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Resumo

Nesta tese apresentamos os estudos de magnetotransporte em poços quânticos largos,

estreitos e triplos das amostras de Ga As em campos magnéticos baixos. Dependendo dos

estudos desejados, me-

dimos a magnetoresistência em regime linear e não linear e sob a aplicação de corrente AC,

irradiação de microondas e em gradiente de temperatura ao longo das amostras.

Relatamos a observação de efeitos não lineares de corrente alternada em oscilações magneto-

inter-sub-bandas (MIS) de poços quânticos triplos. A oscilação MIS em sistemas de poços

quânticos individuais e duplos e também os efeitos não lineares devido à corrente contínua

foram estudados antes nestes sistemas. Nossos resultados são explicados de acordo com

um modelo generalizado baseado na parte de não equilíbrio da função de distribuição de

elétrons.

A magnetorresistência não local sob irradiação de microondas é também estudada nesta

tese. Os resultados obtidos proporcionam evidências para uma corrente de estado de borda

estabilizada por irradiação de microondas, devido às ressonâncias não lineares e foram

descritas por um modelo baseado em dinâmica não linear e mapa padrão de Chirikov.

Finalmente, observamos uma correlação estreita entre as oscilações de resistência e oscilações

de tensão de arraste do fônon induzidas por irradiação de microondas em um sistema bidi-

mensional de eletrons sob campo magnético perpendicular. A influência da resistividade de

dissipação modificada por microondas na tensão de arraste do fônon perpendicular ao fluxo

de fônons pode explicar nossas observações. Além disso, características nítidas observadas na

xi



tensão de arraste do fônon sugerem que os domínios de corrente associados a estes estados

podem existir na ausência de condução DC externa.

Palavra-chave: sistemas multicamadas de elétrons, magnetotransporte, oscilações de re-

sistência induzida por microondas, estados de resistência zero, oscilações magnetotermelétri-

cas.
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Abstract

In this thesis, we present the studies of magneto-transport in narrow , wide and triple quan-

tum wells of Ga As samples in low magnetic fields. Depending on the desired studies, we

have measured the magneto-resistance both in linear and nonlinear regimes and under the

application of AC current, microwave irradiation and temperature gradient along the samples.

We have reported the observation of nonlinear effects of AC current on magneto-inter-sub-

band oscillations (MIS) of triple quantum wells (TQWs). The MIS oscillations in single and

double quantum well system and also nonlinear effects due to DC current have been studied

before in these systems. Our results are explained according to a generalized model based on

non-equilibrium part of electron distribution function.

The nonlocal magneto-resistance under microwave irradiation is also studied within this the-

sis. The obtained results provide evidence for an edge-state current stabilized by microwave

irradiation due to nonlinear resonances and have been described by a model based on the

nonlinear dynamics and Chirikov standard map.

Finally, we have observed the phonon-drag voltage oscillations correlating with the resistance

oscillations under microwave irradiation in a two-dimensional electron gas in perpendicular

magnetic field. The influence of dissipative resistivity modified by microwave on phonon-

drag voltage perpendicular to the phonon flux can explain our observations. Moreover, sharp

features observed in phonon drag voltage suggest the current domains associated with these

states can exist in the absence of external DC driving.
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Key words: multilayer electron systems, magneto-transport, microwave-induced resistance

oscillations, zero-resistance states, magneto-thermopower oscillations.
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Chapter 1

What is this thesis about?

S
EMICONDUCTOR technology forms the basis of microelectronic devices and infor-

mation technology. Among these materials low-dimensional electronic systems,

in which one or more spatial dimensions are small enough to restrict the quan-

tum mechanical wave function of electrons contained inside, exhibit some of the

most diverse and intriguing physical phenomena seen in all of condensed matter physics.

The development of growth techniques like Molecular Beam Epitaxy (MBE) enabled scientists,

to create and define low-dimensional structures in semiconductor materials.

Low dimensional systems of multilayer electrons are of particular interests. Due to additional

degree of freedom provided by inter-layer tunnel coupling, they allow the observation of

interesting phenomena which are absent in conventional single layer 2D electron systems.

Effects like electron tunneling and electron correlations in different layers are important in

these systems. Progress in modern semiconductor growth makes the fabrication of high

quality multiple 2D layers possible.

The research studies are carried out on materials based on Gallium Arsenide (Ga As) sand-

wiched by Aluminum Gallium Arsenide (AlGa As) forming a quantum well structure, which is

one possible realization of a 2D electron system. Multilayer systems are formed by separating

the quantum wells by Aluminum Gallium Arsenide (AlxGa1−x As) barriers. The thickness of

1
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the barrier and also Al concentration strongly alter the electron coupling between different

layers.

The objective of this thesis is to obtain new fundamental knowledge of the influence of

quantum degree of freedom produced by tunnel coupling in magneto transport phenomena.

In this way, we have carried out studies on quantum transport phenomena including measure-

ments of new oscillations like magneto inter sub-band resonance oscillations and magneto

phonon oscillations due to interaction of electrons with acoustic phonons in bilayer and

trilayer electron systems of Ga As.

It is known that the longitudinal resistance of a sufficiently high mobility 2D electron system

in low magnetic fields and under microwave irradiation exhibit giant oscillations termed

Microwave Induced Resistance Oscillations (MIRO) (Zudov et al., 1997, 2001). Moreover,

experiments by Mani et al. (2002) and Zudov et al. (2003) revealed that the lower order minima

of MIROs extend all the way to zero and forming Zero Resistance States (ZRS), whereas the

transverse Hall resistance remains essentially unaffected. Occurrence of zero resistance is

rare in condensed-matter physics and usually associate to a novel state of matter such as

superconductivity (Kamerlingh Onnes, 1911a,b) and Quantum Hall effect (Klitzing, Dorda

and Pepper, 1980; Tsui et al. , 1982). ZRS can span ranges corresponding to several tens in

magnetic field depending on the radiation intensity, temperature and quality of samples.

This phenomena, which has attracted much theoretical interest, is assumed to be related

to the bulk properties of a 2D electron systems and several microscopic mechanisms are

presented. Displacement mechanism proposed by Ryzhii (Ryzhii, 1970; Ryzhii et al., 1986;

Durst et al., 2003) and inelastic mechanism (Dorozhkin, 2003; Dmitriev et al., 2005) are the

dominant ones widely discussed in literature.

In scientific community, there is a controversy on the origin of microwave induced phenom-

ena and ZRS that if these phenomena are related to the bulk like (Ryzhii, 1970; Ryzhii et

al., 1986; Durst et al., 2003; Dorozhkin, 2003; Dmitriev et al., 2005) or near contact effects

(Mikhailov and Savostianova , 2006; Andreev, 2008) . Within the framework of this thesis, we
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will demonstrate that MIRO and ZRS result from a combination of both bulk and edge-state

contributions. We have also suggested the observation of thermo-induced voltage propor-

tional to the resistance when a temperature gradient exists along the sample and demonstrate

that these oscillations closely resemble a MIRO signal.

The main idea of Chapter one is to provide fundamentals of a 2D electron system and basic

properties of magneto-transport in bilayer electron system. Bilayer electron systems can

be formed by either two quantum wells separated by a narrow barrier or high-density wide

single quantum wells owing to charge redistribution, where the two wells near the interface

are separated by an electrostatic potential barrier. Hence, two sub-bands appear due to

tunnel coupling of 2D electron states. The magneto-resistance in a bilayer system exhibits

magneto-intersubband oscillations due to the alignment of Landau levels from both wells at

the Fermi level with increasing perpendicular magnetic field (Mamani et al., 2008).

Chapter 3 introduces basics of sample preparation and the cryogenic systems which have

been used during this thesis. Moreover, detailed information about the experimental methods

for microwave experiments are also provided.

The experimental results of magneto-resistance in bilayer and trilayer electron systems are

presented in Chapters 4- 6. Owing to a close and successful collaboration with Oleg Raichev,

theoretical physicist from the Institute of Semiconductor Physics in Kiev (NAS of Ukraine),

during this project, we were able to analyze and discuss the obtained experimental results

within a theoretical framework.

The nonlocal response of two dimensional electron system to microwave excitation is the

topic of Chapter 5. Our measurements provide evidence for microwave induced edge-state

transport in the low magnetic field regime and imply that the dissipationless edge-state

transport persists over macroscopic distances. We will show that the observed effect can be

understood within a common framework based on modern nonlinear dynamics through a

nonlinear resonance well described by the standard map, known as the Chirikov standard

map (Chirikov, 1979).



Chapter 1. What is this thesis about? 4

Although there are lots of attention to the MIRO and ZRS phenomena, most of the experi-

mental studies are based on the measurements of electrical resistance or conductance under

DC driving. In Chapter 6, we suggest for the first time the MW-induced magneto-oscillations

of the phonon-drag voltage in GaAs quantum wells, correlating with the behavior of electri-

cal resistance. The effect is described according to a theory developed by Prof. Raichev, in

terms of the sensitivity of transverse drag voltage to the dissipative resistivity modified by

microwaves zero resistance regime which can be viewed as a signature of current domain

states. We also believe that Such MW-induced thermo-electric phenomena may show up in

other 2D systems.

Finally, the conclusions and outlook of this thesis is presented in Chapter 7.
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D
URING the last decades two dimensional electron systems at low temperature

and in the presence of magnetic field have been studied extensively and

significant effects like Integer quantum hall effect (IQHE) (Klitzing, Dorda

and Pepper, 1980) and Fractional quantum hall effect (FQHE) (Tsui et al.,

1983) have been discovered in these systems. Physics of 2D electron systems in the presence

of applied perpendicular magnetic field becomes interesting when the electron motion is

quantized and the energy levels become discrete. The quantization in energy manifests

itself in magneto-resistance measurements with quantized Hall resistance accompanied by

oscillations in longitudinal resistance.

Beyond pure 2D electron systems, where electron motion occurs in a single layer, bilayer

and trilayer electron systems formed in double (DQW) and triple (TQW) quantum wells

or high electron density wide quantum wells (WQW) are of great interest. The quantum

mechanical penetration of electron wave-functions through the thin barriers in these systems,

lead them to be viewed as two or three 2D electron layers coupled by tunneling. Due to the

existence of this extra degree of freedom, magneto-resistance oscillations of double and triple

quantum wells exhibit additional oscillations beyond Shubnikov de Haas oscillations. These

oscillations in magneto-resistance, called Magneto Inter-subband oscillations (MIS), play an

important role in description of non-linearity in magneto-resistance and photo-resistance of

these systems.

This chapter provides a general introduction to all basic concepts in two dimensional electron

systems and their transport properties necessary for better understanding of the measure-

ments carried out in this thesis. First of all two dimensional electron systems and transport
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properties are described following with a brief introduction to multi-layer electron systems

and the extra features in magneto-resistance of these systems.

Transport measurements in the presence of microwave irradiation and related concepts are

also provided in this chapter. Finally basics of thermo-electric power measurement and

magneto-phonon oscillations in two dimensional electron systems are discussed.

2.1 What we want to know

• How 2D electron gas can be formed in Ga As/AlxGa1−x As heterostructures and what

are its basic properties?

• What are the properties of magneto-transport in two dimensional electron systems at

low temperatures and perpendicular magnetic field?

• How does the magneto-transport behave for bilayer systems? What are the additional

features comparing to single layer electron systems?

• What are microwave induced oscillations and related phenomena? What are the relevant

mechanisms describing them?

• How can the electron-phonon interactions be described in 2D electron systems and

what are the relevant formalisms?

2.2 Fundamentals of 2D electron gases in Ga As/AlxGa1−x As

Depending on the number of geometric confined dimensions, semiconductor materials are

termed quantum wells (QWs), quantum wires (QWRs) and quantum dots (QDs), for 1D, 2D

and 3D quantum confinement, respectively. Effect of quantum confinement on electronic

and optical properties of semiconductors becomes important when the de Broglie wavelength

of electron or holes is comparable to the physical size of confining potential. Considering
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the thermal motion of a particle of mass m along a single direction in a crystal with lattice

temperature T, then the de Broglie wavelength is given by

(2.1)λdeB =
h

√

mkB T
,

with kB and h the Boltzmann and Planck constant respectively (Fox, 2010). In case of Ga As

at room temperature (T=300 K), electron de Broglie wavelength is λdeB = 42 nm . Hence,

quantum size effects will be important for nano-structures with spatial dimensions of tens

nm (achievable by epitaxy techniques) in the range of room temperature to liquid helium

temperatures.

One dimensional spatial confinement creates the two dimensional electron gas which can be

viewed as a type of metal in which electrons are confined to move within a two dimensional

plane at the interface between two semiconductors. The motion of electrons along the con-

finement direction will be quantized and provides a series of discrete energy levels. The first

observation of two dimensional electron gas at semiconductor- semiconductor interface was

done by Stormer et al. (1979) at Bell laboratories where the GaAs/AlGaAs was grown by molec-

ular beam epitaxy (MBE) on an insulating (Cr -doped) < 100 > −Ga As substrate (Stormer et

al., 1979).

Two dimensional electron gas in real samples is located in the inversion layer formed at

the interface between semiconductor-insulator as in Si-MOSFET or at the semiconductor-

semiconductor interface like the Ga As/AlGa As heterostructures. The inversion layer reverse

the usual order of conduction and valence band and forms when the bottom of conduction

band is below the top of the valence band. Since the width of this layer is smaller than the de

Broglie wavelength, the motion along growth direction is quantized and the 2DEG is formed

in this layer(Fig. 2.1).
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Figure 2.1: Schematic of formation of inversion layer in Ga As/AlGa As heterostructure

The two dimensional electron systems in Ga As/AlGa As interface due to near-perfect crys-

talline layers of extreme purity with nearly atomically sharp transitions between layers, pro-

vide very fruitful system for studying quantum mechanical effects such as Integer (IQHE) and

Fractional quantum Hall (FQHE) effects. In Fig. 2.2, a Ga As/AlGa As hetero-structure and its

effective electrostatic potential for electrons in the conduction band is schematically depicted.

The z axis with its origin at Ga As/AlGa As interface, is chosen normal to the interface and

along the direction of the growth of the structure. The metal gate which is deposited on top of

the Ga As cap layer, is not shown in the figure.

(a) (b)

Figure 2.2: (a) Layer sequence in a typical Ga As/AlGa As hetero-structure with remote
doping, (b) Effective potential for electrons in the conduction band in a typical Ga As/AlGa As

hetero-structure with remote doping (Figure adapted from (Ihn, 2010))

Considering electrostatics within the jellium model, the effective potential for electrons in

conduction band in the hetero-structure can be achieved. For simplicity the relative dielectric

constants of Ga As and AlGa As is assumed to be identical which is a reasonable assumption.
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For z ≫ 0 the conduction band is flat since there is no electric field in the sample. We can find

electric field in the spacer layer (AlxGa1−x As ) by applying Gauss’s law and using a cylindrical

closed surface with one end face in the z ≫ 0 and the other end in the −s < z < 0.

Then, for electric field in spacer layer we have:

(2.2)E = |e|ns/εε0,

where in this relation e , ns , ε and ε0 are electron charge, surface density of electrons , relative

permittivity of spacer layer and vacuum permittivity, respectively. The equivalent electrostatic

potential in the region −s < z < 0 is

(2.3)φ(z) = −
|e|ns

εε0
z,

By applying the same method we can find the electric field in the δ- doping layer

(2.4)E = |e|(ns − Nd )/εε0,

and its corresponding potential for −s −d < z < −s

(2.5)φ(z) =
|e|ns

εε0
s −

|e|(ns − Nd )

εε0
(z + s),

at the semiconductor/metal interface the potential is given by

(2.6)φ(−s − d) =
|e|ns

εε0
s +

|e|(ns − Nd )

εε0
d ,

where in the preceding expressions, Nd is the doping density and s and d are as shown in the

Fig. 2.2(b).

From Eqs. 2.2 to 2.6, one can find the effective potential energy for electrons in conduction

band exploiting Ec (z) = −|e|φ(z) and get the energy profile of the Fig. 2.2(b). Note that here, it

is considered Ec (z) = 0 in Ga As and the conduction band offset △Ec in AlGa As.
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Basic properties of 2DEG

In 2DEGs the electrons along the direction of growth are confined while they can move freely

in two other directions. If we consider the direction of growth along z then in x − y plane

electrons move freely. Considering single electron picture, the Schrödinger equation can be

written as

(2.7)[−
ℏ

2

2m∗∇
2 + V (z)]ψ(x, y, z) = Eψ(x, y, z),

where m∗ is the electron effective mass in conduction band (for Ga As/AlxGa1−x As,m∗ =

0.067me ), V (z) is the confining potential along z direction and ψ(x, y, z) is the electron wave

function.

Since the bounding potential depends on the z direction, the electron states along z direction

are quantized while they have free motion in x−y plane. Separating the Schrödinger equation,

the ansatz could be made for electron wave function , ψ(x, y, z) = φn(z) exp[i kx x + i ky y] and

then the electron total energy is given by

En(kx ,ky ) = εn +
ℏ

2

2m∗ (k2
x + k2

y ), n = 0,1,2,3, ... (2.8)

where εn is the energy along the direction of confinement (n = 0 is the lowest sub-band ) and

ki is the electron wave vector along i direction. As it is clear from Eq. 2.8 the total energy

consists of parabolas along x and y direction which are separated by the quantized energy, εn .

For a given n, each of these parabola are called a sub-band and the lowest sub-bands are given

for~k = 0 in which En(kx = 0,ky = 0) = εn . At low temperatures when kB T ≪△ε , all electron

will be confined to the lowest sub-band ε0.

The integrated density of states for energies lower than E is given by

N (E) =
gs gν

A

∑

k,En (k)<E

1 =
gs gν

(2π)2

∫

d 2k =
gs gνm∗
πℏ2

∫E

0
dE ′ =

gs gνm∗
πℏ2

E , (2.9)



Chapter 2. Fundamental concepts of magneto-transport in 2D electron gases 12

The density of states is therefore

D(E) =
d N (E)

dE
=

gs gνm∗
2πℏ2

, (2.10)

where gs and gν spin and valley degeneracy respectively. For Ga As, gs = 2 and gν = 1. As we

can see the density of states is constant for each sub-band for 2D systems.

If several sub-bands are taken into account, then the total density of states would be a number

of steps which is given by

(2.11)D(E) =
gs gνm∗

2πℏ2

∑

n

Θ(E − εn),

where Θ is the Heaviside step function.

The density of states determines the available energy levels of the system. The next step is to

make these levels filled up with electrons. In equilibrium, the average number of electrons that

occupy a state depends on the energy of that state and also the occupation function. For elec-

trons this occupation function is Fermi-Dirac distribution function that in thermodynamic

equilibrium is expressed as

(2.12)f (E) =
1

exp(
E−µ f (T )

kB T
) + 1

,

where kB is the Boltzmann constant and µ f is the chemical potential of the system that varies

with the temperature, T . The chemical potential at zero temperature is called the Fermi

energy, εF .

At T = 0 and according to Pauli exclusion principle, f (E) takes values between zero and one

and it can be interpreted as the probability that an state with energy E be occupied by an

electron at temperature T . This implies that, at T = 0, where f (E ) =Θ(ε0
F −E ), the probability

of finding electron with E < εF , is one and there is no electron in E > εF . For T 6= 0, electrons

can occupy states with E > εF , and these are the electrons that are responsible for the transport

properties.
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The electron density is then given by

(2.13)ns =

∫+∞

−∞
D(E) f (E)dE ,

For 2DEG with D(E) = m∗

πℏ2 , it would be

(2.14)ns =
m∗kB T

πℏ2
ln(1 + exp(

εF

kB T
)),

and for constant density of states the Fermi energy can be expressed as:

(2.15)ε f =
πℏ2

m∗
ns ,

2.2.1 Two dimensional electron gas (2DEG) in a perpendicular magnetic

field

In a uniform magnetic field , classical electrons form confined circular orbits in the plane

perpendicular to the magnetic field, with constant angular frequency ωc = eB
m∗ known as

cyclotron frequency. Accordingly, eigenstates of electrons in a uniform magnetic filed are

localized in transverse plane and are labeled by two quantum numbers. These quantum states

and corresponding energy levels, which are referred to as Landau states and Landau levels,

were described by Fock 1928, Landau 1930 and Darwin 1931 in the early days of quantum

theory.

Landau eigenstates play an important role in different solid-state phenomena, such as quan-

tum Hall effect, Shubnikov de Haas and De Haas–van Alphen effects (Kittel, 1987; Marder,

2010; Yoshioka, 2002). In quantum Hall effect these levels reveal themselves as plateaus in

conductance.

The Hamiltonian of a charged particle in an external magnetic field is described by
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(2.16)H =
1

2m∗ (
−→
P −

e

c

−→
A )2,

in which
−→
A is a vector potential such that ~B =

−→∇×−→A and
−→
P represents generalized momentum

given by
−→
P = −iℏ

−→∇ . The spin of the particle is ignored here.

The Schrödinger equation then can be written as

(2.17)[
1

2m∗ (
−→
P −

e

c

−→
A )2 + V (z)]Ψ(x, y, z) = EΨ(x, y, z)

Considering the magnetic field in z direction,
−→
B = B0ẑ , the electron motion would be in x − y

plane. Using Landau gauge the vector potential can be written as
−→
A = −yB0x̂ , so the electron

moves freely along x direction and has harmonic oscillating motion along y direction. Note

that in equation 2.17, V (z) is the potential of the 2DEG perpendicular to the boundary layer

in the direction of growth of the structure (e.g., heterostructures , quantum wells, etc.). The

total energy of the system is then expressed as

Ei ,n = εi + (n +
1

2
)ℏωc , i ,n = 0,1,2, ... (2.18)

and the density of states, DOS, in x − y plane obeys additional quantization, results in a series

of δ like energy levels for an ideal system, in which electron scattering due to other electrons ,

impurities , phonons and suchlike are ignored. It is given by

(2.19)D(E) =
gs

2πl 2
B

∑

i ,n

δ(E − Ei ,n), i ,n = 0,1,2, ...

where δ is Delta Dirac function, εi is sub-band energy and (n + 1
2 )ℏωc is Landau level energy,

with i and n, respectively, sub-band level and Landau quantum number. In more realistic

way, one should assume that electron can survive only for a finite time τq between scattering

events. Consequently, Landau levels get the width Γ, which is Γ = ℏ

τq
and can be defined

precisely as the standard deviation or full width at half maximum (FWHM). One must keep

in mind that τq is the quantum lifetime or single particle lifetime of electron and is different
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from the transport lifetime, τtr , which appears in the mobility and will discuss later. Gaussian

or Lorentzian profiles are assumed as the precise shape of Landau levels, however the precise

shape of Landau levels are still eristic . When separation of Landau levels, ℏωc exceeds their

width Γ (ℏωc >Γ or equivalent ωcτq > 1 ), strong changes in density of states (DOS) would be

expected, otherwise one would not expect to see strong changes in DOS.

The magnetic length lB =
√

ℏ

eB
represents the characteristic length scale of the cyclotron

motion at a given magnetic field and is independent of material parameters. At B = 1 T,

lB ≈ 26 nm.

The wave functions of electron motion in x − y plane is

(2.20)ϕn,k (x, y) ∝ Hn−1(
y − yk

lB

) exp(−
(y − yk )2

2l 2
B

) exp(i kx x), n = 1,2,3, ...

with yk = −ℏkx

eB
, the centers of wave functions.

The degeneracy of a Landau level which is defined as the allowed number of states in each

Landau level per unit area, can be calculated as the number of flux quanta per unit area:

nL =
eB

h
=

1

2πl 2
B

, (2.21)

and the filling factor which is defined as the number of fully occupied Landau levels is given

by the ratio of total electron density to the degeneracy of Landau levels:

ν =
ns

nL

=
hns

eB
. (2.22)

The occupation of Landau levels in a magnetic field for different values of field is shown in

Fig. 2.3. As the magnetic field changes the Fermi level moves to maintain a constant density

of electrons.
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Figure 2.3: Occupation of Landau levels in a magnetic field for different value of applied
magnetic field. The field are in the ratio of 2:3:4 for (a) to (c) respectively (Figure adapted
from (Davies, 1998))

2.3 Magneto-transport theories in two dimensional electron

systems

2.3.1 Classical approach: Drude model

Charge transport in 2D electron systems can be described by Drude model (Drude, 1900) in

which electrons are considered as classical particles. It provides a simple way to describe

transport through such systems and is valid for small magnetic fields, ωcτ≪ 1 where electrons

can not complete cyclotron orbits without being scattered and Landau levels are overlapped.

At higher magnetic fields, this model will break down and one must consider quantum

mechanics to properly describe transport in 2D electron systems.

The motion of electrons in an external electric and magnetic field is described according to

(2.23)m∗ d ~υD

d t
+ m∗ ~υD

τtr

= e(~E + ~υD × ~B),

with ~υD , the drift velocity of electrons, τtr transport relaxation time which describes the time

an electron can move without being scattered in a certain direction and it does not depend

on magnetic field.
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It is different from elastic scattering time which will be introduced later and describes the

time an electron can move without changes in its energy. During transport relaxation time of

τtr , electrons move with Fermi velocity υF that gives the mean free path of electronic system

with density of ns as:

(2.24)ℓ = τtrυF =
ℏµ

e

√

2πns ,

Considering Eq. 2.23 in static case, the drift velocity is given by:

(2.25)~υD =
eτtr

~E

m∗ = µ~E ,

where µ =
eτtr

m
∗ defines the mobility of the electronic system that is a representative of the

purity of the system. Moreover, the current density of the system, considering ohmic law

would be ~j = ens ~υD . The Current density, ~j , and driving electric field, ~E , in linear regime are

connected with the conductivity tensor ←→σ as follows:

(2.26)~j = ←→σ ~E ,

which in 2D systems leads to:





jx

jy



 =





σxx σx y

σy x σy y









Ex

Ey



 , (2.27)

For isotropic systems, the components of conductivity tensor are symmetric, so that σxx = σy y

and σx y = −σy x and ←→σ = ←→ρ −1
. The components of resistivity tensor, thus, are given by:

(2.28)
ρxx =

σxx

σ2
xx + σ2

x y

=
1

ensµ
,

ρx y =
σx y

σ2
xx + σ2

x y

=
1

ens

B ,
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If one does measurements on a Hall bar structure similar to what is shown in Fig. 2.4 with

width of W and length of L, then the preceding formulas must be written as:

(2.29)ρxx = Rxx

W

L
,

ρx y = Rx y .

In Van der Pauw geometry, the longitudinal resistance must be multiplied by π
ln2 = 4.5 , because

in this case it is given by

(2.30)ρxx =
π

ln2
Rxx

W

L
,

while transverse resistance is ρx y = Rx y .

Figure 2.4: Schematic picture of a) Longitudinal and Hall resistance measurements in a
Hall bar geometry, b) Longitudinal resistance and c) Transverse resistance in Van der Pauw
geometry.

2.3.2 Quasi classical approach: Boltzmann transport theory

To understand transport properties in electronic systems containing scattering centers, Boltz-

mann equation can be used to describe the dynamic of the system by considering a balance



19 2.3. Magneto-transport theories in two dimensional electron systems

between acceleration due to Lorentz force and deceleration owing to collision with the scat-

tering centers.

In equilibrium states when there is no electric or magnetic fields, electron distribution in the

system is given by Fermi- Dirac distribution function:

(2.31)f 0(k) =
1

1 + exp(
ǫk−µ
kB T

)
.

In this case, since there is no net momentum, the net current is zero.

Switching on the electric and magnetic fields, electrons in k states accelerate by Lorentz force:

(2.32)
d~υk

d t
=

ℏdk

m∗d t
= −

e

m∗ (~E + ~υk × ~B),

and this cause an evolution in distribution function of electrons in time so that f → f (~r ,~k, t ) ,

which implies that:

(2.33)f (r,k, t) = f (r + dr,k + k̇d t , t + d t).

Since there are compensating factors like scattering from impurities at low temperatures,

phonon scattering at higher temperatures and electron-electron collisions in the system

versus accelerating forces, we can assume changes in f as a small perturbation on f 0 and

that the application of small electric and magnetic fields will not shifted the spectrum of 2D

system significantly. Furthermore, we would expect that if we turn the fields off, the excess

distribution, f (k, t )− f 0 decay away through collision process during τk relaxation time. The

last assumption, called Relaxation Time Approximation (RTA), is a good approximation for

isotropic and elastic scattering at low fields.

Taylor expansion of Eq. 2.33 and considering assumptions above, the nonlinear Boltzmann

equation can be written as:

(2.34)∇k (g + f 0).
e

ℏ
(~E + ~υk × ~B) =

g

τk

,
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with g (k, t ) = f 0(k, t )− f (k) refer to excess distribution of the electronic system.

The linear Boltzmann equation then would be:

(2.35)∇k g .
e

ℏ
(~υk × ~B) + ∇k f 0.

e

ℏ

~E =
g

τk

,

which is valid for small excess distribution. In case of zero magnetic field g = ∇k f 0.
eτk

ℏ
~E and

the current density and conductivity tensor thus would be:

(2.36)j =
2e2

2π2

∫

d 2k (−
∂ f 0

∂ǫ
)τυk (υk .E),

and

(2.37)σ =
2e2

2π2

∫

d 2k (−
∂ f 0

∂ǫ
)τυk ⊗ υk ,

where ⊗ represents the outer product of two vectors and in 2D , υk ⊗υk is a 2×2 matrix.

From Eqs. 2.36 and 2.37, it is clear that although all electrons have the same drift velocity but

only electrons near the Fermi surface are contributed to the conductivity.

2.3.3 Shubnikov de Haas oscillations (SdH)

The Shubnikov de Haas oscillations which were discovered by Shubnikov and de Haas (1930)

are oscillations of the longitudinal magneto-resistance in a quantizing magnetic field due to

modulation of the DOS. These oscillations are periodic in 1/B and make the determination of

the properties of a 2D system like period, effective mass, Dingle Temperature TD , shape of the

Fermi surface and the electronic energy spectrum possible. Hence, it is a premium technique

to study 2D systems. The occurrence of these oscillations can be explained as follows.

The electrons in the bulk regions of 2DEG perform circular motion caused by applying per-

pendicular magnetic field, while they can not do full circular motion in the border region
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(a)

(b) (c)

Figure 2.5: a) The resulting Landau-levels after applying a magnetic field, b) highest Landau-
level far away from Fermi-energy (no scattering), c) highest Landau-level near the Fermi-
energy (with scattering).

due to back-scattering processes from interfaces. The back-scattering events promote the

energy of electrons. As discussed before the gap between two landau level is ∝ ℏωc , therefore

increasing the magnetic field makes the gap bigger. When the highest Landau level is far

from Fermi energy, there is no states available for electrons to scatter in and the longitudinal

resistivity would be zero while the transverse one will remain constant . The peaks of oscilla-

tions appear when there are available states for scattering in the bulk regime. This scenario is

shown for different applied magnetic field in Fig. 2.5. Note that µL/R are chemical potentials

of left and right contacts along x direction.

In order to observe SdH oscillations in 2DES, it is necessary to have Γ≪ ℏωc or equivalently
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ωcτq ≫ 1 , which means that the broadening of Landau levels Γ does not exceed the separa-

tion between adjacent ones, ℏωc .

Moreover, thermal broadening of Fermi energy must be smaller than LLs separations and the

latest must be smaller than Fermi energy , so that kB T ≪ ℏωc < εF . If the preceding condition

satisfies for 2D system then one can observe oscillations like what is shown in Fig. 2.6.

Figure 2.6: Longitudinal resistance of a quantum well in magnetic field up to 5 T at T=50 mK.
SdH oscillations are visible which are starting from 0.5 T. Spin splitting starts at B=1.5 T (see
blue arrow). For B > 3 T, one can see Zeeman splitting △Z and Landau energy separation ℏωc .
(Figure is adapted from (Wiedmann, 2010)).

According to Fig. 2.6, the onset of SdH oscillations (for this particular sample) is B = 0.5 T.

Further increasing in magnetic field results in Spin and Zeeman splitting which are shown by

Blue arrow and △Z respectively.

The amplitude of SdH oscillations is given by the Lifshits-Kosevich formula (Lifshits and

Kosevich, 1956)

(2.38)△Rxx = Rxx(B = 0)4T exp(−
π

ωcτq

)cos(
2πεF

ℏωc

),

where Rxx(B = 0) is zero field resistance (Drude resistance), T = X
sinh X

is the temperature

damping factor with X =
2π2

Te

ℏωc
(Te is electron temperature) and d = exp(− π

ωcτq
) is Dingle factor



23 2.3. Magneto-transport theories in two dimensional electron systems

which determines disorder effects in 2DES. As the temperature increases amplitude of SdH

oscillations strongly damped because of the thermal broadening of Fermi distribution which

exceeds the cyclotron energy. The temperature dependence of SdH oscillations are shown in

Fig. 2.7 for four different temperatures.

Figure 2.7: Temperature dependance of Shubnikov de Haas oscillations in longitudinal resis-
tivity (Figure adapted from (Freire and Egues, 2004)).

2.3.4 Integer Quantum Hall effect (IQHE)

The birthday of Integer Quantum Hall Effect (IQHE) was the night of 5th of February 1980, in

an experiment by Klaus von Klitzing (Klitzing, Dorda and Pepper, 1980), in which two dimen-

sional electron gas at the surface of a single crystal silicon was exploited for measurements.

The experiment resulted in resistivity tensor ρx y given by:

(2.39)ρx y =
h

νe2
,

with h Plank constant, e elementary charge and ν filling factor which represents the number

of fully occupied Landau levels below the Fermi energy which in case of integer QHE, it
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would take integer values. The fascinating part of this discovery is related to the so-called

Klitzing constant RK = h

e
2 = 25,812.807449(86) Ω, that is proportional to the inverse of fine

structure constant, α−1 = h

e
2

2
µ0c

= 137. The constants of µ0 and c are the magnetic permeability

of free space and the speed of light in vacuum, respectively. Therefore utilizing QHE, one

can determine the fine structure constant. Moreover, the Hall resistance measurements are

proved to be independent of the material and geometry of the semiconductors which are

used and have been verified in devices made from Si , Ga As and other semiconductors.

In real samples electrons move in lattice with defects and impurities which act as scattering

centers for electrons and add up to phonon scatterings. However, at low temperature, in

which QHE is observed, the impurity scattering is dominant. The presence of impurities has

two consequences. First, it lifts the degeneracy of the Landau levels and broadens the δ like

density of states. Second, it creates two different kinds of electronic states called extended

and localized states in which electrons are mobile and immobile, respectively. According to

the experiments, between two adjacent Landau levels, the Hall resistance has fixed values

and the corresponding longitudinal resistance Rxx vanishes at the same time which means

that the electrons are localized in this region. Localization is a key point to interpret IQHE.

Based on Laughlin 1981 and Halperin 1982 explanations, the extended states exist at the core

of Landau levels and localized states exist out of the core. The sketch is shown in Fig. 2.8.

Increasing the magnetic field leads to sequential passage of Landau levels from Fermi energy.

Depending on the position of the Fermi energy with respect to the extended and localized

states, Hall resistance shows plateaus with corresponding vanishing longitudinal resistance

and phase transitions between adjacent plateaus, respectively. The experimental data of

Quantum Hall effect is shown in Fig. 2.9.

Increasing electron density ns or equivalently shifting the Fermi energy εF through the density

of states, leads to gradual occupation of electronic states. When εF moves in localized stats

the Hall resistance does not change and gives rise to plateau because the occupation of

the extended states does not change in this case and the longitudinal resistance vanishes

simultaneously. As soon as εF approaches the next landau level, the Hall resistance makes
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Figure 2.8: Sketch of the DOS for a 2D system in a magnetic field where the position of the
Fermi energy corresponds to the filling factor, ν = 2. Localized and delocalized states are
shown in the center and lateral part of levels respectively (Figure adapted from (Wiedmann
et al., 2010)).

transition to the next plateau. Therefore, the QHE can be realized as transitions between

localized -delocalized states as the Fermi energy, εF , moves across the density of states.

Figure 2.9: Longitudinal and Hall (transverse) resistance in a single layer system formed by a
quantum well (Figure adapted from (Wiedmann et al., 2010)).

For explanation of Quantum Hall effect several arguments have been proposed including

theories based on gauge invariance to some stands on edge state transport. In this part
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the latter will be discussed briefly. The description is based on the theory by Landauer-

Buttiker (Buttiker, 1988) in which the propagation of edge states along the boundary of

structure is used. The approach makes advantage of the transmission and reflection at the

contacts to describe the electrical transport. Edge states come to appear due to the existence

of boundary in real samples and since the electron density in these boundaries goes to zero,

the potential will increase and the Landau levels bend upward near the edge as shown in

Fig. 2.10.

Figure 2.10: Energy spectrum of a 2DEG in a magnetic field with an infinite confining potential
at the edges of the sample. States below the Fermi energy are occupied (full circle). The edge
channels are located at the intersection of the Landau levels with the Fermi energy (Figure
adapted from (Jeckelmann and Jeanneret, 2001)).

In this case the whole Landau levels below Fermi energy are occupied and have occupied

edge states likewise. Consequently, one dimensional edge channel is formed for each Landau

level traversing the Fermi energy. Therefore, edge states exist at the Fermi energy near the

sample boundaries.

These edge states along the boundaries are like metallic wires, running along the sample

boundary so contributed to electrical transport. Then, the current which goes to the j th

contact in a sample with several contacts is given by:

(2.40)I j =
e

h
(N − R j ).µ j −

∑

k

T j kµk ,
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where N is the number of channels, R j is the reflection coefficient at contact j and T j i is

the sum of transmission coefficients from contact i to the contact j and µ represents the

chemical potential.

The electron screening effect that takes place near the boundary is not considered in this

formalism. This formalism is easy to handle and can be applied to many geometries. The

edge state picture does not account for electrostatic screening effects of a 2DEG. At high

magnetic fields, channels are forced into compressible strips separated by incompressible

regions and latest scanning force microscopes reveal convincing evidences for the existence

of these stripes in the depletion region at the sample edges. These experiments have shown

that compressible and incompressible stripes also exist at the border between ohmic contacts

and the 2DES (Chklovskii and Shklovskii, 1992; Klitzing, 2004).

2.4 Magneto-transport in bilayer electron systems

The bilayer electron systems which are realized in wide single quantum wells and in double

quantum wells (DQW) are introduced in this section. Double quantum wells (DQW) form by

two simple quantum wells, separated by a potential barrier. In a wide quantum well (WQW),

electrons due to repulsion forces form a stable configuration in which 2DEG are formed at

the side walls of the well.

The main advantage of bi-layers formed in a wide quantum well over conventional DQW

can be explained according to the scattering effects in the middle barrier. In conventional

DQW, the barrier between the wells is made of an alloy such as AlxGa1−x As for Ga As while

in wide quantum wells the barrier is consists of Ga As which makes the scattering due to alloy

minimized in WQW (Suen et al., 1991).

The presence of the barrier in WQW or DQW opens new opportunities for studying such

systems in the presence and absence of tunneling between electronic layers of each well. The

extra degree of freedom due to tunneling leads to novel, different transport properties from
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simple single layer quantum wells. In the following, first, general properties of DQWs are

introduced and then we focus on new magneto-resistance oscillations due to the possibility

of intersubband transitions of electrons in such systems which is known as Magneto Inter-

sub-band (MIS) Oscillations.

2.4.1 Fundamentals of Double Quantum Wells (DQWs)

Double quantum wells of Ga As/AlxGa1−x As samples, consist of two simple wells of Ga As

separated by a potential barrier of AlxGa1−x As. The wave functions of electrons tunnel

through the potential barrier and the system can be viewed as two parallel 2D electronic layers

coupled together via tunneling which introduces a new degree of freedom and appearance of

some interesting phenomena different from simple quantum wells.

If a coupled quantum well wave function ,ψ , be considered as a linear combination of wave

functions, ψ1 and ψ2, of each well , so that ψAS/S = aψ1 + bψ2. Solving the Schrödinger

equation for ψ leads to a symmetric-antisymmetric energy gap of △S AS = εAS −εS , where εAS

and εS are energy of antisymmetric and symmetric combination of ψ1 and ψ2, respectively.

This separation, strongly depends on the width and height of the potential barrier. For small

thickness of barrier the separation will increase. Moreover, the symmetric DQWs is called

balanced when the electron densities are equal in two wells. The conduction band edge

and the two lowest energies and wave functions of a symmetric double quantum well of

AlxGa1−x As/Ga AS/AlxGa1−x As are demonstrated in Fig. 2.11. For comparison between

WQW and DQW the same information for WQW is also presented in Fig. 2.11.

In DQWs at high magnetic fields in addition to cyclotron energy gap ℏωc and Zeeman gap

due to spin splitting △Z , another energy gap exists due to the symmetric and antisymmetric

hybridization of wave functions of each well which is shown by △S AS and this energy gap

determines the coupling strength of two quantum wells. According to the coupling between

the quantum wells, it is possible to define three regimes in DQWs. First, is the "No coupling"

regime where there is no overlap between electronic wave functions of each wells and also

there is no coulomb interaction between them. Second regime is the case with coulomb
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Figure 2.11: (a) Schematic of band structure of DQW derived from Hartree-Fock calculation
with symmetric and antisymmetric wave function for the lowest occupied subbands and
corresponding energies. (b) Symmetric and anti-symmetric wave functions in WQW.(Figure
is adapted from (Wiedmann et al., 2010)).

interaction present while there is no tunneling between quantum wells and can be considered

as "Coulomb coupling" regime. The last regime is the case with tunneling present between

the wells and depending on the strength of tunneling can be classified as "weak or strong

coupling" regime. The energy and Landau fan diagram for two set of spin split Landau levels

separated by △S AS of DQW system is shown in Fig. 2.12.
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Figure 2.12: (a) Energy diagram with the cyclotron energy (ℏωc ), Zeeman energy (△Z = µg∗B)
and symmetric-antisymmetric energy (△S AS ). (b) Landau fan diagram for a DQW.

2.4.2 Magneto intersubband oscillations (MIS)

There are another kind of magneto-resistance oscillations that exist in quantum wells with

at least two sub-band occupied. The origin of these kind of oscillations is the periodic mod-

ulation of the probability of intersubband transitions between different Landau levels with

magnetic field and called magneto intersubband oscillations (MIS). Unlike SdH oscillations

Figure 2.13: (a) QW with two occupied 2D subbands and (b) DQW-system with two occu-
pied 2D subbands with energies ε1 and ε2 and staircase of Landau levels giving rise to MIS
oscillations (Figure adapted from Wiedmann (2010)).

which are originating from sequential passage of Landau levels through the Fermi level, MIS
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oscillations are more robust to temperature, since their origin has nothing to do with the Fermi

energy. In case of SdH oscillations broadening of Fermi distribution that exceeds cyclotron

energy ℏωc leads to considerable suppression of SdH oscillations while MIS oscillations can

persist in higher temperature in comparison with SdH and provides a tool for studying system

in the regions of temperature where SdH is no more exist.

The maximum of MIS oscillations appears when sub-band separation meet the condition of

△ = nℏωc (n is an integer), that corresponds to the maximum elastic scattering of electrons

between different Landau levels (Wiedmann et al., 2009).

In the following, the theoretical description of low field magneto-resistance oscillations is

provided. In high filling factors which corresponds to weak magnetic fields, the resistivity can

be extended up to second order in Dingle factors:

(2.41)ρd = ρ(0)
d

+ ρ(1)
d

+ ρ(2)
d

,

with ρ(0)
d

the classical resistivity, ρ(1)
d

the first order term in Dingle factor which describes

the SdH oscillations in quantum contribution to the resistivity and finally ρ(2)
d

the second

order term in Dingle factor taking into account other quantum contributions specifically MIS

oscillations in our DQW system and this is the term which survives at higher temperatures

unlike second term which contains SdH oscillations. According to Zaremba 1992 and Raichev

2008 that describe the classical and quantum contributions to the resistivity respectively, it is

possible to write these contributions as follow:

(2.42)ρ(0)
d

=
m

e2ns

ωcνs + ν0ν
2
r

ω2
c + ν2

r

,

and the first order quantum contribution describing SdH oscillation would be:

(2.43)ρ(1)
d

= −T
2m

e2ns

∑

j =1,2

[
2ns j

ns

νtr
j j + νtr

12]exp(−
πν j

ωc

)cos(
2π(εF − ε)

ℏωc

),
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and the last term describing the second order contribution is given by:

ρ(2)
d

= (
2m

e2ns

)[
n1

n2
νtr

11 exp(−2
πν1

ωc

) +
n2

ns

νtr
22 exp(−2

πν2

ωc

) + νtr
12 exp(−

πν1

ωc

−
πν2

ωc

)cos(
2π△12

ℏωc

)].

(2.44)

In these equations ns is the total density of electrons attained from adding electron densities

of each sub-band n1 and n2, so that ns = n1 + n2. The elastic quantum scattering rate and

transport scattering rate at the Fermi surface are ν j j ′ and νtr

j j ′
respectively which leads to

definition of some characteristics rates of ν0 , νs , νr presented as:

(2.45)

ν0 = D/νr

D = (νtr
11 + ν12)(νtr

22 + ν12) − (ν12 − νtr
12)2n2

s /4n1n2

νr = (
n2

ns

)νtr
11 + (

n1

n2
)νtr

22 + 2ν12 − ν12
tr

νs = (
n1

n2
)νtr

11 + (
n2

ns

)νtr
22 + νtr

12,

while the sub-band dependent quantum relaxation rates and transport scattering rates are

defined as

(2.46)
ν j =

∑

j
′=1,2

ν j j
′ ,

νtr
j =

∑

j
′=1,2

n j + n j
′

ns

νtr

j j
′ ,

with

(2.47)
ν j j ′

νtr

j j
′

} =
1

2π

∫

2π
0 dθν j j

′(θ) × {
1

F j j
′(θ)

ν j j
′(θ) =

m

ℏ
3

w j j
′(

√

(k2
j + k2

j ′
)F j j

′(θ)),
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where w j j
′ are the Fourier transforms of the correlators of the scattering potential, F j j

′ =

1−2k j k j
′ cosθ/(k2

j + k2
j
′), θ is the scattering angle and the Fermi wavenumber for sub-band j

is k j =
√

2πn j . Considering the following approximations the general expression for DQW is

considerably simplified as

(2.48)
ρd

ρ0
≃ 1 − 2dT

∑

j =1,2

cos
2π(εF − ε j )

ℏωc

+ d 2[1 + cos
2π△12

ℏωc

],

where it is approximated that n1 ≃ n2 ≃ ns/2, ν11 ≃ ν22, νtr
11 ≃ νtr

22 and ν∗11 ≃ ν∗22 , which also

leads to ν1 ≃ ν2, d1 ≃ d2, νtr
1 ≃ νtr

2 ≃ τ−1
tr and ν∗1 ≃ ν∗2 ≃ τ−1

∗ . Moreover, νtr
12 ≃ νtr

j j and ν∗12 ≃ ν∗j j

is also valid for balanced DQW used in this thesis.

2.5 Microwave induced resistance oscillations (MIRO)

2.5.1 Experimental discovery and basic properties

The electrodynamics response of a quantum Hall systems is one the main issues in physics

of correlated systems. Therefore, non-equilibrium magneto-transport phenomena in two

dimensional electron systems under Microwave (MW) irradiation are of great interests.

The experimental observation of microwave-induced resistance oscillations (MIROs) in longi-

tudinal resistance is possible for samples with a sufficiently high-mobility 2DEG, subjected to

a weak perpendicular magnetic field and illuminated by microwave radiation (Zudov et al.,

1997, 2001). Under these conditions magneto-resistivity, ρ(B) exhibits giant oscillations peri-

odic in the inverse magnetic field, 1/B, and satisfy a resonance condition in which cyclotron

energy is an integer multiple of the radiation energy, ℏω = nℏωc with n (n = 1,2,3, ...), the

difference between the indices of participating Landau levels. Moreover, in the experiments

on microwave irradiation of very high mobility (µ≥ 107 cm2/V s) 2DEG samples, Mani et al.

(2002) and Zudov et al. (2003) observed that (see Fig. 2.14) in appropriate microwave intensity

and temperature the lower order minima of MIRO can extend all the way to zero forming zero

resistance states(ZRS).
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(a) (b)

Figure 2.14: Longitudinal (left axis), Rω(B) and Hall RH (B) (right axis) magneto-resistance
under microwave irradiation. Longitudinal magneto-resistance R(B) without irradiation is
also shown. Parameters (a) microwave frequency f = 103.5 GHz, temperature T = 1.3 K,
electron density ne ≃ 3×1011 cm−2 and mobility µ≃ 1.5×107 cm2/V s (Figure adapted from
(Mani et al., 2002)), (b) f = 103.5 GHz, T ≃ 1.0 K, ne ≃ 3.5×1011 cm−2 and µ≃ 2.5×107 cm2/V s

(Figure adapted from (Zudov et al., 2003)).

ZRS can span magnetic-field ranges corresponding to several tens in filling factors. However,

unlike the quantum Hall effect, vanishing of diagonal resistance in microwave irradiated

2DEG is not accompanied by Hall quantization. The observation of ZRS is of great interest

because it is a rare occurrence in condensed-matter physics, usually signaling a novel state

of matter, such as superconductivity and QH effects and is often an indication that some

interesting physics is afoot.

Since the electrical resistance of most materials can be associated to the inhibition of the

electron flow by scattering from impurities, defects and excited modes of the system. One

of the possibilities to explain the microwave induced zero resistance state is based on a new

collective state induced by microwave irradiation.

2.5.2 MIRO mechanisms

The microwave irradiation can affect the transport properties. The combined effect of Landau

quantization and external magnetic fields either on the momentum relaxation or on the
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energy distribution of electrons within disorder-broadened LLs can be exploited in explana-

tion of experimental findings concerning MIRO via two important mechanisms. The first

considerations lead to displacement mechanism, proposed by Durst et al. (2003) and involves

simultaneous photo excitation and disorder scattering of electrons while the second one is

called inelastic mechanism, associated with non equilibrium oscillatory component of the

distribution function of electrons under microwave irradiation, introduced by Dorozhkin

(2003) and Dmitriev et al. (2005). The latter is likely to be the dominant mechanism in studied

experimental systems.

Comparing microwave induced magneto-resistance with corresponding dark values of di-

agonal conductivity, the mentioned mechanisms lead to the reduction of conductivity and

for radiation of sufficient intensity it pass through zero resistance and even negative values,

σxx < 0 result. Since the system is injected with energy in the form of microwave, we deal with

a non-equilibrium phenomena which negative resistance is reasonable for the systems.

Figure 2.15: Schematic picture of 2DEG in an applied perpendicular magnetic field (green
arrows) irradiate by microwave (red). Domain walls which separate the current regions
(purple) of larg counter flowing current density. Net current to the right side shown by larg
gray arrow (Figure adapted from (Durst and Girvin, 2004)).

Andreev , Aleiner and Millis (2003) provides explanation for observed zero resistance and it is

shown that since the negative resistance states make the homogeneous current distribution
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electrodynamically unstable, the system can spontaneously rearrange itself into an intricate

current pattern , as is shown in Fig. 2.15, which consists of domain walls separating large local

current density regions with zero resistance (Durst and Girvin, 2004).

In the following sections, displacement and inelastic mechanisms will be introduced. In the

theoretical part, ℏ = kB = 1 is considered.

Displacement mechanism (DP)

This mechanism explains microwave induced magneto-resistance oscillations using dis-

ordered assisted absorption and emission of microwave by electrons which results in an

alteration of electrons momentum and consequently introduces a supplementary current in

the system. This photo-current can become negative and even leads to the negative diagonal

resistivity, passing the dark current. The formulation of this mechanism was done long time

ago by Ryzhii (1970); Ryzhii et al. (1986) in the context of a strong DC electric field. The

schematic model in Fig. 2.16 gives the basic idea of the DP mechanism.

(a) (b)

Figure 2.16: Sketch of displacement mechanism. (a) For ω > 2ωc , which electron is disorder
scattered into the (n+2)nd Landau level to the right and results in decreasing current. (b) For
ω < 2ωc that the electron is excited below the (n+2)nd Landau level, so that it scatteres to
the left and leads to the augmentation of the total current (Figure adapted from (Durst et al.,
2003)).
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When an external electric field, Edc , is applied in x direction the Landau levels, which are

separate by ωc , are tilted as

(2.49)εn ≃ nℏωc + eEdc x,

The broadening of Landau levels due to disorders are ignored for simplicity. When a photon

with frequency of ω is absorbed by electron, it would be excited by ℏω and scattered to the

left or right, ±△x, with the same probability, depending on the energy they absorb due to

microwave irradiation.

If the electron energy is a bit more than the separation between Landau levels, ℏω > nℏωc , then

the electron scatters in the opposite direction of applied electric field and the conductivity

decreases, otherwise (ℏω < nℏωc ) it scatters along applied electric field and the conductivity

increases.

It is possible to calculate the position dependent rate of scattered electrons exploiting a

generalization of Fermi’s golden rule and average over disorder (for details see (Durst and

Girvin, 2004)) which results in the following equation for the density of states

(2.50)D(ε) = D0 + D1 cos
2πε

ℏωc

,

with Di averaged local density of states.Then the excess conductivity is given by

(2.51)△σxx ∝
∂D(ε)

∂ε
|ε=ℏω ∝ −sin

2πω

ωc

.

The displacement mechanism describes the periodicity and phase of MIRO and leads to a

locally negative conductivity which appears to be truncated at zero and consequently ZRS in

conductivity oscillations.
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Inelastic mechanism

The theory of Inelastic mechanism which was developed by Dorozhkin (2003) and Dmitriev

et al. (2005), provides an explanation for resistance oscillations arise under microwave irradia-

tion based on an oscillatory part of the electron distribution function. The approach is based

on the Quantum Boltzmann equation (QBE) for a semi-classical distribution function of

electrons at higher Landau levels which exploits to describe the kinetics of a 2DEG subjected

to MW and magnetic field. When microwave irradiation is introduced to the 2D electron

system, it drives the distribution function of electrons out of equilibrium and leads to a popu-

lation inversion which could be responsible for negative resistivity due to the appearance of a

negative photo current. The simple sketch shown in Fig. 2.17 , demonstrate the occurring of

population inversion in higher and lower Landau levels according to the applied microwave

frequency.

(a) (b) (c)

Figure 2.17: Sketch of the change in electronic distribution in the presence of a driving
microwave field with total occupation normalized to unity. Dark gray shows complete filling
states, light gray indicates a small occupation and intermediate gray represents an occupation
(1−ε). (a) The equilibrium situation without microwave irradiation ω = 0, a completely filled
and a totally empty (disorder-broadened) Landau band are shown. (b) The occupation of
these bands is sketched for ω > ωc and (c) The occupation for ω < ωc , the case that Landau
bands show a population inversion.

For microwave frequency below cyclotron ω < ωc , higher Landau band fills partially, hence

there is a positive contribution to the photo-conductivity. However, when the microwave

frequency exceeds that of cyclotron ω > ωc , the redistribution of electrons in Landau levels
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leads to a population inversion in both higher and lower Landau levels. The redistribution of

electrons in the presence of microwave irradiation, is due to inelastic relaxation which leads

electron distribution in dynamical equilibrium.

The total photo-conductivity per spin for a system under microwave irradiation is given by

(2.52)σph =

∫

dεσdc (ε) [−∂ε f (ε)],

where fε is non equilibrium distribution function, ∂ε derivative with respect to energy ε and

σdc (ε) is the contribution of electrons with energy ε to the dissipative transport and is given

by

(2.53)σdc (ε) = σD
dc D̃2(ε) =

e2D0υ
2
F

2ω2
cτtr

.
D(ε)

D0
,

where υF Fermi velocity D0 = m
∗

πℏ2 and D(ε) are zero field B = 0 and oscillatory DOS of electrons

respectively, D̃(ε) = D(ε)
D0

dimensionless density of states, and σD
dc represents Drude conductiv-

ity. Using kinetic approach the electron distribution function under microwave irradiation can

be computed, which includes collision integrals due to microwave absorption and emission,

and a term regarding inelastic relaxation. More details are provided in (Dmitriev et al., 2005).

The kinetic equation then can be written as

(2.54)
Pω

4

∑

±
D̃(ε±ω)[ f (ε±ω) − f (ε)] +

Qdcωc
2

4π2D̃(ε)2
∂ε[D̃(ε)2∂ε f (ε)] = f (ε) − fT (ε),

with

(2.55)Pω =
τi n

τtr

(
eEωυF

ω
)2 ω2

c + ω2

(ω2 −ω2
c )2

Qdc = 2
τi n

τtr

(
eEdcυF

ω
)2(

π

ωc

)2,

which are dimensionless units for strength of microwave Eω and dc electric field Edc . Solving

the kinetic equation to first order in dingle factor, d = exp( −π
ωcτq

), results in
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(2.56)
f = f0 + fOsc + O (d 2)

fOsc = d
ωc

2π
.
∂ fT

∂ε
. sin

2πε

ωc

[
pω

2πω
ωc

si n 2πω
ωc

+ 4Qdc

1 + pω sin2 2πω
ωc

+ Qdc

]],

The oscillatory part of distribution function , which is also shown in Fig. 2.18, results in the

oscillatory photo-conductivity in the form of

(2.57)σph = σD
dc (1 + 2d 2[1 −

pω
2πω
ωc

sin 2πω
ωc

+ 4Qdc

1 + pω sin2 2πω
ωc

+ Qdc

]),

which include both dc and microwave field in the case of overlapping Landau levels.

Figure 2.18: Schematic behavior of the oscillatory density of states D(ε) and radiation induced
oscillations in the distribution function f(ε)(Figure adapted from (Dmitriev et al., 2005)).

It is also demonstrated in (Dmitriev et al., 2005) that a coincidence of maxima of DOS with

regions of inverted population in electron distribution function is required for a negative

local resistivity. Therefore, changes in distribution function due to MW irradiation give rise to

possible ZRS.

The most important aspect of this mechanism is that MIRO and ZRS temperature dependence

is well explained due to temperature dependence of inelastic relaxation time τi n ∝ T −2 . Then
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it is necessary to calculate inelastic relaxation time, τi n , which for not too high temperature

is mainly due to inelastic scattering in electron-electron collisions. The oscillatory part of

distribution function relaxes because of e − e scattering and this relaxation provides a way

to determine the temperature dependence of oscillating photo-resistance which in case of

overlapping Landau levels is given by

(2.58)
1

τi n

=
1

τee

=
π2T 2

e + ε

4πεF

ln
κυF

ωc
p
ωcτtr

≃
T 2

e

εF

,

with κ = 4πe
2

D0
, the inverse screening length of dynamically screened coulomb potential. This

mechanism seems to play dominant role in experimentally studied systems.

2.6 Thermopower Basics

When a temperature gradient, ∇T , is applied to the two dimensional electron system, a

thermally induced electric current, j would built up along the temperature gradient. This

effect is called Thermo-electric effect. Moreover the heat current Q, carried by electric current

j, leads to thermal effects. The phenomenological relations (Zhang et al., 2009) associated to

these effects are

(2.59)j = σ̂ E − β̂ ∇T

E = ρ̂ j + α̂ ∇T

Q = π̂ j − k̂ ∇T

where thermopower tensor, α̂ is α̂ = −ρ̂ β̂ ( αxx and αx y is called thermopower and Nernst

Ettingshausen coefficient respectively) and Peltier coefficient π is given by π = α̂ T .

In general there are two components contributed to the thermopower (TEP) of a two dimen-

sional electron system .

• Electron diffusion αd , due to the temperature gradient
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• Phonon drag αg , due to phonon diffusion with dragging electrons along.

Therefore the thermopower can be written as the sum of these two contribution in general, α =

αd +αg . Moreover , the configuration, used for experimental measurements of thermopower

is Open circuit method in which j = 0, so that α = E
∇T

. In the following, we present a brief

description on the diffusive and phonon drag contributions of thermopower.

2.6.1 Diffusive thermopower (αd )

Diffusion thermopower is a powerful tool in 2DES because it is possible to determine the

electron entropy through it and therefore get information about the DOS and its changes

when the system undergoes phase transition.

The first theoretical papers on magneto thermo-electric of 2D systems were mostly related to

diffusion component of thermopower however it proved that finding experimental data for

comparison would be difficult and most measurement dealt with the phonon drag contribu-

tion.

In the following the theoretical consideration of diffusion thermopower will be introduced.

We consider a two dimensional degenerate electron gas in a range of temperature where the

dominant scattering process is elastic scattering due to impurities. The diffusion thermopower

then is given by Mott formula. When electric and magnetic fields with temperature gradient

applied on the 2D system, the Boltzmann equation gives rise to the Fermi distribution function

of electrons f (ε), through it the conductivity can be written as

(2.60)σ =

∫∞

0
dε(−

∂ f (ε)

∂ε
)σ(ε),

where σ(ε) is the zero temperature conductivity tensor as a function of energy which contains

all the dynamical information of electronic systems including scattering of electrons. The

diffusion thermo-electric tensor is then given by
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(2.61)αd = −
1

eT

∫∞

0
dε(−

∂ f (ε)

∂ε
)(ε− εF )σ(ε),

Almost all the experimental work has been on samples with degenerate electron or hole

gases in a temperature range where carrier scattering by the impurities is dominant. Ignoring

quantum oscillations, when the scattering is elastic, the diffusion thermopower is given by

the well known Mott result. In Quantum Hall regime, the diffusion oscillations of αxx are

similar to ρxx , with zeros at full Landau levels and peaks at half filling ones. If we ignore the

spin splitting then

(2.62)αxx = −
kB ln2

e(ν + 1/2)
,

where kB is Boltzmann constant , ν the filling factors of Landau levels and e is the electronic

charge.

For Low magnetic fields the resistivity ρ of 2DEG is described by the following equations (For

more details see (Coleridge et al., 1989))

(2.63)
˜ρxx = 4ρ̄xxD(X )exp(−

2π2kB TD

ℏωc

)cos(
2πεF

ℏωc

− π)

˜ρy x = −
2

ω2
cτ

2
tr

ρ̄y xD(X )exp(−
2π2kB TD

ℏωc

)cos(
2πεF

ℏωc

− π),

with ρ̃ and ρ̄ representing the monotonic and oscillatory part of magneto-resistance, D(X )

thermal damping factor which is given by D(X ) = X
Si nh(X ) , with X =

2π2
kB T

ℏωc
, τtr transport

relaxation time and TD Dingle temperature which is related to Landau level broadening Γ by

Γ = πkB TD = ℏ

τq
with τq , the quantum life time.

Note that the equations above are derived for short range scattering case in which τtr and

τq are considered indistinguishable and for simplicity these equations are used to derive the

components of thermopower. Coleridge et al. (1989) and Laikhtman and Altshuler (1994)

extend the method for distinguishable τtr and τq and they confirms the same equations. The

components of thermopower (Fletcher et al., 1995) finally can be written as
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(2.64)
α̃xx =

2

1 + ω2
cτ

2
tr

(
πkB

e
)D

′
(X )exp(−

2π2kB TD

ℏωc

)sin(
2πεF

ℏωc

− π)

α̃y x =
4ωcτtr

1 + ω2
cτ

2
tr

(
πkB

e
)D

′
(X )exp(−

2π2kB TD

ℏωc

)sin(
2πεF

ℏωc

− π),

where D
′
(X ) is the derivative of thermal damping with respect to X .

2.6.2 Phonon drag thermopower (αg )

The basic understandings of phonon drag contribution in 2D systems established by Cantrell

and Butcher (1986); Smith and Butcher (1989) group. The essence of the problem is that the

phonons are not in equilibrium in the substrate, but preferentially flow down the temperature

gradient ∇T . Because of the e–p interaction, carriers are dragged towards the colder end of

the sample giving an extra contribution to the current and hence to β̂.

In the presence of temperature gradient ∇T in a sample, phonons flow from hot temperature

side to the cold place and this flow produces the heat current, Q, through the sample. The

movement of phonons along ∇T leads to a net phonon momentum P in the system, which is

transferred to electrons as well result in Pe and causes them to flow along the same direction.

In open circuit condition an electric field is built up and the electric current will cancels out

the phonon drag electron flow. Then the macroscopic zero field thermopower due to phonon

drag contribution for 3D phonons is given by

(2.65)α
g
0 = −

1

3e

Cυ

ne

τp

τpe

∝
T 3

ne

,

that Cυ is specific heat, τp phonon relaxation time and τpe electron relaxation time due to

electron phonon interaction. Details of derivation of Eq. 2.65 is provided in (Smith and

Butcher, 1989). The temperature dependence in Eq. 2.65 is T 3 while in case of diffusion
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thermopower and Mott formula the dependency is linear in T . This different temperature

dependence can be used to distinguish diffusion contribution from phonon drag one.

As it is apparent the electron relaxation time τe does not appear in Eq. 2.65 which means that

the impurity scattering of electrons has no contribution in phonon drag thermopower of αg

and only electron phonon interactions matter. Therefore αg provides an important tool to

study electron-phonon interactions at low temperatures. Since the phonon drag contribution

is the dominant one in our experiments more details about it is provided in § 6.3.

2.7 What we have learned

In this chapter we have gained information on fundamentals of two dimensional electron

systems regarding formation and also magneto transport properties of these systems at low

temperature and perpendicular magnetic field. Besides SdH oscillations and integer quantum

hall effect for convenient single layer systems, magneto inter sub-band (MIS) oscillations

due to periodic modulation of probability of the intersubband transitions by magnetic field

as the different Landau levels of the two sub-bands sequentially come in alignment are also

discussed.

Moreover, we get familiar to magneto transport phenomena under microwave irradiation like

MIRO and ZRS with relevant mechanism describing the phenomena are also provided.

Finally, phonon induced resistance oscillations followed by fundamentals of magneto ther-

mopower measurements in 2D systems have been introduced in order to provide us with the

basic knowledge needed for understanding of our studies in Chapter 6.
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3.1 What we want to know

• How have samples been prepared for experimental measurements?
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• What are our measurements methods and which facilities are used in our studies?

3.2 Samples

3.2.1 Structure of Samples

The samples used in our studies are grown by our collaborator in Institute of Semiconductor

Physics of Novisibirsk, Russia, by Prof. Dr. A. K. Bakarov. The method exploited for fabrication

of two dimensional electron gases (2DEGs) is Molecular Beam epitaxy (MBE) in which crystals

are grown one atomic layer at time and it is possible to have control over the composition

of each layer. Fig. 3.1, represents a schematic of a MBE system. The structure of our double

Figure 3.1: Schematic of a different parts of a MBE machine. (Figure adapted from ht t p :
//en.r usnano.com)

quantum well samples, consists of different layers with thickness of each layer shown in Å, is

presented in Fig. 3.2. An approximation of conduction band structure of the sample is also

presented beside the structure of the sample in the same figure. In the following, a summary
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Figure 3.2: Schematic of layer structures of DQWs samples, used in this thesis with different
layer thickness shown in Å (left). The approximation of conduction band structure profile of
the sample(right)(Figure adapted from (Mamani, 2009)).

of different layers with the reason of their growth, from the substrate to the surface of the

samples, is described.

Substrate of Ga As with crystal orientation (100).

A layer of Ga As, which is called buffer and is grown in order to obtain more uniform deposition

of the following layers and to have smoother surface of the sample.

A superlattice of Ga As and AlGa As formed a barrier to avoid the migration of impurities of

the substrate to our interest layer which in this case is DQW.

A layer of Ga As, the second buffer is presented in order to reduce the roughness of the surface

and lead to more isolation of the layer of interest.
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A layer of AlxGa1−x As, with x linearly varies between x = 0 and x = 0.3, called graded layer,

to avoid the migration of electrons of first silicon δ doped layer to the Ga As layer described

above. In this way it is prevented to have electron accumulation in that region, in contrast a

conducting channel is formed outside the layer of interest. Moreover, the gradual variation of

Al concentration preserves the uniformity of the growing surface. High concentration of Al

can produce rougher layers.

A layer consists of Ga As − AlGa As, called the interior barrier, prevents the migration of

electrons from the following δ doped silicon layer to the graded layer described above. The

layers afterward can be considered to have influence in the structure of the layer of interest

which is DQW, in the sample shown in Fig. 3.2.

First δSi doping is done in a mono-layer of Ga As with the aim to use the electrons of Si to fill

the quantum wells in the layer of interest.

First superlattice of Ga As − AlGa As which is called a spacer layer that separates the layer

with Si from the first quantum well.

The first quantum well of Ga As, which is far from the surface of the sample.

A potential barrier of AlxGa1−x As, that separates the QWs.

The second quantum well of Ga As which is closer to the surface of the sample.

Second superlattice of Ga As − AlGa As, which is called the spacer layer and separates the

second layer doped with Si (the following layer) from the second quantum well.

Second δSi doped, equal to the first one, with the main objective of using Si electrons to fill

the quantum well in the layer of interest.

A superlattice of Ga AS − AlGa As, to prevent the migration of electrons of the second δSi

doped layer to the surface.

A layer of AlGa As which separates the surface from the region of interest and allows the

deposition of of another mono-layer of Ga As with Si .
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Third mono-layer of Ga As doped with Si . The objective of growing this layer is to saturate

the dangling bonds on the surface, called the states of surface.

A layer of AlGa As that separates the surface of third mono-layer from the Ga As doped layer.

This layer acts as a cap which covers the structure.

Finally, a layer of Ga As is grown to prevent the structure from oxidation.

In this thesis, quantum wells including single quantum wells(QW), wide single quantum wells

(WQW), triple quantum wells (TQW) and wide triple quantum wells(WTQW) have been used

in our measurements, with the characteristics summarized in Table 3.1. The result of self

Sample
well width

(Å)
barrier width

(Å)
mobility

×103 (cm2/V s)

total electron density

×1011 (cm−2)

NQW 140 - 612 7

WQW 450 - 1900 9

TQW 100-220-100 20 500 8.5

WTQW 100-450-100 14 400 7

Table 3.1: Summary of some main characteristics of the samples used in this thesis.

consistent calculation for some of the samples used in our measurements are provided in

Fig. 3.3.

In DQW and TQW, the barriers dividing the wells are thin enough to have a strong tunnel

hybridization of electron states in different wells. As a result, there exist two and three sub-

bands with different quantization energies ε j with ( j = 1,2) for DQW and ( j = 1,2,3)for TQW .

Due to the high electron density, all sub-bands are occupied by electrons in all investigated

samples.

Moreover, as mentioned in §.2.4.1 in coupled quantum wells the linear combination of wave

functions in each well leads to a symmetric-antisymmetric energy gap of △S AS = εAS −εS ,

which strongly depends on the width and height of the potential barrier. For small thickness

of barrier the separation will increase.
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(a) (b)

(c) (d)

Figure 3.3: The results of self consistent calculations for DQW (first row) with wells width
of 140 Å and barrier thickness of 14 Å and TQW (second row) with side wells width of 100 Å,
central width of 450 Å and barriers thickness of 14 Å. (Figures adapted from (Mamani, 2009))

Owing to charge redistribution, WQWs with high electron density form a bilayer configuration,

i.e. two wells near the interfaces are separated by an electrostatic potential barrier and two

sub-bands appear as a result of tunnel hybridization of 2D electron states (symmetric and

antisymmetric), which are separated in energy by △S AS .

Using the same method, the electronic wave functions in each sub-band and also electron

density are calculated for some of our samples. The results of FFT analysis extracted from

magneto-resistance oscillations, are presented in Fig. 3.4.
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(a) (b)

(c) (d)

Figure 3.4: Magnetoresistance and FFT analysis for wide quantum well (WQW) sample (a, b)
and triple quantum well sample (c,d).

3.2.2 Sample process

In order to carry out the transport measurements on the samples, it is necessary to pass the

current through the samples and measure the potential difference in different points of the

samples. In this way, one needs to put ohmic contacts on the sample and also introduces a

limited region on the sample where the current can pass through it. Therefore, the grown

samples are needed to processed and be prepared for transport measurements.
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One of the standard procedures to create the appropriate region for current flow is to introduce

the Hall bar on the sample via photo-lithography process. The designs of one of the Hall bars,

we have created on our samples are shown in Fig. 3.5. The Hall bar shown in Fig. 3.5 has six

well defined regions which are indicated as contacts. In usual local measurements, we pass

current through the main channel of the Hall bar (Contacts 1 and 2) which are called the

current contacts and measure the potential difference between voltage contacts 3 and 4 (or 5

and 6 ) for longitudinal case and between contacts 3 and 5 (or 4 and 6) for determination of

Hall voltage.

Figure 3.5: Sketch of the Hall bar structure with the contacts 1 to 6 specified. The current
channel and also thin channels which connect the main channel to voltage contacs are
depicted.

The area of study is the rectangular part in the main channel which is limited by thin channels

connecting the current channel to voltage contacts. The process of introducing the Hall bar

on the samples are demonstrated in Fig. 3.6.

After growing the samples, first we clean the samples in order to remove all possible impurities

from the sample. Then the surface of the samples is covered uniformly by a particular photo-

resist. We have used AZ5214 for our samples. Using a mask with the specific Hall bar structure,

the desired pattern is introduced on top of the samples covered by the photo-resist via a flux

of ultraviolet radiation. One needs to find the optimum exposure time and intensity to have a

well defined Hall bar on the samples.
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Figure 3.6: Steps of preparing sample for measurements through photo-lithography.

The photo-lithography process followed by wet etching of the samples in appropriate solution,

make the samples ready for putting contacts. We have annealed Indium ohmic contacts on

our samples at 410 ◦C . By attaching the wires to sample and located them in proper probe,

sample are ready to be located in magnetic filed for transport measurements. The steps of

sample processing from introducing Hall bar to inserting the probe with sample on it are

presented in Fig. 3.7.
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(a) (b) (c)

Figure 3.7: The steps of preparing sample for transport measurements (a) Hall bar introduced
by phototlithography, (b) Indium contacts annealed on sample with Hall bar structure and (c)
sample with wires on the probe ready to insert to crysotat.

3.3 Basic Equipment to study the magneto-transport in low

temperatures

3.3.1 Cryogenics

In order to study the quantum transport of electrons, low temperatures and high magnetic

fields are the most important factors, needed to be achieved to start the measurements,

because it is at these conditions that the observations of quantum effects are possible.

In our group at Laboratory of new semiconductor material (LNMS), we have a cryostat with a

superconductor coil to produce magnetic field. The coil is immersed in a bath of 4He. The

superior part of the cryostat can be changed which makes it possible that the systems be used

as a Variable Temperature Insert (VTI) cryostat. It is also possible to use the 3He as cryogenic

in our lab. However, within this thesis, the 4He-cryostat with a top loading VTI which enables

measurements between 1.4 K and 300 K up to 17 T, have been used. Fig.3.8 represents the

cryostat in our lab along with the schematics of VTI cryostat used for the measurements. The

different chambers and needle valve are shown in the figure.

The main chamber which contains liquid 4He has been isolated via a chamber of vacuum ,

surrounded by a exterior chamber containing liquid N2 allowed the temperature limit to 77 K
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and finally the external vacuum chamber which makes the system thermally isolated from

the ambient.

(a) (b) (c)

Figure 3.8: The VTI cryostat used in this thesis for the measurements (a), Top view of the
cryostat with 4He and N2 fill port defined (b) and schematic of the VTI cryostat (c).

In 4He bath cryostat with a top loading variable temperature insert (VTI), the properties of

temperature and pressure of liquid 4He are used. The samples located in a probe is cooled

down by thermal conduction through the 4He exchange gas. A needle valve controls the flow

of liquid 4He form the main bath to the VTI. In order to decrease the temperature, the vapor in

the VTI is pumped and temperatures down to 1.4 K are possible with our system. Below 2.172

K, 4He becomes super fluid and the effectiveness of pumping decreases rapidly. This is the

reason why this system allows not to acquire very low temperatures. More details about low

temperature physics and related techniques are provided in Ref.(Enns and Hunklinger, 2005).

3.3.2 Superconducting coil

To create the magnetic field , superconducting coils, located in a chamber with the bath of

4He, are used. In the absence of any pumping system the temperature of the bath is 4.2 K.

The superconductivity of the coils make the resistance free current flow without any energy

dissipated, possible through the coils and produce a magnetic field. The coils are made of

Niobium-Titanium wires wrapped in a copper matrix. The coils of our cryostat are allowed to

create the magnetic fields up to 15 T with VTI system and with the normal 4He. However, our
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coils are always used to produce magnetic fields up to 12 T to avoid the quenching effect in

which the superconducting wires transform to normal conductors that lead to the heating via

Joule effect. Therefore, the manifestations of the quenching , especially in magnetic systems

cooled by liquid 4He, is accompanied by the evaporation of liquid 4He.

3.3.3 Measurement technique

In transport measurements the voltage or resistance is measured as a function of different

parameters like magnetic field, temperature, etc. and can be with and without microwave

irradiation. The measurements of small signals which is always superimposed on noise, needs

the improvement of Signal to noise ratio (SNR). In this way, lock in technique is widely used

in transport measurements. This technique makes the measurements of a signal amplitude

in a noisy environment possible based on the modulation of the excitation current and a

subsequent detection of the voltage drop at the modulation frequency. At low temperatures it

must be avoided that the applied current heats the system (2DEG), therefore the measured

voltage should not exceed the thermal excitation V < kB T /e.

Lock-In amplifiers are also known as phase sensitive detectors. The alternative currents (AC),

especially in the mK-range, are in the order of 10 nA to 1.0 µA. To improve the SNR further,

low-noise preamplifiers have been used.

In our measurements depending on the sample quality we have used different resistance

from 100 kΩ to 1 MΩ and the excitation voltage, VAC , between 1 to 2 V are used for most of

our measurements.

Microwave measurements

Since we have carried out most part of our experiments in the presence of the MW irradiation,

a brief description on techniques and necessary equipments are provided in the following.

More details about microwave engineering can be found in (Pozar, 1998).
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Figure 3.9: Sketch of a typical transport measurement presented in this thesis (Figure adapted
from Wiedmann (2010))

Microwave generators

Microwaves are a form of electromagnetic radiation with wavelengths ranging from one

meter to one millimeter with the frequencies between 300 MHz and 300 GHz. Our disposal

frequency for the measurements of this thesis is from 110 GHz to 170 GHz. The MW sources

are backward wave oscillators (BWO), also called carcinotron or backward wave tubes. In

principle, this generator is a vacuum tube that is used to generate microwaves up to the THz

range. Carcinotron generators belong to the traveling-wave tube family with a wide electronic

tuning range.

The generator used in this thesis is G4402E Sweep Generators from Elmika equipped each

with an attenuator (see Fig. 3.10) in order to change the MW power from no attenuation (0 dB,

highest MW power) to full attenuation (-75 dB, no MW power).

(a)
(b)

Figure 3.10: MW generatore Elmika G4402E (a) and MW attenuator (b) used in this thesis.
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The technical data of the generator used during this thesis, the frequency range, power range

and rectangular output are presented in Table 3.2.

Generator Frequency range (GHz) Power range (mW) Output area (mm2)

G4402E 110-170 10-35 WR-6 (1.62×0.82)

Table 3.2: Characteristics of the MW generator used in this thesis.

Microwave power and attenuation

In general, MW power (in mW) at the output of the waveguide can be calculated by taking into

account the losses of attenuation and waveguide for each frequency. For our generator, we

have a different MW power for each frequency without attenuation (0 dB). Tables, provided by

Elmika can be used to estimate the MW power (in mW) at the end (output) of the waveguide.

Within this thesis, we use for power-dependent measurements in experiments the value of

the attenuation (attenuator) in decibel (dB) which we translate in a MW electric field after our

calculation or fitting procedure.

Experimental setup with MW irradiation

In order to deliver MW irradiation from the source down to the sample, we have used rect-

angular waveguide. The advantage of using a waveguide over coaxial cables is a high power

handling capability and lower loss rate. An image of the experimental setup is presented in

Fig. 3.11 starting from a MW source equipped with an attenuator. This construction provides

a minimal damping of the MW power.
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Figure 3.11: Setup for MW experiments MW generator, attenuator and waveguide.

We expose the samples to linear polarization using a special construction of a brass inset which

is placed at the end of the waveguide. The possibility of linear polarization enables us to prove

microwave effects which are sensitive to linear polarization. The sample for all measurements

is placed 1-2 mm away from the end of the wave-guide (Faraday configuration).

For measurements with linear polarization, the orientation of the linear polarized MWs is

kept constant while using a special probe (see Fig. 3.11) the orientation of the sample holder

(with the sample) is changed from θ = 0 ◦ to θ = 90 ◦.

Moreover, since the output of wave-guide is rectangular, for measurements with linear polar-

ization, the MW flux on the surface of the sample is different for different orientations. Thus,

a constant MW electric field is controlled by a constant damping of Shubnikov-de Haas (SdH)

oscillations.
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3.4 What we have learned

This chapter have described the fundamentals necessary for subsequent experiments in the

following chapters regarding the samples structure, processes to make them ready for mea-

surements and techniques required for transport measurements. The essential techniques

and facilities for measurements under microwave irradiation are also described.

Besides, some information related to the sample characteristics like electron density, mobility

are also provided. Using FFT analysis the electron densities of the samples used for the

following measurements are presented. The same method can be used to derive the electron

energy in each sub-band for both 2D single layer and multilayer electron systems.

In the following chapters we are going to apply the methods to carry out our desired exper-

iments. In some cases like studying the magneto-thermopower some part may need to be

changed, however, the basics are already explained.
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T
HE nonlinear behavior of low-dimensional electron systems attracts a great at-

tention due to its fundamental interest as well as for potentially important

applications in nano-electronics. In response to ac and dc bias, strongly non-

linear electron transport that gives rise to unusual electron states has been

63
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reported in two-dimensional systems of electrons in high magnetic fields. It is known that

Ohm’s law, (R = V /I ), represents the linearity of transport where the current through a con-

ductor, I , between two point is directly proportional to the voltage across the two points,

V . When in a system this proportionality is not obeyed, it enters the nonlinear regime of

transport.

The non-linearity of two dimensional electron systems under perpendicular magnetic field

is studied extensively. The first studies are associated to breakdown of quantum Hall effect

due to application of high current which increases the temperature of the lattice (Cage et al.,

1983).

The principal results of the studies represent the appearance of new kind of oscillations

after applying the magnetic field or electric current and the decrease in the resistance in the

presence of applied electric current up to moderate currents. These are quantum phenomena,

caused by the quantization of Landau levels of electronic states (Yang et al., 2002; Bykov et al.,

2005).

The observed oscillation effects can be explained by the modification of electronic spectrum

in the presence of Hall field (Yang et al., 2002; Zhang et al., 2007; Lei, 2007), while the resistance

decrease is associated to the modification of electronic diffusion in energy space that leads

to consideration of non-equilibrium part of distribution function. The both phenomena are

described in a theory by Vavilov et al. (2007).

The present interest in studying nonlinear transport in 2D systems is stimulated by the

observation of two important phenomena. First, there appear oscillations of the resistance as

a function of either magnetic field or electric current (Yang et al., 2002; Zhang et al., 2007a,b;

Bykov et al., 2005). Second, the current substantially reduces the resistance even at moderate

applied voltages (Zhang et al., 2007a,b, 2009) .

The oscillating behavior is a consequence of the geometric resonance in the electron tran-

sitions between the tilted Landau levels when the diameter of the cyclotron orbit becomes

commensurable with the spatial modulation of the density of states (Yang et al., 2002; Zhang
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et al., 2007; Lei, 2007). The decrease in the resistance is governed by modification of electron

diffusion in the energy space, which leads to the oscillating non-equilibrium contribution to

the distribution function of electrons (Dmitriev et al., 2005). A theory describing both these

phenomena in a unified way (Vavilov et al., 2007; Khodas and Vavilov, 2008) shows that the

existence of the oscillations requires the presence of a short range scattering potential to

enable efficient back-scattering. The decrease in the resistance, in contrast, occurs for an

arbitrary scattering potential. Experimental investigations of this phenomenon (Zhang et

al., 2007, 2009) strongly support the theory (Dmitriev et al., 2005; Vavilov et al., 2007; Khodas

and Vavilov, 2008) predicting nontrivial changes in the distribution function as a result of

dc excitation under magnetic fields. Nevertheless, further studies are necessary for better

understanding of the physical mechanisms of this nonlinear behavior.

In this chapter the results for samples of triple quantum well (TQW) are presented for the

first time. After a brief introduction to samples which have been investigated, we present

our results which exhibit current dependence and also temperature dependence of magneto-

resistance. The comparisons between observed results and theory are also presented. More-

over, negative magneto-resistance behavior is also observed for sample of TQW and WTQW

with mesoscopic Hall bar structure. Current dependence and also temperature dependence

measurements have been carried out on the sample and the results are described according

to the existing model.

4.1 What we want to know

• What are the manifestations of nonlinear transport in magneto-resistance of TQWs ?

• What are the differences of observed behavior for samples with different hall bar size ?

• How the generalized theoretical model for nonlinear transport can be applied to de-

scribe the observed experimental results ?
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4.2 Triple Quantum wells: Samples and Properties

The samples used for the measurements are symmetric triple quantum wells of Ga As with

width of 10 nm of side wells and 22 nm of central well, separated by AlxGa1−x As (x = 0.3)

barriers of 2 nm width. Total electron density and mobility of samples at T = 1.5 K are

ns = 6.4×1011 cm−2 and µ≃ 3.2×105 cm
2/V.s, respectively. The electron densities in each sub-

band and the sub-band separations are calculated according to FFT analysis of longitudinal

magneto-resistance measurements, as depicted in Fig. 4.2 and the results of calculations

for TQW and WTQW are summarized in Table 4.1. However, we have used the results of

measurements related to TQW for nonlinear studies, since they show more pronounced MIS

oscillations necessary to study the nonlinear effects in magneto-resistance.

Table 4.1: Extracted electron densities and energy gaps by FFT analysis of magneto-resistance
oscillations at T=1.5 K

Sample n1 ×1011(cm−2) n2 ×1011(cm−2) n3 ×1011(cm−2)
△12

(meV)
△23

(meV)
△13

(meV)

TQW 2.64 2.06 1.71 2.1 1.2 3.3

WTQW 4.05 3.23 2.03 4.31 2.49 7.25

Moreover, two different types of Hall bar have been introduced to our samples. The one with

dimensions of l ×w = 500(µm)×200(µm), will be considered as macroscopic Hall bar and

the other one with dimensions of l ×w = 100(µm)×5(µm) will be called mesoscopic Hall

bar in the following of this chapter. Comparing device size with the relevant length scales,

here, mean free path of electrons (few microns) reveals the reason of calling the Hall bars in

this way. In case of macroscopic Hall bar, device size is larger than the length scale so the

transport can be explained classically, while for mesoscopic one, the two lengths are in the

same order and transport is in both the diffusive and ballistic regimes.
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4.3 Experimental method & observations

4.3.1 Magneto inter-subband oscillations in TQW

In this section the applicability of the generalized theory for N layer 2D systems presented in

§. 2.4.2 is demonstrated for triple quantum wells with three occupied 2D subbands. Fig. 4.1

represents the symmetric triple well structure under investigation.

(a) (b)

Figure 4.1: (a) TQW configuration for the samples used in this thesis with three 2D occupied
subbands and (b) Landau level staircase with corresponding gaps.

Since the barrier between the wells are thin enough, there exist three subbands with different

quantization energies of ε j ( j = 1,2,3) due to strong tunnel hybridization.

As respects to the high electron densities in our samples, all sub-bands are occupied by

electrons.

The electron densities and subband separation energies, △i j = |εi −ε j |, derived from FFT

analysis are presented in the inset of Fig. 4.2(a). It is also possible to derive the subband sepa-

ration energies comparing the theoretical magneto-resistance in Eq. 4.5 with the experimental

results.

Exploiting the tight-binding Hamiltonian (Hanna and MacDonald , 1982), electron wave-

functions and energies, necessary to describe the scattering rates can be found. Expansion

of the wave-function in the basis of single well orbitals F j (z) (i=1,2,3 corresponds to the left,

center and right well respectively), leads to
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with εi (0) the single-well quantization energies and ti i
′ the tunneling amplitudes. For sym-

metric TQW where ε(0)
1 ≡ ε(0)

3 ≡ εs ,ε(0)
3 ≡ εs the subband energies are given by (Hanna and

MacDonald , 1982)

(4.2)
ε1 =

εc + εs

2
−

√

(
εc − εs

2
)2 + 2t 2,

ε2 = εs ,

ε1 =
εc + εs

2
+

√

(
εc − εs

2
)2 + 2t 2,

where the corresponding eigenstates in terms of single-well orbitals can be expressed as

Ψ j (z) =
∑

j
χi j Fi (z). The matrix χi j is given by

χi j =
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, (4.3)

where C1,3 = [1 + 2t 2/(εs −ε1,3)2]−1/2.

This matrix consists of the three columns of φi for the states j = 1,2,3. Exploiting the sub-

band separation energies derived from experimental measurements, the parameters of the

tight-binding model can be extracted. If εs be considered as the reference then one has:

(4.4)εc = △23 −△12, t =

√

△23△12

2
,

For our sample with db = 20 Å, we obtain εc = 2.15meV and 2t = 3.2meV . Also the total elec-

tron density and sub-band energies in are given by ns = 6.4×1011 cm−1, n1 = 2.7×1011 cm−1,

n2 = 1.7×1011 cm−1 and n3 = 2.1×1011 cm−1.
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According to the generalized theory of magneto-resistance oscillations for many sub-band

systems, described in § 2.4.2, the results of the magneto-resistance for a trilayer electron

systems considering the same assumption lead to magneto-resistance results in DQW in

§ 2.4.2 and by using the simple model of equal electron densities n j = ns/N , for a trilayer

system, N = 3, neglecting the SdH oscillations, would be (Wiedmann et al., 2009)

(4.5)
ρd (B)

ρd (0)
≃ 1 +

2

3
d 2[1 +

2

3
cos(

2π△12

ℏωc

) +
2

3
cos(

2π△13

ℏωc

) +
2

3
cos(

2π△23

ℏωc

)].

The MIS oscillations are represented as a superposition of three oscillating terms determined

by relative positions of the sub-band energies. In Eq. 4.5 transport rates are only standing in

Dingle factor d. Moreover, since the electron density in our samples have high total electron-

sheet density and a strong tunnel coupling, the approximation in Eq. 4.5 is applicable for

estimate to our system.

The results of magneto-resistance oscillations for TQW at T=1.5 K along with FFT analysis at

different temperatures are presented in Fig. 4.2.

As mentioned in § 2.4.2, MIS oscillations are more persistent than SdH oscillations at high

temperatures. This feature can be observed in amplitude of FFT analysis at different tempera-

tures. While higher peaks associated with SdH oscillations vanish at temperature higher than

T=3.6 K, the peaks related to MIS oscillations are still visible at temperatures as high as T=15

K.
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(a)

(b)

Figure 4.2: (a) Magnetoresistance oscillations of TQW at T=1.5 K. The inset shows FFT ampli-
tude used for calculation of subband energies and electron densities, (b) FFT amplitudes at
different temperatures.
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The temperature dependence of MIS oscillations are presented in Fig. 4.3. The experiment

shows a slow suppression of the MIS oscillations with temperature, which occurs owing to

the contribution of electron-electron scattering into Landau-level broadening. Though the

theory presented in § 2.4.2 does not take this effect into account explicitly, it can be improved

by replacing the quantum relaxation rates according to

(4.6)ν j → ν j + νee , νee =
λT 2

ℏεF

Figure 4.3: Temperature dependence of MIS oscillations in a TQW with db = 2 nm for 1.8, 2.6,
3, 3.8, 5, 10 and 15 K. The inset shows MIS oscillations at T=1.5 K superimposed on low field
SdH oscillations.

with νee the electron-electron scattering rate (Giuliani and Quinn, 1982; Berk et al. , 1995;

Slutzky et al., 1996), εF the Fermi energy expressed through the averaged electron density

as ε = ℏ
2π(ns/3)/m and λ a numerical constant of order unity. In Fig. 4.4(a) a comparison
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of experiment and theory for two chosen temperatures, T=2.6 and 10 K. We have done this

procedure for many temperatures from T=1.5 K up to 15 K, and estimated the νee by fitting

the amplitude of theoretical and experimental magneto-resistance.

(a)

(b)

Figure 4.4: (a) Comparison of the experimental and theoretical traces for a TQW with db = 2nm

at T=2.6 K and T=10 K, (b) Temperature dependence of the quantum lifetime τq extracted
from the amplitude of MIS oscillations. The green line is a guide to the eye.
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From temperature dependence measurements of magneto-resistance between T=1.5 K to

T=15 K, the quantum lifetime of electron is extracted by fitting the amplitude of MIS oscilla-

tions in Eq. 4.5. The result is shown in Fig. 4.4(b). The quantum lifetime is almost constant for

T<2 K and decrease by increasing the temperature which is in agreement with the concept of

electron-electron scattering contribution.

4.3.2 Nonlinear measurements results

The magneto-resistance, Rxx of samples is measured by using the standard lock-in technique

for different applied AC currents with the frequency of 7.43 Hz, at temperatures T=1.5 K and

T=4.2 K. The resistance of the samples as a function of magnetic field at different temperatures

and currents, for samples with macroscopic Hall bars are presented in Fig. 4.5.

(a) (b)

Figure 4.5: Magneto-resistance of TQW samples with macroscopic Hall bar structure for four
different currents at (a) T=4 K and (b) T=1.5 K. The inset of figures represent the close look to
the region where the linear and nonlinear magneto-resistance occur of both temperatures.

Notably, the magneto-resistance is positive at low currents while increasing the current I ,

lead to reduction in the amplitude of MIS oscillations until a flip of these oscillation occurs

(see Fig. 4.5). This flip, which starts from the regions of lower magnetic fields and extends
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to higher fields by increasing the current, is related to the inversion of the quantum part of

the magneto-resistance from positive to negative. Therefore, one can introduce a current

dependent inversion magnetic field, Bi nv , near which an additional feature that looks like the

splitting of MIS oscillation peaks or appearance of the next harmonics of MIS oscillations is

observed, however unlike DQW samples (Mamani et al., 2009), this feature is difficult to be

recognized in our TQW samples.

Moreover, the amplitudes of inverted MIS oscillations increase with increment of the current

and become larger than the MIS oscillation amplitudes in linear regime. Although if the

current increases further, the amplitudes of inverted peaks start to decrease as shown in

Fig. 4.6. This decrease is faster in regions of lower magnetic fields.

Figure 4.6: The amplitude of inverted peaks of MIS oscillations extrected from magnetoresis-
tance oscillations at B=0.16 T, B=0.22 T, B=0.25 T and B=0.35 T

In contrast to MIS oscillations, the peak inversion does not occur for SdH oscillations, however,

due to electron heating by current the amplitudes of these oscillations decrease as the current

increases until the SdH oscillations completely disappear in the low field region.
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4.4 Theoretical model

The theoretical model describing the application of DC current to two dimensional electronic

systems with one sub-band occupied is presented by Dmitriev et al. (2005) in which an oscil-

latory term is considered in distribution function of electrons. This model is then generalized

by Raichev and Vasko (2006) for systems with more than one sub-band occupied.

According to this model, the current changes the isotropic part of electron distribution

function, fε, whose first derivative enters the expression for conductivity

(4.7)σd =

∫

dε(−
∂ fε

∂ε
)σd (ε),

The quantity σd (ε), which is proportional to the squared density of electron states, describes

the contribution for electrons with a fixed energy ε. Moreover, the flow of current through the

sample effectively develops a diffusion of electrons in the energy space which is reflected by

the kinetic equation
P

Dεσd

∂

∂ε
σd (ε)

∂

∂ε
fε = −Jε( f ), (4.8)

where P = j 2ρd is the power of Joule heating (the energy absorbed per unit time over a unit

square of electron system), j is the current density, ρd and Dε are the resistivity and the

density of electron states respectively, and Jε is the collision integral.

The Eq. 4.7 is solved using a distribution function, fε = f 0
ε +δ fε, with the first term varies slowly

and the second one rapidly oscillates on the scale of cyclotron energy. The first and second

terms satisfy the following equations

(4.9)κ
∂2

∂ε2
f 0
ε = −Jε( f 0), κ =

πℏ2 j 2ρ0

2m

where its solution can be satisfactory approximated by a heated Fermi distribution if the

electron-electron scattering dominates over the electron-phonon and over the electric field

effect described by the left-hand side of Eq. 4.9 and
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(4.10)Dε

∂2

∂ε2
δ fε + 2

∂Dε

∂ε

∂

∂ε
δ fε + κ−1 Jε(δ f ) = −2

∂Dε

∂ε

∂ f 0
ε

∂ε
,

that we search for δ fε = (
∂ f

0
ε

∂ε )ϕε with ϕε periodic function of energy. The dimensionless

function Dε = 1 +γε is the density of states normalized to its zero filed value, containing an

oscillating part, γε, which is periodic in ℏωc . Taking into account that the main mechanism of

relaxation of the distribution δ fε is the electron-electron scattering, the generalized result of

Ref. (Dmitriev et al., 2005)obtained by Raichev can be expressed as:

(4.11)
Jε(δ f ) = −

1

τi n

∂ f 0
ε

∂ε

1

N Dε

∑

j j
′, j1 j

′
1

M j j
′, j1 j ′1

〈D jεD j1ε+δεD j
′ε′D j

′
1ε

′−δε

× [ϕε + ϕε′ −ϕε+δε −ϕε−δε]〉ε′,δε, N =
∑

j j
′, j1 j

′
1

M j j
′, j1 j

′
1

where δε is the energy in electron-electron collision, M j j
′, j1 j

′
1

is the probability of scattering

of electrons from the states j and j ′ to the states j1 and j ′1, N is the normalization constant

and the angular brackets 〈...〉ε′,δε denote the averaging over the energies ε′ and δε.

When the inelastic relaxation time, τi n , describes the relaxation at low magnetic fields, Dε

is close to unity and no longer depends on oscillatory term (γε). In this case the relaxation

time approximation is justified and the collision integral acquires the simplest form Jε(δ f ) =

−δ fε/τi n. The resistivity ρd = σ(0)
d /σ2

⊥, according to Eq. 4.7, is written in the form

(4.12)ρd = ρ0

∫

dεD2
ε (−

∂ f 0
ε

∂ε
) (1 +

∂ϕε

∂ε
) ,

where it is taken into account that
∂ fε
∂ε

≃
(

∂ f 0
ε

∂ε

)[

1 +
∂ϕε

∂ε

]

. Therefore, in order to calculate the

resistivity, it is necessary to find φε functions that determine the oscillatory part of distribution

function and can be expanded in series of harmonics, ϕε =
∑

k
ϕk exp(2πi kε/ℏωc ). The Eq. 4.10,

thus can be represented as a system of linear equations

(4.13)(Q−1 + k2)ϕk +
∞
∑

k
′ =−∞

[(2kk ′ − k ′2)γk−k ′ + Q−1Ckk ′]ϕk ′ = 2i k
ℏωc

2π
γk ,
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where

(4.14)Q =
4π3 j 2

3e2nsω
2
c

τi n

τtr

,

is a dimensionless parameter characterizing the nonlinear effect of the current on the trans-

port in triple quantum wells. The matrix Ckk
′ describes the effect of electron-electron scatter-

ing beyond the relaxation time approximation and its explicit form is not shown here. At low

magnetic fields when exp(−π/ωcτ) is small, one can take into account only a single harmonic

(k = ±1) in the coefficients ϕk which leads to a simple solution ϕ±1 = ±iγ±1(ℏωc/π)Q/(1+Q).

Then the Eq. 4.12 for resistivity, ignoring the SdH oscillations, is reduced to

(4.15)
ρd

ρ0
= 1 +

2

3
exp(−2π/ωcτ)

1 − 3Q

1 + Q
(1 +

2

3
cos(

2π△12

ℏωc

) +
2

3
cos(

2π△13

ℏωc

) +
2

3
cos(

2π△23

ℏωc

))

The second term in this expression, which is proportional to exp(−2π/ωcτ), differs from a

similar terms of the single sub-band theory (Dmitriev et al., 2005) and the double sub-band

theory (Mamani et al., 2009) describing the MIS oscillations. The Fermi energy εF is expressed

as εF = ℏ
2π(ns/3)/2m and is proportional to the total electron density.

4.4.1 MIS peak inversion and inelastic scattering time

The basic features of our experimental findings can be understood within Eq. 4.15. When

the parameter Q is small we are in the linear regime and according to this equation we have

a good description of MIS oscillation experimentally investigated in Ref. (Wiedmann et al.,

2009).

When the current increases, the amplitude of MIS oscillations decreases and the inversion of

MIS oscillation peaks occurs. While the amplitude of SdH oscillations are not affected directly

by current. However, they start to decrease due to heating effects of current. The flip of the

MIS oscillations corresponds to Q = 1/3. Since Q is inversely proportional to the square of the
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magnetic field, there exists the inversion field B determined from the equation Q = 1/3, where

Q is given by Eq. 4.14.

We have extracted Bi nv values of different currents and the results are shown in Fig. 4.7.

Figure 4.7: Dependence of the inversion magnetic field on the current for TQW sample at
T= 1.5 K and T=4.2 K. The dashed lines correspond to a linear Bi nv (I ) dependence assuming
τi n = 37 ps at T=4.2 K and ℏ/τi n = 1.2mK at T=1 K. The black dashed lines corresponds to the
linear Bi nv (I ) dependence. The red dashed line is for eye guide.

Our findings, resemble the observations in Ref. (Mamani et al., 2009). At 4.2 K the experi-

mental points follow the linear Bi nv(I ) dependence predicted by Eq. 4.14. In Eq. 4.14, the only

unknown parameter is the inelastic relaxation time which can be derived from the slope of

the experimental data in Fig. 4.7 as τi n ≃ 37 ps at T=4.2 K. Assuming the T −2 scaling of this

time (Dmitriev et al., 2005) , we obtain ℏ/τi n = 1.2mK at T=1 K. At T=1.5 K, the position of

experimental point can be fitted with this picture if the electron heating is taken into account.

The current increase lead to increment of electron temperature due to heating effect. If

the temperature dependence of τi n be considered, the deviation from the linearity can be

explained. When the current becomes high enough (Q ≫ 1), Eq. 4.15 predicts saturation of

the resistance, when the amplitudes of inverted MIS peaks are larger than the amplitudes of
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the MIS peaks in the linear regime(Q ≪ 1).

However, in our experiments, since we could increase the AC current up to 200 µA, we could

not see the features as clear as what observed in case of DQW by Mamani et al. (2009).

The saturation effects, can be explained by the effect of heating on the characteristic times.

Although the resistivity in the high-current regime (Q ≫ 1) no longer depends on τi n , there

is a sizable decrease in the quantum lifetime τ with increasing temperature (Mamani et al.,

2008), which takes place because the electron-electron scattering contributes into τ. As a

result, the Dingle factor decreases and the quantum contribution to the resistance becomes

smaller as the electrons are heated.

4.5 Negative magneto-resistance in two dimension

The first observation of negative magneto-resistance with parabolic magnetic field depen-

dence for a two dimensional electron gas at low temperature was by Paalanen et al. (1983)

which its temperature dependence described theoretically by the electron-electron interac-

tion correction to the conductivity (Houghton et al., 1982; Girvin et al., 1982).

High quality of samples allows one to observe a more pronounced negative magneto-resistance,

called huge magneto-resistance (Dai et al., 2010; Bockhorn et al., 2011; Hatke et al., 2012).

Moreover, in high mobility 2DEG, beside the huge magneto-resistance, a peak around zero

magnetic field is also examined due to an interplay of smooth disorder and macroscopic

defects (Bockhorn et al., 2014; Mirlin et al., 2001; Polyakov et al., 2001).

However, the origin of the huge magneto-resistance for high mobility 2DEGs are not fully

understood and different scattering event like interface roughness, background and remote

ionized impurities affect the huge magneto-resistance and make the theoretical description

more complex.

Here, we present the results of current and temperature dependence of negative magneto-

resistance for samples of TQW with a Hall bar structure of l ×w = 100(µm)×5(µm).
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Figure 4.8: The normalized longitudinal magneto-resistance of WTQW for different currens I

of 2 µA, 10 µA, 50 µA, 150 µA.

The measurement result of current dependence of longitudinal magneto-resistance around

zero field for WTQW samples with mesoscopic Hall bar, are presented in Fig. 4.8 for different

current values. According to this figure we observe a huge negative magneto-resistance

around zero field in which by increasing current the negative magneto-resistance decreases.

Moreover, at small current values (2 µA in this figure) another peak at zero magnetic field,

which decreases significantly by increasing the current. Note that the small peak at zero

magnetic field is not caused by the interaction between different 2D sub-bands and it also

appears for single layer quantum wells.

We also have studied the temperature dependence of TQW samples with mesoscopic Hall bar

around zero magnetic field and the results are demonstrated in Fig. 4.9

The negative magneto resistance decreases by increasing the temperature. The small peak

at zero magnetic field also observed which is almost independent of temperature. The

temperature independence at B = 0 is a sign for the absence of weak localization in our

sample (Bockhorn et al., 2011).

Furthermore, for low current and low temperature the longitudinal MR becomes nearly
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Figure 4.9: The normalized longitudinal magneto-resistance of TQW sample with mesoscopic
Hall bar for different temperatures of T=1.9 K, T=8 K and T=20 K.

bell shaped. Also, the strong negative magneto-resistance crosses over to positive magneto-

resistance at about 0.6 T for 8 K in TQW samples and 0.2 T for I=2 µA for WTQW samples.

The observed effect can be attributed to the influence of ballistic transport since the mean

free path of electrons are comparable with the Hall bar dimension. The zero field peak

can be attributed to the scattering at the edges of the geometry of the Hall bars in the bal-

listic transport regime comparable to the observed in the so called quenching of the Hall

effect (Roukes et al., 1987; Thornton et al., 1989). According to the above observations the

astonishing huge magneto-resistance is attributed to the high mobility of the 2DEG, the corre-

sponding mean-free path and interaction effects neither weak localization nor the interaction

between different 2D sub-bands. However, further investigation is needed to fully under-

stand the origin of the negative magneto-resistance in two dimensional electron systems.

Our experimental results are in agreement with the result of experimental work reported in

articles (Bockhorn et al., 2011, 2015).
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4.6 What we have learned

In this chapter we provide the results of our studies on TQW samples. The first part of the

chapter we begin with the MIS oscillations in this system and have tried to extract related pa-

rameters like electron densities, energies of each sub-band according to generalized formula

for magneto-resistance and FFT analysis of the experimental data.

In the next part we have reported the results of nonlinear magneto-resistance in the presence

of AC current. Comparing our observation with the case of DQW (Mamani et al., 2009), we

have found similar effects in TQW samples as well. Moreover, the related formula for magneto-

resistance in the presence of applied current have been developed for TQW samples according

to the generalization of the existing formula for single and bilayer electron systems.

Finally, We have reported our observations of nonlinear effects around zero magnetic field and

for the samples with mesoscopic structures. We observed a huge negative magneto-resistance

in different applied AC currents and also for different temperatures. Although, the area is still

an open field of research and the origin of the observed negative magneto-resistance is still

under question, we have tried to describe the observed effects according to some existing

models and theories.
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T
HE experimental observation of microwave induced zero-resistance states (ZRS)

in high mobility two dimensional electron systems attracted significant exper-

imental and theoretical interests. The most developed theoretical explanations

like displacement and inelastic mechanisms (see § 2.5.2), rely on scattering

mechanisms inside the bulk of 2DEG. Although these theories reproduce certain experimen-

tal features, the physical origin of ZRS is still not captured.

Moreover, a striking similarity has been emphasized between the quantum Hall effect (QHE)

and ZRS: both effects exhibit vanishing longitudinal resistance, Rxx , when the propagation

83
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along the sample edge is ballistic. It occurs when the mean free path of electrons, le , is much

larger than the cyclotron radius, Rc = vF / ωc . In 2DEG samples with lower mobility this regime

corresponds to strong magnetic fields and therefore the quantum Hall effect is robust against

disorder (Buttiker, 1986).

However, microwave radiation stabilizes guiding along sample edges in the presence of a

relatively weak magnetic field leading to a ballistic dissipationless transport regime, which

also results in vanishing Rxx (Chepelianskii& Shepelyansky, 2009; Zhirov et al., 2013). Indeed

such transport is much less robust than those in the QHE regime and requires samples with

ultrahigh electron mobility.

Since the edge channels play a crucial role for electron transport, we probe the property of

the edge states via the method of nonlocal electrical measurement. We attribute the observed

non-locality to the existence of edge states stabilized by microwave irradiation in a weak

magnetic field and provide a model taking into account the edge and bulk contributions to

the total current in the local and nonlocal geometries.

In this chapter, first, the experimental results of non-local measurements is presented. We find

a relatively large (∼ 0.05×Rxx ) nonlocal resistance in the vicinity of the ratio j ≈ω/ωc ≈ 3.15/4,

with ω the radiation angular frequency, ωc = eB/m∗ the cyclotron angular frequency and m∗

the effective mass of the electrons. The observed non-locality is attributed to the existence of

edge states stabilized by microwave irradiation and a weak magnetic field.

In the second part, we provide a model taking into account the edge and bulk contributions

to the total current in the local and nonlocal geometries and finally, we discuss on the results

derived from the comparison of our measurements and the transport model.

5.1 What we want to know

• How the properties of edge states under MW irradiation can be probed experimentally?

• Which state, bulk or edge, does have the main contribution in ZRS?
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5.2 Experimental investigations

For our experimental studies, samples of both narrow (14 nm) and wide (45 nm) quan-

tum wells with high electron density of ns ≃ 1.0×1012 cm−2 and mobility of µ≃ 1.7−3.2×

106 cm2/V s at T = 1.4 K and after a brief illumination with a red diode, have been used.

We have exploited several devices from the same wafers in our measurements.

As mentioned in § 2.4.1 owing to charge redistribution, WQWs with high electron density

form a bilayer configuration in which two wells near the interfaces are separated by an

electrostatic potential barrier and two sub-bands appear as a result of tunnel hybridization

of 2D symmetric and anti-symmetric electron states, separated in energy by △S AS . We have

extracted the value of △S AS = 1.40 meV from the periodicity of low-field MIS oscillation.

In NQW, after illumination, electrons also occupy two sub-bands, however the carrier density

of the second sub-band is much smaller than the density of the lower sub-band.

We have measured resistance on two different types of the devices. Device A is a conventional

Hall bar patterned structure (l×w = 500µm×200µm) with six contacts for identifying nonlocal

transport over macroscopic distances and Device B which is designed for multi-terminal

measurements and consist of three 5 µm wide consecutive segments of different length

(5µ,15µ,5µm), and eight voltage probes. The top view of both devices are shown in Fig. 5.1.

(a) (b) (c)

Figure 5.1: Top view of the central part (yellow region) of (a) device A, (b) device B. The
metallic contacts, where the mixing of the electrochemical potential occurs, are shown by the
red squares. (c) Zoom of the central part of the device B (dark green region) (Figure adapted
from (Levin et al., 2014)).
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The formation of edge channels which are isolated from the bulk states lead to observation of

nonlocal effects in electronic devices. In order to probe the properties of the edge states, it is

necessary to do nonlocal measurements beyond the convention local measurements.

Applying current between a pair of the probes creates a net current along the sample edge

which can be detected by another pair of voltage probes away from the dissipative bulk

current path (see Fig. 5.2).

The observation of nonlocal transport in quantum Hall systems in the presence of the mag-

netic field, have confirmed it as a constituting definitive experimental evidence for the ex-

istence of edge states in the QH regime. The origin of nonlocal resistance in quantum Hall

systems arises from the suppression of electron scattering between the edge channels and

the bulk states.

The multi-probe configuration on our sample allows us to study the scale of the observed

non-locality and understand better the physics of this phenomenon .

(a) (b)

Figure 5.2: Schematic of measurement configurations for (a) local and (b) nonlocal measure-
ments.

A VTI cryostat with a waveguide to deliver the MW irradiation with frequency, 110 GHz6

fMW 6 170 GHz), down to the sample have been used for the measurements.

The results of dark resistance and a ZRS (marked with arrow) for MW irradiation at frequency

144.6 GHz, at T = 1.5 K for both single layer and bilayer Hall bar devices, are presented in

Fig 5.3.

In the presence of the microwave irradiation, MIRO appear in NQW and one of the minimums

develops into ZRS. Note that the specific MW frequency in which the ZRS developed from the
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(a)

(b)

Figure 5.3: Longitudinal resistance, Rxx (I = 1,4;V = 2,3) without (no MW) and with microwave
irradiation (144,6 GHz) in (a) a narrow (14 nm) and (b) a wide (45 nm) quantum well. Arrows
indicate the regions of vanishing resistance (Figure adapted from (Levin et al., 2014)).

minima of the MIRO oscillations, have been found by carrying out frequency sweep measure-

ments of magneto-resistance from 110G H z to 170G H z. Moreover, in both quantum wells

magneto intersubband (MIS) oscillations, due to the periodic modulation of the probability

of intersubband transitions by the magnetic field, is observed in the magneto-resistance (Ma-

mani et al., 2008). However, in NQW due to the low electron density in the second sub-band,



Chapter 5. MW-induced nonlocal transport in two dimensional electron systems 88

these oscillations are observed at a relatively high magnetic field regions. Therefore, they

are almost unaffected by MW radiation. In contrast, the interference of the MIRO and MIS

oscillations in a bilayer system exposing to MW, lead to suppression or inversion of MIS peak,

correlated with MW frequency (Wiedmann et al., 2008) and a ZRS develops from the MIS

maximum (Wiedmann et al., 2010).

We have also measured the microwave power dependence of magneto-resistance oscillations

for wide quantum well and the results are presented in Fig. 5.4. The observed behavior of

the oscillations are in agreement with previous measurements reported in (Wiedmann et al.,

2010).

Figure 5.4: The power dependence of MIRO and ZRS to radiation power at T=1.5 K. Similar
power dependence behavior observed in (Wiedmann et al., 2010) for peak (I) and ZRS at (II).

The nonlocal resistance RN L = R26,35, for device A and for both types of quantum wells, NQW

and WQW, in the presence of MW irradiation and for different intensities of the radiation are



89 5.2. Experimental investigations

presented in Fig. 5.5(b).

(a)

(b)

Figure 5.5: (a) Nonlocal resistance R26,35, (I = 2,6;V = 3,5) without (no MW) and under
microwave irradiation (138.26 GHz) in a narrow (14 nm) quantum well, (b) Nonlocal resistance
R26,35, (I = 2,6;V = 3,5) under microwave irradiation (144,6 GHz) in wide (45 nm) quantum
well with decreasing microwave power. Insets show the measurement configuration (Figure
adapted from (Levin et al., 2014)).

Note that, for measuring the nonlocal resistance, the current is passed through contacts 2
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and 6 while the voltage is measured between contacts 3 and 5 (I = 2,6;V = 3,5). A prominent

peak in nonlocal resistance corresponding to a peak in Rxx around j ≈ 3.15/4, is observed

for both samples. However, there is a drastic difference between local and nonlocal effects.

In particular, the second peak at B ≈ 0.18 T in local resistance, which has almost the same

amplitude as the peak near 0.4T , vanishes in the nonlocal resistance for WQW.

Moreover, for investigating the dependence of the nonlocal response with and without mi-

crowaves on the separation between the current and the voltage probes, measurements on

device B, the WQW samples with multi-terminal hall bar, have been carried out. The results

are shown in Fig. 5.6 in which the nonlocal resistance RN L is measured in a different configu-

ration, i.e. where the current flows between contacts 10 and 2 and the voltage is measured

between contacts 3 and 9 (Fig. 5.6(a)), contacts 4 and 8 (Fig. 5.6(b)) and contacts 7 and 5

(Fig. 5.6(c)).

The origin of this resistance, as in the conventional quantum Hall effect, is the processes in

the contacts regions. The contacts are assumed to be thermal reservoirs, where the mixing

of electron states with different chemical potential will occur. The magnitudes of the peaks

in devices A and B has a comparable value, which justifies the assumption that the length of

the edge states is determined by the perimeter of the lateral arms rather than by the length of

the bar itself. It implies that dissipation-less edge state transport persists over macroscopic

distances because the length of the edge channels are determined by the distance between

the metallic contacts (1 ∼ mm ) (Fig. 5.1).

The dependence of the nonlocal response, △RN L = RN L(E )−RN L(0) on the current and voltage

probes separation for device B is presented in Fig. 5.7, where RN L(0) and RN L(E ) are nonlocal

responses without and with MW, respectively. The signal decays as a function of length with

a behavior that could be fitted with the exponential law △RN L = R0 exp(−L/l), where R0 is a

exponential prefactor and l is the decay length. We find that the profile of △RN L distance

dependence fits to the exponential decay with parameters R = 1 Ohm and l = 3.0 mm. These

data offer evidence that, in a low magnetic field, MW induced edge-state transport really

extends over a macroscopic distance of 1 ∼ mm. We have also studied the frequency depen-

dence of microwave-induced nonlocal resistance and the results of measurements for three
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Figure 5.6: Nonlocal resistance RN L without (black traces) and with microwave irradiation
(148.9 GHz,red traces) in a wide (45 nm) quantum well (Device B) as a function of contact
separation. Insets show the measurement configuration (Figure adapted from (Levin et al.,
2014)).

chosen frequencies in device A are presented in Fig.5.8.

One can see only one dominant peak near B ≈ 0.4 T. The magnitude of the peak varies with

frequency due to the variation in microwave power. The position of the peak in NQW is

correlated with frequency, while, in the bilayer system, peaks developed from combined
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Figure 5.7: Nonlocal resistance for device B as a function of contact separation, the data are
taken using various measurement configurations. The solid line is fitted to an exponential
dependence with parameter l = 3.0 mm (Figure adapted from (Levin et al., 2014)).

(a) (b)

Figure 5.8: Nonlocal R26,35 (I = 2,6; V = 3,5) resistances for narrow (a) and wide (b) quantum
wells and for different microwave frequencies. Insets show the measurement configuration
(Figure adapted from (Levin et al., 2014)).

MIS-MIR oscillations and, therefore, their location depends on sub-band splitting and is less

sensitive to frequency (Wiedmann et al., 2010).

Besides, in order to increase the mobility of the samples due to its crucial role for ZRS evo-

lution, samples of NQW are illuminated by LED, as mentioned before. After illumination

the density increases and second sub-band becomes to be occupied. However, we verified,

whether second sub-band is the origin of the nonlocal effect. The Fig. 5.9 shows the local (a)
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and nonlocal (c) resistances in narrow quantum well before LED illumination and compare

them to corresponding resistances after LED illumination (b) and (d).

(a) (b)

(c) (d)

Figure 5.9: Comparision between longitudinal resistances, Rxx (I = 1,4;V = 2,3)(a, b) and
nonlocal resistances, R26;35 (c, d), before (a, c) and after (b, d) LED illumination without (no
MW) and with microwave irradiation in a narrow (14 nm) quantum well(Figure adapted from
Ref. (Levin et al., 2014)).

The Fig. 5.9 presents deep MIRO resistance minimum which is not developed into ZRS due

to relatively smaller electron mobility (µ = 1.7×106 cm2/V s). The magneto-intersubband

oscillations are not observed at this density (9.3× 1011cm−2), and we may conclude that

only one electron sub-band is occupied. Nonlocal resistance peak still persists (Fig.5.9(c)),

although the value of the peak is much smaller, which we attribute to the effect of mobility.

This experiment rules out the interpretation that second sub-band is responsible for MW
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induced nonlocal effect.

The classical ohmic contribution to the nonlocal effect is given by Rcl assi cal
N L = exp(−πL/w) for

narrow strip geometry, where L is the distance between the voltage probes and w is the strip

width (see Fig. 5.2(b)) (Van der Pauw, 1958). For our geometry and at zero magnetic field,

we estimate R
cl assi cal
N L /Rxx ≈ 3×10−4. In the QHE regime, the nonlocal resistance, RN L arises

from the suppression of electron scattering between the outermost edge channels and the

back-scattering of the innermost channel via the bulk states (Buttiker, 1986; McEuen et al.,

1990; Dolgopolov et al., 1991b). It appears only when the topmost Landau level is partially

occupied and scattering via bulk states is allowed.

These measurements provide evidence for microwave-induced edge-state transport in the

low magnetic field regime. Nonzero nonlocal resistance implies that the dissipationless edge-

state transport persists over macroscopic distances because the length of the edge channels

are determined by the distance between the metallic contacts (∼ 1 mm) or, at least, by the

distance between potential probes (∼ 0.5 mm).

5.3 Theoretical model

The observed non-local effect can be understood within a theoretical approach based on

nonlinear dynamics. It is shown in description of ZRS in semi-classical regime, edge trajecto-

ries become dominant for transport. Guiding along sample edges can lead to a significant

decrease of Rxx with magnetic fields giving a negative magneto-resistance and singularities in

Rx y (Roukes et al., 1987; Beenakker and van Houten, 1989). The theoretical understanding

of this behavior is possible by considering the transmission probability T between voltage

probes in a Hall bar geometry (Beenakker and van Houten, 1989) where the drop in Rxx is

linked to increased T , however transmission remains smaller than unity due to disorder and

Rxx remains finite.

In this model the impact of microwaves on stability of edge channels is considered and it

is shown that microwave radiation can stabilize edge trajectories against small angle disor-
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der scattering leading to a ballistic transport regime with vanishing Rxx and transmission

exponentially close to unity (Chepelianskii& Shepelyansky, 2009).

The microwave field creates a nonlinear resonance described by the standard map, known

as the Chirikov Taylor map or as the Chirikov standard map. It is constructed by a Poincare’s

surface of the section for electrons moving in the vicinity of the sample edge for the case of

full specular reflection, from the wall in the presence of the microwave driving field.

Dissipative processes lead to trapping of particle inside the resonance. Depending on the

position of the resonance center with respect to the edge, the channeling of particles can

be enhanced or weakened providing a physical explanation of ZRS dependence on the ratio

between microwave and cyclotron frequencies. In the trapping case, transmission along the

edges is exponentially close to unity, naturally leading to an exponential drop in Rxx with

microwave power (Chepelianskii& Shepelyansky, 2009).

In the following more details of the model, extended to our experimental conditions are

described and the results of the model applied to our system are presented.

5.4 Analysis & discussion

5.4.1 Nonlinear resonance model for our samples

In order to compare the theory with our experiments, Levin et al. 2014 extend the results of

the model based on nonlinear dynamics and show that we are able to completely reproduce

the results published in the paper (Chepelianskii& Shepelyansky, 2009) and can extend the

results of this model to our specific sample parameters and experimental conditions.

In this way, we solve classical dynamics for electrons in the proximity of the Fermi surface

moving along the sample edge in the presence of magnetic field and AC microwave field

which is linearly polarized in y direction. The motion is described by Newton’s equation

(5.1)
dv

d t
= ωc × v + ωǫcosωt + Iec ,
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where the amplitude of the microwave field E is normalized according to

ǫ =
eE

mωvF

where vF is the Fermi velocity and Iec represents the elastic collisions with the wall.

The solution for the equation 5.1 is calculated numerically using the Runge-Kutta method.

Based on the calculated solution, we construct the Poincare section of velocity coordinate

vy versus the microwave phase φ = ωt for the moments of collision with the sample edge.

Poincare sections are done for different scattering angles maintaining the same coordinate of

initial velocity in the x direction. The phase space in Fig. 5.10 has a characteristic resonance

at a certain vy/v0 for which position depends on j .

We are mostly interested in the dynamics of electrons in the vicinity of the ratio j = 3.15/4,

where the microwave-induced peak in the nonlocal response is observed in our experiments

(Figs. 5.5 and 5.8). The electron trajectories for different values of the ratio j in the edge

vicinity, are presented in Fig. 5.11.

One can see that the microwave field strongly modifies the dynamics along the edge. Fig-

ures 5.11(b)- 5.11(d) show Poincare sections for the wall model and different values of the

magnetic field corresponding to the peak RN L around B = 0.42T ( j = 3.15/4), on the high-field

side of the peak ( j = 2.8/4) and on the resistance minima ( j = 5/4). For j = 5/4 Poincare sections

exhibit periodic and quasi-periodic trajectories surrounded by a chaotic sea. For j = 2.8/4

and j = 3.15/4 Poincare sections exhibit less stable dynamics, however a periodic component

remains present.

The existence of the periodic orbits plays a fundamental role in the local and nonlocal resis-

tivity of a 2D gas. The truly dissipationless edge channels may carry the same electrochemical

potential µ over a macroscopic distance to the different voltage probes. Hence, △µ = 0, which

results in vanishing longitudinal (Rxx) and nonlocal (RN L) resistivity. If a certain fraction of

the edge states are scattered into the bulk, it leads to different local chemical potentials, finite

△µ, and resistivity. This situation closely resembles the QHE, when it is possible to treat the
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(a) (b)

(c) (d)

Figure 5.10: Poincare section for j = 7/4 (a, c) and j = 9/4 (b, d) at y-polarized field with ε = 0.02
(c, d) and ε = 0.05 (a, b) (Figure adapted from (Levin et al., 2014)).

edge and bulk conducting pathways separately. This may lead to nonlocal resistivity. For

example,in the QHE regime, the nonlocal resistance, RN L , arises from the suppression of elec-

tron scattering between the outermost edge channels and back-scattering of the innermost
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(a)
(b)

(c)
(d)

Figure 5.11: (a) Electron trajectories along the sample edge for several values of j = 5/4, j = 3.15/4

and j = 2.8/4; (b) Poincare sections for j = 2.8/4, (c) j = 3.15/4 and (d) j = 5/4 at y-polarized field
with ε = 0.02 (Figure adapted from (Levin et al., 2014)).

channel via the bulk states (Buttiker, 1986; McEuen et al., 1990; Dolgopolov et al., 1991b).

It is worth noting that the actual shape of the wall potential is parabolic rather than a hard

wall. We have compared nonlinear resonance and Poincare sections for both potentials. We

estimate the steepness of the potential from the assumption, that the width of the region

where the potential increases from the bottom to the Fermi energy is of the same order as

the Fermi wavelength for typical electron concentrations (Ando and Uryu, 2000) . We would

like to emphasize that in our experiments, samples with high electron density corresponding

to the steeper potential, are used. Assuming confinement edge potential U = k y2/2 (y > y0),

where y0 is the edge of the sample, we estimate k = 0.008 meV /Å2. The comparison of the

trajectories and Poincare sections for both potentials are presented in Fig. 5.12.
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(a) (b)

(c) (d)

Figure 5.12: (Examples of electron trajectories along sample edge for values of j = 3.15/4: (a)
hard wall potential,(b) parabolic wall potential and y-polarized field ǫ = 0.07. Corresponding
Poincare sections are presented below (c) and (d)) (Figure adapted from (Levin et al., 2014)).

One can see the running electron trajectories stabilized by MW field and similarity between

both cases. The Poincare sections for both potentials exhibit periodic and quasi-periodic

trajectories surrounded by a chaotic sea. Therefore, we may conclude here, that there is no

significant difference between hard and soft wall potentials for realistic parameters.

However, demonstration of the existence of the periodic orbits stabilized by the MW field is

not enough to justify the nonlocal response and some further qualitative analysis might be

required to compare the magnitude of RN l with calculations using a simple model. Therefore,

we provide a model describing the edge and bulk contribution to local and nonlocal resistance

by taking into account the edge and bulk contribution to the total current. The transport

properties in the bulk can be described by the current-potential relation

j = −σ̂∇ψ, σ̂ =





σxx σx y

−σx y σxx



, (5.2)

where ψ is electrochemical potential for electrons. Since the charge conservation continuity
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condition requires that ∇ j = 0, we can solve the problem by solving the 2D Laplace equation,

∇2ψ = 0, for the electrochemical potential, ψ across a rectangular Hall bar, with boundary

conditions supplied by current continuity at the boundaries:

(5.3)σxxn∇ψ + σx y n∇ψ + g (ϕ−ψ) = 0,

where ϕ describes the edge state and satisfies a phenomenological model (Abanin et al., 2007;

Dolgopolov et al., 1991a)describing the edge-to-bulk leakage:

(5.4)
dϕ

d x ′ = ±g (ϕ−ψ),

where sign +/− corresponds to the top/bottom edge of the sample (high potential applied

to the right-side contact), x ′ is the distance along an edge, and g is the phenomenological

constant, which represent scattering between ϕ and ψ modes.

For simplicity, our sample, device A is modeled by a rectangle with dimensions 1500×200 µm2

The Dirichlet boundary condition are set at the 200 µm wide metal contacts located at the left

and right sides of the bar for the local case or at the 10 µm wide contacts around y = 500 µm at

the left and right edge of the bar for the nonlocal case (see fig. 5.1(a) and inserts to Fig. 5.13).

To describe the DC current through the sample, we solve numerically the 2D Laplaces equation

auto consistently with Eqs. 5.3 and 5.4 for all the sample edges. The numerical results for ψ

and ϕ are presented in Fig. 5.13 for two experimental configurations.
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(a) (b)

Figure 5.13: Numerical simulation results for electrochemical potentials ϕ (in arb. units)
along top (orange) and bottom (red) edges of the sample and ψ (in arb. units) across the Hall
bar in the (a) local and (b) non-local configurations.

The total current is calculated as the sum of the bulk and edge currents, where

(5.5)

Ibulk =

∫w

0
σxx

∂ψ

∂x
d y + σx y (ψtop −ψbot );

σxx,x y =
ρxx,x y

ρ2
xx + ρ2

x y

, ρxx =
1

nseµ
, ρx y =

B

nse
,

Ied g e =
Me2

h
(ϕtop −ϕbot );

and the resistance is given by:

(5.6)Rxx =
ϕcont1 −ϕcont2

Itot al

,

It is important to mention that more precise calculations require exact knowledge of the

fractions of electrons channeling along the wall P = M/N , with N the total number of the

Landau levels. Taking into account N ≈ 120, the total number of the Landau levels near B ≈

0.42 T , we may choose M = P ×N ≈ 1–3 and a current carried by edge channels I ∼ Me2ϕ/h.

The model reproduces the experimental values of the local R14,23 ≈ 40Ω and nonlocal R26,35 ≈

1.2Ω resistances with adjustable parameter g = 0.005 µm−1 and M = 3.
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5.5 What we have learned

The results of our findings may indicate that MIRO and ZRS are very rich physical phenomena,

which result from a combination of both bulk and edge-state contributions. We believe that

the ZRS phenomenon is somewhat like the quantum Hall effect, although not exactly the

same, which can be described as a bulk or/and edge phenomenon (e.g., (Kao & Lee, 1999)).

Indeed both descriptions are experimentally supported by measurements: observations of

the nonlocal effects clearly demonstrate edge-state conduction (McEuen et al., 1990), and

observations of the charge transfer in Corbino geometry, where the edge transport is shunted

via concentric contacts, show that the quantum Hall effect, as a consequence of pure bulk

transport, is possible (Dolgopolov et al., 1992).

From the results of our experiment in this chapter, we may conclude that the edge-state effect

is dominant or comparable with the bulk contribution near ω/ωc ≈ 3.15/4. Note, however, that

our results do not explicitly rule out the bulk mechanism near minimum j = 5/4 and, therefore,

do not contradict previous investigations.

This data offers evidence that, in a low magnetic field, MW-induced edge-state transport

really extends over a macroscopic distance of ∼ 1 mm. We compare our results to a transport

model that takes into account the combination of the edge-state and the bulk transport

contributions and the back-scattering within the bulk-edge coupling.
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M
OTIVATIONS for measurements of thermo-electric properties of low dimen-

sional systems mostly come from the complementary information to

those obtained from ordinary charge transport. As an example in an ordi-

nary Drude model the electrical conductivity σ is simply proportional to

the scattering time τ, while diffusion thermopower depends on τ and its derivative dτ
dE

(Zhang

et al., 2007). Moreover, in low dimensional system there is close connection between ther-

mopower and the entropy per particle which is hold for non interacting and interacting free

disorder electron systems at high magnetic fields (Dmitriev et al., 2005).

On the other hand, in spite of attention to the MIRO and ZRS phenomena, most of the related

experimental studies are almost entirely based on the measurements of electrical resistance

103
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or conductance under dc driving. The observation of MW-induced photovoltaic oscilla-

tions (Bykov, 2008; Dorozhkin et al., 2009; Dmitriev et al., 2009) is an exception which occur

in the samples with built-in spatial variation of electron density because the MW irradiation

strongly modifies the conductivity while leaving the diffusion coefficient unaffected (Dmitriev

et al., 2009).

In this thesis, we suggest that when temperature T varies across the sample, the MW irra-

diation creates conditions which allow one to observe, without any external DC driving, an

oscillating thermo-induced voltage proportional to the resistance and closely resembling a

MIRO signal.

In this chapter, we provide the experimental results of our measurements. The analysis of

our experiments according to the theoretical model proposed by Prof. Raichev is presented

afterward.

6.1 What we want to know

• How do the phonon-drag voltage oscillations correlate with the resistance oscillations

under MW irradiation?

• What are the manifestations of ZRS in phonon drag voltage oscillations?

• How can the results of our experiments be explained theoretically?

6.2 Experimental methods & observations

For experimental measurements, we have exploited narrow (14 nm) quantum wells with

electron density of n ≃ 1012 cm−2 and the mobility of µ≃ 2×106 cm2/V s, at T = 1.5 K. The

sample consists of circular central part (diameter 1 mm) with four long (length 5 mm, width

0.1 mm) arms ending with the voltage probes. The unconventional design, Fig. 6.1, has been
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proposed to study the polarization dependence in the microwave region in order to reduce

the influence of the metal contacts on electric field polarization.

Figure 6.1: Schematic of the unconventional design introduced to sample via photo-
lithography process and wet etching.

First of all, we have measured the magneto-resistance oscillations under MW irradiation

to check if ZRS are developed. We observed ZRS developed from the minima of MIRO

oscillation and measured the frequency dependence of ZRS and MIRO at different MW

frequency. The results of our measurement in Fig. 6.2, show the well developed ZRS at

f = 130G H z. Decreasing the MW frequency leads to reduction of the width of ZRS until it

disappears. Moreover, we have observed that the peaks of MIRO are shifted to lower magnetic

filed as the radiation frequency decreases. The width dependence of ZRS to MW frequency is

shown in the inset of Fig. 6.2.

In order to provide the heater for our samples, we have used Silver-ink as presented in

Fig. 6.3(b). We put a specific amount of the ink on the sample and wait till the ink becomes dry.

When the ink is dried the resistance of this part can be used to produce the high temperature

needed in a heater. To have the desired temperature gradient along the sample, a small piece

of Copper bar is attached on the opposite side, operating as a heat sink.

The measurements have been carried out in a VTI cryostat with a waveguide to deliver MW

irradiation (frequency range 110 to 170 GHz) down to the sample. The heater is placed

symmetrically between the arms 1 and 2 at a distance of 4.1 mm from the center, generates

phonon flux (see Fig. 6.3).
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Figure 6.2: The frequency dependence of MIRO and ZRS at T = 1.5 K. The inset represent the
width of ZRS vs radiation frequency of 110 GHz, 114 GHz, 122 GHz and 130 GHz.

(a)
(b)

Figure 6.3: (a) Schematic of sample with heater and heat sink under MW irradiation, (b) The
real sample used for the measurements, heater , heat sink and contacts are detemined with
yellow marks.

The induced voltages by this flux are measured using a lock-in method at the frequency of

2 f0 = 54 GHz, both in the longitudinal, V14 and V23, and in the transverse, V12 (hot side) and

V43 (cold side), configurations. Measuring the thermo-voltage at different applied heating
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voltage both without and with MW irradiation have been carried out, to be sure that the

measured signal is thermo-voltage as a result of temperature gradient. We have carried

out several measurements on different prepared samples. Fig. 6.4 shows the results of the

measured thermo-voltage for different applied heating voltage.

(a)

(b)

Figure 6.4: (a)The measured thermo-voltage vs different applied voltage of heater without MW
irradiation; arrows indicate the maxima for l = 1, 2, 3 in magneto-thermovoltage oscillations.(b)
The dependence of thermo-voltage to heating power at T=4.2 K.
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Furthermore, we observe that without powering the heater no photo-voltage was observed.

The thermo-voltage increases linearly with heater power as is shown in Fig. 6.5.

(a)

(b)

Figure 6.5: (a) The measured photo-voltage for different applied heating voltage, (b) Amplitude
of photo-voltage at two different magnetic field B=0.29 T and B=0.37 T vs heating power.

We have shown here the linear dependence of the amplitudes of measured photo-voltage

at two specific magnetic field values of B = 0.37T and B = 0.29T . However, similar linear
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dependence exist for the peaks of measured photo-voltage at corresponding magnetic fields.

Moreover, in order to determine the temperature gradient along the samples, we have carried

out the two probe measurements (contacts 1–2 and 3–4) for a specific heating voltage at hot

side and cold side of the samples. The results of our measurements are presented in Fig. 6.6.

Exploiting the amplitude of the Shubnikov–de Haas (SdH) oscillation, we have found that the

difference in the electron temperature between hot and cold sides is found △T ≃ 0.3 K at the

lattice temperature T = 1.5 K.

Figure 6.6: The measured voltage on the hot side and cold side (the inset) of the sample using
the two probe measurement at T = 1.5 K and for heating voltage Vpp = 10mV and 10V .

The dependence of the measured MW induced thermo-voltage to the MW power is presented

in Fig. 6.7. With increasing the MW power the amplitude of the signal increases.

Several devices from the same wafer have been studied. The magneto-resistance (Fig. 6.8)

was measured as a response V14 to the current injected through the contacts 2 and 3. The

ZRS is observed at T below 4.2 K. Similar results are obtained for the other contacts. The

magneto-oscillations of V23 and V12, both with and without MW (dark signal), are presented
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Figure 6.7: Dependency of measured phonon drag signals to MW power at T=1.5 K and MW
frequency of 149 GHz for Vpp=10 V.

Figure 6.8: longitudinal resistance without and with MW irradiation (154 GHz) as a function
of magnetic field. Arrows show the ZRS region (Figure adapted from (Levin et al., 2015)).

in Figs. 6.9 and 6.10. The transverse voltage V43 in cold side is much weaker than V12 in

hot side,however, both have the same periodicity. Moreover, the dark voltages V23 and V12

demonstrate acoustic magneto-phonon oscillations whose period is determined by the ratio

2k f sλ/ωc , with kF =
√

2πns the Fermi wave number and sλ, the sound velocity for phonon

mode λ. These oscillations due to resonant phonon-assisted back-scattering of electrons
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were observed previously (Zhang et al., 2004).

(a)

(b)

Figure 6.9: (a) Magnetic-field dependence of the longitudinal phonon-drag voltage (PDV),V23,
without and under MW irradiation for different microwave frequencies (shifted up for higher
frequencies). Arrows show the ZRS region. (b) PDV oscillations vs MIRO at 148 GHz. For clarity
of the comparison, the sign of △V23 ≡V23(B)−V23(0) is inverted at B>0 and the resistance is
scaled down by the factor of 5 (Figure adapted from (Levin et al., 2015)).

The MW irradiation enhances both V12 and V23 by adding oscillating contributions odd in

B. The positions of the peaks and minima of these phonon-drag voltage (PDV) oscillations
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coincide with those of MIRO. The MW-induced contributions to V23 and V14 have opposite

signs.

(a)

(b)

Figure 6.10: (a) Magnetic-field dependence of V23 and V14 under MW irradiation. The MW-
induced contributions to these voltages have opposite signs. (b) Transverse phonon-drag
voltage (PDV) V12 (high amplitude) and V43 (low amplitude) under MW irradiation. Thin line:
V12 without MW irradiation (Figure adapted from (Levin et al., 2015)).

According to the general symmetry properties of thermo-electric coefficients, the odd in

B voltages develop in the direction perpendicular to the temperature gradient or phonon
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flux. Thus, the odd in B behavior of V12 is expectable, while the appearance of odd in B

contributions to V23 and V14 may look surprising. However, the explanation of this fact, is

straightforward.

Due to the the position of the heater between the long radial arms of the device (see Fig. 6.3(a)),

there is no homogeneous unidirectional phonon flux in the 2D area of the device. The

phonons coming from the heater cross the arms attached to probes 1 and 2 in the directions

perpendicular to these arms, so the voltages V23 and V14 , besides the longitudinal (even in

B)phonon-drag contributions, contain significant transverse (odd in B) contributions. Since

the phonons come to the arms 1 and 2 from different sides, the transverse contributions V23

and V14 should have different signs, in agreement with our observation.

Therefore, the observed MW-induced voltages is identified from our experiments as a result

of the transverse phonon-drag effect (spatial redistribution of electrons in the direction

perpendicular to the phonon flux), which is strongly enhanced because of the influence of

microwaves on the resistance.

6.3 Theoretical model

The observations of surprisingly strong and anti-symmetric in magnetic field signal of phonon

drag voltage under MW irradiation can be described by the following theory which is devel-

oped by Prof.Raichev.

The presence of magneto-phonon oscillations in the measured longitudinal voltage in the

absence of MW suggests that the phonon drag mechanism is important. The periodicity

of these oscillations occurred as a result of phonon assisted back-scattering of electrons

is determined by the resonances ωph = nωc where n is an integer and ωph is the resonant

phonon frequency estimated as 2sk f with s the phonon velocity and k f =
√

2πns is the Fermi

wave-number of electrons.

Since the observed oscillations have large amplitude even at the temperatures as small as

1.5 K where the Bloch-Gruneisen regime, T ≪ ℏskF , is reached and so the back-scattering
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is exponentially suppressed. Thus in thermoelectric experiments, it is quite possible that

a significant part of the phonons causing phonon drag effect,the drag of electrons due to

electron-phonon interaction,may arrive to the 2D system directly from the heater, via ballistic

propagation. This assumption is reasonable since the mean free path of acoustic phonons

at low temperatures is very large, of 1 mm scale in GaAs , and can be comparable with the

distance between the heater and the 2D system.

Regardless of the number of such phonons in comparison to the number of equilibrium

phonons, they are still very important in the drag effect, since these are high-energy phonons

whose energy is determined by the heater temperature Tph rather than the temperature T

of the 2D sample. Such phonons are able to cause a large change of electron momentum in

the low-temperature (Bloch-Gruneisen) regime while equilibrium phonons can only assist a

scattering with a small change of electron momentum.

The phonon-drag electric current density can be found using the formalism of the quantum

Boltzmann equation accounting for interaction of electrons with phonons and impurities. In

the case of degenerate electron gas, the components of the current density are given by





J
ph
x

J
ph
y



 =
ekF

2πℏ

∫

dεDε





( fε+1 + fε−1)

i ( fε+1 − fε−1)



 , (6.1)

where kF is the Fermi wave-number and Dε is the density of electron states expressed in the

units m/πℏ2, so that in non-quantizing magnetic field Dε = 1. The first order angular harmonics

of electron distribution function are fε±1,which in the perpendicular magnetic field to the

sample are found from the following equation

(6.2)(±iωc + νtr Dε) fε±1 = δJ
ph
ε±1,

where νtr is the transport scattering rate (inverse to the transport time τtr and ωc = |e|B/m is

the cyclotron frequency. δJ ph is the part of the electron-phonon collision integral caused by

non-equilibrium phonons characterized by the mode index λ and three-dimensional wave
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vector Q = (q, qz):

(6.3)δJ
ph
ε±1 =

m

ℏ3

∑

λ

∫∞

−∞

d qz

2π

∫2π

0

dϕ

2π

∫2π

0

dθ

2π
×CλQIqze∓iϕ sin

θ

2

[NλQDε−ℏωλQ
( fε−ℏωλQ

− fε) + Nλ−QDε+ℏωλQ
( fε+ℏωλQ

− fε)],

where fε is the energy distribution function of electrons reduced to the Fermi distribution

in quasi-equilibrium conditions, θ is the scattering angle of electrons, ωλQ and NλQ are the

frequency and distribution function of phonons, respectively. The absolute value of the in-

plane component of phonon wave vector, q = (qx , qy ), in quasi-elastic approximation where

phonon energies are much smaller than the Fermi energy, is given by q = 2kF sin(θ/2), while

the direction of q is given by the polar angle ϕ, tanϕ = qy/qx .

The squared overlap integral Iqz is defined as Iqz = |
∫

d ze i qz zF 2(z)|2, where F (z) is the ground-

state wave-function describing confinement of electrons in the quantum well. The func-

tion CλQ is the squared matrix element of the electron-phonon interaction potential in the

bulk. The electron-phonon interaction occurs via deformation-potential and piezoelectric-

potential mechanisms described by the interaction constants D and h14, respectively. Consid-

ering the approximation of isotropic phonon spectrum, the longitudinal (λ = l ) and transverse

(λ = t ) mode contributions are given by well-known (Zook, 1964) formulas

(6.4)

Cl Q =
ℏ

2ρMωl Q

[D2Q2 + 36(eh14)2q2
x q2

y q2
z/Q

6],

CtQ =
2ℏ(eh14)2

ρMωtQQ4
[q2

x q2
y + q2

x q2
z + q2

y q2
z − 9q

2
x q2

y q2
z/Q

2],

where ρM is the material density. The distribution function of the ballistic phonon can be

approximated according to

(6.5)NλQ = NωλQφr(ϕ,ζ),

where NωλQ = [exp(ℏωλQ/kB Tph)−1]−1 is the Planck distribution function and Tph is the heater

temperature. Since the phonon flux is different for different r, the function NλQ depends
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on the coordinate r in the 2D plane. This dependence enters through the function φr(ϕ,ζ)

describing distribution of the phonons over the polar angle φ and the inclination angle ζ

which is defined according to cotζ = qz/q in the point r. In the simplest approach, this function

can be modeled as φr(ϕ,ζ) = 1 within the region of angles △ϕ and △ζ where the phonons

from the heater can reach the point r and φr(ϕ,ζ) = 0 outside this region. By substituting Eq.

6.5 into Eq. 6.3, the following result is obtained from Eqs. 6.1 to 6.3;

(6.6)Jph(r) =

∫

2π
0 dϕ

∫

π
0 dζφr(ϕ,ζ)jph(ϕ,ζ),

where jph(ϕ,ζ) is the differential current density induced by the phonons propagating at the

fixed angles ϕ and ζ:

(6.7)

(
j

ph
x (ϕ,ζ)

j
ph
y (ϕ,ζ)

) =
|e|k2

F m

4π3
ℏ

4 sin2 ζ(ω2
c + ν2

tr )

∑

λ=l ,t

∫π

0

dθ

π

× (1 − cosθ)CλQIqz NωλQ

∫

dεDε

∑

k=±1

kDε−kℏωλQ

× ( fε−ℏωλQ
− fε) (

νtr Dε cosϕ−ωc sinϕ

ωc cosϕ + νtr Dε sinϕ
) ,

In the approximation of weak Landau quantization (overlapping Landau levels), when Dε ≃

1−2d cos(2πε/ℏωc ), where d = exp(−π/|ωc |τ) is the dingle factor and τ is the quantum lifetime of

electrons, the calculation of the integral over energy in Eq. 6.7 is considerably simplified. It is

also assumed that ℏ|ωc |≪ 2π2kB T , when the Shubnikov-de Haas oscillations are thermally

suppressed. Moreover, it is taken into account that ζ≃ π/2 (qz ≃ 0 and Iqz ≃ 1) and the approx-

imation of isotropic electron-phonon scattering by averaging the piezoelectric-potential part

of the functions ClQ and Ct q from Eq. 6.4 over the polar angle ϕ, is also considered.

The current in each point of the 2D plane is a sum of the drag current Jph(r) and the drift

current σ̂E(r). In the absence of external dc driving force , the local current is zero in the 2D

plane , σ̂E(r) + Jph(r) = 0 and one can determine the local electric field as E = −ρ̂Jph(r). The
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voltages between each two points in the 2D plane can be found by integrating this field . This

leads to Eqs. 6.10 and 6.11 in the following section, where F = Fl + Ft and G = Gl +Gt ,





Fl

Gl



 =

∫π

0

dθ

π
EλθNωλθ





1

cos(2πωλθ/ωc )



 , (6.8)

Etθ = m2(eh14)2(1−cosθ)/4π2
ℏ

2|e|ρM , Elθ = (2DkF eh14)2(1−cosθ)Etθ andωλθ = 2sλkF sin(θ/2).

The sample-dependent coefficients γL
i j and γT

i j are given by the formula





γL
i j

γT
i j



 =

∫2π

0
dϕ

∫ j

i
d l .





nϕ

ñϕ





∫2π

0
dξφr(ϕ,ξ) (6.9)

with nϕ = (cosϕ, sinϕ) and ñϕ = (sinϕ,−cosϕ) and the integral
∫ j

i
d l... taken along a path

inside the 2D gas area connecting the contacts i and j. The calculation of the lengths γL
i j and

γT
i j , even within the simple model described above, is a complicated problem which is beyond

the scope of the present work. Nevertheless, some rough estimates and symmetry relations

can be presented.

Since the region of ζ contributing to the integral in Eq. 6.9 is narrow, both γL
i j and γT

i j are

much smaller than the device size.

If the heater is placed symmetrically with respect to x axis, as shown in Fig. 6.11, one has

γL
12 = γL

34 = 0, γL
23 = γL

14 and γT
23 = −γT

14. The last relation means that odd in B parts of V23 and

V14 have different signs, which is actually observed in our experiments. The length γT
12 is

much larger than γT
34 and γT

23 is larger than γL
23. The fact that the observed V12 is not purely

odd in B can be attributed to a slight asymmetry of the device, leading to nonzero γL
21.
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Figure 6.11: Picture of the ballistic phonon propagation (upper part - top view of the device,
lower part schematic side view) indicating the regions of polar angles, △ϕ, and inclination
angles, △ς, within which the ballistic phonons from the heater (shown in red) can reach the
point r in the 2D plane. The directions of phonon propagation are shown by blue arrows. The
region △ς is actually very narrow because the distance from the 2D plane to the surface is
much smaller than the in-plane separation of the heater from any point in the 2D region. For
the same reason, only the phonons propagating at the sliding angles (ς is only slightly larger
than π/2) are essential.

6.4 Analysis & discussion

To get more insight into the physics of the observed phenomenon, here we apply the theo-

retical model developed in previous section to our experiment parameters. As mentioned

in §.6.3, we believe that the drag in our experiment is mostly caused by high-energy ballistic

phonons emitted from the heater in different directions , based on the following observations.

First, the voltage V43 measured far away from the heater is much smaller than the voltage V12,

so the proximity to the heater is essential for the phonon drag voltage (PDV) signal. Second,

the amplitude of magneto-phonon oscillations of PDV in the absence of MW irradiation

is much larger than expected for temperature T= 1.5 K in view of exponential suppression

of back-scattering in the Bloch-Gruneisen regime, kB T ≪ ℏkF sλ, so the effective phonon

temperature Tph must be considerably higher than T.
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Using the basic formalism for calculation of thermo-electric response in quantizing magnetic

field (Raichev, 2015) in application to the model, §.6.3 , one may represent the PDV between

the contacts i and j in the form

(6.10)Vi j = γL
i j EL + γT

i j ET ,

where EL and ET are the electric fields developing as phonon-drag responses to a homo-

geneous unidirectional phonon flux in the directions along and perpendicular to this flux,

respectively. The lengths γL
i j and γT

i j depend on the sample geometry.

The PDV are formed by mixing of the longitudinal (even in B) and transverse (odd in B)phonon-

drag contributions described by the following expressions obtained in the regime of weak

Landau quantization:

EL = F + 2d 2G , ET = (2d 2G −Fδρxx/ρ0)/ωcτtr , (6.11)

where δρxx = ρxx −ρ(0)
xx , ρ(0)

xx = ρ0(1 + 2d 2) is the resistivity in the absence of MW irradiation

with ρ0 = m/e2nsτtr , the dingle factor exp(−π/|ωc |τ) and the quantum lifetime of electrons

and transport time τ and τtr , respectively.

According to Eq. 6.8, it is clear that the quantity F does not depend on B while G is a function

of B describing the magneto-phonon oscillations of PDV. In the absence of MW irradiation,

EL ≫ ET in the relevant regime of classically strong magnetic fields, |ωc |τtr ≫ 1, so the dark

PDV, V23, is governed by EL and is even in B . Under MW irradiation, ET increases dramatically

because of the large ratio δρxx/ρ0 and gives large, odd in B , contributions to all measured

PDV.

The theoretical plots of EL and ET for our sample are shown in Fig. 6.12. The effective

temperature of ballistic phonons, Tph ≃ 4 K, is estimated from the amplitude of magneto-

phonon oscillations in V23.
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Figure 6.12: Calculated magnetic-field dependence of the fields EL and ET , the latter is plotted
both with MW irradiation and without it (thin line). The function δρxx/ρ0 entering ET is
extracted from the experiment.

The magnetic-field dependence of ET shows a strong oscillating enhancement under MW

irradiation. To plot it, we substitute the experimental dependence of δρxx/ρ0 into Eq. 6.8.

Similar results are obtained using theoretical dependence of δρxx/ρ0 (Dmitriev et al., 2005).

Our estimates of V23 and V12 based on the calculated EL and ET are in general agreement with

experiment [note that in Eq. 6.10 one should take into account that both γL
i j and γT

i j are small

compared to the device size (see §. 6.3)].

For numerical calculation of EL and ET we used the parameters of GaAs, ρM = 5.317 g /cm3,

D = 7.17 eV , h14 = 1.2 V /nm, sl = 5.14 km/s, st = 3.04 km/s, as well as the electron density

and mobility in our device. The quantum lifetime τ = 7 ps was estimated from the ratio

τ/τtr ≃ 11 which is typical for our samples fabricated according to the technology described in

(Friedland et al., 1996).

Therefore, the theory confirms that the observed MW-induced changes of the PDV are caused

by the effect of microwaves on the dissipative resistance.
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In the ZRS regions, the experimental PDV shows a complex and diverse behavior that can not

be explained within the theory given above. Our observations reveal abrupt changes of the

drag voltages in obvious correlation with the ZRS in Rxx , see Fig. 6.9(b). Most often, the PDV,

as a function of B , jumps at the beginning and at the end of the ZRS region, and more sharp

features also appear within this region.

We attribute this behavior to a transition from the homogeneous transport picture to the

domain structure specific for the ZRS, since such a transition is accompanied with switching

between different distributions of the electric field in the 2D plane (Andreev , Aleiner and

Millis, 2003; Dorozhkin et al., 2011). We emphasize that in our experiment this transition

occurs in the unusual conditions, when external dc driving is absent. Nevertheless, this fact

rests within the general theoretical picture of ZRS (Andreev , Aleiner and Millis, 2003), because

the instability of the spatially homogeneous state is irrelevant to the presence of dc driving

and requires only the negative conductivity created, for example, by MW irradiation. The

resulting domains may carry electric currents, and the domain arrangement should provide

zero currents through the contacts. The details of such domain structures are not clear and

require further studies.

6.5 What we have learned

In summary, we observe MW-induced magneto-oscillations of the phonon-drag voltage in

GaAs quantum wells, correlating with the behavior of electrical resistance. We have shown

that the radiation creates the conditions which allow one to observe, without any external

dc driving, an oscillating thermo-induced voltage proportional to the resistance and closely

resembling a MIRO signal.

The effect is described in terms of the sensitivity of transverse drag voltage to the dissipa-

tive resistivity modified by microwaves. The behavior of phonon-drag voltage in the zero

resistance regime can be viewed as a signature of current domain state. Such MW-induced

thermo-electric phenomena may show up in other 2D systems. The magneto-thermo-electric
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measurements are therefore established as a tool to study the influence of MW radiation on

the properties of 2D electrons and to gain complementary information about the MIRO and

ZRS regime.
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Conclusion and outlook

In this research, we performed a systematic study of quantum transport phenomena in two

dimensional electron systems with more than one sub-band occupied. The main objective of

our studies have been obtaining new fundamental knowledge about the 2D electron transport

properties in multilayer systems coupled via tunneling effects or interactions. In this way,

we have tried to measure new effects in the oscillations, such as fluctuations in resonance

magneto-inter-sub-band and magneto-phonon oscillations due to interaction with acoustic

phonons. We have acquired new fundamental knowledge about the influence of the degree of

freedom produced by the quantum coupling in tunneling magneto-transport phenomena.

This thesis presented the first experimental studies on nonlinear effect due to the AC current

in multilayer electron systems, specifically triple quantum well of Ga As at low magnetic fields.

Since there are more than one sub-band occupied in these systems , magneto-resistance inter-

subband oscillations which are a sign of coupling between the different layers, are observed

with the picture that is more complex than the corresponding oscillations in bilayer systems

formed in single and double quantum wells. Under the application of AC current the peculiar

oscillation picture is strongly modified.

We explained the experimental results of our measurements based on a model by Dmitriev

et al. (2005) generalized by Raichev and Vasko (2006) for multilayer systems. Moreover, we

123
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have studied the nonlinear effects of magneto-resistance around zero magnetic fields for

different current and temperatures on sample of TQWs and WTQWs with mesoscopic Hall bar

structures on them. We have observed the interesting picture of the huge negative magneto-

resistance and studied the observed effect both in different current and temperatures. Our ob-

servations were in agreement with the observed effect reported by different groups, however,

further investigations are necessary to understand the origin of this remarkable phenomenon.

Some existed theoretical model considering the electron-electron interactions and also scat-

tering events within the Landau levels (Bockhorn et al., 2015, 2011) can be exploited for

describing some feature. However, the main origin of negative magneto-resistance is an

open research area and people in scientific community are interested to provide theoretical

descriptions for the origin of the phenomena.

Within our thesis, we have also performed studies on nonlocal magneto-resistance of sin-

gle and bilayer electron systems in the presence of microwave irradiation. Through our

experiments in this part we shed more light on the properties of the edge states via nonlocal

measurements and we have found evidences for stabilized edge-state current by microwave

irradiation. We have compared the results of our experiments with a theoretical model based

on modern nonlinear dynamics and it is demonstrated that the nonlinear resonance created

by microwave field can be well described by the Poincaré surface of a section for electrons

moving in the vicinity of the sample edge in case of our experiment. The results of the model

extended to our specific sample parameters and experimental conditions. Our studied were

more focused for the region where the microwave nonlocal response was observed. Within

our investigations, we concluded that the contribution of the edge state effects in ZRS, are

dominant or comparable with the bulk contribution.

Finally, in order to gain complementary information about the MIRO and ZRS regime, we have

carried out magneto-thermo-electric measurements on two dimensional electron systems.

Our observations of the phonon-drag voltage oscillations demonstrate the correlation of these
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oscillations with the resistance oscillations under microwave irradiation in perpendicular

magnetic field. Within the experiments we could observe for the first time the sharp features

in the phonon-drag voltage, suggesting that current domains associated with ZRS states can

exist in the absence of external dc driving. Within the theoretical estimation of phonon drag

voltage , we described the observed effects in terms of the sensitivity of transverse drag voltage

to the dissipative resistivity modified by microwaves.

Through our experimental data of PDV, a jump at the beginning and at the end of regions of

ZRS have been observed beside the sharp features within the region which is attributed to

the transition from the homogeneous transport picture to the domain structure specific for

the ZRS. Note that in our experiment this transition occurs in the unusual conditions, when

external dc driving is absent.

Through our studies we have demonstrated that the behavior of phonon-drag voltage in the

zero resistance regime can be viewed as a signature of current domain state and we believe

that similar MW-induced thermo-electric phenomena may show up in other 2D systems.

As far as fundamental experiments are concerned, the next consequent step is to study the

response of thermodynamics properties of two dimensional electron systems like compress-

ibility and entropy of these systems under microwave irradiation. These kind of measurements

are difficult to be done comparing to conductance measurements, however , provide direct

information about the the electronic density of states (DOS) and chemical potential of 2DES.

For example, it is shown that quantum-capacitance measurements can provide significant

insights into the ground state of low dimensional systems such as electron-electron inter-

actions, quantum correlations, thermodynamic compressibility for 2D electron gas in GaAs

heterostructures and many-body physics in carbon nano-tubes and graphene. In the presence

of microwave irradiation these information can be used to shed more light on the origin of

ZRS and the formation of current domains (Kuntsevich et al., 2015; Chepelianskii et al., 2015).
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