• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
https://doi.org/10.11606/T.42.2000.tde-22012014-091236
Document
Auteur
Nom complet
Maria Evangelina de Camargo
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2000
Directeur
Jury
Vicente, Elisabete Jose (Président)
Amorim, Henrique Vianna de
Basso, Luiz Carlos
Pereira, Gonçalo Amarante Guimarães
Zucchi, Tania Maria Araujo Domingues
Titre en portugais
Sistema para transformação de leveduras industriais e detecção de atividade recombinogênica.
Mots-clés en portugais
Saccharomyces cerevisae
Glicoamilase
Leveduras industriais
Permease de arginina (CAN1)
Recombinação gênica
Transformação de leveduras
Resumé en portugais
A levedura Saccharomyces cerevisiae é o sistema eucariótico com a genética mais conhecida, reconhecido como "GRAS", vem sendo proposta como hospedeira para a expressão de genes que codificam produtos de interesse biotecnológico. No Brasil, vários processos industriais empregam linhagens selvagens de S. cerevisiae, incluindo a produção de etanol combustível. A maioria dessas linhagens industriais são mais vigorosas e apresentam crescimento muito mais rápido que as linhagens de laboratório, além de já estarem adaptadas a processos industrias de larga escala. Neste trabalho, foi estabelecido um sistema de transformação genética, que permite a inserção de genes codificadores de proteínas de interesse biotecnológico no genoma de linhagens selvagens haplóides ou de ploidia maior. O sistema de transformação origina de um vetor de clonagem, denominado YlpC, formado por um fragmento do gene CAN1 (permease da L-arginina e do análogo tóxico L-canavanina), contendo um sítio de restrição interno (BstEII), onde se realiza a inserção do cassete de expressão gênica desejado. A digestão do plasmídio resultante, com HindlIlI, causa a liberação do fragmento de DNA linear, composto pelo cassete de expressão flanqueado por seqüências de CAN1. Esse fragmento resultante é destinado à transformação de leveduras. As células recombinantes sofrem interrupção do gene CAN1 selvagem pelo cassete de expressão presente no fragmento de transformação, tornando-as resistentes à Lcanavanina, permitindo assim, a seleção positiva dos clones transformantes. Para análise da eficiência desse sistema a glicoamilase de A. awamori foi utilizada como proteína repórter. O cassete de expressão contendo a sequência sinal e estrutural da glicoamilase de A. awamori sob a regulação do promotor e terminador de transcrição de PGK de S. cerevisiae foi subclonado no vetor YlpC, dando origem ao plasmídio YlpCGC e depois pUCGc. Esses vetores, digeridos com HindlIlI, liberam o fragmento CGC, empregado nas transformações de levedura deste trabalho. Obtivemos sucesso na transformação de linhagens diplóides de laboratório. Análise dos esporos e amplificação de DNA por PCR, demonstrou que o fragmento CGC encontra-se inserido em ambos alelos CAN1 cromossômicos dessas linhagens recombinantes. Das 20 linhagens de levedura industriais, submetidas à transformação com o fragmento CGC, 10 resultaram em clones transformantes, e assim como os clones recombinantes de linhagens de laboratório diplóides, mantêm a informação adicional 100% estáveis. O sistema também se mostrou adequado para a construção de linhagem de levedura diplóide heterozigota CGC+/CGC:, empregada na detecção de substâncias indutoras de recombinação mitótica, que, como é conhecido, são potencialmente carcinogênicas.
Titre en anglais
System for industrial yeast transformation and detection of recombinogenic activity.
Mots-clés en anglais
Saccharomyces cerevisiae
Arginine permease (CAN1)
Gene recombination
Glucoamylase
Industrial yeast
Yeast transformation
Resumé en anglais
The yeast Saccharomyces cerevisiae is the eukaryotic system with the most extensively studied genetics, it is generally recognized as safe, and it has broadly been used as a host system for the expression of heterologous genes of biotechnological interest. In Brazil, the vast majority of industrial processes, which include the production of fuel ethanol, utilize wild-type strains because of their higher resistance to adverse conditions, their adaptation to industrial processes in large scale, and because they exhibit higher growth rates than laboratory strains. In the present work, a genetic transformation system was developed for the chromosomal integration of heterologous genes of commercial interest in both haploid and polyploid industrial strains. This system utilizes an integrative shuttle vector, YIpC, which contains a CAN1 gene fragment (L-arginine permease and L-canavanine toxic analogous), bearing an internar restriction site (BstEII), where the gene expression cassette can be inserted. The resultant plasmid is then digested with HindlIII, releasing a linear DNA fragment containing the expression cassette flanked by CAN1 sequences. Following the introduction of the transforming fragment into yeast cells, the wild-type CAN1 gene is interrupted by the expression cassette, thus allowing positive selection of the recombinant clones by their resistance to the toxic properties of L-canavanive. To analyze the efficiency of this system, glucoamylase of Aspergillus awamori was used as reporter. An expression cassette containing the structural and signal sequences of A. awamori glucoamylase, under the control of the S. cerevisiae PGK1 transcriptional promoter and termination sequences, was subcloned in YIpC to obtain the plasmids YIpCGC and pUCGc. Both vectors, when digested with HindlIII, released a fragment (CGC) which was subsequently used for yeast transformation. Spore analysis and DNA PCR amplification indeed confirmed that the CGC fragment was inserted in both CAN1 chromosomal alleles of transformed diploid laboratory strains. Most importantly, 10 out of 20 industrial yeast strains submitted to transformation with the CGC fragment resulted in recombinant clones and, like observed for the diploid laboratory strains, the additional information was 100% stable. In concluding, this system also seems to be suitable for the construction of diploid heterozygote CGC+/CGC yeast strains, which in turn can be used for the detection of inductor substances of mitotic recombination that, as known, are potentially carcinogenic.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2014-01-22
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2024. Tous droits réservés.