• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.43.2009.tde-05102009-084141
Document
Author
Full name
David Augaitis Fogaça
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2009
Supervisor
Committee
Navarra, Fernando Silveira (President)
Duarte, Sérgio José Barbosa
Hama, Yogiro
Menezes, Debora Peres
Munhoz, Marcelo Gameiro
Title in Portuguese
Ondas na matéria nuclear
Keywords in Portuguese
EOS
KdV
QHD
soliton
Abstract in Portuguese
Assumindo que a matéria nuclear seja um fluido perfeito, estudamos a propagação de perturbações na densidade bariônica. A equação de estado é obtida através de um modelo relativístico em campo médio, o qual é uma variante do modelo não-linear de Walecka. A expansão das equações de Euler e da continuidade na hidrodinâmica relativística em torno das configurações de equilíbrio nos levam a equações diferenciais para a perturbação na densidade. Resolvemos tais equações numericamente para perturbações lineares e esféricas mediante pulsos iniciais. Para perturbações lineares econtramos soluções solitônicas de pulsos isolados e soluções com vários solitons seguidas de ``radiação''. Dependendo da equação de estado um forte amortecimento pode ocorrer. Consideramos também a evolução de perturbações em um meio sem efeitos dissipativos. Nesse caso observamos a formação e quebra de ondas de choque. Depois estudamos todo o formalismo na matéria nuclear em temperatura finita. Nossos resultados podem ser relevantes para análise de dados do RHIC. Eles sugerem que ondas de choque formadas na fase de plasma de quarks e gluons podem sobreviver e se propagar na fase hadrônica. Também estudamos a equação de onda não-linear para perturbações na densidade bariônica e densidade de energia no plasma de quarks e gluons (QGP). Sob certas condições solitons podem existir no QGP. Finalmente discutimos métodos alternativos de soluções de equações di-ferenciais não-lineares.
Title in English
Waves in nuclear matter
Keywords in English
EOS
KdV
QHD
soliton
Abstract in English
Assuming that nuclear matter can be treated as a perfect fluid, we study the propagation of perturbations in the baryon density. The equation of state is derived from a relativistic mean field model, which is a variant of the non-linear Walecka model. The expansion of the Euler and continuity equations of relativistic hydrodynamics around equilibrium configurations leads to differential equations for the density perturbation. We solve them numerically for linear and spherical perturbations and follow the propagation of the initial pulses. For linear perturbations we find single soliton solutions and solutions with one or more solitons followed by ``radiation''. Depending on the equation of state a strong damping may occur. We consider also the evolution of perturbations in a medium without dispersive effects. In this case we observe the formation and breaking of shock waves. We study all these equations also for matter at finite temperature. Our results may be relevant for the analysis of RHIC data. They suggest that the shock waves formed in the quark gluon plasma phase may survive and propagate in the hadronic phase. We also study the non-linear wave equation for pertubations in baryon density and energy density in quark-gluon-plasma (QGP). Under certains conditions solitons may exist in QGP. Finally we discuss alternatives methods for solving non-linear differential equations.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2009-11-04
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.