• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.42.2013.tde-17062013-082058
Document
Author
Full name
Fernanda de Oliveira Serachi
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2013
Supervisor
Committee
Colquhoun, Alison (President)
Ionta, Marisa
Jaeger, Ruy Gastaldoni
Title in Portuguese
Análise do efeito das ciclooxigenases na expressão e atividade de proteínas de resistencia a múltiplas drogas (MDR e MRPs) em glioma humano.
Keywords in Portuguese
Glioma
Neoplasias
Proteínas
Resistência microbiana às drogas
Abstract in Portuguese
O glioblastoma multiforme, tumor de alta malignidade é conhecido por ser um câncer de difícil cura devido sua resistência ao tratamento de quimioterapia. Neste contexto sabe-se a existência de um gene responsável pelo fenótipo de resistência (MDR) e produção de proteínas associadas à resistência a uma grande variedade de drogas (MRPs). As proteínas de resistência a múltiplas drogas funcionam como bombas de efluxo, capazes de retirar das células compostos citotóxicos, deixando o tratamento quimioterápico sem o efeito esperado. Atualmente a suposta relação entre as ciclooxigenases e as proteínas de resistência a múltiplas drogas tem sido estudada em alguns tipos de câncer e na maioria deles observa-se uma relação positiva no sentido da COX poder participar da super-expressão de proteínas de resistência, fazendo com que as células fiquem ainda mais resistentes ao tratamento. O objetivo do projeto é analisar o possível efeito das COX 1 e 2 na expressão e atividade de MDRs e MRPs.
Title in English
Analysis of the effect of cyclooxygenase on the expression and activity of Multiple Drug Resistance Proteins (MDRP) in human glioma.
Keywords in English
Glioma
Microbial resistance to drugs
Neoplasms
Proteins
Abstract in English
Glioblastoma multiforme, a highly malignant tumor is difficult to cure because of its resistance to chemotherapy treatment. A well-established cause of multidrug resistance (MDR) involves the increased expression of members of the ATP binding cassette (ABC) transporter superfamily, many of which transport chemotherapeutic compounds from cells. Multidrug resistance proteins can act as efflux pumps allowing. The cells to remove cytotoxic compounds and often leaving the chemotherapy treatment without the expected effect. The possible relationship between cyclooxygenase and MDRPs has been studied in several cancers and in most there is a positive relationship. The role of cyclooxygenases (COX) has been extensively studied, especially COX-2, which is expressed in many human cancers. Recently studies have been performed to identify whether the presence of COXs has some involvement with the expression of MDRPs. A positive correlation between COXs and MDRPs has been identified in certain cancers. To analyze the possible relationship between COX 1 and 2 and the expression and activity of MDRs and MRPs in gliomas. The following family members of ABC transporters were studied: MDR1, MRP1, MRP2, MRP3, MRP4 e MRP5. Our analysis show e da constitutive expression of Cox-2 in U138MG and U251 cells, as well as the expression of all the MDRPs studied (MDR1 and MRPs1-6). However, in the U138MG cell line where COX-1 was not is expressed there was a large decrease in the expression of MDR1 in comparison with the COX 1 positive U251 cell line.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2013-09-25
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.