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RESUMO 

 
Ortiz-Baez, AS. Diversidade intra-hospedeiro do vírus da dengue tipo 4 circulando em 
Guarujá, São Paulo. [Dissertação (Mestrado em Microbiologia)]. São Paulo: Instituto de 
Ciências Biomédicas, Universidade de São Paulo, 2016. 

	

A caracterização da variabilidade genética intra-hospedeiro do vírus da dengue (DENV) é 
fundamental para a compreensão de sua evolução e dinâmica populacional no contexto atual 
como um importante patógeno viral humano. A diversidade viral acumulada em hospedeiros 
infectados influencia diretamente em outros aspectos como patogênese, transmissão e 
imunidade do hospedeiro. Contudo, apesar de existirem vários estudos sobre a diversidade 
genética intra-hospedeiro em dengue, nenhum tem sido relatado para DENV-4 até o presente 
momento. O ressurgimento e disseminação desse sorotipo foi associado com a sua co-
circulação e o substituição dos sorotipos 1, 2 e 3 durante os recentes surtos no município do 
Guarujá-SP. Com base neste quadro epidemiológico, este estudo visou identificar a variação 
genética intra-hospedeiro do DENV-4 em amostras coletadas durante o surto de 2013, 
utilizando tecnologias de sequenciamento de nova geração. Portanto, nós caracterizamos a 
variabilidade genética de DENV-4 em diferentes níveis e as forcas evolutivas  que afetam 
essa diversidade. Em adição, foram explorados os principais  eventos na transmissão das 
variantes de DENV-4 identificadas. Nossos resultados revelaram uma baixa diversidade 
genética intra-hospedeiro para DENV-4. No entanto, mutação e pressões seletivas foram 
mecanismos importantes na variabilidade genética do vírus. A nível populacional, as variantes 
estão sujeitas á seleção natural negativa, não obstante identificamos seleção positiva atuando 
sob sítios específicos. Nenhuma evidência de recombinação foi detectada. Além disso, contra-
intuitivamente, variantes de baixa frequência estão sendo transmitidas e contribuindo para 
diversidade genética do DENV-4 circulando em Guarujá. Nossos resultados fornecem novas 
evidências potencialmente úteis para futuros trabalhos focados em infecções mistas, escape 
imunológico, assim como o espalhamento e diversificação viral. Este estudo também e o 
primeiro trabalho a investigar a diversidade intra-hospedeiro do DENV-4. 
 

  
Palavras-chave: Diversidade genética. Evolução molecular. Intra-hospedeiro. Vírus da 
Dengue tipo 4.  
  



 

ABSTRACT 
 

Ortiz-Baez, AS. Intra-host genetic diversity of dengue virus type 4 strains from the 
municipality of Guarujá, São Paulo. [Masters thesis (Microbiology)]. São Paulo: Instituto de 
Ciências Biomédicas, Universidade de São Paulo, 2016. 
 
Characterizing intra-host genetic variability in dengue virus (DENV) virus is paramount for 
understanding its evolution and population dynamics in the context of its current status as a 
major human viral pathogen. The extent to which viral diversity accrues in infected host 
influences aspects such as pathogenesis, transmission, and host immunity. Although there are 
several studies about intra-host genetic diversity in dengue, so far nothing has been revealed 
about DENV-4. In the Guarujá municipality in the State of São Paulo, the reemergence and 
spread of this serotype was associated with its co-circulation and the displacement of 
serotypes 1, 2 and 3 during recent outbreaks. Based on this epidemiological framework, we 
seek to identify the intra-host genetic variation of DENV-4 strains from samples collected 
during the 2013 outbreak by using deep sequencing technologies. We characterized the 
genetic variability of DENV-4 at different levels, and the forces shaping this diversity. 
Likewise, we explored major transmission events among DENV-4 variants. Our results 
revealed a low intra-host genetic diversity for DENV-4. However, we found selective and 
mutational pressures contributing to genetic diversity, while recombination did not seem play 
an important role. We further identified purifying selection at population level but sites 
subject to potential diversifying selection. Additionally, we observed low frequency 
haplotypes being transmitted among hosts and contributing to the viral diversity of DENV-4 
circulating in Guarujá. Our findings provide preliminary insights for future studies in mixed 
infections, drug resistance, virus variant spread and immune scape. This study is the first 
effort to investigate the intra-host diversity of DENV-4.  
 
Keywords: Genetic Diversity. Molecular Evolution. Intra-host. Dengue virus type 4.  
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1 INTRODUCTION 

	

1.1 DENGUE VIRUS 

 

Dengue virus (DENV) is a RNA virus, which belongs to the genus Flavivirus (family 

Flaviviridae) [1]. DENV structure consists of a 50 nm-diameter particle with an envelope of 

host-cell-derived lipids, associated with virus-derived proteins (envelope and membrane) 

(Figure 1). This structure encloses a ribonucleoprotein complex formed by the nucleocapsid 

protein and a single stranded, positive strand RNA of ≈11 kb in length [2]. Furthermore, the 

viral genome encodes a single open reading frame (ORF), flanked by untranslated regions 

(UTRs) at each end (95-450 nucleotides). The 5’ UTR contain a cap structure while the 3’ 

UTR lacks a poly (A) tail. Both 5’UTR and 3’UTR contain important elements critical for 

viral RNA replication and translation processes. Besides the UTRs, the viral RNA acts as an 

mRNA for the translation of ten viral proteins, starting with three structural proteins (C, prM, 

and E), and followed by seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, 

NS4B and NS5) [3] (Figure 2). 

 

 

 

 

 

 

 

 

 

 
Figure 1 - Dengue virus structure. Schematic representation of dengue virus showing membrane and 
capsid structures organized around the viral genome. Figure adapted from: Cruz-Oliveira et al., 2015 [4].   

 

The envelope glycoprotein (E) is considered as the major surface protein of DENV. It carries 

the main antigenic determinants that induces protective immunity, is essential for fusion 

activity and mediates receptor binding. Therefore, this protein presumably plays an important 

role in tropism, host range, and virulence [5]. A previous study also provided evidence of the 
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role of the E protein in assembly/disassembly process in flavivirus [6]. Crystal structures of 

the E protein in DENV have showed three structural and functional domains. Although 

antigenic regions have been reported for all the protein domains, it is possible to distinguish 

some domain-specific activities. Domain I (DI) is of particular importance for the 

organization of the protein structure and the DI-DII interface. Likewise, the domain II (DII) 

bears the fusion loop, providing an attachment point between the endosomal membrane and 

the viral membrane, thus triggering conformational changes in response to the acidic pH of 

the endosome. Finally, the domain III (DIII) participates in the recognition/ attachment to the 

cell surface, and harbors the receptor binding site [5,7,8] (Figure 2). 

 

 

Figure 2 - Dengue virus genome. The viral genome is a positive-sense RNA that encodes ten genes 
flanked by the 5’ and 3’ untranslated regions. Genes encoding for structural proteins correspond to 
capside (C), pre-membrane (preM), and envelope (E). NS abbreviation represents genes encoding for 
non-stuctural proteins. The figure shows a zoom in the envelope protein, which is organized in three 
domains (DI-DIII), a stem and an anchor.   
 

1.2 ECOLOGY AND TRANSMISSION IN BRIEF 

 
Dengue viruses circulate in both human and wild animals (e.g. monkeys and bats).  In sylvatic 

enzootic cycles, transmission among non-human primates is mediated by arboreal canopy-dwelling 

Aedes spp. [1,3]. It is hypothesized that viruses circulating among humans, emerged multiple times 

independently over the course of evolution, from sylvatic strains circulating in Africa or Southeast 

Asia forests. DENV Sylvatic strains continue to circulate in these regions, increasing the risk of newly 

emerging strains involved in sustained transmission chains. In human populations, DENV is 

responsible for the most common arthropod-borne viral disease, namelly dengue fever (DF) [9]. 

Mosquito vectors of genus Aedes mediate the transmission of this arbovirus in endemic/epidemic 

cycles. The Aedes (Stegomya) aegypti subsp. aegypti is the main anthropophilic vector in urban cycles 



 20 

throughout the tropical and subtropical regions of the world [10,11]. The peridomestic Aedes 

(Stegomya) albopictus is the main responsible by the transmission in subtropics and peri-urban 

settings. The global distribution of both vectors defines the worldwide establishment of the four 

DENV serotypes, reaching more than 100 countries, and putting in risk nearly half of the world’s 

population (Figure 3) [3,12].  

 

Figure 3 - Hypothetic origin and transmission of dengue virus in sylvatic, semi-urban and urban 
cycles. Source: Vasilakis et al., 2011 [3]. 
 

1.3 CLASSIFICATION 

 

Four genetically and antigenically related serotypes of DENV are known (DENV 1-4) 

(Figure 4). Indeed, a recent study proposed the emergence of a fifth serotype circulating in a 

sylvatic transmission cycle [13]. The viral infection by any of them can result in a broad 

spectrum of clinical features, ranging from dengue without symptoms to overt severe 

manifestations, such as dengue haemorrhagic fever or shock syndrome [14]. Moreover, within 

each serotype it is possible to recognize a wide genetic diversity partitioned into 

monophyletic clusters of sequences termed genotypes, which also differ in their spatial-

temporal distribution [15]. The absence of proof reading-repair activities contributes largely 

to the extensive genetic diversity within DENV populations [15,16]. 
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Four major genotypes have been identified in DENV-4 [17,18]. Genotype I: Southeast Asia, 

genotype II: Southeast Asia and the Americas, genotype III: recent Thai strains isolated 

between 1997 and 2001 and, genotype IV: sylvatic DENV-4 strains isolated from sentinel 

monkeys in Malaysia. The genotype circulating in the Americas shows an additional 

spatiotemporal division, which segregates clade I (strains isolated in the Americas and Asian 

strains collected prior to 2000), from clade II (Asian strains collected after 2000) [1]. The  

 

Figure 4 - Dengue virus phylogeny. The tree shows the classification of dengue viruses into serotypes 
and genotypes. Source: http://bioafrica2.mrc.ac.za. 
 

Origin of DENV-4 in the Americas is currently unclear. Previous studies have suggested the 

introduction of this serotype (genotype II) from the Southeast Asia (French Polynesia) 

through the Caribbean [19,20], while other recent approach suggests the introduction through 

South America [21].  

 

1.4 DENGUE IN THE WORLD AND BRAZIL 

 

Currently, dengue is present in more than 125 countries in tropical and subtropical regions of 

the globe (Figure 5). More than 50% (3.6 billion people) of the global population is at risk, 

and an estimated 50 to over 200 million. DENV infections occur annually [22,23]. In Latin 

America, despite the implementation of an integrated management strategy for the prevention 

and control of dengue by the Pan American Health Organization (PAHO) [24], there have 
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been a progressive regional increase in the number of outbreaks and reported cases [9,25]. 

Co-circulation of multiple viral serotypes (hyperendemicity) and genotypes is considered the 

most common factor associated with the emergence of severe dengue, because of the 

heterologous DENV infections increase the probability of antibody-dependent enhancement 

(ADE), through enhancing the infection and replication of dengue virus in mononuclear cells 

[26–28]. 

 
 

 
Figure 5 - Global distribution of dengue. World map representing the geographic distribution of 
dengue and the annual number of infections. Adapted from Bhatt et al., 2013. 

 

Dengue has been a serious health problem in Brazil for more than 30 years [29]. The complex 

interplay of several factors such as hyperendemicity, deficiencies in the vector management, 

lack of public awareness, environmental factors, and the breakdown in the healthcare policies 

and procedures, imposes a tough challenge in the control, and prevention of the disease in the 

country. Furthermore, the costs deriving from disease-associated treatment have a major 

impact on financial resources and the welfare of both governments and communities [30,31]. 

According to the PAHO, since 2006 to 2015, Brazil has contributed with around US $ 450 

million in the regional dengue program1, while the national dengue cost estimated is US$ 310 

million per year on average, excluding vector control, loss in productivity and prevention 

campaigns [32].  

 

In 2013, over 1.450.000 clinical cases were reported in Brazil, 3.749 with severe 

manifestations, and 201 deaths [33], hence reaching the highest record of cases ever in the 
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country (data up to August 20 17, 2016) [34,35] (Figure 6). Likewise, in 2013, 39.52% of 

notified cases were registered in the Southeast region of the country [36], being São Paulo 

among the states reporting the highest number of dengue cases. Guarujá, a coastal city located 

around 63 km away from São Paulo (Figure 7), and with a population of 290.752 inhabitants 

(IBGE index), was one of the worst affected areas in the southeast region during the 2013 

epidemic. A recent study conducted in this municipality, revealed the co-circulation of the 

four serotypes in the early days of the dengue epidemic [33]. Nevertheless, a shift in serotype 

during the season showed that DENV-4 becomes the dominant serotype in Guarujá during the 

2013 epidemic [33,37]. The spreading of DENV-4 and the population susceptibility triggered 

a major dengue emergency situation.  

 
Figure 6 - Number of cases of CHIKV, DENV and ZIKV reported by epidemiological week. 
Adapted from Secretaria de vigilância em Saúde [34,38].  
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Figure 7 - Maps showing the geographic location of the municipality of Guarujá in São Paulo. 
Adapted from Villabona-Arenas et al., 2016 [37]. 

 

The early spread of DENV-4 started in 1953 in Philippines and Thailand. Then the virus 

spread to the French Polynesia and Southeast Asian countries, and was reported in the 

Americas until 1981 in several Caribbean countries and Brazil. Since then, the virus 

continued to expand its distribution, reaching several countries in South America and Asia 

(Figure 8) [39]. In Brazil, the reemergence of DENV-4 was documented in Boa Vista, 

Roraima State, 28 years after it was last detected in 1981 [40,41]. Afterwards, the virus was 

broadly associated with outbreaks in the Amazon, Bahia, Ceará, Goiás, Mato Grosso do Sul, 

Pernambuco, Pará, Piauí, Rio de Janeiro, Rio Grande do Sul, and São Paulo state.  The spread 

of DENV-4 within Guarujá (São Paulo state) and the ensuing serotype turnover became into a 

dramatic epidemiological situation within a short time [33], providing an important 

opportunity to explore the intra-host diversity of DENV-4 into an urban population previously 

exposed to the remaining three serotypes. 
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Figure 8 - Worldwide spread of DENV-4 from 1943 to 2013. Source: Messina et al., 2014 [39]. 
 

 

1.5 BASIC OF VIRAL INTRA-HOST DIVERSITY  

 

Intra-host genetic variation in RNA viruses is ultimately determined by the error-prone nature 

of the RNA polymerase and the lack of proofreading mechanisms during replication [42–44]. 

As a result, an infected organism can harbor a collection of closely related variants or 

haplotypes which are subject to selection pressures imposed by the host environment [43,45]. 

(Figure 9). It is well known that genetic variation is the fuel for natural selection [46,47].  

The occurrence of natural selection is important to promote advantageous mutations and 

purge deleterious changes in virus populations. Similarly, recombination, complementation 

and stochastic processes contribute to shape the heterogeneity in viral populations within a 

single host [48]. Therefore, in view of the underlying viral diversity, some variants in the pool 

of mutants will be potentially able to quickly adapt and confront changing environments.  

 

Thai et al. (2011) suggested that intra-host virus diversity could be potentially increased by 

mixed infections, which would provide the raw material for intra-serotype recombination 

[49]. Moreover, mixed infections can be caused by different combinations of serotypes or 
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genotypes [50–53]. Importantly, hyperendemic transmission in endemic countries have 

increased the likelihood of mixed infections with different serotypes [54,55]. 

 

Heterogeneity in RNA virus populations can be accurately characterized using Next-

Generation Sequencing (NGS) [56–59]. In general, NGS provides an opportunity to study 

viral diversity beyond the consensus sequence with cost-effective options, high throughput 

and resolution [60]. Moreover,	 the	development of these technologies has showed a great 

potential for the study of re-emerging RNA viruses with sustained transmission cycles in 

humans, like dengue (DENV) [56,61–63]. For example, using the resolution enabled by next 

generation sequencing (NGS) technologies, a recent study explored the genetic diversity of 

DENV populations during human and mosquito infections [64]. Likewise, Lequime et al., 

[62] showed the evolutionary forces acting on DENV populations in the mosquito vector. The 

revolution of NGS in many fields of virology suggests the potential of these tools to 

investigate and unravel a wide range of questions in clinical virology. 

 
 
Figure 9 - Schematic representation of intra-host virus diversity and the most important factors 
shaping diversity in RNA viruses. 
 

Understanding the intra-host genetic diversity of viruses is of critical importance to assess key 

aspects of disease pathogenesis, transmission, surveillance, and viral evolution in infected 

hosts. Despite, viral genetic diversity defines many evolutionary and epidemiological aspects 

Mutation spectrum

Host

Mutation
Recombination
Selection



 27 

in DENV [65], there are not studies on the extent of the intra-host diversity of DENV-4. 

Related studies based on the remaining serotypes have focused on assessing the relationship 

between intra-host genetic variability and different issues such as disease severity 

[49,56,66,67], viral emergence [68], host’s factors [69], clade identity [66], inter-host 

transmission [56,66,69], and selective pressures acting on viral populations [70–72]. 

Nevertheless, an important gap remains in our understanding of several aspects of DENV-4 

evolution. 

 

This work is part of an effort to assess the composition of DENV-4 populations at the intra-

host level and improve our understanding about how this virus evolves and contributes to the 

extent of genetic diversity of DENV in Guarujá, which is ultimately a good indication of the 

viruses circulating near the largest metropolis of Brazil. 
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6 CONCLUSIONS 

1)	 DENV-4	 circulating	 in	Guarujá	 corresponded	 to	 the	most broadly distributed lineage in 

Brazil, which was introduced in 2005 into northern Brazil from South American countries and 

spread widely across several Brazilian locations.  

 

2)	Guarujá sequences were grouped in two lineages.  Additionally, we identified one isolate 

from Guarujá closely related with strains from São José de Rio Preto and Mato Grosso. 

 

3) This study provides the first DENV-4 genomes available for the 2013 urban outbreak in 

Guarujá, São Paulo.   

 

4) Our results corroborate the co-circulation of DENV-1 and DENV-4 and suggest the 

occurrence of potential mixed infections during the DENV-4 outbreak, in the city of Guarujá, 

São Paulo. 

 

5) DENV-4 evolves into heterogeneous populations composed of a few dominant haplotypes 

and a large number of low-frequency haplotypes. Although some of these viral variants can 

be maintained at the inter-host level their frequencies fluctuate among individuals. 

 

6) Evolution of intra-patient populations of DENV-4 lies on low diversity levels during 

infection. However, envelope domains I and II display a high variability. 

 
7) We did not find any evidence for intra-host recombination in DENV-4 populations 
circulating in infected hosts during the 2013 epidemic. 
  

8) Preferred synonymous codons were dominated by A-ended codons, whilst charged amino 

acids played a major contribution in amino-acid usage in DENV-4 at the intra-host level. 

 

9) Mutational bias and natural selection contributes to the codon usage bias in the envelope of 

DENV-4 at the intra-host level.  

 

10) Selection pressures imposed on DENV-4 populations at the intra-host level differ between 

the entire envelope gene and individual sites. Negative selection operates on the gene-wide 
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scale, while positive selection acting at a per-site level would be influencing pH-dependent 

postfusion conformational changes.   
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