• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.43.2000.tde-11062002-103116
Documento
Autor
Nome completo
Roberto da Silva
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2000
Orientador
Banca examinadora
Marchetti, Domingos Humberto Urbano (Presidente)
Alfonso, Nestor Felipe Caticha
Dreifus, Henrique Von
Título em português
Distribuição de autovalores de matrizes aleatórias.
Palavras-chave em português
Classe de Universalidade
Ensembles de matrizes aleatórias
Funções de Correlação
Lei do semi-círculo
lei dos grandes números para variáveis aleatórias
Resumo em português
Em uma detalhada revisão nós obtemos a lei do semi-círculo para a densidade de estados no ensemble gaussiano de Wigner. Também falamos sobre a analogia eletrostática de Dyson, enxergando os autovalores como cargas que se repelem no círculo unitário, mostrando que nesse caso a densidade de estados é uniforme. Em um contexto mais geral nós obtemos a lei do semicírculo, provando o teorema de Glivenko-Cantelli para variáveis fortemente correlacionadas usando um método combinatorial de contagem de trajetos, o que nos dá subsídios para falar em estabilidade da lei do semi-círculo. Também, nesta dissertação nós estudamos as funções de correlação nos ensembles gaussiano e circular, mostrando que sob um adequado reescalamento elas são idênticas. Outros ensembles nesta dissertação foram investigados usando o Método de Gram para o caso em que os autovalores são limitados em um intervalo. Computamos a densidade de estados para cada um desses ensembles. Mais precisamente no ensemble de Chebychev, os resultados foram obtidos analiticamente e nesse ensemble além da densidade de estados, também traçamos grá…cos da função de correlação truncada.
Título em inglês
Eigenvalues distribution of random matrices.
Palavras-chave em inglês
Correlation functions
Large numbers Law of correlated random variables
random matrices ensembles
semi-circle law
universality class
Resumo em inglês
In a detailed review we obtain a semi-circle law for the density of states in theWigner’s Gaussian Ensemble. Also we talk about Dyson’s Analogy, seeing the eigenvalues like charges that repulse themselves in the unitary circle, showing that this case the density of states is uniform. In a more general context we obtain the semi-circle law, proving the Glivenko-Cantelli Theorem to strongly correlated variables, using a combinatorial method of Paths' Counting. Thus we are showing the stability of the semi-circle Law. Also, in this dissertation we study the correlation functions in the Gaussian and Circular ensembles showing that using the Gram's Method in the case that eigenvalues are limited in a interval. In these ensembles we computed the density of states. More precisely, in a Chebychev ensemble the results were obtained analytically. In this ensemble, we also obtain graphics of the truncated correlation function.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
tde.pdf (443.65 Kbytes)
Data de Publicação
2002-06-18
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.