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Two things are infinite: the Universe and human stupidity; and I am not yet
completely sure about the Universe.

Albert Einstein
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Resumo

Nesta dissertação exploramos as caracteŕısticas da formulação de uma Teoria de Gauge
para part́ıculas de spin cont́ınuo (CSP). Para tornar a nossa discussão o mais auto-
contida posśıvel, começamos por introduzir todas as informações básicas de Teoria de
Grupos − assim como de Teoria de Representações − que são necessárias para enteder
de onde surgem as CSPs. A partir dáı aplicamos o que foi apresentado sobre Teoria
de Grupos para o estudo dos grupos de Lorentz e de Poincaré, até o ponto em que
conseguimos construir a representação CSP. Finalmente, após de uma rápida revisão
do formalismo de spin altos (Higher Spins), através do estudo das ações de Schwinger-
Fronsdal, damos ińıcio ao estudo de uma Teoria de Campos para CSPs. Estudamos e
exploramos todas as simetrias locais da ação que descreve uma CSP livre, assim como
todas as sutilezas que surgem a partir da introdução de uma nova coordenada, que
resulta em um espaço-tempo estendido no qual a ação é definida. Terminamos nossa
discussão mostrando que todo o conteúdo f́ısico decorrente da ação para uma CSP livre
coincide com o que vimos em nossa discussão de Teoria de Grupos.
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Abstract

In this dissertation we explore the features of a Gauge Field Theory formulation for
continuous spin particles (CSP). To make our discussion as self-contained as possible,
we begin by introducing all the basics of Group Theory − and representation theory −
which are necessary to understand where the CSP come from. We then apply what we
learn from Group Theory to the study of the Lorentz and Poincaré groups, to the point
where we are able to construct the CSP representation. Finally, after a brief review of
the Higher-Spin formalism, through the Schwinger-Fronsdal actions, we enter the realm
of CSP Field Theory. We study and explore all the local symmetries of the CSP action,
as well as all of the nuances associated with the introduction of an enlarged spacetime,
which is used to formulate the CSP action. We end our discussion by showing that
the physical contents of the CSP action are precisely what we expected them to be, in
comparison to our Group Theoretical approach.
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Chapter 1

Introduction

The Poincaré group is of fundamental importance in Theoretical Physics. When one
attempts to extend the validity of Quantum Mechanics to include particles that move
relativistically, one ends up with Quantum Field Theory, the ‘marriage’ of Quantum
Mechanics and Special Relativity. When we take into account the effects of Special
Relativity, we find that our systems are invariant under a different, larger symmetry
group. In the case of Quantum Mechanics, for instance, our systems are invariant under
Galilean transformations, while in Quantum Field Theory, our systems are invariant
under Poincaré transformations.

In fact, Poincaré symmetry is so powerful that one needs to go to the extreme
scenarios of Nature for it to lose its validity. When one attempts to study large masses
of the cosmic scale, that is, one invokes the concepts of the General Theory of Relativity,
then one must make use of a even more suitable and powerful group, the group of
general coordinate transformations. Although this is an equally interesting group, we
will not attempt to study it in this dissertation. Instead, we will explore some aspects
of the Poincaré, analysing some not well known aspects.

Among Lie groups, we have what is called a Lie algebra and a representation of a Lie
group’s Lie algebra [3]. In these representations, we can build all the states described
by a Quantum Theory. The study of all possible irreducible representations of the
Poincaré group shows that they describe states corresponding to massive and massless
particles of integer and half-integer spin, and also the Continuous Spin Particle (CSP),
which was first studied by Wigner [1].

Out of all these particles, only the CSP has not yet been detected. The main reason
for this is because we still do not have a Quantum Field Theory that can describe free
nor interacting CSPs. In fact, it was only very recently that local, covariant actions
describing a single CSP degree of freedom were proposed. In 2014, Schuster & Toro
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proposed an action describing a bosonic CSP [12], followed by further analysis by
Rivelles [13, 15]. Later, in 2015, an action describing a fermionic CSP was proposed by
Bekaert, Najafizadeh, and Setare [16]. As already mentioned, CSP-matter interactions
(or even CSP-CSP interactions) are unknown1, but the actions proposed in [12, 13, 16]
are big motivations for us to seek the form of such interactions.

Another motivation for the study of CSPs is their analogues in 2 +1 dimensions, as
a form of massless generalization of anyons. Although we will not analyse this case in
this dissertation, we refer the reader to [12, 17] and their references for further reading.

In this dissertation, we will study the realm of bosonic CSPs2, studying them first
from a Group Theoretical approach and then from a Field Theoretical approach. In
chapter 2, we will introduce everything we will need of Group Theory and Represen-
tation Theory in order to understand where CSPs come from [2, 3]. In chapter 3,
we study the Poincaré group and its main features [2, 3]. In chapter 4 we study the
theory of higher spin particles, through the Schwinger-Fronsdal formalism [11]. Fi-
nally, in chapter 5, we approach the problem of CSPs from a Field Theoretical point
of view, through the analysis of the recently proposed action that describes a single,
free, bosonic CSP by Schuster & Toro [12] and the further analysis of this proposal
made by Rivelles [13, 15]. In chapter 5 we also show the connection between the for-
malism proposed in [12, 13, 15] with that of higher spin particles [11] and what was
available previously in the CSP literature [1, 14], as well as check the validity of the
theory in comparison to our Group Theoretical approach to the problem [2]. We also
refer the reader to Appendix A for a better understanding of the notations we will use
throughout the dissertation. Appendices B and C contain identities and calculations
that correspond to some of the results presented in chapter 5, but were too long to be
kept in the main text.

1If you look in [12, 16], you can see that CSPs can be coupled to currents, but nothing is known
about the currents symmetries.

2Studying the fermionic case should be straightforward after the reader becomes familiar with the
content of this dissertation.
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Chapter 2

Group Theory

In this chapter we would like to introduce all the basic concepts of Group Theory and
Group Representations that we will need throughout this dissertation.

Section 2.1 contains an introduction to Group Theory and all the necessary defi-
nitions we will need. In section 2.2 the same is done for Group Representations. We
then end the chapter applying the presented definitions to a concrete example, namely
the SO(3) group.

All of the material presented in this chapter is based on the great texts available on
the references [2, 3]. Still, we point out some references to aid the reader to better un-
derstand some of the connections between the Group Theory and Quantum Mechanics,
which would digress us from the main subject of this dissertation.
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2.1 Basic Definitions

Group theory is the natural way to formulate symmetry principles and understand their
applications to both Mathematics and Physics. As every physicist learns, symmetries
are extremely important when analysing a problem, as they can often lead to drastic
simplifications. With this in mind, we provide here the basics of Group Theory which
we will need to study the problem of continuous spin particles (CSP).

A non-null set {G : a, b, c . . .} is said to form a group if there is an operation,
called group multiplication, which associates any given pair of elements a, b ∈ G with
a well-defined product a · b ∈ G, such that:

• The operation is associative, i.e. a · (b · c) = (a · b) · c, ∀ a, b, c ∈ G;

• Among the elements of G, there is an element E, called the identity, which has
the property a · E = E · a = a.

• For each a ∈ G, there is an element a−1 ∈ G, called the inverse of a, which has
the property a · a−1 = a−1 · a = E.

The group multiplication operation is, in general, dependent on the ordering of the
elements of the group involved in said operation. A particular category of groups is
that for which the group multiplication is commutative, i.e. a · b = b · a, ∀ a, b ∈ G.
In this case, the group is said to be an Abelian group. Otherwise, when the group
multiplication is not commutative, the group is said to be non-Abelian.

Another definition which will be important when we study the Lorentz and the
Poincaré groups in the next chapters will be that of a homomorphism. A homomor-
phism from a group G to another group G′ is a mapping (not necessarily one-to-one)
which preserves group multiplication. In other words, if gi ∈ G → g′i ∈ G′ and
g1g2 = g3, then g′1g

′
2 = g′3 (from this point forward we will omit the · and leave the

group multiplication operation implicit). A special case of a homomorphism is when
the mapping is one-to-one. This is called an isomorphism and the groups are said to
be isomorphic.

A subgroup of G is defined as a subset H of a group G which forms a group under
the same multiplication rules as G. Then, let H1 and H2 be subgroups of a group G. If
every element of H1 commutes with any element of H2, i.e. h1h2 = h2h1 for all h1 ∈ H1

and h2 ∈ H2, then G is said to be the direct product of H1 and H2; symbolically we
write G = H1 ⊗H2.
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2.2 Group Representations

If there is a homomorphism from a group G to a group of operators U(G) on a linear
vector space V , we say that U(G) forms a representation of the group G. The dimension
of the representation is the dimension of the vector space V .

The group representation is said to be unitary if the group representation space
is an inner product space and if the operators U(G) are unitary for all g ∈ G. A
representation U(G) on V is irreducible if there is no non-trivial invariant subspace in
V with respect to U(G). Otherwise, the representation is reducible. In the latter case,
if the orthogonal complement of the invariant subspace is also invariant with respect
to U(G), then the representation is said to be fully reducible.

For a given finite group G, the group algebra g consists of all formal linear com-
binations of gi, r = gir

i, where gi ∈ G and {ri} are complex numbers. In ad-
dition, multiplication of one element of the algebra (q) by another (r) is given by
rq = gigjr

iqj = gk(∆k
ijr

iqj), where ∆k
ij are determined by the group multiplication rule

as indicated. An element C of the group which commutes with all other elements, i.e.
Cr = rC, ∀r ∈ G, is said to be a Casimir element, or Casimir operator of the group.

The groups we will be working with are matrix Lie groups, which we will define
after considering the following. The General Linear Group, GL(N ;R), is the group of
all N × N invertible matrices with real entries. The General Linear Group over the
complex numbers, denoted by GL(N ;C), is the group of all N ×N invertible matrices
with complex entries. A matrix Lie group is any subgroup G of GL(N ;C) with the
following property: if Am is any sequence of matrices in G, and Am converges to some
matrix A, then either A ∈ G or A is not invertible.

This allows us to cast yet another definition for the group algebra: if G is a matrix
Lie group, then the Lie algebra of G, denoted by g, is the set of all matrices X such
that e−itX ∈ G for all real numbers t. This means we have defined an exponential
mapping, which takes elements of the algebra to elements of the group. X is said to
be the generator of the group G.

An example: The SO(3) group

Classical Mechanics and the SO(3) group

We begin our discussion with a simple review of rotations in three dimensional Classical
Mechanics. We can label the space coordinates (x, y, z) in the more compact form xi,
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with i = 1, 2, 3 so that (x1, x2, x3) ≡ (x, y, z). Following this notation, rotations in
three dimensional Euclidean space are transformations that take xi to x′i such that

xi → x′i = Rijxj, (2.1)

where R is a 3 × 3 matrix that represents a transformation that preserves the length
of a vector |~x|2 ≡ xixi. When we choose these matrices to have determinant equal to 1
(called special matrices) and to respect orthogonality (RTR = RRT = 13×3), we obtain
the desired group. One can write this transformation, in an infinitesimal form, as

x′i = xi − iδθJi, (2.2)

where δθ is the infinitesimal parameter of the transformation and Ji are the generators
of SO(3). These generators can be expressed as

(Ji)jk = −iεijk, (2.3)

or in their explicit matrix form

(J1) =


0 0 0
0 0 −i
0 i 0

 , (J2) =


0 0 i

0 0 0
−i 0 0

 , (J3) =


0 −i 0
i 0 0
0 0 0

 . (2.4)

To see that (2.4) indeed generate rotations in three dimensions, we can use the ex-
ponential mapping to relate the elements of the algebra, Ji, with the elements of the
group, R, by writing

R(θ) = exp[−iθiJi]. (2.5)

Say we would like to perform a rotation about the z−axis, that is, rotations in the
(x, y)−plane. This is the equivalent of saying that θ1 = θ2 = 0 in (2.5). By noting that
(J3)3 = J3, we can write R in the familiar form1

R3(θ) =


cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (2.6)

1Here the lower index 3 is used to specify that this is a rotation about the z-axis. The same is
done for what follows in the text with the indices 1 and 2 representing rotations about the x-axis and
y-axis, respectively.
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by doing a simple series expansion of equation (2.5). The same can be done to show
that R1 and R2 also have their usual forms.

Irreducible Representations of the SO(3) Lie Algebra - so(3)

We now focus on the role played by the SO(3) group in Quantum Mechanics. The
generators (2.4) obey the Lie algebra

[Ji, Jj] = iεijkJk. (2.7)

From the generators of the SO(3) group, we can construct an operator that commutes
with all the generators of the group. This is the Casimir operator of SO(3) and is
given by

J2 ≡ (J1)2 + (J2)2 + (J3)2 = 2


1 0 0
0 1 0
0 0 1

 , (2.8)

which obviously commutes with all three generators Ji.

To formulate a representation of so(3), we choose basis vectors that are eigenvectors
of J2 and one of the generators, which by convention we choose to be J3 (this choice is
completely arbitrary). A representation of so(3)2 is characterized by two labels, j and
m, where j(j + 1) is the eigenvalue of J2 and m is the eigenvalue of J3, when these
act on one of the eigenvectors of the basis we have chosen. The values of j and m

are either integers or half-integers3. Here j is called the particle’s spin and m is the
particle’s helicity. Symbolically, we have

J2|j,m〉 = j(j + 1)|j,m〉
J3|j,m〉 = m|j,m〉

. (2.9)

We can also construct two operators from the remaining generators, given by

J± ≡ J1 ± iJ2, (2.10)

which have the interesting properties

2For a complete and detailed discussion of these results, see [2, 4, 5, 6].
3We will elaborate further on this later in the text.
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[J3, J±] = ±J±, (2.11)
[J+, J−] = 2J3, (2.12)
J†± = J∓, (2.13)

J3J±|m〉 = [J3, J±]|m〉+ J±J3|m〉 = (m± 1)J±|m〉, (2.14)

thus allowing us to conclude that J±|m〉 are also eigenstates of J3 with eigenvalues
(m± 1). This means that J± act on states as raising and lowering operators, changing
the values of m by ±1 each time they act on a state. We then require the following
conditions

J−|m = −j〉 = 0, (2.15)
J+|m = j〉 = 0, (2.16)

so that our representation has dimension (2j + 1), since the possible values of m are
m = −j,−j + 1, · · · , j − 1, j, and the possible values of j are j = 0, 1

2 , 1,
3
2 , · · · (a

rigorous way to see this would be to compute 〈l|J+J−|l〉 = 0, where |l〉 is the last
non-vanishing vector and check the result for consistency). We then conclude that the
basis vectors have the properties

J2|j,m〉 = j(j + 1)|j,m〉 (2.17)
J3|j,m〉 = m|j,m〉 (2.18)

J±|j,m〉 =
√
j(j + 1)−m(m± 1)|j,m± 1〉 (2.19)

Example: j = 1
2

This representation has dimension d = 2, which means that the operators will be 2× 2
matrices. Equations (2.17)-(2.19) tell us that

J3 =
1

2 0
0 −1

2

 , J+ =
0 1

0 0

 , J− =
0 0

1 0

 . (2.20)

It is easy to see that Ji = 1
2σi, where σi are the Pauli matrices
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σ1 =
0 1

1 0

 , σ2 =
0 −i
i 0

 , σ3 =
1 0

0 −1

 . (2.21)

and that the possible states are

|1/2, 1/2〉,

J−|1/2, 1/2〉 = |1/2,−1/2〉,

J−|1/2,−1/2〉 = 0, (2.22)
J+|1/2,−1/2〉 = |1/2, 1/2〉,

J+|1/2, 1/2〉 = 0

where

J2|1/2, 1/2〉 = 3
4 |1/2, 1/2〉,

J2|1/2,−1/2〉 = 3
4 |1/2,−1/2〉, (2.23)

J3|1/2, 1/2〉 = 1
2 |1/2, 1/2〉,

J3|1/2,−1/2〉 = −1
2 |1/2,−1/2〉.

This should suffice as a simple, though far from complete, introduction to the rich
fields of Group Theory and Group Representation. More complete discussions can be
found on the many great books available on the subject, some of which can be found
on the references for this dissertation.
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Chapter 3

The Lorentz and Poincaré Groups

Special relativity is the generalization of the homogeneity and isotropy of three-dimensional
space to include the time dimension as well. We drop the concept of absolute time and
allow for it to transform similarly to spatial coordinates, generalizing the concepts of
space and time into the new concept of spacetime. These generalizations had to be
introduced as a consequence of Albert Einstein’s proposal that the speed of light is
a constant of Nature. The (proper) Lorentz group and the Poincaré group are the
symmetry groups of four-dimensional spacetime.

The Lorentz group generalizes the concept of rotations to what is known as Lorentz
transformations. This is done with the introduction of new transformations, called
boosts. A boost is a form of “rotation” that mixes time and spatial coordinates, in
constrast with regular rotations which only mix spatial coordinates. When we also
allow for translations, we then deal with the Poincaré group, which generalizes the so
called Euclidean groups (these are groups that include rotations and translations in
Euclidean space).

In section 3.1 we introduce the Lorentz group and the transformations associated
with the group. We then move on to find the group’s Lie algebra in section 3.1.1. In sec-
tion 3.1.2 it is shown how the group’s Lie algebra can be decomposed into the product
of two su(2) Lie algebras, thus allowing us to build the representations of the Lorentz
group’s Lie algebra. The Irreducible, finite-dimensional, non-unitary representations
of the Lorentz group are then presented in section 3.1.3.

In section 3.2 we introduce the Poincaré group’s multiplication rule, followed by
the generators of the Poincaré group and its Lie algebra in section 3.2.1. The Casimir
operators of the Poincaré group are introduced in section 3.3. Within section 3.4,
sections 3.4.1 - 3.4.3 list all the possible representations of the Poincaré group’s Lie
algebra.
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The starting points of each section are based on the references [2, 3], but we work
out every calculation to avoid the necessity for repeated citations. The construction
of the representations of the Lorentz and Poincaré groups are based on the reference
[2], but we also work them out explicitly. When we cite examples of Quantum Field
Theory, further references are offered for the reader, as we cannot cover all these topics
in this dissertation.
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3.1 The Lorentz Group - SO(1, 3)

The Lorentz group1 (also called the SO(1, 3) group) is composed by a set of transfor-
mations, called Lorentz transformations, that leave the length of four-vectors invariant.
Here, Lorentz transformations are considered as “rotations” in four-dimensional space-
time, with the transformations that act only on the spatial coordinates called rotations
and the transformations that mix time and spatial coordinates called boosts. Thus, we
will refer to Lorentz transformations as the collection of both rotations and boosts that
can act on four-dimensional spacetime. An element of the Lorentz group, Λ, acts on a
four-vector xµ (µ = 0, 1, 2, 3) as

xµ → x′µ = Λµ
νx

ν , (3.1)

such that the product xµxµ remains invariant. This means that

x′µx′µ = ηµνx
′µx′ν = ηµν = ηµνΛµ

σx
σΛν

ρx
ρ = ηµνΛµ

σΛν
ρx

σxρ, (3.2)

where we have introduced the Minkowski metric ηµν = diag(1,−1,−1,−1). Equation
(3.2) then implies the following condition on the elements of the Lorentz group

ηµνΛµ
σΛν

ρ = ησρ. (3.3)

Another way of saying this is that Λ is an element of the Lorentz group if, and only if

ηµνΛµ
σΛν

ρ = Λ µ
σ ηµνΛν

ρ = ησρ ⇒ ΛTηΛ = η, (3.4)

where in the last equality we have omitted the indices for a more transparent result.
The superscript T in (3.4) indicates the matrix transposed. Also, note that ηT = η.

We can interpret Lorentz transformations in analogously to rotations, as we did
when we studied the SO(3) group. Indeed, Lorentz transformations can be split in two
categories: rotations (which act upon the spatial coordinates xi, i = 1, 2, 3) and boosts
(which are “rotations” that mix time and spatial coordinates). It is easy to notice that
there are six of said transformations - three possible ways to perform rotations and
three possible ways to perform boosts. This means we will need six generators for the

1Even though we are abusing notation, it is important to know we are dealing here with the proper
Lorentz group. This is the group where we choose Λ0

0 = 1. We will, however, drop the word proper
since we will make no mention to time-reversal transformations, which are allowed when Λ0

0 = −1.
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Lorentz transformations and six parameters associated with these transformations.

A clever way of labelling these is through the use of antisymmetric tensors. If we define
Mµν and ξµν as the generators of the Lorentz group and the parameters associated with
the transformations, respectively, and choose them to be antisymmetric (i.e. Mµν =
−Mνµ and ξµν = −ξνµ), we guarantee that each of them will have only six non-trivial
entries.

Then, the exponential mapping that connects the elements of the algebra so(1, 3) to
the elements of the group SO(1, 3) is given by

Λ(ξ) = exp
[
− i2ξ

µνMµν

]
. (3.5)

In equation (3.5) we have omitted the matrix indices, but they can be written explicitly
as in

Λσ
ρ =

[
exp

(
− i2ξ

µνMµν

)]σ
ρ
. (3.6)

3.1.1 The Lie Algebra of the Lorentz Group - so(1, 3)

Consider, now, an infinitesimal Lorentz transformation, that is, take the transformation
parameter ξµν to be infinitesimal. This means that a Lorentz transformation can be
written as Λµ

ν = (14×4 + δξ)µν , where δξ is an infinitesimal transformation parameter.
Then, we can write the transformation, using (3.1), as

x′σ = Λσ
ρx

ρ = (14×4 + δξ)σρ x
ρ = xσ + δξσρx

ρ. (3.7)

On the other hand, we can use the exponential mapping (3.6) to see that

x′σ = Λσ
ρx

ρ =
[
exp

(
− i2δξ

µνMµν

)]σ
ρ
xρ =

[
14×4 −

i

2δξ
µνMµν

]σ
ρ
xρ

= xσ − i

2δξ
µν (Mµν)σρ x

ρ,

(3.8)

These last two results allow us to write

δξσρ = − i2δξ
µν(Mµν)σρ, (3.9)

so that Mµν has the matrix form



3.1. THE LORENTZ GROUP - SO(1, 3) 15

(Mµν)σρ = i(ηµρδσν − ηνρδσµ). (3.10)

Result (3.10) shows explicitly that Mµν = −Mνµ. A quick way of checking if (3.10) is
correct is by plugging it back in (3.9):

δξσρ = − i2δξ
µνi(ηµρδσν − ηνρδσµ = 1

2(δξ ν
ρ δ

σ
ν − δξµρδσµ) = δξσρ X, (3.11)

where we used the fact that δξ is antisymmetric under indices exchanges. To find
the Lie algebra of the Lorentz group we must then discover what is the commutation
relation between two generators of the group. We can do this by noticing that a Lorentz
transformations act on Mµν as

ΛMµνΛ−1 = MλσΛλ
µΛσ

ν . (3.12)

Then the left-hand side of (3.12) reads

ΛMµνΛ−1 =
[
14×4 −

i

2δξ
λσMλσ

]
Mµν

[
14×4 + i

2δξ
αβMαβ

]
= Mµν + i

2δξ
λσ[Mµν ,Mλσ] +�����:

0O(δξ2),
(3.13)

and the right-hand side

MλσΛλ
µΛσ

ν = Mλσ

[
14×4 −

i

2δξ
αβMαβ

]λ
µ

[
14×4 −

i

2δξ
ργMργ

]σ
ν

= Mµν −
1
2δξ

λσ (Mµληνσ −Mµσηνλ +Mλνηµσ −Mσνηµλ)
, (3.14)

thus resulting in

[Mµν ,Mλσ] = i (Mµληνσ −Mµσηνλ +Mλνηµσ −Mσνηµλ) , (3.15)

which is the so(1, 3) Lie algebra.
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3.1.2 The Lie Algebra so(1, 3) as su(2)× su(2)

To find the representations of the Lie algebra of the SO(1, 3) group, it is convenient
to separate the generators and parameters in those of boosts and rotations. Let Ki

be the boost generators and Ji the rotation generators, with parameters φi and θi,
respectively (i = 1, 2, 3). We define them as

M0i ≡ −Ki

Mij ≡ εijkJk

ξ0i ≡ φi

ξij ≡ −εijkθk

, (3.16)

where εijk is the totally antisymmetric symbol with ε123 = +1. The exponential map-
ping (3.6) then becomes

Λ(φ, θ) = exp
− i

2

(
− 2φiKi − εijkεij`︸ ︷︷ ︸

2δ `
k

θkJ`

) = exp
[
iφjKj + iθjJj

]
. (3.17)

It can be shown, using (3.10) and (3.15), that Ki and Ji satisfy the following commu-
tation relations

[Ji, Jj] = iεijkJk

[Ji, Kj] = iεijkKk

[Ki, Kj] = −iεijkJk

. (3.18)

The first two commutation relations show that Ji and Ki behave like vectors under
ordinary rotations, but the third one shows that Ki do not transform into one another,
i.e. the algebra for Ki is not closed. The minus-sign of the third commutator expresses
the difference between the non-compact group SO(1, 3) and its compact form SO(4)
or between SL(2,C) and SU(2) × SU(2). Because SL(2,C) and SO(1, 3) are locally
homomorphic, as well as SO(4) and SU(2) × SU(2), they have homomorphic Lie
algebras.

We now perform a basis change by introducing the complex linear combinations
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Jj ≡
1
2(Jj + iKj)

Kj ≡
1
2(Jj − iKj)

. (3.19)

Using (3.19), we can write (3.17) as

Λ(φ, θ) = exp
[
i
(
θj + iφj)Jj + i

(
θj − iφj)Kj

]
, (3.20)

or, in terms of new transformation parameters, αj ≡ θj + iφj and βj ≡ θj − iφj, as

Λ(α, β) = exp
[
iαjJj + iβjKj

]
. (3.21)

We can then use (3.18) to show that these new generators obey the Lie algebra

[Ji,Jj] = iεijkJk
[Ki,Kj] = iεijkKk
[Ji,Kj] = 0

. (3.22)

This is a very interesting result. We can now see that the generators Ji and Ki
obey two distinct su(2)2 Lie algebras. However, this decomposition holds only for the
complexified3 Lie algebra so(1, 3)C, which contains the real Lie algebra so(1, 3). The
Lie algebra so(1, 3)C considers the set of real 4× 4 matrices A satisfying

AT = −ηAη (3.23)

as a complex vector space. This allows complex linear combinations of the form Jj and
Kj. Thus, the decomposition

so(1, 3)C ∼= su(2)× su(2), (3.24)

is only valid for the complexified Lie algebra of the Lorentz group. However, there is a
one-to-one correspondence between representations of a complex Lie algebra and the
representations of any of its real forms [3]. This means we can use the irreducible rep-
resentations of the complex Lie algebra so(1, 3)C to find the irreducible representations

2We will comment on this in the beginning of the next section.
3We have done this when we chose the combinations (3.19).
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of the real Lie algebra so(1, 3).

3.1.3 The Irreducible, Finite-Dimensional, Non-Unitary Rep-
resentations of so(1, 3)

The SU(2) group, which is the group of special, unitary, 2×2 matrices, is homomorphic
to the SO(3) group, which we have seen in chapter 2. The generators of SU(2) obey a
Lie algebra that is identical (up to a constant, which can be absorbed by the structure
constants) to the so(3) Lie algebra.

Since we have seen the irreducible representations of so(3), we have, in a sense,
also seen the irreducible representations of su(2). The Lorentz group’s Lie algebra
has two Casimir operators, one for each su(2). They are, of course, J 2 and K2,
which have eigenvalues j(j + 1) and j′(j′ + 1), respectively, with j = 0, 1

2 , 1, · · · and
j′ = 0, 1

2 , 1, · · · . We also have that the eigenvalues of the operators J3 and K3 are
m = −j,−j+ 1, · · · , j− 1, j and m′ = −j′,−j′+ 1, · · · , j′− 1, j′. The total spin of the
one-particle states is then given by s = j + j′. The dimension of the representation4 is
then given by dj,j′ = (2j + 1)(2j′ + 1).

It is important to note that these two su(2) subalgebras are not independent. A
parity transformation acts on Ji and Ki as

Ji → Ji; Ki → −Ki (3.25)

so that Ji ↔ Ki. Because we can choose Ji and Ki to be Hermitian, under a Hermitian
conjugation we also have the interchange between Ji and Ki. This means that, for this
particular case, a parity transformation is equivalent to Hermitian conjugation.

The representations of so(1, 3) are then given by the product of two su(2) rep-
resentations. We will now list them, with one remark on notation: we will label
the states of the representations of so(1, 3) keeping both j and j′ implicit, that is,
|j, j′,m,m′〉 → |m,m′〉. The finite-dimensional, non-unitary, irreducible representa-
tions of the Lie algebra of the Lorentz group are then listed in the following table.

Table 3.1: Finite Dimensional, Non-Unitary Representations of so(1, 3)

4The dimension of the representation is the number of allowed states for a particular combination
of spin values. This can be seen explicitly in table 3.1.
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Spins - (j, j′) Possible States Total Spin Dim. of the Rep.
(0, 0) |0, 0〉 s = 0 d0,0 = 1

(1/2, 0) |±1/2, 0〉 s = 1/2 d1/2,0 = 2
(0, 1/2) |0,±1/2〉 s = 1/2 d0,1/2 = 2

(1/2, 1/2) |±1/2, 1/2〉,|±1/2,−1/2〉 s = 1 d1/2,1/2 = 4
(1, 0) |0, 0〉,|±1, 0〉 s = 1 d1,0 = 3
(0, 1) |0, 0〉,|0,±1〉 s = 1 d0,1 = 3

... ... ... ...
(j, j′) |−j,−j′〉,|−j + 1,−j′〉,· · · ,|j, j′〉 s = j + j′ dj,j′ = (2j + 1)(2j′ + 1)

3.2 The Poincaré Group - ISO(1, 3)

We now start our discussion on the Poincaré group, which is our main group of interest.
The Poincaré group (also called the ISO(1, 3) group) is characterized by transforma-
tions on the four-vectors xµ such that

xµ
g−→ x′µ = Λµ

νx
ν + bµ, (3.26)

where bµ is a constant translation of the vector xµ and Λµ
ν is a Lorentz transforma-

tion. A group element g is characterized as g(Λ, b). When we have two consecutive
transformations, we find the group multiplication rule

g(Λ′, b′)g(Λ, b)x = g(Λ′, b′) (Λx+ b) = Λ′Λx+ Λ′b+ b′ ⇒

⇒ g(Λ′, b′)g(Λ, b) = g(Λ′Λ,Λ′b+ b′), (3.27)

where we have, again, suppressed the indices for a more transparent result. We now
move on to the ten generators of the Poincaré group (four generators of translations
and six generators of Lorentz transformations) and the group’s Lie algebra.

3.2.1 Generators of the Poincaré Group and the Lie Algebra
iso(1, 3)

We start by considering the infinitesimal versions of T (b) and Λ(ξ). Defining Pµ as the
generators of translations and Mµν as the generators of Lorentz transformations, we
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have

T (δb) = 1− i

2δb
µPµ, (3.28)

and

Λ(δξ) = 14×4 −
i

2δξ
µνMµν , (3.29)

respectively. Note that we are assuming both δbµ and δξµν , the transformations param-
eters, to be infinitesimal. Here, Pµ can be identified as the four-momentum operator,
whose eigenvalue is the four-momentum of the particle pµ = (E, ~p), with E the par-
ticle’s energy and ~p its momentum. The contravariant generators of translations are
defined by P µ = ηµνPν .

We can then proceed to find the group’s Lie algebra. The possible commutation rela-
tions between these generators are

[Pµ, Pν ] , (3.30)
[Pµ,Mλσ] , (3.31)

[Mµν ,Mλσ] , (3.32)

where the last one is known from the last section, and repeated here for the sake of
the reader

[Mµν ,Mλσ] = i (Mµληνσ −Mµσηνλ +Mλνηµσ −Mσνηµλ) . (3.33)

We also remind ourselves that the matrix form of Mµν is

(Mµν)σρ = i(ηµρδσν − ηνρδσµ). (3.34)

The first commutation relation we are interested in, namely (3.30) is trivial. This
is because Pµ are the generators of translations, which commute among themselves.
This is known for those who have studied Quantum Mechanics. It is easy enough to
demonstrate this by making the identification Pµ = −i∂µ and applying the commutator
on a trial function f(x)
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[Pµ, Pν ] f(x) = − [∂µ, ∂ν ] f(x) = 0⇒ [Pµ, Pν ] = 0. (3.35)

This is merely a consequence of the Abelian nature of the translational subgroup of
the Poincaré group. To evaluate (3.31), we remember that Pµ is a vector and thus
transforms, under a Lorentz transformation, as

ΛPµΛ−1 = PνΛν
µ. (3.36)

Using the infinitesimal transformation (3.29) on (3.36) yields, for the left-hand side

ΛPµΛ−1 =
[
14×4 −

i

2δξ
λσMλσ

]
Pµ

[
14×4 + i

2δξ
αβMαβ

]
= Pµ + i

2δξ
λσ[Pµ,Mλσ] +�����:

0O(δξ2),
(3.37)

and, for the right-hand side

PνΛν
µ = Pν

[
14×4 −

i

2δξ
λσMλσ

]ν
µ

= Pµ −
1
2δξ

λσ(Pληµσ − Pσηµλ). (3.38)

Since equation (3.37) must be equal to (3.38), we get

[Pµ,Mλσ] = i(Pληµσ − Pσηµλ). (3.39)

Results (3.33), (3.35), and (3.39) form the Lie algebra of the Poincaré group, iso(1, 3).

3.3 The Casimir Operators of the Poincaré Group

The Poincaré group has two Casimir operators. The first one is the four-momentum
operator squared, P 2 = P µPµ, while the second one is the square of the Pauli-Lubanski
pseudo-vector, which is defined as

Wµ ≡ −
1
2εµνρσP

νMρσ. (3.40)

Since we are claiming that P 2 and W 2 = WµW
µ are Casimir operators, then we

must show that
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[P 2, Pµ] = 0, (3.41)
[P 2,Mµν ] = 0, (3.42)
[W 2, Pµ] = 0, (3.43)

[W 2,Mµν ] = 0, (3.44)
[W 2, P 2] = 0. (3.45)

Result (3.41) is the simplest to show and is a direct consequence of (3.35). We have

[P 2, Pµ] = Pν [P ν , Pµ] + [Pν , Pµ]P ν = 0. (3.46)

Showing result (3.42) requires us to use (3.35) and (3.39)

[P 2,Mµν ] = Pλ[P λ,Mµν ] + [Pλ,Mµν ]P λ

= iPλ(Pµδλν − Pνδλµ) + i(Pµηνλ − Pνηµλ)P λ

= i[Pν , Pµ] + i[Pµ, Pν ] = 0.

(3.47)

For the other commutation relations we will need to use the following result

[Wµ, Pλ] = −1
2εµνρσ

(
P ν [Mρσ, Pλ] +����

�:0[P ν , Pλ]Mρσ
)

= i

2εµνρσP
ν(P ρδσλ − P σδρλ) = 0,

(3.48)

where the last equality is achieved upon realizing εµνρσ is antisymmetric under ν ↔ ρ

and ν ↔ σ, while P νP ρ and P νP σ are symmetric under the same exchanges. It is also
useful to notice that

WµP
µ = −1

2εµνρσP
νMρσP µ = 0, (3.49)

by the same index symmetries mentioned above. This means we have
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[WµP
µ,Mαβ] = 0 = Wµ[P µ,Mαβ] + [Wµ,Mαβ]P µ

⇒ [Wµ,Mαβ]P µ = −iWµ(Pαδµβ − Pβδµα) = −i(Wβηµα −Wαηµβ)P µ

⇒ [Wµ,Mαβ] = i(Wαηµβ −Wβηµα). (3.50)

Hence, using (3.48) and (3.50), we can show that

[W 2, Pµ] = Wν [W ν , Pµ] + [Wν , Pµ]P ν = 0, (3.51)

and

[W 2,Mαβ] = Wµ[W µ,Mαβ] + [Wµ,Mαβ]W µ

= iWµ(Wαδ
µ
β −Wβδ

µ
α) + i(Wαηµβ −Wβηµα)W µ

= i[Wβ,Wα] + i[Wα,Wβ] = 0.

(3.52)

The final commutation relation we are interested in is very straightforward to show
using (3.51), in the same way we have done in (3.46), and will not be repeated here.
Since we have shown that P 2 and W 2 commute with all other generators of the Poincaré
group, we conclude that they are indeed Casimir operators of the group.

3.4 Unitary Irreducible Representations of the Poincaré
Group

We will now construct the representations of the Poincaré group based on the concept
of little group. The little group of the Poincaré group is defined as the set of trans-
formations that leave the particle’s four-momentum invariant. Result (3.48) shows us
that Wµ commutes with the four-momentum operator and, therefore, leaves the parti-
cles four-momentum invariant. This means that the components of the Pauli-Lubanski
pseudo-vector will be the generators of the little group of the Poincaré group. This
will become clearer once we start constructing the representations explicitly.
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3.4.1 Massive Particles

p2 > 0

We start by considering the usual massive particles with timelike four-momentum,
which are particles with positive mass squared. Examples of these particles are electrons
and quarks, responsible for most of the matter content we know. We can always boost a
massive particle’s four-momentum to their rest frame, that is, pµ = (M, 0, 0, 0), where
M is the particle’s mass. In this case, it is simple to see that any transformation that
acts upon the spacial components of pµ will leave it invariant. It seems reasonable, at
least as an initial guess, that the little group for this case is SO(3). To confirm this,
we construct the generators explicitly

W0 = −1
2ε0ijkP

iM jk = 0, (3.53)

Wi = −1
2εi0jkP

0M jk = M

2 εijkε
ij`J` = MJi, (3.54)

where in (3.54) we have used (3.16). The Casimir operators in this case are P 2 = M2

and W 2 = −M2J2. This clearly shows that the symmetry group is SO(3), since
all generators are identical (up to a normalization constant) to those of SO(3). The
representations are exactly the same as those of SO(3), except they now carry mass
and momentum labels5

P 2|M,0; s, λ〉 = M2|M,0; s, λ〉, Pµ|M,0; s, λ〉 = pµ|M,0; s, λ〉
W 2|M,0; s, λ〉 = −M2s(s+ 1)|M,0; s, λ〉,

J2|M,0; s, λ〉 = s(s+ 1)|M,0; s, λ〉, (3.55)
J3|M,0; s, λ〉 = λ|M,0; s, λ〉,

J±|M,0; s, λ〉 = N±|M,0; s, λ± 1〉,

where N± are normalizations such that J±|M,0; s,±s〉 = 0.

5When dealing with the Poincaré group we will change notation slightly. The particle’s spin will
be represented by the letter s and the particle’s helicity by λ. A particle’s helicity indicates whether
its spin is aligned or anti-aligned with its momentum.
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p2 < 0

In this case we are dealing with a particle with spacelike four-momentum, or negative
mass squared (or imaginary mass). These particles, which move faster than the speed
of light, are known as tachyons. The appearance of tachyons in a theory is usually an
indication of instabilities. One example we can comment on is that of the Higgs boson.
In its uncondensed state, the Higgs field is a tachyonic field, which would give rise to a
particle of negative mass squared. Through spontaneous symmetry breaking, however,
the Higgs field’s instability disappears6.

A standard four-momentum to deal with this case is pµ = (0, 0, 0, Q), so that
p2 = −Q2, and thus the desired condition is satisfied (this choice is not unique, as
we could have chosen, for example, pµ = (iQ, 0, 0, 0), yielding the same result). The
generators of the little group for this case are

W0 = −QJ3, (3.56)

and

Wi = εijkP
jKk =


W1 = −QK2,

W2 = QK1,

W3 = 0.
(3.57)

The Lie algebra satisfied by these generators is given by

[K1, J3] = −iK2,

[K2, J3] = iK1, (3.58)
[K1, K2] = −iJ3.

This is almost the algebra so(3), but the last commutator should have a plus sign for
this to be true. We have, once again, found a non-compact group. Just as the Lorentz
group SO(1, 3) was the non-compact version of SO(4), this group is the non-compact
version of SO(3), namely SO(1, 2). By the same arguments used before, we notice
the homomorphism so(1, 2)C ∼= su(2) ∼= so(3), so that the representations of so(1, 2)
are those of so(3), which we have already constructed. However, there is one subtlety
regarding the eigenvalues of W 2. Note that

6Standard Quantum Field Theory textbooks, such as [7, 8, 9, 10], should cover the details of this
wonderful phenomenon, which would take us far away from the scope of this dissertation.
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W 2 = WµW
µ = Q2

[
(J3)2 − (K1)2 − (K2)2

]
. (3.59)

If we assign to W 2 an eigenvalue ω, then when ω > 0, this automatically implies
(K1)2 = (K2)2 = 0, because these do not have finite range. Therefore the representa-
tions are exactly the same as the representations of the so(3) algebra, with ω = s(s+1)
and s = 0, 1

2 , 1,
3
2 , 2, · · · (where we are allowing double-valued representations). This

would mean that the states described by the theory would obey

P 2|pµ; s, λ〉 = −Q2|pµ; s, λ〉, P µ|pµ; s, λ〉 = pµ|pµ; s, λ〉,
(J3)2|pµ; s, λ〉 = s(s+ 1)|pµ; s, λ〉, (3.60)

J3|pµ; s, λ〉 = λ|pµ; s, λ〉.

However, when we allow ω to be negative, we cannot control its range. This means
−∞ < ω ≤ 0. This representations cannot be specified by the particle’s spin nor its
helicity. It is labelled, instead, by a continuous, negative parameter ω

P 2|pµ;ω, λ〉 = −Q2|pµ;ω, λ〉, P µ|pµ;ω, λ〉 = pµ|pµ;ω, λ〉,
W 2|pµ;ω, λ〉 = ω|pµ;ω, λ〉 (3.61)
J3|pµ;ω, λ〉 = λ|pµ;ω, λ〉.

It is important to notice that we can still build our raising and lowering operators
through K± = K1 ± iK2, which raise and lower the value of λ by unit. In the case
where ω > 0, we have that the representation has dimension d+ = 2s+ 1. However, in
the case where ω < 0, we have no limit to how many times we can raise or lower the
helicity of the particle. This means we have a infinite dimensional representation.

3.4.2 The Null Vector Representation

This is a special case of the Poincaré group, where we consider a particle with four-
momentum pµ = (0, 0, 0, 0). In this case, pµ is invariant under all Lorentz transfor-
mations. This means that the little group of this representation is SO(1, 3), i.e. the
Lorentz group. The representation is then given by that of section 3.1.3. The only
difference would be that the states described by the theory now carry an extra lable
pµ = 0, however there is no Lorentz transformation that can change this quantity.
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3.4.3 Massless Particles

When we deal with massless particles, we have p2 = 0. We can consider a standard
four-momentum of the form pµ = (E, 0, 0, E), where E is the energy of the particle. In
this case, the Pauli-Lubanski pseudo-vector takes the form

W0 = −1
2εijkP

iM jk = −P iJi = −EJ3,

Wi = −1
2εi0jkP

0M jk − εij0kP jM0k = EJi − εijkP jKk,

W1 = E(J1 +K2), (3.62)
W2 = E(J2 −K1),

W3 = EJ3.

This means

Wµ = E
(
− J3, J1 +K2, J2 −K1, J3

)
, (3.63)

and

W µ = E
(
− J3,−J1 −K2,−J2 +K1,−J3

)
, (3.64)

so that

W 2 = WµW
µ = −(W1)2 − (W2)2. (3.65)

This means that the eigenvalues of W 2 are either zero or negative. We call them
−ρ2 ≤ 0, where ρ ∈ R. We now have two possibilities, which we will discuss separately.

Usual Massless Particles - ρ = 0

When ρ = 0, we can look at (3.65) and see that the eigenvalue of W 2 must vanish.
This is the equivalent of saying that this operator annihilate physical states. The
representation is then labelled by the particle’s four-momentum and its helicity, pµ

and λ, which are respectively the eigenvalues of P µ and J3. The states described by
the theory must obey
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P 2|pµ;λ〉 = 0, P µ|pµ;λ〉 = pµ|pµ;λ〉,
J3|pµ;λ〉 = λ|pµ;λ〉, (3.66)

W 2|pµ;λ〉 = W1|pµ;λ〉 = W2|pµ;λ〉 = 0.

These are the states that describe the usual massless particles we encounter, for example
the gauge bosons7. These elementary particles are the force carriers of all the known
interactions (e.g. the photon is the force carrier of the electromagnet field, while
the gluons are the force carriers of the strong force). These particles are extremely
important to the understanding of the fundamental interactions of nature and thus it
is more than relevant to include this discussion in this dissertation.

The Continuous Spin Particles - ρ 6= 0

Finally, we enter the realm of the last possible representation of the Poincaré group’s Lie
algebra: that of the continuous spin particles (CSP) [1]. These are massless particles
that have ρ 6= 0, which make them differ greatly from the usual massless particles. In
this case, we have that

[W1,W2] = 0,
[W2, J3] = iW1, (3.67)

[W1, J3] = −iW2,

which follow from (3.62). This is the Lie algebra of the Euclidean group in two dimen-
sions (rotations and translations in two dimensional Euclidean space), denoted by E2

or ISO(2). This is then the little group of the CSP representation. In this case, the
operators

W± ≡ −(W1 ± iW2) (3.68)

act on states as raising and lowering operators of the helicity λ by unit. The states
described by the theory must, then, obey

7We use the term gauge here to differ these bosons from the Higgs boson, which we mentioned
earlier. The Higgs boson is a scalar boson. This means that the class of bosons we are describing here
arise from gauge fields, while the Higgs boson arises from a scalar field. Again, more information can
be found in the references [7, 8, 9, 10]
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P 2|pµ; ρ;λ〉 = 0, P µ|pµ; ρ;λ〉 = pµ|pµ; ρ;λ〉,
J3|pµ; ρ;λ〉 = λ|pµ; ρ;λ〉,

W 2|pµ; ρ;λ〉 = −ρ2|pµ; ρ;λ〉, (3.69)
W+|pµ; ρ;λ〉 = iρ|pµ; ρ;λ+ 1〉,
W−|pµ; ρ;λ〉 = −iρ|pµ; ρ;λ− 1〉,

and the representation is also infinite dimensional, since in this case we do not have a
limit on how many times we can act with our operators W±. In other words, all values
of λ are needed to furnish the representation. It is also important to note that we have
two classes of CSPs. When λ is integer, then the states are |pµ; ρ; 0,±1,±2, · · ·〉, and
we say this is a bosonic CSP representation. On the other hand, if λ is half-integer,
then the representation is |pµ; ρ; 0,±1

2 ,±
3
2 , · · ·〉, and we say this describes a fermionic

CSP. The field theoretical analysis we will do for CSPs will deal with the case of a
bosonic CSP.

The last two relations in (3.69) fix8 the eigenvalues of W± upon realizing that
W 2 = −W±W∓ and that, therefore

−W±W∓|pµ; ρ;λ〉 = W 2|pµ; ρ;λ〉 = −ρ2|pµ; ρ;λ〉. (3.70)

Although they are predicted by theory, CSPs are not observed in Nature. The
main reason for this is because we do not have a Quantum Field Theory that describes
CSPs, meaning we cannot predict how these particles would interact with the other
known particles. The lack of a local, covariant actions that can describe bosonic and
fermionic CSPs restricted our capability of studying such particles. However, recently,
action were proposed that can describe bosonic CSPs [12, 13, 15] and fermionic CSPs
[16], at least at the classical level. These are major progresses towards a Quantum
Field Theory describing CSPs.

This concludes the group theoretical description of our CSPs. We will now begin
a field theoretical approach to the subject, following the references [12, 13, 15], and
study a more useful approach for dealing with bosonic CSPs.

8We could have also chosen to set the eigenvalues of W± to −iρ, but we chose the positive sign
since this is an arbitrary choice.
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Chapter 4

The Schwinger-Fronsdal Formalism

In this chapter we present the Schwinger-Fronsdal formalism for massless Bosons. We
take the general spin-s action, given by (4.1), and study explicitly, as examples, the
cases where s ≤ 4, finding the equations of motion for each case and checking the
actions’ gauge invariance. Through the study of these examples, we are able to infer
the form of the equations of motion in the general case, which is the main result of this
chapter.

In section 4.1 we introduce the general Schwinger-Fronsdal formalism that will be
used throughout this chapter. From sections 4.1.1 to 4.1.5 we study the cases of s ≤ 4,
generalizing our results to a particle of spin-s in section 4.1.6.

4.1 Massless Bosons

Here we present the general action for a spin−s Boson (integer spin) as proposed by
Fronsdal [11] and written in terms of spacetime derivatives instead of the particle’s
momenta [12]

Ss = (−1)s
∫
ddx

[
1
2(∂αφ)2 − s

2(∂ · φ)2 − s(s−1)
2 φ′ · (∂ · ∂ · φ)− s(s−1)

4 (∂αφ′)2

− s(s−1)(s−2)
8 (∂ · φ′)2 − φ · J (h)

]
,

(4.1)

where φ is a rank-s completely symmetric tensor field, restricted to be double traceless
(i.e. φ′′ = 0), s is the particle’s spin, J is a rank-s tensor source, and the factor
(−1)s ensures a canonical kinetic term with our mostly-negative metric. The notation
∂ · φ(s) indicates a contraction between the derivative and the first index in φ, i.e.
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∂ · φ(s) ≡ ∂µ1φµ1µ2···µs . Although we will explore the gauge invariance of this action, it
is clear from our discussion of the Lorentz and Poincaré groups in the previous chapter
that (4.1) is invariant under Poincaré transformations1.

The action (4.1) is also invariant (when J = 0) under the gauge transformations [11, 12]

δφ(s) = ∂ ◦ ε(s−1), (4.2)

where ε is a traceless rank-(s − 1) tensor (ε′ = 0). Both our field φ(s) and our gauge
parameter ε(s−1) are symmetric under indices exchanges.

It is not obvious a priori to understand the implications of the conditions on the
field φ(s) and the gauge parameter ε(s−1). Thus, we will study a few examples explicitly,
which will allow us to find the necessity for these conditions, as well as allow us to infer
the form of the equations of motion associated with the action (4.1).

Starting with the cases of spin zero, one, and two, we will notice that the actions we
obtain from (4.1) are equivalent to the Klein-Gordon, Maxwell, and linearized Einstein
actions, respectively. We will then move on to study the spin three and four cases,
where the necessity of a traceless condition upon the gauge parameter and a double-
traceless condition upon our tensor field will become explicit. In what follows, all
actions will be studied for the free theory case.

4.1.1 The Spin-0 Action

By setting s = 0 in (4.1) we obtain the familiar action for a massless scalar field

S0 =
∫
ddx

[
1
2(∂µφ)(∂µφ)

]
= SKG, (4.3)

also known as the Klein-Gordon action. We cannot construct a gauge transformation
such as (4.2) for this case.

A variation in our field φ by an infinitesimal amount φ→ φ+ δφ yields a variation
in the action given by

δSKG =
∫
ddx

[
(∂µφ)(∂µδφ)

]
= 0, (4.4)

1The action is clearly Lorentz invariant because all indices are fully contracted. It is also invariant
under spacetime translations by a constant amount φ(h)(x)→ φ(h)(x−a), where a is a constant vector
in spacetime.
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which upon an integration by parts2, and the principle of least action3, allow us to
obtain the equations of motion

∂2φ ≡ �φ ≡ F = 0, (4.5)

known as the Klein-Gordon equation. The notation F , which is the symbol we will use
to denote the equations of motion, is here introduced for the first time, and although it
might not accomplish much in this case, it will be useful when we attempt to generalize
our results to the case of a particle with spin-s.

4.1.2 The Spin-1 Action

To make the connection with electromagnetism simpler, we will rename our rank-1
tensor field (or vector field) φµ - obtained by setting s = 1 in (4.1) - to Aµ. We then
have

S±1 = −
∫
ddx

[
1
2(∂µAν)2 − 1

2(∂µAµ)2
]

= −1
2

∫
ddx

[
(∂µAν)(∂µAν)− (∂µAµ)(∂νAν)

]
= −1

2

∫
ddx

[
(∂µAν)(∂µAν)− (∂µAν)(∂νAµ)

]
,

(4.6)

where in the last equality we have integrated the last term by parts twice. If we remind
ourselves of the electromagnetic field tensor

Fµν = ∂µAν − ∂νAµ ⇒ FµνF
µν = (∂µAν − ∂νAµ)(∂µAν − ∂νAµ)⇒

⇒ FµνF
µν = 2

[
(∂µAν)(∂µAν)− (∂µAν)(∂νAµ)

]
, (4.7)

we can rewrite (4.6) using (4.7) as

S±1 =
∫
ddx

[
− 1

4FµνF
µν
]

= SMaxwell, (4.8)

which is the Maxwell action. Varying the field Aµ in the action (4.8) yields the equations
2We will not keep track of the surface terms that arise when we perform integrations by parts,

assuming that all of them vanish.
3Which we already used on (4.4) when we set the variation of the action to zero.
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of motion

Fµ ≡ �Aµ − ∂µ∂ · A = 0, (4.9)

where we again have used the notation Fµ to denote our equation of motion.

In the spin-1 case, the action is invariant under the gauge transformation

δAµ = ∂µε. (4.10)

To check whether what we are claiming is true or not, we could set

Aµ → Aµ + δAµ, (4.11)

in (4.6) and keep only the linear terms in δAµ (which is the same procedure used to
obtain the equations of motion). But, because [∂µ, ∂ν ] = 0, it is much simpler to notice
that

δF µν = ∂µδAν − ∂νδAµ = [∂µ, ∂ν ]ε = 0, (4.12)

which implies that (4.8) is invariant under the transformation (4.10). The equations
of motion are also clearly invariant under (4.10), since

δFµ = �δAµ − ∂µ∂νδAν = �∂µε− ∂µ�ε = 0. (4.13)

4.1.3 The Spin-2 Action

For s = 2, the action (4.1) becomes

S±2 =
∫
ddx

[
1
2(∂αφµν)2 − (∂ · φν)2 − φ′(∂µ∂νφµν)− 1

2(∂αφ′)2
]
. (4.14)

The gauge transformation that leaves (4.14) invariant is given by

δφµν = ∂µεν + ∂νεµ, (4.15)

where our gauge transformation parameter is now a vector field. To see that (4.15)
indeed leaves (4.14) invariant, we vary our field φµν in (4.14) and maintain only the
terms linear in the variation
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δS±2 =
∫
ddx

[
∂αφµν∂

αδφµν − 2∂ · φν∂ · δφν − φ′∂µ∂νδφµν − δφ′∂µ∂νφµν − ∂αφ′∂αδφ′
]

=
∫
ddx

[
∂αφµν(∂α∂µεν + ∂α∂νεµ)︸ ︷︷ ︸

2(∂·φν)�εν

−2(∂ · φν)�εν −2(∂ · φν)∂ν(∂ · ε)︸ ︷︷ ︸
+2(∂·∂·φ)(∂·ε)

−2φ′�(∂ · ε)

− 2(∂ · ε)(∂ · ∂ · φ)−2∂µφ′∂µ(∂ · ε)︸ ︷︷ ︸
+2φ′�ε

]
⇒ δS±2 = 0,

(4.16)

where the brackets below the terms in the expression above indicate the results obtained
after we used integration by parts. Thus, (4.14) is invariant under transformations of
the form (4.15). The equations of motion obtained by varying φµν in (4.14) can be
read (after some integrations by parts) directly from the first line of equation (4.16)

�φµν − ∂µ(∂ · φν)− ∂ν(∂ · φµ) + ∂µ∂νφ
′ + gµν(∂ · ∂ · φ)− gµν�φ′ = 0. (4.17)

We can then write equation (4.17) in a more compact form by defining

Fµν ≡ �φµν − ∂µ(∂ · φν)− ∂ν(∂ · φµ) + ∂µ∂νφ
′, (4.18)

and noticing that

F ′ ≡ gσλFσλ = �φ′ − 2(∂ · ∂ · φ) +�φ′ ⇒ −1
2gµνF

′ = gµν(∂ · ∂ · φ)− gµν�φ′. (4.19)

We can thus rewrite (4.17) using (4.18) and (4.19) as

Fµν − 1
2gµνF

′ = 0. (4.20)

This equation of motion can be split into two equations of motion upon realizing that
the trace of (4.20) gives

F ′ − d
2F
′ = 0⇒ F ′ = 0⇒ Fµν = 0, (4.21)

so that



36 CHAPTER 4. THE SCHWINGER-FRONSDAL FORMALISM

Fµν = 0. (4.22)

Finally, we can also check that (4.17) is gauge invariant by noticing that a variation of
the form (4.15) yields

�(∂µεν + ∂νεµ)− ∂µ
[
�εν + ∂ν(∂ · ε)

]
− ∂ν

[
�εµ + ∂µ(∂ · ε)

]
+ 2∂µ∂ν(∂ · ε) + 2gµν�(∂ · ε)− 2gµν�(∂ · ε) = 0.

(4.23)

The Linearized Einstein’s Equations

The equations of motion (4.22) resemble the linearized Einstein’s equations of motion.
To notice that they are indeed those equations, we will now derive them from a different
approach.

Consider a curved spacetime metric Gµν , which differs from the flat spacetime
metric gµν by a small deviation φµν

Gµν = gµν + φµν . (4.24)

Now, because φµν is a small deviation, we will disregard all terms that are “quadratic”
in φ and its derivatives, such as φφ, φ∂φ, ∂φ∂φ, etc. We use gµν to raise and lower φµν
indices and, for completeness, we give the inverse metric

Gµν = gµν − φµν , (4.25)

so that, as usual, GµνG
νρ = δρµ. With these considerations, the Christoffel symbol

associated with Gµν becomes

Γµνρ = 1
2(∂µφνρ + ∂νφµρ − ∂ρφµν), (4.26)

so that the Riemann curvature tensor can be constructed as follows

Rρσµν = ∂µΓρνσ − ∂νΓρµσ = 1
2(∂µ∂σφρν − ∂µ∂ρφνσ − ∂ν∂σφρµ + ∂ν∂ρφµσ). (4.27)

Result (4.27) does not contain terms such as ΓρµλΓλνσ because these would contain
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terms of order O(∂φ∂φ). From (4.27) we can construct the Ricci tensor

Rµν ≡ Rρ
µρν = −1

2

[
�φµν − ∂µ(∂ · φν)− ∂ν(∂ · φµ) + ∂µ∂νφ

′
]
, (4.28)

and, finally, the Ricci scalar

R ≡ Rµ
µ = −

[
�φ′ − (∂ · ∂ · φ)

]
. (4.29)

If we now compare results (4.28) and (4.29) with (4.18) and (4.19), respectively, we
can make the identifications

Fµν = −1
2Rµν , (4.30)

F ′ = −1
2R, (4.31)

so that we obtain

Rµν − 1
2gµνR = 0, (4.32)

Rµν = 0, (4.33)
R = 0. (4.34)

Thus the Schwinger-Fronsdal formalism for a massless spin 2 Boson (the graviton) is
completely equivalent to that of the linearized Einstein’s equations (up to an overall
normalization factor that does not affect the equations of motion).

4.1.4 The Spin-3 Action

We now start studying the action (4.1) when s = 3. This will lead us to find the
necessity for the condition ε′ = 0. The s = 3 action is

S±3 =
∫
ddx

[
1
2(∂αφµνσ)2 − 3

2(∂ · φµν)2 − 3φ′ · (∂ · ∂ · φ)− 3
2(∂αφ′µ)2 − 3

4(∂ · φ′)2
]
.

(4.35)

This action is invariant under gauge transformations of the form
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δφµνσ = ∂µενσ + ∂νεµσ + ∂σεµν . (4.36)

Varying our field φ in (4.35) and keeping only the linear terms in δφ we get

δS±3 =
∫
ddx

[
(∂αφ) · (∂αδφ)− 3(∂ · φ) · (∂ · δφ)− 3φ′ · (∂ · ∂ · δφ)− 3δφ′ · (∂ · ∂ · φ)

− 3(∂αφ′) · (∂αδφ′)− 3
2(∂ · φ′)(∂ · δφ′)

]
=
∫
ddx

[
∂αφµνσ∂

α(∂µενσ + ∂νεµσ + ∂σεµν)︸ ︷︷ ︸
3(∂·φ)·(�ε)

−3(∂ · φµν)(∂µ∂ · εν + ∂ν∂ · εµ +�εµν)︸ ︷︷ ︸
6(∂·∂·φ)·(∂·ε)−3(∂·φ)·(�ε)

− 6(�∂ · ε) · φ′−3φ′σ∂σ(∂ · ∂ · ε)︸ ︷︷ ︸
+3(∂·φ)(∂·∂·ε)

−6(∂ · ε) · (∂ · ∂ · φ)− 3
���

���
���:

0, ε is traceless
(∂ · ∂ · φ) · (∂ε′)

−6∂αφ′ · (∂α∂ · ε)︸ ︷︷ ︸
+6φ′·(�∂·ε)

−3(∂ · φ′)(∂ · ∂ · ε)
]
⇒ δS±3 = 0,

(4.37)

where we must use the traceless condition of our gauge parameter ε to obtain the
desired result. Here, for the first time, we that it is key that ε is traceless in order for
the action (4.35) to be gauge invariant. This condition will also be necessary when we
study higher spins. Again, on equation (4.37), every term with a bracket underneath
them indicates that we have to perform an integration by parts, and the results of said
integrations are indicated below those brackets.

The equations of motion for the action (4.35) can be found after a simple manipu-
lation of the first equality in (4.37), yielding

�φµνσ −
[
∂µ(∂ · φνσ) + perm.′

]
+
[
∂µ∂νφ

′
σ + perm.′

]
+
[
gµν(∂ · ∂ · φσ) + perm.′

]
−
[
gµν�φ

′
σ + perm.′

]
+ 1

2

[
gµν∂σ(∂ · φ′) + perm.′

]
= 0,

(4.38)

where “perm.′” stands for inequivalent permutations of the involved indices with no
symmetry factor, e.g.

[
∂µ(∂ · φνσ) + perm.′

]
= ∂µ(∂ · φνσ) + ∂ν(∂ · φµσ) + ∂σ(∂ · φµν). (4.39)
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Note that on (4.39) we get only half the terms of the “full” permutation because the field
φµνσ is symmetric under indices exchanges. Since terms like ∂µ(∂ · φνσ) and ∂µ(∂ · φσν)
are equivalent to each other, we drop one of them.

For the purpose of generalization, we also try to write down the equations of motion
(4.38) in terms of an F tensor. First we define

Fµνσ ≡ �φµνσ −
[
∂µ(∂ · φνσ) + perm.′

]
+
[
∂µ∂νφ

′
σ + perm.′

]
. (4.40)

Then, taking the trace of (4.40) we get

F ′σ = 2�φ′σ − 2(∂ · ∂ · φσ) + ∂σ(∂ · φ′). (4.41)

If we compare results (4.40) and (4.41) with (4.38) we see we can write it in the very
elegant form

Fµνσ − 1
2(g ◦ F ′)

µνσ
= 0, (4.42)

which resembles the linearized Einstein’s equations. We can also trace (symmetrically)
equation (4.42), so that (4.42) can be written as

Fµνσ = 0. (4.43)

The equations of motion (4.43) are gauge invariant under transformation (4.46), as
long as ε′ = 0. We can see this explicitly by doing

δFµνσ = �
[
∂µενσ + perm.′

]
−
[
∂µ(∂ · ενσ) + perm.′

]
+
[
∂µ∂νg

αβ∂αεβσ + perm′
]

= 3∂µ∂ν∂σε′ = 0.
(4.44)

4.1.5 The Spin-4 Action

The action for a spin-4 particle can be obtained by setting s = 4 in (4.1)

S±4 =
∫
ddx

[
1
2(∂αφµνρσ)2−2(∂ ·φµνρ)2−6φ′µν(∂ ·∂ ·φµν)−3(∂αφ′µν)2−3(∂ ·φ′µ)2

]
. (4.45)
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This action is invariant under the gauge transformation

δφµνρσ = 3 [∂µενρσ + ∂νεµρσ + ∂ρεµνσ + ∂σεµνρ] . (4.46)

To check that the action is gauge invariant, we will abuse notation and gather all per-
mutations of the terms as a single term multiplied by the total amount of permutations.
This will make the notation less clustered, but could be confusing4. We will return to
the proper notation once we write down the equations of motion. We then have

δS±4 =
∫
ddx

[
∂αφµνρσ∂

αδφµνρσ − 4∂αφανρσ∂µδφµνρσ − 6φ′µν(∂ · ∂ · δφµν)

− 6δφ′µν(∂ · ∂ · φµν)− 6∂αφ′µν∂αδφ′µν − 6(∂ · φ′µ)(∂ · δφ′µ)
]

= 3
∫
ddx

[
4∂αφµνρσ∂α∂µενρσ︸ ︷︷ ︸

4(∂·φµνρ)�εµνρ

−4(∂ · φµνρ)
(
�εµνρ + 3∂µ(∂ · ενρ

)
︸ ︷︷ ︸
−4(∂·φµνρ)�εµνρ+12(∂·∂·φµν)(∂·εµν)

−6φ′µν
(

2�(∂ · εµ) + 2∂µ(∂ · ∂ · εν)
)

︸ ︷︷ ︸
−12φ′µν�(∂·εµν)+12(∂·φ′µν)(∂·∂·εµν)

−12(∂ · ∂ · φµν)(∂ · εµν)

−12∂αφ′µν∂α(∂ · εµν)︸ ︷︷ ︸
12φ′µν�(∂·εµν)

−12(∂ · φ′µ)(∂ · ∂ · εµ)
]
⇒ δS±4 = 0.

(4.47)

The equations of motion obtained by varying φ in (4.45) are obtained by looking at
(4.47). We get

�φµνρσ − [∂µ(∂ · φνρσ) + perm.′] +
[
∂µ∂νφ

′
ρσ + perm.′

]
+ [gµν(∂ · ∂ · φρσ) + perm.′]

− 1
2 [gµν∂ρ(∂ · φ′σ) + perm.′]−

[
gµν�φ

′
ρσ + perm.′

]
= 0

.

(4.48)

To write them in a way that resembles Einstein’s equations, we define

Fµνρσ = �φµνρσ − [∂µ(∂ · φνρσ) + perm.′] +
[
∂µ∂νφ

′
ρσ + perm.′

]
, (4.49)

which has trace

4The main example is the third term in the action (4.45). Once you write down φ′σρ = gµνφµνσρ,
you can see that there are twelve possible inequivalent permutations of the indices, but the term has
an overall factor of 1

2 , which hides this fact.
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F ′µν = −
[
2(∂ · ∂ · φµν)− ∂µ(∂ · φ′ν)− ∂ν(∂ · φ′µ)− 2�φ′µν

]
. (4.50)

To arrive at result (4.50), we must use the property φ′′ = 0. Still, this is just a way
of rewriting the equations of motion and should not necessarily have any physical
importance. We will discuss the double-traceless condition of our field in the next
section. Thus, we can write down equation (4.48) as

Fµνρσ − 1
2(g ◦ F ′)µνρσ = 0, (4.51)

where

1
2(g ◦ F ′)µνρσ =−

[
gµν(∂ · ∂ · φρσ) + perm.′

]
+ 1

2

[
gµν∂ρ(∂ · φ′σ) + perm.′

]
+
[
gµν�φ

′
ρσ + perm.′

]
.

(4.52)

As before, we can trace out equation (4.51) symmetrically, thus reaching

Fµνρσ = 0. (4.53)
(4.54)

The Double-Traceless Condition

Up to spin-3, the double-traceless condition upon our tensorial field φ was not used.
In fact, we also did not need the condition to find the equations of motion (4.48) for
our spin-4 action. Why do we require a double-traceless condition?

Remember the linearized Einstein’s equations, (4.32). That equation can be written
as the Einstein tensor, Eµν , as

Eµν ≡ Rµν −
1
2gµνR = 0. (4.55)

The Einstein tensor obeys the following property

∂ · Eν = 0, (4.56)

known as the Bianchi identity. Since we are attempting to write every equation of
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motion in a form that resembles the linearized Einstein’s equation, we could imagine
a generalized Einstein tensor, which would obey a generalized Bianchi identity. In
fact, the generalized Einstein tensor for the spin-3 particle, given by (4.42), obeys a
generalized Bianchi identity

∂ · Eµν = ∂µ
[
Fµνσ − 1

2(g ◦ F ′)
µνσ

]
= 0. (4.57)

However, consider equation (4.50) without the use of the double-traceless condition.
We would have

F̃ ′µν = −2
[
(∂ · ∂ · φµν)− ∂µ(∂ · φ′ν)−�φ′µν

]
+ ∂µ∂νφ

′′ = F ′µν − ∂µ∂νφ′′. (4.58)

If we then built the equations of motion similarly to (4.51), but with F̃ instead of F ,
we would get

Ẽµνρσ ≡ Fµνρσ − 1
2(g ◦ F ′)µνρσ − 1

4 [gµν∂ρ∂σφ′′ + perm.′] = 0. (4.59)

This “modified” Einstein tensor does not satisfy a generalized form of the Bianchi
identity, since we would have

∂ · Ẽ (4) ∼ ∂∂∂φ′′, (4.60)

where the (4) indicates the tensor’s rank. This identity is satisfied when φ′′ = 0. If
we did not choose it to be this way, the generalized Einstein tensors of rank-4 and
above would always contain terms with two or more traces of our field φ, which would
not vanish. Thus the double-traceless condition is required in order for the generalized
versions of the Einstein tensors of rank-4 and above to satisfy the generalized versions
of the Bianchi identity. A physical interpretation to this is that we are eliminating the
propagation of undesired degrees of freedom5.

Thus, for the case of spin-4, if we define the correct generalized Einstein tensor

Eµνρσ ≡ Fµνρσ − 1
2(g ◦ F ′)µνρσ, (4.61)

it satisfies the generalized Bianchi identity

5For example, the double trace of our spin-4 field would be φ′′ = gµνgρσφµνρσ, which satisfies the
Klein-Gordon equation (4.5) and is, therefore, a spin-0 field.
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∂ · Eνρσ = 0. (4.62)

4.1.6 The General Case − Spin-s

Now that we have studied five specific cases explicitly, we are ready to study the general
case for a massless Bosonic particle of spin-s. The results obtained in this section would
have definitely simplified the discussions of the previous ones if we chose to put this
section first, but the explicit analysis of the other cases can be very fruitful for the
reader unfamiliar with the material.

For the general case, we take our starting point to be the action (4.1), repeated
here for the sake of the reader

Ss = (−1)s
∫
ddx

[
1
2(∂αφ)2 − s

2(∂ · φ)2 − s(s−1)
2 φ′ · (∂ · ∂ · φ)− s(s−1)

4 (∂αφ′)2

− s(s−1)(s−2)
8 (∂ · φ′)2 − φ · J (s)

]
.

(4.63)

Our discussion from the specific cases already allows us to impose the double-traceless
condition upon our field. Furthermore, we want to obtain equations of motion that
can lead to the results (4.5), (4.9), (4.20), (4.42), and (4.51), for particles of spin 0, 1,
2, 3, and 4, respectively, once we specify one of these spins for our particle.

A variation of our action with respect to φ gives6

0 = δSs = (−1)s
∫
ddx

[
− (�φ) + ∂ ◦ ∂ · φ− ∂ ◦ ∂ ◦ φ′ − g ◦ (∂ · ∂ · φ)

+ g ◦ (�φ′) + 1
2g ◦ (∂ ◦ ∂ · φ′)

]
· δφ,

(4.64)

so that the equations of motion can be written as

(�φ)− ∂ ◦ ∂ · φ+ ∂ ◦ ∂ ◦ φ′ + g ◦ (∂ · ∂ · φ)− g ◦ (�φ′)− 1
2g ◦ (∂ ◦ ∂ · φ′) = 0. (4.65)

6We will write one term explicitly for the sake of the reader. The variation of the second term in
(4.63) gives (omitting the integral) −s(∂ ·φ)(∂ ·δφ). Upon integration by parts, we arrive at (dropping
the surface term) s(∂µ1∂ · φµ2···µs

)δφµ1···µs . Because the only permutations that are inequivalent are
those where we exchange the index of the derivative with the (s − 1) indices of ∂ · φ, we see that
there are precisely s inequivalent permutations for this term. Thus we can cast the result in the form
(∂ ◦ ∂ · φ) · δφ, which is the second term in the second equality of (4.64).
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Now we wish to construct a tensor F (s), in analogy with what we have done in the
previous sections. Since we know the structure of the equations of motions from the
previous section, we know that a good choice for F (s) would be

F (s) ?= (�φ)− ∂ ◦ ∂ · φ+ ∂ ◦ ∂ ◦ φ′, (4.66)

but we have to check if this is a consistent choice. Taking the trace of (4.66) gives

F ′ (s−2) ≡ g · F (s) = −2 (∂ · ∂ · φ−�φ′) + ∂ ◦ ∂ · φ′, (4.67)

so that our equations of motion (4.65) can be written precisely in the form we wanted

F (s) − 1
2g ◦ F

′ (s−2) = 0, (4.68)

thus allowing us to conclude that (4.66) is indeed the correct form of F (s)7. To compare
our result with the literature, we can take the trace of equation (4.68) to find that

F ′ (s−2) = 0⇒ F (s) = (�φ)− ∂ ◦ ∂ · φ+ ∂ ◦ ∂ ◦ φ′ = 0, (4.69)

which agrees with result (2.4) of [12]. Now we have to check the gauge invariance of
our action under the general transformation

δφ(s) = ∂ ◦ ε(s−1), (4.70)

where the gauge parameter ε(s−1) is a traceless rank-(s − 1) tensor. This is a rather
straightforward calculation but one must take care not to get confused with notation.
For example, remember the following

[∂ ◦ ∂ · φ]µ1···µs ≡ [∂µ1∂ · φµ2···µs + perm.′]︸ ︷︷ ︸
s ineq. perm.

!= s∂µ1∂ · φµ2···µs , (4.71)

where we have used the notation != because this is not strictly true, since the terms do
not have identical properties. However, not using this trick can make the computation
extremely long. We can then write (4.64)8 as

7At this point, one can check explicitly that the equations of motion obtained in this section reduces
to the equations of motion in the previous sections.

8Of course, since we are now specifying the form of our variation, we do not intend to force δSs = 0.
Instead we want to find this equality in order to show that the action is gauge invariant.
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δSs = (−1)s
∫
ddx

[
− (�φ) + ∂ ◦ ∂ · φ− ∂ ◦ ∂ ◦ φ′ − g ◦ (∂ · ∂ · φ)

+ g ◦ (�φ′) + 1
2g ◦ (∂ ◦ ∂ · φ′)

]
· (∂ ◦ ε)

= (−1)s
∫
ddx

{[
s�∂ · φµ2···µs − s�∂ · φµ2···µs − s(s− 1)∂µ2∂ · ∂ · φµ3···µs

+ 2s(s− 1)
2 ∂µ2∂ · ∂ · φµ3···µs + s(s− 1)(s− 2)

2 ∂µ2∂µ3∂ · φ′µ4···µs

]
εµ2···µs

+
[
− s(s− 1)∂ · ∂ · φµ3···µs + s(s− 1)�φ′µ3···µs + s(s− 1)(s− 2)

2 ∂µ3∂ · φ′µ4···µs

]
∂ · εµ3···µs

]}
= 0.

(4.72)

For the second equality to be achieved, one must realize that

sgµ1µ2∂
µ1εµ2···µs = gµ1µ2 [∂µ1εµ2···µs + perm.′] = 2∂ · εµ3···µs +

���
���

���
�:0

(s− 2)∂µ3ε′ µ4···µs , (4.73)

where we used the traceless property of ε. Similar manipulations are also required for
the integrations by parts, for example (omitting the integral)

−
[
s(s− 1)

2 ∂µ1∂µ2φ
′
µ3···µs

]
s∂µ1εµ2···µs → 2s(s− 1)

2 ∂µ2�φ
′
µ3···µsε

µ2···µs

+ (s− 2)s(s− 1)
2 ∂µ2∂µ3∂ · φ′µ4···µsε

µ2···µs ,

(4.74)

where the arrow in (4.74) corresponds to an integration by parts. Thus, result (4.72)
shows that our action (4.63) is invariant under the gauge transformations (4.70).
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Chapter 5

A Continuous Spin Particle Gauge
Field Theory

5.1 The Action for a Single CSP

In 2014, Schuster and Toro proposed an action that describes a single free CSP particle
[12]. The particle is described through the usual spacetime coordinates xµ and an
additional four-vector coordinate ηµ. The CSP field, Ψ(x, η), is a scalar field, analytic
in η. The action is given by [12]

S = 1
2

∫
d4x d4η

{
δ′(η2 + 1) [∂xΨ(η, x)]2 + 1

2δ(η
2 + 1) [∆Ψ(η, x)]2

}
, (5.1)

where δ′ indicates the derivative of the Dirac’s delta function with respect to its argu-
ment, ∆ ≡ ∂η · ∂x + ρ, and ρ is the particle’s continuous spin. The action is invariant
under the gauge transformation [12]

δΨ(η, x) =
[
η · ∂x −

1
2(η2 + 1)∆

]
ε(η, x) + 1

4(η2 + 1)2χ(η, x) ≡ δεΨ(η, x) + δχΨ(η, x),
(5.2)

for arbitrary gauge parameter ε(η, x) and χ(η, x). To check this gauge invariance ex-
plicitly, we will first consider a χ-transformation and then a ε-transformation, verifying
that the action (5.1) is invariant under each of these transformations. We start by per-
forming an infinitesimal variation of our field Ψ of the form Ψ→ Ψ + δΨ in our action
(5.1), which leads to a variation of the action given by
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δS =
∫
d4x d4η

{
δ′(η2 + 1) (∂xΨ) · (∂xδΨ) + 1

2δ(η
2 + 1)∆Ψ∆δΨ

}
. (5.3)

Then, when we choose a χ-transformation, we are setting δΨ = δχΨ in (5.3), giving

δχS = 1
4

∫
d4x d4η

{
δ′(η2 + 1) (∂xΨ) ·

[
(η2 + 1)2∂xχ

]
+ 1

2δ(η
2 + 1)∆Ψ∆

[
(η2 + 1)2χ

]}
.

(5.4)

Now we make use of the Dirac’s delta function identities xδ(x) = 0 and x2δ′(x) = 0 so
that

δχS = 1
4

∫
d4x d4η

{1
2δ(η

2 + 1)∆Ψ
[
2(η2 + 1)η · ∂xχ+ (η2 + 1)2∆χ

]}
= 0, (5.5)

and thus the action (5.1) is invariant under χ-transformations. In the same way,
performing a ε-transformation means setting δΨ = δεΨ in (5.3), giving

δεS =
∫
d4x d4η

δ′(η2 + 1) (∂xΨ) · ∂x
[
η · ∂x −

1
2(η2 + 1)∆

]
ε

+ 1
2δ(η

2 + 1)∆Ψ∆
[
η · ∂x −

1
2(η2 + 1)∆

]
ε


. (5.6)

To continue, we must make use of the identity xδ′(x) = −δ(x) and perform a few
integrations by parts1, so that

δεS = −
∫
d4x d4η δ′(η2 + 1)Ψ

[
η · ∂x −

1
2(η2 + 1)∆

]
�xε

+ 1
2

∫
d4x d4η Ψ∆

[
δ(η2 + 1)�xε

]
=
∫
d4x d4η Ψ

{
− δ′(η2 + 1)η · ∂x�xε−

1
2δ(η

2 + 1)∆�xε+ δ′(η2 + 1)η · ∂x�xε

+ 1
2δ(η

2 + 1)∆�xε
}

= 0,

(5.7)

where �x ≡ ∂x ·∂x. Thus, we have δS = δεS+δχS = 0 and the action (5.1) is invariant
1In this chapter we will also consider that all the surface terms that arise from these manipulations

vanish.
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under the gauge transformation (5.2).

The equations of motion for our field Ψ can easily be obtained through (5.3) after
integrating both terms by parts, and are given by

δ′(η2 + 1)�xΨ−
1
2∆

[
δ(η2 + 1)∆Ψ

]
= 0, (5.8)

in agreement with result (4.4) of [12]. The equation of motion (5.8) are trivially in-
variant under χ-transformations upon usage of the Dirac’s delta function identities we
have presented in this discussion. They are also invariant under ε-transformations, as
can be seen by doing a variation Ψ→ Ψ + δεΨ in (5.8)

δ′(η2 + 1)
[
η · ∂x −

1
2(η2 + 1)∆

]
�xε−

1
2∆

{
δ(η2 + 1)∆

[(
η · ∂x −

1
2(η2 + 1)∆

)
ε
]}
.

(5.9)

It is easy to notice that (5.9) vanishes upon realizing that the second term can be
written, using δ(x) = −xδ′(x), as

−1
2
{
δ′(η2 + 1)2η · ∂x�xε+ δ(η2 + 1)∆�xε

}
, (5.10)

which cancels the first term in (5.9).

We could continue our discussion using action (5.4) and check that it indeed de-
scribes a single CSP degree of freedom. However, in 2015, Rivelles [13] proposed an
expansion of our field Ψ which uses two scalar fields, ψ0 and ψ1, to describe our CSP
instead of one scalar field. The action obtained through this expansion contains a sim-
pler local symmetry. We explore these features in the next section and move on to the
physical contents of our theory through these new approach.

5.2 Reducibility of the Local Transformations

When we look at action (5.1), we can notice that the role played by the Dirac’s delta
function is that of making the equation of motion (5.8) non-trivial in the hyperboloid
η2 + 1 = 0. We can then perform the following expansion for our field Ψ [13]

Ψ(η, x) =
∞∑
n=0

1
n! (η

2 + 1)nψn(η, x), (5.11)

where ψn are also scalar fields that can be written as [13]
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ψn(η, x) =
∞∑
s=0

1
s!η

µ1 . . . ηµsψ(n,s)
µ1...µs(x). (5.12)

In (5.12), ψ(n,s)
µ1...µs(x) are arbitrary completely symmetric tensor fields that depend only

on our spacetime coordinates xµ [13]. Although the choices (5.11) and (5.12) are not
unique, they are quite natural given the structure of our action, and they also lead to
a new transformation, a Ξ-transformation, defined as

δψn(η, x) =
∞∑
p=1

n!
(n+ p)!(η

2 + 1)pΞn,n+p(η, x)−
n−1∑
p=0

Ξn,p(η, x), (5.13)

which leaves Ψ, as written in (5.11), invariant. This is not a gauge transformation,
as we are not able to remove any degrees of freedom from it. To check that Ψ is left
invariant, we can explicitly perform the substitution (5.13) in (5.11), giving

δΨ =
∞∑
n=0

1
n! (η

2 + 1)nδψn

=
∞∑
n=0

∞∑
p=0

(η2 + 1)n+p

(n+ p)! Ξn,n+p −
n−1∑
p=0

∞∑
n=1

(η2 + 1)n
n! Ξn,p

=
[
(η2 + 1)Ξ0,1 + (η2 + 1)2

2! (Ξ0,2 + Ξ1,2) + (η2 + 1)3

3! (Ξ0,3 + Ξ1,3 + Ξ2,3) + · · ·
]

−
[
(η2 + 1)Ξ1,0 + (η2 + 1)2

2! (Ξ2,0 + Ξ2,1) + (η2 + 1)3

3! (Ξ3,0 + Ξ3,1 + Ξ3,2) + · · ·
]
,

(5.14)

where the first and second terms in square brackets of the third equality are the explicit
forms of the first and second double sums present in the second equality. This means
that, for δΨ = 0, we must have Ξa,b = Ξb,a, which is precisely the condition presented
in [13].

Now, notice that our gauge transformations in (5.2) are themselves invariant under
the local transformations [13]

δε = 1
2(η2 + 1)Λ(η, x), (5.15)

δχ = ∆Λ(η, x), (5.16)

where Λ(η, x) is a new local transformation parameter. This is precisely the definition
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of reducibility, so that we can say that the gauge transformations (5.2) are reducible. To
verify this gauge invariance, we perform the gauge transformations (5.15) and (5.16)
in (5.2), getting

[
η · ∂x −

1
2(η2 + 1)∆

]
δε+ 1

4(η2 + 1)2δχ = 1
2

[
η · ∂x −

1
2(η2 + 1)∆

]
(η2 + 1)Λ + 1

4(η2 + 1)2Λ

= 1
2
[
(η2 + 1)− (η2 + 1)

]
η · ∂xΛ

− 1
4(η2 + 1)2Λ + 1

4(η2 + 1)2Λ

= 0.
(5.17)

If we now expand ε(η, x) and χ(η, x) in analogy to the way we have expanded our
field Ψ in (5.11), we find that the gauge transformations (5.2) can be written as

δΨ =
∞∑
n=0

(η2 + 1)n
n! η · ∂xεn −

1
2

∞∑
n=0

(η2 + 1)
n!

[
n(η2 + 1)n−12η · ∂xεn + (η2 + 1)n∆εn

]
+ 1

4

∞∑
n=0

(η2 + 1)n+2

n! χn

=
∞∑
n=0

(η2 + 1)n
n!

[
(1− n)η · ∂xεn −

1
2n∆εn−1 + 1

4n(n− 1)χn−2

]
.

(5.18)

Comparing (5.18) with (5.11) allows us to conclude that

δψn = (1− n)η · ∂xεn −
1
2n∆εn−1 + 1

4n(n− 1)χn−2, (5.19)

which is in agreement with result (8) from [13]. We can use the same expansions in
(5.15) and (5.16), which, in an analogous manner, allow us to conclude that

δεn = 1
2nΛn−1, (5.20)

δχn = 2η · ∂xΛn+1 + ∆Λn. (5.21)

First, notice that δε0 = 0, using (5.20) with an arbitrary Λ. Now we can use our Λ
gauge symmetry to choose Λn−1 = −(2/n)εn, for n 6= 0 [13], which upon substitution
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in (5.20) yields

δεn = n

2

(
− 2
n
εn

)
= −εn, n 6= 0. (5.22)

This means we can gauge away every εn with n 6= 0. Then we can use our χ gauge
symmetry to choose χn−2 = − 4

n(n−1)ψn, n ≥ 2, which gauges away every δψn in (5.19),
except for δψ0 and δψ1 [13]. This means that all our transformations are reduced to

δψ0 = η · ∂xε0, (5.23)

δψ1 = −1
2∆ε0, (5.24)

δε0 = 0. (5.25)

Since the gauge parameter ε0 does not transform, as can be seen from (5.25), we now
say that the gauge transformations are irreducible.

5.3 The CSP Action in Terms of ψ0 and ψ1

Now that we have studied the consequences to our gauge transformations when making
the expansion (5.11), we will study the consequences of this expansion in our action
(5.1). Remember the identities xδ(x) = 0, xδ′(x) = −δ(x) and x2δ′(x) = 0, as they
are all used when attempting to write the action in terms of the fields ψ0 and ψ1. Our
analysis of the reducibility of the gauge transformations allowed us to notice that these
are the relevant fields for our study of the CSP action.

When we substitute (5.11) in (5.1), the Dirac’s delta function in the first term of
the action will eliminate all terms of the expansion except for those that contain ψ0

and ψ1, while the Dirac’s delta function of the second term of the action will eliminate
all terms of the expansion except for those that contain ψ0. We are then left with

S = 1
2

∫
d4x d4η

{
δ′(η2 + 1)(∂xψ0)2 + 1

2δ(η
2 + 1)

[
(∆ψ0 + 2η · ∂xψ1)2 − 4(∂xψ0) · (∂xψ1)

]}
.

(5.26)

which is the action (14), proposed by Rivelles in [13]. Even though we have fixed the Λ
and χ symmetries in the previous section, the action (5.26) does not allow any terms
ψn with n ≥ 2, as already explained.
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Now we will explore all the local symmetries of our action (5.26). At first we see
that our action is invariant under the transformations [13]

δψ0 = η · ∂xε0 + (η2 + 1)2χ0 + (η2 + 1)Ξ, (5.27)

δψ1 = −1
2∆ε0 + (η2 + 1)χ1 − Ξ, (5.28)

where we have defined Ξ ≡ Ξ0,1 = Ξ1,0, as found in (5.13). These transformations are
also invariant under the gauge transformations [13]

δΞ = (η2 + 1)θ(η, x), (5.29)
δχ0 = −θ(η, x), (5.30)
δχ1 = θ(η, x), (5.31)

for a new local parameter θ(η, x). This indicates that transformations (5.27) and (5.28)
are reducible. Checking the invariance of (5.27) and (5.28) under the transformations
(5.29), (5.30), and (5.31) is extremely simple. We have

(η2 + 1)2(−θ) + (η2 + 1)2θ = 0, (5.32)

and

(η2 + 1)θ − (η2 + 1)θ = 0, (5.33)

respectively.

Since these transformations act only upon χ0, χ1, and Ξ, it means that (at least) one
of these parameters can be removed. To understand the implications of the reducibility
of these transformations, we first find the equations of motion obtained by varying ψ0

and ψ1 in (5.26). Varying the action with respect to ψ0 gives

δS =
∫
d4x d4η

{
δ′(η2 + 1)(∂xψ0) · (∂xδψ0) + 1

2δ(η
2 + 1)

[
∆ψ0∆δψ0

+ 2η · ∂xψ1∆δψ0 − (∂xψ1) · (∂xδψ0)
]}
.

(5.34)

Making use of the Dirac’s delta function identities, integration by parts, and the prin-
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ciple of least action, we get

δ′(η2+1)
[
�xψ0 − η · ∂x∆ψ0 − 2(η · ∂x)2ψ1

]
−2δ(η2+1)

[
�xψ1 + 1

2η · ∂x∆ψ1 + 1
4∆2ψ0

]
= 0,

(5.35)

which is result (20) of [13]. Doing the same thing for a variation of ψ1

δS =
∫
d4x d4η δ(η2 + 1)

[
− (∂xψ0) · (∂xδψ1) + ∆ψ0(η · ∂xδψ1) + 2(η · ∂xψ1)(η · ∂xδψ1)

]
,

(5.36)

resulting in the equation of motion

δ(η2 + 1)
[
�xψ0 − η · ∂x∆ψ0 − 2(η · ∂x)2ψ1

]
= 0, (5.37)

which is result (21) of [13]. These equations of motion are not independent, since
multiplying (5.35) by η2 + 1 eliminates the second term of that result and the first
term becomes (5.37) upon using a Dirac’s delta function identity.

We are now ready to explore the reducibility of the transformations (5.27) and
(5.28). First we note, as we mentioned before, that the equations of motion (5.35) and
(5.37) are defined around the hyperboloid η2 + 1 = 0. This will make our analysis very
difficult because this is not a trivial constraint. Our plan is then to extend the validity
of the equations of motion to all η-space and continue our analysis from there.

5.4 Reducibility Revisited

We start by calling the first term in square brackets in (5.35) of A(η, x) and the second
term in square brackets of B(η, x). This means our equations of motion now become

δ′(η2 + 1)A(η, x)− 2δ(η2 + 1)B(η, x) = 0, (5.38)
δ(η2 + 1)A(η, x) = 0. (5.39)

We can see that A and B are not independent by considering
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∆A = ∆�xΨ0 −∆�xψ0 − η · ∂x∆2ψ0 − 4(η · ∂x)�xψ1 − 2(η · ∂x)2∆ψ1

= −η · ∂x∆2ψ0 − 4(η · ∂x)�xψ1 − 2(η · ∂x)2∆ψ1,
(5.40)

and

η · ∂xB = (η · ∂x)�xψ1 + 1
2(η · ∂x)2∆ψ1 + 1

4η · ∂x∆
2ψ0, (5.41)

so that [13]

∆A(η, x) = −4η · ∂xB(η, x). (5.42)

We now can notice that A and B are invariant under ε0 transformations

δA = �xη · ∂xε0 − η · ∂x∆ (η · ∂xε0) + (η · ∂x)2∆ε0
= η · ∂x�xε0 − (η · ∂x)2∆ε0 − η · ∂x�xε0 + (η · ∂x)2∆ε0
= 0,

(5.43)

and

δB = −1
2∆�xε0 −

1
4η · ∂x∆

2ε0 + 1
4∆2(η · ∂xε0)

= −1
2∆�xε0 −

1
4η · ∂x∆

2ε0 + 1
2∆�xε0 + 1

4η · ∂x∆
2ε0

= 0,

(5.44)

respectively. However, they are not invariant under χ0, χ1, and Ξ transformations.
Under χ0 and χ1 transformations, A transforms as

δA = (η2 + 1)2�xχ0 − η · ∂x∆
[
(η2 + 1)2χ0

]
− 2(η2 + 1)(η · ∂x)2χ1

= (η2 + 1)2 [�x − η · ∂x∆]χ0 − 2(η2 + 1)(η · ∂x)2 [2χ0 + χ1] ,
(5.45)

while under Ξ transformations it transforms as
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δA = (η2 + 1)�xΞ− η · ∂x∆
[
(η2 + 1)Ξ

]
+ 2(η · ∂x)2Ξ

= (η2 + 1) [�x − η · ∂x∆] Ξ.
(5.46)

This means that under the transformations (5.27) and (5.28), we get

δA = (η2 + 1)
[
(�x − η · ∂x∆) Ξ− 2(η · ∂x)2 (2χ0 + χ1) + (η2 + 1) (�x − η · ∂x∆)χ0

]
.

(5.47)

The same can be done, analogously, for B, giving

δB = −1
2 (�x − η ·∆) Ξ + (η · ∂x)2 (2χ0 + χ1) + (η2 + 1)

 (�x + 2η · ∂x∆)χ0

+
(
�x + 1

2η · ∂x∆
)
χ1 + 1

4∆2Ξ + 1
4(η2 + 1)∆2χ0

.
(5.48)

These last two results are, however, invariant under θ transformations of the form
(5.29)-(5.31), which we can check explicitly for (5.47)

(η2 + 1)
[
(η2 + 1)�xθ − (η2 + 1)η · ∂x∆θ − 2(η · ∂x)2θ + 4(η · ∂x)2θ − 2(η · ∂x)2θ

− (η2 + 1)�xθ + (η2 + 1)η · ∂x∆θ
]

= 0,

(5.49)

and for (5.48)

(η2 + 1)
[1
4(η2 + 1)∆2θ + η · ∂x∆θ + 1

2�xθ −�xθ − 2η · ∂x∆θ +�xθ + 1
2η · ∂x∆θ −

1
4(η2 + 1)∆2θ

]
− 1

2(η2 + 1)�xθ + 1
2η · ∂x∆θ + (η · ∂x)2θ − (η · ∂x)2θ = 0.

(5.50)

Now we will use our χ0 and χ1 symmetries to extend the validity of (5.39) to all
of η-space. This means that even without the Dirac’s delta function, we will have
A(η, x) = 0 [13]. This imposes the condition
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(η2 + 1)2 [�x − η · ∂x∆]χ0 − 2(η2 + 1)(η · ∂x)2 [2χ0 + χ1] = 0, (5.51)

which comes from (5.38) after setting A(η, x) = 0. Using the θ symmetry, we will set
χ0 = 0, which leads to (η · ∂x)2χ1 = 0, using (5.51). Now, if we Fourier transform this
last result to momentum space, we read it as (∂ω · p)2χ̃1 = 0, where ω is the Fourier
conjugate of our coordinate η. Since we do not want to constraint the momentum of
our particle, we conclude that χ̃1 = 0. Now, if we remember result (5.42), setting A = 0
leads to η · ∂xB(η, x) = 0 which, by the same arguments given for χ1, sets B(η, x) = 0
[13].

In this way, we have explored some of the local symmetries of our Lagrangian in
order to extend the equations of motion outside the hyperboloid η2 + 1 = 0. We have
that the equations of motion, extended to all of η-space, are

�xψ0 − η · ∂x∆ψ0 − 2(η · ∂x)2ψ1 = 0, (5.52)

�xψ1 + 1
2η · ∂x∆ψ1 + 1

4∆2ψ0 = 0, (5.53)

and they are invariant under the transformations

δψ0 = η · ∂xε0 + (η2 + 1)Ξ, (5.54)

δψ1 = −1
2∆ε0 − Ξ, (5.55)

which are now irreducible. These last four results are, respectively, in complete agree-
ment to what we see in equations (30), (31), (32), and (33) of [13].

5.5 Connections to the CSP Literature

We will now show that the extended equations of motion (5.52) and (5.53) are in
agreement to the results obtained in [14]. The notation used in most of the CSP
literature is that of momentum space, thus, to make the connection clearer, we will
Fourier transform our results to momentum space. As mentioned before, we give the
name ω to the Fourier conjugate of our coordinate η.

We perform the usual Fourier transformation (on both xµ and ηµ) on our fields ψi
as
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ψi(η, x) =
∫
d4ω d4p ei(η·ω+p·x)ψ̃i(ω, p), (5.56)

and similarly for ε0. This implies that equation (5.52)

−p2ψ̃0 + p · ∂ω(−p · ω + ρ)ψ̃0 − 2(p · ∂ω)2ψ̃1 = 0
⇒ −p2ψ̃0 − p2ψ̃0 − (p · ω − ρ)p · ∂ωψ̃0 − 2(p · ∂ω)2ψ̃1 = 0
⇒ p2ψ̃0 + 1

2(p · ω − ρ)p · ∂ωψ̃0 + (p · ∂ω)2ψ̃0 = 0, (5.57)

and, analogously, (5.53) can be written as

p2ψ̃1 − (p · ω − ρ)p · ∂ωψ̃1 − 1
2(p · ω − ρ)2ψ̃0 = 0. (5.58)

We then use our Ξ symmetry to choose the gauge [13]

ψ̃0 + (�ω − 1)ψ̃1 = 0, (5.59)

so that our transformations (5.54) and (5.55) are reduced to

δψ̃0 = −p · ∂ω ε̃0, (5.60)
δψ̃1 = 1

2(p · ω − ρ)ε̃0. (5.61)

Once we apply our gauge choice (5.59) to (5.58), favouring the field ψ1, we find

p2ψ̃1 − (p · ω − ρ)p · ∂ωψ̃1 + 1
2(p · ω − ρ)2(�ω − 1)ψ̃1 = 0, (5.62)

which is equation (5.2) of [14]. The field constraint (5.3) of [14], which is the analogous
version of the double-traceless conditions of our fields φ in the Schwinger-Fronsdal
formalism, can also be found by using our gauge choice in (5.57)

0 = p2(�ω − 1)ψ̃1 + 1
2(p · ω − ρ)p · ∂ω(�ω − 1)ψ̃1 + (p · ∂ω)2ψ̃0

= −1
4(p · ω − ρ)2(�ω − 1)2ψ̃1 − 1

2(p · ω − ρ)p · ∂ω(�ω − 1)ψ̃1 + (p · ∂ω)2ψ̃1

+ 1
2(p · ω − ρ)p · ∂ω(�ω − 1)ψ̃1 − (p · ∂ω)2ψ̃1

= (p · ω − ρ)2(�ω − 1)2ψ̃1,

(5.63)

where to go from the first to the second equality in (5.63), we must multiply equation
(5.62) by (�ω−1) and substitute the result in favor of the term of the last equality. We
can then proceed in analogy with what we argued when we found B(η, x) = 0 in the
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previous section. Because we do not want to constrain the momentum of our particle,
we end up with the result

(�ω − 1)2ψ̃1 = 0, (5.64)

which reproduces result (5.3) of [14]2. By using (5.59) in (5.60), we can also reproduce
the following condition on our gauge parameter ε0,

δψ̃0 = −p · ∂ω ε̃0 = −(�ω − 1)δψ̃1 = 1
2(�ω − 1)(p · ω − ρ)ε̃0

⇒ −p · ∂ω ε̃0 = 1
2(p · ω − ρ)ε̃0 −

1
2∂

µ
ω [pµε̃0 + (p · ω − ρ)∂ωµε̃0]

⇒ 1
2(p · ω − ρ)ε̃0 −

1
2 [2p · ∂ω + (p · ω − ρ)�ω] ε̃0

⇒ (p · ω − ρ)(�ω − 1)ε̃0 = 0
⇒ (�ω − 1)ε̃0 = 0, (5.65)

where in the last line we used the fact that we do not want to constrain our particle’s
momentum. (5.65) is result (5.6) from [14]. Even though we did not mention previously,
our gauge transformation (5.61) is equivalent to the gauge transformation (5.5) of [14].

5.6 Connections to the Higher-Spin Literature

This section is devoted to analysing the considerations proposed in [13] that shows
the equivalente between the action (5.26) (in the limit ρ→ 0) to a sum of Schwinger-
Fronsdal actions [11]. We start by considering the action (5.26) with ρ = 0

S = 1
2

∫
d4x d4η

{
δ′(η2 + 1)(∂xψ0)2 + 1

2δ(η
2 + 1)

[
(∂η · ∂xψ0 + 2η · ∂xψ1)2 − 4(∂xψ0) · (∂xψ1)

]}
.

(5.66)

The equations of motion for ψ0 and ψ1 can be obtained by explicit variations of these
fields in (5.66). However, since we have already found the equations of motion for
ρ 6= 0, namely (5.35) and (5.37), we will just set ρ = 0 in those results, finding

2There is a sign difference between our result and the one found in [14]. This is due to the fact
that we have chosen ∆ ≡ ∂η · ∂x + ρ, while the choice made in [14] is ∆ ≡ ∂η · ∂x − ρ. There is also
a difference in the way the eigenvalue of W 2 are set, since theirs is +ρ2 (in their notation, µ2), while
in our discussion of chapter 3 we found the eigenvalue −ρ2. These differences arise from the fact that
the Minkowski metric we are using in this dissertation is mostly negative, while the one used in [14]
is mostly positive.
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δ′(η2 + 1)
[
�xψ0 − η · ∂x∂η · ∂xψ0 − 2(η · ∂x)2ψ1

]
− 2δ(η2 + 1)

[
�xψ1 + 1

2η · ∂x∂η · ∂xψ1 + 1
4(∂η · ∂x)2ψ0

]
= 0,

(5.67)

and

δ(η2 + 1)
[
�xψ0 − η · ∂x∂η · ∂xψ0 − 2(η · ∂x)2ψ1

]
= 0, (5.68)

respectively. Now we can proceed in a completely analogous manner as we have done
in section 5.4 and extend the validity of (5.67) and (5.68) to all of η-space. We get [13]

�xψ0 − η · ∂x∂η · ∂xψ0 − 2(η · ∂x)2ψ1 = 0, (5.69)

�xψ1 + 1
2η · ∂x∂η · ∂xψ1 + 1

4(∂η · ∂x)2ψ0 = 0, (5.70)

where (5.69) would be the ρ = 0 analogous of A(η, x) = 0 and (5.70) would be the
ρ = 0 analogous of B(η, x) = 0. These results are invariant under the transformations

δψ0 = η · ∂xε0 + (η2 + 1)Ξ, (5.71)

δψ1 = −1
2∂η · ∂xε0 − Ξ, (5.72)

which are the ρ = 0 analogous of (5.54) and (5.55), respectively. Now we can use our
Ξ symmetry to choose the gauge [13]

ψ1 + 1
4�ηψ0 = 0, (5.73)

which implies the relation

(1 + η · ∂η)Ξ + 1
4(η2 + 1)�ηΞ = 0, (5.74)

when we use (5.71) and (5.72). We can then use (5.73) back in our equations of motion
to find
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�xψ0 − η · ∂x∂η · ∂xψ0 + 1
2(η · ∂x)2�ηψ0 = 0, (5.75)

�x�ηψ0 + 1
2η · ∂x∂η · ∂x�ηψ0 − (∂η · ∂x)2ψ0 = 0. (5.76)

Now applying �η in (5.75) we get

�x�ηψ0 − (∂η · ∂x)2ψ0 + 1
2η · ∂x∂η · ∂x�ηψ0 + 1

4(η · ∂x)2�2
ηψ0 = 0, (5.77)

which, when compared to (5.76), implies

(η · ∂x)2�2
ηψ0 = 0. (5.78)

Because we do not want to constrain the particle’s momentum, equation (5.78) reduces
to �2

ηψ0 = 0. This is a double-traceless condition3, in analogy to what we had in the
Schwinger-Fronsdal formalism [11, 13]. Making a Ξ transformation in (5.78) implies
that �2

ηδΞψ0 = 4�ηΞ = 0, which when used back in (5.74) implies Ξ = 0. If we
apply an ε0 transformation to (5.78), we are left with �ηε0 = 0, which is the traceless
condition of our gauge parameter [11, 13]. Now that we have fixed the Ξ symmetry,
we found all the conditions of our field and gauge parameter to be exactly the same as
the ones we had in chapter 4.

We now rewrite the expansion (5.12) as

ψ0(η, x) =
∞∑
n=0

1
n!η

µ1 · · · ηµnψ(0,n)
µ1···µn(x) ≡

∞∑
n=0

1
n!η

µ1 · · · ηµnψµ1···µn(x), (5.79)

where we drop the superscript (0, n) to keep the notation less cluttered. Using (5.79)
in (5.75) yields

∞∑
n=0

1
n!η

µ1 · · · ηµn
[
�xψµ1···µn(x)− n∂µ1∂ · ψµ2···µn(x) + 1

2n(n− 1)∂µ1∂µ2ψ
′
µ3···µn(x)

]
= 0,

(5.80)

3To understand why this means a double-traceless condition, try looking at ψ0 as in (5.12). When
we apply �2

η the left-hand side of (5.12), we are effectively taking two traces of ψ(0,s)
µ1···µs(x), on the

right-hand side.
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where every derivative that appears in (5.80) is taken with respect to xµ. Also, as usual,
we have ∂ ·ψµ2···µn(x) ≡ ∂µ1ψµ1···µn and ψ′µ1···µn ≡ ψρ ρµ1···µn = gρσψρσµ1···µn . Comparing
(5.80) with (4.65), allows us to notice that (5.80) is a sum of Schwinger-Fronsdal
equations for all integer helicities4 [11, 13]. This means that the action proposed by
Rivelles in [13] reduces to a sum of Schwinger-Fronsdal actions, as discussed in chapter
4, in the limit ρ→ 0.

5.7 The Eigenvalues of P 2 and W 2

After completing the analysis of our action when ρ → 0, we go back to the case
where ρ 6= 0 and study its physical content. As we have seen in chapter 3, a CSP
representation is characterized by the eigenvalues of two operators (called the Casimir
operators of the Poincaré group), P 2 and W 2, acting on the eigenstates of the theory
with eigenvalues 0 and (−ρ2), respectively. We then wish to write down these operators
using our η-space notation and compute their eigenvalues when they act on our fields
ψ0 and ψ1.

First we construct the Pauli-Lubanski pseudo-vector in η-space. In chapter three
we have cast a definition for this vector, which we present here again

W µ = −1
2ε

µνρσPνMρσ. (5.81)

When we take into consideration the effects of our η-space, we see that we can write
[13] Pµ = −i∂µ and Mµν = −i

(
x[µ∂x ν] + η[µ∂η ν]

)
. This means that (5.81) becomes

W µ = −1
2ε

µνρσ

∂xνx[µ∂x ν]︸ ︷︷ ︸
0, using the ε

+∂xν (ηρ∂ησ − ησ∂ηρ)


= −1

2ε
µνρσ∂xνηρ∂ησ + 1

2 ε
µνσρ∂xνησ∂ηρ︸ ︷︷ ︸

σ↔ρ

= −1
2ε

µνρσ∂xνηρ∂ησ −
1
2 ε

µνρσ∂xνηρ∂ησ︸ ︷︷ ︸
εµνσρ=−εµνρσ

= −εµνρσ∂xνηρ∂ησ

(5.82)

Now we must compute W 2. To do this, we will need two identities involving the product
4The factors of n that appear in (5.80) are equivalent to the number of symmetric, inequivalent

permutations of the terms in the Schwinger-Fronsdal equations.
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between two Levi-Civita symbols, εµνρσ, which are

εµνρσεµαβγ = −
[
δναδ

ρ
βδ

σ
γ − δναδργδσβ + δνβδ

ρ
γδ
σ
α

− δνβδραδσγ + δνγδ
ρ
αδ

σ
β − δνγδ

ρ
βδ

σ
α

]
,

(5.83)

and

εµσνρεµσαγ = −2
(
δναδ

ρ
γ − δνγδρα

)
. (5.84)

This is a very lengthy, though simple, computation which we will leave to Appendix
B. The result we get is

W 2ψi = [(η · ∂η)(1 + η · ∂η)�x − η2�η�x − 2(η · ∂x)(∂η · ∂x)(η · ∂η)
+ (η · ∂x)2�η + η2(∂η · ∂x)2]ψi, i = 0 or 1.

(5.85)

Now we must work on the right-hand side of equation (5.85) for both ψ0 and ψ1, subject
to their equations of motion in all of η-space, given by (5.52) and (5.53), respectively.
After another pair of very long computations(which we leave to Appendix C) we can
show that

W 2ψ0 = −ρ2ψ0 + δεψ0 + δΞψ0, (5.86)

and

W 2ψ1 = η2ρ2ψ1 + δεψ1 + δΞψ1, (5.87)

where the transformation parameters ε0 and Ξ are given by

ε0 =η · ∂η(1 + η · ∂η)∂η · ∂xψ0 + ρ
[
2 + 3η · ∂η + (η · ∂η)2

]
ψ0 − (η2∆− η · ∂x)�ηψ0

+ 2
[
2 + 3η · ∂η + (η · ∂η)2

]
η · ∂xψ1 − 2η2 (η · ∂x�η + 3∂η · ∂x − ρ)ψ1,

(5.88)

and
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Ξ = ρ2ψ0. (5.89)

These results agree with results (78)-(81) of [13]. It is important to notice that the
equations of motion we have chosen to find results (5.86) and (5.87) where the equations
of motion extended to all of η-space. However, result (5.87) makes it clear that we will
only get the correct eigenvalues to both ψ0 and ψ1 when we are on the hyperboloid
η2 + 1 = 0, that is, when we are in the presence of the Dirac’s delta functions of the
previous sections. In other words, the correct eigenvalues for W 2 are obtained when

δ(η2 + 1)W 2ψ0 = δ(η2 + 1)
[
−ρ2ψ0 + δεψ0 + δΞψ0

]
, (5.90)

δ(η2 + 1)W 2ψ1 = δ(η2 + 1)
[
−ρ2ψ1 + δεψ1 + δΞψ1

]
, (5.91)

These results indicate that CSP degrees of freedom live only on the hyperboloid and
not on all of η-space [13].

The other eigenvalue we are interested in is that of the operator P 2. However, if
we look at the equations of motion (5.52) and (5.53) a little bit more carefully, we see
they can be written in the form

�xψ0 = 0 + δε0ψ0, (5.92)
�xψ1 = 0 + δε0ψ1, (5.93)

where

ε0 = ∆ψ0 + 2η · ∂xψ1, (5.94)

and the ε0-transformations are given by the first terms of equations (5.54) and (5.55).
Since we can write P 2 = −�x, then we have P 2ψi = 0 and W 2ψi = −ρ2ψi, which are
the correct eigenvalues for our two Casimir operators. Of course, if you look directly
at results (5.86), (5.87), (5.92), and (5.93), you will see the the eigenvalues of P 2 and
W 2 hold up to a gauge transformation (or up to a pure gauge term, if you will). This
happens because we are studying a gauge theory, thus we can only demand these kinds
of relations up to pure gauge terms [12, 13].
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5.8 Physical Contents

To find our physical degrees of freedom, we will work with the same gauge choice we
made in section 5.6, namely (5.73), but now favouring ψ0 instead of ψ1. We start by
reminding ourselves that our expansion (5.11) actually only have two terms (that are
relevant)

Ψ(η, x) = ψ0(η, x) + (η2 + 1)ψ1(η, x). (5.95)

We also remember that when we do a similar expansion for our gauge parameter ε(η, x),
we can use the symmetry in Λ to remove all terms of the expansion except one, so that
ε(η, x) = ε0(η, x) [13, 15]. If we choose only these considerations as our starting point,
then we have no condition on the traces of ψi and ε0. This means that we still have our
Ξ symmetry, so that our local transformations are given by (5.54) and (5.55). Also,
the equations of motion we are working with are the ones valid for all of η-space, given
by (5.52) and (5.53).

Applying our gauge choice to (5.52) gives

[
�x − η · ∂x∆ + 1

2 (η · ∂x)2�η
]
ψ0 = 0, (5.96)

and, for (5.53),

0 =
[
− 1

4�x�η −
1
2η · ∂x∆�η + 1

4∆2
]
ψ0

=
[
(η · ∂x)2�2

η + 4ρ(∆− η · ∂x�η)
]
ψ0,

(5.97)

where in the last equality we used (5.96). If we take a gauge transformation of (5.73),
we get

δψ1 + 1
4�ηδψ0 = −1

2∆ε0 + 1
4�ηη · ∂xε0 = −2∆ε0 +�η

[
η · ∂xε0

]
= −2∆ε0 + 2∂η · ∂xε0 + η · ∂x�ηε0
=
(
η · ∂x�η − 2ρ

)
ε0 = 0.

(5.98)

We can notice that (5.96) reduces to the Schwinger-Fronsdal equations of motion for
ψ0 and (5.98) reduces to the traceless condition for the gauge parameter, both when
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ρ = 0 [15]. Now we have partially fixed our gauge, but we still have a residual gauge
symmetry for a parameter ε0 satisfying (5.98). To continue, we will choose a harmonic
gauge

(
η · ∂x�η − 2∆

)
ψ0 = 0, (5.99)

so that the equations of motion (5.96) and (5.97) are reduced to

�xψ0 = 0, (5.100)(
η · ∂x�η − 2ρ

)
�ηψ0 = 0, (5.101)

respectively. Also, taking a gauge transformation of (5.100) and keeping the particle’s
momentum arbitrary means that our gauge parameter must satisfy the condition

�xε0 = 0. (5.102)

These are the new conditions our field ψ0 and our gauge parameter ε0 must satisfy
after gauge fixing. Now we want to use our gauge symmetry in ε0 to gauge away some
components of ψ0 in the expansion (5.12). We will work on a Lorentz frame where
the light-cone components of the momentum are (p+, p−, p1, p2) = (p+, 0, 0, 0). We will
also be a bit more explicit with our series expansions in order to avoid confusion with
the notation. Expanding ε0, as in (5.12), in (5.98) gives

∞∑
0

1
n!
(
η · ∂x�η − 2ρ

)
[ηµ1 · · · ηµnε0 µ1···µn(x)] = 0. (5.103)

The first term in (5.103) can be read as

∞∑
0

1
n!η · ∂x�η [ηµ1 · · · ηµnε0(x)] = ηµ1∂xµ1ε

′
0(x) + 1

2!η
µ1ηµ2∂x(µ1ε

′
0µ2)(x)

+ 1
3!

[ 1
2!η

µ1ηµ2ηµ3∂x(µ1ε
′
0µ2µ3)(x)

]
+ 1

4!

[ 1
3!η

µ1ηµ2ηµ3ηµ4∂x(µ1ε
′
0µ2µ3µ4)(x)

]
+ · · · ,

(5.104)

while the second term can be read as
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−2ρ
∞∑
0

1
n! [ηµ1 · · · ηµnε0(x)] = −2ρ

[
ε0(x) + ηµ1ε0µ1(x) + 1

2!η
µ1ηµ2ε0µ1µ2(x)

+ 1
3!η

µ1ηµ2ηµ3ε0µ1µ2µ3(x) + 1
4!η

µ1ηµ2ηµ3ηµ4ε0µ1µ2µ3µ4(x) + · · ·
]
,

(5.105)

so that, comparing (5.104) and (5.105), we can find (after going to momentum space)
[15]

1
(n− 1)!ip(µ1 ε̃

′
µ2···µn)(p)− 2ρε̃µ1···µn(p) = 0, (5.106)

where ε̃ is the Fourier transform of ε0 and ε̃′ is the trace of ε̃. Because of our choice of
Lorentz frame, we can simplify result (5.106) to [15]

imp+ε̃
′
+ · · ·+︸ ︷︷ ︸
m−1 times

A1···An − 2ρε̃+ · · ·+︸ ︷︷ ︸
m times

A1···An = 0, (5.107)

where A = (−, i). This can be achieved because of the symmetric permutation notation
we are using in (5.106), out of all the terms that arise from those permutations, the
only ones that survive are the ones that are listed in (5.107). We can note that setting
ρ = in (5.107) will give us the usual traceless condition on the gauge parameter ε0.
However, in the CSP case, we no longer have this condition! For m = 0, we learn from
(5.107) that

ε̃A1···An = 0⇒ εi1···in = 0, m ≥ 1. (5.108)

Then, the gauge part of our transformation (5.54) can be written as

δψ̃0µ1···µn = 1
(n− 1)!ip(µ1 ε̃µ2···µn), (5.109)

which because of our choice of Lorentz frame can be written as

δψ̃+ · · ·+︸ ︷︷ ︸
m times

A1···An = imp+ε̃+ · · ·+︸ ︷︷ ︸
m−1 times

A1···An , m ≥ 0. (5.110)

When m = 0, ψi1···in is trivially gauge invariant because of (5.108). For m ≥ 1, we can
gauge away the components of ψ̃ with + indices by making use of our ε̃ symmetry. In
other words, we set [15]
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ψ̃new
+ · · ·+︸ ︷︷ ︸
m times

A1···An = ψ̃+ · · ·+︸ ︷︷ ︸
m times

A1···An + imp+ε̃+ · · ·+︸ ︷︷ ︸
m−1 times

A1···An = 0, p ≥ 1. (5.111)

For this condition to be reached, we must solve (5.111) for ε̃ in terms of ψ̃, substitute
the result in (5.106) and find an analogous condition for ψ̃5. The condition ψ̃ must
satisfy in order for (5.111) to be reached is

imp+ψ̃
′
+ · · ·+︸ ︷︷ ︸
m−1 times

A1···An − 2ip+ψ̃−+ · · ·+︸ ︷︷ ︸
m times

A1···An − 2ρψ̃+ · · ·+︸ ︷︷ ︸
m times

A1···An = 0, p ≥ 0. (5.113)

This means we can reach the gauge ψ̃new
+···+A1···An = 0 [15]. We can rewrite the harmonic

gauge condition (5.99) as

i

(n− 1)!p(µ1ψ̃
′
µ2···µn) − 2ip+ψ̃−µ1···µn − 2ρψ̃µ1···µn = 0, (5.114)

which is exactly the same as (5.113) [15]. Now that our gauge is completely fixed, we
can find, using (5.113) with m = 0, that

ψ̃− · · ·−︸ ︷︷ ︸
` times

i1···in =
(
− ρ

ip+

)`
ψ̃i1···in . (5.115)

Result (5.115) can be obtained iteratively. After setting m = 0, we get result (5.115)
with ` = 1, that is

ψ̃−i1···in = − ρ

ip+
ψ̃i1···in . (5.116)

Then, setting one of the i indices to “minus” on both sides of (5.116) gives

ψ̃−−i1···in = − ρ

ip+
ψ̃−i1···in =

(
− ρ

ip+

)2

ψ̃i1···in . (5.117)

5Remember that, for a symmetric tensor, A′ = gµνAµν = 2A−+ −Aii, where we are working with
light-cone coordinates with metric

(gµν) =


0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

 . (5.112)
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This can be done ` times, for instance, thus reaching result (5.115). When ρ = 0, then
every component of ψ with a − index vanishes. With result (5.115), we also find that
our condition (5.101) is satisfied.

Setting m = 1 in (5.113) we can conclude that (using, again, the trace of ψ̃ in our
light-cone coordinates) ψ̃jji1···in = 0 [15]. This is a traceless condition upon our field ψ̃.

Now we are ready to interpret our results. We found that the ψ̃i1···in contain all the
degrees of freedom of our theory, since they are the only independent components of our
field ψ̃. We also found that the field is subject to the traceless condition ψ̃jji1···in = 0.
This means we have, as expected from our discussion in chapter 3, that the CSP field
carries all integer helicities, from −∞ to ∞, each one appearing only once. In the
ρ = 0 limit, we also have that our fields ψ0 decouple into a sum of Schwinger-Fronsdal
fields for all integer helicities [15].
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Appendix A

Notation and Conventions

Throughout this dissertation we will be using the mostly minus Minkowski metric1

signature, that is

(ηµν) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (A.1)

with µ, ν = 0, 1, 2, 3. We use the metric to raise and lower spacetime indices, i.e.

xµ = ηµνxν , (A.2)

and

xν = ηµνx
ν . (A.3)

When we talk about groups in chapter 2 and 3, the notation SO(N,M) indicates
the special orthogonal group with N time coordinates and M spatial coordinates (N
positive metric eigenvalues and M negative metric eigenvalues, if you wish).

Sometimes, we may simplify some antisymmetrization operations with the short-
hand notation

A
[ν

[µ B
ρ]
σ] ≡ A ν

µ B
ρ
σ − A ρ

µ B
ν
σ − A ν

σ B
ρ
µ + A ρ

σ B
ν
µ . (A.4)

1In chapters 2-4 we will denote the Minkowski metric by ηµν , but in chapter 5 we switch notation
to gµν in order to avoid confusion with the extra coordinate η of the enlarged spacetime.
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Throughout chapter 4 and 5, contractions between two tensors are defined by
X · Y ≡ Xµν...Yµν..., keeping in mind that contractions with derivatives and the metric
are always taken to be outer products (i.e. ∂ · X ≡ ∂µX

µ... and g · X ≡ gµνX
µν...).

Also, we define the inequivalent symmetric contraction with no symmetry factor be-
tween two tensors, X and Y , by X ◦ Y . Here, X ◦ Y is a (n+m) tensor if the ranks of
X and Y are n and m, respectively. This means that for n = m = 1, for example, we
have X ◦ Y ≡ XµYν + XνYµ. The trace of a tensor is written as X ′ and is defined as
X ′ ≡ Tr(X) ≡ g ·X.
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Appendix B

Computing W 2 in the Field Theory
Formalism

Now we will elaborate further on how to get to result (5.85). In this appendix we will
use gµν for the Minkowski metric.

We will start by writing again the identities for contractions between two Levi-
Civita symbols that we listed on chapter 5

εµνρσεµαβγ = det(g)
[
δναδ

ρ
βδ

σ
γ − δναδργδσβ + δνβδ

ρ
γδ
σ
α

− δνβδραδσγ + δνγδ
ρ
αδ

σ
β − δνγδ

ρ
βδ

σ
α

]
= −

[
δναδ

ρ
βδ

σ
γ − δναδργδσβ + δνβδ

ρ
γδ
σ
α

− δνβδραδσγ + δνγδ
ρ
αδ

σ
β − δνγδ

ρ
βδ

σ
α

]
,

(B.1)

and

εµσνρεµσαγ = det(g)2!
(
δναδ

ρ
γ − δνγδρα

)
= −2

(
δναδ

ρ
γ − δνγδρα

)
.

(B.2)

Let us start by reviewing our definition of the Pauli-Lubanski pseudo vector

W µ ≡ −1
2ε

µνρσPνMρσ. (B.3)
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Then we write.

Pν = −i∂xν , (B.4)
Mρσ = −i (xρ∂xσ − xσ∂xρ + ηρ∂ησ − ησ∂ηρ) . (B.5)

Using (B.4) and (B.5) in (B.3) we get

W µ = −1
2ε

µνρσ∂xν (xρ∂xσ − xσ∂xρ + ηρ∂ησ − ησ∂ηρ)

= −1
2ε

µνρσ (gνρ∂xσ − gνσ∂xρ + ∂xνηρ∂ησ) + 1
2 εµνσρ︸ ︷︷ ︸
−εµνρσ

∂xνηρ∂ησ

= −εµνρσ∂xνηρ∂ησ

. (B.6)

Now we can compute W 2Ψ(x, η) using (B.6)

W 2Ψ = (εµνρσ∂xνηρ∂ησ)
(
εµαβγ∂

α
x η

β∂γη
)

Ψ

= εµνρσεµαβγ
(
ηρη

β∂ησ∂
γ
η + δβσηρ∂

γ
η

)
∂xν∂

α
xΨ.

(B.7)

Making use of our identity (B.1), the first term in (B.7) can be written as

−(δναδ
ρ
βδ

σ
γ − δναδργδσβ + δνβδ

ρ
γδ
σ
α − δνβδραδσγ + δνγδ

ρ
αδ

σ
β − δνγδ

ρ
βδ

σ
α)×

×
(
ηρη

β∂ησ∂
γ
η∂xν∂

α
x

)
Ψ

= [−η2�η�x + (η · ∂η)2�x − 2(η · ∂x)(η · ∂η)(∂η · ∂x)+
+ (η · ∂x)2�η + η2(∂η · ∂x)2]Ψ.

(B.8)

Now, using (B.2), the second term in (B.7) can be written as

εµνρσεµασγ︸ ︷︷ ︸
−εµσνρεµσαγ

ηρ∂
γ
η∂xν∂

α
xΨ = 2

(
δναδ

ρ
γ − δνγδρα

)
ηρ∂

γ
η∂xν∂

α
xΨ

= 2 [(η · ∂η)�x − (η · ∂x) (∂η · ∂x)] Ψ.
(B.9)

Thus, adding results (B.8) and (B.9) we get
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W 2Ψ = [(η · ∂η)(1 + η · ∂η)�x − η2�η�x − 2(η · ∂x)(∂η · ∂x)(η · ∂η)
+ (η · ∂x)2�η + η2(∂η · ∂x)2]Ψ,

(B.10)

which is precisely result (5.85) once we change Ψ→ ψi, i = 0, 1.



This page intentionally left blank.



79

Appendix C

Computing the Eigenvalues of W 2

When performing the manipulations of the next few sections, it is necessary to use
commutation relations between a few operators of our theory. For example, we can
write the term η · ∂x∆f(η, x), where f(η, x) is an arbitrary test function, as

∆
(
η · ∂xf

)
= η · ∂x∆f +�xf ⇒ η · ∂x∆f = ∆

(
η · ∂xf

)
−�xf. (C.1)

These manipulations occur frequently on what follows and it might be difficult for the
reader to keep track of all of them. Still, we would like to list a few of the most useful
ones here

η · ∂η∆f = ∆
(
η · ∂ηf)− ∂η · ∂xf, (C.2)

(η · ∂η)2∆f = ∆
[
(η · ∂η)2f

]
− (2η · ∂η + 1)δ · ∂xf. (C.3)

Notice that most calculations which involve ∂η · ∂x, that is, (∆ − ρ), are very similar
to the ones already listed here, just making the substitution ∆→ ∂η · ∂x.

C.1 Computing W 2ψ0

First, we write down, for the sake of the reader, the equations of motion for ψ0 and ψ1

extended to all of η-space and how these fields transform under gauge transformations.
The equations of motion are

�xψ0 − η · ∂x∆ψ0 − 2(η · ∂x)2ψ1 = 0, (C.4)

�xψ1 + 1
2η · ∂x∆ψ1 + 1

4∆2ψ0 = 0, (C.5)
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and the transformations are

δψ0 = η · ∂xε0 + (η2 + 1)Ξ, (C.6)

δψ1 = −1
2∆ε0 − Ξ. (C.7)

Now we want to use our result (B.10) with Ψ→ ψ0, that is

W 2ψ0 = [(η · ∂η)(1 + η · ∂η)�x − η2�η�x − 2(η · ∂x)(∂η · ∂x)(η · ∂η)
+ (η · ∂x)2�η + η2(∂η · ∂x)2]ψ0,

= [(η · ∂η)�x + (η · ∂η)2�x − η2�η�x − 2(η · ∂x)(∂η · ∂x)(η · ∂η)
+ (η · ∂x)2�η + η2(∂η · ∂x)2]ψ0,

(C.8)

where in the second equality we have expanded the first term inside the square brackets
of the first equality. Because each term in (C.8) requires lots of manipulations, we will
work out each of them separately. The first term in the second equality of (C.8) can
be written as

η ·∂η
[
η ·∂x∆ψ0 +2(η ·∂x)2ψ1

]
= η ·∂x

[
∆ψ0 +η ·∂η∆ψ0 +4η ·∂xψ1 +2η ·∂xη ·∂ηψ1

]
. (C.9)

The second term can be written as

(η · ∂η)2�xψ0 = η · ∂x
[
∆ψ0 + 2η · ∂η∆ψ0 + (η · ∂η)2∆ψ0 + 8η · ∂xΨ1 + 8η · ∂xη · ∂ηψ1

+ 2η · ∂x(η · ∂η)2ψ1

]
.

(C.10)

The third term can be written as

−η2�η�xψ0 = −η2
[
2∂η · ∂x∆ψ0 + η · ∂x�η∆ψ0 + 4�xψ1 + 8η · ∂x∂η · ∂xψ1 + 2(η · ∂x)2�ηψ1

]
= η2∆2ψ0 + η · ∂x

[
2η2

(
∆ψ1 − 2∂η · ∂x∆ψ0 −�η∆ψ0 − 8∂η · ∂xψ1 − 2η · ∂x�ηψ1

)]
(C.11)

The fourth and fifth terms in (C.8) do not require further manipulations since they are



C.2. COMPUTING W 2ψ1 81

already in pure gauge form. The last term can be written as

η2(∂η · ∂x)2ψ0 = η2(∆− ρ)2ψ0 = η2∆2ψ0 + η2ρ2ψ0 − 2η2ρ∆ψ0. (C.12)

Then, adding (C.9), (C.10), (C.11), (C.12), and the two terms we did not manipulate,
gives

W 2ψ0 = η2ψ0 + δεψ0 = η2ψ0 + ρ2ψ0 − ρ2ψ0 + δεψ0 = −ρ2ψ0 + δεψ0 + (η2 + 1)ρ2ψ0

= −ρ2ψ0 + δεψ0 + δΞψ0,

(C.13)

which is precisely result (5.86). Note, however, that although our Ξ parameter already
has its correct form, Ξ = ρ2ψ0, our ε0 parameter is still messy when compared to (5.88).
We will fix that a couple of sections below.

C.2 Computing W 2ψ1

Now we will perform the same calculation for W 2ψ1. This calculation is more difficult
because the ε-transformation of ψ1 contain η derivatives. Still, the principle is the same
and no further difficulties should arise. We have

W 2ψ1 = [(η · ∂η)�x + (η · ∂η)2�x − η2�η�x − 2(η · ∂x)(∂η · ∂x)(η · ∂η)
+ (η · ∂x)2�η + η2(∂η · ∂x)2]ψ1.

(C.14)

We will start our calculation with the last term of expression (C.14). We have

η2(∆− ρ)2ψ1 = η2ρ2ψ1 + ∆(η2∆ψ1)− 2η · ∂x∆ψ1 − 2∆(η2ρψ1) + 4ρη · ∂xψ1

= η2ρ2ψ1 + 4ρη · ∂xψ1 + ∆(η2∆ψ1 − 2η2ρψ1 − 4η · ∂xψ1 −∆ψ0).
(C.15)

Now, the third term can be written as
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−η2�η�xψ1 = 1
2�η∆(2η · ∂xψ1 + ∆ψ0)

= 1
2∆(2�ηη · ∂xψ1 +�η∆ψ0).

(C.16)

The fourth term can be written as

2η · ∂x(∆− ρ)η · ∂ηψ1 = −2η · ∂x∆η · ∂ηψ1 + 2ρη · ∂xη · ∂ηψ1

= −2ρη · ∂xψ1 + 2ρη · ∂xη · ∂ηψ1 −∆
(

2η · ∂ηη · ∂xψ1 + η · ∂η∆ψ0

− ∂η · ∂xψ0 − 2η · ∂xψ1 + 2η · ∂xη · ∂ηψ1

)
.

(C.17)

The fifth term needs no manipulation, so all we are left with is the first two terms.
The first term gives

η · ∂η�xψ1 = −1
2η · ∂η∆(2η · ∂xψ1 + ∆ψ0)

= −1
2∆(2η · ∂ηη · ∂xψ1 + η · ∂η∆ψ0) + 1

2∂η · ∂x(2η · ∂xψ1 + ∆ψ0)

= −ρη · ∂xψ1 −
1
2∆(2η · ∂ηη · ∂xψ1 + η · ∂η∆ψ0 − ∂η · ∂xψ0 − 2η · ∂xψ1).

(C.18)

Finally, the second term gives

(η · ∂η)2�xψ1 = 1
2(η · ∂η)2(2η · ∂xψ1 + ∆ψ0)

= ρη · ∂xψ1 + 1
2ρ∆ψ0 − 2ρη · ∂xψ1 − 2ρη · ∂xη · ∂ηψ1

− 1
2∆

{[
(η · ∂2

η − 2η · ∂η + 1
]
(2η · ∂xψ1 + ∆ψ0)− ρψ0

}
= −ρη · ∂xψ1 − 2ρη · ∂xη · ψ1

− 1
2∆

{[
(η · ∂2

η − 2η · ∂η + 1
]
(2η · ∂xψ1 + ∆ψ0)− ρψ0

}
.

(C.19)

Then, adding every term of (C.14) after the manipulations above we get the desired
result
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W 2ψ1 = η2ρ2ψ1 + δεψ1 + δΞψ1, (C.20)

again with the correct form of Ξ but a messy form of ε0. Result (C.20) is precisely
result (5.87).

C.3 Working out ε0

Now that we have reproduced results (5.86) and (5.87), we want to manipulate the
form of the ε0 parameter in the results above to show that they can be cast in the form
(5.88). The calculations are very similar for the ε0 parameter of ψ0 and ψ1, so will
perform the calculation for ψ0 only.

Writing down the ε0 of result (C.13) explicitly we get
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ε0 = 2∆ψ0 + 3η · ∂η∆ψ0 + 12η · ∂xψ1 + 10η · ∂xη · ∂ηψ1

+ (η · ∂η)2∆ψ0 + 2η · ∂x(η · ∂η)2ψ1 − 2(1 + η · ∂η)∂η · ∂xψ0

+ η · ∂x�ηψ0 − η2�η∆ψ0 − 8η2∂η · ∂xψ1 − 2η2η · ∂x�ηψ1 + 2η2∆ψ1

= (η · ∂x − η2∆)�ηψ0 − 2η2(η · ∂x�η + 3∂η · ∂x − ρ)ψ1

+����
��2∂η · ∂xψ0 + 2ρψ0 + �3η · ∂η∂η · ∂xψ0 + 3ρη · ∂ηψ0

+ 12η · ∂xψ1 + 10η · ∂xη · ∂ηψ1 + (η · ∂η)2∂η · ∂xψ0

+ ρ(η · ∂η)2ψ0 + 2η · ∂x(η · ∂η)2ψ1 −����
��2∂η · ∂xψ0 −(((((

(((2η · ∂η∂η · ∂xψ0

= ρ(2 + 3η · ∂η + (η · ∂η)2)ψ0 + (η · ∂x − η2∆)�ηψ0

− 2η2(η · ∂x�η + 3∂η · ∂x − ρ)ψ1 + η · ∂η(1 + η · ∂η)∂η · ∂xψ0

+ 10η · ∂xη · ∂ηψ1 + 12η · ∂xψ1 + 2η · ∂xη · ∂ηψ1

+ 2η · ∂xηµη · ∂η∂µηψ1

= η · ∂η(1 + η · ∂η)∂η · ∂xψ0 + ρ
[
2 + 3η · ∂η + (η · ∂η)2

]
ψ0 − (η2∆− η · ∂x)�ηψ0

+ 2
[
2 + 3η · ∂η + (η · ∂η)2

]
η · ∂xψ1 − 2η2 (η · ∂x�η + 3∂η · ∂x − ρ)ψ1,

(C.21)

where the last equality in (C.21) reproduces result (5.88), as desired.
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