• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.43.2004.tde-07082013-160530
Document
Author
Full name
Andrei Anatolyevich Smirnov
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2004
Supervisor
Committee
Guitman, Dmitri Maximovitch (President)
Chestakov, Ivan
Escobar, Bruto Max Pimentel
Gomes, Marcelo Otavio Caminha
Rosenfeld, Rogério
Title in Portuguese
A equação de Dirac com uma superposição do campo de Aharonov-Bohm e um campo magnético uniforme colinear
Keywords in Portuguese
Análise funcional
Equações de onda
Teoria de campos
Abstract in Portuguese
Neste trabalho é estudada a equação de Dirac com uma superposição do campo de Aharonov-Bohm (AB) e de um campo magnético colinear uniforme, que nós chamamos de campo magneto-solenoidal (MS). Usando a teoria de von Neumann das extensões auto-adjuntas de operadores simétricos, nós construímos no caso de 2+ 1 dimensões uma família uni paramétrica de hamiltonianos de Dirac auto-adjuntos especificados pelas condições de contorno no solenóide AB, e encontramos o espectro e as auto-funções para cada valor do parâmetro de extensão. Em seguida, reduzimos o problema em 3+ 1 dimensões ao problema em 2+ 1 dimensões pela escolha apropriada do operador de spin, o que permite realizar todo o programa de construção de extensões auto-adjuntas, e assim, também permite obter os espectros e auto-funções em termos do problema em 2+1 dimensões. Ademais, nós apresentamos o método reduzido de extensões auto-adjuntas do hamiltoniano radial de Dirac com o campo MS. Depois nós consideramos o caso regularizado do solenóide de raio finito. Nós estudamos a estrutura das autofunções e a sua dependência com o comportamento do campo magnético dentro do solenóide. Considerando o limite de raio zero para o valor fixo do fl.mm magnético, nós obtemos um hamiltoniano auto-adjunto particular que corresponde à condição de contorno específica para o caso do campo magneto-solenoidal com o solenóide AB. Nós chamamos estes casos particulares das extensões auto-adjuntas extensões naturais. Para completeza da investigação nós estudamos também o comportamento de uma partícula sem spin no campo magneto-solenoidal regularizado. A etapa seguinte da investigação é a construção das funções de Green da equação de Dirac com o campo MS em 2 + 1 e 3 + 1 dimensões. As funções de Green são construídas por meio de um somatório sobre o conjunto completo das soluções da equação de Dirac. Ao construir as funções de Green, nós usamos as soluções exatas da equação de Dirac, que são relacionadas a valores específicos do parâmetro de extensão. Estes valores correspondem às extensões naturais. Depois nós estendemos os resultados ao caso em 3 + 1 dimensões. Nós apresentamos também as funções de Green não relativísticas e as funções de Green de uma partícula relativística escalar.
Title in English
The Dirac equation with a superposition of the Aharonov-Bohm field and a uniform magnetic collinear field
Keywords in English
Field theory
Functional analysis
Wave equations
Abstract in English
ln the present work the Dirac equation with the supereposition of the Aharonov-Bohm (AB) field and a collinear uniform magnetic field, which we call a magnetic-solenoid (MS) field, is studied. Using von Neumann's theory of the self-adjoint extensions of symmetric operators, in 2 + 1 dimensions we construct a one-parameter family of self-adjoint Dirac Hamiltonians specified by boundary conditions at the AB solenoid and find the spectrurn and eigenfunctions for each value of the extension parameter. We reduce the (3 + 1)-dimensional. problem to the (2 + 1)-dimensional one by a proper choice of the spin operator, which allows realizing all the programme of constructing self-adjoint extensions and finding spectra and eigenfunctions in the previous tenns. We also present the reduced self-adjoint extension method for the radial Dirac Hamiltonian with the MS field. We then turn to the regularized case of finite-radius solenoid. We study the structure of the corresponding eigenfunctions and their dependence on the behavior of the magnetic field inside the solenoid. Considering the zero-radius limit with the fixed value of the magnetic flux, we obtain a concrete self-adjoint Hamiltonian corresponding to a specific boundary condition for the case of the magnetic-solenoid field 'W-ith the AB solenoid. These particular cases of self-adjoint extensions we call natural extensions. For completeness we also study the behavior of the spinless particle in the regularized magnetic-solenoid field. Successive step of our investigation is a construction of the Green functions of the Dirac equation with the MS field in 2 + 1 and 3 + 1 dimensions. The Green functions are constructed by means of summation over the complete set of solutions of the Dirac equation. Constructing the Green functions, we use the exact solutions of the Dirac equation that are related to the specific values of the extension parameter. These values correspond to the natural extension. Then we extend the results to the (3 + 1)-dimensional case. For the sake of completeness, we present nonrelativistic Green functions and Green functions of the relativistic scalar particle.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
45511SmirnovAndrei.pdf (876.72 Kbytes)
Publishing Date
2013-08-26
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.