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Resumo

Neste trabalho apresentamos o estudo de decaimentos radiativos do méson exótico X(3872)

nos canais J/ψγ e ψ(2S)γ, usando uma teoria de campos efetiva. Assumindo o méson exótico

como sendo um estado molecular dos mésons D e D̄∗, nós fizemos uma análise da renormali-

zação para estimar a contribuição da f́ısica de curtas distâncias. Isso é feito através de duas

prescrições diferentes, o popular esquema de subtração mı́nima (MS), válido somente em

cálculos perturbativos, e o esquema de subtração de diverências potenciais (PDS), usado em

teorias efetivas para sistemas fracamente ligados e intrinsecamente não-perturbativo. Mos-

tramos que, sem a f́ısica de curtas distâncias, os observáveis são bastante dependentes da

escala de renormalização, portanto requerendo renormalização adequada. Nós inclúımos dois

termos de contato, um para cada canal de decaimento, e impomos a condição de renorma-

lização dentro dos esquemas MS e PDS. Nós obtivemos o comportamento dos termos de

contato com a escala de renormalização µ, que pode ser útil em guiar modelos de curtas

distâncias para este méson exótico. Porém, notamos comportamentos bem distintos entre os

esquemas MS e PDS. Ambos prevêem limites inferiores para as larguras de decaimento que

podem, em prinćıpio, ser testados experimentalmente.
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Abstract

In this thesis we study radiative decays of the exotic meson X(3872) into J/ψγ and

ψ(2S)γ using an effective field theory framework. Assuming the exotic meson to be primarily

a molecular state of the mesons D and D̄∗, we perform a renormalization analysis to estimate

the contribution of the short-distance physics. This is done using two different prescriptions,

the popular MS scheme, valid only for perturbative calculations, and the PDS scheme,

used in EFTs for loosely-bound systems and intrinsically non-perturbative. We show that,

without a short-distance contact interaction, the observables become very dependent on

the regularization scale, therefore demanding proper renormalization. We include two short-

distance contact terms, one for each decay channel, and impose the renormalization condition

within both MS and PDS schemes. We obtain the behavior of the contact term with the

renormalization scale µ, which can be useful in guiding models for the short-distance part.

We note, however, distinct behaviors between MS and PDS. Both also lead to lower limits

in the decay widths that could, in principle, be tested experimentally.
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1

Introduction

The pion, postulated by Yukawa in 1934 as the mediator of nuclear forces [1], was the

first meson measured in 1947, by Lattes and collaborators [2, 3]. With subsequent improve-

ments in detection and energy in particle accelerators, several new particles started being

discovered. At that time, there was even a joke that the next Nobel prize should be given

to someone who has not found a new particle. With the purpose of classifying this “particle

zoo” Gell-Mann, in 1961, introduced a geometrical system, the Eightfold Way, which orga-

nizes the strongly interacting particles according to their quantum numbers, such as charge,

isospin, and strangeness. These particles were separated in two groups named baryons and

mesons (fermions and bosons, respectively). This simple theory was quickly upgraded few

years later in 1964 by Gell-Mann [4] and independently by Zweig [5]. They introduced the

concept of quark, initially just a mathematical entity. In this model, baryons are composed

by three quarks while mesons, by a quark and an anti-quark. The so-called quark model

turned out to be very successful in describing and predicting hadron spectra.

Meanwhile during the 1960’s several experiments performed at SLAC (Stanford Linear

Accelerator Center) on deep inelastic scattering revealed that protons and neutrons (nucle-

ons) were not point-like particles, but have a substructure. In the following years Feynman

proposed that nucleons were made out of partons, small granular objects [6]. The parton

model described quite well the experiments on deep inelastic scattering. These facts corrob-

orated that hadrons were not fundamental particles, but indeed had a substructure. With
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time it became more and more evident that quarks and partons, initially unrelated ideas to

explain hadron properties in different energy regimes, were actually the same objects.

Following the success of quantum electrodynamics (QED), the relativistic quantum the-

ory for electromagnetic processes, one saw a great effort from the scientific community in

finding a quantum field theory for strong interactions that would contemplate the aspects

of both quark and parton models. It was not until the early 1970s that quantum chromo-

dynamics (QCD) emerged as a mathematically consistent quantum field theory. Based on

the non-Abelian SU(3) color gauge symmetry, QCD has two distinguished features, namely,

asymptotic freedom and infrared slavery. Both are related to the dependence of the coupling

constant as a function of the energy scale. At high energies the coupling constant becomes

very small, implying that quarks are almost free (asymptotic freedom). On the other di-

rection, the coupling constant increases at low energies, implying that quarks are confined

within hadrons (infrared slavery). Quark degrees of freedom and its nearly-free behavior

were confirmed in several high-energy particle accelerators. In particular, experiments with

electron-positron collisions exhibited two, three, and four jets of hadrons with the expected

angular distribution predicted by QCD [7–13]. The increase of the coupling constant down

to energies of around 3-5 GeV is also qualitatively observed. However, a clean determination

is plagued with non-perturbative effects, especially in its infrared limit. The QCD behavior

at this low-energy sector is hard to deal and not yet solved, therefore, one still relies on

models that are able to grasp few qualitative features of QCD, like the quark model.

The quark model actually provides a very good account of meson properties, specially

in the heavy quark sector. For nearly four decades it described and predicted several states

in the charmonium and bottomonium spectra. However, new mesons have been recently

discovered that did not fit in the conventional quark model. This suggests that structures

beyond the naive quark model might be actually playing a role in these states, so-called

exotic mesons. The motivation of this work is trying to get a better understanding about

the structure of these exotic particles, with focus on mesons with charmed quarks. For this,

we analyse the radiative decays of the exotic meson X(3872) in the outgoing channels J/ψγ

and ψ(2S)γ. We use the framework of effective field theory, a rigorous method to study

the interactions among hadrons at low energies, with chiral and heavy quark symmetries.
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Hadronic decays of the exotic X(3872) seem to be quite well described assuming a molec-

ular state of two other weakly-bound mesons [14–16], since the long-range interactions are

dominant. On the other hand, radiative decays may have a considerable contribution from

short-distance physics. In this work we wish to investigate the sensitivity of radiative decays

to long- and short-distance contributions through a detailed renormalization analysis, in the

above mentioned channels.

This thesis is organized as follows. In Chapter 2 we present an introduction to QCD and

quark model, describing some experimental findings about the exotic states, with emphasis

on radiative decays of the exotic meson X(3872). In Chapter 3 we review basic concepts

about quantum scattering, relevant to understand a few steps in the calculations. In Chap-

ter 4 we present a short overview about effective field theory, explaining with some detail

the renormalization procedures to be used. In Chapter 5 we show how to construct the am-

plitudes for radiative decays of the exotic meson X(3872). In Chapter 6 we present the main

results of this work, namely, the renormalization group analysis of the X(3872) radiative

decays and the dependence of the short-distance contact interactions with the energy scale.

Finally, we present the conclusions and perspectives of this work in Chapter 7.

3



2

Exotic States

2.1 Quarks and Gluons

Quarks are fermions with spin 1/2 and, by convention, positive parity and baryon number

1/3. There are six different types of quarks distinguished by a quantum number called flavor:

up (u), down (d), strange (s), charm (c), bottom (b) and top (t). They have another quantum

number called color, which is directly related to the strong force, similar in some aspects to

the eletromagnetic force in quantum electrodynamics (QED). There are three types of “color

charge”: red, green and blue. Since not a single colored object was ever directly measured in

experiments, it became almost a postulate that all observable particles have zero net color

charge. In other words, observable particles should have “white color”. This behavior is

expected from quantum chromodynamics (QCD): quarks can only be free in the asymptotic

limit, where the energy goes to infinity.

As demanded by relativistic theories, for every quark exists an associated anti-quark, with

the same mass but opposite quantum numbers. The quantum numbers and quark masses

can be seen in tables 2.1 and 2.2.

Table 2.2 shows the values of the current quark masses from reference [7]. One clearly

observes a distinct separation of scales, where the so-called light-flavored quark masses remain

at the MeV scale while the heavy-flavored ones stay above one GeV. These two different

regimes can be explored by two approximate symmetries, namely, chiral and heavy-quark

symmetries.
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Quantum Numbers u d s c b t

Electric Charge (Q) -1/3 +2/3 -1/3 +2/3 -1/3 +2/3

Isospin-z (Iz) -1/2 1/2 0 0 0 0

Strangeness (S) 0 0 -1 0 0 0

Charm (C) 0 0 0 +1 0 0

Bottomness (B) 0 0 0 0 -1 0

Topness (T ) 0 0 0 0 0 +1

Table 2.1: Quark quantum numbers [7]

u d s

2.3+0.7
−0.5 4.8+0.5

−0.3 95(5)

MeV

c b t

1.28(3) 4.18(3) 173.2(7)

GeV

Table 2.2: Quark masses [7]

Gluons are the carriers of the strong force. They are massless bosons with spin one and

negative parity. In contrast to photons, the carriers of the electromagnetic force, gluons have

color charge. Therefore, they interact not only with quarks, but also among themselves. This

is a consequence of the non-abelian structure of the color gauge group, highlighted in the

following subsection.

2.2 Quantum Chromodynamics

Quantum Chromodynamics is the relativistic quantum field theory for strong interactions,

with SU(3) color symmetry. The special unitary group SU(3) is the Lie Group of 3x3 matrices

with determinant 1 (U †U = 1 and det(U) = 1). The transformations within the SU(3) color

space can be parametrized as

U(Θ) = exp

(
−i

8∑
a=1

Θa
λa
2

)
, (2.1)
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where Θa are the “rotation angles” in color space and λa are the eight linearly independent

Gell-Mann matrices. The Ta = λa/2 are the generators of the SU(3), which satisfy the

following commutation relations,

[Ta, Tb] = ifabcTc, (2.2)

with fabc = fabc being the totally antisymmetric non-vanishing structure constant of SU(3).

Analogously as done in QED, the local gauge invariance of SU(3) color symmetry is

imposed on the free Dirac Lagrangian for quarks, thus becoming

LQCD =
∑

f=flavors

q̄f (i /D −mf )qf −
1

2
Tr(GµνGµν), (2.3)

where qf is the quark field of a color triplet (red, green and blue) for each flavor,

qf =


qf, red

qf, green

qf, blue

 . (2.4)

Gµν is the field strength tensor of the non-Abelian color symmetry,

Gµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ], (2.5)

where Aµ corresponds to the sum of eight possible gluon color configurations,

Aµ =
8∑

a=1

λa

2
Aaµ. (2.6)

The trace (Tr) in the last term of equation (2.3) is performed in color space. Dµ is the

covariant derivative, which guarantees color local gauge invariance in the QCD Lagrangian.

It gives rise to the interaction term between quarks and gluons,

Dµ = ∂µ − igAµ. (2.7)
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The coupling constant of QCD, αS = g2/4π, defined in analogy with the fine structure

constant of QED, depends on the energy scale. For high energies (small distances), it be-

comes small and allows one to perform reliable theoretical calculations using perturbation

theory. This property is known as asymptotic freedom, meaning that quarks and gluons

are approximately free at high energies. However, the same running behavior implies an

increase of the QCD coupling constant at low energies (large distances). The force between

quarks does not diminish as they are separated, in this situation it is not possible to use

perturbation theory anymore. This property of QCD is known as confinement or infrared

slavery and implies that for low energies the physical observables are hadrons, the relevant

degrees of freedom.

Figure 2.1: Behavior of the coupling constant of QCD [7]

Figure 2.1, extracted from reference [7] shows the behavior of the coupling constant αS.

The data are from several experimental measurements and theoretical predictions, which

qualitatively confirms both features of QCD, namely, confinement and asymptotic freedom.

2.3 Mesons

In the original quark model mesons are bound states of quark-antiquark (qq̄) pairs. The

parity (P ) of a meson is defined by the relative angular momentum (l) of the qq̄ as P =

7



(−1)l+1. The total spin (J) of a meson is determined by the usual relation |l−s| ≤ J ≤ |l+s|,

where s is always zero or one, due to the spin combination of two fermions. The charge

conjugation C = (−1)l+s is defined only when q and q̄ has the same flavor.

Mesons are classified by the quantum numbers JPC receiving specific names, such as

scalars (0++), pseudoscalars (0−+), vectors (1−−), axial vectors (1++ and 1+−) and tensors

(2++). Several combinations of quark flavors are possible. However, mesons containing t

or t̄ have not been observed until now. The difficulties lie on the short lifetime of the top

quark. Tables 2.3 and 2.4 display the mesons predicted by the quark model and observed by

quarkonia spectroscopy [7].

Table 2.3: Mesons with just the light quarks (u, d, s) [7]

Similarly to the hydrogen atom, it is possible to predict the spectrum of a bound state

of two quarks. For heavy quarks it is possible to use the Schrödinger equation to get the

energy levels. The system can be considered nonrelativistic, since the binding energy is small

compared to the rest energies of the constituents. Although the potential between quarks is

unknown, it is possible to create a simple potential, which satisfies some qualitative features

of QCD. The potential must have a term that increases at large distances, taking into ac-

count the quark confinement at low energy. At short distances one expects the interaction

8



Table 2.4: Mesons with heavy quarks (c,b) [7]

to be dominated by the exchange of a single gluon (which is massless) similar to one pho-

ton exchange between two charged particles. Therefore, at short distances the interaction

must be very similar to the Coulomb potential. Assuming a central potential with these

two features, ignoring spin and more complicated interaction terms, one is able to obtain

the biding energy levels associated with different particles. The qualitative success of this

simple model against data lends credit to this quark model picture, generating a research

line towards more detailed and sophisticated versions of the model aiming at quantitative

agreement with data and robust predictions.

2.4 Exotic States

At the beginning of the 21th century, the collaborations BaBar at SLAC in the USA and

Belle at KEK in Japan started collider experiments with electron-positron beams operating

at center of mass energies around 10.6 GeV. One of the main purposes of these facilities was

to measure CP-violation processes and comparing with standard model predictions. These

facilities were nicknamed B-factories, due to the copious amount of BB̄ meson pairs pro-

duced. The products of B meson weak decays involve pairs of c and c̄. Therefore, open-charm

D-mesons and cc̄ states are usually present in the outgoing channel. However, they observed

mesons whose properties were incompatible with the assignments of the quark model. This
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raised questions about what would be the structure of these exotic states, boosting the search

for theoretical explanations that accommodate these heavy exotic particles.

The X(3872) was discovered in 2003 by the Belle collaboration [17] and then confirmed by

CDF and D0 collaborations, both at Fermilab in the USA, from proton-antiproton collisions

[18, 19]. As the conventional quark model does not explain the properties of this particle,

alternative suggestions flourished, such as tetraquark, molecular state, hybrids of quarkonium

and gluons, quarkonium-glueball mixtures, linear combination of these effects and other

exotic explanations [20–23]. However, the purely molecular interpretation is very appealing,

since the X(3872) has a mass remarkably close to the DD̄∗ threshold. Thus, the exotic meson

X(3872) could be understood as a weakly bound state of other two mesons, similar to the

deuteron, formed by a proton and a neutron with a very small binding energy.

Figure 2.2 shows the charmonium spectrum obtained by the conventional quark model

(black solid lines) and the positions of these new exotic states (red dots). The blue dashed

lines indicate the threshold for a pair of open-charm states (mesons with a single charm

content). In particular, it is evident the proximity of the X(3872) mass to the threshold of

the DD∗ pair.

In addition to this puzzle, the collaborations Belle [24] and BESIII [25, 26] confirmed

very recently the discovery of charged exotic mesons. These mesons cannot be formed by a

simple cc̄ pair, requiring at least two additional quarks to provide the electric charge to the

meson.

2.4.1 Experimental Data for X(3872)

Several decay modes were observed for the X(3872), for instance, hadronic decays such

as π+π−J/ψ, π+π−π0J/ψ, D0D̄0π0, and radiative decays (when photons are in the outgoing

channel) such as J/ψ γ and ψ(2S)γ [28]. From the decays of X(3872) it is possible to extract

information about its quantum numbers. In particular, from radiative decays one obtains

that the charge conjugation is positive (C = +), whereas hadronic decays indicate a positive
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Figure 2.2: Charmonium spectrum with exotic mesons [27]

parity (P = +). The most recent data about the quantum numbers [29] and the mass [30]

of the X(3872) are

mX = (3871.68± 0.17) MeV , JPC = 1++. (2.8)

Radiative decay widths are hard to measure not only for being smaller than the hadronic

counterpart, but also due to difficulties in achieve a proper normalization of data. The latter

can be bypassed by determining branching fractions. For this work in particular, the ratio

of interest is

R ≡ Γ[X(3872)→ γ ψ(2S)]

Γ[X(3872)→ γ J/ψ]
. (2.9)

This ratio is an experimental observable, first measured by the BaBar Collaboration, R =

3.4 ± 1.4 [31]. Afterwards the Belle Collaboration tried to measure the same observable;

however, they could not find a significant signal for the decay X(3872) → γ ψ(2S). They

set an upper limit R < 2.1 at 90% confidence level [32]. Recently, the LHCb Collaboration
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reported R = 2.46 ± 0.64 ± 0.29, where the first uncertainty is statistical and the second is

systematic [33].

Table 2.5 shows the lower limits of the branching fractions for X(3872) decays. In par-

ticular, one can see the branching fractions for radiative decays into J/ψ and ψ(2S) to be

above 6 × 10−3 and 0.03, respectively. These values can be combined with the ones from

table 2.6, which shows the upper limits for the total decay width. In chapter 6 we combine

these numbers with our theoretical calculations.

Table 2.5: Lower limit of the measured decay channels of X(3872), determined by different experi-
ments [7]

Table 2.6: Upper limit of the total decay width of X(3872), determined by different experiments [7]
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2.4.2 Previous Theoretical Works on Radiative Decays

In this section we comment about other theoretical studies on X(3872) radiative decays,

in particular the ones that also address the molecular nature for its structure.

In reference [34], Swanson studied the X(3872) radiative decays into γJ/ψ and γψ(2S) us-

ing vector meson dominance and quark models. When he assumes, in his model, a molecular

structure for this exotic meson, he obtains R = Γ[X→γψ(2S)]
Γ(X→γJ/ψ)

≈ 4× 10−3. On the other hand,

charmonium calculations lead to R in the range 0.1-6. Given these results, he claims that

this ratio could be a valuable probe to reveal the dominant structure of the X(3872), with

a small (large) value favoring the molecular (charmonium) interpretation. He also observes,

though, that his predicted values are very sensitive to model details.

In reference [35] Dong et al. use a phenomenological Lagrangian approach to calculate

the width of the radiative decay X(3872) → γJ/ψ, assuming that the exotic meson is a

loosely-bound state of the charmed D0 and D∗0 mesons. Although they find that the width

is not very sensitive to a variation of the binding energy, it depends on a cutoff parameter

ΛM that is roughly related to the shape and size of the hadronic molecule. They affirm that

this radiative decay is fully compatible with a predominantly molecular nature of X(3872),

and allows only a very small admixture of cc̄. They also determined an upper limit of the

decay width, ΓJ/ψ = 118.9 keV.

Another work exploring the molecular nature in radiative decays of X(3872) was done

by Mehen and Springer [36]. They studied the outgoing channel ψ(2S)γ using EFT with

contact interactions, only at tree level. They were interested in assess the different angu-

lar distributions between the 1++ and 2−+ quantum number assignments for the X(3872).

They also estimated the mean separation of this exotic meson (rX = 4.9+19.4
−1.4 fm) from the

estimated biding energy.

Guo et al. [37] made a more elaborated EFT calculation, assuming a D-D? molecular

state for X(3872) and including these mesonic degrees of freedom in the one-loop calculations

of the decay amplitudes into γJ/ψ and γψ(2S) channels. They conclude that the radiative

decays do not allow one to draw conclusions on the nature of the X(3872), contrary to [34].

However, their calculations are not complete, since a proper renormalization of the results
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and a more reliable estimate of short-distance effects were not performed. To fulfill these

requirements is the main motivation of the present work. Therefore, this reference is the

most important in this thesis, where we use the same effective field theory formalism and

conventions during the construction of the amplitudes and decay widths.

There are other studies of X(3872) radiative decays using other approaches. For instance,

QCD sum rules were used by Nielsen and Zanetti [38, 39], assuming a mixture of a molecular

state and charmonium with mixing angle 5o < θ < 13o, obtaining compatible results with

the experimental data for the decay width into γJ/ψ. Takizawa et al. [40] also constructed

a charmonium-molecule model with the quark model potential. However, they do not obtain

results compatible with the observations (R = 0.22), concluding that their results are very

sensitive to the amount of the charmonium component. A few other approaches to X(3872)

radiative decays that avoid a molecular description, most of them using more sophisticated

quark models, also exist in the literature. A selected sample of them [41–45] present results

shown in table 2.7.

Reference ΓJ/ψγ(keV) Γψ(2S)γ(keV) Ratio R

[34] 71 95 1.34

[34] 139 94 0.68

[41] 33 146 4.4

[42] 11 64 5.8

[43] 70 180 2.6

[44] 45 - 80 24 - 66 0.53 - 0.83

[45] 30.8 - 42.7 70.5 - 73.2 1.65 - 2.38

Table 2.7: Predictions for X(3872) radiative decay observables by quark models
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3

Quantum Scattering

In this chapter we introduce some basics concepts, based on references [46, 47], about

quantum scattering theory, one of the central tools to this work. Moreover, the background

on quantum scattering is a necessity for almost all research lines in particle and nuclear

physics. Understanding physical quantities such as scattering amplitude, cross section, and

phase-shifts is fundamental to extract physical information about particle scattering and

decays. For simplification we use natural units, that is, c = ~ = 1.

3.1 Nonrelativistic Quantum Scattering

Quantum scattering is understood as an incident wave packet travelling through a scat-

tering potential and producing an outgoing wave packet. A general wave packet is an infinite

sum of plane waves of different frequencies and wave numbers. The general solution is ob-

tained by solving the time-dependent Schrödinger equation, which can be extremely technical

and complicated. However, a time-independent Hamiltonian allows us to separate the time

from the spatial dependence for each plane wave, thus resulting in the time-independent

Schrödinger equation. Solving the latter for each plane wave allows us, in principle, to re-

construct the desired wave packet solution. From now on, our references to the Schrödinger

equation implies the time-independent one.
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For the sake of simplicity, and without significant loss of qualitative discussion, we con-

sider a two-body scattering via a finite-range central potential V (x) = V (r), neglecting spin

and other internal degrees of freedom. The total Hamiltonian can be written as

H = H0 + V, (3.1)

where the free Hamiltonian H0 stands for the kinetic energy operator. The latter can be

expressed in the center of mass frame as

H0 =
p2

2µ
, (3.2)

where µ is the reduced mass of the particle,

µ =
m1m2

m1 +m2

. (3.3)

When there is no scatterer the potential V is zero—therefore, the energy eigenstate E is just

that of a free-particle state. Using |φ〉 as the energy eigenvector of H0,

H0 |φ〉 = E |φ〉 . (3.4)

The presence of a scatterer V implies that the energy eigenstate is not the same as the free-

particle state. However, when one considers elastic scattering processes, they have the same

energy eigenvalue. In other words, the total energy before the particles enter the interaction

region is an eigenvalue of the free Hamiltonian, which has to be the same eigenvalue of the

total Hamiltonian, since the energy is conserved. Thus the basic Schrödinger equation we

wish to solve is

(H0 + V ) |ψ〉 = E |ψ〉 . (3.5)

The expected solution of equation (3.5) is

|ψ〉 =
1

E −H0

V |ψ〉 . (3.6)
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However, this solution does not satisfy the physical boundary condition, that |ψ〉 → |φ〉 as

V → 0. This can be fixed by including the appropriate boundary condition:

|ψ〉 =
1

E −H0

V |ψ〉+ |φ〉 . (3.7)

We make E slightly complex to deal with complications arising from the singular nature of

the operator 1/(E−H0). Despite of being a mathematical trick, as we show in the following

sections, this small imaginary part (iε) guarantees the unitarity of the S-Matrix, for the

physical scattering case (E > 0). Thus we rewrite equation (3.7) in the form that is known

as the Lippman-Schwinger equation (LS):

∣∣ψ(±)
〉

= |φ〉+
1

E −H0 ± iε
V
∣∣ψ(±)

〉
. (3.8)

The physical meaning of ± is related to the temporal direction of the propagation of |ψ〉.

The minus sign (−) is the solution that propagates backwards in time, while the plus solution

(+) corresponds to the one with physical significance, as we show below.

The LS is a ket equation independent of a particular representation. It can be written in

configuration space by multiplying 〈x| and introducing the unity operator Î ≡
∫
d3x |x〉 〈x|.

The LS in the position basis becomes

〈x|ψ〉 = 〈x|φ〉+ 2µ

∫
d3x′G(x,x′) 〈x′|V |ψ〉 , (3.9)

where G(x,x′) is defined as

G(x,x′) =
1

2µ

〈
x

∣∣∣∣ 1

E −H0 ± iε

∣∣∣∣x′〉 = − 1

4π

e±ip|x−x
′|

|x− x′|
. (3.10)

For |x| = r >> |x′|, which is the case when x is related to the position where particles are

observed in an experiment,

〈x|ψ〉 ≈ 〈x|φ〉 − µ

2π

e±ipr

r

∫
d3x′ e−ipx

′ 〈x′|V |ψ〉 . (3.11)
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The second term of equation (3.11) is interpreted as a spherical wave modulated by a quantity

related to the scattering amplitude. It is evident the meaning of the sign of the iε term: the

plus (minus) sign corresponds to an outgoing (incoming) spherical wave.

Analogously to the position space, the LS equation in the momentum space reads

〈p|ψ〉 = 〈p|φ〉+
1

E − p2

2µ
+ iε
〈p|V |ψ〉 . (3.12)

This equation (3.12) determines the wave function in momentum space. Besides, one can

obtain the transition matrix T starting from equation (3.8), applying the potential operator

V from the left and inserting a complete set of states. That leads to

T (p′,p) ≡ 〈p′|V |ψp〉 = 〈p′|V |φp〉+

∫
d3q

(2π)3
〈p′|V |q〉 1

E − q2

2µ
+ iε0

〈q|V |ψp〉

= V (p′,p) +

∫
d3q

(2π)3
V (p′,q)

1

E − q2

2µ
+ iε0

T (q,p). (3.13)

The transition matrix and the scattering amplitude are proportional to each other, as we

present in the following section. It describes the non-trivial part of the S-Matrix and directly

relates to experimental observables.

3.2 The Scattering Amplitude

The asymptotic solution of the Schrödinger equation, (3.11), has the form

ψ(r, θ) ≈ A

[
eipz + f(θ)

eipr

r

]
, (3.14)

where A is the normalization factor and the momentum p is related to the energy of the

center of mass,

p =
√

2µE. (3.15)

A graphic representation of equation (3.14) is displayed in figure 3.1. The scattering am-

plitude f(θ) is the amplitude of the outgoing spherical wave and carries all the information

about the physical process.

18



θ

Incident Plane Wave Outgoing Spherical Wave

z

Figure 3.1: Quantum scattering

Comparing equations (3.11) and (3.14) it is straightforward to see the relation between the

scattering amplitude and the transition matrix,

f = − µ

2π
T. (3.16)

Particles incident through an infinitesimal part of the cross-sectional area dσ scatter into

a corresponding infinitesimal solid angle dΩ. The ratio dσ/dΩ is called the differential

(scattering) cross-section. It can be calculated by dividing the number of particles scat-

tered into dΩ per unit of time by the number of incident particles crossing an unit of area

per unit of time. The numerator is related to the current density of the outgoing spherical

wave |jscatt| while the denominator is related to the current density of the incident plane

wave |jincid|, assuming a large number of identically prepared particles, as it is indicated in

the equation below,

dσ

dΩ
dΩ =

r2|jscatt|
|jincid|

dΩ. (3.17)

From equation (3.14), the first term relates to the incident flux, |jincid| = |A|2, and second

one, to the scattered spherical flux, |jscatt| = |A|2|f(θ)|2/r2 . Therefore one has

dσ

dΩ
= |f(θ)|2. (3.18)

3.3 Partial Wave Decomposition

It is technically complicated to solve the integral equation (3.13) due to the existence of

three integration variables (d3q). As many processes in nature, the quantum numbers j and

l (total and orbital angular momentum, respectively) are conserved in the scattering process.
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In this way, the partial wave decomposition method replaces the angles for partial waves,

letting the integral equation only dependent on the variable q = |q|. Thus, it is possible

to expand a physical quantity, such as the scattering amplitude, in terms of the spherical

harmonics Ylm(θ, ϕ) [48],

f(p′,p) =
∑
l′,m′

∑
l,m

(4π)Yl′m′(Ωp′)Ylm(Ωp)fl′m′,lm(p′, p). (3.19)

When orbital angular momentum is conserved both the interaction and the amplitude are

diagonal in l and m,

fl′m′,lm(p′, p) = δl′,lδm′,mflm(p′, p). (3.20)

By choosing p in the z-direction, p′ forming an angle θ with p, and assuming azimuthal

isotropy, one has

Ylm(Ωp) =

√
2l + 1

4π
δm0, (3.21)

Yl 0(Ωp′) =

√
2l + 1

4π
Pl(cos θ). (3.22)

Leading to the more familiar form of the partial-wave expansion of the amplitude,

f(p′,p) =
∞∑
l=0

(2l + 1)Pl(cos θ)fl(p), (3.23)

with p = |p| = |p′|, the condition for the physical elastic scattering.

As mentioned before, conservation laws such as orbital angular momentum (in specific

cases) relieves our task of solving the whole scattering problem to a specific partial wave. In

these cases, we are interested in solving the LS equation for fl(p) or, by means of (3.16), the l-

wave component of T , tl(p). The latter is obtained by also expanding the potential in a similar

way as (3.23). Using the orthogonality of the Legendre polynomials
∫ +1

−1
Pm(x)Pn(x)dx =

2δmn
2n+1

, one gets

vl(p
′, p) =

1

2

∫ +1

−1

V (p′,p)Pl(cos θ)d(cos θ). (3.24)
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It is straightforward to obtain the LS equation for the partial-wave transition matrix:

tl(p
′, p) = vl(p

′, p) +
1

2π2

∫ ∞
0

q2dq
vl(p

′, q)tl(q, p)

E − q2/2µ+ iε
, (3.25)

where tl(p
′, p) is known as the half off-shell scattering amplitude 1. The physical amplitude

tl(p) is obtained at the on-shell point p′ = p =
√

2µE:

fl(p) = − µ

2π
tl(p, p). (3.26)

3.4 Unitarity of S-Matrix

The S-Matrix is the operator that relates the initial and the final states in a scattering

process:

|ψ〉out = S |ψ〉in . (3.27)

The probability flux j must satisfy the continuity equation

∇ · j = −∂|ψ|
2

∂t
= 0, (3.28)

where the probability density ρ = |ψ|2. Using Gauss’s theorem and considering a spherical

surface with a very large radius, we have the expression:

∫
j · dS = 0. (3.29)

Physically, both (3.28) and (3.29) mean, considering j as the flux of particles in the scattering

process, that there is no source or sink of particles. The outgoing flux must equal the

incoming flux. Furthermore, because of angular-momentum conservation, this must hold for

each partial wave separately:

Sl(p) ≡ 1 + 2ipfl(p). (3.30)

1Since fl and tl are proportional to each other, the names transition matrix and scattering amplitude are
quite often freely interchanged.
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Sl(p), defined in equation (3.30), is the lth diagonal element of the S operator, which is

required to be unitary as a consequence of probability conservation. The most that can

happen is a change in the phase of the outgoing wave. The unitarity relation for the lth

partial wave is

|Sl(p)| = 1. (3.31)

The unitarity of the S-Matrix implies that the scattering amplitude fl(p) must be a

complex number. From the denominator in equation (3.13), one can notice that the transition

amplitude becomes imaginary only in a small region around q =
√

2µE, where the real part

is zero and the imaginary term iε becomes the major contribution.

3.5 Phase-Shift

As previously seen, the imprints of elastic scattering in the wave function, at large dis-

tances, resume to a phase in the outgoing spherical wave. Therefore, information about the

interacting forces among scattered particles is encoded in such phase. The requirement (3.31)

of unity modulus of Sl allows its parametrization in terms of the partial-wave phaseshift δl

as

Sl(p) = e2iδl(p). (3.32)

From (3.30) we have

fl =
Sl − 1

2ip
. (3.33)

Writing equation (3.33) explicitly in terms of the phase shift:

fl =
e2iδl − 1

2ip
=
eiδl sin δl

p
=

1

p cot δl − ip
=

p2l

p2l+1 cot δl − ip2l+1
. (3.34)

At low enough energies the denominator of the equation (3.34) can be expanded as

p2l+1 cot δl ≈ −
1

al
+
rl
2
p2 − ... (3.35)

The expression (3.35) is known as effective range expansion and it was first introduced

by Bethe in 1949 [49]. From (3.34) and (3.35) it is easy to notice that at low energies the
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amplitude is dominated by S-waves. For l = 0, the term r0 is called effective range and it is

related to the interaction range of the potential. The term a0 is called scattering length. In

the limit where p→ 0, it relates to the cross-section via

dσ

dΩ
= |f(θ)|2 = a2

0. (3.36)

3.6 Bound States

When the potential between the particles is attractive and strongly enough to tie the

particles together, it is possible the formation of a bound state. Although the energy of

elastic scattering experiments are always positive, it is possible to theoretically make an

analytic continuation of S-Matrix in order to determine the bound state energy. In this way,

for negative energy the momentum becomes imaginary,

p = iγ = i
√

2µB. (3.37)

From reference [46] and using equations (3.14) and (3.30) we get that the radial wave function

at large distances is proportional to the S-Matrix as follows:

〈r|ψ〉 =
∑
l

(2l + 1)Pl(cos θ)ψl(p) ∝
∑
l

(2l + 1)
Pl(cos θ)

2ip

[
Sl(p)

eipr

r
− e−ipr−lπ

r

]
. (3.38)

Using the momentum condition for the bound state we get

ψl(p) ∝
1

2ip

[
Sl(iγ)

e−γr

r
− eγr−lπ

r

]
. (3.39)

At large distances we physically know that the bound state wave function must go to zero.

Therefore the second term of (3.39) has to vanish. Rewriting equation (3.39), apart from a

normalization,

ψl(p) ∝
e−γr

r
− 1

Sl(iγ)

eγr−lπ

r
. (3.40)

From the above equation, and the requirement that the second term vanishes, one can see

that the bound state condition implies a pole in the scattering amplitude.
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The LS equation for each specific partial wave (3.13) can be expressed as a homogeneous

equation for the bound state case, with one of the momenta on-shell φl(p
′) = tl(p

′, p =

i
√

2µB),

φl(p
′) =

1

2π2

∫ ∞
0

q2dq
vl(p

′, q)φl(q)

−B − q2/2µ
,

∫ ∞
0

dq

[
δ(q − p′)− 1

2π2

q2 vl(p
′, q)

−B − q2/2µ

]
φl(q) = 0. (3.41)

The homogeneous equation (3.41) can be solved numerically by discretizing the integral and

solving the following matrix equation,

(I −Kl)φl = 0. (3.42)

A non-trivial solution of (3.42) can be obtained by imposing det(I−Kl) = 0. This condition

allows us to numerically determine the biding energy.

For low enough energies, where the expansion (3.35) is valid, the scattering amplitude

can be expressed as

f0 =
1

−1/a0 − ip
. (3.43)

Therefore, considering that the bound state is a pole in the scattering amplitude, it is possible

to express the biding energy as function of the scattering length,

−1/a0 − ip = 0 =⇒ B =
1

2µa2
0

. (3.44)
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4

Effective Field Theory

In this chapter we outline some basic concepts about effective field theory (EFT), which

is the theoretical framework of this thesis. For a more detailed perspective we suggest the

references that were used to built this chapter [50–55].

4.1 Introduction

One of the interesting questions in contemporary physics is the unification of the four

known forces in nature, that would resume all physical phenomena in a simple theory that

would explain everything. Although this is a very impressive and beautiful idea, even if this

theory will be achieved in the future, it would not be sufficient to comprehensively describe

nature at all physical scales.

Nature has a wide range of scales, such as galaxies, stars, atoms, nuclei, etc. In order

to obtain a good understanding of a particular physical system it is necessary to identify

the most relevant informations from the rest, in a way that it is possible to have a simple

description without dealing with complications that are irrelevant at a particular energy

scale. For this reason, a separation of energy scales is important, in this way it is possible to

analyse low-energy interactions without knowing the details at high energy. This provides a

good approximation, and can always be improved by considering the higher order corrections

as small perturbations.

EFT is the general theoretical framework for studying physical phenomena in a specific

range of energy (or length). It is a versatile method and it is used in many different areas
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of physics, from low energy scales, such as atomic and nuclear physics to high energy scales,

such as elementary particle physics. An EFT is often formulated by means of an effective

Lagrangian with the relevant degrees of freedom and symmetries from the interaction among

the respective particle fields.

4.2 Momentum Expansion

As mentioned before, the first step to construct an EFT is to define what is the interested

energy scale E and the range of momenta for the physical system, limited by a cutoff Λ. For

low-energy physical processes, the cutoff Λ is a momentum scale considerably higher then

the momentum of interest p. Therefore, it is possible to make the expansion in powers of

p/Λ. The on-shell relation between the energy E and the momentum is defined by the

(non-relativistic) expression:

p =
√

2µE, (4.1)

where µ is the reduced mass of the interacting particles. If equation (4.1) is not satisfied one

says that the particles are off-shell, which do not correspond to a physical state, but it is

indeed a virtual state. The most general effective Lagrangian is built organizing the powers

of momentum, or the number of derivatives, just reminding that the momentum operator is

related to derivatives as

−ipµ = ∂µ. (4.2)

A systematic way of building a low-energy effective Lagrangian is outlined in the following

sections, the one about chiral perturbation theory in particular.

4.3 Dimensional Analysis

Dimensional analysis is a very important tool applied in several distinct areas of science as

well as a key ingredient in EFT. We define [O] as the mass dimension of a certain operator

O. That means, for a generic mass scale M, [O] = d if O ∼ Md. Thus, knowing that
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the quadriposition is inversely proportional to the mass, we can get the dimension of the

quantities,

[m] = 1 =⇒ [xµ] = −1, [∂µ] = 1. (4.3)

In natural units the action S is dimensionless, [S] = 0, and the relation with the Lagrangian

has the form

S =

∫
∂Dx L, (4.4)

from (4.4) we get that the dimension of the Lagrangian has to be

[L] = D, (4.5)

where D is the number of space-time dimensions of the problem. Just for illustration, let us

analyse the λφ4 theory,

L =
1

2
∂µφ ∂

µφ− 1

2
m2φ2 − λ

4!
φ4. (4.6)

Straightforwardly, from the second term of the Lagrangian (4.6), it is possible to check that

the dimension of the boson field is

[φ] =
D − 2

2
. (4.7)

Likewise one gets

[λ] = 4−D. (4.8)

For D = 4, [φ] = 1 and λ is dimensionless.

Let us write down now a generic effective interaction Lagrangian,

L =
∑
i

ciOi, (4.9)
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where Oi are operators constructed with light fields, and the information on any heavy

degrees of freedom is hidden in the couplings ci. The dimension of the operator Oi can be

written as

[Oi] = di, (4.10)

which fixes the dimension of its coefficient:

[ci] = 4− di. (4.11)

Clearly, from di > 4 it is possible to notice that the coupling is inversely proportional to a

mass scale, so relating Λ with some characteristic heavy scale of the system,

ci ∼
1

Λdi−4
, (4.12)

it is possible to determine the importance of the different operators, at energies below Λ, by

looking at their dimension. We can classify three distinct behaviours:

• Relevant (di < 4)

• Marginal (di = 4)

• Irrelevant (di > 4)

The Irrelevant Operators are suppressed by powers of p/Λ, thus they are small at low

energies. Relevant operators have just the opposite behavior, they become more important

at lower energies. Some examples of Relevant operators are the boson mass terms (dimension

2), fermion mass terms (dimension 3) and 3-scalar interactions (dimension 3). The Marginal

operators have equal importance at all energy scales. Examples of Marginal operators are

φ4, the QED and QCD interactions, and Yukawa-like interactions.

4.4 Chiral Perturbation Theory

Chiral Perturbation Theory (ChPT) is an EFT method to parametrize QCD at low

energies. As previously discussed, due to the high value of the running coupling constant,
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quarks and gluons are confined inside hadrons. Thus at low energy hadrons are the relevant

degrees of freedom. In ChPT one starts with hadronic fields as building blocks of the effective

Lagrangian, interacting in the most general way consistent with all the symmetries of the

system. In particular, the approximate chiral symmetry in QCD places important constraints

on the form of the interaction terms. The latter is organized as a derivative expansion, which

is equivalent to an expansion in powers of p/Λ.

4.4.1 Chiral Symmetry

The quark fields can be expressed in two different projections, by means of the right-

handed (PR) and left-handed (PL) projection operators:

PR =
1

2
(1 + γ5) = P †R, (4.13)

PL =
1

2
(1− γ5) = P †L. (4.14)

Where γ5 is known as the chirality matrix,

γ5 = γ5 = iγ0γ1γ2γ3, (4.15)

which satisfy the properties:

{γµ, γ5} = 0, (4.16)

γ2
5 = 1. (4.17)

PR and PL are orthogonal,

PRPL = PLPR = 0, (4.18)

idempotent,

P 2
R = PR, P 2

L = PL, (4.19)
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and satisfy the completeness relation,

PR + PL = 1. (4.20)

Thus the right-handed and left-handed quark fields are

qR = PRq, qL = PLq. (4.21)

The expressions for the conjugate quark fields are

q̄R = q̄PL, q̄L = q̄PR. (4.22)

In the chiral limit, the light flavor quark masses go to zero,

mu,md,ms → 0. (4.23)

Considering (4.23) and introducing the completeness relation (4.20) in the QCD Lagrangian

for light flavored quarks (2.3) we get

L0
QCD =

∑
f=u,d,s

[
q̄R,f i /D qR,f + q̄L,f i /D qL,f

]
− 1

2
Tr(GµνGµν). (4.24)

Therefore, the Lagrangian (4.24) is invariant under left-right transformations, having global

U(3)L×U(3)R → SU(3)L×SU(3)R×U(1)V ×U(1)A symmetry. The 18 currents (2×(8+1))

associated with the transformation of right-handed and left-handed quarks are

Rµ,a = q̄Rγ
µλ

a

2
qR, Rµ,(s) = q̄Rγ

µqR,

Lµ,a = q̄Lγ
µλ

a

2
qL, Lµ,(s) = q̄Lγ

µqL (4.25)
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where the Gell-Mann matrices λa act in flavor space. The superscript (s) stands for the

flavor-singlet currents. From linear combinations of (4.25) we can built the vector (V µ) and

axial-vector (Aµ) flavor and singlet currents,

V µ,a = Rµ,a + Lµ,a = q̄γµ
λa

2
q, V µ,(s) = q̄γµq, (4.26)

Aµ,a = Rµ,a − Lµ,a = q̄γµγ5
λa

2
q, Aµ,(s) = q̄γµγ5q. (4.27)

In the chiral limit, the QCD Lagrangian is invariant under SU(3)L × SU(3)R × U(1)V

transformations. The U(1)A invariance is only satisfied at the classical level (chiral anomaly),

therefore, not a true symmetry. The U(1)V invariance is related to baryon number conser-

vation.

The remaining SU(3)L × SU(3)R corresponds to chiral transformations, a symmetry of

massless QCD. However, low-energy phenomenology implies that this symmetry is sponta-

neously broken (“hidden”) down to SU(3)V , with the subsequent appearance of Goldstone

bosons (pions, kaons, and the eta).

Introducing external fields in the QCD Lagrangian [56], vector (vµ), axial (aµ), scalar (s)

and pseudoscalar (p), one gets

Lv,a,s,pQCD = L0
QCD + q̄γµ(vµ + aµγ5)q − q̄(s− iγ5p)q, (4.28)

where the external fields are colorless (white) and vµ and aµ are Hermitian 3 × 3 matrices

for the light quark flavors u, d and s,

vµ =
8∑

a=1

λa
2
vaµ, aµ =

8∑
a=1

λa
2
aaµ. (4.29)
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The addition of the external fields makes the QCD Lagrangian exactly invariant under local

chiral transformations, provided that the external fields transform as

vµ + aµ → gR(vµ + aµ)g†R + igR∂µg
†
R,

vµ − aµ → gL(vµ − aµ)g†L + igL∂µg
†
L,

s+ ip→ gR(s+ ip)g†L, (4.30)

where gL and gR are SU(3) left and right chiral rotations, respectively. Besides, the in-

terpretation of the external fields as photons, Z or W bosons, incorporates other types of

interactions beyond the strong force, such as the electroweak. The original QCD Lagrangian

is obtained via the limit

v, a, p→ 0

s→Mq, (4.31)

where

Mq =


mu 0 0

0 md 0

0 0 ms

 . (4.32)

Notice that the s+ip combination allows one to incorporate the explicit breaking of the chiral

symmetry of the original QCD Lagrangian. This term mixes the left and right component

of the quark fields,

LQCD = L0
QCD − (q̄RMqqL + q̄LMqqR). (4.33)

4.4.2 Chiral Effective Lagrangian

In this section we discuss how to construct the chiral effective Lagrangian for mesons.

The first consideration is that the chiral Lagrangian must exhibit the same exact chiral

invariance of (4.28). Second, one has to find a representation of the Goldstone boson fields
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resulting from the spontaneous breaking of chiral symmetry. The mathematical details are

known [57, 58]. The boson fields are parametrized as

U = exp

(
i
φ(x)

F0

)
, (4.34)

where

φ(x) =
8∑

a=1

λaφa(x) ≡


π0 + 1√

3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η
√

2K0

√
2K−

√
2K̄0 − 2√

3
η

 . (4.35)

The chiral object U is subjected to the following transformation

U → gRUg
†
L. (4.36)

One also defines two other chiral objects that transform in a similar way, namely, the covari-

ant derivative acting on U ,

DµU = ∂µU − i(vµ + aµ)U + iU(vµ − aµ), (4.37)

and the term that parametrizes the explicit chiral symmetry breaking,

χ = 2B0(s+ ip). (4.38)

These are the building blocks to construct chiral invariant terms in the Lagrangian. For an

object O that transforms as O → gROg†L, Tr(O†O), where the trace acts on SU(3)V space,

is a chiral invariant.

The standard chiral power counting, first proposed by Weinberg [59], counts each co-

variant derivative acting on U as proportional to one power of the (soft) external momenta

p ∼ Q, where Q is the typical low-momentum scale. It also counts the Goldstone boson mass

as a soft scale like the external momenta, Q2 ∼ m2
π ∝ s → Mq. The simplest non-trivial
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chiral invariant combinations that has the lowest power in Q is assembled at the leading

order Lagrangian

L =
F 2

0

4
Tr(DµUD

µU †) +
F 2

0

4
Tr(U †χ+ χ†U), (4.39)

where the term F 2
0 /4 is fixed by requiring that the mesons have canonically normalized ki-

netic terms. The second term is the one that breaks chiral symmetry explicitly. One notices

that this Lagrangian has terms with two derivatives or proportional to the mass squared.

Higher order terms have more derivatives and/or more mass terms, that is, they are oper-

ators with increasing mass dimensions. Their coefficients, so-called low-energy constants,

are consequently couplings with higher negative mass dimensions. According to naive di-

mensional analysis, they are expected to be suppressed by inverse powers of the high-energy

momentum scale (cutoff) of the theory.

4.5 Heavy Quark Effective Field Theory

QCD has an intrinsic energy scale, ΛQCD ∼ 0.2 GeV, that is defined from the beta

function of the theory. It is a rough estimate of the scale where perturbation in αs completely

breaks down. In other words, it separates the energy regions of confinement and perturbative

QCD. It can also be related to the typical size of hadrons, Rh ∼ 1/ΛQCD ∼ 1 fm.

If one compares ΛQCD with the quark mass values from table 2.2 one observes a clear

distinction between the so-called light- and heavy-quarks. For the quark flavors q = c, b,

and t, one has mq >> ΛQCD, therefore at energies of the order of ΛQCD an approximate

symmetry arises. The heavy-quark symmetry (HQS), in contrast with chiral symmetry, is

not a full symmetry of the QCD Lagrangian, but rather an effective symmetry valid in a

certain kinematic region [60].

The momentum of a softly interacting heavy quark nearly on-shell can be decomposed

as

pQµ = mQv
µ + kµ, (4.40)

where v is the 4-velocity of the hadron containing the heavy quark (v2 = 1), and the“residual

momentum” k ∼ ΛQCD. This off-shell momentum results from the soft interactions of the
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heavy quark with its environment. The heavy hadron field can be represented in a more

explicit way by separating the original hadron field in its light and heavy components [61],

Ψ(x) = e−imqv·x[Nv(x) +Hv(x)]. (4.41)

With aid of equation (4.41) it is possible to split the original Lagrangian in the above

mentioned parts. The hard off-shell degrees of freedom are then integrated out of the path-

integral formalism, with the remaining effective Lagrangian containing almost-static heavy

fields with soft interactions suppressed by inverse powers of the heavy quark mass.

4.5.1 Effective Lagrangian for Heavy Mesons

The effective Lagrangian for two-body strong interactions between heavy mesons P and

P ∗, where (P, P ∗) stands for (D,D∗) containing one heavy quark c, or (B,B∗) with one

heavy quark b, can be written as [16, 62, 63]:

L =− iT r[H̄(Q)v ·DH(Q)]− 1

2mP

Tr[H̄(Q)D2H(Q)] +
λ2

mP

Tr[H̄(Q)σµνH(Q)σµν ]

+
ig

2
Tr[H̄(Q)H(Q)γµγ5(U †∂µU − U∂µU †)] + ... (4.42)

where the ellipsis denotes terms with more derivatives or including explicit factors of light

quark masses. The covariant derivative acting on the heavy fields is written as Dµ
ab = δab∂

µ−

(1/2)(U †∂µU − U∂µU †), with U the same object (4.34) that contains the chiral Goldstone

boson fields. g is the coupling constant between the heavy meson and the Goldstone bosons.

The constant λ2 is related to the mass difference between the vector and pseudoscalar mesons,

∆ ≡ mP ∗ − mP = −2λ2/mP . The superfield H(Q) assembles the pseudoscalar and vector

mesons in a covariant doublet under the heavy quark symmetry,

H(Q)
a =

1 + /v

2
[P ∗(Q)
aµ γµ − P (Q)

a γ5], H̄(Q)a = γ0H(Q)†
a γ0. (4.43)
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Similarly, the heavy antimesons fields, which contain the heavy antiquark Q̄, is written as

H(Q̄)
a = [P ∗(Q̄)

aµ γµ − P (Q̄)
a γ5]

1− /v
2

, H̄(Q̄)a = γ0H(Q̄)†
a γ0. (4.44)

The P field is written as Pa = (P 0, P+, P+
S ). For instance, for D-mesons one has P

(Q)
a =

(D0, D+, D+
S ) and for the corresponding antiparticles, P

(Q̄)
a = (D̄0, D−, D−S ).

4.6 Renormalization

Renormalization is a technical procedure to handle infinities that appear in quantum

field theories. Since in quantum physics all that is not forbidden must be included, quantum

corrections coming from loop diagrams necessarily involve the sum of all possible momenta

from zero up to infinity. High values of momentum integration mean sensitivity to short-

distance physics. If a certain theory at relatively short distances is not well-defined or not

valid in the corresponding momentum range, then loop corrections at and beyond such range

are likely to diverge. There are several techniques to deal with this divergence. However, all

of them should have the same physical meaning, at least in principle.

To renormalize a loop diagram one first needs to establish the energy range one is inter-

ested in, and if possible, the energy scale where the theory breaks down. Quantum corrections

around the energy of interest are the ones physically relevant, while those at and beyond

the breakdown scale are not distinguished from contact-like interactions (e.g., coupling con-

stants) of the theory. In this way, the divergences are “absorbed” by contact interactions.

The first step to achieve this is to choose a regularization method. Regularization essentially

separates loop contributions into long- and short-distance terms via the introduction of a

regulator, in a way that make both pieces mathematically manageable. The short-distance

part goes to infinity as one eliminates the regulator. Once regularized, one needs to find, in

the theory, the correct short-distance operator that is able to absorb the short-distance loop

term. This second step is the renormalization procedure per se. If correctly done, all the

divergences are eliminated, and one can safely eliminates the regulator. There is, however,

a “price to pay” afterwards, which is a residual dependence on a momentum scale, usually

introduced during the regularization step. This momentum scale dependence is inherent
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to all renormalizable quantum field theory, like QCD. In fact, is precisely this momentum-

scale dependence of the QCD coupling constant gS (or, equivalently αS) that gives rise to

asymptotic freedom and infrared slavery.

Renormalization and its interpretation is essential in EFT approaches. In the following

sections we present two different renormalization schemes, the popular MS and a more

EFT-related PDS methods, both based on dimensional regularization.

4.6.1 Dimensional Regularization

Dimensional regularization (dim-reg) is an elegant approach to deal with infinities in

perturbative quantum field theory, while preserving symmetries such as gauge invariance

and chiral symmetry. It relies on an extension of the space-time dimensions to arbitrary D-

dimensions. D becomes the regulator, which is removed taking the limit D → 4. The loop

integrals become convergent for D sufficiently small, and can be evaluated in an analitically

closed form.

In appendix A, we calculate in details loops of two and three propagators, which are

important for the radiative decay amplitude of X(3872) into J/ψ and ψ(2S) channels, using

the dim-reg procedure. In this section, just as illustration, we calculate a simple loop diagram

of a self-interacting boson.

k

Figure 4.1: Self interaction of a boson

The integral corresponding to the loop from figure 4.1 has just one boson propagator,

I =

∫
d4k

(2π)4

1

(k2 −m2 + iε)
. (4.45)

Generalizing from 4 to D dimensions and using relations (A.15) and (A.18), based on the

Cauchy theorem shown in appendix A, it is possible to evaluate the integral (4.45):

I = µ4−D
∫

dDk

(2π)D
1

(k2 −m2 + iε)
= −iµ4−D (m2)

D
2
−1

(4π)D/2
Γ

(
1− D

2

)
, (4.46)

37



where µ is a mass scale, which is introduced during the regularization.

Minimal Subtraction

It is possible to notice that for D → 4 the gamma function has a pole. For convenience,

we replace ε = 4 − D. Therefore, when D → 4 we have ε → 0 from positive values. Our

integral becomes

I = −i
(m

4π

)2
(

4πµ2

m2

) ε
2

Γ
( ε

2
− 1
)
. (4.47)

Furthermore, using the expansion (A.37) together with the property of the gamma function,

zΓ(z) = Γ(z + 1), we have

(
4πµ2

m2

) ε
2

Γ
( ε

2
− 1
)

= −
[

2

ε
+ ln

(
4πµ2

m2

)
+ Γ′(1) + 1

]
, (4.48)

where Γ′(1) = −γ0 = −0.5772 (γ0 is the Euler constant).

In minimal subtraction (MS) the divergence 2/ε defines λ, the infinite term that

represents the physics of higher energies, to be cancelled by the high energy part of the

contact diagram,

MS : λ ≡ 2

ε
. (4.49)

The most popular subtraction scheme, which we address in this work, is the modified

minimal subtraction (MS). Besides the divergent 2/ε, it also subtracts the constant

term ln(4π) and Γ′(1) that appears frequently in the D → 4 expansion,

MS : λ ≡
[

2

ε
+ ln(4π) + Γ′(1)

]
, (4.50)

Therefore, within the MS scheme one gets for the integral (4.45),

I = i
(m

4π

)2
[
λ+ ln

(
µ2

m2

)
+ 1

]
. (4.51)

As mentioned before, the term λ carries the divergence from high energy and must be

cancelled with the same high energy part of a contact diagram. All that is left from the MS
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scheme is a logarithmic dependence with the renormalization scale µ. However, a simple

analysis of the superficial degree of divergence of the integral (4.45),

I ∼
∫ ∞

0

k3dk

k2 −m2
=

∫ ∞
0

k dk(k2 −m2 +m2)

k2 −m2
∼
∫ ∞

0

k dk +m2

∫ ∞
0

dk

k
,

indicates that MS only takes into account the second term of the above expression (log-

arithmic), mysteriously throwing away the first term, which diverges quadratically. This

is justified in a perturbative calculation, where loop expansion is justified. However, in

non-perturbative calculations, especially the ones regarding the structure of weakly-bound

objects like the molecular picture of the X(3872), this is unjustified and inequivalent to other

regularization methods. This issue, though interesting, is rather subtle and technical to be

discussed here. The details can be found in reference [64].

Power-Divergence Subtraction

The power divergence subtraction (PDS) is, as well as MS, a scheme based on

dimensional regularization. However it takes into account not only the logarithmic, but also

power divergences with the renormalization scale µ [54, 64]. In PDS, power divergences are

taken into account by looking at logarithmic divergences not only at D → 4, but also in lower

dimensions. Appendix A shows that the loop diagrams contributing to the radiative decays

are divergent atD → 2, which generates terms proportional to µ2. This fact has consequences

on the interpretation of the short-distance contributions, as shown in chapter 6.

We illustrate the PDS scheme applying it to the boson self-interacting example in the

previous section. It is necessary to include the divergences not only at D = 4, but also

at lower dimensions. Returning to equation (4.46) one observes that it is also divergent at

D → 2. Replacing ε = D − 2 one gets

I = −i µ
2

4π

(
4πµ2

m2

) ε
2

Γ
( ε

2

)
. (4.52)
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Using the expansion (A.27) it is possible to extract the divergence of the gamma function.

Then, returning to D → 4, one gets

2

ε
=

2

2−D
=⇒ D → 4 =⇒ −1. (4.53)

The PDS prescription adds to the result (4.51) a new term, quadratically divergent with

the renormalization scale µ, as expected from the previous analysis of the superficial degree

of divergence,

I = i
(m

4π

)2
[
λ+ ln

(
µ2

m2

)
+ 1

]
+ i

µ2

4π
. (4.54)
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5

Amplitudes for Radiative Decays of X(3872)

In this chapter, we show in some detail the calculations of the radiative decays of the

exotic meson X(3872) into J/ψ and ψ(2S). Starting from the effective Lagrangians we

determine the interaction vertices and construct the amplitudes represented by the relevant

Feynman diagrams in figure 5.1. All the amplitudes were derived in reference [37]. Apart

from a global convention-dependent multiplicative constant, we were able to reproduce all

the interaction vertices below. The numeric values of the constants used in this work are

shown in table B.1 in appendix B.

X

p

q

D

D*

k

k − p

k − q D

p − q

Ψ

� γ
_

_

(a)

X

p

q

D

D*

k

k − p

k − q D

p − q

Ψ

� γ
_

_
*

(b)

X

p

q

D

D*

k

k − p

D

p − q

Ψ

� γ

_

k − p + q

(c)

X

p

q

D

D*

k

k − p

D

p − q

Ψ

� γ

_

*k − p + q

(d)

D

D*
_

X

k

k − p
q

p p − q

(e)

X

p

q

p − q
Ψ

� γ

(f)

Figure 5.1: Amplitudes Diagrams of Radiative Decay
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5.1 Interaction X → DD∗

The vertices of the interaction among the exotic meson and the mesons D and D∗ can

be obtained from the Lagrangian below.

L =
x0√

2
X†σ(D∗ 0σD̄0 +D0D̄∗ 0σ) +

xc√
2
X†σ(D∗+σD̄− +D+D̄∗−σ) + h.c..

Ignoring charge dependence and isospin breaking, the values of the coupling constants of

the interaction of the X(3872) with the charged and neutral charmed mesons are equal, that

is x0 = xc = x. The expression below relates the relativistic coupling constant with the

non-relativistic one,

x = xnr
√
mXm∗m, (5.1)

where the m, m∗ and mX are the masses of the mesons D, D∗ and X(3872), respectively. The

value of the constant xnr is taken from reference [65], which was determined by considering

the X(3872) as a hadronic molecule of a linear combination of the pairsDD̄∗ and D̄D∗. In this

way, extracting the Feynman rules from the Lagrangian (5.1) we determine the vertex (5.2),

VXDD∗σν =
1√
2
x gσν . (5.2)

5.2 Interaction ψ → DD∗

In this section, we show how to obtain the vertices of all possible combinations of D and

D∗ interacting with ψ, where ψ stands for either J/ψ or ψ(2S). One shows the relevant part

of the interacting Lagrangian in each specific case. We use the notation k1 for the meson

D̄ or D̄∗ and −k2 for D or D∗. The couplings are related via heavy-quark symmetry. From

refs [66, 67] one gets the following relations with the non-relativistic coupling g2,
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gD̄D = g2m
√
mψ,

gD̄∗D = 2g2
mmψ

m∗
,

gD̄∗D∗ = g2m∗
√
mψ. (5.3)

D̄Dψ

L =
igD̄D

2
{D̄∂µD − (∂µD̄)D}ψµ† + h.c..

The corresponding interaction vertex is

Vµ = gD̄D(k1 + k2)µ. (5.4)

D̄∗Dψ and D̄D∗ψ

L = −igD̄∗Dεµναβ{(∂αD̄∗ν)(∂βD)− (∂βD̄)(∂αD∗ν)}ψµ† + h.c.,

Vµν = gD̄∗Dεµναβ{(k1)β(k2)α}. (5.5)

D̄∗D∗ψ

L = −igD̄∗D∗{(
D̄∗ν(∂µD

∗ν)− (∂µD̄
∗
ν)D

∗ν

2
+ (∂νD̄

∗
µ)D∗ν − D̄∗ν(∂νD∗µ)}ψµ† + h.c.,

Vµαβ = gD̄∗D∗{gαβ(k1 + k2)µ − gµα(k1 + k2)β − gµβ(k1 + k2)α}. (5.6)
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5.3 Electric Interactions

Only the charged mesons interact electrically with the photon. To get the electric inter-

action between the charged mesons with the photon one replaces the ordinary derivatives in

the Lagrangian by the covariant ones, ∂µ → ∂µ + ieAµ (minimal substitution).

Charged Scalar Mesons - D̄Dγ

The free term of the charged scalar boson Lagrangian is

L = (∂µφ)†(∂µφ) +m2φ†φ.

Minimal substitution in equation (5.7) gives

L = (∂µφ)†(∂µφ) +m2φ†φ+ ie{(∂µφ)†Aµφ− Aµφ†∂µφ)}+ e2AµA
µφ†φ,

Vµ = e(k1 + k2)µ. (5.7)

Charged Vector Mesons - D̄∗D∗γ

L =
1

2
WµνW

µν −m2VµV
µ,

where Wµν = ∂µVν − ∂νVµ. The vertex for charged vector mesons and the photon is, via

minimal substitution,

Vµνλ = e{gµν(k1 + k2)λ − gµλ(k1)ν − gνλ(k2)µ}. (5.8)

5.4 Magnetic Interactions

The covariant generalization of the non-relativistic Lagrangian for magnetic interactions

can be found in refs [37, 68, 69]. vµ is the four-velocity of the heavy quark with vµvµ = 1,
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Q = diag(2/3,−1/3) is the light quark charge matrix, and mc and Qc are the charmed

quark mass and charge, respectively. In the magnetic Lagrangian, terms proportional to

Qc/mc come from the magnetic moment of the charm quark and the β-terms account for the

nonperturbative light-flavour cloud around the charmed meson.

D∗Dγ

The magnetic interaction among D, D∗ and the photon is given by

L = e
√
mm∗ελµαβv

α∂βAλ{D∗µ†a

(
βQab +

Qc

mc

δab

)
Db + h.c.},

Vµλ = e
√
mm∗εµλαβv

αqβ
(
βQab +

Qc

mc

δab

)
. (5.9)

D∗D∗γ

L = iem∗FµνD
∗µ†
a

(
βQab −

Qc

mc

δab

)
D∗νb ,

Vµλ =
∂3L

∂D∗µ†a ∂Aλ∂Db

= em∗{(iqνgµλ)− (iqµgνλ)}
(
βQab −

Qc

mc

δab

)
, (5.10)

where q is the photon momentum.

5.5 Propagators

The propagators of the scalar meson D and the vector meson D∗ are respectively

S(k) =
1

k2 −m2 + iε
, (5.11)

Sµν(k) =
1

k2 −m2
∗ + iε

(
−gµν +

kµkν
m2
∗

)
. (5.12)
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5.6 Constructing the Amplitudes

We already have all the individual vertices and propagators necessary to construct the

amplitudes. The total amplitude is the sum of each Feynman diagram shown in figure 5.1.

The long-range loop contribution, from diagrams (a)-(e), is given by

Aloop = εµ(ψ)εσ(X)ελ(γ)Aµσλ, (5.13)

where

Aµσλ = exnrm
√
mXmψ

∫
d4k

(2π)4
SνσS(k − p)Jµνλ. (5.14)

The individual contributions of diagrams (a)-(e) are included in the tensor Jµνλ. Note

that diagrams (a) and (d) have only magnetic contributions, diagrams (c) and (e) have only

electric contributions, and diagram (b) has both magnetic and electric contributions. The

explicit expressions are written below,

Jµνλ =
e∑
j=a

J
(j)
µνλ (5.15)

J
(a)
µνλ =

m

3

(
β +

4

mc

)
ενλαβ p

αqβ
(2k − p− q)µ
(k − q)2 −m2

(5.16)

J
(b)elec
µνλ = 2εµραβ

(k − p)α(k − q)β

(k − q)2 −m2
∗

[(2k − q)λgρν − (k − q)νgρλ − k
ρgνλ] (5.17)

J
(b)mag
µνλ =

2m∗
3

(
β − 4

mc

)
εµραβ

(k − p)α(k − q)β

(k − q)2 −m2
∗

[qνg
ρ
λ − q

ρgνλ] (5.18)

J
(c)
µνλ = 2εµναβ(k − p+ q)αkβ

(2k − 2p+ q)λ
(k − p+ q)2 −m2

(5.19)
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J
(d)
µνλ =

m∗
3

(
β +

4

mc

)
[(2k − p+ q)µ]gβν − (2k − p+ q)βgµν − (2k − p+ q)ν ]gβµ

× εαλγδ p
γqδ

(k − p+ q)2 −m2
∗

(
−gαβ +

(k − p+ q)α(k − p+ q)β

m2
∗

)
(5.20)

J
(e)
µνλ = −2εµνλαp

α (5.21)

The amplitude from diagram (f) is written as

A(f) = −iCr εµσλνεµ(ψ)εσ(X)ελ(γ) qν , (5.22)

and represents all short-distance physics not explicitly included in the long-range effective

Lagrangians. From the technical point of view, this term is necessary to absorb the ultraviolet

divergences coming from the loop contribution. Consequently, it depends on the renormal-

ization scale. The main goal of this work is to perform a full renormalization-group (RG)

analysis of this short-distance term, something missing in [37]. The results are presented in

the following chapter.
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6

Results and Discussion

In this chapter we present the main results of this work. The loop integrals are sim-

plified with Feynman parametrizations, as shown in appendix A. The D-dimensional loop

integration is solved via standard techniques, and we are left with one or two integrations in

Feynman parameters, which are solved numerically with a Gauss-Legendre quadrature. The

results depend explicitly on the renormalization scale µ, which has distinct form for each

regularization method adopted. This dependence is made clear in section 6.2, which implies

a different interpretation of the short-distance contributions made in reference [37].

6.1 Decay Width

The formula for two-body partial decay width is well known and can be found in the liter-

ature [13]. When spin polarization in the incoming and outgoing channel are not considered

it can be expressed as follows,

Γ =
m2
X −m2

ψ

48πm3
X

|M|2, (6.1)

where the total amplitude squared is defined as
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|M|2 =
∑

all pols.

Mµ′σ′λ′M∗
µσλ

(
εσ
′

(X)(p)ε
∗σ
(X)(p)

)(
εµ
′

(ψ)(p
′)ε∗µ(ψ)(p

′)
)(

ελ
′

(γ)(q)ε
∗λ
(γ)(q)

)
=Mµ′σ′λ′M∗

µσλ

(
pσ
′
pσ

m2
X

− gσ′σ
)(

pµ
′
pµ

m2
X

− gµ′µ
)(
−gλ′λ

)
. (6.2)

6.2 Long-Range Results

We evaluate the expression (6.1) similarly as done in reference [37], without explicitly

taking into account diagram (f) and using dim-reg with MS. In addition, we present the

same calculation using the PDS scheme.

J�Ψ
ΨH2SL
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G
HKe

V
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Modified Minimal Subtraction

Figure 6.1: Decay widths of X(3872), calculated in the usual MS scheme.

Figures 6.1 and 6.2 show the results of the decay widths, considering only the long-

range loop diagrams (a)-(e), as functions of the renormalization scale µ. At this point the

analyses are similar as in reference [37], that is, we let µ vary within a mass range around

mX , and assess the corresponding dependence of the decay widths. The error-bands in

these figures assume an error of 0.2 in the coupling constant xnr = 0.97. This is not the

theoretical uncertainty quoted in reference [37], which is larger, but gives an estimate of the

theoretical error involved in these calculations. Figure 6.1 shows the results using dim-reg

in the usual MS scheme. This essentially reproduces the results of reference [37]. However,

in the PDS scheme the variation of the decay widths are remarkably larger, of the order
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Figure 6.2: Decay widths of X(3872), calculated in the PDS regularization scheme

of MeVs (compare the vertical scales). Such large µ-dependence indicates the need of a

µ-dependent short-distance contact contribution (diagram (f)) in order to guarantee almost

µ-independent decay widths.

Since the only experimental information about radiative decays are branching ratios,

we present them in figure 6.3. Although short-distance physics from diagram (f) are not

included, it is interesting to notice that naive dim-reg with MS provides a ratio way below

the observed R ' 2.46 [33], while in PDS the agreement is easier to accommodate.
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Figure 6.3: Ratio of the branching fraction of each one of the radiative outgoing channels
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6.3 RG-Analysis

The previous section indicates the need of including explicitly the contact interaction

from diagram (f) and perform a careful renormalization-group (RG) analysis of the problem.

Since the decay width Γ is an observable, the RG-constraint can be written as

∂Γ

∂µ
= 0. (6.3)

This condition is imposed, numerically, for each decay channel γJ/ψ and γψ(2S). That in-

troduces two µ-dependent contact terms, Cjψ and Cψ′ . It is important to mention that, since

the decay width is proportional to the modulus squared of the amplitude, the condition (6.3)

generates two possible solutions for each contact term. We also impose the experimental con-

straint, namely, that both decay channels satisfy the ratio R ≡ Γ[X(3872)→γ ψ(2S)]
Γ[X(3872)→γ J/ψ]

≈ 2.46 [33].

In figure 6.4 we present our RG-analyses for the short-distance couplings Cjψ and Cψ′ .

The left and right pannels correspond to two distinct solutions of equation (6.3). The other

two possible solutions are very similar to these ones. As indicated, each line corresponds to

a different value of the decay width. The four uppermost graphs refer to Cjψ, the coupling

in the J/ψγ channel. The first and the second rows of graphs use the MS and PDS renor-

malization prescriptions, respectively. The four remaining graphs are the equivalent of the

first four for the ψ(2S)γ channel.

The general trend is that, in both channels, the µ-dependence is more pronounced in

the PDS scheme (note the different vertical scales). This is somehow expected from the

results of the previous section. Its physical interpretation is that, in PDS, there are relevant

short-distance physics not taken into account by the naive MS scheme. This short-distance

contribution is as relevant as loop contributions to a point that, as seen in the previous

section, if not present the decay width would be an order of magnitude larger. Such large

cancellations between long- and short-distance terms may be a consequence of an underlying

symmetry and is a question worth pursuing. The µ-dependence shown in figure 6.4 may also

be relevant in guiding theoretical models for the short-distance part.
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Figure 6.4: Behavior of the contact terms with µ

Another interesting information from this study is that, imposing Cjψ and Cψ′ to be

real numbers gives rise to lower limits on the decay widths. These limits depend on the

renormalization scheme used. One has

Γ
(MS)
J/ψ ≥25 keV, Γ

(MS)
ψ(2S) ≥ 61.5 keV,

Γ
(PDS)
J/ψ ≥55 keV, Γ

(PDS)
ψ(2S) ≥ 135.3 keV, (6.4)
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which may be checked, at least in principle, via experimental measurements.
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7

Summary and Conclusions

This work presents a study of the radiative decays of the exotic meson X(3872) assuming

a long-range molecular structure and parametrizing the short-distance physics by a contact

interaction.

Initially we present basic concepts about QCD and quark model, putting into perspective

the main motivation of this work, namely, the challenge for hadron spectroscopy to cope with

these new exotic mesons. It was shown experimental findings and previous theoretical works,

specifically for the X(3872) radiative decays. After reviewing basic concepts of scattering

theory and effective field theory, we show how to construct the amplitudes for the radiative

decays from Feynman diagrams with hadronic loops.

The loop diagrams exhibit divergences whose origin comes from summing quantum cor-

rections at all momentum scales. In order to have a renormalizable theory, we use two

different regularization methods, the traditional minimal subtraction (MS) and the power

divergence subtraction (PDS). Both provide a prescription to separate the long-range loop

contribution from the (divergent) short-distance one, the latter being absorbed by a contact-

like Feynman diagram. There is a residual high energy dependence that is represented by

the renormalization scale µ. MS always provides a logarithmic dependence on µ, while PDS

also takes into account the power-law behavior from the superficial degree of divergence,

which in this particular case is quadratic.

Our analyses started by looking at the results only for the long-range contribution of

the Feynman diagrams. We noticed that MS provides a ratio R way below the observed
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experimental value, while PDS could agree with the experimental result within a small range

of µ. However, we observed a strong variation of the decay widths with the renormalization

scale µ, which indicates the need for proper renormalization.

In both regularization schemes the contact term must be included in order to eliminate

the dependence on µ of the observables. We use the renormalization group equation, by

imposing that the width is independent of µ, that is, the derivative of the width with respect

to µ must be zero. We predict the behavior of the contact terms, one for each radiative decay

mode, as functions of the renormalization scale µ. This result can assist one who desires to

build a short-range model for the exotic meson X(3872). From the experimental value of the

ratio R and the assumption about the short-distance coupling constants, our RG-analysis

was able to set lower limits on the decay widths, given by equation 6.4.

As mentioned, the RG-results of this work can be used as guide to build models for the

short-distance contributions. An immediate extension of this work is trying to build a simple

charmonium contribution and check if its RG-evolution corresponds to the one observed here.

Another issue that can be addressed is the dependence of the coupling constant among the

X(3872) and the charmed mesons D and D∗, equation 5.1, with the renormalization scale

µ. In reference [37], this coupling was obtained from a simple relation analogous to the

one from a theory for the molecular X(3872) with only contact interactions, which does not

generate a µ-dependence. Including pion exchanges between D and D?, which are subleading

contributions, is likely to induce a µ-dependence on this coupling, that should be taken into

account. The analyses done in this work can also be extended to other exotic candidates

with a molecular structure, especially the charged ones.
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A

Calculation of Loop Integrals

In chapter 5, the amplitudes of radiative decays of X(3872) were constructed in order

to determine the decay width. In this part, we show in details how to calculate these loop

integrals. We use Feymann parametrization to simplify the integrations, then from Cauchy

theorem it is possible to transform from Minkoviski dimension to Euclidan space and solve

the integration for the loop momentum k. Finally we evaluate numerically the integrals on

the Feynman parameters by using the method of Gauss-Legendre quadrature.

A.1 Feynman Parametrization

The Feynman parametrization is a technique that helps the evaluation of loop integrals.

The expressions that we really needed are with two and three denominators, which are

related to the loops with two and three propagators. In this way, the necessary Feynman

parametrizations are

1

D1D2

= Γ(2)

∫ 1

0

da
1

[(1− a)D1 + aD2]2
, (A.1)

1

D1D2D3

= Γ(3)

∫ 1

0

da

∫ 1

0

db
a

[(1− a)D1 + a(1− b)D2 + abD3]3
. (A.2)

Thus we rewrite the denominator of all integrals as

1

D1D2 · · ·Dn

= Γ(n)

∫ 1

0

da

∫ 1

0

db
1

(k2 − 2kP − Σ)n
, (A.3)
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where P and Σ are specific for each diagram in figure 5.1 and depend on the Feynman

parameters. This trick allows us to evaluate the integration in dk by using dimensional

regularization, however we add two more integrals in da and db, which are not easy to solve

by hand, thus we compute these integrals numerically.

A.2 Dimensional Regularization

In this section we explain the method of dimensional regularization (dim-reg), using two

regularization schemes, MS and PDS. We evaluate the integration in the loop momentum

k. This loop integral varies from zero to infinity, however we are interested just in low

momenta, so that it is necessary to regularize the ultraviolet divergences from the high

values of momentum. The typical integral that we have to evaluate is

I = µ4−D
∫

dDk

(2π)D
kµ1 ...kµJ

(k2 − 2kP − Σ)n
. (A.4)

The terms P and Σ are constants in the integration and they depend on each characteristic

loop diagram, D is the number of space-time dimensions, kµ is the quadri-momentum in the

numerator, and n is just a natural number, which will depend on the number of propagators

in the loop. µ is called renormalization scale, which is introduced when the generalization

to D dimensions in the integration is done.

Using derivative tricks to remove the quadri-momenta from the numerator of the integral,

µ4−D
∫

dDk

(2π)D
kµ1 ...kµJ

(k2 − 2kP − Σ)n
=

µ4−D

(N)(N + 1)(N + 2)...(N + J)

1

(2)J
∂

∂Pµ1

∂

∂Pµ2

...
∂

∂PµJ

∫
dDk

(2π)D
1

(k2 − 2kP − Σ)N
, (A.5)

where N = n− J . Therefore, the unique integration left in the momentum k is

I0 =

∫
dDk

(2π)D
1

(k2 − 2kP − Σ)N
. (A.6)
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Rearranging the equation (A.6) in a more convenient way,

I0 =

∫
dDk

(2π)D
1

(k′2 − A2 + iε)N
, (A.7)

where

k2 − 2kP − Σ = (k − P )2 − (Σ + P 2) = k′2 − A2. (A.8)

First, we separate the temporal component of the quadri-momentum k as follows,

∫
dDk

(2π)D
1

(k2 − A2 + iε)N
=

∫
dD−1k

(2π)D−1

∫ ∞
−∞

dk0

2π

1

(k2
0 − ~k2 − A2 + iε)N

. (A.9)

Then we use Cauchy’s theorem, ∮
γ

f(z)dz = 0, (A.10)

for converting from Minkowski dimension to Euclidean space, by changing the integration

path in the complex plane.

k
0

Re

k
0

Im

2
C

1
C

Figure A.1: Complex path of Cauchy integration

According to Cauchy’s theorem (A.10), the sum of all curves in figure A.1 has to be zero:

∫ ∞
−∞

dk0

2π

1

(k2
0 −W 2)N

= −
∫
C1+C2

dz

2π

1

(z2 −W 2)N
−
∫ −i∞
i∞

dz

2π

1

(z2 −W 2)N
, (A.11)
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where W 2 = ~k2 +A2 − iε. If we rewrite the integration in the curves C1 and C2 (first term

of (A.11) on the right side) as function of R and take the limit R → ∞ we get that both

these integrals can be discarded, provided N > 0,

∫
C1+C2

dz

2π

1

(z2 −W 2)N
= lim

R→∞

[∫ π/2

0

+

∫ π

3π/2

]
iReiθdθ

2π

1

R2N [e2iθ −W 2/R2]N
= 0. (A.12)

Making z = iτ one gets

∫ −i∞
i∞

dz

2π

1

(z2 −W 2)N
= −i

∫ −∞
∞

dτ

2π

1

(−1)N(τ 2 +W 2)N
. (A.13)

In this way, we rewrite the equation (A.9) as

∫
dD−1k

(2π)D−1

∫ ∞
−∞

dk0

2π

1

(k2
0 − ~k2 − A2 + iε)N

=

∫
dD−1k

(2π)D−1
i(−1)N

∫ ∞
−∞

dτ

2π

1

(τ 2 +W 2)N
.

(A.14)

Therefore, it is possible to change from Minkowski’s space to Euclidean’s space. Putting the

equation (A.14) in a more compact way,

∫
dDk

(2π)D
1

(k2 − A2 + iε)N
= i(−1)N

∫
dDkE
(2π)D

1

(k2
E + A2 − iε)N

. (A.15)

∫
dDkE
(2π)D

[· · · ] =
1

(2π)D

∫ ∞
0

lD−1dl

×
∫ 2π

0

dθD−1

∫ π

0

dθD−2 sin(θD−2)

∫ π

0

dθD−3 sin2(θD−3) · · ·
∫ π

0

dθ1 sinD−2(θ1)︸ ︷︷ ︸
2 πD/2

Γ(D/2)

[· · · ]

=
1

(4π)D/2Γ(D/2)
2

∫ ∞
0

lD−1dl[· · · ] . (A.16)

With the help of the gamma and beta functions one gets

2

∫ ∞
0

lD−1dl

(l2 + A2)N
= (A2)D/2−N

Γ(D/2)Γ(N −D/2)

Γ(N)
. (A.17)

Thus, the solution for the integral (A.6) is
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∫
dDk

(2π)D
1

(k2 − 2kP − Σ)N
= i(µ4−D)

(−1)N

(4π)D/2
(
A2
)D/2−N Γ(N −D/2)

Γ(N)
. (A.18)

As shown in the expression (A.5) all tensor integrals of the amplitudes (5.14) can be expressed

as derivatives of (A.18). Below we calculate all the necessary derivatives.

A.2.1 Derivatives

Reminding the notation: (A2) = Σ + P 2 and B = D
2
−N .

1a Derivative

∂ (A2)
B

∂P µ1
= B

(
A2
)B−1

2Pµ1 . (A.19)

2a Derivative

∂2 (A2)
B

∂P µ1∂P µ2
= B(B − 1)

(
A2
)B−2

22Pµ1Pµ2

+B
(
A2
)B−1

2gµ1µ2 . (A.20)

3a Derivative

∂3 (A2)
B

∂P x1∂P µ2∂P µ3
= B(B − 1)(B − 2)

(
A2
)B−3

23 Pµ1Pµ2Pµ3︸ ︷︷ ︸
P3

+B(B − 1)
(
A2
)B−2

22 [gµ1µ2Pµ3 + gµ1µ3Pµ2 + gµ2µ3Pµ1 ]︸ ︷︷ ︸
gP

. (A.21)
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4a Derivative

∂4 (A2)
B

∂P µ1∂P µ2∂P µ3∂P µ4
= B(B − 1)(B − 2)(B − 3)

(
A2
)B−4

24 Pµ1Pµ2Pµ3Pµ4︸ ︷︷ ︸
P4

+B(B − 1)(B − 2)
(
A2
)B−3

23

× [ Pµ4(gµ1µ2Pµ3 + gµ1µ3Pµ2 + gµ2µ3Pµ1)

+(gµ1µ4Pµ2Pµ3 + gµ2µ4Pµ1Pµ3 + gµ3µ4Pµ1Pµ2)]︸ ︷︷ ︸
gP2

+B(B − 1)
(
A2
)B−2

22

×(gµ1µ2gµ3µ4 + gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3︸ ︷︷ ︸
g2

). (A.22)

5a Derivative

∂5 (A2)
B

∂P µ1∂P µ2∂P µ3∂P µ4∂P µ5
= B(B − 1)(B − 2)(B − 3)(B − 4)

(
A2
)B−5

25 Pµ1Pµ2Pµ3Pµ4Pµ5︸ ︷︷ ︸
P5

+B(B − 1)(B − 2)(B − 3)
(
A2
)B−4

24

× {Pµ5 [Pµ4(gµ1µ2Pµ3 + gµ1µ3Pµ2 + gµ2µ3Pµ1)

+ (gµ1µ4Pµ2Pµ3 + gµ2µ4Pµ1Pµ3 + gµ3µ4Pµ1Pµ2)]

+[gµ1µ5Pµ2Pµ3Pµ4 + gµ2µ5Pµ1Pµ3Pµ4 + gµ3µ5Pµ1Pµ2Pµ4 + gµ4µ5Pµ1Pµ2Pµ3 ]}︸ ︷︷ ︸
gP3

+B(B − 1)(B − 2)
(
A2
)B−3

23

× { gµ4µ5(gµ1µ2Pµ3 + gµ1µ3Pµ2 + gµ2µ3Pµ1)

+ Pµ4(gµ1µ2gµ3µ5 + gµ1µ3gµ2µ5 + gµ2µ3gµ1µ5)

+ [gµ1µ4(gµ2µ5Pµ3 + Pµ2g
µ3µ5) + gµ2µ4(gµ1µ5Pµ3 + Pµ1g

µ3µ5)

+ gµ3µ4(gµ1µ5Pµ2 + Pµ1g
µ2µ5)]

+Pµ5(gµ1µ2gµ3µ4 + gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3)}︸ ︷︷ ︸
g2P

. (A.23)
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A.2.2 Integrals

In this section we use the derivatives from previous section to compute all necessary

integrals. The amplitudes of diagrams (a)− (d) from figure 5.1 have three propagators, thus

n = 3. The integrals of diagram (e) from figure 5.1 have just two propagators, therefore,

n = 2. In this case there are just two integrals to solve, one without any tensor and the other

with two Lorentz indices. We call “order” the number of momentum kµ in the numerator of

the integrals. Besides, I(2) and I(3) correspond to each respective number of propagators.

Order 0

The integral I
(3)
0 , with three propagators and no momentum kµ in the numerator, does

not have any divergence as D → 4 or in any lower dimension.

∫
dDk

(2π)D
1

(k2 − 2kP − Σ)N
= i(µ4−D)

(−1)N

(4π)D/2
(
A2
)D/2−N Γ(N −D/2)

Γ(N)
. (A.24)

For

n = 3, J = 0 =⇒ N = 3,

D → 4,

I
(3)
0 =

∫
dDk

(2π)D
1

(k2 − 2kP − Σ)3
=

−i
2(4π)2(Σ + P 2)

. (A.25)

For the loop integral with two propagators the procedure is similar. However it diverges

when D → 4. Rewriting it as function of ε,

n = 2, J = 0 =⇒ N = 2,

ε = 4−D,
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I
(2)
0 =

i

(4π)2

(
4πµ2

A2

) ε
2

Γ
( ε

2

)
. (A.26)

The unique divergence observed is when D → 4 =⇒ ε → 0. Thus, one needs to use the

expansion below.

Expansion 1

(
4πµ2

A2

) ε
2

Γ
( ε

2

)
=

2

ε
+ ln

(
4πµ2

A2

)
+ Γ′(1) = λ+ ln

(
µ2

A2

)
, (A.27)

where we use the modified minimal subtraction scheme (MS),

MS : λ =

[
2

ε
+ ln(4π) + Γ′(1)

]
. (A.28)

In this way, the solution for I
(2)
0 is

I
(2)
0 =

i

(4π)2

[
λ+ ln

(
µ2

A2

)]
. (A.29)

Order 1

We don’t need to calculate I
(2)
1 , since it does not appear in the amplitude. I

(3)
1 doesn’t

have any divergence.

∫
dDk

(2π)D
kµ1

(k2 − 2kP − Σ)n
= i(µ4−D)

(−1)N

(4π)D/2
Γ(N −D/2)

Γ(N)

1

2N
B
(
A2
)B−1

2Pµ1 . (A.30)

n = 3, J = 1 =⇒ N = 2,
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D → 4,

I
(3)
1 =

∫
dDk

(2π)D
kµ1

(k2 − 2kP − Σ)n
=

−iPµ1

2 (4π)2 (A2)
. (A.31)

Order 2

∫
dDk

(2π)D
kµ1kµ2

(k2 − 2kP − Σ)n
= i(µ4−D)

(−1)N

(4π)D/2
Γ(N −D/2)

Γ(N)

1

22N(N + 1)

(B(B − 1)
(
A2
)B−2

22Pµ1Pµ2

+B
(
A2
)B−1

2gµ1µ2). (A.32)

Introducing ε = 4−D,

∫
dDk

(2π)D
kµ1kµ2

(k2 − 2kP − Σ)n
= i

(−1)N

22(4π)2

µε

(4π)−ε/2
1

Γ(N + 2)[
Γ
(
N +

ε

2

) (
A2
)−(N+ ε

2)
22Pµ1Pµ2

−Γ
(
N +

ε

2
− 1
) (
A2
)−(N+ ε

2
−1)

2gµ1µ2
]
. (A.33)

For I
(3)
2 there is a divergent term,

n = 3, J = 2 =⇒ N = 1,
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∫
dDk

(2π)D
kµ1kµ2

(k2 − 2kP − Σ)n
=

−i
22 Γ(3)(4π)2

µε

(4π)−ε/2[
Γ
( ε

2
+ 1
) (
A2
)−( ε

2
+1)

22Pµ1Pµ2

−Γ
( ε

2

) (
A2
)−( ε

2
)

2gµ1µ2
]
. (A.34)

Analogously, as done before, we can use the expansion (A.27), together with the MS (A.28),

to write down the final expression for I
(3)
2 ,

I
(3)
2 =

∫
dDk

(2π)D
kµ1kµ2

(k2 − 2kP − Σ)n
=

−i
22 Γ(3)(4π)2

{
1

A2
22Pµ1Pµ2 − [λ+ ln

(
µ2

A2

)
] 2gµ1µ2

}
. (A.35)

Similarly for I
(2)
2 ,

n = 2, J = 2 =⇒ N = 0,

∫
dDk

(2π)D
kµ1kµ2

(k2 − 2kP − Σ)n
=

i

22 Γ(2)(4π)2

µε

(4π)−ε/2[
Γ
( ε

2

) (
A2
)−( ε

2
)

22Pµ1Pµ2

−Γ
( ε

2
− 1
) (
A2
)−( ε

2
−1)

2gµ1µ2
]
. (A.36)

Expansion 2

(
4πµ2

A2

) ε
2

Γ
( ε

2
− 1
)

= −
[

2

ε
+ ln

(
4πµ2

A2

)
+ Γ′(1) + 1

]
= −

[
λ+ ln

(
µ2

A2

)
+ 1

]
.

(A.37)
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Therefore, using the expansions (A.27) and (A.37) in both divergent terms of (A.36) we

have

I
(2)
2 =

i

22 (4π)2
{
[
λ+ ln

(
µ2

(A2)

)]
22Pµ1Pµ2 +

[
λ+ ln

(
µ2

(A2)

)
+ 1

]
2
(
A2
)
gµ1µ2}.

(A.38)

For this specific case, we notice that if D → 2 the second term of (A.32) is still divergent.

The PDS prescription tells that it is necessary to consider this divergence. Going back to

(A.32) and rewriting it for ε = 2−D, one can find the divergent term,

−iµ2

22(4π)Γ(2)

(
4πµ2

A2

) ε
2

Γ
( ε

2

)
2gµ1µ2 . (A.39)

Using the expansion (A.27) we isolate the divergence, then returning to D → 4,

2

ε
=

2

2−D
=⇒ D → 4 =⇒ −1. (A.40)

Therefore, we include a new term in the expression (A.38), which comes from the PDS

scheme. It has a quadratic dependence on the renormalization scale µ.

I
(2)
2 =

i

22 (4π)2

{[
λ+ ln

(
µ2

A2

)]
22Pµ1Pµ2 +

[
λ+ ln

(
µ2

A2

)
+ 1

]
2
(
A2
)
gµ1µ2

+ 2(4π)µ2gµ1µ2

}
. (A.41)
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Order 3

∫
dDk

(2π)D
kµ1kµ2kµ3

(k2 − 2kP − Σ)n
= i(µ4−D)

(−1)N

(4π)D/2
Γ(N −D/2)

Γ(N)

1

23 N(N + 1)(N + 2)

{B(B − 1)(B − 2)
(
A2
)B−3

23Pµ1Pµ2Pµ3

+B(B − 1)
(
A2
)B−2

22[gµ1µ2Pµ3 + gµ1µ3Pµ2 + gµ2µ3Pµ1 ]}.

(A.42)

∫
dDk

(2π)D
kµ1kµ2kµ3

(k2 − 2kP − Σ)n
= i(µ4−D)

(−1)N

(4π)D/2
1

Γ(N + 3)

1

23

{Γ(N −D/2 + 3)
(
A2
)−(N−D/2+3)

23[P3]

+ Γ(N −D/2 + 2)
(
A2
)−(N−D/2+2)

22[gP ]. (A.43)

For

ε = 4−D,

n = 3, J = 3 =⇒ N = 0,

As before, we observe a divergence for I
(3)
3 when D → 4 (ε→ 0),

∫
dDk

(2π)D
kµ1kµ2kµ3

(k2 − 2kP − Σ)3
=

−i
23 Γ(3)(4π)2

µε

(4π)−ε/2[
Γ
( ε

2
+ 1
) (
A2
)−( ε

2
+1)

23[P3]

+Γ
( ε

2

) (
A2
)−( ε

2
)

22[gP ]. (A.44)

Expanding the second term of (A.44), with the help of expansion (A.27) and using the MS

scheme, we get
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I
(3)
3 =

∫
dDk

(2π)D
kµ1kµ2kµ3

(k2 − 2kP − Σ)n
=

i

23 Γ(3)(4π)2

{
− 1

A2
23[P3] + [λ+ ln

(
µ2

A2

)
] 22[gP ]

}
. (A.45)

Order 4

∫
dDk

(2π)D
kµ1kµ2kµ3kµ4

(k2 − 2kP − Σ)n
= i(µ4−D)

(−1)N

(4π)D/2
Γ(N −D/2)

Γ(N)

1

24 N(N + 1)(N + 2)(N + 3)

{B(B − 1)(B − 2)(B − 3)
(
A2
)B−4

24[P4]

+B(B − 1)(B − 2)
(
A2
)B−3

23[gP2]

+B(B − 1)
(
A2
)B−2

22[g2]}. (A.46)

∫
dDk

(2π)D
kµ1kµ2kµ3kµ4

(k2 − 2kP − Σ)n
= i(µ4−D)

(−1)N

(4π)D/2
1

Γ(N + 4)

1

24

{Γ(N −D/2 + 4)
(
A2
)−(N−D/2+4)

24[P4]

− Γ(N −D/2 + 3)
(
A2
)−(N−D/2+3)

23[gP2]

+ Γ(N −D/2 + 2)
(
A2
)−(N−D/2+2)

22[g2]}. (A.47)

When

ε = 4−D,

n = 3, J = 4 =⇒ N = −1,
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∫
dDk

(2π)D
kµ1kµ2kµ3kµ4

(k2 − 2kP − Σ)n
=

−i
24 Γ(3)(4π)2

µε

(4π)−ε/2

{Γ
( ε

2
+ 1
) (
A2
)−( ε2 +1)

24[P4]

− Γ
( ε

2

) (
A2
)−( ε2)

23[gP2]

+ Γ
( ε

2
− 1
) (
A2
)−( ε2−1)

22[g2]}. (A.48)

∫
dDk

(2π)D
kµ1kµ2kµ3kµ4

(k2 − 2kP − Σ)n
=

−i
24 Γ(3)(4π)2

µε

(4π)−ε/2

{Γ
( ε

2
+ 1
) (
A2
)−( ε2 +1)

24[P4]

− Γ
( ε

2

) (
A2
)−( ε2)

23[gP2]

+
2

ε
(
ε
2
− 1
)Γ
( ε

2
+ 1
) (
A2
)−( ε2−1)

22[g2]}. (A.49)

The first term of (A.49) does not diverge when D → 4. However the others do. Using the

expansions (A.27) and (A.37) we get

∫
dDk

(2π)D
kµ1kµ2kµ3kµ4

(k2 − 2kP − Σ)n
=

−i
24 Γ(3)(4π)2

{
1

A2
24[P4]− [λ+ ln

(
µ2

A2

)
] 23[gP2]− [λ+ 1 + ln

(
µ2

A2

)
] 22

(
A2
)

[g2]

}
.

(A.50)

Again, we find divergences when D → 2. Going back to (A.47), we notice that the third

term is divergent,
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− i(µ4−D)
1

(4π)D/2
1

Γ(3)

1

24

{Γ(−D/2 + 1)
(
A2
)−(−D/2+1)

22[g2]}}. (A.51)

Substituting ε = 2−D and using again the expansion (A.27), we do the same as (A.40). In

this way, PDS adds the following term,

i(µ2)
1

(4π)

1

Γ(3)

1

24
22[g2]}. (A.52)

Therefore, the final result for I
(3)
4 is

I
(3)
4 =

∫
dDk

(2π)D
kµ1kµ2kµ3kµ4

(k2 − 2kP − Σ)n
=

−i
24 Γ(3)(4π)2

{
1

A2
24[P4]− [λ+ ln

(
µ2

A2

)
] 23[gP2]− [λ+ 1 + ln

(
µ2

A2

)
] 22

(
A2
)

[g2]− µ2(4π)22[g2]

}
.

(A.53)

Order 5

∫
dDk

(2π)D
kµ1kµ2kµ3kµ4kµ5

(k2 − 2kP − Σ)n
= i(µ4−D)

(−1)N

(4π)D/2
Γ(N −D/2)

Γ(N)

1

25 N(N + 1)(N + 2)(N + 3)(N + 4)

{B(B − 1)(B − 2)(B − 3)(B − 4)
(
A2
)B−5

25[P5]

+B(B − 1)(B − 2)(B − 3)
(
A2
)B−4

24[gP3]

+B(B − 1)(B − 2)
(
A2
)B−3

23[g2P ]}. (A.54)
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∫
dDk

(2π)D
kµ1kµ2kµ3kµ4kµ5

(k2 − 2kP − Σ)n
= i(µ4−D)

(−1)N

(4π)D/2
1

25Γ(N + 5)

{−Γ(N −D/2 + 5)
(
A2
)−(N−D/2+5)

25[P5]

+ Γ(N −D/2 + 4)
(
A2
)−(N−D/2+4)

24[gP3]

− Γ(N −D/2 + 3)
(
A2
)−(N−D/2+3)

23[g2P ]}. (A.55)

When

ε = 4−D,

n = 3, J = 5 =⇒ N = −2,

∫
dDk

(2π)D
kµ1kµ2kµ3kµ4kµ5

(k2 − 2kP − Σ)n
= i(µε)

1

(4π)2−ε/2
1

25Γ(3)

{−Γ
( ε

2
+ 1
) (
A2
)−( ε2 +1)

25[P5]

+ Γ
( ε

2

) (
A2
)−( ε2)

24[gP3]

− Γ
( ε

2
− 1
) (
A2
)−( ε2−1)

23[g2P ]}. (A.56)

From expansions (A.27) and (A.37), we get

I
(3)
5 =

∫
dDk

(2π)D
kµ1kµ2kµ3kµ4kµ5

(k2 − 2kP − Σ)3
=

i
1

(4π)2

1

25Γ(3)

{
− 1

A2
25[P5] + [λ+ ln

(
µ2

A2

)
] 24[gP3] + [λ+ 1 + ln

(
µ2

A2

)
]
(
A2
)

23[g2P ].

}
(A.57)

We use PDS since I
(3)
5 is still divergent when D → 2. The final result is
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I
(3)
5 =

∫
dDk

(2π)D
kµ1kµ2kµ3kµ4kµ5

(k2 − 2kP − Σ)3
=

i
1

(4π)2

1

25Γ(3)

{
− 1

A2
25[P5] + [λ+ ln

(
µ2

A2

)
] 24[gP3]

+ [λ+ 1 + ln

(
µ2

A2

)
]
(
A2
)

23[g2P ] + µ2(4π)23[g2P ]

}
. (A.58)

We replace these results in expressions (5.13) - (5.21). However, still remains integrations

on the Feynman parameters, which are solved via numerical integration with aid of the Gauss-

Legendre quadrature. We also make use of the software Mathematica together with Feyncalc

to manage the extensive combination of the Lorentz indices.
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B

Constants

The table below shows the adopted values for the constants that are used in this work.

m 1865 MeV

m∗ 2007 MeV

mX 3872 MeV

mJ/ψ 3097 MeV

mψ(2S) 3686 MeV

mc 1876 MeV

β−1 379 MeV

|xnr| 0.97 GeV−1/2

|g2| 2 GeV−3/2

Table B.1: The constants were extracted from the reference [37].
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