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Resumo

DEBASTIANI, V. R. Espectroscopia do Todo-Charme Tetraquark.
Dissertação de Mestrado - Instituto de Física, Universidade de São Paulo, São Paulo, Brasil,
2016.

Introduzimos um método não-relativístico para estudar a espectroscopia de estados
ligados hadrônicos compostos por quatro quarks charme, na figura de diquark-antidiquark.
Resolvendo numericamente a equação de Schrödinger com dois potenciais diferentes inspi-
rados no potencial de Cornell, de uma maneira semelhante aos modelos de quarkonium
pesado para mésons, nós fatoramos o problema de 4 corpos em três sistemas de 2 corpos:
primeiro o diquark e o antidiquark, que são compostos por dois quarks (antiquarks) em um
estado de antitripleto de cor. No próximo passo eles são considerados como os blocos para
construir o tetraquark, onde a sua interação leva a um singleto de cor. Termos dependentes
de spin (spin-spin, spin-órbita e tensor) são usados para descrever o desdobramento do
espectro e a separação entre estados com diferentes números quânticos. Atenção especial é
dada à interação do tensor entre duas partículas de spin 1, com uma discussão detalhada da
estratégia adotada. A interação spin-spin é tratada perturbativamente no primeiro modelo
e incluída no potencial de ordem zero no segundo. A contribuição de cada termo de
interação também é analisada e comparada. Dados experimentais recentes de estados bem
estabelecidos de mésons de charmonium são utilizados para fixar os parâmetros de ambos
os modelos (em um procedimento de ajuste minimizando χ2), obtendo uma reprodução
satisfatória do espectro do charmonium. As diferenças entre modelos são discutidas no
contexto do charmonium, diquarks e tetraquarks. Nós concluímos que quase todas as ondas
S e P (e as respectivas primeiras excitações radiais) do todo-charme tetraquark composto
por diquarks de spin 1 estão entre 5.8 e 7 GeV, acima do limite de dissociação espontânea em
pares de charmonium de baixa energia como dois ηc ou J/ψ, o que sugere que esses poderiam
ser os canais ideais para procurar por esses estados, e desenvolver o atual conhecimento de
estados multiquarks.

Palavras-Chave: Tetraquark, Equação de Schrödinger, Partículas (Física Nuclear), Quark,
Spin.
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Abstract

DEBASTIANI, V. R. Spectroscopy of the All-Charm Tetraquark.
Master’s Dissertation - Institute of Physics, University of Sao Paulo, Sao Paulo, Brazil, 2016.

We introduce a non-relativistic framework to study the spectroscopy of hadronic bound
states composed of four charm quarks in the diquark-antidiquark picture. By numerically
solving the Schrödinger equation with two different Cornell-inspired potentials in a similar
way of heavy quarkonium models of mesons, we factorize the 4-body problem into three
2-body systems: first the diquark and the antidiquark, which are composed of 2 quarks
(antiquarks) into a color antitriplet state. In the next step they are considered as the
tetraquark building blocks, where their interaction leads to a color singlet. Spin-dependent
terms (spin-spin, spin-orbit and tensor) are used to describe the splitting structure of the
spectrum and account for different quantum numbers of each state. Special attention is given
to the tensor interaction between two particles of spin 1, with a detailed discussion of the
adopted strategy. The spin-spin interaction is addressed perturbatively in the first model
and included in the zeroth-order potential in the second one. The contribution of each
interaction term is also analysed and compared. Recent experimental data of reasonably
well-established charmonium mesons are used to fix the parameters of both models (with
a fitting procedure minimizing χ2), obtaining a satisfactory reproduction of charmonium
spectrum. The differences between models are discussed in the charmonium, diquark and
tetraquark context. We conclude that almost all the S and P waves (and respective first
radial excitations), of the all-charm tetraquark composed by spin 1 diquarks are in the range
between 5.8 to 7 GeV, above the threshold of spontaneous decay in low-lying charmonium
pairs, like two ηc or J/ψ, what suggests that this could be the ideal channels to look for
these states, and develop the current understanding of multiquark states.

Keywords: Tetraquark, Schrödinger Equation, Particles (Nuclear Physics), Quark, Spin.
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Preface

The present work is organized as follows:
Chapter 1 presents some general ideas about the theoretical scenario involved in the

description of bound states of quarks, with special attention to the subject of exotic hadrons,
which have been object of increasingly efforts both in experimental and theoretical works. A
discussion about the history of the all-charm tetraquark in literature is presented with the
motivations for its study.

Chapter 2 introduces the essence of the theoretical framework presenting the two models
used to describe charmonium mesons and the tetraquark as a diquark-antidiquark bound
state.

Chapter 3 presents in detail the spin interactions and the method used to calculate
their contributions. Special attention is given to the coupling of angular momentum and the
problem of calculating the tensor interaction between two spin 1 particles.

Chapter 4 presents the application of both models to the charmonium mesons cc̄, where
a fitting procedure is performed with recent experimental data in order to obtain the best
set of parameters to reproduce it. The method is discussed together with the comparison
between models.

Chapter 5 presents the results and discussions about diquarks composed of two charm
quarks, using the adaptation to color antitriplets of the parameters obtained from the fit of
both models to charmonium mesons. A brief comparison with other works is included.

Chapter 6 presents the results for the all-charm tetraquark [cc][c̄c̄] using the previous
results for the diquarks and the parameters from charmonium, with both models. A brief
comparison with other works is included too.

Finally we draw the conclusions, discussing the strong and weak points of the adopted
models, the approximations employed, the relation of our estimates with experimental data,
the possible improvements and extensions of the present work, and the alternatives in the
modeling of tetraquarks.
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Chapter 1

Introduction

1.1 QCD, Quarks and Hadrons
The current understanding of nature in Physics comprises four different types of forces

[1]: the Electromagnetic, the Weak, the Strong and the Gravitational. The first two can
be unified into what is called the Electroweak force, which together with the strong force
and the theory of Elementary Particles compose the Standard Model, that accounts for
most (but not all) of our comprehension of what the universe is made of, and which are
the laws that govern the interaction of its constituents. Gravity is still an outsider in the
Standard Model, and there are many different attempts to unify all the forces in a great
theory of everything. Many other unresolved questions, like Dark Matter in the Cosmology
subjects, or the compatibility of General Relativity and Quantum Mechanics remain as large
investigation fields.

When dealing with particles interactions, we usually encounter situations where very
small scales and relativistic velocities are involved. Therefore, Quantum Mechanics and
Special Relativity play an important role in this context. The general tool to describe
phenomena in these conditions is Quantum Field Theory, which accounts for the quantization
of particles and fields. The quantization of the interactions themselves, by quantizing the
fields, is usually called Second Quantization. To illustrate that, we can think about the
Electromagnetic force: in “Classical” Quantum Mechanics, the interaction of the electron
with the proton in the Hydrogen atom is well described with a “classical” electromagnetic
field, that can be put in the form of a static potential into the Schrödinger equation to solve
for the quantized bound state. Going a little further, we can obtain a better description
using Relativistic Quantum Mechanics, with the Dirac equation instead of the Schrödinger
one, but still using a “classical” static potential. But if we go even further and quantize the
electromagnetic field, the interaction can be described by the exchange of photons, the quanta
of the electromagnetic interaction, in a completely relativistic formalism. That approach was
beautifully organized in what is called Quantum ElectroDynamics, or QED, one of the most
successful theories in Physics, which has predicted and experimentally confirmed phenomena
with very high accuracy, (the Lamb Shift or Casimir effect, for example).

Also in the context of Quantum Field Theory, we have a theory to describe the strong
interaction, which is called Quantum ChromoDynamics, or QCD. It can describe interactions
between quarks, elementary particles that carry color charges and are the basic constituents,
for example, of the protons and neutrons that form the nuclei of atoms. The interaction
between nucleons is also related to the strong force at larger scales.

1



2 INTRODUCTION 1.1

In the Standard Model the mediators of the interactions are called Gauge Bosons: the
photons are responsible for the electromagnetic interaction, the Z and W bosons for the
weak interaction, and the gluons for the strong interaction. Bosons have integer spins, and
obey the Bose-Einstein statistics. Recently, the existence of the Higgs boson was confirmed
by LHC experiments. This boson is related with the Higgs Field and a process that gives
mass for elementary particles.

Apart from bosons, the elementary particles are fermions, which mean they have spin
semi-integer and therefore obey the Fermi-Dirac statistics. Leptons are elementary particles
that interact only through electroweak interactions: we have the electron, muon and tau, in
increasingly mass order, each one with its respective neutrino. More specifically, electron,
muon, and tau have mass and electric charges, while neutrinos barely have mass and
no electric charges; they are directly related to weak interaction and decays. Quarks are
elementary particles that carry color charges, electric charges (which are fractions of the
elementary charge of the electron) and flavor. In order of increasing mass, we have six
flavors of quarks: up and down (u and d), strange (s), charm (c), bottom (b) and top (t).

Bound states of quarks are called Hadrons, where quarks are kept together by strong
interaction. There are two basic structures of hadrons: the mesons, which are bound states
of a quark and an antiquark and the baryons, which are bound states of three quarks (or
three antiquarks for an antibaryon). These constituents quarks are actually called the valence
quarks. Protons and neutrons are examples of baryons, while interesting examples of mesons
are the pions π, (discovered in the study of cosmic rays, which had a important role if the
development of Nuclear Physics with the works of Yukawa), and the J/ψ, a charmonium
meson cc̄, which was very important in the consolidation of the quark model.

There is a difference between the force inside hadrons and between hadrons. When talking
about the interaction between quarks due to the color charges and exchange of gluons, we
are talking about the fundamental strong interaction. But there is also a residual strong
interaction that accounts for the interaction between protons and neutrons bound as a
nucleus, for example. This interaction is usually described by the exchange of mesons, not
gluons, the most common case is the exchange of pions.

An important property of QCD related to color charges is the color confinement. There
are three color charges (and the respective anticolors): red, green, and blue. Observables
are always in the color singlet state, that is like a “white”, or “blank” color, which can be
imagined (in a pictorial way!) as the same amount of color and anticolor, for example in
a meson composed of red and antired color; or in a baryon composed of the three colors
together: red, green and blue, which also results in “white”. So quarks can never be seen
alone, because they carry color charges that must be confined. (We will discuss color states
in detail in Section 2.4).

Gluons are the mediators of the strong interactions and they are massless vector bosons
(spin 1). They carry no electric charge, only color and anticolor charges. The 3 colors can
combine with 3 anticolors into an octet and a singlet. But the SU(3) color symmetry of
QCD doesn’t allow the existence of the color singlet gluon. So we have only 8 color types of
gluons, each one with a color configuration from the color octet. It is important to see some
of the crucial differences between QCD and QED. The mediators of the electromagnetic
interactions, the photons, carry no electric charge, so they can’t interact with themselves,
they only mediate the interaction between objects that actually carry electric charges, like
electrons. Since gluons do carry color charges, besides mediating the interaction of particles
that carry color charges, like quarks, gluons can interact with other gluons. And also because
gluons carry color charge, sometimes the color of interacting particles can change in a QCD
vertex, once it can be “carried” by the gluon to the other particle; the analogue can’t happen
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in QED because the photon can’t carry electric charges. The number of possibilities in QCD
is much bigger than in QED; these examples give us some ideas to appreciate the complexity
of Quantum Chromodynamics.

Another important feature of QCD is the asymptotic freedom. The general idea of
asymptotic freedom relies on the property that the coupling constant of strong interactions
decreases as the scale of energy increases, or similarly, as the scale of length decreases. That
allows a perturbative treatment of QCD to describe many process.

In QED, the perturbative treatment of interactions can be understood by the series
expansion of the amplitude of interaction in terms of the fine structure constant α. This way
one can rely on the lowest-order Feynman diagrams to study the main effect of a certain
process. Higher order diagrams can be included, revealing new properties of the interaction,
but their contribution is expected to decrease as the order increases. The technical details of
these calculations are in the scope of Quantum Field Theory and Renormalization techniques
that need to be applied in order to deal with the divergent behaviour of such amplitudes. In
this work we shall not discuss in such terms, but only to show some results and qualitatively
justify their employment in quarkonium models.

The inclusion of the one-loop diagram in electron-muon scattering for example, (when
from the virtual exchanged photon an electron-positron pair is created and annihilated back
to a photon), leads to the running coupling constant, which is a function of the exchanged
momentum |q2|. By adding up higher order diagrams, with one, two, three, ..., infinity
number of loops we find the geometric series that can be explicitly summed and leads to
a good approximation of the behaviour of the electromagnetic running coupling constant
αe(|q2|), which is relatively constant at low momentum exchange, but increases with highly
relativistic process, where |q2| is large. This shows that the vacuum acts like a dielectric
medium, screening the electric charge. When high momentum exchange is involved, the
charges get closer, and the screening effect is lower. This property is sometimes called vacuum
polarization.

In QCD we have a similar phenomena: quark-antiquark loops are created from the virtual
gluon exchanged. But since gluons carry color charge as well, new higher order diagrams must
be included, as gluon pair loops or even gluon vertices. It turns out that the quark-antiquark
loops lead to color charge confinement for small |q2|, and the gluon corrections leads to
asymptotic freedom in highly relativistic process (large |q2|). The strong force running
coupling constant αs(|q2|) from QCD increases for long distances and decreases for small
distances. Because of that we can treat highly energetic process of QCD in a perturbative
fashion with lowest-order Feynman diagrams.

1.2 Exotics

Apart from qq̄ mesons and qqq baryons, others structures are compatible with the QCD
framework. Multiquark states with four or more quarks have already been suggested decades
ago [2, 3, 4]. At first, the discussions on the tetraquark configurations were based on the
MIT bag model, considering only light states. Later on, the tetraquark picture was extended
to other quark models and heavy quarks were included [5, 6].

From the point of view of effective or residual interactions, one can simply imagine that
a state of four quarks can be described through the interaction of two mesons qq̄ − qq̄, five
quarks states through the interaction of a meson and a baryon qq̄−qqq and six quarks states
as the interaction of two baryons qqq − qqq (two nucleons for instance, like the deuteron),
and so on.
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But from the point of view of fundamental interactions (with quarks as degrees of freedom
and bound states described with exchange of color objects), there are still other compatible
multiquark structures, one of them is our object of study: a compact tetraquark [qq][q̄q̄] whose
constituents are diquarks, not mesons. These diquarks are assumed to be in a non-singlet
color state, and therefore the diquark-antidiquark structure is expected to be a strongly
bound state due to gluon exchange, in contrast with the meson molecule, which is described
as a loosely bound state of two mesons (which are color singlets, and might interact through
pion exchange, for example). Many other structures have been suggested in the literature,
like hybrid states with gluon field excitations as degrees of freedom, among many others.

This discussion was revived in the past decade due to new experimental data that strongly
suggest the existence of these multiquark states. That is because these new measured states
present quantum numbers, masses and decay channels and widths that can not be explained
with the regular mesons or baryons models, (therefore they are called Exotics), but it seems
to be possible to treat explain many of these states with models of diquark-antidiquark
tetraquarks or meson molecules. Nowadays, the existence of exotic hadrons has already
been established [7, 8], since some of these new states were even found to be charged, what
reinforces the exotic idea [9, 10].

In the charmonium context [11, 12], many of theses states are produced in B-meson
factories. These machines are e+e− colliders which operates on a center of mass energy
of 10.600 MeV, just enough to produce B meson pairs, whose decay produces charmonium.
Working in different B factories, the BABAR, BELLE and BESIII collaborations produced a
large amount of data on charmonium spectra. Since 2003, new charmonium states have been
discovered. Some of these states, like theX(3943), can be explained as regular cc̄mesons, but
many others, as the X(3872), do not fit in the predictions of the conventional cc̄ spectrum.
The discovery of the X(3872) was very important to bring back the discussion on multiquark
states [13]. The majority of the models proposed to explain these new charmonium states
consider them as four quarks in the charm sector (cqc̄q̄, q ∈ u, d, s).

In the meson molecule approach some important references are [14, 15, 16, 17, 18, 19, 20,
21]. The alternative model of four quarks bound in a compact tetraquark was also estimulated
by the new discoveries on charmonium [22]. In particular, the diquark-antidiquark picture
gained lots of attention in the works of Maiani et al. [23, 24, 25, 26, 27].

The approach to exotics with QCD Sum Rules is also common, for example in Ref. [28]
tetraquarks containing bottom quarks are also considered, and in Ref. [29] a tetraquark with
double open charm is discussed.

1.3 The All-Charm Tetraquark

We have chosen to focus on tetraquarks composed of a single flavor (only charm
quarks) using a diquark-antidiquark model [cc][c̄c̄], which we will denote by T4c or “The
All-Charm Tetraquark”. This configuration introduces additional statistical restrictions,
which decreases the number of possibilities in quantum numbers, and allows one to avoid
algebraic complications or inaccurate oversimplifications of the interactions. Also, all-heavy
tetraquarks aren’t investigated as much as the heavy-light proposals for the X, Y, Z exotics;
therefore giving them special attention might introduce a bit of originality.

There are other reasons to focus in the diquark-antidiquark model. For instance, most
of the experimental information on exotic candidates accumulated since the discovery of
the X(3872) in 2003 comes from B decays, where the molecular and tetraquark pictures still
have a balanced competition. But the recent and forthcoming production of exotics in proton
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proton collisions is a promising testing ground for the diquark-antidiquark structure, because
it is extremely difficult to produce molecules in this type of reaction, as it has been shown
in Ref. [8]. Also, it is possible to produce four charm quarks in the high energy collisions
happening, for example, at LHC.

The first discussions on the all-charm tetraquark appeared in 1975, by Iwasaky [30, 31].
Next, Chao discussed the T4c in the diquark-antidiquark picture with orbital excitations and
its possible production in e+e− annihilation [32].

Later, a variational method with Gaussian trial wavefunctions was employed to study
narrow tetraquarks in Ref. [4], including the all-charm, using a 4-body coordinate system,
assuming 2-body forces with potentials describing the exchange of color octets, and non-
stable cc̄cc̄ states were obtained. Similar variational approaches, with quasi-logarithmic
potentials [33], and another inspired in mesons and baryons wavefunctions [34], also studied
four-quark systems with charm in the following years. The MIT bag model was also used
to derive potentials for these multiquarks states, and a possible bound state of four charm
quarks was obtained in the Born-Oppenheimer approximation. However, a similar work with
the MIT bag and better treatment of the kinetic energy, improving the B.-O. approximation,
found that the same state would be non-stable [35, 36].

A purely chromomagnetic model (where only a constant hyperfine potential acts without
radial dependence) was employed in Ref. [37] to study the all-heavy tetraquark, but it also
didn’t lead to bound states. Another variational calculation, now using harmonic oscillator
basis and the Bhaduri potential [38, 39, 40] didn’t favor the existence of QQ̄QQ̄ bound
states.

The harmonic oscillator basis was also used in a more recent study specifically about
the all-charm tetraquark by Lloyd and Vary [41]. They used a non-relativistic Hamiltonian
in a 4-body fashion inspired by the one gluon exchange interaction. The diagonalization
procedure leads to several close-lying bound states, predicting masses around 6 GeV for
deeply bound states.

This is a typical value also encountered in Ref. [42] using hyperspherical harmonic
formalism. They found possible bound states with masses around 6.515, 6.648, and 6.216
GeV and quantum numbers 0+− (exotic), 2+− (exotic) and 2++(nonexotic), respectively.
The first and the last are found to be bound independently of the mass of the quark (bound
for light quarks as well), while the 2+− and also another with 1+− are attractive only for
quarks with larger mass. Since the states with exotic quantum numbers are below their
corresponding thresholds (of decay in charmonium mesons pairs), they should have narrow
widths. So if they are produced, the detection should be easy.

Lower mass values were obtained in Ref. [43], where the Bethe-Salpeter approach was
employed and the T4c with JPC = 0++ was found to have the massMT4c = 5.3±0.5 GeV, with
dominant meson molecule component. It is even lower than the (ηc)(ηc) threshold around
5.97 GeV, then the decay width may be small, since decay channels into D mesons and pairs
of light mesons would necessarily involve internal gluon lines.

A lattice QCD study of the Y (4260) [44] also investigated the T4c and found states with
JPC = 1−− both in meson molecule and diquark-antidiquark picture with masses 6.411 GeV
and 6.420 GeV, respectively. More recently, the lattice calculations of Refs. [45, 46] seem
to disfavor the deeply bound cc̄cc̄ configuration, favoring the existence of a loosely bound
(ηc)(ηc) molecule.

The production of the T4c was studied with single parton scattering in Refs. [47, 48],
where the masses of the three S-wave states in the diquark-antidiquark picture were also
estimated, resulting in 5.966, 6.051 and 6.223 GeV for the JPC quantum numbers 0++, 1+−
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and 2++, respectively. In a very recent work (2016), the production of the T4c was studied
with double parton scattering using a version of the color evaporation model [49].

Also in 2016, tetraquarks composed only of heavy flavor charm and bottom were studied
with color-magnetic model using the diquark-antidiquark picture [50], obtaining masses
estimates for the S-wave tetraquarks with two methods: using effective constituents masses,
resulting in masses below 6 GeV for the T4c, and using meson pairs thresholds, resulting in
masses above 6 GeV for the T4c.

Another study from 2016 investigated the all-charm and all-bottom tetraquarks in the
diquark-antidiquark picture using Moment Method in Sum Rule QCD [51], what once more
reinforces the increasing interest on these multiquark configurations with four heavy quarks.
As pointed in Ref. [51], the increase in energy of colliders makes it possible to produce
two charmonium pairs where this all-charm tetraquark can arise. Their method predicts all
masses of the T4c above 6 GeV, and that most of these states are above their corresponding
spontaneous decay threshold into two charmonium mesons, like ηc ηc or J/ψ J/ψ, so these
would be the ideal kind of channel to look for these states.

The majority of predictions for the T4c have masses around 6 GeV, therefore lay well
above the charmonium experimentally known range (which is concentrated within 3-4.5
GeV). This energy gap makes the all-charm tetraquark an interesting probe for the search of
exotics multiquarks, one more reason to focus in this particular tetraquark. The heavy-light
tetraquark candidates in contrast (the X, Y, Z with charm quarks), are in the same mass
range of conventional charmonium, what can be misleading in some cases, like the also very
recent discussion of the X(3915), which was assigned as the χc0(2P ) (J = 0) conventional
charmonium by the Particle Data Group in 2014 [52], but recovered its position of exotic
right back in 2015 [53, 54, 55]. However, the recently measured χc2(2P ) (J = 2) seems to be
a conventional cc̄ state (see Ref. [56] and references therein).

The search for exotic multiquark states contributes for our comprehension of role of the
strong interaction in these nonconventional structures of matter. The all-charm tetraquark
brings new opportunities to investigate in this subject.

A pictorial representation of the all-charm tetraquark in the diquark-antiquark scheme
of our model can be seen in Figure 1.1.
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Figure 1.1: Pictorial representation of the all-charm tetraquark in the diquark-
antiquark scheme.
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Chapter 2

The Tetraquark Model

When aiming at heavy tetraquark models, quark-antiquark mesons are of particular
interest because they can be very similar to quark-quark states that compose the diquark,
and also very similar to the diquark-antidiquark system if the later is considered as a 2-body
problem to build the tetraquark.

Accordingly, in this chapter two versions of a non-relativistic potential model will be
introduced following popular approaches on heavy quarkonium, similar to the ones that
have been successfully employed to describe the spectrum of charmonium and bottomonium
states since the 70’s, like the Cornell works [57, 58], for example.

The main approximation of this tetraquark model is the factorization of the 4-body
problem into three subsequent 2-body problems, with quark-quark bound as a diquark,
antiquark-antiquark bound as an antidiquark, and finally diquark-antidiquark bound as the
tetraquark. The inspiration of this factorization is the color structure behind it. The SU(3)
color symmetry of QCD allows quarks to form diquarks in an attractive color structure,
and similarly the antiquarks can form an antidiquark in an attractive conjugate color
structure. Then the diquark and antidiquark can form a color singlet bound state (that
is also attractive), just like quark and antiquark can bound as a meson. In this way, the
final tetraquark state respects the color confinement of QCD, and could in principle exist.
Other color combinations and mixtures could be considered, but in the present model only
the main contribution is taken into account in each step.

The presence of heavy flavor allows the perturbative treatment of QCD, considering
only the lowest-order Feynman diagram in the constituents interactions. One of the most
common functional form of the potentials employed in heavy quarkonium spectroscopy is
the Coulomb plus linear, where the Coulomb term arises from a Lorentz vector exchange
(essentially one gluon exchange) and the linear part responsible for confinement is usually
associated with a Lorentz scalar exchange. Spin-dependent terms (spin-spin, spin-orbit and
tensor) are included as relativistic corrections of these interactions, and they account for
the splitting between states with different quantum numbers. In the first model we treat
the three spin-dependent terms as perturbative corrections, causing only mass shifts, while
in the second version we include the spin-spin interaction in the non-perturbative potential,
what causes a slight difference between wavefunctions of states with different total spin,
while the orbital corrections are still treated with perturbation theory.

A comprehensive deduction of the main aspects of the quarkonium models employed here
can be found in Ref. [59], and for further discussions one could check Ref. [60].

9
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2.1 The Non-Relativistic Framework
Usually, in heavy quark bound states the kinetic energy of the constituents is small

if compared to their rest energy, hence a non-relativistic approach with static potentials
can be a reasonable approximation. The procedure begins by solving the time independent
Schrödinger equation to obtain the binding energy and wavefunction of each particular state:

HΨ = EΨ −→ (T + V (0))Ψ = EΨ (2.1)

where T is the non-relativistic kinetic energy and V (0) is the (zeroth-order) non-perturbative
potential.

It is convenient to work in the center of mass frame (CM), because we are going to adopt
a central potential (radially symmetric), and therefore we can use spherical coordinates to
separate the radial and angular parts of the wavefunction.

Then our first goal is to solve radial equation, which can be written in function of only
one radial coordinate r that describes the relative distance separating the two particles.

The kinetic energy is written in terms of the relative momentum p and the reduced mass
µ:

T =
p2

2µ
, µ =

m1m2

m1 +m2

=
m

2
, for m1 = m2 = m (2.2)

While the radial wavefunction R(r) is easier to handle if we put it in its reduced form
y(r), with the following normalization:

y(r) = rR(r),

∞∫
0

r2dr|R(r)|2 =

∞∫
0

dr|y(r)|2 = 1 (2.3)

So with this considerations, the canonical substitution p→ −i∇, and adopting natural
units (~ = c = 1), we are left with the following differential equation:[

1

2µ

(
− d2

dr2
+
`(`+ 1)

r2

)
+ V (0)(r)

]
y(r) = E y(r) (2.4)

We point out that in the second version of the model, when we include the spin-spin
interaction as a non-perturbative term, the potential actually has spin operators, but as
it will be discussed along the text, the spin operator will only contribute with a constant
coefficient, just like the orbital momentum operator L2 generates the constant `(` + 1),
therefore the potential ends up being a function only of the radial coordinate again.

Regarding the angular part of the wavefunction, we will consider only pure states where
` (orbital), S (total spin), and J (total angular momentum) are good quantum numbers.
Then the wavefunction will be composed of a radial part, and an angular part which comes
from the coupling of spherical harmonics and spin functions into a specific value of J , (but
the values of ` and S are kept fixed, so only the z-components mix).

From the relativistic point of view, only J is a good quantum number, then in the most
general case the total wavefunction could be a mix of different values of ` and S that lead
to the same J . The tensor operator for instance, has non-diagonal matrix elements that give
rise to a mixing of states with ` differing by two units (a D-wave state can mix with a S-wave,
for example), but for the purpose of our model of tetraquarks (and for mesons or diquarks
as well) it is enough to consider pure states, which account for the main contribution in the
calculations. This will be further discussed in Section 2.7 and Chapter 3.



2.1 THE NON-RELATIVISTIC FRAMEWORK 11

There are still flavor and color parts on the complete wavefunction of the bound state.
Since only single flavor states will be considered, the flavor part won’t be used in any
calculation, except indirectly, in the fact that the quark flavor is related to the quark mass.
The color state will be considered separately and discussed in Section 2.4, because it only
affects the values of parameters in the potential.

Then, by solving the eigenvalue equation (2.4), one can obtain the interaction energy E
and the wavefunction y(r) of the 2-body system under consideration, where both depend on
the number of nodes of the wavefunction n (or principal quantum number N = n + 1), on
the orbital angular momentum number `, and in the case of the spin-spin correction included
in V (0), they will also depend on the total spin S and the constituents spins S1 and S2.

Since the Schrödinger equation has no analytical solution with the potentials we are
going to use, one option is to solve it numerically. For that, we developed a code written in
the software Mathematica based on Ref. [61]. The original notebook was built specially to
solve Schrödinger equation for bound states, allowing one to choose as input the number os
nodes, the orbital angular momentum, the mass values and precision. We improved it with
many additional features that allows one to automatically compute the values of the spin-
dependent corrections, root mean square radius, wavefunction at the origin, normalization
factor, total mass, constituents velocities, expectation values of each term in the potential,
and to plot the wavefunctions and potentials. We also adapted our program to perform a
fitting procedure of the charmonium experimental data in order to determine the best sets
of parameters to be used in the potentials (and its extensions to diquarks and tetraquarks),
and another adaptation was made to automatically plot the mass spectrum compared to
experimental values.

In the end, to calculate the total mass of a particular state we will sum the constituents
rest mass to the interaction energy E and the perturbative spin-dependent corrections.

For any charmonium meson (cc̄, where mc = mc̄) we have:

M(cc̄) = 2mc + Ecc̄ + 〈V (1)
Spin〉cc̄ (2.5)

Then for the diquark we will do the analogous calculation adapting the potential for its
color structure (and the antidiquark calculation is equal to the one for diquark):

M(cc) = 2mc + Ecc + 〈V (1)
Spin〉cc (2.6)

Lastly, considering the factorization of the 4-body problem into three 2-body problems,
the all-charm diquark-antidiquark tetraquark (denoted by T4c), will be treated as a 2-
body system, with the masses of the diquark and antidiquark as input. Then besides the
considerations regarding the potential parameters and spin interactions (discussed along the
text), the calculation is again analogous to the charmonium:

M(T4c) = mcc +mc̄c̄ + E[cc][c̄c̄] + 〈V (1)
Spin〉[cc][c̄c̄] (2.7)

One interesting point about the non-relativistic approach, is that even though the
charmonium systems aren’t completely non-relativistic, a surprisingly good reproduction
of its mass spectrum can be obtained. As analysed in Ref. [62], where a charmonium model
is developed with completely relativistic energy and also with non-relativistic kinetic energy,
a good agrement with the experimental data can be obtained with both methods, just by
using a different set of parameters in the effective potential employed. As we will show in
Chapter 4, the second version of the model fits very well the charmonium spectrum, so
(within our framework) it probably yields good estimates for the diquark masses, and also
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for the tetraquarks, when the system becomes even less relativistic due to the heavier mass
of the diquarks, if compared to the charm quark mass.

2.2 Constituents Velocities
Another interesting information that can be used to evaluate the non-relativistic ap-

proximation is the velocity of the constituents in each of the systems in consideration,
like the quark velocity inside the meson or the diquark, or the diquark velocity inside the
tetraquark. As presented in Ref. [63] (where one can also find a numerical package for solving
Schrödinger equation in heavy quarkonium context with the Numerov method), the velocity
calculation can be performed using the kinetic energy, which can be calculated with two
different methods.

First note that since we consider the system in the center of mass frame, the radial
coordinate r = r1 − r2 is the distance between the constituents 1 and 2. We denote the
constituent velocity inside the bound state by |v| ≡ |v1| = |v2| that relates with the velocity
relative to the CM by vrel = 2v1 = −2v2, and this velocity relates with the kinetic energy
relative to the CM by:

T =
1

2
µ〈vrel

2〉 =
1

2
µ〈(2v)2〉 =⇒ 〈v2〉 =

1

2µ
〈T 〉 (2.8)

Then we can calculate the mean square velocity using the Hamiltonian:

E = 〈H〉 = 〈T 〉+ 〈V (0)(r)〉 =⇒ 〈T 〉 = E − 〈V (0)(r)〉 (2.9)

〈v2〉 =
1

2µ
(E − 〈V (0)(r)〉) (2.10)

The Viral Theorem can be used instead of the Hamiltonian to obtain the kinetic energy:

〈T 〉 =
1

2
〈r · ∇V (0)(r)〉 =⇒ 〈T 〉 =

1

2
〈r d
dr
V (0)(r)〉 for central potentials. (2.11)

〈v2〉 =
1

4µ
〈r d
dr
V (0)(r)〉 (2.12)

Remember that for equal masses we have µ = m/2. For the diquark velocity considered as
the constituent of the tetraquark (treated as a 2-body system), the calculation is analogous.
In order to estimate these velocities we use the energy eigenvalue E, without perturbative
corrections. Since we use units where c = ~ = 1, these velocities will be already in the form
of v2/c2, which is ideal to see how non-relativistic is the system.

2.3 The Hamiltonian
There are several models of quarkonium in the literature, which employ different theo-

retical assumptions and mathematical methods. We will adopt a simple model that allow
us to obtain a reasonable agreement with charmonium experimental data and analyse many
interesting features of the systems we are going to study, while the theoretical background
is kept at modest level that can be reduced to mostly non-relativistic quantum mechanics.
The deduction of the interactions used in this model can be found in Refs. [59, 60]. These
interactions are also presented in Ref. [64] and in Ref. [65] one can find similar and alternative
approaches including deductions, from where we got the idea of removing one term from the
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spin-orbit interaction. The modification of the spin-spin interaction of Model 1, which we
will denote by Model 2, can be found in Refs. [66, 67] which are partially related with the
relativistic model of Ref. [68]. That modification was also employed in Ref. [69].

2.3.1 Model 1

In the first approach we will denote the zero-order potential by V
(0)

1 (r), adopting
a Coulomb plus linear form, where the Coulomb term is the main contribution of a
vector exchange interaction (one gluon exchange), and the linear term is assumed to come
from a scalar exchange, responsible for confinement, an effect not yet well understood in
fundamental QCD.

V
(0)

1 = V
(0)
V + V

(0)
S

V
(0)

1 (r) = κs
αs
r

+ br (2.13)

In the above equation the parameter κs (sometimes called “color factor”, which can be
negative or positive) is related to the color configuration of the system, and it will be
calculated in Section 2.4. The parameter αs is the QCD analogue (the index s stands for
“strong”) to the fine structure constant of the eletromagnetic interactions, and it will be
discussed in Section 2.5. The parameter b is sometimes called the “string tension”, and it is
related to the strength of the confinement. One could also add a constant term, which act
as a point-zero energy, like we encounter, for instance, in the quantum harmonic oscillator.

Except for the color factor κs, that can be calculated considering a specific color state
and the gluon exchange, the αs and b can only be estimated with theoretical assumptions.
Their values are somewhat constrained by QCD, lattice simulations and the quarkonium
models themselves, where they are usually obtained from fitting the experimental data,
using experimentally well-established states as input. The fitting procedure adopted in this
work will be discussed in Chapter 4.

Based on the Breit-Fermi Hamiltonian for one gluon exchange [59, 60, 65] we introduce
tree spin-dependent terms, which will be treated with first-order perturbation theory in
Model 1, by adding their matrix elements as corrections to the energy.

V
(1)
Spin = V

(1)
SS + V

(1)
LS + V

(1)
T , (for model 1) (2.14)

There are three spin-dependent terms: V (1)
SS (Spin-Spin), V (1)

LS (Spin-Orbit) and V
(1)
T

(Tensor), which will be discussed in detail in Chapter 3. For equal masses m1 = m2 = m,
they are given by:

V
(1)
SS = CSS(r) S1 · S2 (2.15)

V
(1)
LS = CLS(r) L · S (2.16)

V
(1)
T = CT (r)

(
(S1 · r)(S2 · r)

r2
− 1

3
(S1 · S2)

)
(2.17)

where the coefficients depend on the vector VV and scalar VS contributions of the potential
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on eq. (2.13), (the derivatives are explicitly calculated in Chapter 3):

CSS(r) =
2

3m2
∇2VV (r) = −8κsαsπ

3m2
δ3(r) (2.18)

CLS(r) =
1

2m2

1

r

[
3
dVV (r)

dr
− dVS(r)

dr

]
= −3κsαs

2m2

1

r3
− b

2m2

1

r
(2.19)

CT (r) =
1

m2

[
1

r

dVV (r)

dr
− d2VV (r)

dr2

]
= −12κsαs

4m2

1

r3
(2.20)

where m is the constituent mass of the 2-body problem (charm quark, or diquark). The sec-
ond term incorporated in the spin-orbit correction (proportional to the scalar contribution)
is a Thomas precession which follows from the assumption that the confining interaction
comes from a Lorentz scalar [59, 60, 66, 67].

These spin-dependent terms are proportional to 1/m2, what justifies their treatment as
first-order perturbation corrections in heavy quark bound states, and the fact that they
depend on the spin and orbital angular momentum makes them interesting to study the
splitting structure of the spectrum and its dependence on the quantum numbers under
consideration.

For simplicity, we won’t consider momentum-dependent corrections, like the lowest-order
relativistic correction in the kinetic energy proportional to p4, since reasonable agreement
with experimental data can already be obtained with a proper choice of parameters. For
the same reason spin-independent corrections (as the one presented in Ref. [60]) won’t be
considered either.

2.3.2 Model 2

In Chapter 4 we will present and discuss the application of this model to study the
charmonium states (mesons cc̄). We will see that a better agreement between predicted
states and experimental data can be obtained by including the spin-spin interaction in the
zeroth-order potential used in the Schrödinger equation (as done in Refs. [66, 67]), with the
artifact of replacing the Dirac delta by a gaussian function which introduces a new parameter
σ. The spin-spin term becomes:

V
(0)
SS = −8πκsαs

3m2

(
σ√
π

)3

e−σ
2r2S1 · S2 (2.21)

Then the zeroth-order potential will be V (0)
2 :

V
(0)

2 = V
(0)
V + V

(0)
S + V

(0)
SS

V
(0)

2 (r) = κs
αs
r

+ br − 8πκsαs
3m2

(
σ√
π

)3

e−σ
2r2(S1 · S2) (2.22)

When the term S1 · S2 acts on the wavefunction it will generate a constant factor (as
discussed in Chapter 3), so we still have a potential as function of only the r coordinate.

The spin-orbit and tensor corrections are still treated with perturbation theory, then:

V
(1)
Spin = V

(1)
LS + V

(1)
T , (for model 2) (2.23)
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2.4 Color Factor κs
When describing bound states of quarks, we need to analyse the color part of the

wavefunction that describes the color state of the constituents (quarks and/or antiquarks),
in a similar way we describe the total spin state of fermions. In our model the color state is
used to calculate the color factor that appears in the static potential.

The deduction of the “Coulomb” term of the Cornell potential can be obtained comparing
the one gluon exchange in (perturbative) Quantum Chromodynamics (QCD) to the one
photon exchange in Quantum Electrodynamics (QED), as discussed in Section 8.4 of the
textbook [1] and presented in the text below. More compact calculations can be found in
Refs. [59, 60, 65].

2.4.1 Quark - Antiquark

First let us analyse the amplitude of the interaction of a quark and an antiquark of
different flavor that exchange one gluon. The first-order Feynman diagram of this process is
shown in Figure 2.1:

p2, c2
p4, c4

p1, c1 p3, c3

q

Q′ Q′

Q Qtime

Figure 2.1: One gluon exchange diagram for QQ′ → QQ′.

Using the Feynman Rules of QCD [1] one can build the interaction amplitude:

Mqq = i[u(3)c†3]

[
−igs

λα

2
γµ
]

[u(1)c1]

[−igµνδαβ
q2

]
[v(2)c†2]

[
−igs

λβ

2
γν
]

[v(4)c4] (2.24)

where q = p1 − p3 = p4 − p2.

Working it out we get the same amplitude of the QED process of electron-positron
scattering, only changing ge → gs and with an additional “color factor” fs:

Mqq = −g
2
s

q2
[u(3)γµu(1)][v(2)γµv(4)]

[
1

4
(c†3λ

αc1)(c†2λ
αc4)

]
(2.25)
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f q−qs =
1

4

∑
α

(c†3λ
αc1)(c†2λ

αc4) (2.26)

The repeated α indices in the notation of eq. (2.25) imply a summation over the 8 gluon
colors: α = 1, 2, . . . , 8, which is shown explicitly in eq. (2.26).

The color of each object can be written with the following fundamental representation:

c =

 1
0
0

 for red,

 0
1
0

 for blue,

 0
0
1

 for green. (2.27)

The scattering of two unity electric charges e in QED (due to one photon exchange), can
be associated with the electromagnetic Coulomb potential:

VCoulomb =


− e2

4πε0

1

r
= −αe~c

1

r
for opposite sign charges,

+
e2

4πε0

1

r
= +αe~c

1

r
for same sign charges.

(2.28)

Similarly, the one gluon exchange between quark and antiquark (carrying color charge
and anticolor charge, respectively) can be associated with a “Coulomb” potential, where the
following connection is made (notice the minus sign stands for charge-anticharge interaction):

− e2

~c4πε0
= −αe (QED) ←→ −f q−qs αs (QCD) (2.29)

Then in order to clarify the discussion about the “color factor”, we will define the
parameter κs, in the “Coulomb” part of the Cornell potential in eq. (2.13), already with
the minus sign included when the interaction is between charge and anticharge:

κs =


−f q−qs , for q − q
+f q−qs , for q − q
+f q−qs for q − q

(2.30)

So the Coulomb term, or vector contribution VV (r) = κsαs
1

r
, in the Cornell potential

(2.13) will be:

V q−q
V (r) = −f q−qs αs

1

r

V q−q
V (r) = +f q−qs αs

1

r
(2.31)

V q−q
V (r) = +f q−qs αs

1

r

where we already made ~ = c = 1. From now on, when we say “color factor”, we mean fs,
apart from the + or − sign that must be included to get the κs parameter. As we will see,
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the color factor fs can result to be negative.
This sign rule can be thought as an analogy to the Coulomb potential in classical

electromagnetism. The interaction between quark-quark or antiquark-antiquark carries a
+ sign because it is an interaction between two color charges or two anticolor charges
(respectively), analogous to the case of same sign charges in electromagnetic process (i.e. both
positive or both negative electric charges, as one encounters, for example, in the electron-
muon scattering: both negative). For quark-antiquark, the color-anticolor interaction implies
an extra minus sign in the potential, analogous to the case of opposite electric charges (like
in electron-positron scattering: negative and positive, respectively).

But since we are dealing with SU(3) color symmetry, there will be more possibilities than
the only two in the U(1) symmetry of QED. The possible color states of a quark-antiquark
system are obtained by the combination of 3 colors and 3 anticolors, while for quark-quark
(antiquark-antiquark) we have 3 colors (anticolors) combined with 3 colors (anticolors).

The “anti” of antitriplet (in the following paragraph) means that the colors are combined
into an antisymmetric triplet color state (see eq. (2.50) in the next section), in the same sense
that two spin 1/2 particles can combine into a spin 0 antisymmetric state. The “overline”
bar in eq. (2.32) refers to the charge conjugated representation [70].

In group theory language the direct product of a color triplet (the three color charges
of QCD) and an anticolor triplet results in the direct sum of a singlet and an octet, while
the direct product of a color triplet and another color triplet results in the direct sum of an
antitriplet and a sextet, and in the same way, the direct product of an anticolor triplet and
another anticolor triplet results in the direct sum of an anticolor antitriplet and an anticolor
sextet, which are the conjugates from the combinations obtained with color, therefore they
can be combined to form a color singlet (see Refs. [70, 71, 72] for instance):

|qq〉 : 3⊗ 3 = 1⊕ 8

|qq〉 : 3⊗ 3 = 3⊕ 6 (2.32)
|qq〉 : 3⊗ 3 = 3⊕ 6

Remember that quark and antiquark can be combined into a color singlet state, which
is an observable: the mesons qq̄. Also three quarks (or three antiquarks) can be combined
into a color singlet state: the baryons qqq, like protons and neutrons. With that in mind,
the tetraquark color state is built in a similar manner as in a meson: first combining two
quarks into a color antitriplet diquark and two antiquarks into an anticolor antitriplet
antidiquark, then the diquark and antidiquark are combined into a singlet (therefore,
observable) tetraquark! The same procedure could be done with the sextet states, but as we
shall see after calculating the color factors, the antitriplet state is attractive, while the sextet
is repulsive. The singlet color factor is also attractive. Even if one consider a four-to-four
body interaction with all color combinations that appear, the triplet contribution tends to be
dominant. Also, if still in the diquark factorization one consider a mixing of antitriplet and
sextet, the sextet contribution usually appears mixed in a few states, while the antitriplet
can alone build pure states [50]. In some cases the sextet contribution was investigated and
found to be negligible (see Refs. [73, 74]).

Equation (2.32) tells us that a quark-antiquark system can be in an octet or a singlet
color state (but only the singlet is an observable, due to color confinement). We will start
with a simplified calculation of the octet color factor. The possible color combinations of the
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color octet are listed in eq. (2.33). These are also the color states of the 8 types of gluons:

|1〉8 = (rb+ br)/
√

2 |5〉8 = −i(rg − gr)/
√

2

|2〉8 = −i(rb− br)/
√

2 |6〉8 = (bg + gb)/
√

2 (2.33)
|3〉8 = (rr − bb)/

√
2 |7〉8 = −i(bg − gb)/

√
2

|4〉8 = (rg + gr)/
√

2 |8〉8 = (rr + bb− 2gg)/
√

6

The color factor will depend only on the “color multiplet”, for example, all the eight octet
states of eq. (2.33) will result in the same color factor, characteristic of the color octet. The
same is true for the antitriplet and sextet that we will see for the quark-quark interaction in
Section 2.4.2. The simplified octet state rb leads to the octet color factor as well, and it is a
good way to start the color factor calculations because it will be easy to handle. The quark
will carry the color r and the antiquark will carry the anticolor b. In this case, color can not
change in the vertex of the interaction because it must be conserved, and neither quark can
carry the anticolor nor antiquark can carry the color. Then the final color state of each one
will be the same after the interaction:

c1 = c3 = r =

 1
0
0

 , c2 = c4 = b =

 0
1
0

 (2.34)

Notice that there is no distinction between color and anticolor in this fundamental
representation. But their nature will be considered in the color factor due to the order
they appear when we build the amplitude based on the Feynman diagrams (compare the
color factor for qq in eq. (2.26) with its analogue for qq in eq. (2.49)).

In order to calculate the color factors we will need the Gell-Mann matrices, that are to
SU(3) what the Pauli matrices are to SU(2) i. e., they are the generators (when multiplied
by a factor 1/2) of the elements of that group of symmetry:

λ1 =

 0 1 0
1 0 0
0 0 0

 λ2 =

 0 −i 0
i 0 0
0 0 0

 λ3 =

 1 0 0
0 −1 0
0 0 0


λ4 =

 0 0 1
0 0 0
1 0 0

 λ5 =

 0 0 −i
0 0 0
i 0 0

 λ6 =

 0 0 0
0 0 1
0 1 0

 (2.35)

λ7 =

 0 0 0
0 0 −i
0 i 0

 λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2


Using eq. (2.34) in eq. (2.26) and the Gell-Mann matrices (eq. 2.35), we get:

f q−q8 =
1

4

( 1 0 0 )λα

 1
0
0

( 0 1 0 )λα

 0
1
0

 =
1

4

∑
α

(λα11λ
α
22)

=
1

4
(λ3

11λ
3
22 + λ8

11λ
8
22) =

1

4

[
(1)(−1) + (1/

√
3)(1/

√
3)
]

= −1

6
(2.36)

So this is the color factor for the octet color state in qq̄ interaction. Notice that we
changed the subscript from “s” (that stands for “strong interaction”) to give place to identify
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the multiplet (“8” for octet, “1” for singlet, ahead). Remember that there is an additional
minus sign because we have “opposite” charges (color and anticolor). Then the κs parameter
in the potential will be:

κs(octet) = −f q−q8 = −
(
−1

6

)
= +

1

6
(2.37)

Now the color singlet state is:

|1〉1 = (rr + bb+ gg)/
√

3 (2.38)

Notice that besides being “colorless”, by which we mean it has the “same amount” of
each color and respective anticolor, it is also symmetric by the permutation of any two pairs
of color-anticolor. The octet states |3〉8 and |8〉8 in eq. (2.33) are “colorless”, but not color
singlets.

The singlet color factor calculation is a bit trickier. Since the incoming quark-antiquark
pair is in the color singlet state, the color factor starts as a sum of three terms:

f q−q1 =
1

4

1√
3

{c†3λα
 1

0
0

[( 1 0 0 )λαc4

]
+

c†3λα
 0

1
0

[( 0 1 0 )λαc4

]

+

c†3λα
 0

0
1

[( 0 0 1 )λαc4

]}
(2.39)

In equation (2.39) we have put the initial color states c1 and c2. Now we have to
consider that each one of the three terms can have any of the three “colorless” color-
anticolor possibilities, but the outgoing quark-antiquark pair must still be in the singlet
state. Therefore, we get 9 terms (each one carrying a summation in α), which can be written
compactly as:

f q−q1 =
1

4

1√
3

1√
3

∑
α

(λαijλ
α
ji) =

1

12
Tr(λαλα) (2.40)

And using the following relation:

Tr(λαλβ) = 2δαβ ⇒ Tr(λαλα) = 16 (2.41)

We finally get the singlet color factor in qq̄ interaction:

f q−q1 =
4

3
(2.42)

Again, remember that there is an additional minus sign because we have “opposite”
charges (color and anticolor). Then the κs parameter in the potential will be:

κs(singlet) = −f q−q1 = −
(

4

3

)
= −4

3
(2.43)

One could argue that for quarks of the same flavor there is another first-order diagram
that could contribute to the amplitude, in which the QQ virtually annihilates into a gluon:
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p2, c2
p4, c4

p1, c1 p3, c3

q
Q Q

Q Q
time

Figure 2.2: Virtual annihilation QQ→ gluon→ QQ.

The amplitude for this diagram reads:

Mqq→g→qq = i[v(2)c†2]

[
−igs

λα

2
γµ
]

[u(1)c1]

[−igµνδαβ
q2

]
[u(3)c†3]

[
−igs

λβ

2
γν
]

[v(4)c4] (2.44)

where q = p1 + p2 = p3 + p4.

Once more we can extract the color factor by comparison with the analogue process in
QED: the eletron-positron virtual annihilation. Working it out we get:

Mqq→g→qq = −g
2
s

q2
[v(2)γµu(1)][u(3)γµv(4)]

[
1

4
(c†2λ

αc1)(c†3λ
αc4)

]
(2.45)

f qq→g→qqs =
1

4

∑
α

(c†2λ
αc1)(c†3λ

αc4) (2.46)

Notice this color factor is different from that of one gluon exchange for qq̄ in eq. (2.26),
and from that of one gluon exchange for qq in eq. (2.49) which we will see in Section 2.4.2.

For qq̄ we saw that the color state can be an octet or a singlet, but since only the singlet
can be a observable (meson), we will calculate the color factor of virtual annihilation only
for the singlet color state. Using eq. (2.38) in eq. (2.46) we get:

f qq→g→qqs =
1

4

1√
3

1√
3

( 1 0 0 )λα

 1
0
0

+ ( 0 1 0 )λα

 0
1
0

+ ( 0 0 1 )λα

 0
0
1


×

( 1 0 0 )λα

 1
0
0

+ ( 0 1 0 )λα

 0
1
0

+ ( 0 0 1 )λα

 0
0
1


=

1

12
Tr(λα)Tr(λα) = 0 (2.47)

Therefore we have shown that this virtual annihilation diagram doesn’t contribute to the
amplitude of the color singlet (meson) interaction, because its corresponding color factor is
zero, which tells us that a singlet (meson) cannot couple to an octet (gluon).
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2.4.2 Quark - Quark

The amplitude of the one gluon exchange between two quarks of different flavor can be
compared to the one photon exchange between an electron and a muon (which have the
same charge sign), and the calculation of the color factor follows the same procedure we saw
in Section 2.4.1 for quark-antiquark:

p2, c2
p4, c4

p1, c1 p3, c3

q

Q′ Q′

Q Q
time

Figure 2.3: One gluon exchange diagram for QQ′ → QQ′.

Mqq = −g
2
s

q2
[u(3)γµu(1)][u(4)γµu(2)]

[
1

4

∑
α

(c†3λ
αc1)(c†4λ

αc2)

]
(2.48)

f q−qs =
1

4

∑
α

(c†3λ
αc1)(c†4λ

αc2) (2.49)

Notice that now we have two particle spinors u instead of a particle spinor u and an
antiparticle spinor v (that was the case of qq̄), and therefore the colors c2 and c4 are in
exchanged positions.

The possible color combinations of the color antitriplet are:

|1〉3 = (rb− br)/
√

2

|2〉3 = (bg − gb)/
√

2 (2.50)
|3〉3 = (gr − rg)/

√
2

In order to calculate the antitriplet color factor, let us use the color state |1〉3 = (rb −
br)/
√

2 (using any of the others antitriplet color states in eq. (2.50) will result in the same
antitriplet color factor). In this color configuration we will have (rb− br)→ (rb− br) which
will lead to four terms in the form (c1, c2)→ (c3, c4), corresponding to rb→ rb, rb→ −br,
−rb→ rb and −br → −br (the minus sign will cancel in this last one):
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f q−q
3

=
1

4

1√
2

1√
2

{( 1 0 0 )λα

 1
0
0

( 0 1 0 )λα

 0
1
0


−

( 0 1 0 )λα

 1
0
0

( 1 0 0 )λα

 0
1
0


−

( 1 0 0 )λα

 0
1
0

( 0 1 0 )λα

 1
0
0


+

( 0 1 0 )λα

 0
1
0

( 1 0 0 )λα

 1
0
0

}

=
1

8

∑
α

(λα11λ
α
22 − λα21λ

α
12 − λα12λ

α
21 + λα22λ

α
11) (2.51)

Notice that we can commute the two last terms to obtain the first two again, then:

f q−q
3

=
1

4

∑
α

(λα11λ
α
22 − λα12λ

α
21)

=
1

4
(λ3

11λ
3
22 + λ8

11λ
8
22 − λ1

12λ
1
21 − λ2

12λ
2
21)

=
1

4

[
(1)(−1) + (1/

√
3)(1/

√
3)− (1)(1)− (−i)(i)

]
= −2

3
(2.52)

This time, we have a “+” sign when changing to κs because of “equal” sign charges (color
and color). Therefore the κs parameter in the potential will be equal to the color factor fs:

κs(antitriplet) = +f q−q
3

= +

(
−2

3

)
= −2

3
(2.53)

Finally, for the color sextet we have the following color states:

|1〉6 = rr |2〉6 = bb |3〉6 = gg

|4〉6 = (rb+ br)/
√

2 (2.54)
|5〉6 = (bg + gb)/

√
2

|6〉6 = (gr + rg)/
√

2

Then to calculate the sextet color factor, we will use the color state |1〉6 = rr (remember
that using any of the others color sextet states in eq. (2.54) will result in the same sextet
color factor). So using this state in eq. (2.49) we get:

f q−q6 =
1

4

( 1 0 0 )λα

 1
0
0

( 1 0 0 )λα

 1
0
0

 =
1

4

∑
α

(λα11λ
α
11)

= (λ3
11λ

3
11 + λ8

11λ
8
11) =

[
(1)(1) + (1/

√
3)(1/

√
3)
]

= +
1

3
(2.55)
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Once more, due to the + sign for “equal charges”, the κs parameter in the potential will
be equal to the color factor fs:

κs(sextet) = +f q−q6 = +

(
+

1

3

)
= +

1

3
(2.56)

One could argue that for identical quarks (same flavor) there is another first-order
diagram, with “crossed” momentum:

p2, c2 p4, c4

p1, c1
p3, c3

q

Q

Q

Q

Q

time

Figure 2.4: OGE diagram with “crossed momentum” for QQ→ QQ.

This one is not zero, but if we include it in the amplitude calculation, together with the
corresponding statistical factor (dividing by all the possible initial states and summing over
all the possible final states), we get exactly the same result as if we had only considered
the “regular” diagram, so the previous calculations for the color factor are valid for identical
quarks as well.

Lastly, we point out that everything done for quark-quark is similar for antiquark-
antiquark interactions, just replacing colors by anticolors. Then the resulting structures
of antiquark-antiquark are complementary to the quark-quark ones, as it can be seen in eq.
(2.32). So if considered as bound structures (quark-quark as diquark and antiquark-antiquark
as antidiquark) they can be combined to form a color singlet as well. Therefore, the diquark-
antidiquark interaction (treated as a 2-body problem) is similar to the quark-antiquark, and
the color factor to form the color singlet is the same as in a regular meson.

In conclusion, there are two most interesting cases between the four we saw: the singlet
color factor (which is used in regular meson potentials, and will be used in our diquark-
antidiquark interaction), and the antitriplet color factor, which is the attractive (and
dominant) color interaction between quark-quark (and antiquark-antiquark) which we will
use to build the diquarks (and antidiquarks), constituents of the final color singlet tetraquark
bound state.

Summarizing: for quark-quark (or antiquark-antiquark) we have a positive sign in the
Coulomb term of the Cornell potential, but the factor fs (for color antitriplet configuration)
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is negative:

f q−q
3

= f q−q3 = −2

3
⇒ VV (r) = +

(
−2

3

)
αs
r

= −2

3

αs
r

⇒ κs = −2

3
(2.57)

While for quark-antiquark (or for diquark-antidiquark) we have a negative sign in the
Coulomb term, but the factor fs (for color singlet configuration) is positive:

f1 = +
4

3
⇒ VV (r) = −

(
+

4

3

)
αs
r

= −4

3

αs
r

⇒ κs = −4

3
(2.58)

This section results are listed in the Table 2.1.

Table 2.1: Color Factor for different color configurations.

sign fs κs structure color configuration
− +4/3 −4/3 q − q color singlet
− −1/6 +1/6 q − q color octet
+ −2/3 −2/3 q − q color antitriplet
+ +1/3 +1/3 q − q color sextet

As an extra information, in the color factor fs calculation we always encounter summa-
tions over the product of the Gell-Mann matrices in the form λaijλ

a
kl. We can use a simple

formula for this expression (from color Fierz identities, where nc = 3 is the number of colors):

∑
α

λαijλ
α
kl = 2

(
δilδjk −

1

nc
δijδkl

)
=⇒

∑
α

λαijλ
α
kl = 2δilδjk −

2

3
δijδkl (2.59)

2.5 The Coupling Constant αs
The behavior of the αs(|q2|) in QCD is more complex than its analogue in QED. We

restrict ourselves to present some main results and an example of how to estimate it in the
quarkonium context.

As discussed in Refs. [1], the running coupling constant can be expressed as a function
of an arbitrary parameter of reference µ2, from the renormalization group equation. In the
1-loop approximation we have:

αs(|q2|) =
αs(µ

2)

1 + [αs(µ2)/12π](11nc − 2nf ) ln(|q2|/µ2)
, (|q2| � µ2) (2.60)

where nc = 3 is the number of colors in QCD, nf is the number of active flavors, and it is
related with loop corrections in the gluon exchange, as if a virtual pair of flavor up to nf
could be created, in the same sense of eletron-positron loops in the one photon exchange
in QED. The active flavors are the ones considered light in that scale (mq � µ), so for
chamonium we have nf = 3, since u, d and s are considered light.

In QED, the case µ2 = 0 is the large distance behavior, where αe(µ2) → αe(|q2| = 0) ∼=
1/137). This is not a good reference point in perturbative QCD, because that is when αs is
large (due to color confinement), then perturbation theory is no longer applicable. In order
to consider the interaction of only one gluon exchange we must have αs(µ2) < 1.
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A common way of expressing αs is through the introduction of a new variable Λ, which
represents the energy scale of the process:

ln(Λ2) = ln(µ2)− 12π/[(11nc − 2nf )αs(µ
2)], (2.61)

Then αs can be expressed in term of the exchanged momentum |q2| and Λ2:

αs(|q2|) =
12π

(11nc − 2nf ) ln(|q2|/Λ2)
, (|q2| � Λ2) (2.62)

This is the 1-loop expression of the running coupling constant αs, but one can find in
the literature derivations to higher orders.

The scale constant Λ is usually assumed to be around a few hundred MeVs in quarkonium
context. It is common to see in the literature values around 200 MeV for charmonium. Also,
there are different ways to estimated the momentum transfer: with a characteristic length
scale [64], the kinetic energy [63], constituents masses, etc. One common point of reference
is the value of this coupling constant in the energy scale of the boson Z. From the PDG
[52] we have mZ = 91.1876(21) GeV, and αs(mZ) = 0.1185(6). This values could be used to
evolve the coupling constant to a desired scale, or to estimate Λ and apply the eq. (2.62).

In more sophisticated models of quarkonium, like the relativized potential model of
Godfrey and Isgur [68] also used in Ref. [67], the coupling constant αs is considered as
a “running” parameter, that changes according to the energy scale of each bound state.
But due to the phenomenological character of our model and its minimalist purpose, we
will adopt the αs as a constant in the potential, a common approach in many charmonium
models.

The value of αs will be obtained from a fitting procedure into the charmonium experi-
mental data, where it is considered as a free parameter, allowed to vary within an acceptable
range of values while the χ2 is minimized (in order to find the best set where the difference
between model predictions and experimental input is minimal). The charm quark mass mc,
the string tension b, and the gaussian parameter σ in model 2, will also be considered as
free parameters in the fitting procedure, and once the best set is found, they are kept fixed
to generate the whole mass spectrum.

2.6 Wavefunction at the Origin
The value of the square modulus of the wavefunction |Ψ(0)|2 is an important piece of

information, since the spin-spin splitting in model 1 is proportional to it (see Section 3.1),
as are other quantities like decay rates which can be related to experimental data.

In these models of quarkonium, only S-wave states (` = 0) have non-zero value of the
wavefunction at the origin. For states with orbital angular momentum (` 6= 0), the centrifugal
term in Schrödinger equation creates a “centrifugal barrier”, which makes the wavefunction
at the origin vanish. Thus, for ` 6= 0 we will assume |Ψ(0)|2 = 0 and for S-wave we have:

|Ψ(0)|2 = |Y 0
0 (θ, φ)Rn,`(0)|2 =

|Rn,`(0)|2
4π

, for ` = 0. (2.63)

So the important quantity at stage is the square modulus of the radial wavefunction at
the origin |Rn,`(0)|2, which can be obtained from the numerical calculations.

Next we present two methods for obtaining the wavefunction at the origin, one based on
the assumptions of the numerical method, that justifies how it vanishes for orbitally excited
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states, and another based on an analytical deduction for S-wave states.

2.6.1 Generic |Ψ(0)|2
The numerical solution of the Schrödinger equation (see reference [61] for details) is based

in the Runge-Kutta method, and the integration of the differential equation starts at the
origin and goes on until a critical point is reached (where the program can assume that the
wavefunction will asymptotically converge to zero with r →∞, ensuring it is normalizable).

In order to estimate its value at the origin, an expansion of the radial wavefunction in
power series of r is performed in the Schrödinger equation. Then with the restriction that
the potential can’t be more divergent at the origin than 1/r2, one can take the limit r → 0
and obtain the following result in terms of the (normalized) reduced radial wavefunction
yn,`(r) = rRn,`(r):

yn,`(δ ≈ 0) = (δ)`+1Nn,` ⇒ |Rn,`(δ)| =
δ`+1

δ
Nn,` = δ`Nn,` = Nn,`, for ` = 0. (2.64)

where δ represents the numerical “zero” (from where the program starts the numerical
integration with the Runge-Kutta procedure), and it is defined with the precision chosen
as input when one calls the function schroe in the program, that is: δ = h/10, where a
reasonable choice can be h = 0.01 (input), which is the step size in the numerical integration.
The normalization factor of yn,`(r) is denoted Nn,` and it can be calculated (with a numerical
integration with Mathematica built-in functions) once we have obtained the function yn,`(r)
within this method. So it is immediate that for ` = 0, whatever may be the value of δ, the
radial wavefunction will be exactly the normalization factor Nn,` of yn,`(r). For ` 6= 0 we still
get that the wavefunction at the origin is approximately zero, and the bigger the value of `,
or the smaller is the step size h, closer to zero it will be (that’s why we will assume it is zero
within this numerical procedure). Then the result from this analysis is:

|Rn,`(δ ≈ 0)|2 = N2
n,` =

 xmax∼∞∫
xmin=δ∼0

[yn,`(r)]
2dr

−1

, for ` = 0. (2.65)

Notice that the normalization factor is the same for Rn,`(r) or yn,`(r). Just to be clear,
the program works with yn,`(r): as the integration of the Runge-Kutta method goes on, the
values of yn,`(r) are obtained for points in the r coordinate separated by the step size h. In
the end these points are interpolated using a built-in function of the software Mathematica,
and finally one has a continuous function yn,`(r), which still needs to be normalized, imposing
the condition of eq. (2.3). The number Nn,`, which we denoted by normalization factor, is
simply the factor by which we have to multiply yn,`(r) to make it a normalized function:
Nn,` yn,`(r) is the normalized reduced radial wavefuntion. In the above equation (2.65) yn,`(r)
is not yet normalized, that’s why the inverse of the integral of its square is exactly the square
of the normalization factor Nn,`, which happens to be also the value of the square of the
radial wavefunction at the origin. In equation (2.64) we explicitly wrote the normalization
factor Nn,`, because we said they were already normalized. In the next Section 2.6.2 we will
suppress the indices n, ` for a lighter notation.

2.6.2 S-wave |Ψ(0)|2
The previous method might seem dubious, but it does indeed yields approximately the

same result of the method presented in this section, which is very common in the literature
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of quarkonium models, and whose deduction can be found in Section 5.3 of Ref. [60]. As
we show next, one can obtain an interesting formula relating the wavefunction at the origin
|Ψ(0)|2 and the radial potential V (r), for S-wave states (` = 0). The deduction begins with
the Schrödinger equation in the form:

−∇2Ψ = 2µ(E − V )Ψ, (2.66)

and using the wavefunction for ` = 0 (S-wave):

Ψ(r) = Y 0
0 (θ, φ)R(r) =

1√
4π

y(r)

r
=⇒ ∇2Ψ(r) =

1√
4π

y′′(r)

r
, (2.67)

then inserting eq. (2.67) in eq. (2.66), multiplying both sides by
y′

r
√

4π
and integrating over

all space:

−
∫

d3r
y′′y′

4πr2
= −1

2

∫ ∞
0

dr(y′2)′ = −1

2
(y′2)

∣∣∣∣∞
0

= −2π(Ψ + rΨ′)2

∣∣∣∣∞
0

= 2π|Ψ(0)|2

= 2µ

∫
d3r[E − V (r)]

yy′

4πr2
= µ

∫ ∞
0

dr[E − V (r)](y2)′ = µ

∫ ∞
0

drV ′(r)(y2) = µ〈V ′〉(2.68)

Notice that the “integral by parts trick” was used in the last step.
So for S-wave (` = 0):

|Ψ(0)|2 =
µ

2π
〈V ′(r)〉 =⇒ |R(0)|2 = 2µ〈V ′(r)〉 (2.69)

2.6.3 Discussion for |Ψ(0)|2
We have seen two different ways to get the value of the square modulus of the radial

wavefunction at the origin of the system (in the CM frame). The first one seemed dubious
at a first glance, even though it goes quickly to zero when orbital momentum is non-zero, as
expected. But with the second way, which is an “analytical” calculation for S-wave states,
(therefore it seems more reliable), we usually get approximately the same values we get with
the first method, only with a small difference, commonly after a few decimal digits. That
difference gets smaller if we increase the precision of the calculations by reducing the step
of the numerical integration h.

Due to practical reasons, we adopted h = 0.01 in all calculations. Since the fitting
procedure requires a huge number of calculations until it reaches the set of parameters
that minimizes χ2, using smaller precision is only viable for single calculations (the fitting
procedure is discussed in Chapter 4).

Let us analyse the sources of numerical error in each method:
1) Both have the same error inherent to the method used to obtain the wavefunction

y(r), in which there is an error from the Runge-Kutta method itself, as from the built-in
functions of Mathematica used to solve the Schrödinger equation: the numerical integration
and the interpolation of the points obtained with that method to get the continuous function
y(r).

2) - a) In the first method, there is the error from the numerical integration used
to calculate the normalization factor square N2 - and mind that in N the potential and
wavefunction properties are indirectly contained.

2) - b) In the second method there is the error in taking the expectation value of the
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potential derivative, which is also a numerical integration. But to do that we need to use
the normalized wavefunction, then the error from calculation N will be contained in the
second method. The value R(δ) might be implicit here too, because the program only gives
the wavefunction between xmin = δ (the “numerical zero”) and xmax (the point where the
program identifies that the wavefunction has already converged to zero within the precision
chosen, so it is considered as the “numerical∞”). This range is also the region of integration
when we calculate any expectation value. But since the second method has an “analytical”
deduction to get the formula (2.69), and it is widely adopted in other quarkonium models
(for instance, in Ref. [63]) it seems more appropriate to choose it as the standard form to
get the wavefunction at the origin.

Withal, we don’t have strong reasons to believe the second method is much better than
the first one, even though it is surely more elegant. The best way to minimize any numerical
error is to increase the precision of the calculations by reducing the step of the numerical
integration h. In all the calculations performed, both values have always converged when we
increased the precision, but with h = 0.01 they were already close enough and the difference
in the results were very small or negligible.

Considering all the discussions and many preliminary calculations, we have chosen to
present our final results for S-wave states using the second method. For states with orbital
angular momentum, we assumed that the wavefunction at the origin is zero.

Adopting a more sophisticated numerical method, for example Numerov instead of
Runge-Kutta (as in Ref. [63]), could increase the precision of the calculations. But the
physical assumptions of each model and the parameter set used in the potential affect much
more the final results than the choice of the numerical method does.

Our choice, as we checked, is sufficient to reproduce the results of Refs. [63] and [66, 67]
within the precision presented in these works (number of digits in the results).

2.7 The Tetraquark Wavefunction

2.7.1 Angular Momentum Coupling

Here we present the tetraquark wavefunction that we are going to use in the next sections,
with emphasis in the angular part (spin and orbital), which is going to be important in the
calculation of the tensor spin-dependent perturbative correction.

In the Schrödinger formalism, the time-dependent part of the wavefunction can be
factorized as usual, and for our purpouse, the angular and radial parts will also be factorized.
But since we are dealing with quarks, the wavefunction also has a flavor and a color part.
Since we are aiming at a tetraquark composed only of charm quarks, the flavor part is very
simple. The color part was discussed in Section 2.4. So the total wavefunction combines all
of these:

Ψtotal = {ψspatial ⊗ χspin ⊗ φflavor ⊗ ψcolor}χtime (2.70)

We leave aside the time, flavor and color parts, and look only to the spatial and spin
parts. We factorize the radial part from the angular part that combines orbital and spin
(which are going to be coupled using Clebsh-Gordan coefficients):

ψspatial ⊗ χspin = ψ(r){Y m
` (θ, φ)⊗ χ(s1, s2, s3, s4)} (2.71)

We will use the indices 1 and 2 for the two quarks inside the diquark, and 3 and 4
for the two antiquarks inside the antidiquark (see Fig. 3.1 in Section 3.3). In accordance
with our factorization of the 4-body system into three 2-body subsystems, we will build the
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angular part coupling the diquark and antidiquark, which are built coupling the quarks and
antiquarks, respectively.

It will also be assumed that the angular part is composed of pure states, where total
spin and orbital momentum are good quantum numbers, even though in a more rigourous
(relativistic) treatment, only the total angular momentum J would be conserved, and there
could be a mixing of different values of S and ` which can be coupled into the same value
of J .

First, we introduce the notation for the spin of the diquark (and antidiquark). This is
the well-known coupling between two spin 1/2 particles, whose total can be 0 (singlet) or 1
(triplet):

|s1, s2, Sd〉 ≡ |s3, s4, Sd̄〉
|0, 0〉 = (↑↓ − ↓↑)/

√
2

|1, 1〉 = ↑↑ (2.72)
|1, 0〉 = (↑↓ + ↓↑)/

√
2

|1,−1〉 = ↓↓

Always, s1 = s2 = s3 = s4 = 1/2. Then Sd will denote the total spin of the diquark and
Sd̄ the total for the antidiquark (both always 1 in our choices for the tetraquark).
We write the possible couplings in a generic form |S,MS〉, where S is a total spin and MS

is its z-component. The arrows denote the spins of each constituent, in the order 1, 2 for
the diquark and 3, 4 for the antidiquark. As usual the arrow up denotes spin up: |1

2
, 1

2
〉 and

arrow down denotes spin down: |1
2
,−1

2
〉.

As discussed in detail Chapter 5, we choose the diquark (composed of same flavor quarks),
in the ground state (no orbital nor radial excitations) and in the color antitriplet state, which
implies that its total spin has to be 1 in order to respect the Pauli exclusion principle (and
the same for the antidiquark). Then, for the coupling of spin 1 diquark and antidiquark, we
can have the total tetraquark spin as ST = 0, 1, 2.

First we will look only to the total spin wavefunctions, showing the three possible cases
of total spin for the tetraquark, coupling the spin 1 diquark and antidiquark (with Clebsh-
Gordan coefficients corresponding to the 1× 1 coupling) into the principal case (maximum
z-componentMST

= ST ). We use the index “12” for the diquark and “34” for the antidiquark,
and we show it in terms of diquark and antidiquark spin basis, and also in terms of the two
quarks and two antiquarks spin basis (each group of four arrows is always in the order
“1234”):

(Sd = 1)⊗ (Sd̄ = 1) −→ |ST ,MST
〉 = |0, 0〉ST

=
1√
3
|1, 1〉12 ⊗ |1,−1〉34 −

1√
3
|1, 0〉12 ⊗ |1, 0〉34 +

1√
3
|1,−1〉12 ⊗ |1, 1〉34 (2.73)

=
1√
3
| ↑↑〉12 ⊗ | ↓↓〉34 −

1√
3
|↑↓ + ↓↑√

2
〉12 ⊗ |

↑↓ + ↓↑√
2
〉34 +

1√
3
| ↓↓〉12 ⊗ | ↑↑〉34

=
1√
12

(2 ↑↑↓↓ +2 ↓↓↑↑ − ↑↓↑↓ − ↑↓↓↑ − ↓↑↑↓ − ↓↑↓↑)
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(Sd = 1)⊗ (Sd̄ = 1) −→ |ST ,MST
〉 = |1, 1〉ST

=
1√
2
|1, 1〉12 ⊗ |1, 0〉34 −

1√
2
|1, 0〉12 ⊗ |1, 1〉34 (2.74)

=
1√
2
| ↑↑〉12 ⊗ |

↑↓ + ↓↑√
2
〉34 −

1√
2
|↑↓ + ↓↑√

2
〉12 ⊗ | ↑↑〉34

=
1

2
(↑↑↑↓ + ↑↑↓↑ − ↑↓↑↑ − ↓↑↑↑)

(Sd = 1)⊗ (Sd̄ = 1) −→ |ST ,MST
〉 = |2, 2〉ST

= |1, 1〉12 ⊗ |1, 1〉34 (2.75)
= | ↑↑〉12 ⊗ | ↑↑〉34

=↑↑↑↑

The other cases with lower z-component MST
can be constructed in the same way. These

wavefunctions were inspired in the ones presented in Refs. [69, 72, 73, 74], and we generalized
them to include orbital angular momentum between diquark and antidiquark.

Now we show how to couple the total spin wavefunctions to spherical harmonics in order
to obtain a specific value of total angular momentum JT in the tetraquark. We start by
coupling the total spin of the tetraquark ST with the orbital momentum LT (we will denote
this orbital momentum by LT to make it clear that it is the one between the diquark and the
antidiquark). We will also show only the principal case (maximum z-component MJT = JT ),
which we use to calculate the expectation value of the tensor operator (the direction z is
arbitray for the whole system, so the result should not depend on the z-component MJT ).

For LT = 1 we have seven possibilities of JT if we are considering spin 1 diquark and
antiquark: one for ST = 0 (JT = 1), three for ST = 1 (JT = 0, 1, 2) and three for ST = 2
(JT = 1, 2, 3). We start with the notation |ST ,MST

〉ST
⊗ |LT ,MLT

〉LT
so the use of the

Clebsh-Gordan coefficients is clear, then we open it into the diquark and antiquark spin
basis, using the previous spin wavefunctions (or others with different z-components when
necessary) and the notation Y m

` (θ, ϕ) for the spherical harmonics. Finally, in the last step
we open it in the quarks and antiquarks spin basis.

First we present the trivial coupling between total spin ST = 0 that was calculated in
eq. (2.73), and orbital momentum LT = 1 (which implies JT = 1):

[(Sd = 1)⊗ (Sd̄ = 1)→ (ST = 0)]⊗ (LT = 1) −→ |JT ,MJT 〉 = |1, 1〉JT
= |0, 0〉ST

⊗ |1, 1〉LT

=
( 1√

3
|1, 1〉12 ⊗ |1,−1〉34 −

1√
3
|1, 0〉12 ⊗ |1, 0〉34 +

1√
3
|1,−1〉12 ⊗ |1, 1〉34

)
Y 1

1 (θ, ϕ) (2.76)

=
( 1√

12
(2 ↑↑↓↓ +2 ↓↓↑↑ − ↑↓↑↓ − ↑↓↓↑ − ↓↑↑↓ − ↓↑↓↑)

)
Y 1

1 (θ, ϕ)
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Next, we present one example with total spin ST = 2, LT = 1 and JT = 2:

[(Sd = 1)⊗ (Sd̄ = 1)→ (ST = 2)]⊗ (LT = 1) −→ |JT ,MJT 〉 = |2, 2〉JT

=

√
2

3
|2, 2〉ST

⊗ |1, 0〉LT
− 1√

3
|2, 1〉ST

⊗ |1, 1〉LT

=

√
2

3

(
|1, 1〉12 ⊗ |1, 1〉34

)
Y 0

1 (θ, ϕ)

− 1√
3

( 1√
2
|1, 1〉12 ⊗ |1, 0〉34 +

1√
2
|1, 0〉12 ⊗ |1, 1〉34

)
Y 1

1 (θ, ϕ) (2.77)

=

√
2

3

(
| ↑↑〉12 ⊗ | ↑↑〉34

)
Y 0

1 (θ, ϕ)

− 1√
3

( 1√
2
| ↑↑〉12 ⊗ |

↑↓ + ↓↑√
2
〉34 +

1√
2
|↑↓ + ↓↑√

2
〉12 ⊗ | ↑↑〉34

)
Y 1

1 (θ, ϕ)

=

√
2

3

(
↑↑↑↑

)
Y 0

1 (θ, ϕ)− 1√
3

(1

2
(↑↑↑↓ + ↑↑↓↑ + ↑↓↑↑ + ↓↑↑↑)

)
Y 1

1 (θ, ϕ)

Notice that it was necessary to make use of another spin state |2, 1〉ST
, i. e., a total spin

ST = 2 but with z-component MST
= 1, which was built with the same procedure, coupling

the spin 1 diquark and antidiquark, (then we added the intermediate step to show the change
to the spin 1/2 basis).

At last, we present one example with ST = 1, LT = 1 and JT = 0 (for brevity, we will
skip the intermediate step between the spin 1 basis and the spin 1/2 basis):

[(Sd = 1)⊗ (Sd̄ = 1)→ (ST = 1)]⊗ (LT = 1) −→ |JT ,MJT 〉 = |0, 0〉JT
=

1√
3
|1, 1〉ST

⊗ |1,−1〉LT
− 1√

3
|1, 0〉ST

⊗ |1, 0〉LT
+

1√
3
|1,−1〉ST

⊗ |1, 1〉LT

=
1√
3

( 1√
2
|1, 1〉12 ⊗ |1, 0〉34 −

1√
2
|1, 0〉12 ⊗ |1, 1〉34

)
Y −1

1 (θ, ϕ)

− 1√
3

( 1√
2
|1, 1〉12 ⊗ |1,−1〉34 −

1√
2
|1,−1〉12 ⊗ |1, 1〉34

)
Y 0

1 (θ, ϕ)

+
1√
3

( 1√
2
|1, 0〉12 ⊗ |1,−1〉34 −

1√
2
|1,−1〉12 ⊗ |1, 0〉34

)
Y 1

1 (θ, ϕ) (2.78)

=
1√
3

(1

2
(↑↑↑↓ + ↑↑↓↑ − ↑↓↑↑ − ↓↑↑↑)

)
Y −1

1 (θ, ϕ)

− 1√
3

( 1√
2

(↑↑↓↓ − ↓↓↑↑)
)
Y 0

1 (θ, ϕ)

+
1√
3

(1

2
(↑↓↑↑ + ↓↑↓↓ − ↓↓↑↓ − ↓↓↓↑)

)
Y 1

1 (θ, ϕ)

This time we made use of other two different total spin 1 wavefunction: the ones with
z-components 0 and -1 (|1, 0〉ST

and |1,−1〉ST
).

These examples can give us an idea of how apparently complicated it can be to take an
expectation value of these states. Luckily, for the spin-spin (Sec. 3.1) and spin-orbit (Sec.
3.2) corrections, we don’t need to use them since we can obtain the angular factors only from
the spin and orbital quantum numbers. But for the tensor (Sec. 3.3), we only have a general
result in terms of eigenvalues of the interaction between two spin 1/2 particles (which in our
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case, would be inside the diquark (and inside the antiquark). Then for a proper treatment of
the tensor interaction in the diquark-antidiquark system, we will explicitly apply the tensor
in this kind of wavefunctions, and show that within our approximations (discussed in detail
in Sec. 3.3), it is equivalent to apply the tensor directly in the pair diquark-antidiquark (spin
1 basis) or as a sum of four tensor interactions between each pair of quark-antiquark (spin
1/2 basis).

2.7.2 JPC Quantum Numbers in the Tetraquark

As discussed in Refs. [23, 26], we can use the diquark-antidiquark basis to label the
possible quantum numbers JPC of the tetraquark. Using the following notation:

|T4Q

〉
= |Sd, Sd̄, ST , LT

〉
JT

(2.79)

where Sd is the total spin of the diquark, Sd̄ is the total spin of the antidiquark, ST is the total
spin of the tetraquark, assumed to come from the coupling Sd⊗Sd̄, LT is the orbital angular
momentum relative to the diquark-antidiquark system (in the 2-body approximation), and
JT is the total angular momentum of the tetraquark, assumed to come from the coupling
ST ⊗ LT .

The general formula for charge-conjugation and parity of the tetraquark can be put as:

CT = (−1)LT +ST

PT = (−1)LT
(2.80)

Since we are interested in the T4c tetraquark, where the diquarks are composed by two
charm quarks (therefore identical fermions), they can only have spin 1 in the antitriplet
color configuration (further discussion in Chapter 5). In this case, for the S-wave all-charm
tetraquark we have the following possibilities:

|0++
〉
T4c

= |Scc = 1, Sc̄c̄ = 1, ST = 0, LT = 0
〉
JT =0

(2.81)

|1+−〉
T4c

= |Scc = 1, Sc̄c̄ = 1, ST = 1, LT = 0
〉
JT =1

(2.82)

|2++
〉
T4c

= |Scc = 1, Sc̄c̄ = 1, ST = 2, LT = 0
〉
JT =2

(2.83)

Note that all the S-wave tetraquarks described above have positive parity. The intro-
duction of one orbital excitation will bring a factor (−1) both in parity and in charge
conjugation. Then all the P-wave states (with LT = 1) will have odd parity and the opposite
charge conjugation in comparison with the S-wave case.

In the Table 2.2 we list the JPC quantum numbers of the 10 possibilities that we have
considering the S-wave and P-wave of the all-charm tetraquark built with spin 1 diquarks
(also in accordance with Refs. [48] and [32]).
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Table 2.2: Results for the JPC quantum numbers of the T4c with [Sd = Sd̄ =
1→ ST = 0, 1, 2]⊗ LT = 0, 1.

ST LT JT JPC

0 0 0 0++

1 0 1 1+−

2 0 2 2++

0 1 1 1−−

1 1 2 2−+

1 1 1 1−+

1 1 0 0−+

2 1 3 3−−

2 1 2 2−−

2 1 1 1−−
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Chapter 3

Spin-Dependent Interactions

The three spin-dependent terms carry a factor 1/m2 (for equal masses), what justifies
the treatment with first-order perturbation theory in heavy quarkonium models.

Putting together the three spin-dependent terms (for equal masses) we have:

V
(1)
Spin = CSS(r) (S1 · S2) + CLS(r) (L · S) + CT (r)

(
(S1 · r)(S2 · r)

r2
− 1

3
(S1 · S2)

)
(3.1)

where the radial-dependent coefficients are obtained from the vector and scalar contributions
of the radial potential in eq. (2.13):

V
(0)
V (r) = κs

αs
r

and V
(0)
S (r) = br (3.2)

For equal masses the coefficients are:

CSS(r) =
2

3m2
∇2VV (r) (3.3)

CLS(r) =
1

2m2

1

r

[
3
dVV (r)

dr
− dVS(r)

dr

]
(3.4)

CT (r) =
1

m2

[
1

r

dVV (r)

dr
− d2VV (r)

dr2

]
(3.5)

(notice that if introduce a constant term V0 in the potential it won’t affect the radial
coefficients, since only derivatives appear in them).

Just to simplify the number manipulation and operator notation, we redefine the tensor
operator with an extra factor 12, and then divide its coefficient by 12:

S12 ≡ 12

(
(S1 · r)(S2 · r)

r2
− 1

3
(S1 · S2)

)
= 4[3(S1 · r̂)(S2 · r̂)− S1 · S2] (3.6)

CT ′(r) ≡ 1

12m2

[
1

r

dVV (r)

dr
− d2VV (r)

dr2

]
(3.7)

We will call the expectation value of the operator S12 as “tensor factor ”, and its
calculation will be shown in Section 3.3. Notice that it only depends on the unit vector
in the radial direction r̂ = r/|r| (in the line joining the position of both particles), and their
spins, but not on the distance r ≡ |r|.

The expectation value of all three radial-dependent coefficients will be calculated using

35
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the wavefunction obtained with the numerical solution of the Schrödinger equation.
The total spin-dependent perturbative correction (in model 1) will be:〈

V
(1)
Spin

〉
= 〈CSS(r)〉 〈S1 · S2〉 + 〈CLS(r)〉 〈L · S〉 + 〈CT ′(r)〉 〈S12〉

3.1 Spin-Spin
The expectation value of the operator of spin-spin interaction can be calculated in terms

of the spin quantum numbers using the following relation:

〈S1 · S2〉 =

〈
1

2

(
S2 − S1

2 − S2
2
)〉

=
1

2
[S(S + 1)− S1(S1 + 1)− S2(S2 + 1)] (3.8)

where S1 and S2 are the spins of particles 1 and 2 respectively, and S is the total spin in
consideration. Since each quark (or antiquark) has spin 1/2, they can couple into a singlet
S = 0 and triplet S = 1. Then the spin-spin term 〈S1 · S2〉, according do eq. (3.8) is:

〈S1 · S2〉 1
2
⊗ 1

2
=

{
−3/4, if S = 0, (singlet),

+1/4, if S = 1, (triplet).
(3.9)

In diquark-antidiquark tetraquarks, the diquark or antidiquark can have spin 0 or 1. If
one or both of them is zero, then 〈S1 · S2〉 = 0 (we could consider a superposition of two
states with spins (|Sd = 1, Sd̄ = 0〉± |Sd = 0, Sd̄ = 1〉)/

√
2, but the particular case in which

we are actually interested is the one where both have spin 1: Sd = 1 and Sd̄ = 1.
Then if both diquark and antidiquark have spin 1, they can couple into a singlet S = 0,

triplet S = 1, and a “pentet” S = 2. So if we treat the spin-spin interaction based on the
coupling of the total spin of each system in a 2-body fashion (with S1 and S2 as the diquark
and antidiquark spins respectively, and S now is the total spin of the tetraquark), then
equation (3.8) gives:

〈S1 · S2〉1⊗1 =


−2, if S = 0, (singlet),

−1, if S = 1, (triplet),

+1, if S = 2, (pentet).

(3.10)

For m1 = m2 ≡ m the radial coefficient of the spin-spin term reads:

CSS(r) =
2

3m2
∇2VV (r) =

2

3m2
∇2
[
+κs

αs
r

]
=

2

3m2
κsαs[−4πδ3(r)] = −8πκsαs

3m2
δ3(r) (3.11)

〈CSS(r)〉 = −8πκsαs
3m2

〈δ3(r)〉 = −8πκsαs
3m2

|Ψ(0)|2 = −2κsαs
3m2

|R(0)|2 (3.12)

The wavefunction at the origin can be calculated as explained in Section 2.6.

Notice that from eq. (3.10) we can see that the spin-spin coupling is stronger for two
spin 1 particles (diquark-antidiquark) than for two spin 1/2 (quark-quark, or antiquark-
antiquark). Remember that there is still an additional factor 2 due to the color factor (−2/3
for the color antitriplet diquarks and −4/3 for the color singlet tetraquarks).
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We can use these results to obtain the zeroth-order potential of model 2, where we include
the spin-spin interaction with a gaussian replacing the Dirac delta. When the spin operator
S1 · S2 acts in the wavefunction, it will produce the constant term of equation (3.8), then
we have:

V
(0)

2 (r) = κs
αs
r

+ br − 8πκsαs
3m2

(
σ√
π

)3

e−σ
2r2
(

1

2
[S(S + 1)− S1(S1 + 1)− S2(S2 + 1)]

)
(3.13)

3.2 Spin-Orbit
The expectation value of the operator of spin-orbit interaction can be calculated in

terms of the quantum numbers of total angular momentum J (defined by the vector sum:
J = L + S), total spin S and orbital angular momentum ` using the following relation:

〈L · S〉 =

〈
1

2

(
J2 − L2 − S2

)〉
=

1

2
[J(J + 1)− S(S + 1)− `(`+ 1)] (3.14)

For S-wave states (` = 0), the spin-orbit term 〈L · S〉 is always zero, as we can
immediately see from eq. (3.14), if ` = 0⇒ J = S then 〈L · S〉 = 0.

Similary, for singlet states (S = 0), the spin-orbit term 〈L · S〉 is always zero too, as we
can immediately see from eq. (3.14), if S = 0⇒ J = ` then 〈L · S〉 = 0.

However, for triplet states (S = 1) with ` 6= 0 we have J = `+ 1, `, `− 1, which yields:

〈L · S〉S=1, ` 6=0 =


`, if J = `+ 1,

−1, if J = `,

−(`+ 1), if J = `− 1.

(3.15)

When combining spin 1 diquarks and antidiquarks, the total tetraquark spin can be
S = 0, 1, 2.

Note that for S = 2, using the formula (3.14) we have a general case if ` ≥ 2:

〈L · S〉S=2, `≥2 =



2`, if J = `+ 2,

`− 2, if J = `+ 1,

−3, if J = `,

−(`+ 3), if J = `− 1,

−2(`+ 1), if J = `− 2.

(3.16)

In particular, for ` = 1 we only have J = 3, 2, 1, then:

〈L · S〉S=2, `=1 =


2, if J = 3,

−1, if J = 2,

−3, if J = 1.

(3.17)
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For m1 = m2 ≡ m the radial coefficient of the spin-orbit term reads:

CLS(r) =
1

2m2

1

r

[
3
dVV (r)

dr
− dVS(r)

dr

]
=

1

2m2

1

r

[
3
d

dr

(
+κsαs

1

r

)
− d

dr
(+br)

]
(3.18)

=
1

2m2

1

r

[
3κsαs

(
− 1

r2

)
− b
]

=
1

2m2

[
−3κsαs

1

r3
− b

r

]
= −3κsαs

2m2

1

r3
− b

2m2

1

r

〈CLS(r)〉 = −3κsαs
2m2

〈
1

r3

〉
− b

2m2

〈
1

r

〉
(3.19)

3.3 Tensor

The spin-dependent term called tensor interaction is not so simple to handle.
The radial coefficient of the tensor term is not a problem, for m1 = m2 ≡ m it reads:

CT ′(r) =
1

12m2

[
1

r

dVV (r)

dr
− d2VV (r)

dr2

]
=

1

12m2

[
1

r

d

dr

(
+κsαs

1

r

)
− d2

dr2

(
+κsαs

1

r

)]
=

1

12m2

[
1

r
κsαs

(
− 1

r2

)
− κsαs

d

dr

(
− 1

r2

)]
=

1

12m2
κsαs

[(
− 1

r3

)
−
(

+2
1

r3

)]
=

1

12m2
κsαs

[
−3

1

r3

]
= −κsαs

4m2

1

r3
(3.20)

〈CT ′(r)〉 = −κsαs
4m2

〈
1

r3

〉
(3.21)

The expectation value of the operator S12 (see eq. 3.6), which we denoted by “tensor
factor ” (≡ 〈S12〉), requires a more elaborate calculation. The tensor operator S12 carries
only spin and orbital dependence. This term doesn’t actually depend on the radial distance

This functional form appears in many contexts. For instance, it can be derived from
empirical and symmetry arguments commonly associated with the deuteron, regarding the
spin and isospin of the proton-neutron bound state, where the tensor potential is considered
as part of the Hamiltonian when solving the Schrödinger equation, what causes a S and D
waves mixing on the ground state (good references on this subject are the Chapter XIII
of the textbook [75], the article [76] and the review [77]). Other important example is the
magnetic dipole interaction between proton and electron in the hydrogen atom, which is
related to the hyperfine splitting (see, for instance the Section 6.5 of the textbook [78]).

However, in heavy quark interaction, the tensor potential is usually considered as a
perturbative correction (just like the spin-spin and spin-orbit). Thus we won’t consider any
mixings or transitions, but only the expectation value of the tensor operator in a “pure”
state with well defined orbital angular momentum and total spin.

The results for the diagonal matrix elements of the tensor operator can be found for
example in Ref. [60], and in greater detail in the textbook [79], where the tensor (treated
as first-order perturbation) appears in the electron-electron magnetic dipole interaction in
the Helium atom. The interaction between the electrons is very similar to the interaction
between quarks, since they are also spin 1/2 point particles.



3.3 TENSOR 39

The expectation value of the tensor between to spin 1/2 particles is non-zero only for:

1) ` 6= 0 and S = 1 (triplet),

2) J = `, or J = `− 1, or J = `+ 1.
(3.22)

Next we will show how to obtain the general result for the interaction of two spin 1/2
particles (following the deduction in the textbook [79]) with algebraic manipulations of the
operators in the tensor. We will make use of the the following relation, that can be found in
the appendix A.33 about spherical harmonics of the same textbook:

〈(a · b)r2 − 3(a · r)(b · r)〉 =

〈 3∑
i,j=1

aibj(r2δij − 3xixj)

〉
=

−〈r2〉
(2`+ 3)(2`− 1)

〈[2L2(a · b)− 3(a · L)(b · L)− 3(b · L)(a · L)]〉
(3.23)

where L is the orbital angular momentum operator (vector), a and b are any two vectors
which commute with r , L and each other. We quote the text: “This equation should be
considered as a matrix equation in the sense that the matrix elements of the left and right
hand side are equal for any transition between two states of the same orbital quantum number
` (for any value of ` and for all the combinations of principal and magnetic quantum numbers
n, n’, m, m’ ).”

Comparing the expression above with the tensor operator according to our definition in
eq. (3.6), we just need to change the vectors a and b by the spins operators S1 and S2,
watch for the minus sign, the factor 3 in the term with r (which is a unity vector in the
tensor, so this r2 cancels), and then we are left with an extra factor 4:

S12 =
4

(2`+ 3)(2`− 1)
[2L2(S1 · S2)− 3(S1 · L)(S2 · L)− 3(S2 · L)(S1 · L)] (3.24)

In accordance with the notation of Ref. [79], we will denote by the lower case s the spin
operator of each particle, so S1 → s1 and S2 → s2, and S still denotes the total spin operator.
We have chosen to stick to this notation in order to make it clear that some of the relations
used hereafter are valid only for spin 1/2 particles (due to the use of anti-commutation
relations of the Pauli matrices and eigenvalues that appear), not all of them are necessarily
valid for the total spin operator S, or for operators corresponding to the interaction of two
spin 1 particles. Then additional care has to be taken when confronting the expectation
value of the tensor operator between diquark and antidiquark, since we are interested in the
case where both have spin 1. After presenting the results for two spin 1/2 particles we will
discuss the possible approaches in the diquark-antidiquark case.
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3.3.1 Two spin 1/2 particles

Taking the expectation value of eq. (3.24) with the new notation we get:

〈S12〉 =
4

(2`+ 3)(2`− 1)
〈Y 〉,

where Y = [2L2(s1 · s2)− 3(s1 · L)(s2 · L)− 3(s2 · L)(s1 · L)]

(3.25)

Then we just need to find the expectation value of Y . Note that we can write:

(s1 · L)(s2 · L) + (s2 · L)(s1 · L) = (S · L)2 − (s1 · L)2 − (s2 · L)2 (3.26)

and make use of the following relations:

L× L = i L, s× s = i s (3.27)

{si, sj} = sisj + sjsi =
1

2
δij12, i, j = x, y, z. (3.28)

(~σ · c)(~σ · d) = (c · d) + i ~σ · (c× d) (3.29)

where ~σ is the vector of the Pauli matrices (σx, σy, σz).

Taking c = d = L, and multiplying by a factor 1/4 on both sides, we find:(
1

2
~σ · L

)(
1

2
~σ · L

)
=

1

4
(L× L) +

1

2
i

(
1

2
~σ

)
· (L× L)

(s · L)2 =
1

4
L2 +

i

2
(s) · (iL)

(s · L)2 =
1

4
L2 − 1

2
(s · L) (3.30)

Therefore

(s1 · L)2 =
1

4
L2 − 1

2
(s1 · L) and (s2 · L)2 =

1

4
L2 − 1

2
(s1 · L) (3.31)

Using the relations (3.26), (3.31), and noting that S = s1 + s2, we can rewrite the
expression for Y in eq. (3.25) eliminating the unpleasant scalar products between the particle
spin operators and orbital operators (s1 · L and s2 · L), leaving only terms whose expectation
values can be written in terms of the eigenvalues of spin and orbital momentum (as we used
in the spin-spin and spin-orbit operators):

Y =

(
2(s1 · s2) +

3

2

)
L2 − 3

2
S · L− 3(S · L)2 (3.32)

We can still use equation (3.8) to put the expression above in terms of the total spin
operator:

Y = S2L2 − 3

2
S · L− 3(S · L)2 (3.33)
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Then the expectation value can be calculated just like in the spin-spin and spin-orbit
corrections:

〈Y 〉 = [S(S + 1)][`(`+ 1)]− 3

2

(
1

2
[J(J + 1)− S(S + 1)− `(`+ 1)]

)
− 3

(
1

2
[J(J + 1)− S(S + 1)− `(`+ 1)]

)2

(3.34)

Now the tensor factor is a straightforward calculation. Putting everything together we get
the following results for the general cases that obey the conditions (3.22) for nonvanishing
expectation value of the tensor operator (notice that 〈Y 〉 does vanish if ` = 0 or S = 0):

〈S12〉 1
2
⊗ 1

2
→S=1, ` 6=0 =


− 2`

(2`+ 3)
, if J = `+ 1,

+2, if J = `,

−2(`+ 1)

(2`− 1)
, if J = `− 1.

(3.35)

for any of the allowed values of J and `. For instance, for ` = 1 we have 〈S12〉 = −2

5
, +2, −4,

for J = 2, 1, 0, respectively.
Remember that these results are for diagonal matrix elements, which means the same

quantum numbers S, `, J in the “bra” and in the “ket”: 〈S, `, J |S12|S, `, J〉. The tensor actually
has non-vanishing non-diagonal matrix elements, but as a first-order perturbation correction
they are negligible. They would be important if the tensor were to be used as part of the
potential, what would cause the mixing of the wavefunction itself, as in the deuteron model.

3.3.2 Two spin 1 particles

Now there is an important point to be noticed here. In this “algebraic” aproach to obtain
these three general cases of non-vanishing diagonal elements of the tensor factor for two spin
1/2 particles, we have made use of a few relations that are valid only for Pauli matrices (spin
1/2), like equation (3.28). Therefore we can not use this results in the diquark-antidiquark
tensor interaction (if we wish to treat it as a 2-body problem), since the diquarks can have
spin 0 or 1.

In order to deal with the generalization of the tensor interaction in the tetraquark, we
will rewrite the tensor in a form that allows us to get the same results we already know
for the particular case of two spin 1/2 particles (which we will verify explicitly for a simple
case), and can also be used as a generalization for more complicated cases as the spin 1
diquarks.

The operator S12 is a “rank-2” tensor that can be written in terms of spin operators and
spherical harmonics corresponding to ` = 2, as presented in the textbook [80], where the
tensor also appears as the interaction between the magnetic dipoles of two spin 1/2 particles.

We begin with the tensor operator in the form presented in equation (3.6):

S12 = 4[3(S1 · r̂)(S2 · r̂)− S1 · S2] (3.36)

We emphasize that the following deduction (inspired in the one presented in Ref. [80])
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does not use any particular relation or eigenvalues for spin 1/2 particles, only general
properties of angular momentum elementary theory. The next step is to write the unity
vector r̂ in spherical coordinates and the spin operators in cartesian components:

S12 = 4{3[S1z cos θ + sin θ(S1x cosϕ+ S1y sinϕ)][S2z cos θ + sin θ(S2x cosϕ+ S2y sinϕ)]

−(S1xS2x + S1yS2y + S1zS2z)} (3.37)

We can rearrange it with raising, lowering and z-component spin operators:

S± = Sx ± iSy
S±|S,MS〉 = C±(S,MS)|S,MS ± 1〉
C±(S,MS) = ~

√
S(S + 1)−MS(MS ± 1)

Sz|S,MS〉 = ~MS|S,MS〉

(3.38)

This is valid for any value of spin! (Actually, for any angular momentum in general).
Then:

S12 =4{3[S1z cos θ +
1

2
sin θ(S1+e−iϕ + S1−eiϕ)]

× [S2z cos θ +
1

2
sin θ(S2+e−iϕ + S2−eiϕ)]

− (S1xS2x + S1yS2y + S1zS2z)}

(3.39)

Multiplying and regrouping everything we get six terms:

S12 = 4[T0 + T ′0 + T1 + T−1 + T2 + T−2] (3.40)

where the spherical harmonics corresponding to ` = 2 become evident (apart from constants):

T0 = (3 cos2 θ − 1) S1zS2z

T ′0 = − 1

4
(3 cos2 θ − 1) (S1+S2− + S1−S2+)

T1 =
3

2
sin θ cos θe−iϕ (S1zS2+ + S1+S2z)

T−1 =
3

2
sin θ cos θeiϕ (S1zS2− + S1−S2z)

T2 =
3

4
sin2 θe−2iϕ S1+S2+

T−2 =
3

4
sin2 θe2iϕ S1−S2−

(3.41)
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If we compare it with the ` = 2 spherical harmonics, where Y −m` = (−1)mY m∗
` :

Y 0
2 =

√
5

4π
(
3

2
cos2 θ − 1

2
)

Y −1
2 = +

√
15

8π
(sin θ cos θ)e−iϕ

Y 1
2 = −

√
15

8π
(sin θ cos θ)eiϕ

Y −2
2 =

1

4

√
15

2π
sin2 θe−2iϕ

Y 2
2 =

1

4

√
15

2π
sin2 θe2iϕ

(3.42)

We can write the six operators in terms of the harmonics and spin operators:

T0 = 2

√
4π

5
Y 0

2 S1zS2z

T ′0 = − 1

4
2

√
4π

5
Y 0

2 (S1+S2− + S1−S2+)

T1 =
3

2

√
8π

15
Y −1

2 (S1zS2+ + S1+S2z)

T−1 = − 3

2

√
8π

15
Y 1

2 (S1zS2− + S1−S2z)

T2 = 3

√
2π

15
Y −2

2 S1+S2+

T−2 = 3

√
2π

15
Y 2

2 S1−S2−

(3.43)

When calculating the expectation value of the tensor operator, we can use the selection
rules from the spherical harmonics:∫

Y m′∗
`′ (θ, ϕ)Y q

2 (θ, ϕ)Y m
` (θ, ϕ)dΩ (3.44)

where (dΩ = sin θdθdϕ), and the selection rules can be written as:

`′ = `, `− 2, `+ 2 (3.45)
m′ = m+ q

It is also convenient to use the following general result in terms of Wigner-3j coefficients
for the integrals with the spherical harmonics:∫

Y m1
`1

(θ, ϕ)Y m2
`2

(θ, ϕ)Y m3
`3

(θ, ϕ)dΩ = (3.46)

=

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3

0 0 0

)(
`1 `2 `3

m1 m2 m3

)
(3.47)
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Where we have used a calculator 1 (Ref. [81]) to obtain the Wigner-3j coefficients in eq.
(3.47).

This representation of the tensor operator allows us to obtain the same results of eq.
(3.35) (the diagonal matrix elements of the tensor between two spin 1/2 particles), that
were previously calculated using algebraic manipulation of the spin and orbital momentum
operators, where the anti-commutation relation and eigenvalues of the Pauli matrices were
necessary, what restricted those results to only systems composed of two spin 1/2 particles.
The great advantage of this new representation is that it can be used directly in the spin 1
diquarks if one considers the spin operators S1 and S2 as the diquark and antidiquark total
spin operators (which will be denoted by Sd and Sd̄), and also the 2-body approximation
where the diquarks are considered as point-like structures.

Next we will present three important examples to justify our approach of the tensor in the
tetraquark: first we will verify (in one simple case) that we do indeed get the same result for
two spin 1/2 particles. Then we will show one complicated approach in the tetraquark (with
a not so simple, but also not so long example) using the tetraquark wavefunction in terms
of each quark and antiquark spin (as presented in Section 2.7), and considering that the
tensor interaction between diquark and antidiquark is given by the sum of the four possible
interactions (see Fig. 3.1) between quark-antiquark pairs inside the tetraquark (therefore we
will have four interactions between two spin 1/2 particles). Finally, we are going to show
that exactly the same result can be found if one looks only to the diquark and antidiquark
total spins (within the approximations regarding the distances in this 2-body factorization
of the 4-body problem). To keep it short, we are going to show only one example of each
and then present the general results used in our numerical calculations.

We start with the simplest case of two spin 1/2 particles (for example the interaction
between quark and antiquark bound as a meson) in a triplet state S = 1 and orbital
momentum L = 1 coupled into a total angular momentum J = 2 in the principal case.
The coupling is a trivial 1 × 1 case (we will use a “notation abuse” in order to make the
distinction between spin and spherical harmonics very clear):

[(s1 = 1/2)⊗ (s2 = 1/2)→ S = 1]⊗ (L = 1) −→ |J,MJ〉 = |2, 2〉J
= |1, 1〉S ⊗ |1, 1〉L
= | ↑↑ Y 1

1 (θ, ϕ) 〉 (3.48)

According to equation (3.35) we should obtain that the expectation value of the tensor
operator of this state (the diagonal matrix element) should be the case of J = `+ 1:

〈↑↑ Y 1
1 (θ, ϕ)|S12|Y 1

1 (θ, ϕ) ↑↑〉 = − 2`

(2`+ 3)
= −2

5
(3.49)

Then taking the expectation value of the tensor operator in the form of equation (3.40):

〈↑↑ Y 1
1 (θ, ϕ)|S12|Y 1

1 (θ, ϕ) ↑↑〉 =

= 〈↑↑ Y 1
1 (θ, ϕ)| 4[T0 + T ′0 + T1 + T−1 + T2 + T−2] |Y 1

1 (θ, ϕ) ↑↑〉
= 〈↑↑ Y 1

1 (θ, ϕ)| 4[T0 + T ′0] | ↑↑ Y 1
1 (θ, ϕ)〉 (3.50)

1http://www-stone.ch.cam.ac.uk/wigner.shtml
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Four matrix elements have vanished due to the selections rules in equations (3.44) and
(3.45): ∫

Y 1∗
1 (θ, ϕ)Y q

2 (θ, ϕ)Y 1
1 (θ, ϕ)dΩ (3.51)

(`′ = 1) = (` = 1) (3.52)
(m′ = 1) = (m+ q = 1 + q)⇒ q = 0⇒ only T0 and T′0

Notice that in equation (3.43) only T0 and T ′0 are proportional to Y 0
2 (θ, ϕ), so these two

terms are the only ones that do not vanish because of the integral with spherical harmonics
(but they could still vanish because of the spin).

First we will calculate the orbital integral, which is common to T0 and T ′0, using the
general result given in terms of the Wigner-3j coefficients in eq. (3.47). Notice that:

Y −m` = (−1)mY m∗
` =⇒ Y 1∗

1 = −Y −1
1 (3.53)

Then to compare eq. (3.51) with eq. (3.46) we change Y 1∗
1 to −Y −1

1 and we get:∫
Y 1∗

1 (θ, ϕ)Y 0
2 (θ, ϕ)Y 1

1 (θ, ϕ)dΩ

= −
∫
Y −1

1 (θ, ϕ)Y 0
2 (θ, ϕ)Y 1

1 (θ, ϕ)dΩ

= −
√

(3)(5)(3)

4π

(
1 2 1
0 0 0

)(
1 2 1
−1 0 1

)
= −

√
(3)(5)(3)

4π

(√
2

15

)(√
1

30

)

= −1

5

√
5

4π
(3.54)

Notice that we used equation (3.47) with `1 = 1, `2 = 2, `3 = 1 and m1 = −1, m2 =
0, m3 = 1.

Let’s save this result for now and analyse how T0 and T ′0 act in the spin part. According
to eq. (3.41) we have (using ~ = 1 and the orthonormality relation 〈↑ | ↑〉 = 1):

T0 ∼ S1zS2z =⇒ 〈T0〉 ∼ 〈↑↑ |S1zS2z| ↑↑〉
= 〈↑ |S1z| ↑〉〈↑ |S2z| ↑〉

=

(
+
~
2

)
〈↑ | ↑〉1

(
+
~
2

)
〈↑ | ↑〉2 =

1

4
(3.55)

But for T ′0 the raising operators acting in | ↑↑〉 and also the orthogonality of 〈↑ | ↓〉 leads
to zero:

T ′0 ∼ (S1+S2− + S1−S2+) =⇒ 〈T ′0〉 ∼ 〈↑↑ |S1+S2−| ↑↑〉+ 〈↑↑ |S1−S2+| ↑↑〉
= 〈↑ |S1+| ↑〉〈↑ |S2−| ↑〉+ 〈↑ |S1−| ↑〉〈↑ |S2+| ↑〉
= (0)1~〈↑ | ↓〉2 + ~〈↑ | ↓〉1(0)2 = (0)1(0)2 + (0)1(0)2 = 0 (3.56)
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Then finally, we can compute the final result, remembering the factor 4 in equation (3.40)

and the factor 2

√
4π

5
from equation (3.43) that relates T0 with Y 0

2 (θ, ϕ); and of course, the

orbital and spin values we calculated in eqs. (3.54) and (3.55):

〈↑↑ Y 1
1 (θ, ϕ)|S12|Y 1

1 (θ, ϕ) ↑↑〉 =

= 〈↑↑ Y 1
1 (θ, ϕ)| 4 [T0] | ↑↑ Y 1

1 (θ, ϕ)〉

= 〈↑↑ Y 1
1 (θ, ϕ)| 4

(
2

√
4π

5
Y 0

2 S1zS2z

)
| ↑↑ Y 1

1 (θ, ϕ)〉

= 4×
(

2

√
4π

5

)
×
(
−1

5

√
5

4π

)
×
(

1

4

)
= −2

5
(3.57)

We do indeed get the same result that we had calculated in eq. (3.49). Actually, it was
already proven that this procedure should yield the same value, since what we did was only
to manipulate the exact same tensor into a different form, and we already had the general
results for the expectation value of this operator when applied to two spin 1/2 particles
coupled into S = 1 with ` 6= 0 in eq. (3.35). This was an example to illustrate how we do
the calculation within this spherical harmonic representation of the tensor operator.

Now comes the tough calculation for the tetraquark, where we are confronted with a
four fermion wavefunction coupled to one orbital momentum (only one because we are
considering just orbital momentum relative to the diquark-antidiquark system, with zero
orbital excitations inside the diquark or the antidiquark, since they are assumed to be
compact building blocks of the tetraquark - it could be more complicated if we would include
orbital motion inside them, but then the factorization of the 4-body system into three 2-body
problems would be an unjustified approximation).

Before we start our calculations for the tetraquark, we shall discuss the two different
approaches we thought on how to satisfactorily apply the tensor in the diquark-antidiquark
system. As we will further discuss in Chapter 5, the same flavor diquark we will consider has
total spin 1 (and so does the antidiquark). Thus the total spin of the tetraquark is a coupling
1×1 which can result in ST = 0, 1, 2. To this total spin we will couple an orbital momentum
LT into a specific value of total angular momentum JT . Trying to deviate the minimum
from the case of two spin 1/2 particles, where the tensor is a well-known interaction, we
first thought that it would be appropriate to consider the tensor between every pair q − q̄
as indicated in Figure 3.1.

The interaction between the two quarks (whose indices are 1 and 2) inside the diquark
is taken into account during the calculation of the 2-body problem to find the mass of the
diquark (and since we consider diquarks only in S-wave state, only the spin-spin interaction
is relevant; the spin-orbit and tensor are identically zero, as we already discussed). Similary is
the interaction between the two antiquarks (whose indices are 3 and 4) inside the antidiquark.
Then we are left with four possibilities between q − q̄: 1-4, 1-3, 2-4, 2-3. Since every
calculation regarding the tetraquark is done considering the approximation of the diquark
and antidiquark as point-like structures (in a 2-body problem), from where we obtain the
tetraquark radial wavefunction, it is appropriate to consider that the radial-dependence of
the tensor term is the same for this four q− q̄ interactions, and that it can be obtained using
the radial wavefunction with equation (3.21).
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Therefore, all we have to do is to find the angular-dependent (spin and orbital) part,
which we denoted by tensor factor, the expectation value of the tensor operator in eq. (3.6).
Then the tensor factor for the tetraquark would be a sum of four tensor operators between
the four q− q̄ pairs: 1-4, 1-3, 2-4, 2-3, applied to the four-spin wavefunctions as we showed in
Section 2.7. Using some “notation abuse”, we could even obtain this result considering that:

Sd = S1 + S2

Sd̄ = S3 + S4

(3.58)

Then the tensor between diquark-antidiquark would be:

Sd−d̄ = 12

(
(Sd · r)(Sd̄ · r)

r2
− 1

3
(Sd · Sd̄)

)
(3.59)

Sd−d̄ = 12

(
[(S1 + S2) · r][(S3 + S4) · r]

r2
− 1

3
[(S1 + S2)·(S3 + S4)]

)
(3.60)

Making the distribution of the scalar products and regrouping it we get:

Sd−d̄ = 12

(
(S1 · r)(S4 · r)

r2
− 1

3
(S1 · S4)

)
+ 12

(
(S1 · r)(S3 · r)

r2
− 1

3
(S1 · S3)

)
+ 12

(
(S2 · r)(S4 · r)

r2
− 1

3
(S2 · S4)

)
+ 12

(
(S2 · r)(S3 · r)

r2
− 1

3
(S2 · S3)

)
= S14 + S13 + S24 + S23 (3.61)

c

c

c

c

2

1

3

4
1− 4

2− 3

1− 3 2− 4

Figure 3.1: Pictorial representation of the tensor interaction between diquark
and antidiquark, when considering the interaction between q − q̄ pairs.
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Using this approach we need to apply these four tensor operators in the wavefunctions
containing the spin of the four particles. In order to give a good view of this approach, we
will choose as example the state we showed in equation (2.77): |Sd = 1, Sd̄ = 1, ST = 2, LT =
1, JT = 2,MJT = 2〉, which is not too simple nor too long. Then the tensor factor for this
tetraquark state would be the expectation value of the sum of the four tensors above, where
each one acts in a q − q̄ pair (two spin 1/2 particles). The first one will be:

〈S14〉 =

(√
2

3

)2

〈↑↑↑↑ Y 0
1 (θ, ϕ)|S14|Y 0

1 (θ, ϕ) ↑↑↑↑〉+

+

(
− 1√

3

)2

〈
(↑↑↑↓ + ↑↑↓↑ + ↑↓↑↑ + ↓↑↑↑

2

)
Y 1

1 (θ, ϕ)|S14|Y 1
1 (θ, ϕ)×

×
(↑↑↑↓ + ↑↑↓↑ + ↑↓↑↑ + ↓↑↑↑

2

)
〉

+

(√
2

3

)(
− 1√

3

)
〈↑↑↑↑ Y 0

1 (θ, ϕ)|S14|Y 1
1 (θ, ϕ)

(↑↑↑↓ + ↑↑↓↑ + ↑↓↑↑ + ↓↑↑↑
2

)
〉

+

(
− 1√

3

)(√
2

3

)
〈
(↑↑↑↓ + ↑↑↓↑ + ↑↓↑↑ + ↓↑↑↑

2

)
Y 1

1 (θ, ϕ)|S14|Y 0
1 (θ, ϕ)| ↑↑↑↑〉

(3.62)

We got four terms, two “diagonal” and two “crossed”. This is just the tensor S14 which
will act only in the quark “1” and antiquark “4”. For the other three tensors: S13, S24 and
S23 we will have exactly the same (each one acting in the respective q− q̄ pair), and due to
the symmetry of the wavefunction all of them will lay the same result, then the total tensor
interaction in this approach turns out to be four times the value for one q − q̄ pair. This
equality can be verified by checking that permutating the spins to get the other three tensor
factors doesn’t change the wavefunction.

We will show explicitly (to keep it short) only the calculation of the last term, which has
an orbital integral where only the term proportional to T−1 survives (due to the selection
rules): ∫

Y 1∗
1 (θ, ϕ)Y q

2 (θ, ϕ)Y 0
1 (θ, ϕ)dΩ (3.63)

(`′ = 1) = (` = 1)

(m′ = 1) = (m+ q = 0 + q)⇒ q = 1⇒ only T−1,

where T−1 = −3

2

√
8π

15
Y 1

2 (S1zS4− + S1−S4z)

Notice we changed the index to “1” and “4” according to our notation for S14.



3.3 TENSOR 49

The orbital integral will be:∫
Y 1∗

1 (θ, ϕ)Y 1
2 (θ, ϕ)Y 0

1 (θ, ϕ)dΩ

= −
∫
Y −1

1 (θ, ϕ)Y 1
2 (θ, ϕ)Y 0

1 (θ, ϕ)dΩ

= −
√

(3)(5)(3)

4π

(
1 2 1
0 0 0

)(
1 2 1
−1 1 0

)
= −

√
(3)(5)(3)

4π

(√
2

15

)(
−
√

1

10

)

= +
3
√

2√
8π
√

15
(3.64)

The spin operator from T−1 acting in the state | ↑↑↑↑〉, (using ~ = 1) will result in :

(S1zS4− + S1−S4z)| ↑↑↑↑〉 = |(S1z ↑) ↑↑ (S4− ↑)〉+ (S1− ↑) ↑↑ (S4z ↑)〉

= |(+~
2
↑) ↑↑ (~ ↓)〉+ (~ ↓) ↑↑ (+

~
2
↑)〉

= |(↑↑↑↓ + ↓↑↑↑)
2

〉 (3.65)

Then when we come with the spin part of the “bra” that was attached to this last term,
only two of them survive:

〈
(↑↑↑↓ + ↑↑↓↑ + ↑↓↑↑ + ↓↑↑↑

2

)
|(S1zS4− + S1−S4z)| ↑↑↑↑〉 =

= 〈
(↑↑↑↓ + ↑↑↓↑ + ↑↓↑↑ + ↓↑↑↑

2

)
|(↑↑↑↓ + ↓↑↑↑)

2
〉

=
1

4
{[〈↑↑↑↓ | ↑↑↑↓〉+ 〈↑↑↓↑ | ↑↑↑↓〉+ 〈↑↓↑↑ | ↑↑↑↓〉+ 〈↓↑↑↑ | ↑↑↑↓〉]

+ [〈↑↑↑↓ | ↓↑↑↑〉+ 〈↑↑↓↑ | ↓↑↑↑〉+ 〈↑↓↑↑ | ↓↑↑↑〉+ 〈↓↑↑↑ | ↓↑↑↑〉]}

=
1

4
{[1 + 0 + 0 + 0] + [0 + 0 + 0 + 1]}

=
1

2
(3.66)

Finally, we can pick up everything we calculated for the last of the four terms from
the expectation value of the operator S14 acting in the current state: the Clebsh-Gordan
coefficients (from the multiplication when taking the expectation value), the coefficient of
the operator T−1, the results from the orbital integral and the spin operators, and that factor
4 in eq. (3.40):

last term of 〈S14〉 = 4×
(
− 1√

3

)(√
2

3

)
×
(
−3

2

√
8π

15

)
×
(

+
3
√

2√
8π
√

15

)
×
(

1

2

)
=

2

5
(3.67)

Remember that this was only the last term of 〈S14〉. There are still three more to go,
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and then the same 4 terms for each of the others three tensor factors 〈S13〉, 〈S24〉 and 〈S23〉!
But luckily, due to the symmetry of the wavefunction, they give the same result.

By following the same procedure, we get that the other “crossed” term (the third) of

〈S14〉 is also
2

5
and the “diagonal” ones are

8

15
and

1

15
, respectively (the first and second).

Then multiplying the sum of these terms by 4 to account also for the other three q− q̄ pairs
(1-3, 2-4 and 2-3), we finally have the result for the tensor factor in this particular state, eq.
(2.77), of tetraquark:

For |Sd = 1, Sd̄ = 1, ST = 2, LT = 1, JT = 2,MJT = 2〉 :

〈S14 + S13 + S24 + S23〉 ≡ 4× 〈S14〉 = 4×
(

8

15
+

1

15
+

2

5
+

2

5

)
=

28

5
(3.68)

Now we will show that if instead of looking to the four spin 1/2 constituents of the
tetraquark in this exhaustively long calculation with four tensors, we can look to the spin 1
diquark and antidiquark with only one “effective tensor” Sd−d̄ between them, and obtain the
exactly same result. The only difference is that we now have to use the proper coefficients for
spin 1 when applying the raising, lowering and z-component spin operators. Using equations
(3.38) we have:

S±|1, 0〉 = C±(1, 0)|1,±1〉
where C±(1, 0) = ~

√
1(1 + 1)− 0(0± 1) = ~

√
2 (3.69)

S+|1,−1〉 = ~
√

1(1 + 1)− (−1)[(−1) + 1]|1, 0〉 = ~
√

2|1, 0〉
S−|1, 1〉 = ~

√
1(1 + 1)− 1(1− 1)|1, 0〉 = ~

√
2|1, 0〉

Then the same state (see eq. (2.77))in terms of the diquark and antidiquark spins reads:

|Sd = 1, Sd̄ = 1, ST = 2, LT = 1, JT = 2,MJT = 2〉 =

=

√
2

3

(
|1, 1〉d|1, 1〉d̄

)
Y 0

1 (θ, ϕ)− 1√
3

( |1, 1〉d|1, 0〉d̄ + |1, 0〉d|1, 1〉d̄√
2

)
Y 1

1 (θ, ϕ) (3.70)

Where we have simplified the notation for the spin using d and d̄ as indices.
Just like we did to calculate the expectation value of S14, we will obtain the same four

terms, which written in terms of the spin 1 functions is:

〈Sd−d̄〉 =

(√
2

3

)2

〈1, 1|d〈1, 1|d̄Y 0
1 (θ, ϕ)|Sd−d̄|Y 0

1 (θ, ϕ)|1, 1〉d|1, 1〉d̄

+

(
− 1√

3

)2(〈1, 1|d〈1, 0|d̄ + 〈1, 0|d〈1, 1|d̄√
2

)
Y 1

1 (θ, ϕ)|Sd−d̄|Y 1
1 (θ, ϕ)×

×
( |1, 1〉d|1, 0〉d̄ + |1, 0〉d|1, 1〉d̄√

2

)
+

(√
2

3

)(
− 1√

3

)
〈1, 1|d〈1, 1|d̄Y 0

1 (θ, ϕ)|Sd−d̄|Y 1
1 (θ, ϕ)

( |1, 1〉d|1, 0〉d̄ + |1, 0〉d|1, 1〉d̄√
2

)

+

(
− 1√

3

)(√
2

3

)(〈1, 1|d〈1, 0|d̄ + 〈1, 0|d〈1, 1|d̄√
2

)
Y 1

1 (θ, ϕ)|Sd−d̄|Y 0
1 (θ, ϕ)|1, 1〉d|1, 1〉d̄

(3.71)
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Again, we will show only the calculation of the last term, analogous to the last term we
have calculated for 〈S14〉. But since in this approach we only have one tensor that implicitly

accounts for the four q − q̄ pairs, we should obtain 4 × 2

5
=

8

5
. The orbital part will be

exactly the same, leading to the operator T−1. So we only have to calculate the spin part
(again, ~ = 1):

(SdzSd̄− + Sd−Sd̄z)|1, 1〉d|1, 1〉d̄ = SdzSd̄−|1, 1〉d|1, 1〉d̄ + Sd−Sd̄z|1, 1〉d|1, 1〉d̄
= (Sdz|1, 1〉d)(Sd̄−|1, 1〉d̄) + (Sd−|1, 1〉d)(Sd̄z|1, 1〉d̄)
= (+1~|1, 1〉d)(~

√
2|1, 0〉d̄) + (~

√
2|1, 0〉d)(+1~|1, 1〉d̄)

=
√

2

(
|1, 1〉d|1, 0〉d̄ + |1, 0〉d|1, 1〉d̄

)
(3.72)

Then when we come with the spin part of the “bra” that was attached to this last term,
we get the same result of the previous calculation with the spin part in terms of four spins
1/2 (actually 4 times it, because when we calculated the spin part for S14 we were calculating
1/4 of the total tensor, (remember that in the end we multiplied everything by 4, to account
for the four q − q̄ pairs):(〈1, 1|d〈1, 0|d̄ + 〈1, 0|d〈1, 1|d̄√

2

)
|(SdzSd̄− + Sd−Sd̄z)|1, 1〉d|1, 1〉d̄ =

=

(〈1, 1|d〈1, 0|d̄ + 〈1, 0|d〈1, 1|d̄√
2

)√
2

(
|1, 1〉d|1, 0〉d̄ + |1, 0〉d|1, 1〉d̄

)
= 〈1, 1|d|1, 1〉d〈1, 0|d̄|1, 0〉d̄ + 〈1, 1|d|1, 0〉d〈1, 0|d̄|1, 1〉d̄
+ 〈1, 0|d|1, 1〉d〈1, 1|d̄|1, 0〉d̄ + 〈1, 0|d|1, 0〉d〈1, 1|d̄|1, 1〉d̄
= 1 + 0 + 0 + 1 = 2

≡ 4× 1

2
(3.73)

All the other steps of the calculation are the same, the only difference is that in this
approach we only have one tensor instead of four, then the result already has a factor 4
implicitly:

last term of 〈Sd−d̄〉 = 4×
(
− 1√

3

)(√
2

3

)
×
(
−3

2

√
8π

15

)
×
(

+
3
√

2√
8π
√

15

)
×
(

4× 1

2

)
= 4× 2

5
=

8

5
(3.74)

Remember that the first factor 4 above is part of the tensor (see eq. (3.40)). Accordingly,
all the other four terms of the tensor in this state (whose calculation we won’t show, for
brevity) will have an extra factor 4 in the spin part. So in the end we don’t multiply it by
4, of course, since the tensor Sd−d̄ already describes (implicitly) the interaction between the
four q − q̄ pairs:
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For |Sd = 1, Sd̄ = 1, ST = 2, LT = 1, JT = 2,MJT = 2〉 :

〈Sd−d̄〉 =

(
32

15
+

4

15
+

8

5
+

8

5

)
=

28

5

≡ 4×
(

8

15
+

1

15
+

2

5
+

2

5

)
=

28

5
(3.75)

We hope to have explained everything in the clearest way possible.

The results of the orbital integrals for `′ = ` = 1 in the form of equation (3.44) are
compiled in Table 3.1. Notice that q satisfies the z-component condition of eq. (3.45), that
tells which operators T in eq. (3.43) are non-vanishing due to this selection rule.

Table 3.1: Results for the orbital integrals with `′ = ` = 1.

m’ q m
∫
Y m′∗
`′ (θ, ϕ)Y q

2 (θ, ϕ)Y m
` (θ, ϕ)dΩ Operator

1 0 1 −1/
√

20π T0 and T ′0

-1 0 -1 −1/
√

20π T0 and T ′0

0 0 0 +1/
√

5π T0 and T ′0

1 2 -1 −
√

3/10π T−2

-1 -2 1 −
√

3/10π T2

1 1 0 +
√

3/20π T−1

-1 -1 0 +
√

3/20π T1

0 -1 1 −
√

3/20π T1

0 1 -1 −
√

3/20π T−1
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In Table 3.2 we compile the results for the orbital integrals for `′ = ` = 1 already
including the factors to change the middle harmonic Y q

2 (θ, ϕ) into the specific operator T
from eqs. (3.41), (3.42) and (3.43), and also the factor 4 in the previous definition of the
tensor operator in eq. (3.6) and later in eq. (3.40). Then the only factors missing from the
following results are the Clebsh-Gordan coefficients and the spin part, both which will differ
in each expectation value we take of the different wavefunctions.

Table 3.2: Results for the orbital integrals with `′ = ` = 1 including the factors
of the T operators and the factor 4 for notation consistence, without the spin
part or Clebsh-Gordan coefficients.

m’ q m Operator 4

∫
Y m′∗
`′ (θ, ϕ)T...(θ, ϕ)Y m

` (θ, ϕ)dΩ

1 0 1 T0 −8/5

1 0 1 T ′0 2/5

-1 0 -1 T0 −8/5

-1 0 -1 T ′0 2/5

0 0 0 T0 16/5

0 0 0 T ′0 −4/5

1 2 -1 T−2 −12/5

-1 -2 1 T2 −12/5

1 1 0 T−1 −6
√

2/5

-1 -1 0 T1 6
√

2/5

0 -1 1 T1 −6
√

2/5

0 1 -1 T−1 6
√

2/5



54 SPIN-DEPENDENT INTERACTIONS 3.3

Finally, in Table 3.3 we compile the results for the tensor factor (using the results from
the previous Tables 3.1 and 3.2) calculated considering both diquark and antidiquark with
total spin 1, (which can couple into the tetraquark total spin ST = 0, 1, 2), and with relative
orbital momentum in the diquark-antidiquark system LT = 1 (no orbital momentum inside
diquark or antidiquark). In this case there are seven possibilities of total angular momentum
JT in the tetraquark. The tensor factor is calculated considering only the diagonal matrix
element: 〈Sd−d̄〉 = 〈ST , LT , JT |Sd−d̄|ST , LT , JT 〉 in the principal case of the JT z-component
MJT = JT .

Table 3.3: Results for the tensor factor with [Sd = Sd̄ = 1→ ST = 0, 1, 2]⊗
LT = 1.

ST LT JT 〈Sd−d̄〉

0 1 1 0

1 1 2 −4

5
= −0, 8

1 1 1 4

1 1 0 −8

2 1 3 −8

5
= −1, 6

2 1 2
28

5
= 5, 6

2 1 1 −561

100
= −5, 61

Notice the results have a similar structure to the ones for two spin 1/2 particles. There
we had that the tensor factor is zero for total spin 0, here we have the same as well. There
when the total spin was 1 and the orbital momentum also ` = 1, we had a small negative
number for J = ` + 1 = 2, a positive number for J = ` = 1 and a big negative number
for J = ` − 1 = 0. Interestingly, for ST = 1 and LT = 1 in the tetraquark (with spin 1
diquark and antidiquark), we have, with an extra factor 2, exactly the same numbers of the

case of two spin 1/2 and ` = 1 (−2

5
, +2, −4) as we commented after eq. (3.35). And here,

with ST = 2 we still have a similar structure of positive and negative numbers depending on
the relation of JT and LT . Probably, with more insight in the algebraic manipulation of the
operators, one could obtain a similar general result for the expectation value of the tensor
operator in the coupling of two spin 1 particles, or even in a completely general case for any
values of spin.
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Now there is a very important observation to be made. The fact that both approaches
(either with four tensors applied on a wavefunction with four spins 1/2, or one tensor applied
on a wavefunction with two spins 1) lead to the same result is not a coincidence. Actually,
it should have been obvious from the beginning, because what we did was just change the
spin basis from {1

2
⊗ 1

2
⊗ 1

2
⊗ 1

2
} to {1 ⊗ 1}, where the Clebsh-Gordan coefficients play an

important role. Of course, thinking about the physics of the model, this equivalence only
was possible because we used the approximation that the distances between every q − q̄
pair are exactly the same in the diquark-antidiquark system, since we treat the later as a
2-body problem i. e., the interaction of two point-like structures. In a real 4-body approach
(using Jacobi coordinates for example), where all the four constituents are allowed to move
“freely” and interact at the same time with each other, this would not be true. This type of
approach can be found in other models of tetraquarks, for instance [73, 74], but sometimes
in this kind of model only the ground state is considered, with no orbital excitations, then
only the spin-spin interaction is relevant since the spin-orbit and tensor vanish for ` = 0.

3.4 The Spin-Average

The spin-dependent interactions are an important feature of charmonium spectroscopy
because they serve as a testing scenario of the QCD dynamics in heavy quark context, lying
between perturbative and non-perturbative regimes. One particularly interesting subject is
the role of the spin-spin interaction in orbitally excited states. It is convenient to define the
spin-average (spin here means J) of a multiplet, also know as “center-of-weight” or “center-
of-gravity” (c.o.g.):

〈
M(N2S+1`J)

〉
=

∑
J

(2J + 1)M(N2S+1`J)∑
J

(2J + 1)
, (c.o.g.) (3.76)

For P-wave ground state for example, we have:

〈
M(13PJ)

〉
=

5M(13P2) + 3M(13P1) +M(13P0)

9
(3.77)

The interesting point of the spin-average mass is that the spin-orbit and tensor corrections
cancel themselves, so if the spin-spin correction is zero in the orbitally excited singlet state,
its mass should be equal to this spin average. The experimental measurement of the P-wave
ground states of charmonium seem to agree with that (see Chapter 4).

It is simple to verify that the spin corrections vanish for the c.o.g. As presented in Ref.
[63], if we put together the spin-orbit and tensor terms, we can write their contribution as:

〈V (1)
LS 〉+ 〈V (1)

T 〉 =
1

m2

[
AJαs

〈
1

r3

〉
+BJb

〈
1

r

〉]
(3.78)

For two spin 1/2 particles in P-wave meson, using the results in eqs. (3.15), (3.19), (3.21)
and (3.35), we have the following coefficients:
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Table 3.4: AJ and BJ coefficients for P-wave mesons.

State AJ BJ

3P2 −(28/15) −(1/2)

3P1 −(4/3) +(1/2)

3P0 −(16/3) +1

1P1 0 0

Notice that both terms vanish exactly for the c.o.g. average of the P-wave:

AJ → [5(28/15) + 3(−4/3) + (−16/3)]/9 = 0

BJ → [5(−1/2) + 3(+1/2) + (1)]/9 = 0
(3.79)

Now remember that in our first model the mass of the spin singlet orbitally excited states
is the M (0) mass, since the three spin-corrections are zero. Then its mass is exactly equal
to the mass of the center-of-gravity. For the second model, since we include the spin-spin
interaction non-perturbatively, it actually has a small but non-negligible contribution, and it
also causes a small difference in the wavefunctions of spin singlets and spin triplets. Therefore
the c.o.g. mass is not equal to the spin singlet mass. This is a very interesting peculiarity of
this second model, which we are going to further discuss in Chapter 4 with the theoretical
results for charmonium and its comparisons with experimental data.



Chapter 4

Mesons

In order to make good estimates of our diquarks and tetraquarks, we first study the
spectrum of charmonium mesons, to observe how well we can fit the experimental data with
both models.

Seeking the best set of parameters, we employ a fitting procedure minimizing the χ2

with Mathematica, considered as the sum of the square of the differences between the mass
calculated with our model and the (experimentally measured) candidate for that particular
choice of quantum numbers, multiplied by its statistical weight (for n states used as input):

χ2 =
n∑
i

(M calc
i −M exp

i )2 · wi (4.1)

As discussed in Ref. [62], using the experimental error as statistical weight wi = (σ2
i )
−1

strongly bias the results to the states that have very small experimental error, like J/ψ, and
doesn’t force the parameters to fit the other states. If we use the error and the decay width

wi =

(
σ2
i +

(
Γi
2

)2
)−1

we still wouldn’t force the method to fit the broad resonances, like

ηc and the ones above the DD̄ threshold (that can decay in open charm meson pairs). Since
we wish to obtain an overall fit, that would allow reasonable predictions to missing cc̄ states,
we choose wi = 1, which is equivalent to give the same statistical weight to all the states used
as input, the same strategy adopted in Refs. [62, 67] and many others spectroscopy studies.
(Actually, in Ref. [62] they also perform fits using for instance only the 8 states below the
threshold, but as we will see with the second model of Refs. [66, 67], it is possible to obtain
good agreement with all the experimental data with these potential models).

In the following sections we will discuss the trajectory we went through in the search for
a satisfactory fit of the charmonium spectrum and the reasons we had to adopt the second
model but still not completely abandon the first one.

We use the following notation in our result tables: the principal quantum number is
N (N = 1 for the ground state, N = 2 for the first radial excitation and so on), ` is
the orbital angular momentum, S is the total spin and J the total angular momentum. In
spectroscopy notation the states are usually labeled by N2S+1`J , with ` = 0, 1, 2, 3, 4, . . . →
S, P, D, F, G, . . . , for example 13S1 for J/ψ.

It is common to characterize the bound states by the JPC quantum numbers, where J is
the total angular momentum, which is the one that is actually conserved from the relativistic
point-of-view (remember we also consider S and ` as good quantum number). While P and
C are the parity and charge-conjugation quantum numbers, respectively, which are related
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to symmetries.
In simple words, the parity operator produces a reflection in the coordinates relative

to the origin of the system (like a mirror). The parity of the spherical harmonics brings a
factor (−1)`, where ` is the orbital quantum number. An additional (−1) factor is included
to account for the particle-antiparticle structure, so we have P = (−1)`+1.

The charge-conjugation operator changes a particle by its antiparticle. It can be shown
that for mesons the charge-conjugation quantum number is given by C = (−1)`+S, where S
is the total spin (further discussion can be found in Chapter 4 of Ref. [1], for instance). Of
course not every bound state of quarks is an eigenstate of both operators, but QQ̄ mesons
are (with eigenvalues +1 or -1).

P = (−1)`+1

C = (−1)`+S
(4.2)

Other operators related to symmetries are isospin (from light quark symmetry) and G-
parity (that is a generalization of parity, charge-conjugation and isospin), but since in this
work we treat only states composed of charm quarks, isospin and g-parity are not relevant
in our discussion.

The experimental data are presented as in the PDG of the 2014 edition with important
updates from 2015 [52].We adopt as well-established the 13 cc̄ states indicated in Table 4.8.
The input values used in the fitting procedures are also used with as many digits as provided
by the PDG. The comparisons of the results using model 1 and model 2 with experimental
data are presented in Section 4.3.

We point that once the parameters of a particular fit are obtained, they are kept fixed
to generate the whole spectrum. Effects like the decreasing of the strong coupling constant
with increase of energy, relativistic momentum-dependent contributions or others related to
the open charm mesons aren’t taken into consideration.

Several attempts to obtain reasonable agreement of the calculated values with the whole
experimental spectrum of charmonium were made with different inputs and assumptions. In
Table 4.7 of Section 4.3 we compile the results for the potential parameters obtained in each
fit.

4.1 Charmonium: Model 1

In the first model we consider the zeroth-order potential of the form Coulomb plus linear.
A charmonium meson is a quark-antiquark system (cc̄) bound in a color singlet configuration.
As shown in Section 2.4, the color factor for one gluon exchange between quark and antiquark

bound in the color singlet configuration is κs = −4

3
. So the potential illustrated in Fig. 4.1

that we put in the Schrödinger equation is:

V
(0)

1 (r) = −4

3

αs
r

+ br (4.3)
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Figure 4.1: Potential of model 1: Coulomb plus linear. Parameters are αs =
0.3289, b = 0.2150 GeV2.

The spin-dependent potential (first-order perturbation) between the spin 1/2 constituents
is:

〈V (1)
1,Spin(r)〉 =

1

m2

[
8αs
9
|R(0)|2〈S1 · S2〉+

(
2αs

〈
1

r3

〉
− b

2

〈
1

r

〉)
〈L · S〉+

αs
3

〈
1

r3

〉
〈S12〉

]
(4.4)

4.1.1 Model 1: Fit with 13 input

First we present the result of the fit performed with all the 13 cc̄ states as input and the
choice of quantum numbers of each one as it is commonly adopted in the literature (in Refs.
[62, 67] for example). See Table 4.8 in section 4.3 for the details about the experimental
data.

We considered as free parameters in the fitting procedure the mass of the charm quark
mc, the strong coupling constant αs and the string tension b, allowing them to vary within
the following range:

1.1 < mc < 1.9 GeV, 0.1 < αs < 0.7, 0.050 < b < 0.450 GeV2 (4.5)

The parameters and χ2 obtained were:

χ2 = 0.0132 GeV2, mc = 1.4155 GeV, αs = 0.4116, b = 0.1517 GeV2 (4.6)

A rough estimate of the theoretical error in the fitting procedure could be calculated as:

error ≈
√
χ2

n
, (n = number of input states) (4.7)



60 MESONS 4.1

In this case we have n = 13, resulting in an estimated error of 8.8 MeV (per input).
The plot of the calculated values (dashed line on the right) and experimental data

(continuous line on the left) are shown in Figure 4.2. We have calculated the complete
multiplet of each of the charmonium experimentally known states, even tough not every
multiplet is completely measured (see table 4.8 for details of the experimental data).

Figure 4.2: Spectrum of charmonium obtained with model 1 and input of 13
cc̄ states. Parameters are mc = 1.4155 GeV, αs = 0.4116 and b = 0.1517
GeV2.

We show in the spectrum the first DD threshold at 3.73 GeV. There are other thresholds
above this one (see [52]), corresponding to heavier open charm meson pairs. We could use
that to imagine how confinement works. One could picture it as a string binding quark and
antiquark. The potential energy increases as the distance between them increases (due to
radial and/or orbital excitations), and so does the mass of the state, until the point when
there is enough energy to create a new quark-antiquark pair, allowing the cc̄ to decay into a
charmed meson pair, like DD (cū+uc̄). This is possible only for states above the threshold.

In all tables the results presented in GeV (like M (0), the zeroth-order mass) are rounded
up to the fourth decimal digit, while the ones presented in MeV (like M f , the final value for
the mass where we include the perturbative corrections) are rounded up to the first decimal
digit. A few of the rounded values in the tables might not perfectly sum up to the final mass
due to the fractions after the last digit that are used in the calculations.

In Table 4.1 we present the zeroth-order results (in order of increasing experimental mass,
approximately) for the wavefunctions obtained solving the Schrödinger equation with the
Coulomb plus linear potential. Notice that the wavefuntions depend only on the principal
quantum number N and orbital ` since all spin-dependent terms are treated perturbatively.
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Table 4.1: Results for charmonium cc̄ wavefunction with model 1 and 13
input states. Parameters are mc = 1.4155 GeV, αs = 0.4116 and b = 0.1517
GeV2.

N` M (0) [GeV] |R(0)|2 [GeV3] 〈r2〉1/2 [fm]
〈
v2

c2

〉
1S 3.1024 0.8608 0.444 0.240

1P (c.o.g.) 3.5041 0 0.708 0.248

2S 3.6623 0.5638 0.889 0.298

1D (c.o.g.) 3.7756 0 0.916 0.287

2P (c.o.g.) 4.1460 0 1.274 0.363

3S 4.0680 0.4848 1.248 0.370

2D (c.o.g.) 4.1460 0 1.274 0.363

4S 4.4127 0.4453 1.563 0.439

The mass value before spin corrections is M (0), composed only of the mass of the charm
quarks plus the Schrödinger equation eigenenergy. The square of the radial wavefunction at
the origin is |R(0)|2, the root mean square radius is 〈r2〉1/2 (in fermi) and the quark mean

square velocity in units of c2 is
〈
v2

c2

〉
.

Next, we include the spin-dependent interactions as corrections in the total mass, treated
as first-order perturbation using the wavefunctions previously calculated.

In Table 4.2 we present the details of the calculation of each particular state: the
contribution of each perturbative correction and also the expectation value of the kinetic
energy, the vector (Coulomb) and scalar (linear) terms of the zeroth-order potential, in order
to observe how much each of them contribute to the energy eigenvalue, what gives us an
idea of which QCD regime is dominant in each state, the one gluon exchange (perturbative
QCD) or the confinement regime. The pattern is clear, the kinetic energy and confinement
contributions increase with radial and orbital excitations, while the vector contribution
decreases.
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Table 4.2: Results for charmonium cc̄ masses (including spin-dependent
corrections) with model 1 and 13 input states. Parameters are mc = 1.4155
GeV, αs = 0.4116 and b = 0.1517 GeV2.

N2S+1`J 〈T 〉 〈V (0)
V 〉 〈V (0)

S 〉 E(0) M (0) [MeV] 〈V (1)
SS 〉 〈V (1)

LS 〉 〈V (1)
T 〉 Mf

1 [MeV]

11S0 340.3 −374.7 305.9 271.4 3102.4 −118.0 0 0 2984.5

13S1 340.3 −374.7 305.9 271.4 3102.4 39.3 0 0 3141.7

13P0 350.6 −189.3 511.9 673.1 3504.1 0 −41.2 −22.4 3440.4

13P1 350.6 −189.3 511.9 673.1 3504.1 0 −20.6 11.2 3494.7

11P1 (c.o.g.) 350.6 −189.3 511.9 673.1 3504.1 0 0 0 3504.1

13P2 350.6 −189.3 511.9 673.1 3504.1 0 20.6 −2.2 3522.4

21S0 421.9 −217.2 626.7 831.3 3662.3 −77.2 0 0 3585.1

23S1 421.9 −217.2 626.7 831.3 3662.3 25.7 0 0 3688.0

13D1 405.7 −136.2 675.1 944.6 3775.6 0 0.6 −3.1 3773.1

13D2 405.7 −136.2 675.1 944.6 3775.6 0 0.2 3.1 3778.8

11D2 (c.o.g.) 405.7 −136.2 675.1 944.6 3775.6 0 0 0 3775.6

13D3 405.7 −136.2 675.1 944.6 3775.6 0 −0.4 −0.9 3774.3

23P0 462.6 −145.2 780.0 1097.5 3928.4 0 −41.7 −20.6 3866.1

23P1 462.6 −145.2 780.0 1097.5 3928.4 0 −20.9 10.3 3917.9

21P1 (c.o.g.) 462.6 −145.2 780.0 1097.5 3928.4 0 0 0 3928.4

23P2 462.6 −145.2 780.0 1097.5 3928.4 0 20.9 −2.1 3947.2

31S0 524.1 −167.7 880.6 1237.0 4068.0 −66.4 0 0 4001.6

33S1 524.1 −167.7 880.6 1237.0 4068.0 22.1 0 0 4090.1

23D1 514.3 −113.9 914.7 1315.1 4146.0 0 −3.1 −3.0 4140.0

23D2 514.3 −113.9 914.7 1315.1 4146.0 0 −1.0 3.0 4148.0

21D2 (c.o.g.) 514.3 −113.9 914.7 1315.1 4146.0 0 0 0 4146.0

23D3 514.3 −113.9 914.7 1315.1 4146.0 0 2.1 −0.8 4147.2

41S0 621.4 −141.3 1102.0 1581.8 4412.7 −61.0 0 0 4351.7

43S1 621.4 −141.3 1102.0 1581.8 4412.7 20.3 0 0 4433.0

Notice that the spin-spin interaction splits singlet and triplet only in S-wave states,
because it is proportional to the square of the wavefunction at the origin, which is zero in
the orbitally excited states due to the centrifugal barrier (as discussed in Section 2.6).

The spin-orbit and tensor appear only in spin triplets with non-zero orbital momentum
and they split the orbitally excited states into four states, three are spin triplets with
different values of total angular momentum J and one is the spin singlet, where all three
spin corrections vanish, so its mass is simply M (0).

As discussed in Section 3.4, the mass of the spin-average (remember spin-orbit and tensor
cancel when the average is taken) or “center-of-gravity” of an orbitally excited spin triplet
(total spin 1) is equal to mass of the corresponding spin singlet (total spin 0), which has all
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three-spin corrections vanishing. That happens in model 1 because the spin-spin correction
is zero for any orbitally excited state, so only spin-orbit and tensor play a role in splitting.
There is an experimental example for that: the 1P multiplet (see Table 4.8). The mass of
the c.o.g. of the spin 1 states χc0(13P0), χc1(13P1) and χc2(13P2) is compatible with the mass
of the spin 0 state hc(11P1).

4.1.2 Model 1 with constant V0: Fit with 13 input

Hereafter we will present a series of additional efforts to fit the model into the experi-
mental data. Some extra tables and figures can be found in the appendix A.

Trying to improve the agreement of the calculated values with the experimental input,
we included a constant term V0 in the zeroth-order potential, which can be justified as a
point-zero energy with partially scalar and/or vector origin (see Refs. [58, 62] for example).
We used the same input of 13 states and same range for the last three parameters, including
the constant term as a fourth free parameter, allowed to vary within the wide range −2 <
V0 < 2 GeV, resulting in the following set:

χ2 = 0.0124 GeV2, mc = 1.7378 GeV, αs = 0.4066, b = 0.15945 GeV2, V0 = −0.5871 GeV
(4.8)

The estimated error now is about 8.6 MeV (per input). It turns out that the result is
practically the same: the constant term shifts the whole spectrum and causes the charm
quark mass to increase (the αs and the string tension b are practically unchanged). The
resulting parameters produce the same pattern in the mass spectrum as before, and the χ2

is just a little smaller than the previous one.

4.1.3 Model 1: Fit with 6 input (1S and 1P)

Next, trying to improve the orbital splitting of the P-wave mesons, we use as input only
the 6 states with N = 1 below the DD̄ threshold: ηc(11S1), J/ψ(13S1), hc(11P1), χc0(13P0),
χc1(13P1) and χc2(13P2). The parameters were allowed to vary in the following range:

1.1 < mc < 1.9 GeV, 0.1 < αs < 0.6, 0.050 < b < 0.400 GeV2 (4.9)

Resulting in:

χ2 = 0.0028 GeV2, mc = 1.3465 GeV, αs = 0.3796, b = 0.1857 GeV2 (4.10)

The values of the parameters changed a little: mc and αs decreased, while b increased.
The agreement in the spin-spin splitting of the 1S states got better, but the 1P orbital
splitting was still smaller than expected. The χ2 is smaller this time, but the estimated error
has to be divided by 6 input states, and it only estimates the error for these 6 states, not
for the rest of the spectrum. The result is 8.9 MeV (per input), similar to the previous ones,
what indicates that reducing to only this 6 states, where both the singlet-triplet and the
orbital splitting are tested simultaneously, doesn’t make it easier to accommodate the model
into the data.
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4.1.4 Model 1 with modified Spin-Orbit: Fit with 6 input (1S and
1P)

Observing the results of similar quarkonium models (as for example the Breit interaction
for one gluon exchange of Ref. [65]) we thought that the cause of that shrinking in the P-
wave splitting could be the second term of the spin-orbit interaction, which is proportional
to the string tension b (and it is not present in the cited reference). This term comes from
the assumption that confinement is due to a Lorentz scalar, and according to [59, 60, 66, 67]
it is a Thomas precession effect.

Then we performed the same fit using the 1S and 1P states as input, but now removing
the second term of the spin-orbit interaction. The result was a much better agreement of
these 6 states, even though the rest of the spectrum didn’t match well, specially the radial
excitations. The result for the parameters are:

χ2 = 0.0004 GeV2, mc = 1.2819 GeV, αs = 0.3289, b = 0.2150 GeV2 (4.11)

The χ2 is much smaller this time, dividing by 6 input states we got an estimated error of
3.1 MeV (for the 6 states only). It is interesting to notice that the charm quark mass is very
close to value given in the PDG summary [52] (with update 2015): mc = 1.275± 0.025 GeV
(“running” mass in the MS scheme). The value of the strong coupling constant αs around
0.3 is also more typical in potential models of charmonium. In Figure 4.3 we plot the mass
spectrum with this set.

Figure 4.3: Spectrum of charmonium with model 1, input of 6 cc̄ states (1S
and 1P ) and modified spin-orbit interaction. Parameters are mc = 1.2819
GeV, αs = 0.3289, b = 0.2150 GeV2.
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The results for wavefunctions and masses with this set are in Tables 4.3 and 4.4:

Table 4.3: Results for charmonium cc̄ wavefunctions with model 1 input of
6 cc̄ states (1S and 1P ) and modified spin-orbit interaction. Parameters are
mc = 1.2819, GeV, αs = 0.3289, b = 0.2150 GeV2.

N` M (0) [GeV] |R(0)|2 [GeV3] 〈r2〉1/2 [fm]
〈
v2

c2

〉
1S 3.0725 0.7075 0.444 0.284

1P (c.o.g.) 3.5225 0 0.674 0.331

2S 3.7408 0.5368 0.847 0.400

1D (c.o.g.) 3.8544 0 0.860 0.396

2P (c.o.g.) 4.0576 0 1.029 0.452

3S 4.2493 0.4840 1.174 0.512

2D (c.o.g.) 4.3281 0 1.187 0.509

4S 4.6877 0.4562 1.460 0.615

The overestimated values for the radial excitations could indicate that other corrections
might be necessary to fit the whole spectrum with accuracy. One possible solution could be
to include the first relativistic correction in the kinetic energy, of order p4, which is supposed
to be negative and become more important as radial excitations increase (or other moment-
dependent corrections). But, as discussed in [62], a good agreement with experimental data
can also be obtained with non-relativistic models by choosing a different set of parameters.
Maybe in relativistic descriptions, the resulting values for the charm quark mass or the strong
coupling constant in this energy scale are more accurate, but in any quarkonium model they
should be interpreted more as phenomenological parameters than absolute physical values
(as pointed out in Refs. [58, 67]). Introducing a treatment of αs as a “running coupling”
probably wouldn’t help to fit the higher states, since it would decrease for radial excitations
that are in higher energy scales, then the contribution of the negative Coulomb term would
be even weaker, so the mass values would probably be higher. If the string tension decreased
as the radial excitations increased, it could contribute to lower the mass of these higher
states, but this is a delicate subject since it is not simple to justify well this hypothesis.
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Table 4.4: Results for charmonium cc̄ masses (including spin-dependent
corrections) with model 1, input of 6 states (1S and 1P ) and modified spin-
orbit interaction. Parameters are mc = 1.2819, GeV, αs = 0.3289, b = 0.2150
GeV2.

N2S+1`J 〈T 〉 〈V (0)
V 〉 〈V (0)

S 〉 E(0) M (0) [MeV] 〈V (1)
SS 〉 〈V (1)

LS 〉 〈V (1)
T 〉 Mf

1 [MeV]

11S0 364.3 −292.1 436.5 508.7 3072.5 −94.4 0 0 2978.1

13S1 364.3 −292.1 436.5 508.7 3072.5 31.5 0 0 3104.0

13P0 424.9 −157.9 691.7 958.7 3522.5 0 −72.9 −24.3 3425.4

13P1 424.9 −157.9 691.7 958.7 3522.5 0 −36.4 12.1 3498.2

11P1 (c.o.g.) 424.9 −157.9 691.7 958.7 3522.5 0 0 0 3522.5

13P2 424.9 −157.9 691.7 958.7 3522.5 0 36.4 −2.4 3556.5

21S0 513.2 −181.3 845.1 1177.0 3740.8 −71.6 0 0 3669.2

23S1 513.2 −181.3 845.1 1177.0 3740.8 23.9 0 0 3764.7

13D1 507.3 −115.6 898.9 1290.6 3854.4 0 −32.0 −3.6 3818.9

13D2 507.3 −115.6 898.9 1290.6 3854.4 0 −10.7 3.6 3847.3

11D2 (c.o.g.) 507.3 −115.6 898.9 1290.6 3854.4 0 0 0 3854.4

13D3 507.3 −115.6 898.9 1290.6 3854.4 0 21.3 −1.0 3874.7

23P0 579.9 −123.1 1037.0 1493.7 4057.6 0 −69.0 −23.0 3965.6

23P1 579.9 −123.1 1037.0 1493.7 4057.6 0 −34.5 11.5 4034.6

21P1 (c.o.g.) 579.9 −123.1 1037.0 1493.7 4057.6 0 0 0 4057.6

23P2 579.9 −123.1 1037.0 1493.7 4057.6 0 34.5 −2.3 4089.8

31S0 656.7 −142.3 1171.0 1685.5 4249.3 −64.6 0 0 4184.7

33S1 656.7 −142.3 1171.0 1685.5 4249.3 21.5 0 0 4270.8

23D1 653.0 −97.4 1209.0 1764.3 4328.1 0 −31.3 −3.5 4293.3

23D2 653.0 −97.4 1209.0 1764.3 4328.1 0 −10.4 3.5 4321.2

21D2 (c.o.g.) 653.0 −97.4 1209.0 1764.3 4328.1 0 0 0 4328.1

23D3 653.0 −97.4 1209.0 1764.3 4328.1 0 20.9 −1.0 4348.0

41S0 788.5 −120.8 1456.0 2123.9 4687.7 −60.9 0 0 4626.8

43S1 788.5 −120.8 1456.0 2123.9 4687.7 20.3 0 0 4708.0

4.1.5 Model 1: Fit with 11 input for comparison with model 2

After all, it seems that is very difficult (maybe even impossible) to fit at the same time the
spin-spin splitting in the S-wave states, the combined spin-orbit and tensor in the P-wave,
and also the radial excitations and D-waves with the currently employed model 1.

Introducing a constant term in the potential didn’t help, since it only shifts the whole
spectrum altogether. Then some stronger modification seemed to be necessary to reach the
desired accuracy.
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That is when the model 2 comes into play. We will show in the next Section that with a
few changes in the present model we can accommodate reasonably well all the experimental
spectrum.

The second model we adopt is the potential model from Refs. [66, 67], which used as input
11 states (in 2005, when it was published, the hc(11P1) and χc2(23P2) weren’t experimentally
well-established).

Then in order to compare with the original fit of model 2, we performed a fit with the
same input of 11 states, but first using model 1 (with the complete spin-orbit interaction),
and using the following range for the three free parameters:

1.1 < mc < 1.9, GeV, 0.1 < αs < 0.7, 0.050 < b < 0.450, GeV2 (4.12)

Resulting in:

χ2 = 0.0091 GeV2, mc = 1.4803, GeV, αs = 0.5659, b = 0.1451 GeV2 (4.13)

The estimated error (for the 11 states) is 8.7 MeV. For comparison we also present in
the appendix A the complete results for this set in Tables A.1 and A.2. The mass spectrum
compared to experimental data is shown in Figure 4.4.

Figure 4.4: Spectrum of charmonium with model 1, input of 11 cc̄ states
(without hc(11P1) and χc2(23P2)). Parameters are mc = 1.4803 GeV, αs =
0.5659, b = 0.1451 GeV2

As we can see in the figure, the fit to the four 1P states is much better. The results for
the four 13S states, the two D-wave and the one 2P improved, but the ηc and its first radial
excitation are very far from the experimental value.

In particular, the good results for the orbital splitting of the 1P multiplet show that it
is possible to fit them with the complete spin-orbit interaction, and at the same time obtain
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reasonable results for higher radial and/or orbital excitations. All that is missing in this fit
is a “fine tuning” of the spin-spin interaction, to mend the singlet-triplet hyperfine splitting,
because they only affect S-waves (in this model 1). As we show in the next section, the
introduction of the gaussian function in the spin-spin interaction (inserted in the zeroth-
order potential with a new free parameter) is enough to patch everything up.

4.2 Charmonium: Model 2
In the second model we consider the zeroth-order potential of the form Coulomb plus

linear plus smeared spin-spin. Now we have to separate spin triplet (S=1) and spin singlet
(S=0) before solving the Schrödinger equation. Then using κs = −4/3, S1 = S2 = 1/2
and S = 0 or S = 1 in equation (3.13) we replace the operator S1 · S2 by the constant
[S(S+1)−S1(S1 +1)−S2(S2 +1)]/2 it generates when it acts in the wavefunction, resulting:

V
(0)

2 (r) = −4

3

αs
r

+ br − 8παs
3m2

(
σ√
π

)3

e−σ
2r2 , (S = 0) (4.14)

V
(0)

2 (r) = −4

3

αs
r

+ br +
8παs
9m2

(
σ√
π

)3

e−σ
2r2 , (S = 1) (4.15)

The perturbative spin-dependent potential now is only the spin-orbit and tensor:

〈V (1)
2,Spin(r)〉 =

1

m2

[(
2αs

〈
1

r3

〉
− b

2

〈
1

r

〉)
〈L · S〉+

αs
3

〈
1

r3

〉
〈S12〉

]
(4.16)

Figure 4.5: Potentials of model 2: Coulomb plus linear plus smeared spin-
spin, for S = 0 and S = 1. Parameters are αs = 0.5285, b = 0.1458 GeV2,
σ = 1.1779 GeV.
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The original set of parameters of Refs. [66, 67] was obtained with the fit of 11 cc̄ states
with equal statistical weight, resulting:

mc = 1.4794 GeV, αs = 0.5461, b = 0.1425 GeV2, σ = 1.0946 GeV (4.17)

Notice how close the original parameters from Refs. [66, 67] are from the ones obtained
using model 1 and the same fit with 11 states (in Section 4.1.5). First we used this original set
to check the model and reproduce the results. We also performed a fitting with this model 2
and the same 11 states (with updated experimental values from PDG [52] in Section 4.2.2),
which can be compared with the equivalent fit using model 1 and the results of references
[66, 67].

In the following section, we present the updated and most general case using all the 13
states as input in this model 2. The improvement in comparison with the equivalent fit using
model 1 (in Section 4.1.1) is very satisfying.

4.2.1 Model 2: Fit with 13 input

In order to check our fitting procedure and compare both models with same input, we
performed a fit with the same 13 states (with updated experimental values) using this second
model. We allowed the four parameters to vary in the following range:

1.1 < mc < 1.9 GeV, 0.1 < αs < 0.7, 0.050 < b < 0.450 GeV2, 0.7 < σ < 1.3 GeV
(4.18)

And the results are also very similar to the originals:

χ2 = 0.0063 GeV2, mc = 1.4622 GeV, αs = 0.5202, b = 0.1463 GeV2, σ = 1.0831 GeV
(4.19)

The estimated error (for the 13 states) is 6.1 MeV. Results for this fit are in Tables 4.5
and 4.6, and the mass spectrum is presented in Figure 4.6. Notice that this set is very similar
to the original set of Refs. [66, 67], suggesting that the inclusion of the two new states didn’t
affect much the fitting.
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Figure 4.6: Spectrum of charmonium with model 2, input of 13 cc̄ states.
Parameters are mc = 1.4622 GeV, αs = 0.5202, b = 0.1463 GeV2, σ = 1.0831
GeV.

Actually, the prediction for hc(11P1) with the original set was already very close to the
experimental value (even more if one consider its mass as the c.o.g. of the 3PJ states, as
done in [67] for the calculations where its mass was required). And the inclusion of the
quite recently measured χc2(2P ) (see Ref. [56] and references therein) didn’t affect much the
resulting set, even though the prediction for its mass is a little higher than the experimental
value. This could be due to limitations of the model that doesn’t take into account effects
that might be important in this particular state, or maybe with more statistics from future
measures we will discover that its mass is higher than the current value in PDG [52].

In Table 4.5 we present the wavefunction properties. Notice that the inclusion of the
spin-spin interaction in the zeroth-order potential creates a small difference between the
wavefunction of spin singlet and spin triplet. The spin 0 states have a negative contribution
of this interaction in the potential, what causes the close-distances region of the potential
(small r coordinate) to be “more negative” (see Figure 4.5) generating states with smaller
root mean square radius, higher value of the wavefunction at the origin and higher quark
velocity.
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Table 4.5: Results for charmonium cc̄ wavefunctions with model 2 and 13
input states. Parameters are mc = 1.4622 GeV, αs = 0.5202, b = 0.1463
GeV2, σ = 1.0831 GeV.

N2S+1` M (0) [GeV] |R(0)|2 [GeV3] 〈r2〉1/2 [fm]
〈
v2

c2

〉
11S 2.9924 1.5405 0.375 0.336

13S 3.0917 1.1861 0.421 0.253

11P 3.5105 0 0.678 0.257

13P (c.o.g.) 3.5191 0 0.689 0.246

21S 3.6317 0.7541 0.839 0.308

23S 3.6714 0.7092 0.867 0.293

11D 3.7951 0 0.899 0.280

13D (c.o.g.) 3.7958 0 0.901 0.278

21P 3.9334 0 1.071 0.324

23P (c.o.g.) 3.9427 0 1.082 0.315

31S 4.0481 0.6088 1.210 0.364

33S 4.0755 0.5914 1.230 0.357

21D 4.1591 0 1.258 0.350

23D (c.o.g.) 4.1604 0 1.261 0.348

41S 4.3933 0.5430 1.531 0.424

43S 4.4150 0.5340 1.547 0.419

In Table 4.6 we present the results for the masses including the spin interactions. Notice
that since the spin-spin interaction is no longer treated as perturbation, its contribution to
orbitally excited states is no longer zero, specially in P-wave, even tough the wave function at
the origin is still compatible with zero (within the assumptions of the numerical method, as
discussed in Section 2.6.1). That also causes the spin singlet in orbitally excited states to be
different from the spin-average (c.o.g.). This could be a weak spot of this model, because the
experimental measures for the 1P states suggest that they should probably be equal, or very
close (see Table 4.8 for experimental values). As pointed in Ref. [56], precise measurement
of the difference between the c.o.g. of the 13PJ states and the singlet 11P1 can provide useful
information about the spin-dependent interactions in heavy quarks.

If the spin-spin interaction actually has a nonvanishing contribution to orbitally excited
states, this model can provide a way to describe it with just this change of the Dirac delta
to a gaussian function.
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Table 4.6: Results for charmonium cc̄ masses with model 2 and 13 input
states. Parameters are mc = 1.4622 GeV, αs = 0.5202, b = 0.1463 GeV2,
σ = 1.0831 GeV.

N2S+1`J 〈T 〉 〈V (0)
V 〉 〈V (0)

S 〉 〈V (0)
SS 〉 E(0) M (0) [MeV] 〈V (1)

LS 〉 〈V (1)
T 〉 Mf

2 [MeV]

11S0 491.9 −584.4 246.2 −85.6 68.1 2992.4 0 0 2992.4

13S1 370.6 −504.0 279.4 21.4 167.4 3091.7 0 0 3091.7

13P0 359.5 −246.6 480.0 2.0 594.8 3519.1 −63.9 −29.4 3425.8

13P1 359.5 −246.6 480.0 2.0 594.8 3519.1 −32.0 14.7 3501.8

11P1 375.2 −253.1 471.1 −7.0 586.2 3510.5 0 0 3510.5

13P2 359.5 −246.6 480.0 2.0 594.8 3519.1 32.0 −2.9 3548.1

21S0 450.6 −287.3 573.8 −29.7 707.4 3631.7 0 0 3631.7

23S1 428.5 −281.7 590.4 9.8 747.1 3671.4 0 0 3671.4

13D1 407.0 −175.4 639.7 0.2 871.5 3795.8 −8.8 −3.9 3783.1

13D2 407.0 −175.4 639.7 0.2 871.5 3795.8 −2.9 3.9 3796.7

11D2 408.8 −175.9 638.5 −0.6 870.8 3795.1 0 0 3795.1

13D3 407.0 −175.4 639.7 0.2 871.5 3795.8 5.9 −1.1 3800.6

23P0 460.4 −186.2 742.1 2.2 1018.4 3942.7 −59.9 −26.1 3856.7

23P1 460.4 −186.2 742.1 2.2 1018.4 3942.7 −29.9 13.0 3925.8

21P1 474.4 −190.8 733.1 −7.5 1009.1 3933.4 0 0 3933.4

23P2 460.4 −186.2 742.1 2.2 1018.4 3942.7 29.9 −2.6 3970.0

31S0 532.8 −215.4 826.5 −20.1 1123.8 4048.1 0 0 4048.1

33S1 521.9 −215.3 837.7 6.9 1151.2 4075.5 0 0 4075.5

23D1 508.6 −145.8 873.0 0.3 1236.1 4160.4 −11.6 −3.7 4145.1

23D2 508.6 −145.8 873.0 0.3 1236.1 4160.4 −3.9 3.7 4160.2

21D2 511.3 −146.5 871.0 −1.0 1234.8 4159.1 0 0 4159.1

23D3 508.6 −145.8 873.0 0.3 1236.1 4160.4 7.7 −1.1 4167.1

41S0 620.4 −179.5 1044.0 −15.8 1469.0 4393.3 0 0 4393.3

43S1 613.2 −180.6 1053.0 5.6 1490.7 4415.0 0 0 4415.0
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4.2.2 Model 2: Fit with 11 input for comparison with model 1

Just to check our fitting procedure and to compare both models with the same input
and the original parameter set from Refs. [66, 67], we also performed a fit with the same
11 states (with updated experimental values) using this second model. We allowed the four
parameters to vary same range as used in the fit with 13 states.

And the results are also very similar to the originals:

χ2 = 0.0041 GeV2, mc = 1.4685 GeV, αs = 0.5285, b = 0.1458 GeV2, σ = 1.1779 GeV
(4.20)

The estimated error (for the 11 states) is 5.8 MeV. Results for this fit are in Tables A.3
and A.4 in the appendix A. In Figure 4.7 we show the mass spectrum. Notice that it is very
similar to the one with 13 input (also with the original work from Refs. [66, 67]). Actually,
if one compare mainly the states below the threshold, the results predicted with model 2
and input of 11 states are a little better than the ones of model 2 using 13 input. But since
we want to compare model 2 and the fit of model 1 with 13 input (because model 1 with 11
input had bad ηc predictions), then we will use the results of model 2 with 13 input as its
representative in the next section.

Figure 4.7: Spectrum of charmonium with model 2, input of 11 cc̄ states
(without hc(11P1) and χc2(23P2)). Parameters are mc = 1.4685 GeV, αs =
0.5285, b = 0.1458 GeV2, σ = 1.1779 GeV.
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4.3 Charmonium: Comparison with Experimental Data
In Table 4.7 we list the properties and results of parameters for each of the fittings

discussed in the previous sections.

Table 4.7: Parameters used in all the different models and FITs.

mc [GeV] αs b [GeV2] σ [GeV] V0 [GeV] Model Input [52] χ2 [GeV2]
Error

Input
[MeV]

1.4115 0.4116 0.1517 − − 1 13 0.0132 8.8

1.7378 0.4066 0.15945 − −0.5871 1 V0 13 0.0124 8.9

1.3465 0.3796 0.1857 − − 1 6 (1S 1P ) 0.0028 8.6

1.2819 0.3289 0.2150 − − 1 LS 6 (1S 1P) 0.0004 3.1

1.4803 0.5659 0.1425 − − 1 11(2015) 0.0091 8.7

1.4794 0.5461 0.1451 1.0946 − 2 [66, 67] 11 (2005) − −
1.4622 0.5202 0.1463 1.0831 − 2 13 0.0063 6.1

1.4685 0.5285 0.1458 1.1779 − 2 11 (2015) 0.0041 5.8

In Table 4.8 we compare the experimental data with the results of two fits of Model 1,
the one in section 4.1.1 with 13 input, the one with modified spin-orbit interaction and input
of 6 states (1S and 1P) in Section 4.1.4, and one fit of Model 2, with input of 13 states in
Section 4.2.1.

We adopt the nomenclature and data from the 2014 PDG with update from 2015 [52].
So far there are 13 states well-established as cc̄.
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Table 4.8: Comparison of charmonium cc̄ experimental data and theoretical
calculations from Sections 4.1.1 and 4.1.4 of model 1 and 4.2.1 of model 2.

N2S+1`J Mf
1 Tab. 4.2 Mf

1 Tab. 4.4 Mf
2 [MeV] Tab. 4.6 Exp [52] [MeV] Meson JPC

11S0 2984.5 2978.1 2992.4 2983.6± 0.6 ηc(1S) 0−+

13S1 3141.7 3104.0 3091.7 3096.916± 0.011 J/ψ(1S) 1−−

13P0 3440.4 3425.4 3425.8 3414.75± 0.31 χc0(1P ) 0++

13P1 3494.7 3498.2 3501.8 3510.66± 0.07 χc1(1P ) 1++

11P1 3504.1 3522.5 3510.5 3525.38± 0.11 hc(1P ) † 1+−

13P2 3522.4 3556.5 3548.1 3556.20± 0.09 χc2(1P ) 2++

1P (c.o.g.) (3504.1) (3522.5) (3519.1) (3525.303) − −
21S0 3585.1 3669.2 3631.7 3639.2± 1.2 ηc(2S) 0−+

23S1 3688.0 3764.7 3671.4 3686.109+0.012
−0.014 ψ(2S) 1−−

13D1 3773.1 3818.9 3783.1 3773.15± 0.33 ψ(3770) 1−−

13D2 3775.6 3847.3 3796.7 − − 2−−

11D2 3778.8 3854.4 3795.1 − − 2−+

13D3 3774.3 3874.7 3800.6 − − 3−−

1D (c.o.g.) (3778.8) (3854.4) (3795.8) − − −
23P0 3866.1 3965.6 3856.7 − ∗ 0++

23P1 3917.9 4034.6 3925.8 − − 1++

21P1 3928.4 4057.6 3933.4 − − 1+−

23P2 3947.2 4089.8 3970.0 3927.2± 2.6 χc2(2P )† 2++

2P (c.o.g.) (3928.4) (4057.6) (3942.7) − − −
31S0 4001.6 4184.7 4048.1 − − 0−+

33S1 4090.1 4270.8 4075.5 4039± 1 ψ(4040) 1−−

23D1 4140.0 4293.3 4145.1 4191± 5 ψ(4160) 1−−

23D2 4148.0 4321.2 4160.2 − − 2−−

21D2 4146.0 4328.1 4159.1 − − 2−+

23D3 4147.2 4348.0 4167.1 − − 3−−

2D (c.o.g.) (4146.0) (4160.4) (4158.9) − − −
41S0 4351.7 4626.8 4393.3 − − 0−+

43S1 4433.0 4708.0 4415.0 4421± 4 ψ(4415) 1−−

† hc(1P ) and χc2(2P ) weren’t experimentally well-established when Ref. [67] (of model 2) was published, so
these states were not used as input in that work.
∗ In the 2014 edition of the PDG the X(3915) was assigned to this cc̄ state, the χc0(2P ) , but due to many
reasons [54] it has been demoted from that position. The X(3915) still has a status of exotic resonance and
there might be some evidence of the “real” χc0(2P ) in Belle and BaBar recent data that indicates its mass
could be around 3837.6 ± 11.5 MeV [53], which is in better agreement with quarkonium models. A recent
example of the X(3915), now denoted by χc0(3915), interpreted as a diquark-antidiquark tetraquark [cs][c̄s̄]

can be found in Ref. [55].
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Chapter 5

Diquarks

Diquarks have gained popularity in the past decade since many recent works on exotics
adopt the diquark-antidiquark picture of tetraquarks (with different assumptions, methods
and flavor of the constituents). Also in baryon spectroscopy diquarks have been used to
explain missing resonances of 3-body model predictions, by factorizing the baryon as a
diquark-quark system. For example, in Ref. [82] they factorize the baryon problem with two
heavy quarks and one strange quark in two consecutive 2-body problems: first the two heavy
quarks bound as a diquark, and then the diquark and strange quark bound as a baryon.
Another example is the quark-diquark model of nucleons, in Ref. [83].

In this chapter we present our calculations for heavy diquarks composed by two charm
quarks cc (which are equivalent for antidiquarks c̄c̄ in our framework). We use the same
models from charmonium, except that due to the different color structure, the color factor

now is κs = −2

3
, which corresponds to the attractive antitriplet color state, as discussed in

Section 2.4.
There is one important consideration regarding the fact that two charm quarks together

is a systems of identical fermions, therefore the total wavefunction has to be antisymmetric
to satisfy the Pauli exclusion principle. The flavor part is symmetric (both charm quarks).
The spatial part parity will depend on the orbital angular momentum, which contributes
with a factor (−1)` (this time there is no extra (−1) factor, because the quarks are both
particles, or both antiparticles). The color part is antisymmetric in the antitriplet color state
(attractive), and symmetric in the sextet color state (repulsive).

Since we adopt the antitriplet color state, we have that for S-wave diquark (` = 0) the
spatial part is symmetric too, which implies that the spin state also has to be symmetric
for the total wavefunction of the diquark to be antisymmetric. Then, S-wave cc diquarks in
antitriplet color state can only be in the spin triplet state (S = 1), which is symmetric.

In general, if we consider the diquark in the antitriplet color state, when the orbital part
is symmetric (` = 2k, k = 0, 1, 2, . . . ), the spin state has to be symmetric too (spin triplet,
S = 1), and when the orbital part is antisymmetric (` = 2k + 1, k = 0, 1, 2, . . . ), the spin
state has to be antisymmetric too (spin singlet, S = 0). A P-wave diquark in antitriplet
color configuration, for example, has to be in the spin singlet S = 0, and so on.

Some models adopt trial wavefunctions that also have parity related to the radial
excitations, and the parity restrictions can be different. In general, from the relativistic
point of view, diquarks with spin 0 have a scalar structure, and diquarks with spin 1 have an
axial-vector structure. Since we adopt a simplified description of non-relativistic quantum
mechanics, we will treat angular momentum considering S, ` and J (total spin, orbital
and total angular momentum, respectively) as good quantum numbers, as we discussed in

77
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Chapter 3.
Notice that going from the color factor −4/3 (for quark-antiquark meson in the singlet

color state) to the color factor −2/3 (for quark-quark in the antitriplet color state) we
introduced a factor 1/2 in this change. Because of that, it is very common to adopt a
general rule of extending this factor 1/2 to the whole potential describing the quark-quark
interaction. This rule is inspired in the interactions inside baryons, where two quarks can also
be considered to form an antitriplet-color diquark, which then can interact with the third
quark and form a singlet color baryon. Since this seems to give satisfactory results in baryon
spectroscopy, it has been also extended to diquarks inside tetraquarks. The prescription is
the following:

Vqq =
1

2
Vqq̄ (5.1)

So based on that, many authors with different tetraquark models (for instance, Refs.
[84, 85] also divide the meson potential by 2 in order to adapt it to the diquark case. Then
in our models, besides the change in the color factor, the string tension b would also be
divided by 2 (and even any constant term like V0).

The gaussian in our second model is automatically divided by two because it is propor-
tional to the color factor. In fact all the spin corrections of vector origin (due to one gluon
exchange) are proportional to the color factor. However the second term of the spin-orbit
interaction (Thomas precession), which is proportional to the string tension b and comes
from the assumption of scalar structure of confinement, is not proportional to the color
factor, what might suggest again that one should also divide the string tension by 2. This
way, not just the zeroth-order potential, but also the first-order spin dependent potential
has a overall factor 1/2 if compared to the meson one (in model 1 and 2).

This prescription could be questionable. The color factor due to one gluon exchange is
very clear, but the origin of the string tension parameter is mainly phenomenological. In
some models (for instance, Refs. [62, 84]) it is assumed that part of the confinement comes
from a vector contribution, so applying the factor 1/2 is better justified.

As discussed along the text, we are interested in building a tetraquark composed of
diquarks in the lowest level of the attractive antitriplet-color configuration, which is more
likely to form a compact and stable diquark. Then it should be an 1S state, with no orbital
nor radial excitation. Taking into account the antisymmetry of identical quarks, it should
be a spin triplet (S = 1), so it is the diquark state analogous to the J/ψ(13S1).

Just to add a little more information, we will also calculate the P-wave diquark (which
needs to be in the spin singlet state (S = 0) to respect the antisymmetry), and the first
radial excitation of both 1S and 1P .

We have chosen three of the results for the charmonium parameters and models that seem
more appropriate to adapt to the diquark and tetraquark context, which will be discussed
in the following sections.

5.1 Model 1
Since we are going to build the tetraquark with diquarks in the ground state with total

spin 1, analogous to the J/ψ(13S1), we can’t choose any parameter set that gives very bad
results for the spin-spin splitting of the S-wave states, and it would also be desirable that
the splittings of the orbitally excited states and of the radial excitations were acceptable
(even though in higher charmonia the effects that are being neglected in both models could
have a more substantial contribution).
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With that in mind, we can already discard the fit of model 1 with 11 states (made just
to compare how the model 2 fixes the spin-spin problem).

The fits with 13 states (with and without a constant term V0) weren’t bad in general
aspects, but none of the spin-dependent splittings were very accurate. Since the use of a
constant term V0 only increased the charm quark mass without any improvement on the
agreement with experimental data, we will discard this set.

Then as our first choice we will use the first fit with model 1 and 13 cc̄ as input, because
it could be reasonable to study of the whole spectrum of the tetraquark, and also a good
example of the complete model 1, even though it is not the best choice to get the ground
state diquark.

First we use the common prescription of equation (5.1), so besides changing the color

factor to κs = −2

3
, we also divide the string tension by 2 (from the meson potential, so we

write explicitly bcc̄) :

V
(0)

1,cc =
1

2
V

(0)
1,cc̄ → V

(0)
1,cc = −2

3

αs
r

+

(
bcc̄
2

)
r (5.2)

The strong coupling constant is considered to be the same used in cc̄ charmonium, and
the first-order (spin-dependent) potential for the quark-quark interaction will be:

〈V (1)
1,Spin,cc(r)〉 =

1

m2

[
4αs
9
|R(0)|2〈S1 · S2〉+

(
αs

〈
1

r3

〉
− (bcc̄/2)

2

〈
1

r

〉)
〈L · S〉+

αs
6

〈
1

r3

〉
〈S12〉

]
(5.3)

In Tables 5.1 and 5.2 we present the results for the diquark wavefunctions and masses,
respectively, using the complete model 1 and the set of parameters obtained with 13 cc̄ as
input.

Table 5.1: Results for diquark cc wavefunctions with model 1. Parameters
from charmonium in Sec. 4.1.1: mc = 1.4155 GeV, αs = 0.4116 and b =
bcc̄/2 = 0.1517/2 GeV2.

N` M (0) [GeV] |R(0)|2 [GeV3] 〈r2〉1/2 [fm]
〈
v2

c2

〉
1S 3.0842 0.2624 0.613 0.122

1P 3.2982 0 0.926 0.144

2S 3.4042 0.2022 1.164 0.174

2P 3.5557 0 1.412 0.197
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Table 5.2: Results for diquark cc masses with model 1. Parameters from
charmonium in Sec. 4.1.1: mc = 1.4155 GeV, αs = 0.4116 and b = bcc̄/2 =
0.1517/2 GeV2.

N2S+1`J 〈T 〉 〈V (0)
V 〉 〈V (0)

S 〉 E(0) M (0) [MeV] 〈V (1)
SS 〉 〈V (1)

LS 〉 〈V (1)
T 〉 Mf

1 [MeV]

13S1 172.4 −132.0 212.9 253.3 3084.2 6.0 0 0 3090.2

11P1 203.6 −71.9 335.4 467.2 3298.2 0 0 0 3298.2

23S1 246.1 −82.5 409.7 573.3 3404.2 4.6 0 0 3408.8

21P1 279.0 −56.1 501.9 724.8 3555.7 0 0 0 3555.7

Notice that the factor 1/2 in the potential caused an attenuation of the interaction. In
comparison with the results for charmonium mesons with the same model and parameters,
the diquarks have lower mass, value of the wavefunction at the origin, velocity of constituents,
spin-dependent interactions and higher root mean square radius. The ground state 13S is
very similar to the J/ψ, but the radial and orbital excitations grow slower. These general
remarks are similar in the next two models for diquarks.

5.2 Model 1 with modified Spin-Orbit
Within the remaining sets of model 1 for charmonium, we can also discard the fit with

only 6 input states (1S and 1P ) and the complete model 1, which didn’t fit well neither the
1S splitting nor the 1P splitting.

But the same fit (with 6 input and model 1) where the term proportional to the
string tension in the spin-orbit interaction was removed, actually resulted in a much better
agreement with experimental values of these 6 states, and it also has the interesting aspect
of low value of the charm quark mass and strong coupling constant αs. So even though the
higher excitations were overestimated, this is a good set to get the diquark mass, since we are
interested in the low lying diquarks. Also, the spin-orbit and tensor interactions vanish for
these particular 4 states of diquark we are calculating, so the modification of the spin-orbit
interaction will only affect the tetraquark splitting later, when we employ this version of
model 1 to describe it.

In Tables 5.3 and 5.4 we present the results for the diquark wavefunctions and masses,
respectively, using the model 1 with modified spin-orbit and the set of parameters obtained
with it, using 6 cc̄ as input (1S and 1P ). Notice that mainly due to the low charm quark
mass, the diquark mass is smaller than in the previous section.
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Table 5.3: Results for diquark cc wavefunctions with model 1 and modified
spin-orbit. Parameters from charmonium in Sec. 4.1.4: mc = 1.2819 GeV,
αs = 0.3289, b = bcc̄/2 = 0.2150/2 GeV2.

N` M (0) [GeV] |R(0)|2 [GeV3] 〈r2〉1/2 [fm]
〈
v2

c2

〉
1S 2.9498 0.2515 0.594 0.156

1P 3.2041 0 0.870 0.198

2S 3.3469 0.2120 1.095 0.240

2P 3.5333 0 1.315 0.277

Table 5.4: Results for diquark cc masses with model 1 with modified spin-
orbit and parameters from charmonium in Sec. 4.1.4: mc = 1.2819 GeV, αs =
0.3289, b = bcc̄/2 = 0.2150/2 GeV2.

N2S+1`J 〈T 〉 〈V (0)
V 〉 〈V (0)

S 〉 E(0) M (0) [MeV] 〈V (1)
SS 〉 〈V (1)

LS 〉 〈V (1)
T 〉 Mf

1 [MeV]

13S1 200.2 −107.3 293.1 386.0 2949.8 5.6 0 0 2955.4

11P1 254.0 −60.9 447.1 640.2 3204.1 0 0 0 3204.1

23S1 307.5 −69.7 545.3 783.1 3346.9 4.7 0 0 3351.6

21P1 355.2 −48.0 662.3 969.4 3533.3 0 0 0 3533.3

5.3 Model 2
In the second model we consider the zeroth-order potential of the form Coulomb plus

linear plus smeared spin-spin. Again we separate spin triplet (S=1) and spin singlet (S=0),

before solving the Schrödinger equation. But now we use κs = −2

3
, and also divide the string

tension by 2:

V
(0)

2,cc(r) = −2

3

αs
r

+

(
bcc̄
2

)
r − 4παs

3m2

(
σ√
π

)3

e−σ
2r2 , (S = 0) (5.4)
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3

αs
r

+

(
bcc̄
2

)
r +
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9m2
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π
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2r2 , (S = 1) (5.5)

The perturbative spin-dependent potential now is only the spin-orbit and tensor:

〈V (1)
2,Spin,cc(r)〉 =

1

m2

[(
αs

〈
1

r3

〉
− (bcc̄/2)

2

〈
1

r

〉)
〈L · S〉+

αs
6

〈
1

r3

〉
〈S12〉

]
(5.6)

We will adopt the parameter set we obtained fitting this model with 13 cc̄ as input.
Remember that with this model we got a very satisfying agreement between predictions and
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experimental data for the whole spectrum.
In Tables 5.5 and 5.6 we present the results for the diquark wavefunctions and masses,

respectively, using this model 2.

Table 5.5: Results for diquark cc wavefunctions with model 2. Parameters
from charmonium in Sec. 4.2.1: mc = 1.4622 GeV, αs = 0.5202, b = bcc̄/2 =
0.1463/2 GeV2, σ = 1.0831 GeV.

N2S+1` M (0) [GeV] |R(0)|2 [GeV3] 〈r2〉1/2 [fm]
〈
v2

c2

〉
13S 3.1334 0.3296 0.593 0.123

11P 3.3530 0 0.906 0.141

23S 3.4560 0.2370 1.147 0.167

21P 3.6062 0 1.395 0.190

Table 5.6: Results for diquark cc masses with model 2. Parameters from
charmonium in Sec. 4.2.1: mc = 1.4622 GeV, αs = 0.5202, b = bcc̄/2 =
0.1463/2 GeV2, σ = 1.0831 GeV.

N2S+1`J 〈T 〉 〈V (0)
V 〉 〈V (0)

S 〉 〈V (0)
SS 〉 E(0) M (0) [MeV] 〈V (1)

LS 〉 〈V (1)
T 〉 Mf

2 [MeV]

13S1 180.4 −173.9 197.9 4.7 209.0 3133.4 0 0 3133.4

11P1 206.7 −93.3 316.2 −0.9 428.7 3353.0 0 0 3353.0

23S1 244.8 −105.7 389.8 2.9 531.7 3456.0 0 0 3456.0

21P1 277.5 −72.3 477.9 −1.2 681.9 3606.2 0 0 3606.2

Notice that the ground state diquark 13S1 has a mass about 35 MeV higher than the
J/ψ.

5.4 Comparisons with the Literature
In the Table 5.7 we show a few results of other works about cc diquarks to be compared

with our results in the previous sections. Due to differences in the models and presentation
in each reference, we show only the information that can be compared to our results.
In particular, we select only the ones that correspond to the (attractive) antitriplet-color
configuration. Some models also consider the (repulsive) sextet color configuration.

As we can see clearly, the 1S diquark is very similar in all the models, with mass around
3 GeV.
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Table 5.7: Results for diquark cc from literature.

N` Mcc [GeV] |R(0)|2 [GeV3] 〈r2〉1/2 [fm] Ref.

1S 3.13 (0.523)2 = 0.2735 0.58 [82]

2S 3.47 (0.424)2 = 0.1798 1.12 [82]

2P 3.35 − 0.88 [82]

1S 3.226 − − [84]

1S 3.067 − − [4] mod. I

1S 3.082 − − [4] mod. II

1P 3.523 − − [4] mod. I

1P 3.513 − − [4] mod. II

In order to compare our own results, in Tables 5.8 and 5.9 we present the results for
the diquark 13S1 used as the building blocks of the tetraquark, with model 1, model 1 with
modified spin-orbit and model 2.

Notice that even though there are differences in the models and respective parameters,
the results for the 13S1 diquarks are very similar.

Table 5.8: Results for cc 13S1 diquark wavefunctions with model 1, model 1
with modified spin-orbit and model 2. Only in model 2 the wavefunction depend
on the spin.

Model mc [GeV] αs bcc̄/2 [GeV2] σ [GeV] M (0) [GeV] |R(0)|2 [GeV3] 〈r2〉1/2 [fm]
〈
v2

c2

〉
1 1.4155 0.4116 0.1517/2 − 3.0842 0.2624 0.613 0.122

1 LS 1.2819 0.3289 0.2150/2 − 2.9498 0.2515 0.594 0.156

2 1.4622 0.5202 0.1463/2 1.0831 3.1334 0.3296 0.593 0.123

Table 5.9: Results for cc 13S1 diquark masses with model 1, model 1 with
modified spin-orbit and model 2.

Model 〈T 〉 〈V (0)
V 〉 〈V (0)

S 〉 E(0) M (0) [MeV] 〈V (1)
SS 〉 〈V (1)

LS 〉 〈V (1)
T 〉 Mf

1 [MeV]

1 172.4 −132.0 212.9 253.3 3084.2 6.0 0 0 3090.2

1 LS 200.2 −107.3 293.1 386.0 2949.8 5.6 0 0 2955.4

Model 〈T 〉 〈V (0)
V 〉 〈V (0)

S 〉 〈V (0)
SS 〉 E(0) M (0) [MeV] 〈V (1)

LS 〉 〈V (1)
T 〉 Mf

2 [MeV]

2 180.4 −173.9 197.9 4.7 209.0 3133.4 0 0 3133.4
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Chapter 6

The All-Charm Tetraquark

In this chapter we will consider the diquark-antidiquark tetraquark, treated as a 2-body
problem. We calculate the T4c tetraquark [cc][cc], considering the diquarks as point-like
structures, with the masses obtained in Chapter 5. For each of the three sets which we used
for the diquarks, we now use the same set with the charmonium meson potential, but instead
of the charm quark mass, we use the diquark mass mcc as input.

There is one big difference besides the constituents masses: the spins. In mesons and
diquarks we had two spin 1/2 particles interacting. Now, since we will consider diquarks in
the lowest level of antitriplet color state (13S1), the tetraquark will be described with the
coupling of two spin 1 particles, so the spin-dependent interactions have more possibilities
and different results. We extensively discussed that in Chapter 3, in particular the lengthy
calculation of the tensor factor in P-wave states, a theme that is sometimes avoided by
the tetraquark works in literature, which tend to consider only ground states where this
interaction vanish.

One of the main characteristics of diquark-antidiquark tetraquarks, is their compactness.
Also, in contrast with meson molecules, they offer the possibility of radial and orbital
excitations.

Based on all the theory developed until here, we finally present the spectrum of the
all-charm tetraquark considering the ground states 1S, the first orbital excitations 1P
(relative to the diquark-antidiquark system), with all the possible combinations of total
spin S = 0, 1, 2 and total angular momentum J (as discussed in Chapter 3), and both
radial excitations 2S and 2P , in a total of 20 T4c states built with antitriplet color state with
spin 1 cc diquark and antidiquark. These 20 pure states were built considering the coupling
of the total spin of the tetraquark ST (composed by the coupling of the total spins of the
diquark Sd and antidiquark Sd̄) with the relative orbital angular momentum LT between
diquark and antidiquark, resulting in a total angular momentum JT of the tetraquark. The
corresponding parity and charge-conjugation quantum numbers of each combination can be
found in Table 2.2.

6.1 Model 1
Just like presented for diquarks, we first used the complete model 1 with parameters

obtained from charmonium in a fit with 13 cc̄ states as input.
In Table 6.1 and 6.2 we present the results for the T4c wavefunctions and masses,

respectively, and in Figure 6.1 we show the mass spectrum including the thresholds for
spontaneous decay into pairs of ηc ηc or J/ψ J/ψ.
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Figure 6.1: Spectrum of T4c obtained with model 1 and ground state (13S)
diquark and antidiquark. Parameters are mcc = 3.0902 GeV, αs = 0.4116 and
b = 0.1517 GeV2.

Table 6.1: Results for T4c wavefunctions obtained with model 1 and ground
state (13S) diquark and antidiquark. Parameters are mcc = 3.0902 GeV, αs =
0.4116 and b = 0.1517 GeV2.

N` M (0) [GeV] |R(0)|2 [GeV3] 〈r2〉1/2 [fm]
〈
v2

c2

〉
1S 6.1687 4.3437 0.285 0.130

1P 6.5954 0 0.507 0.102

2S 6.7026 2.1029 0.634 0.122

2P 6.9481 0 0.813 0.125

Notice how small is the tetraquark. The 1S has a root mean square radius about 0.3
fm, and even the 2P , with one radial and one orbital excitation is smaller than 1 fm. The
mean square velocities of the diquarks inside the tetraquark (within this approximation of
2-body system) are also very small, close to 0.1 of c2, smaller than the charm quark inside
the charmonium mesons, which is probably due to the fact that the diquark mass is about
twice the charm quark mass.

One interesting point is how huge is the value of the wavefunction at the origin,
and therefore also the spin-spin interaction. It is even comparable to the zeroth-order
contributions of the potential. Another reason for its huge value is that the factor 〈S1 · S2〉
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is much higher for the interaction of two spin 1 particles than in the case of two spin
1/2 particles (see Section 3.1). One could question if the perturbative treatment is still
acceptable.

The contribution of the vector (Coulomb) term due to one gluon exchange is also very
big, being predominant for the S-wave states. One modification that would make both the
spin-spin and Coulomb contribution smaller would be to reduce the value of the coupling
constant αs, since both interactions are proportional to it. Actually, it is expected to decrease
as the energy scale increase, so rescaling it to the tetraquark level could be an appropriate
correction. It is also curious that the energy eigenvalue is small but negative for the 1S
states.

Another interesting fact is that almost all the T4c states are above the thresholds for
spontaneous decays in charmonium meson pairs (around 5.97 GeV for an ηc pair and 6.19
GeV for a J/ψ pair), indicating that these could be appropriate channels to search for these
states in experimental measures.

Table 6.2: Results for T4c masses obtained with model 1 and ground state
and (13S) diquark and antidiquark. Parameters are mcc = 3.0902 GeV, αs =
0.4116 and b = 0.1517 GeV2.

N2S+1`J 〈T 〉 〈V (0)
V 〉 〈V (0)

S 〉 E(0) M (0) [MeV] 〈V (1)
SS 〉 〈V (1)

LS 〉 〈V (1)
T 〉 Mf

1 [MeV] JPC

11S0 400.9 −607.2 194.6 −11.8 6168.7 −333.0 0 0 5835.9 0++

13S1 400.9 −607.2 194.6 −11.8 6168.7 −166.0 0 0 6002.3 1+−

15S2 400.9 −607.2 194.6 −11.8 6168.7 166.0 0 0 6335.2 2++

11P1 316.6 −267.4 365.8 414.9 6595.4 0 0 0 6595.4 1−−

13P0 316.6 −267.4 365.8 414.9 6595.4 0 −33.9 −27.8 6533.6 0−+

13P1 316.6 −267.4 365.8 414.9 6595.4 0 −17.0 13.9 6592.3 1−+

13P2 316.6 −267.4 365.8 414.9 6595.4 0 17.0 −2.8 6609.6 2−+

15P1 316.6 −267.4 365.8 414.9 6595.4 0 −50.9 −19.5 6525.0 1−−

15P2 316.6 −267.4 365.8 414.9 6595.4 0 −17.0 19.5 6597.8 2−−

15P3 316.6 −267.4 365.8 414.9 6595.4 0 33.9 −5.6 6623.7 3−−

21S0 376.3 −303.4 449.2 522.1 6702.6 −161.0 0 0 6541.4 0++

23S1 376.3 −303.4 449.2 522.1 6702.6 −80.6 0 0 6622.0 1+−

25S2 376.3 −303.4 449.2 522.1 6702.6 80.6 0 0 6783.1 2++

21P1 387.8 −197.9 577.8 767.7 6948.1 0 0 0 6948.1 1−−

23P0 387.8 −197.9 577.8 767.7 6948.1 0 −29.9 −23.7 6894.5 0−+

23P1 387.8 −197.9 577.8 767.7 6948.1 0 −14.9 11.9 6945.1 1−+

23P2 387.8 −197.9 577.8 767.7 6948.1 0 14.9 −2.4 6960.7 2−+

25P1 387.8 −197.9 577.8 767.7 6948.1 0 −44.8 −16.7 6886.7 1−−

25P2 387.8 −197.9 577.8 767.7 6948.1 0 −14.9 16.6 6949.8 2−−

25P3 387.8 −197.9 577.8 767.7 6948.1 0 29.9 −4.7 6973.3 3−−
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6.2 Model 1 with modified Spin-Orbit
Here we present the results for the T4c using model 1 with the second term of the spin-orbit

interaction removed. The parameters are the ones obtained with the fit of the charmonium
spectrum (the 6 input states 1S and 1P ), and the respective diquark mass obtained with
the same model and parameter set.

In Table 6.3 and 6.4 we present the results for the T4c wavefunctions and masses,
respectively, and in Figure 6.2 we show the mass spectrum.

Figure 6.2: Spectrum of T4c obtained with model 1 with modified spin-orbit
and ground state (13S) diquark and antidiquark. Parameters are mcc = 2.9554
GeV, αs = 0.3289, b = 0.2150 GeV2.

Table 6.3: Results for T4c wavefunctions obtained with model 1 with modified
spin-orbit and ground state (13S) diquark and antidiquark. Parameters are
mcc = 2.9554 GeV, αs = 0.3289, b = 0.2150 GeV2.

N` M (0) [GeV] |R(0)|2 [GeV3] 〈r2〉1/2 [fm]
〈
v2

c2

〉
1S 6.1172 3.1355 0.296 0.126

1P 6.5447 0 0.485 0.121

2S 6.6964 1.9106 0.608 0.146

2P 6.9708 0 0.757 0.158
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Notice that the results are very similar to the ones in the previous section. The only
changes are analogous to the ones that happened in charmonium: the P-wave splitting is a
bit wider, while the spin-spin correction is smaller (and also the contribution of the Coulomb
term), what was expected since the strong coupling constant is smaller in this set. The
energy eigenvalue of the 1S states is positive and large now, in contrast with the results of
the previous section.

It is interesting that the wavefunction properties and the range of masses of the T4c aren’t
so different from the ones in the previous section. The lowest state is also below 6 GeV, and
all the others are within the range 6-7 GeV too. Again, the lowest state is below the ηc pair
threshold and the second-lowest one is above this threshold but below the one for decay in
a J/ψ pair.

Table 6.4: Results for T4c masses obtained with model 1 with modified spin-
orbit and ground state (13S) diquark and antidiquark. Parameters are mcc =
2.9554 GeV, αs = 0.3289, b = 0.2150 GeV2.

N2S+1`J 〈T 〉 〈V (0)
V 〉 〈V (0)

S 〉 E(0) M (0) [MeV] 〈V (1)
SS 〉 〈V (1)

LS 〉 〈V (1)
T 〉 Mf

1 [MeV] JPC

11S0 370.9 −453.2 288.7 206.4 6117.2 −210.0 0 0 5907.3 0++

13S1 370.9 −453.2 288.7 206.4 6117.2 −105.0 0 0 6012.2 1+−

15S2 370.9 −453.2 288.7 206.4 6117.2 105.0 0 0 6222.1 2++

11P1 359.0 −221.5 496.5 633.9 6544.7 0 0 0 6544.7 1−−

13P0 359.0 −221.5 496.5 633.9 6544.7 0 −39.2 −26.1 6479.4 0−+

13P1 359.0 −221.5 496.5 633.9 6544.7 0 −19.6 13.1 6538.2 1−+

13P2 359.0 −221.5 496.5 633.9 6544.7 0 19.6 −2.6 6561.7 2−+

15P1 359.0 −221.5 496.5 633.9 6544.7 0 −58.8 −18.3 6467.6 1−−

15P2 359.0 −221.5 496.5 633.9 6544.7 0 −19.6 18.3 6543.4 2−−

15P3 359.0 −221.5 496.5 633.9 6544.7 0 39.2 −5.2 6578.7 3−−

21S0 431.1 −253.8 608.3 785.6 6696.4 −128.0 0 0 6568.5 0++

23S1 431.1 −253.8 608.3 785.6 6696.4 −64.0 0 0 6632.4 1+−

25S2 431.1 −253.8 608.3 785.6 6696.4 64.0 0 0 6760.4 2++

21P1 465.7 −168.5 762.8 1060.1 6970.8 0 0 0 6970.8 1−−

23P0 465.7 −168.5 762.8 1060.1 6970.8 0 −35.4 −23.6 6911.9 0−+

23P1 465.7 −168.5 762.8 1060.1 6970.8 0 −17.7 11.8 6965.0 1−+

23P2 465.7 −168.5 762.8 1060.1 6970.8 0 17.7 −2.4 6986.2 2−+

25P1 465.7 −168.5 762.8 1060.1 6970.8 0 −53.1 −16.5 6901.2 1−−
25P2 465.7 −168.5 762.8 1060.1 6970.8 0 −17.7 16.5 6969.7 2−−

25P3 465.7 −168.5 762.8 1060.1 6970.8 0 35.4 −4.7 7001.5 3−−
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6.3 Model 2
In this model 2 the spin-spin interaction is treated non-perturbatively. In mesons and

diquarks we had only two possibilities of total spin when combining two spin 1/2 particles
S = 0, 1. Now, since we consider spin 1 diquark and antidiquark, we have three possibilities of
total spin S = 0, 1, 2, and therefore three different zeroth-order potentials (and consequently
three wavefunctions for each N` state):
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We use the set of parameters and diquark mass obtained using the fit of the charmonium
spectrum with 13 input and model 2. In Tables 6.5 and 6.6 we present the wavefunction and
masses of the T4c, respectively, and in Figure 6.3 the mass spectrum.

Figure 6.3: Spectrum of T4c obtained with model 2 and ground state (13S)
diquark and antidiquark. Parameters are mcc = 3133.4 GeV, αs = 0.5202,
b = 0.1463 GeV2, σ = 1.0831 GeV.
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Table 6.5: Results for T4c wavefunctions with model 2 and ground state (13S)
diquark and antidiquark. Parameters are mcc = 3133.4 GeV, αs = 0.5202,
b = 0.1463 GeV2, σ = 1.0831 GeV.

N2S+1` M (0) [GeV] |R(0)|2 [GeV3] 〈r2〉1/2 [fm]
〈
v2

c2

〉
11S 5.9694 8.4219 0.232 0.199

13S 6.0209 7.8384 0.241 0.183

15S 6.1154 6.6727 0.264 0.153

11P 6.5771 0 0.471 0.119

13P 6.5847 0 0.478 0.115

15P 6.5984 0 0.491 0.107

21S 6.6633 2.8414 0.588 0.131

23S 6.6745 2.8528 0.595 0.130

25S 6.6981 2.8616 0.610 0.129

21P 6.9441 0 0.785 0.132

23P 6.9500 0 0.790 0.130

25P 6.9610 0 0.800 0.126

Now we obtain some very interesting changes. First, the masses of the 20 states are still
in the same range between 6 and 7 GeV. It is surprising how this pattern holds in the three
sets. But now there is a significant change in the 1S states: the lowest one is right on the line
of the ηc pair threshold, and now the other two are within this threshold and the one of J/ψ
pair, while in the previous sets, only the second-lowest was below the J/ψ pair threshold.

The most peculiar result is regarding the hyperfine interaction. The wavefunction at the
origin of the 1S states is much larger than the ones of model 1. The spin-spin interaction
is very curious, because it is smaller than in the results with model 1, even though the
wavefunction at the origin is much larger. The attenuation of the spin-spin interaction seems
to be an effect of the gaussian function. Another interesting point is that the Coulomb
contribution in the 1S states is predominant over the confinement term, what causes the
energy eigenvalue to be large and negative for the three 1S states, indicating that the gluon
exchange between diquarks is the dominant binding mechanism. However, we have to take
into account that the αs parameter is very large in model 2. Also, it is important to notice
that the spin-spin interaction is now part of the energy eigenvalue.
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Table 6.6: Results for T4c masses with model 2 and ground state (13S) diquark
and antidiquark. Parameters are mcc = 3133.4 GeV, αs = 0.5202, b = 0.1463
GeV2, σ = 1.0831 GeV.

N2S+1`J 〈T 〉 〈V (0)
V 〉 〈V (0)

S 〉 〈V (0)
SS 〉 E(0) M (0) [MeV] 〈V (1)

LS 〉 〈V (1)
T 〉 Mf

2 [MeV] JPC

11S0 624.0 −966.6 151.1 −106.0 −297.3 5969.4 0 0 5969.4 0++

13S1 574.8 −928.0 157.6 −50.2 −245.8 6020.9 0 0 6020.9 1+−

15S2 479.4 −847.5 172.5 44.3 −151.3 6115.4 0 0 6115.4 2++

11P1 372.6 −371.8 325.3 −15.8 310.3 6577.1 0 0 6577.1 1−−

13P0 358.9 −364.3 330.7 −7.4 318.0 6584.7 −59.4 −44.8 6480.4 0−+

13P1 358.9 −364.3 330.7 −7.4 318.0 6584.7 −29.7 22.4 6577.4 1−+

13P2 358.9 −364.3 330.7 −7.4 318.0 6584.7 29.7 −4.5 6609.9 2−+

15P1 335.4 −350.8 340.7 6.4 331.7 6598.4 −75.9 −27.2 6495.4 1−−

15P2 335.4 −350.8 340.7 6.4 331.7 6598.4 −25.3 27.1 6600.2 2−−

15P3 335.4 −350.8 340.7 6.4 331.7 6598.4 50.6 −7.7 6641.2 3−−

21S0 410.8 −397.0 404.6 −21.8 396.6 6663.3 0 0 6663.3 0++

23S1 408.7 −398.2 408.7 −11.4 407.8 6674.5 0 0 6674.5 1+−

25S2 403.0 −400.7 416.8 12.3 431.4 6698.1 0 0 6698.1 2++

21P1 414.9 −262.9 537.5 −12.0 677.4 6944.1 0 0 6944.1 1−−

23P0 407.8 −260.0 541.2 −5.7 683.3 6950.0 −47.9 −35.6 6866.5 0−+

23P1 407.8 −260.0 541.2 −5.7 683.3 6950.0 −23.9 17.8 6943.9 1−+

23P2 407.8 −260.0 541.2 −5.7 683.3 6950.0 23.9 −3.6 6970.4 2−+

25P1 394.5 −254.2 548.7 5.2 694.3 6961.0 −63.1 −22.2 6875.6 1−−

25P2 394.5 −254.2 548.7 5.2 694.3 6961.0 −21.0 22.2 6962.1 2−−

25P3 394.5 −254.2 548.7 5.2 694.3 6961.0 42.1 −6.3 6996.7 3−−
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6.4 Comparisons with the Literature
In this section we restrict ourselves to point out a few results of other works that also

investigate the existence and properties of this state composed of four charm quarks. A
historical overview of the evolution of the literature on this subject can be found in the
introduction of our work, in Section 1.3, where these and other works were commented.
Some of these references also consider the sextet structure of the diquarks (which can also
lead to a color singlet tetraquark). In the following tables we try to compile the essential
results of some of them. First, we show the results of Ref. [4] in Tables 6.7 and 6.8.

Table 6.7: Results for the T4c mass (without spin-corrections) from Ref. [4].

N` M
(0)
T4c [GeV] Model Color

1S 6.437 I 3̄− 3

1S 6.450 II 3̄− 3

1S 6.383 I 6− 6̄

1S 6.400 II 6− 6̄

1S 6.276 Bag 3̄− 3

1S 6.252 Bag 6− 6̄

1P 6.718 I 3̄− 3

1P 6.714 II 3̄− 3

1P 6.832 I 6− 6̄

1P 6.822 II 6− 6̄

Table 6.8: Results for the spin shifts of the T4c from Ref. [4].

N` M
(0)
T4c [GeV] JP (C) SS [GeV] LS + T [GeV] Model Color

1S 6.383 0+ 0.017 - I 6− 6̄

1S 6.437 0+ −0.011 - I 3̄− 3

1S 6.437 1+ 0.003 - I 3̄− 3

1S 6.437 2+ 0.032 - I 3̄− 3

1P 6.832 1−− 0.011 0 I 6− 6̄

1P 6.718 0−+ 0.010 −0.023 I 3̄− 3

1P 6.718 1−− 0.020 −0.024 I 3̄− 3

In this work a variational method with Gaussian trial wavefunctions was employed
to study all-heavy tetraquarks, using a 4-body coordinate system. The interactions were
described with potential due to exchange of color octets in 2-body forces. Two potentials
were used: the model I is a Cornell-type (Coulomb plus linear) and the model II is of the
form A+Brβ. Also a version of the MIT Bag model was used with the Born-Oppenheimer
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approximation. Both color structures were considered, 3̄− 3 and 6− 6̄. S-wave and P-wave
were considered with both potentials, and spin shifts were calculated with the Cornell-like
potential.

In Table 6.9 we compile the results of Refs. [47, 48], where the T4c production was studied.
The estimates for the T4c are very similar to our work, where the tetraquark is considered as
a diquark-antidiquark in the 3̄− 3 configuration. They used the diquark results of Ref. [82],
where the cc diquark was calculated as a baryon constituent (we also compared these diquark
results with ours in Section 5.4). In this work the same strategy of dividing the problem in 2-
body systems is used, but only S-wave are calculated, and the spin-spin splitting is considered
between each spin 1/2 constituent pair, using the wavefunction at the origin of the diquark
or of the charmonium, depending on the pair interacting.

Table 6.9: Results for the T4c from Refs. [47, 48].

N` M
(0)
T4c [GeV] |Ψ(0)| [GeV3/2] 〈r〉 [fm] JPC Mf

T4c [GeV] Color

1S 6.12 0.47 0.29 0++ 5.97 3̄− 3

1S 6.12 0.47 0.29 1+− 6.05 3̄− 3

1S 6.12 0.47 0.29 2++ 6.22 3̄− 3

In Table 6.10 we now compare our results for the S-wave T4c with a few of the recent
diquark-antidiquark works, the one with antitriplet diquark from 2012 [47, 48], and the two
from 2016, the color-magnetic model [50] and the Sum Rules [51]:

Table 6.10: Comparison of our results for the S-wave T4c.

JPC Mf
1 [GeV] Mf

1−LS [GeV] Mf
2 [GeV] Ref. [47, 48] Ref. [50] Ref. [51]

0++ 5.8359 5.9073 5.9694 5.966 5.617− 6.254 6.44− 7.15

1+− 6.0023 6.0122 6.0209 6.051 5.720− 6.137 6.37− 6.51

2++ 6.3352 6.2221 6.1154 6.223 5.777− 6.194 6.51− 6.37

At last, in Table 6.11 we compare our results for the P-wave T4c with a the diquark-
antidiquark predictions of Chao [32] from 1981, the recent diquark-antidiquark Sum Rules
[51] from 2016 and the lattice results [44] from 2006:

Table 6.11: Comparison of our results for the P-wave T4c.

JPC N2S+1`J Mf
1 [GeV] Mf

1−LS [GeV] Mf
2 [GeV] Ref. [32] Ref. [51] Ref. [44]

1−− 11P1 6.5954 6.5447 6.5771 6.55− 6.82 6.83− 6.84 6.420

1−− 15P1 6.5250 6.4676 6.4954 6.39



Conclusion

This work started as an undergraduate research project to investigate exotic states
containing charm quarks [86]. During its development, we dealt with some elements of
Quantum Chromodynamics, Quantum Mechanics, numerical methods, charmonium spec-
troscopy, effective models of heavy quark bound states and the multiquark model of diquark-
antidiquark tetraquark.

Even tough we did not dive deep in the deduction of the effective potentials from Rela-
tivistic Quantum Field Theory, we managed to trace a consistence trail from a satisfactory
reproduction of the charmonium spectrum to the all-charm tetraquark. During that path
we learned a lot about these fields of research, and tasted the excitement of keeping track
of the recent developments in the area.

Regarding the objectives of the work, we believe to have succeed in our goals. We had
the initial proposal of using non-relativistic quarkonium models to study tetraquarks with
charm. We faced technical difficulties when for example we confronted the tensor interaction
between diquarks. We couldn’t find any comprehensive work in the literature that dealt with
that in a simple but satisfactory way. So we studied carefully how the tensor works in other
contexts and after great discussions with colleagues and professors, we developed a strategy
to calculate it with a method that gave results consistent with the results known for two
spin 1/2 particles. It might not be the best approach (and we really welcome any critic or
alternative), but it made it possible to consider P-wave tetraquark without running away
from the problem.

The same effort was made to find a reliable potential and set of parameters. We studied
the methods commonly adopted in the simple charmonium models and the experimental
progress on its spectroscopy. We were not satisfied with simply picking up any model and
set of parameters from literature without probing it and understanding how it worked and
the limitations it had. After many preliminary calculations, we concluded that a fitting
procedure was our best alternative. Then when the initially adopted model 1 proved to have
a few problems in accommodating the experimental data, we looked for a improved version
that could do that without changing the whole framework. The model 2 proved itself as a
great alternative, and allowed some interesting comparisons between models.

This work could be extended by considering other possibilities, like the color structure
of sextet diquarks, different alternatives on how to deal with the string tension and strong
coupling constant in the diquark and tetraquark interaction, the inclusion of more terms
in the potential like the relativistic correction in the kinetic energy, or even adopting other
models to describe the quarks interactions. Also, applying the same model to the case of
four bottom quarks is natural extension of this work.

About the all-charm tetraquark, we managed to obtain results compatible with the the
literature, and we applied this diquark-antidiquark model to it with some originality, since
this detailed analysis of the spin interactions, in particular of the tensor, applied specifically
to the tetraquark composed of four charm quarks had never been done before, as it is
of our knowledge. The fact that it is relatively simple compared to the 4-body treatment
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and relativistic models allows one to study many of its properties with clarity. Also, it is
not just a speculative state, but a great testing probe for the forthcoming higher energy
experiments, which makes it one key to understanding the nature of the quickly growing
fauna of exotic multiquark candidates. The evolution of our comprehension of these new
structures of matter opens new paths towards the understanding of the fundamental forces
and particles that compose our reality.



Appendix A

Extra Tables: Charmonium

Here present a few extra results we omitted from the main text.

A.1 Model 1: FIT with 11 input

Table A.1: Results for charmonium cc̄ wavefunctions with model 1 and 11
input states. Parameters are mc = 1.4803, GeV, αs = 0.5659, b = 0.1451
GeV2.

N` M (0) [GeV] |R(0)|2 [GeV3] 〈r2〉1/2 [fm]
〈
v2

c2

〉
1S 3.0517 1.4909 0.395 0.288

1P (c.o.g.) 3.5230 0 0.676 0.250

2S 3.6625 0.8037 0.846 0.299

1D (c.o.g.) 3.8062 0 0.892 0.277

2P (c.o.g.) 3.9485 0 1.070 0.315

3S 4.0726 0.6533 1.213 0.357

2D (c.o.g.) 4.1702 0 1.252 0.344

4S 4.4138 0.5827 1.531 0.416
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Table A.2: Results for charmonium cc̄ masses with model 1 and 11 input
states. Parameters are mc = 1.4803, GeV, αs = 0.5659, b = 0.1451 GeV2.

N2S+1`J 〈T 〉 〈V (0)
V 〉 〈V (0)

S 〉 E(0) M (0) [MeV] 〈V (1)
SS 〉 〈V (1)

LS 〉 〈V (1)
T 〉 Mf

1 [MeV]

11S0 426.6 −594.3 258.8 91.1 3051.7 −257.0 0 0 2795.0

13S1 426.6 −594.3 258.8 91.1 3051.7 85.6 0 0 3137.2

13P0 370.7 −274.8 466.5 562.4 3523.0 0 −78.5 −34.2 3410.3

13P1 370.7 −274.8 466.5 562.4 3523.0 0 −39.2 17.1 3500.9

11P1 (c.o.g.) 370.7 −274.8 466.5 562.4 3523.0 0 0 0 3523.0

13P2 370.7 −274.8 466.5 562.4 3523.0 0 39.2 −3.4 3558.8

21S0 442.9 −313.4 572.5 701.9 3662.5 −138.0 0 0 3524.2

23S1 442.9 −313.4 572.5 701.9 3662.5 46.1 0 0 3708.7

13D1 410.5 −192.9 628.1 845.6 3806.2 0 −13.0 −4.3 3789.0

13D2 410.5 −192.9 628.1 845.6 3806.2 0 −4.3 4.3 3806.2

11D2 (c.o.g.) 410.5 −192.9 628.1 845.6 3806.2 0 0 0 3806.2

13D3 410.5 −192.9 628.1 845.6 3806.2 0 8.7 −1.2 3813.7

23P0 466.7 −206.0 727.3 987.9 3948.5 0 −71.9 −30.0 3846.6

23P1 466.7 −206.0 727.3 987.9 3948.5 0 −36.0 15.0 3927.6

21P1 (c.o.g.) 466.7 −206.0 727.3 987.9 3948.5 0 0 0 3948.5

23P2 466.7 −206.0 727.3 987.9 3948.5 0 36.0 −3.0 3981.5

31S0 528.4 −236.7 820.2 1112.0 4072.6 −112.0 0 0 3960.1

33S1 528.4 −236.7 820.2 1112.0 4072.6 37.5 0 0 4110.1

23D1 509.8 −160.0 859.7 1209.6 4170.2 0 −15.4 −4.1 4150.7

23D2 509.8 −160.0 859.7 1209.6 4170.2 0 −5.1 4.1 4169.1

21D2 (c.o.g.) 509.8 −160.0 859.7 1209.6 4170.2 0 0 0 4170.2

23D3 509.8 −160.0 859.7 1209.6 4170.2 0 10.3 −1.2 4179.3

41S0 616.1 −197.6 1035.0 1453.2 4413.8 −100.0 0 0 4313.5

43S1 616.1 −197.6 1035.0 1453.2 4413.8 33.4 0 0 4447.2
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A.2 Model 2: FIT with 11 input

Table A.3: Results for charmonium cc̄ wavefunctions with model 2 and 11
input states. Parameters are mc = 1.4685 GeV, αs = 0.5285, b = 0.1458
GeV2, σ = 1.1779 GeV.

N2S+1` M (0) [GeV] |R(0)|2 [GeV3] 〈r2〉1/2 [fm]
〈
v2

c2

〉
11S 2.9816 1.7151 0.366 0.349

13S 3.0900 1.2956 0.415 0.258

11P 3.5156 0 0.674 0.254

13P (c.o.g.) 3.5246 0 0.686 0.243

21S 3.6303 0.7961 0.833 0.304

23S 3.6718 0.7482 0.863 0.289

11D 3.7994 0 0.899 0.274

13D (c.o.g.) 3.8001 0 0.900 0.272

21P 3.9336 0 1.070 0.318

23P (c.o.g.) 3.9432 0 1.082 0.308

31S 4.0432 0.6353 1.208 0.356

33S 4.0716 0.6174 1.229 0.349

21D 4.1576 0 1.260 0.341

23D (c.o.g.) 4.1589 0 1.262 0.339

41S 4.3837 0.5634 1.531 0.413

43S 4.4061 0.5543 1.548 0.409
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Table A.4: Results for charmonium cc̄ masses with model 2 and 11 input
states. Parameters are mc = 1.4685 GeV, αs = 0.5285, b = 0.1458 GeV2,
σ = 1.1779 GeV.

N2S+1`J 〈T 〉 〈V (0)
V 〉 〈V (0)

S 〉 〈V (0)
SS 〉 E(0) M (0) [MeV] 〈V (1)

LS 〉 〈V (1)
T 〉 Mf

2 [MeV]

11S0 515.7 −632.5 233.5 −93.9 22.8 2981.6 0 0 2981.6

13S1 381.4 −540.7 267.4 23.1 131.2 3090.0 0 0 3090.0

13P0 358.8 −260.4 465.3 2.1 565.8 3524.6 −69.3 −30.9 3424.4

13P1 358.8 −260.4 465.3 2.1 565.8 3524.6 −34.6 15.4 3505.4

11P1 375.7 −267.7 456.2 −7.4 556.8 3515.6 0 0 3515.6

13P2 358.8 −260.4 465.3 2.1 565.8 3524.6 34.6 −3.1 3556.1

21S0 449.6 −302.7 555.6 −30.9 671.5 3630.3 0 0 3630.3

23S1 427.1 −297.1 572.7 10.3 713.0 3671.8 0 0 3671.8

13D1 402.9 −184.4 622.6 0.2 841.3 3800.1 −11.2 −4.0 3785.0

13D2 402.9 −184.4 622.6 0.2 841.3 3800.1 −3.7 4.0 3800.4

11D2 404.7 −184.9 621.4 −0.6 840.6 3799.4 0 0 3799.4

13D3 402.9 −184.4 622.6 0.2 841.3 3800.1 7.4 −1.1 3806.4

23P0 455.3 −195.7 722.6 2.2 984.4 3943.2 −63.8 −27.1 3852.3

23P1 455.3 −195.7 722.6 2.2 984.4 3943.2 −31.9 13.6 3924.9

21P1 470.1 −200.9 713.3 −7.8 974.8 3933.6 0 0 3933.6

23P2 455.3 −195.7 722.6 2.2 984.4 3943.2 31.9 −2.7 3972.4

31S0 527.0 −225.9 804.0 −20.7 1084.4 4043.2 0 0 4043.2

33S1 516.1 −226.1 815.6 7.2 1112.8 4071.6 0 0 4071.6

23D1 501.3 −152.9 851.4 0.3 1200.1 4158.9 −13.6 −3.8 4141.5

23D2 501.3 −152.9 851.4 0.3 1200.1 4158.9 −4.5 3.8 4158.2

21D2 504.1 −153.7 849.4 −1.0 1198.8 4157.6 0.0 0.0 4157.6

23D3 501.3 −152.9 851.4 0.3 1200.1 4158.9 9.1 −1.1 4166.9

41S0 611.6 −188.0 1018.0 −16.3 1424.9 4383.7 0.0 0.0 4383.7

43S1 604.5 −189.4 1026.0 5.8 1447.3 4406.1 0.0 0.0 4406.1
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