• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.43.2009.tde-06042009-144849
Documento
Autor
Nome completo
Áttila Leães Rodrigues
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2009
Orientador
Banca examinadora
Castro, Tania Tome Martins de (Presidente)
Dickman, Ronald
Prado, Carmen Pimentel Cintra do
Título em português
Dinâmica de populações: modelo predador-presa estocástico e difusivo em um reticulado
Palavras-chave em português
Dinâmica de Populações.
Física
Método de Monte Carlo
Mudança de Fase
Processo Estocástico
Resumo em português
Estudamos o modelo predador-presa estocástico definido em uma rede com interações entre os primeiros vizinhos, cada sítio podendo assumir três estados: vazio, ocupado por presa e ocupado por predador. Introduzimos ainda um parâmetro que controla a possibilidade de difuãao dos estados, a difusão é permitida entre quaisquer estados. O modelo exibe uma fase oscilante, uma fase não-oscilante e uma fase absorvente. As duas primeiras fases possibilitam a coexistência entre as espécies biológicas enquanto na fase absorvente a rede é totalmente preenchida por presas e o sistema fica preso nessa configuração. Determinamos a linha de transição da fase não-oscilante para a fase absorvente por meio de simulações dependentes do tempo. Também, determinamos a linha de transição da fase oscilante para a fase não-oscilante através da análise das funções de autocorrelação das séries temporais de presas e predadores. Além disso, estudamos o modelo por meio de aproximações de campo médio dinâmico. Concluímos que a inclusão da difusão no modelo predador-presa leva a uma maior região de coexistência das espécies no diagrama de fases. Nossos resultados sugerem que o componente difusivo é irrevelevante quanto ao comportamento crítico, pois ele não exclui o modelo da classe de universalidade da percolação direcionada.
Título em inglês
Dynamic population: Predator-prey stochastic and difusive model on a lattice
Palavras-chave em inglês
dynamic population.
Monte Carlo Method
Phase Transitions
Physic
Stochastic Process
Resumo em inglês
We have studied the predator-prey stochastic model defined on a lattice with first neighbour interactions. Each site of the lattice may assume one of three states: vacant, occupied by prey and occupied by predator. We have introduced a parameter that controls the possibility of difusion among sites. The model shows an oscilating phase, a non-oscilating phase and an absorbing phase. In the first two phases the system exhibits coexistence of biological species while in the absorbing phase the lattice is filled with prey and the system becomes trapped. We have determined the transition line between the non-oscilating and absorbing phases using time-dependent simulations. We have also determined the transition lines between oscilating and non-oscilating phases using time-autocorrelation functions of the prey time-series. In addition, we have studied the model by means of dynamical mean-field aproximations. We conclude that the introduction of diffusion in the predator-prey model leads to a larger region of coexistence in the phase diagram. Our results suggest that difusion is irrelevant for the critical behavior since it does not change the universatility class of the model.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2009-04-06
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.