5) into (6.4) we get

ψ(r, z) =
µ0IpR

4π
(1− εf(z, z0))r̃2, (6.6)

where f(z, z0) is 1 at z0 or in the plasma belly, and zero away from it; and r̃ = r/a is the

nondimensional radius. From this expression is easy to recognize the correction δψ to the

poloidal flux due to the belly in the plasma. Returning to the toroidal geometry we write

δψ(r, φ) = εψar̃
2f(φ). (6.7)

This last equation is written in canonical units of flux ψa = µ0IpR/4π, and f(φ) is now

a function of the toroidal angle. The modulation function f(φ) may be expanded in the

Fourier basis, in which its most important component is the n = 1; so that a reasonable

choice for the perturbation to the poloidal flux due to a discontinuity of the external loops

is

δψ(r, φ) = εkr̃2 sin(φ), (6.8)

where k contains the Fourier amplitude in canonical flux units.
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Instituto Tecnológico de Aeronáutica, São Jose dos Campos, 2006.

[10] J da Fonseca. Barreiras de Transporte em Plasmas e Mapas Simpléticos Não-Twist.
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