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Resumo 
 
A plasticidade e heterogeneidade das células malignas têm papel fundamental sobre a progressão 
tumoral e o desenvolvimento de resistência terapêutica. Nos últimos anos, com o advento de 
tecnologias de sequenciamento de células individuais (scRNA-seq), estudos com diferentes tipos 
de câncer revelaram que um único tumor pode conter subpopulações de células malignas com 
perfis transcricionais distintos. Com isso, tornou-se necessário estabelecer modelos experimentais 
que permitam o estudo da relevância biológica e clínica dessa diversidade celular, bem como os 
mecanismos moleculares subjacentes. Nesse sentido, geramos dados de scRNA-seq para 198 
linhagens celulares (22 tipos de câncer) e caracterizamos sistematicamente a heterogeneidade da 
expressão gênica. Descobrimos que a coexistência de subpopulações altamente distintas em uma 
mesma linhagem celular é rara. Por outro lado, padrões contínuos de heterogeneidade de expressão 
gênica, representados por espectros de estados celulares, são comuns, recorrem em diferentes 
linhagens, estão associados a múltiplos processos biológicos e são geralmente independentes da 
diversidade genética. Notavelmente, apesar de condições in vitro não possuírem um 
microambiente nativo e espacialmente variável, muitos dos padrões contínuos de heterogeneidade 
observados nas linhagens recapitulam aqueles encontrados em amostras tumorais clínicas, 
indicando que a plasticidade epigenética intrínseca tem papel fundamental na geração da 
heterogeneidade intratumoral. Os dados gerados também nos permitiram identificar as linhagens 
mais adequadas para o estudo da plasticidade celular. Como exemplo, selecionamos duas dessas 
linhagens modelos e demonstramos a dinâmica temporal e relevância terapêutica de um programa 
de heterogeneidade recorrente associado à senescência epitelial. Além disso, considerando os 
meios pelos quais as células malignas se comunicam, isto é, via interações físicas célula-a-célula 
e secreção de fatores solúveis, também buscamos explorar novas redes de sinalização 
autócrina/parácrina que possam ser exploradas clinicamente. A melatonina, mais conhecida como 
"hormônio da pineal", é uma molécula pleiotrópica produzida em diversos tecidos e que vem sendo 
cada vez mais reconhecida como um agente antitumoral. A melatonina atua por meio de vários 
mecanismos biológicos, incluindo a eliminação direta de radicais livres e a ativação de receptores 
de alta afinidade acoplados à proteína G (MT1 e MT2). Na última década, nosso grupo forneceu 
diversas evidências de que o ajuste fino da produção extrapineal de melatonina durante a 
inflamação aguda é crítico para a manutenção da homeostase tecidual. Entretanto, nosso 
conhecimento sobre o papel fisiopatológico da melatonina local em processos malignos é muito 
limitado. Interessantemente, demonstramos que, em gliomas, a capacidade das células de sintetizar 
e acumular melatonina correlaciona-se negativamente com o grau malignidade tumoral. Utilizando 
dados de expressão gênica, desenvolvemos um modelo preditivo do conteúdo de melatonina no 
microambiente tumoral, o índice ASMT:CYP1B1, o qual se mostrou um fator prognóstico 
positivo, independente do grau e subtipo histológico dos gliomas. Por fim, buscamos fornecer 
suporte adicional para o uso racional da melatonina e análogos no tratamento de cânceres cerebrais. 
Revelamos que em gliomas e meduloblastomas os receptores de melatonina MT1 e MT2 
desempenham papéis opostos sobre o controle da progressão tumoral. Notavelmente, compostos 
que simultaneamente ativam MT1 e inibem MT2 exibiram um efeito antitumoral robusto in vitro 
e in vivo, destacando o potencial de tais receptores como alvos terapêuticos. 
 
Palavras-chave: heterogeneidade celular intratumoral, plasticidade epigenética, Eixo Imune-
Pineal, melatonina extrapineal, receptores de melatonina, gliomas.  



 
 

Abstract 
 
Tumor cell plasticity and heterogeneity are key features underlying disease progression and 
therapeutic resistance. Recent advances of single-cell RNA-seq (scRNA-seq) technologies have 
highlighted the co-existence of transcriptionally distinct subpopulations of malignant cells within 
single tumors of different lineages. Thus, there is now a need to establish frameworks to better 
understand the biological and clinical relevance of such cellular diversity, as well as its underlying 
molecular mechanisms. To address this issue, we generated scRNA-seq data for 198 cell lines (22 
cancer types) and systematically characterized intra-cell line expression heterogeneity. We found 
that co-existence of highly distinct subpopulations within the same cell line is rare, while 
continuous patterns of expression heterogeneity, represented by spectra of cellular states are 
common, recur across different cell lines, are associated with multiple biological process, and are 
usually independent of genetic diversity. Notably, despite the absence of a native and spatially-
variable microenvironment in vitro, many of the continuous programs observed in cell lines 
recapitulate those found in clinical samples, suggesting a prominent role of intrinsic epigenetic 
plasticity in generating intratumoral heterogeneity. The data also allowed us to prioritize specific 
cell lines as model systems of cellular plasticity. As an example, we selected two of such models 
to demonstrate the temporal dynamics and vulnerabilities associated with a cancer senescence 
program observed both in cell lines and in human tumors. Additionally, given the means by which 
malignant cells communicate in the tumor bulk, i.e. physical cell-to-cell interactions and secretion 
of soluble factors, we also aimed to explore new autocrine/paracrine signaling networks that could 
be exploited clinically. Melatonin, best known as the “pineal hormone”, is a pleiotropic molecule 
produced by many extrapineal tissues and increasingly recognized as a tumor suppressor agent. 
Melatonin acts through several biological mechanisms, including direct scavenging of free radicals 
and activation of high-affinity G-protein coupled receptors (MT1 and MT2). Over the past decade, 
our group has provided compelling evidences that fine-tuning the extrapineal production of 
melatonin during acute inflammation is critical for the maintenance of tissue homeostasis. 
However, our knowledge about the pathophysiological role of local melatonin in malignant 
processes is very limited. Interestingly, here we demonstrated that the ability of gliomas to 
synthesize and accumulate melatonin negatively correlates with their overall malignancy. Using 
gene expression data, we designed a predictive model of the content of melatonin in the tumor 
microenvironment, the ASMT:CYP1B1 index, which was shown to be a positive prognostic factor, 
independent of glioma grade and histological subtype. Finally, as we sought to provide further 
support for the rational use of melatonin and analogous in brain cancer therapy, we demonstrated 
that in gliomas and medulloblastomas MT1 and MT2 melatonin receptors play opposite roles in 
disease progression. Remarkably, compounds that simultaneously activate MT1 and inhibit MT2 
displayed a robust antitumor effect in vitro and in vivo, highlighting the potential of such receptors 
as therapeutic targets.  
 
Keywords: intratumoral cellular heterogeneity, epigenetic plasticity, Immune-Pineal Axis, 
extrapineal melatonin, melatonin receptors, gliomas.  
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Introduction 

Tumors as complex ecosystems 

Cancer is increasingly recognized as a community in which malignant and non-malignant 

cells interact over time in a dynamic and often tumor-promoting manner (Balkwill et al., 2012). 

The diversity of these cells is a fundamental feature of tumor ecosystems and ultimately governs 

disease progression and clinical outcome (Binnewies et al., 2018; Hanahan & Coussens, 2012; 

Quail & Joyce, 2013). Tumors are infiltrated with different cell types, including fibroblasts, 

immune and endothelial cells, which collectively form the tumor microenvironment (Balkwill et 

al., 2012). In addition, malignant cells are themselves heterogenous, what poses a significant 

challenge to cancer therapy, as subpopulations of treatment resistant cells may underlie tumor 

recurrence and metastasis (Marusyk et al., 2012; McGranahan & Swanton, 2015; Pribluda et al., 

2015). Various factors contribute to intratumoral heterogeneity, including genetic diversity, as 

subclonal mutations accumulate during tumor evolution (Gerlinger et al., 2012); spatial variability 

from extrinsic factors (e.g. oxygen and nutrients; Berglund et al., 2018); and intrinsic epigenetic 

plasticity related to developmental pathways, like those linked to stem cell differentiation (Tirosh, 

Venteicher, et al., 2016).  

The comprehensive characterization of all cellular elements in the tumor ecosystem has 

been limited by technical reasons. Although methods such as standard multicolor flow 

cytometry/immunohistochemistry might allow the identification of distinct subpopulations of 

cells, they can hardly profile more than 10 proteins simultaneously (Dixon et al., 2015; Pedreira et 

al., 2013). Conventional DNA and RNA sequencing, on the other hand, provide genome-wide data 

and have shaped much of our current understanding of human tumors. However, protocols require 

bulk samples as input material, thereby revealing average cellular patterns (Ren et al., 2018; Tirosh 

& Suvà, 2019). Recent advances in single-cell sequencing have led to a paradigm shift in cancer 

research by allowing the study of human tumors at the resolution of individual cells. Over the past 

decade, single-cell high-throughput technologies have improved considerably from the initial 

proof-of-principle studies using chips or plates with limited cell numbers (Tang et al., 2009). For 

instance, recently developed systems based on droplet microfluidics that enable the profile of an 

10

______________________________________________________________________________Introduction



order-of-magnitude-more cells in each batch are gradually becoming standard in the field 

(Macosko et al., 2015). Despite the dramatic advances, substantial limitations and challenges still 

exist, including the requirement of fresh tumor samples and highly optimized processing protocols 

to maximize cell viability and data quality, and the reduced sequencing coverage (i.e. number of 

genes detected per cell; Ren et al., 2018; Tirosh & Suvà, 2019).  

One of the ultimate goals of single-cell analyses is to link tumor subpopulations to distinct 

cell phenotypes, what is often accomplished using RNA sequencing. For example, studies of adult 

IDH-mutant oligodendrogliomas/astrocytomas (Tirosh, Venteicher, et al., 2016; Venteicher et al., 

2017) and H3K27M-mutant pediatric midline gliomas (Filbin et al., 2018) suggest that such tumors 

harbor a developmental hierarchy, with stem-like cells capable of self-renewal and more 

differentiated cells that do not cycle. In melanomas, a subset of cells expressing high levels of the 

receptor tyrosine kinase AXL, a putative marker of drug resistance, and low levels of the master 

melanocyte transcriptional regulator MITF and its target genes (TYR, PMEL and MLANA), were 

shown to be resistant to RAF and MEK inhibitors (Tirosh, Izar, et al., 2016). Notably, the 

proportion of AXL-high cells appeared to increase in both tumors and cell lines upon treatment 

and recurrence (Tirosh, Izar, et al., 2016). Finally, in head and neck squamous cell carcinoma 

(HNSCC), cells with a prominent signal for partial epithelial-mesenchymal transition are located 

at the periphery of tumors and likely compose the invasive edge (Puram et al., 2017). 

Networks of cell-to-cell communication 

As multicellular organisms evolved, cells acquired diverse modes of cell-to-cell 

communication that allow the coordinated functioning of tissues (Pires da Silva & Sommer, 2003). 

Such interactions are critical for early embryonic development (Eichmann et al., 1997), as well as 

for the maintenance of adult organs (Chow et al., 2011; Festa et al., 2011). Intercellular 

communication relies on ligand-receptor interactions, where the ligand can either be a secreted 

soluble factor, or membrane-bounded, requiring physical proximity between the interacting cells 

(Pires da Silva & Sommer, 2003). Interactions trigger a chain of specific molecular events inside 

the cell, which ultimately leads to changes in transcription, translation, as well as modifications in 

protein folding, processing and localization. The specificity of such pathways depends on the 
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intensity of the signal and the cross-regulatory interactions with overlapping signal transduction 

cascades (Dumont et al., 2001).  
Signaling by secreted molecules are frequently divided into three general categories 

according to the distance over which signals are transmitted. In endocrine signaling, the molecules 

(hormones) are secreted by specialized endocrine cells and carried through the circulation to act 

on target cells at distant body sites (Lodish et al., 2008). In humans, more than 30 different 

hormones are produced by endocrine glands, including the thyroid, adrenal, pituitary and pineal 

(Norman & Litwack, 1997). In autocrine and paracrine signaling, molecules act locally, activating 

receptors on the same cell and adjacent cells, respectively (Lodish et al., 2008). A recent study 

revealed that most cell types express tens to hundreds of ligands and receptors, creating a highly 

connected network of intracellular signal transduction (Ramilowski et al., 2015). More 

importantly, approximately two thirds of soluble ligands seem to be co-expressed with at least one 

of its cognate receptors in the same cell, revealing the potential extent of autocrine signaling 

(Ramilowski et al., 2015). Notably, disrupted autocrine/paracrine cell-to-cell interactions are 

increasingly recognized as major players controlling tumor progression (Butera et al., 2018; Pietras 

& Östman, 2010). 

The soluble fraction of the tumor microenvironment include signaling molecules such as 

chemokines, interferons, interleukins, growth and angiogenic factors, which are synthesized by 

tumor, stromal and/or immune cells (Balkwill et al., 2012). Pro-inflammatory interleukins such as 

IL6 and IL8, produced either by malignant or stromal cells, have been shown to participate in feed-

forward loops involving the nuclear factor kB (NFkB) and signal transducer and activator of 

transcription 3 (STAT3) oncogenic pathways and to promote tumor proliferation, survival, 

invasion and metastasis (Jayatilaka et al., 2017; Waugh & Wilson, 2008). Moreover, amplified 

activation of the endothelial growth factor receptor (EGFR), frequently observed in glioblastoma, 

lung and breast cancer, is a well-known driver of tumorigenesis and results from gene 

amplification, activating point mutations, and ligand overproduction (Sigismund et al., 2018). 

There are also factors such as TGF-b that play a complex and paradoxical role, varying by cell 

type and stage of tumorigenesis (Morikawa et al., 2016). In early stages, TGF-b may act as a tumor 

suppressor, inhibiting cell cycle progression and promoting apoptosis (Moses et al., 1990). Later, 

it may enhance invasion and metastasis by inducing epithelial-mesenchymal transition (Roberts & 

Wakefield, 2003). 
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Such signaling pathways represent cancer dependencies that can be exploit therapeutically. 

In this regard, the use of tyrosine kinase inhibitors (TKI) in patients with non-small cell lung cancer 

has provided the main example of the successes in targeting such oncogenic addiction, while 

disclosing the challenges of overcoming tumor resistance mechanisms (Murtuza et al., 2019). 

Tumors with activating EGFR mutations, approximately 15 to 20% of the cases, are sensitive to 

EGFR tyrosine kinase inhibitors (Pao & Chmielecki, 2010); and a paradigm shift emerged when 

these compounds showed improved efficacy to chemotherapy as initial therapy (Zhou et al., 2011). 

However, despite revolutionary advancements, patients who were sensitive to first- and second-

line EGFR TKIs eventually progressed after approximately 9 to 11 months, due to acquisition of 

new EGFR mutations such as T790M (Sequist et al., 2011). Third-generation TKI osimertinib 

which precisely targets EGFR T790M resistant clones was recently granted full FDA approval, 

with data that demonstrate significant improvement in clinical endpoints (Soria et al., 2018). Such 

compounds illustrate the current focus of much anticancer drug development: targeted therapies 

interfering with specific molecular pathways that are central to particular cancers. Targeted 

therapies are a cornerstone of precision medicine and aim to provide more biologically-grounded 

and patient-tailored treatment regimens (Collins & Varmus, 2015).  

Extrapineal melatonin and the Immune-Pineal Axis 

As analytical methods increased in sensitivity and specificity, it has become apparent that 

some of the well-known “endocrine hormones” are not exclusively produced by specialized glands 

and can act as autocrine/paracrine signals in other tissues. For instance, pioneering works have 

shown that the local production of adrenal glucocorticoids by thymic epithelial cells play an 

important role in antigen-specific thymocyte development (Vacchio et al., 1994). Evidences also 

indicate the existence of extrapancreatic sources of insulin (Kojima et al., 2004) and glucagon 

(Lund & Knop, 2019). Additionally, during the past two decades, considerable attention has been 

paid to melatonin, the “pineal hormone”. Melatonin is an ancient amphiphilic molecule present in 

a multitude of taxa, from bacteria to plants and animals (Tan et al., 2009). It was first isolated in 

the bovine pineal tissue in 1958 by Aaron B. Lerner, and named after its ability to lighten the skin 

of frogs by reversing the effects of melanocyte-stimulating hormone (Lerner et al., 1958). For a 

13

______________________________________________________________________________Introduction



number of years after its discovery, melatonin was considered to be exclusively produced by the 

pineal gland. Almost two decades later, the presence of melatonin synthesis enzymes was 

described in the retina and cerebellum of pinealectomized rodents (Bubenik et al., 1974; Cardinali 

& Rosner, 1971). Since then, diverse non-pineal sources of melatonin have been revealed (Acuña-

Castroviejo et al., 2014). 

Melatonin produced by the pineal gland during the night is best known for its role as the 

“hormone of darkness”, translating the environmental dark phase to the organism and ensuring the 

synchronization of circadian and seasonal rhythms (Reiter, 1993). In mammals, melatonin 

biosynthesis includes four enzymatic steps, beginning with the hydroxylation of tryptophan to 5-

hydroxytryptophan, which is then decarboxylated forming serotonin (Zhao et al., 2019). Serotonin 

is N-acetylated by serotonin N-acetyltransferase (AANAT) to form N-acetylserotonin (NAS). 

NAS is then converted to melatonin by the enzyme acetylserotonin-O-methyltransferase (ASMT). 

In the pineal gland, the temporal gating of nocturnal melatonin synthesis is determined by 

sympathetic innervations controlled by the central biological clock, the hypothalamic 

suprachiasmatic nuclei (Simonneaux & Ribelayga, 2003). In humans, as well as in rodents, the 

release of the norepinephrine during the night promotes the phosphorylation of AANAT through 

a cAMP-dependent, protein kinase A-mediated phosphorylation mechanism (Ackermann & 

Stehle, 2006). 14-3-3 chaperone proteins bind to PAANAT protecting it against proteasomal 

degradation, and inducing allosteric changes that result in increased enzymatic activity, and thus 

enhanced melatonin production (Klein et al., 2002). 

Melatonin presumably emerged in primitive unicellular organism as a potent electron 

donor, detoxifying free radicals generated during the processes of photosynthesis and energetic 

metabolism (Tan et al., 2009). However, during evolution this indolamine became a pleiotropic 

molecule, despite its unchanged chemical structure. The broadening of its functional repertoire 

was accompanied by the emergence of specific binding sites/receptors and associated signaling 

transduction pathways. In mammals, many of the currently known activities of melatonin are 

mediated by the high-affinity G-protein coupled receptors MT1 and MT2 located in the plasma 

membrane (Reppart et al., 1996), although they have recently been detected also in the 

mitochondrial membrane (Ahluwalia et al., 2018; Suofu et al., 2017). Both receptors are typically 

coupled to Gi/o proteins, inhibiting cAMP/protein kinase A signaling, while MT1 receptors might 

also be coupled to Gq proteins, activating the phospholipase C pathway (Brydon et al., 1999; 
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Jockers et al., 2016). In the cytosol, besides reducing oxidative stress, melatonin can also bind to 

calmodulin (Benítez-King & Antón-Tay, 1993), and to the enzyme quinone reductase 2, often 

designated as receptor MT3 (Nosjean et al., 2000). 

Currently, known extra-pineal sources of melatonin include the brain, retina, lens, cochlea, 

Harderian gland, airway epithelium, skin, gastrointestinal tract, liver, kidney, thyroid, pancreas, 

thymus, spleen, carotid body, reproductive tract, immune and endothelial cells (Acuña-Castroviejo 

et al., 2014). Extra-pineal melatonin is not released into the circulation, acting locally in the 

maintenance of tissue homeostasis (Venegas et al., 2012). For instance, over the past decade, our 

group has provided compelling evidences that during acute inflammatory responses there is a 

transient switch in melatonin production from the pineal gland to peripheral 

organs/immunocompetent cells (Markus et al., 2013, 2018, 2007; Markus & Ferreira, 2011). 

This bidirectional communication, named the Immune-Pineal Axis, provides a framework for 

understanding the role of melatonin in the mounting and resolution of immune responses (de 

Oliveira Tatsch-Dias et al., 2013; Pontes et al., 2006). 

The nocturnal rise of melatonin is known to impair leukocyte transendothelial migration to 

the site of tissue damage/infection, a fundamental step of innate immunity (Lotufo et al., 2001; 

Marçola et al., 2013; Tamura et al., 2010). In pinealocytes, pathogen- and danger-associated 

molecular patterns bind to pattern recognition receptors and promote the nuclear translocation of 

the transcription factor NFκB, a classical regulator of inflammation (Carvalho-Sousa et al., 2011; 

Da Silveira Cruz-Machado et al., 2010). In the nucleus, transactivation domain-free NFkB dimers 

p50/p50 block the expression of Aanat and hence the nighttime production of melatonin, 

facilitating leukocyte rolling and adhesion to the endothelial layer at the site of inflammation 

(Carvalho-Sousa et al., 2011; Da Silveira Cruz-Machado et al., 2010; Fernandes et al., 2006). 

During inflammation initiation, simultaneous activation of glucocorticoid receptors (GR) and 

adrenoceptors α1 and β1 in the pineal gland contributes to the blockage of melatonin production 

(Fernandes et al., 2017). During the resolution phase, on the other hand, as the sympathetic tonus 

decreases, GR activation (Fernandes et al., 2017), associated with others immune signals such as 

interferon-gamma (Barbosa Lima et al., 2019), induces Aanat transcription and allows the 

restoration of the nighttime production of melatonin. 
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At the site of inflammation, activated macrophages start to produce melatonin upon 

induction of Aanat expression by NFκB dimers containing transactivation domains (p50/RelA and 

cRel/RelA) (Muxel et al., 2016, 2012; Pires-Lapa et al., 2013). In this context, melatonin acts 

autocrinally/paracrinally reducing oxidative stress, potentiating phagocytoses and inhibiting 

bacterial proliferation. Similarly, acute neuroinflammation induced by lipopolysaccharide 

injected directly into the lateral ventricles of adult rats promotes the synthesis of melatonin by 

astrocytes and microglia in the cerebellum, though not in the cortex or hippocampus (Pinato et 

al., 2015). Interestingly, lipopolysaccharide treatment leads to neuronal death in the 

hippocampus and cortex, but not in the cerebellum. This privileged protection of cerebellar cells 

is abrogated by blocking melatonin receptors, suggesting that the local production of melatonin 

protects cerebellar neurons from neuroinflammation-induced cytotoxicity (Pinato et al., 2015). 

Melatonin and cancer 

In 2007, based on robust mechanistic evidence coming from well-designed experimental 

studies, the International Agency for Research on Cancer Working Group classified night shift 

work involving circadian disruption as probably carcinogenic to humans (Group 2A) (IARC 

Monographs Vol 124, 2019). For instance, exposure to constant light was shown to induce the 

development of metabolic syndrome and spontaneous tumorigenesis, and shorten the life span 

of both male and female rats, adverse effects shown to be prevented by the administration of 

melatonin in nocturnal drinking water (Anisimov et al., 2012). In human breast cancer xenografts, 

exposure to increasing intensities of white fluorescent light during each 12-hour dark phase result 

in a dose-dependent suppression of nocturnal melatonin blood levels and a stimulation of tumor 

growth and linoleic acid uptake/metabolism to the mitogenic molecule 13-

hydroxyoctadecadienoic acid (Blask et al., 2005). Importantly, human breast cancer xenografts 

perfused in situ with physiologically melatonin-rich blood collected from health female volunteers 

during the night exhibited markedly suppressed proliferative activity compared to those perfused 

with melatonin-depleted blood collected following exposer to light at night (Blask et al., 2005). 

Over the past 30 years, accumulating evidence has outlined the relevance of melatonin to 

human physiology and pathology. Slow release melatonin (Circadin) and several melatonin 
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analogues (e.g. Ramelteon, Agomelatine and Tasimelteon) are currently used clinically for the 

resynchronization of circadian rhythms during jet lag and shift work, and for managing insomnia, 

depression, and non-24-h sleep-wake disorder (Liu et al., 2016). Additionally, the potential of 

melatonin as an anticancer agent has gained increasing attention, and the growing number of 

supporting in vitro and in vivo experimental studies include a wide variety of tumors, such as, 

melanoma, glioma, sarcoma, as well as cancers of breast, ovary, cervix, and prostate (Cutando et 

al., 2012; Li et al., 2017). As a pleiotropic molecule, melatonin has been documented to act through 

several biological mechanisms, including: inhibition of glioma cell migration/invasion by direct 

scavenging intracellular free radicals and impairing the reactive oxygen species-dependent NFκB 

oncogenic signaling (Wang et al., 2012); induction of apoptosis of colorectal cancer cells through 

inactivation of calmodulin-dependent protein kinase II, followed by dephosphorylation and 

nuclear import of histone deacetylase 4 (Wei et al., 2015); and suppression of estrogen receptor 

alpha mRNA expression and transcriptional activity in breast cancer cells via MT1 receptor 

activation (Girgert et al., 2009; Mao et al., 2010). 

Despite the extensive list of promising basic research studies conducted in the past decades, 

at present, completed clinical trials focusing on melatonin and cancer sum up to only 20, 16 of 

which were carried out at the Institute of Biological Medicine in Milan, Italy (González et al., 

2019). Overall, melatonin seems to effectively improve the quality of life of patients receiving 

radio and/or chemotherapy by normalizing sleep and relieving symptoms such as pain, asthenia, 

and anorexia (González et al., 2019). Although individual trials with hepatocellular carcinoma 

(Yan et al., 2002), glioblastomas (Lissoni et al., 1996), colorectal (Cerea et al., 2003), and lung 

cancers (Lissoni et al., 2003) have suggested that melatonin, given as an adjuvant, can also 

significantly increase tumor remission rate and patient overall survival, data are still limited and 

show inconsistencies in more recent studies (Berk et al., 2007; Sookprasert et al., 2014). There is 

thus a clear necessity for further large-scale and multi-center randomized clinical 

trials. Additionally, as rational therapies that interfere with specific molecules become the focus 

of anticancer drug development, the roles of MT1 and MT2 melatonin receptors as relevant targets 

should be explored. 
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Objectives 

Over the past few years, single-cell RNA-seq (scRNA-seq) studies of different cancer types 

have highlighted the heterogeneity among malignant cells within single tumors. Thus it is now 

crucial to establish frameworks to better understand the biological and clinical relevance of such 

cellular diversity, as well as its underlying molecular mechanisms. In this sense, although human 

cell lines have been a cornerstones of cancer research, their value as models of intratumoral 

heterogeneity remains largely unknown. To comprehensively address this issue, we generated 

scRNA-seq data for 198 cell lines (22 cancer types, 53,513 cells) from the Cancer Cell Line 

Encyclopedia (CCLE) collection and systematically characterized intra-cell line expression 

heterogeneity. We uncovered recurrent programs of heterogeneity and i) determined their 

similarity to programs of intratumoral heterogeneity previously described in clinical samples; ii) 

evaluated their association with mutations and drug sensitivities; and iii) investigated their 

dependency on genetic variability. Finally, we select two optimal cell lines to model a recurring 

program associated with partial epithelial senescence. We demonstrated the dynamics, regulation, 

and vulnerabilities associated with this program, highlighting its role in driving phenomena such 

as drug resistance. 

Additionally, we aimed to explore autocrine and paracrine signaling mediating the 

communication among the diverse malignant cells in the tumor ecosystem, thereby looking for 

new molecular networks that could be exploited clinically. It is now clear that fine-tuning the 

extrapineal production of melatonin is critical for the maintenance of an internal steady state within 

tissues, as illustrated by the Immune-Pineal Axis. However, our knowledge of the 

pathophysiological role of local melatonin in malignant processes remains very limited. Thus, 

here, we comprehensively characterized the melatonergic system of human gliomas, the most 

common primary brain tumor in adults and one of the deadliest malignant neoplasms. We 

investigated the association between the capacity of glioma cells to synthesize and accumulate 

melatonin in the surrounding microenvironment and their overall malignancy as well as patient 

survival. We also further elucidated differential effects of MT1 and MT2 receptors activation, 

highlighting the therapeutic potential of specific melatonergic agonists/antagonist in the treatment 

of brain cancers. 
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Abstract 
Cultured cell lines are the workhorse of cancer research, but it is unclear to what extent they 
recapitulate the cellular heterogeneity observed among malignant cells in tumors, given the 
absence of a native microenvironment in vitro. Here, we used multiplexed single-cell RNA-seq to 
profile ~200 cancer cell lines (53,513 cells, 22 cancer types). We uncovered expression programs 
that are recurrently heterogeneous within many cancer cell lines and are largely independent of the 
observed genetic diversity. These programs of heterogeneity are associated with diverse biological 
processes, including cell cycle, senescence, stress and interferon responses, epithelial-to-
mesenchymal transition, and protein maturation/degradation. Notably, some of these recurrent 
programs recapitulate those seen in human tumors, suggesting a prominent role of intrinsic 
plasticity in generating intratumoral heterogeneity. Moreover, the data allowed us to prioritize 
specific cell lines as model systems of cellular plasticity. We used two of such models to 
demonstrate the dynamics, regulation and vulnerabilities associated with a cancer senescence 
program observed both in cell lines and in human tumors. Overall, our work describes the 
landscape of cancer cell diversity, identifying major patterns of expression heterogeneity that are 
shared between tumors and specific cell lines and can thus be further explored in follow up studies.  
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Introduction 
 

Cellular plasticity and heterogeneity are fundamental features of human tumors driven by 
both genetic and epigenetic mechanisms (Chaffer et al., 2016; McGranahan and Swanton, 2015). 
Malignant cells within a single tumor display diverse patterns of gene expression, which underlie 
differences in morphology, metabolism, proliferation, invasion and immunogenicity. The 
existence of cells with multiple phenotypes plays a major role in disease progression and treatment 
failure, as subpopulations of cells may drive tumor recurrence and metastasis. Thus, it is critical 
for cancer research to establish frameworks to characterize cellular diversity within tumors, as well 
as the underlying mechanisms that generate such diversity. 

Single-cell RNA sequencing (scRNA-seq) has emerged as a valuable tool to study cell-to-
cell heterogeneity within tumors (Chung et al., 2017; Filbin et al., 2018; Kim et al., 2016; 
Lambrechts et al., 2018; Li et al., 2017; Patel et al., 2014; Puram et al., 2017; Tirosh et al., 2016a; 
Tirosh et al., 2016b; Venteicher et al., 2017). Several studies identified functionally significant 
patterns of intratumoral heterogeneity (ITH) within malignant cells, yet their origin and 
mechanisms were difficult to resolve from observations in patients. In principle, genetic diversity, 
epigenetic cell-intrinsic plasticity, and interactions with the spatially-variable tumor 
microenvironment all contribute to the heterogeneity observed across malignant cells. However, 
since previous studies suggest that major patterns of expression heterogeneity in tumors are linked 
to their cell-of-origin and recapitulated in cell lines, we hypothesize that they may reflect intrinsic 
cellular plasticity that exists even in the absence of genetic diversity and a native 
microenvironment. For example, we previously reported an EMT-like program associated with 
metastasis in head and neck squamous cell carcinoma (HNSCC) that was partly preserved in one 
of a number of tested cell lines (Puram et al., 2017). Similarly, drug-resistance melanoma programs 
identified in tumors were recapitulated and studied in melanoma cell lines (Jerby-Arnon et al., 
2018; Shaffer et al., 2017; Tirosh et al., 2016a).  

Human cell lines are a mainstay of cancer research and drug discovery, yet our current 
knowledge of their ability to recapitulate the expression diversity observed in patient samples is 
limited. Only a few cancer cell lines have been comprehensively profiled by scRNA-seq so far 
(Ben-David et al., 2018; Jerby-Arnon et al., 2018; Kim et al., 2015; Sharma et al., 2018). Thus, 
models are often chosen based on their mutational status, historical popularity, and ease of 
culturing. To address this issue, here, we apply multiplexed scRNA-seq to profile 198 cell lines 
from 22 tumor types in the Cancer Cell Line Encyclopedia (CCLE) collection (Barretina et al., 
2012; Ghandi et al., 2019). Analysis of expression heterogeneity within cell lines revealed 
patterns of variability that recurred across different cell lines, and spanned diverse biological 
functions. Strikingly, many of these variable programs observed in vitro matched those 
previously characterized in fresh tumors. We used these results to select model cell lines and 
utilize them for follow up studies, demonstrating the dynamics, regulation and drug sensitivities 
associated with a recurrent expression program linked to cellular senescence. Likewise, this 
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dataset provides a resource for the rational selection of cancer cell lines as models for exploring 
the determinants and consequences of ITH.  
 

Results 
 
Pan-cancer scRNA-seq of human cell lines  
 

To effectively profile expression heterogeneity within diverse cancer cell lines, we 
developed and applied a multiplexing strategy where cells from different cell lines are grown and 
profiled in pools and then computationally assigned to the corresponding cell line (Fig. 1A). We 
utilized existing pools that were previously generated from the CCLE collection (Barretina et al., 
2012; Yu et al., 2016). Each pool consisted of 24-27 cell lines from diverse lineages but with 
comparable proliferation rates, and was profiled by massively parallel scRNA-seq, for an average 
of 280 cells per cell line (Methods). We profiled eight CCLE pools, along with one smaller custom 
pool that included HNSCC cell lines. 

We assigned profiled cells to cell lines based on consensus between two complementary 
approaches, using genetic (SNP) and expression profiles (Fig. 1A). First, cells were clustered by 
their global expression profile, and each cluster was mapped to the cell line with most similar bulk 
RNA-seq profile (Ghandi et al., 2019). Second, by detection of SNPs in the scRNA-seq reads, we 
assigned cells to the cell line with highest similarity by SNP profiles derived from bulk RNA-seq 
(Ghandi et al., 2019; Kang et al., 2018). Cell line assignments based on gene expression and SNPs 
were consistent for 98% of the cells, which were retained for further analysis (e.g. Fig. 1B). The 
few inconsistent assignments were observed primarily in cells with low data quality, resulting in 
low SNP coverage, which were therefore excluded. Cell lines with less than 50 assigned cells were 
also excluded from further analyses, as were low-quality cells and suspected doublets.  

Overall, following assignment and quality control filters, we studied the expression profiles 
of 53,513 cells, from 198 cell lines (56-1,990 cells per cell line), reflecting 22 cancer types (Fig. 
1C; Table S1). We detected an average of 19,264 UMIs and 3,802 genes per cell, underscoring 
the high quality of our dataset.  
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Figure 1. Characterizing intra-cell line expression heterogeneity by multiplexed scRNA-seq. 
(A) Workflow of the multiplexing strategy used to profile multiple cell lines simultaneously. Cell 
lines were pooled and profiled by droplet-based scRNA-seq. We used reference CCLE data to 
assign cells to the most similar cell line based on their overall gene expression and SNP pattern. 
(B) tSNE plot of a representative pool demonstrating the robustness of cells’ assignments to cell 
lines. Cells with inconsistent assignments (by gene expression and SNPs) were excluded from 
further analyses. (C) Distribution of cancer types profiled. 

 
 
 
Discrete and continuous patterns of expression heterogeneity within cell lines 
 

We aimed to characterize the variation in gene expression across cells within individual 
cell lines, distinguishing between discrete patterns, reflecting highly distinct subpopulations of 
cells, and continuous patterns, reflecting spectra of cellular states (Fig. 2A). To identify discrete 
subpopulations, we used dimensionality reduction (t-Distributed Stochastic Neighbor Embedding, 
tSNE) followed by density-based clustering (DBSCAN; Fig. S1A; Methods). Discrete clusters of 
cells within a cell line were found only for a minority (11%) of the cell lines: three cell lines had 
three or more clusters, three had two clusters of comparable sizes, and 16 had one major and one 
minor cluster (Fig. 2B and S1B). For each such cluster, we identified the top 50 upregulated genes 
compared to all other cells from the same cell line (Table S2). These expression programs showed 
limited similarities to one another, both within cell lines of the same cancer type and across 
different cancer types, indicating that discrete subpopulations are typically unique and cell line-
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specific (Fig. 2C). The main exceptions were seven subpopulations commonly upregulating the 
expression of cell cycle-related genes, and six subpopulations commonly upregulating the 
expression of stress response genes. Similar results were obtained using DBSCAN with different 
parameters (Fig. S1C-D).       

To also identify continuous variability of cellular states, we applied non-negative matrix 
factorization (NMF) to each cancer cell line (Puram et al., 2017). We repeated the NMF analysis 
with distinct parameters to identify robust expression programs (i.e. consistently observed as 
variable using different parameters), each defined by the top 50 genes based on NMF scores (e.g., 
Fig. 2D; Methods). This procedure captures both continuous and discrete programs. Overall, we 
detected 1,445 robust expression programs across all cell lines, with 4-9 such programs in 
individual cell lines (Fig. S1E; Table S3). To identify common expression programs varying 
within multiple cell lines, we first excluded those with limited similarity to all other programs as 
well as those associated with the technical confounder of variable cell quality (Fig. S1F), retaining 
800 programs (0-8 per cell line, Fig. S1E). Of these programs, only 4.75% corresponded to the 
discrete subpopulations described above (Fig. 2E).  

Hierarchical clustering of the NMF programs based on their shared genes emphasized 
multiple recurrently heterogeneous programs (RHPs) of gene expression, which are present in 
multiple cell lines. The two most prominent RHPs reflected the cell cycle, and 10 additional RHPs 
were associated with other cellular processes (Fig. 2E; Table S4). The cell cycle RHPs 
corresponded to the G1/S and the G2/M phases (Fig. 2E), as was also observed in clinical tumor 
samples (Fig. S2A). G2/M programs were similar across cell lines, as well as between cell lines 
and tumors, thus defining a generic mitotic program (Fig. S2B). In contrast, G1/S programs 
differed more both across cell lines and between cell lines and tumors (Fig. S2B), indicating that 
expression programs associated with genome replication are more context-dependent. A central 
difference in G1/S programs involved the MCM complex genes (MCM2-7) and the linker histone 
H1 family genes (HIST1H1B-E), which were robustly upregulated only in tumors or cell lines, 
respectively (Fig. S2B,D). This may reflect an in vitro adaptation to rapid growth and loss of the 
G1 checkpoint in cell lines. Consistent with this possibility, while tumors have a high percentage 
of apparent G0 cells (i.e., lacking both G1/S and G2/M expression programs), such cells are much 
less prevalent in cell lines (Fig. S2E).  
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Figure 2. Discrete and continuous patterns of intra-cell line expression heterogeneity. (A) 
Illustration of the two types of expression variability investigated. (B) tSNE plots show exemplary 
cell lines for the four classes defined by the presence and number of discrete subpopulations 
identified using DBSCAN with optimized parameters (eps = 1.8, MinPts = 5, see Fig. S2A). The 
description of each class and number of cell lines is indicated above the tSNE plots. (C) Heatmap 
depicts pairwise similarities between gene expression programs defined for each of the cell clusters 
derived from the 22 cell lines identified as having one or more discrete subpopulations. 
Hierarchical clustering identifies only two coherent groups of programs (metaprograms). Top 
panel shows assignment to cancer types. (D) Continuous programs of heterogeneity identified 
using NMF in a representative cell line that lacks discrete subpopulations (JHU006; see Fig. 2B). 
Heatmap shows relative expression of genes from four programs across all JHU006 cells. NMF 
programs are annotated (right) and selected genes are indicated (left). Cells were ordered by 
hierarchical clustering. (E) Pairwise similarities between NMF programs identified across all the 
cell lines analyzed and ordered by hierarchical clustering. Programs with limited similarity to all 
other programs as well as those associated with technical confounders were excluded. Top panel 
indicates the 4% of NMF programs that were consistent with discrete subpopulations identified by 
DBSCAN.  
 
 
RHPs reflect distinct biological processes and mirror in vivo cellular states  
 

The 10 additional (non-cell cycle) RHPs reflected diverse biological processes, and are 
described further below. Importantly, i) the similarity between NMF programs was largely 
independent of the pools in which they were detected (Fig. S3A); ii) RHPs were each detected in 
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at least four different pools (Fig. S3B); and iii) a single cell line had highly similar NMF programs 
when profiled in two distinct pools (Fig. S3C). Thus, the pooling approach had a limited impact 
on defining heterogeneity within individual cell lines and RHPs are robustly identified across 
pools.  

We characterized these 10 RHPs by functional enrichment of their signature genes, the 
lineages and mutations of cell lines in which they are observed, as well as their similarity with 
programs that vary across cells in patient tumor samples (Fig. 3A-C). Overall, 7 out of 10 RHPs 
resemble the heterogeneity observed in human tumor samples, including 5 RHPs with particularly 
high similarity (Fig. 3B, S4A,B), demonstrating the in vivo relevance of cell line RHPs. One of 
these RHPs (#8) reflected stress response, including DNA damage-induced and immediate early 
genes (e.g. DDIT3-4 and ATF3). RHP #8 resembles programs of heterogeneity previously 
observed in melanoma and HNSCC tumors (Fig. 3B,D) (Puram et al., 2017; Tirosh et al., 2016a), 
and may reflect the response to various cellular insults.  

RHP (#4) contained interferon (IFN) response genes (e.g., IFT1-3 and ISG15,20) and was 
depleted in cell lines with mutations in MRE11A (Fig. S5B), which recognizes cytosolic dsDNA 
and activates STING (Kondo et al., 2013). Accordingly, recent studies revealed that IFN response 
may be triggered by genomic instability through the cGAS-STING pathway (Chen et al., 2016). 
Two other RHPs (#9 and #10) consisted of genes related to protein folding and maturation (e.g. 
HSPA1A, RPN2) and to proteasomal degradation (e.g. PSMA3-4), respectively. These RHPs, as 
well as the IFN response RHP #4, did not resemble the in vivo programs of heterogeneity observed 
previously among tumor cells. However, it is possible that such programs exist in vivo and have 
not been detected yet due to the limited number of studies.  
 
 
RHPs recapitulate in vivo EMT programs and are associated with NOTCH mutations 
 

Three distinct RHPs were related to EMT: two shared across cancer types, and one unique 
to melanoma cell lines. The melanoma-specific EMT (RHP #2; EMT-I) was negatively correlated 
with another melanoma-specific RHP (#1) that was enriched with skin pigmentation genes (e.g., 
MITF and PMEL). Both of these melanoma-specific RHPs, and their negative correlation, 
recapitulated the patterns of variability previously observed in melanoma tumors (Fig. 3B,D, 
S4B,C), in which they were linked to drug resistance (Shaffer et al., 2017; Tirosh et al., 2016a). 
Notably, as observed in patient samples, many of the melanoma cell lines (50%; Table S2) 
harbored cells in both of these alternate cellular states, yet our data highlight certain melanoma 
cell lines as faithful model systems for these in vivo-related RHPs (Fig. S5A, S4C).  

Two other RHPs, EMT-II (#3) and EMT-III (#5), also reflected EMT-like processes in 
distinct cell lines. EMT-II was mainly observed in HNSCC cell lines (Fig. 3A), although across 7 
distinct pools (Fig. S3B). It included vimentin (VIM), fibronectin (FN1), the AXL receptor 
tyrosine kinase, and other genes, closely mirroring the partial EMT (pEMT) state we previously 
observed in HNSCC tumors (Fig. 3B,D, S4B,C), where it was linked to metastasis (Puram et al., 
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2017). Cell lines harboring EMT-II were depleted of NOTCH4 mutations (Fig. S5B) and were 
sensitive to inhibitors of NOTCH signaling (Fig. S5D), suggesting a potential role of such pathway 
in enabling EMT-II variability. This is similar to the association we found in glioblastoma between 
specific mutations and patterns of intratumoral heterogeneity (Neftel et al., 2019). In contrast, 
EMT-III was enriched among non-cycling cells (Fig. S5C) and contained genes involved in cell 
junction organization such as laminin A3, B3 and C3, and plakoglobin (JUP). Interestingly, JUP 
was shown to promote collective migration of circulating tumor cells with increased metastatic 
potential (Aceto et al., 2014). The identification of three distinct EMT programs, two of which are 
enriched in specific cancer types, highlights EMT as a common, yet context-specific, pattern of 
cellular heterogeneity, which may have important implications for metastasis and drug responses. 
 
 
RHPs recapitulate classical and epithelial senescence programs 
 

RHPs #6 and #7 were preferentially observed in G0 cells (Fig. S5C) and seem to reflect 
different expression programs of cellular senescence. RHP #6 was enriched in p53-wild type cell 
lines and in those sensitive to the pharmacological activation of p53 by the MDM2 inhibitor 
Nutlin-3a (Fig. S5B,D). Moreover, it included the senescence mediator p21 (CDKN1A) and other 
p53-target genes. Thus, we annotated it as “classical” p53-associated senescence. In contrast, RHP 
#7 was enriched in HNSCC cell lines, and was highly similar to the senescence program of 
keratinocytes (Hernandez-Segura et al., 2017) (Fig. 3A,B). RHP #7 also contained many secreted 
factors, such as S100A8/9, SAA1/2, LCN2, SLPI, which are involved in inflammatory responses 
and are reminiscent of the Senescence-Associated Secretory Phenotype (SASP). To further 
examine the possibility that RHP #7 reflects a senescence program despite the lack of classical 
markers (e.g., p16 and p21), we profiled primary lung bronchial cells by bulk RNA-seq after 
induction of senescence by etoposide. Etoposide-treated cells stained for the senescence marker 
SA-b-GAL (Fig. S5E) and, compared to control, upregulated the expression of genes of both 
senescence-associated RHPs (#6 and #7) and downregulated the expression of cell cycle genes 
(Fig. S5D).  

Hence, RHP #7 resembles the senescence response of both keratinocytes and lung 
bronchial cells, while it differs from published senescence signatures of fibroblasts and 
melanocytes (Hernandez-Segura et al., 2017), underscoring the context- and cell type-specificity 
of senescence expression programs. We therefore denote it as an epithelial senescence (EpiSen) 
program. Notably, the EpiSen RHP recapitulates a program we previously observed in HNSCC 
tumors (Fig. 3B,D, S4B,C), which was also negatively associated with cell cycle and spatially 
restricted to the hypoxic tumor core (Puram et al., 2017). We conclude that programs of cell-cycle 
arrest are observed in subpopulations of cells in tumors and in cell lines, and are associated with 
distinct expression profiles depending on genetics (e.g., p53 status), lineage (e.g., HNSCC), and 
possibly other features.     
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Figure 3. Functional annotation of RHPs. (A) The main heatmap depicts pairwise similarities 
between all NMF programs (except for those linked to the cell cycle, see Fig. 2E), ordered by 
hierarchical clustering. Ten clusters (RHPs) are indicated by squares and by numbers on the right. 
Top panel shows assignment to cancer types, highlighting significant enrichment (p < 0.05, 
hypergeometric test) of melanoma and HNSCC cell lines in RHPs #1,2, and #3,7, respectively. 
Bottom panel shows NMF scores of signature genes of each RHP. (B) Top heatmap depicts 
similarities between heterogeneity programs identified in cell lines (in vitro) and those observed 
in patient samples (in vivo). Line plot on the right shows the maximum correlation between single-
cell scores of each in vitro program and the 19 in vivo programs analyzed, emphasizing 5 RHPs 
(#1, 2, 3, 7 and 8, see Fig. S5A,B) that closely recapitulate in vivo programs. Dashed line shows 
the maximum correlation obtained using 100 permutations. Bottom panel shows enrichment (p < 
0.001, hypergeometric test) of RHP genes with eight annotated gene-sets. (C) Annotation and 
selected top genes for each of the 10 RHPs. (D) Single-cell scores of in vitro programs (X-axis, 
RHPs #1, 2, 3, 7 and 8) and the corresponding in vivo programs (Y-axis), in selected model cell 
lines, demonstrating high Pearson correlations.  
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Assessing the role of genetic heterogeneity through inference of chromosomal aberrations 
 

Expression heterogeneity within a single cell line could be driven by either genetic or 
epigenetic mechanisms. To search for the contribution of genetic heterogeneity, we asked if 
genetic subclones within individual cell lines relate to the discrete/continuous programs of 
heterogeneity identified. First, to identify genetic subclones, we inferred large-scale copy number 
aberrations (CNAs) from the gene expression patterns in windows of 100 genes around each locus 
(Tirosh et al., 2016b). The inferred CNA profiles were consistent with hallmark genomic 
alterations such as the gain of chromosome 7 and loss of chromosome 10 in most glioblastoma 
cell lines (Fig. S6). Importantly, CNA analysis allowed the robust identification of genetic 
subclones in 58 cell lines, based on the gain or loss of chromosomes (or chromosome arms) in a 
subset of cells (Methods).  

Next, we compared the assignment of cells to genetic subclones with their patterns of 
expression heterogeneity. Twelve of the 22 cell lines (54%) with discrete expression-based clusters 
had genetic subclones, and 66% of their expression-based clusters were significantly correlated 
with genetic subclones (Fig. 4A). Thus, 39% of all discrete clusters were significantly associated 
with identified genetic subclones (Fig. 4B). Consistencies between genetic-based and expression-
based classifications were much more limited for the continuous patterns of expression variability 
identified by NMF. Genetic subclones were observed only in 29% of the cell lines with continuous 
programs. Among these cell lines, only 31% of continuous programs were differentially expressed 
between genetic subclones. Taken together, only 8% of all continuous programs (compared with 
39% for discrete clusters) were significantly associated with identified genetic subclones (Fig. 
4B). In summary, genetic diversity, as evaluated by CNA-based subclones, partially contributes to 
expression heterogeneity in cell lines, and this effect is particularly weak for the continuous 
programs, underscoring the potential role of epigenetic regulation. 
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Figure 4. Genetic subclones partially explain intra-cell line expression heterogeneity. (A) 
Representative cell lines showing the association (top two cases) or lack thereof (bottom two cases) 
between discrete subpopulations and CNA-based subclones. tSNE plots on the left show discrete 
subpopulations identified using DBSCAN (as in Fig. 2B and S2B). Heatmaps on the right depict 
inferred CNAs with cells ordered according to the expression-based clusters. (B) Percentage of 
discrete (left) and continuous (right) heterogeneity programs that are associated with genetic 
subclones. For discrete programs, associations were assessed by comparing the assignment of cells 
to CNA subclones and to expression-based subpopulations (Fisher’s exact test p < 0.001); for 
continuous programs, we compared NMF cell scores between different clones (t-test p < 0.001). 
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Plasticity of heterogenous cellular states in model cell lines  
 

To assess the role of non-genetic mechanisms in regulating RHPs, we used two cell lines 
that successfully model both EMT-II (RHP #3) and EpiSen (RHP #7): JHU006, an HPV- laryngeal 
HNSCC, and SCC47, an HPV+ oropharyngeal HNSCC (Fig. 3D, S4C). Notably, EpiSen-high and 
EpiSen-low cells could be prospectively isolated, but returned to their pre-sorted heterogenous 
distribution with time. Specifically, we isolated by FACS EpiSen-high (AXL-/CLDN4+) and 
EpiSen-low (AXL+/CLDN4) subpopulations, displaying ~12-fold difference in the expression of 
the EpiSen program (Fig. 5A-B). These sorted subpopulations began to shift by one week in 
culture and returned to the pre-sorting distribution of cellular states by day 14 (Fig. 5C; Fig. S7A). 
The EpiSen-high subpopulation was enriched for G0/G1 cell cycle phases, consistent with low 
proliferation (Fig. 5D; Fig. S7B). Nevertheless, it still contained cells in the S and G2/M phases, 
and did not stain for the classical senescence marker SA-b-gal (data not shown). These results 
suggest that the EpiSen program is dynamically regulated by non-genetic processes, and that it 
does not represent a permanent exit from cell cycle, consistent with the observation that, in cancer 
cells, senescence is often an incomplete and reversible state (Lee and Schmitt 2019). 

Next, we examined the induction of these programs by tumor microenvironment soluble 
factors and perturbations (Fig. 5E). As expected, TGFb1 and TGFb3 induced the expression of 
genes in the EMT-II program, although the complete program induced had subtle differences from 
the native EMT-II program observed without perturbations (Fig. S7C-D). Interestingly, TGFb 
treatments also downregulated the expression of EpiSen genes, underscoring the potential 
interplay between these two programs. A negative association between EMT and EpiSen was 
further supported by the single-cell profiles of JHU006 and SCC47 cells (Fig. S4C) and by our 
prior findings in HNSCC clinical samples, in which EMT-high cells were enriched at the invasive 
edge, while senescent cells were enriched at the core of tumors (Puram et al., 2017). Tumor cores 
are often associated with increased hypoxia, suggesting a potential mechanism for the spatial 
enrichment of senescent cells. In accordance with this possibility, the hypoxia mimetic 
desferrioxamine (DFO) induced the expression of the EpiSen program. A similar effect was 
observed upon hydrogen peroxide treatment, consistent with oxidative stress and the resultant 
DNA damage as potent inducers of senescence (te Poele et al., 2002) (Fig. 5E).  
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Figure 5. Interrogating the EpiSen expression heterogeneity program in model cell lines. (A) 
FACS isolation of an EpiSen-high population (AXL-CLDN4+) and an EpiSen-low population 
(AXL+CLDN4-) from the JHU006 cell line. (B) Heatmap shows relative expression of EpiSen 
genes in the sorted populations. Control corresponds to unsorted cells. (C) Pie charts depict relative 
proportions of the EpiSen-high and EpiSen-low, as determined by FACS based on AXL and 
Claudin4 expression. Pie charts are shown for an unsorted sample (left, initial distribution) and for 
sorted subpopulations, all of which were reanalyzed immediately after sorting (day 0) and at two 
additional time points (at days 7 and 14 in culture). (D) Analysis of cell cycle by DNA staining 
using propidium iodide (PI) on sorted EpiSen-high and EpiSen-low cells from JHU006. (E) Main 
heatmap depicts relative expression of EpiSen genes and EMT-II genes following multiple 
perturbations in SCC47 and JHU006. Smaller heatmap at the bottom shows the average fold 
change and asterisks denote significant up or down-regulation (t-test, see thresholds in figure).  
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Co-existing subpopulations differ in drug sensitivity  
 

An important implication of cellular diversity in cancer is the possibility that distinct 
subpopulations of cells respond differently to treatments. Thus, we compared the sensitivities of 
EpiSen-high and EpiSen-low subpopulations sorted from each of the two model cell lines selected 
(Fig. 6A). We initially screened 2,198 bioactive compounds using a CTG-based viability assay 
performed in simplicate (Fig. S8A-C). We identified 200 compounds (9%) as potential hits, 
defined by differential killing of EpiSen-high and EpiSen-low subpopulations in at least one cell 
line (Methods). There was a significant overlap among compounds that preferentially killed 
EpiSen-high cells in the two cell lines (p = 0.006, hypergeometric test). Next, these putative hits 
and an additional group of compounds that killed both populations (n total = 248) were selected 
for a secondary screen performed in duplicate in each cell line (Fig. 6B, Table S5). Such screen 
identified 113 compounds with differential killing of the subpopulations in at least one cell line. 
Of the hits preferentially killing the EpiSen-high cells, 15 were shared among both cell lines, 
representing 41% and 45% of all the corresponding hits in JHU006 and SCC47, respectively. 
Finally, fourteen compounds with differential sensitivities, including five that were shared between 
cell lines and nine that were specific to one cell line, were analyzed by a full dose response (Fig. 
6C, Fig. S8D, Table S6). All five of the shared compounds, and five of the nine cell line-specific 
compounds (56%), displayed significant differential sensitivity as in the secondary screen (p < 
0.05 by paired t-test), supporting the consistency between cell lines as a measure of robustness.  

As expected, EpiSen-high cells were more sensitive to the senolytic compound ABT-737 
(Yosef et al., 2016). Additional sensitivities included multiple inhibitors of EGFR, AKT, PI3K, 
DNA-PK, IGF1R, and JAK (Fig. 6B, Table S5). Several of these targets (DNA-PK, IGF1R and 
AKT) converge on repair of double-strand breaks as part of the DNA repair machinery (Bozulic 
et al., 2008; Wong et al., 2009). Together with the observation that hydrogen peroxide induces the 
expression of EpiSen genes (Fig. 5E), these results reinforce the role of DNA damage as a potential 
inducer of such RHP. The PI3K/AKT axis is hyper-activated in HNSCC, and resistance to PI3K 
inhibition in HNSCC is AXL-dependent (Elkabets et al. 2015). Accordingly, EpiSen-high cells, 
which are defined by low AXL expression, were more sensitive to inhibitors of PI3K and AKT, 
as well as those of EGFR and IGF1R that signal via the PI3K/AKT axis.  

EpiSen-low cells were more sensitive to inhibitors of cell cycle regulators (CDKs, CHK1 
and topoisomerase), consistent with their increased proliferation rate. EpiSen-low sensitivities also 
included multiple inhibitors of the proteasome and compounds that induce cell death by sensitizing 
cells to ferroptosis (the GPX4 inhibitor RSL3, Erastin, and the SLC7A11 inhibitor Sorafenib) (Fig. 
6B, Table S5). Recent work demonstrated that mesenchymal cells are particularly sensitive to 
ferroptosis-inducing compounds (Hangauer et al., 2017; Viswanathan et al., 2017). Thus, some of 
these vulnerabilities may reflect an increased mesenchymal signal of EpiSen-low cells due to the 
inverse correlation between EpiSen and EMT-II. Taken together, these results suggest that EpiSen-
high and EpiSen-low cells are associated with differential vulnerabilities that may be consistent 
across distinct cellular contexts. 
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Figure 6. Co-existing cellular states differ in drug sensitivity. (A) Experimental scheme for 
drug screening: EpiSen-high cells, EpiSen-low cells, and a neutral reference population were 
isolated by FACS, then treated with a compound library in 384-well format for 48h, and viability 
was determined by CTG assay. A secondary screen, including drugs that differentially impacted 
the two populations in the primary screen, was performed in duplicate. (B) Viability of the 
reference population (X-axis) and differential viability of the EpiSen-high vs. EpiSen-low 
populations (Y-axis) upon treatment with 248 compounds tested in the secondary screen, in 
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JHU006 (left) and SCC47 (right). Dotted lines represent the thresholds for defining differential 
sensitivity between the EpiSen-high and EpiSen-low states. Hits are colored by enriched target 
categories and shared hits between both cells lines are denoted by bold outline. (C) Dose response 
curves of three compounds (ABT-737, MLN2238, and A66) selected for follow-up EC50 studies 
in SCC47 in each sorted subpopulation (EpiSen-low, EpiSen-high, reference) performed in 
duplicate. Percent change in viability was calculated at each concentration using the viability 
normalized to vehicle (DMSO-treated) controls and curves were fit using a three-parameter 
nonlinear regression model. Error bars represent S.D. 

Discussion 
 

Despite widespread interest in tumor heterogeneity and in emerging single-cell 
technologies, the amount and quality of single-cell tumor datasets remains limited. Moreover, 
deciphering the function and regulation of the observed heterogeneity requires follow up 
experiments that are not feasible with clinical samples. Thus, there is a clear need to identify model 
systems that are proven to recapitulate the cellular diversity within tumors (or certain aspects 
thereof). One approach towards this goal is the continued effort for developing more realistic 
models of tumors, such as humanized mouse models and three-dimensional organoids. Such 
systems benefit from the complex tumor-like microenvironment, yet are expensive and 
challenging to maintain. An alternative approach might be a more rational utilization of standard 
culture models, depending on whether or not it is possible to recapitulate important aspects of ITH 
in such simple model systems. In that respect, cell lines are often criticized and considered 
inadequate, although to our knowledge no serious attempts have been made to systematically 
evaluate the heterogeneity of cellular states within them. Notably, recapitulation of aspects of ITH 
in cell lines would be of interest not only due to the possibility of performing follow up studies, 
but also due to the implication that such ITH reflects plasticity that is at least partially intrinsic to 
the cancer cells and observed in the absence of a native microenvironment. 

We used a multiplexing strategy to enable labor- and cost-effective scRNA-seq profiling 
of ~200 cancer cell lines. A caveat of this approach is that individual cell lines may be influenced 
by other cell lines in their pool, although a previous work demonstrated that cell lines retain their 
differential drug sensitivities when grown as a pool (Yu et al., 2016). Importantly, in this work we 
focused exclusively on the variability among cells from the same cell line (rather than on the global 
expression pattern of each cell line) which is less dependent on the pooling approach (Fig. S3A) 
and is indeed consistent between our scRNA-seq profiles and our follow up experiments with two 
model cell lines. 

Our analysis identified only a few cases of discrete subpopulations within the same cell 
line, but more widespread continuous variability. While such analysis depends on specific 
thresholds and computational methods, we argue that the main component of expression 
heterogeneity in cancer cell lines is continuous rather than discrete. Such gradual patterns contrast 
with the discrete nature of genetic subclones, suggesting at least a partial decoupling between 
genetic heterogeneity and the epigenetic heterogeneity that might underlie continuous pattern. 
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Consistent with this possibility, our analysis of CNAs showed a limited association of genetic 
subclones with expression heterogeneity, particularly when considering continuous patterns. 
Moreover, follow up experiments directly demonstrated the dynamic plasticity of the EpiSen 
program. Thus, cancer cells may harbor variability through two largely distinct processes of 
genetic and epigenetic mechanisms, both of which may contribute to drug resistance and tumor 
progression.  

Analysis of NMF programs identified cell cycle as well as 10 other recurrent programs 
(RHPs), each associated with a specific biological process. Importantly, 7 of these were also 
consistent with ITH patterns observed in tumors in vivo. This consistency has several important 
implications. First, it indicates that ITH patterns are partially retained even in the absence of a 
tumor microenvironment and may primarily reflect cell-intrinsic plasticity. Second, as each RHP 
is observed in a subset of cell lines, we may leverage the extensive cell line annotations to explore 
the causes and consequences of ITH patterns. This approach identified associations between RHPs 
and genetic background (p53, MRE11A and NOTCH4), lineage (melanoma and HNSCC), and 
drug sensitivity (e.g. Nutlin-3a). Third, we can further prioritize particular cell lines that most 
reliably mirror ITH patterns for follow up experiments. This reflects an important deviation from 
the traditional focus on historical cell lines that are easy to grow, and provides a resource for 
custom prioritization of cell lines based on their heterogeneity.      

Careful examination of the diversity programs in vivo and in vitro highlights their partial 
nature compared to their developmental “normal” counterparts. Both EMT and senescence are 
associated with precise phenotypes and well-defined regulators during development and wound 
healing, yet in the context of tumors and cancer cell lines, we observe only partial phenotypes and 
limited dependence on these regulators. The EMT-like profiles we observe include many EMT-
related genes and are associated with increased migration, but do not seem to involve EMT 
hallmarks such as the loss of epithelial markers, a drastic change in morphology, and expression 
of most EMT transcription factors. Similarly, EpiSen-high cells resemble the senescence response 
of keratinocytes and lung bronchial cells, are associated with reduced proliferation, and possess 
markers of SASP, yet they retain some proliferative capacity, harbor p53 mutations and do not 
express high levels of p16 and p21. Indeed, evidence already exists for incomplete and reversible 
senescence programs in cancer: low levels of p16 at induction of senescence confers cell cycle re-
entry upon p53 inactivation or RAS expression (Beausejour et al. 2003), and loss of Rb in 
senescent cells leads to renewed proliferation (Sage et al. 2003). We therefore propose that cancer 
cells often activate partial or distorted programs, possibly not through the canonical developmental 
mechanisms, and in a context-dependent manner. This could contribute to the difficulties in 
resolving long-standing debates in the cancer field about the role of EMT and senescence, which 
are often evaluated through the activity of developmental regulators and markers that may fail to 
detect certain partial programs.  

A partial and reversible epithelial senescence state in tumors could have several 
implications. First, EpiSen may continue to restrict the growth rate of cancer cells even in 
established tumors and cell lines. Second, EpiSen cells may be particularly resistant to certain 
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treatments (Fig. 6), such as chemotherapies that target proliferating cells, and thereby may 
facilitate tumor recurrence. Third, EpiSen could function as a DNA repair program, allowing 
damaged cells to evade apoptosis and/or ferroptosis. This is consistent with the induction of EpiSen 
by hydrogen peroxide, the sensitivity of EpiSen-high cells to inhibitors of DNA repair,  and the 
functions of core EpiSen genes in oxidative stress, including the free radical scavengers S100A8/9, 
the H202 transporter AQP3, and LCN2, a secreted factor that increases ROS levels (Kagoya et al., 
2014). Fourth, EpiSen could remodel the tumor microenvironment, influencing cancer, stromal 
and immune cells through its abundance of secreted factors, including S100A8/A9, SAA1/2, SLPI, 
CXCL1, and LCN2. While SASP is best characterized in fibroblasts, here we describe a distinct 
“EpiSASP” whose function will be investigated by future studies.  

ITH has long been recognized as a potential source for therapeutic failure. Our analysis 
supports this notion by demonstrating that subpopulations of cells from the same cell line are 
associated with distinct drug sensitivities. We ensured the robustness of these results by three 
approaches: i) Comparing pairs of subpopulations from the same cell line, to control for cell line-
specific drug sensitivities; ii) Focusing on effects that were consistent across experiments in two 
distinct cell lines, i.e. HPV+ and HPV- HNSCC cell lines that differ in many regards; and iii) 
validating results using a full dose-response analysis. Among others, the differential responses we 
identified included EGFR inhibitors, which are routinely used in the treatment of HNSCC patients, 
underscoring the potential clinical relevance of our observations. Our results suggest that EGFR 
inhibitors (as well as other inhibitors) preferentially eliminate subsets of EpiSen-high cells, 
providing a rationale for their combination with chemotherapies that target the more proliferative 
EpiSen-low subpopulations.  

In summary, we described here the landscape of diversity across ~200 cell lines of various 
cancer types, generating a dataset that will be widely useful for the cancer research community. In 
analyzing this extensive dataset, we found multiple recurrent programs of heterogeneity that 
recapitulate ITH in vivo, and are associated with continuous epigenetic plasticity. Follow up 
analysis of one such program demonstrated its dynamics, regulation and vulnerabilities. Further 
studies of tumors and of the model systems prioritized through this data will provide a better 
understanding of ITH, which is currently a main barrier for successful cancer therapies.  
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Methods 
 
Cell lines 
 

Human HNSCC cell lines (laryngeal: JHU006, JHU011, JHU029; oropharyngeal: SCC47, 
SCC9, SCC90, SCC25, 93-VU-147T) were provided by Dr. James Rocco after confirmation by 
short tandem repeat analysis. The laryngeal cell lines were grown in RPMI 1640 media (Biological 
Industries, Kibbutz Beit HaEmek). The oropharyngeal cell lines were grown in a 3:1 mixture of 
Ham’s F12:DMEM (Biological Industries, Kibbutz Beit HaEmek). All growth medias for HNSCC 
cell lines were supplemented with 10% fetal bovine serum (Biological Industries, Kibbutz Beit 
HaEmek), 1x penicillin-streptomycin and 1x L-glutamine (Biological Industries, Kibbutz Beit 
HaEmek). Human primary bronchial epithelial cells (PCS-300-010) were acquired from ATCC 
and grown in Airway Epithelial Cell Basal Medium (ATCC PCS-300-030) supplemented with the 
bronchial epithelial cell growth kit (ATCC PCS-300-040). All cell lines screened negative for 
mycoplasma by the EZ-PCR mycoplasma detection kit (Biological Industries, Kibbutz Beit 
HaEmek). 
 
Cell line pools 
 

We obtained eight previously generated pools of cell lines (Yu et al., 2016), each 
containing 24-27 cell lines from diverse cancer types. Cell lines were combined to pools based on 
growth rates (doubling time), in order to ensure comparable representation over the short-term 
culturing. Each pool was thawed and cultured in DMEM media for 3 days before generating 3’ 
scRNA-seq libraries with the 10X Genomics Chromium platform. A ninth custom pool was 
generated by combining the HNSCC cell lines listed above immediately prior to scRNA-seq 
profiling. 
  
Droplet-based scRNA-seq (10x Genomics)  
 

scRNA-seq libraries were generated using the 10X Chromium Single Cell 3’ Kit v2 and 
the 10x Chromium Controller (10x Genomics) according to the 10X Single Cell 3’ v2 protocol. 
Briefly, we prepared single-cell suspensions (³95% viability) of each pool in 0.04% PBS-BSA 
and approximately 10,500 single cells per pool were loaded to the Chromium Controller with a 
targeted recovery of 6,000 cells. Single cells, reagents and single gel beads containing barcoded 
oligonucleotides were encapsulated into nanoliter-sized droplets and subjected to reverse 
transcription. Droplets were broken and the barcoded cDNAs were purified with DynaBeads and 
amplified by 12 cycles of PCR (98°C for 45 s; [98°C for 20 s, 67°C for 30 s, 72°C for 1 min] x 12; 
72°C for 1 min). The amplified cDNA was fragmented, end-repaired, ligated with index adaptors, 
and size-selected with clean-ups between each step using the SPRIselect Reagent Kit (Beckman 
Coulter). Quality control of the resulting barcoded libraries was performed with the Agilent 
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TapeStation and by PCR with primers specific to the P5 and P7 sequence (NEBNext Library Quant 
Kit for Illumina, New England Biolabs). Final 10x scRNA-seq libraries were diluted to 4 nM, 
denatured, and further diluted to a final concentration of 2.8 pM for sequencing with the following 
parameters: Read 1: 26 cycles, i7 index: 8 cycles, i5 index: 0 cycles, Read 2: 58 cycles. Sequencing 
was performed on the NextSeq500 (Illumina) instrument using the NextSeq 75 cycles High Output 
Kit (Illumina). 
  
Bulk RNA-seq (SMART-Seq2)  
 

The SMART-Seq2 protocol (Picelli et al., 2014) was adapted as previously described 
(Rauner et al., 2018). Between 100-200 cells were incubated in lysis buffer at 72oC for 3 min. 
Reverse transcription and cDNA amplification (17 cycles) were performed using the SMART-Seq 
V4 Ultra Low Input RNA Kit. Following 1X Agencourt Ampure XP beads cleanup (Beckman 
Coulter), 200 pg of amplified DNA underwent tagmentation and final amplification (12 cycles) 
adding unique Illumina barcodes (Nextera XT Library Prep kit, Illumina). Pooled bulk RNA-seq 
libraries were diluted to 4 nM, denatured, further diluted to 2 pM and sequenced with the following 
parameters: Read 1: 75bp, Read 2: 15bp, no indices. Sequencing was performed on the 
NextSeq500 (Illumina) instrument using the NextSeq 75 cycles High Output Kit (Illumina). 
 
Flow cytometry and sorting of cell lines 
 

Sorting of JHU006 and SCC47 cells was performed on a BD FACS Melody using the 
following antibodies:  anti-human AXL-PECy7 (eBioscience) at 1:300, anti-human Claudin-4-
APC (Miltenyi) at 1:200, and anti-human ITGA6/CD49f-APC eBioscience) at 1:200. Gating of 
positive and negative cells was defined by the unstained control. For EpiSen program dynamics 
experiments, 200,000 cells of each subpopulation (EpiSen-high: AXL-CLDN4+; EpiSen-low: 
AXL+CLDN4-; control sort: all cells) were sorted and reanalyzed by FACS immediately post-
sorting and at days 7 and 14. Final analysis was performed using Kaluza Analysis Software v2.1 
(Beckman Coulter). Similarly, the EMT-II subpopulation was isolated by AXL+ITGA6+ (EMT-II-
high cells) and AXL-ITGA6- (EMT-II-low cells). Experiments were performed three times 
independently. 

 
Cell cycle analysis by propidium iodide (PI) 
 

Single cells were suspended in ice cold PBS and fixed by adding the cell suspension 
dropwise to 70% ethanol while vortexing. Fixed cells were stored at 4°C. Following 2x PBS 
washes, cells were resuspended and incubated in PI/Triton-X-100 staining solution, consisting of 
0.1% Triton-X-100 (Sigma), 0.2mg/ml DNAse-free RNAse A (Sigma), and 0.04 mg/ml of 
500ug/ml PI (Sigma) in PBS, at 20°C for 30 min. Cells were analyzed in a BD FACS Melody. The 
experiment was performed three times independently. 
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Cytokine treatments and perturbations of HNSCC cell lines 
 
For growth factor/drug treatment experiments, JHU006 and SCC47 cells were seeded at 

50,000 cells/well in 24 well plates in their standard media and treated in duplicate with 
drug/cytokine or vehicle (0.1% DMSO with 1ug/mL BSA) 24 hours after seeding. Cells were 
harvested 24 hours after treatment for bulk expression profiling. Treatments included 10 	µM all-
trans-retinoic acid (ATRA) (Sigma), 25 ng/ml interferon gamma (Peprotech), 25 ng/ml TNF alpha 
(Peprotech), 25 ng/ml PDGFBB (Miltenyi), 10 nM etoposide (Sigma), 10 ng/ml TGFb1 
(Peprotech), 10 ng/ml TGFb3 (Peprotech), 10 µM cisplatin (Sigma), 200 µM hydrogen peroxide 
(Sigma), 25 ng/ml IL-8/CXCL8 (Peprotech), 25 ng/ml GAS6 (Sino Biological), 50 ng/ml 
S100A8/A9 (Sino Biological), and 500 µM desferoxamine (DFO) (Sigma).  
 
Senescence induction by etoposide and SA-b-gal staining 
 

Primary bronchial cells were seeded at 50,000 cells/well in 24 well plates and treated with 
5-7.5 µM etoposide (Sigma) 24 hours later to induce senescence. After 48 hours, media was 
replaced and on day 9 etoposide-treated cells and untreated controls were stained with SA-b-gal. 
Cells were fixed with 0.5% glutaraldehyde solution in PBS pH 7.4 and incubated with X-gal 
staining solution (0.2M K3Fe(CN)6, 0.2M K4Fe(CN)6 3H2O, and 40X X-Gal stock diluted in 
PBS/MgCl2) for 6 hours protected from light. X-Gal stock consists of 40 mg/ml X Gal (Roche 
#745740) in N,N-dimethylformamide (Sigma D-4254). Following PBS washes, stained cells were 
covered with 80% glycerol prior to imaging.   
 
Migration assay 
 

Single-cell suspensions were loaded into Ibidi wound healing inserts (75,000 cells/insert) 
coupled to 24-well plates and left to attached for 24 h. Inserts were removed and cells were treated 
with TGFb3 (Peprotech) or vehicle (PBS). Images were taken 0, 6, 12, 24, and 48 hours post-
treatment. The experiment was performed independently three times. 
 
Drug screening - viability assay  
 

The Selleck Bioactive Compound Library (Selleck Chemicals) as well as DMSO-only 
controls and straurosporine positive (killing) controls were dispensed into 384-well plates with an 
Echo 550 liquid handler (Labcyte). Drug concentration was 10 µM for the primary screen and 1 
µM or 10 µM for the secondary screen (performed in duplicate) depending on hit category. Purity 
of compounds selected for follow-up by dose response was confirmed by LC/MS (data not shown). 
For the dose response series, a seven-point two-fold dilution series with an upper limit of 40 µM 
was performed in duplicate. EpiSen-high (AXL-CLDN4+), EpiSen-low (AXL+CLDN4-), and a 
third neutral reference population were sorted from JHU006 and SCC47 cell lines as described 
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above and seeded into the compound-treated plates in their standard media at a concentration of 
15,000 cells/ml (750 cells/well) with a Combi Multi-drop (Thermofisher). Plates were incubated 
at 37°C for 48 hours following sorting and compound treatment and cell viability was determined 
based on luminescence following addition of CellTiter-Glo (Promega), according to the 
manufacturer’s instructions. Luminescence was measured on a BMG Pherastar plate reader. Data 
was normalized in Genedata Screener where DMSO (vehicle) is defined as neutral control (i.e. 
100% viability) and samples without cells are the inhibitor control (i.e. 0% viability). Compound-
centric data was visualized in CDD Vault from Collaborative Drug Discovery (Burligame, CA).   
 
Processing of scRNA-seq data 
 

Cell barcode filtering, alignment of reads and UMI counting were performed using 
CellRanger 3.0.1 (10x Genomics). Expression levels were quantified as Ei,j = log2(1 + CPMi,j/10), 
where CPMi,j refers to 106*UMIi,j/sum[UMI1..n,j], for gene i in sample j, with n being the total 
number of analyzed genes. The average number of UMIs detected per cell was less than 100,000, 
thus CPM values were divided by 10, to avoid inflating the differences between detected (Ei,j > 0) 
and non-detected (Ei,j = 0) genes, as previously described (Tirosh et al., 2016b). For each cell, we 
quantified the number of detected genes as a proxy for sample quality. We conservatively retained 
cells with a number of detected genes ranging from 2,000 to 9,000. When analyzing cell lines 
individually, we only considered genes expressed at high or intermediate levels (Ei,j > 3.5) in at 
least 2% of cells, yielding an average of 6,758 genes analyzed per cell line. Values were then 
centered per cell line to define relative expression values, by subtracting the average expression of 
each gene i across all k cells: Eri,j=Ei,j-average[Ei,1...k]. When analyzing cell lines collectively, we 
selected the top 7,000 expressed genes across all cell lines, resulting in a minimum average 
expression of 12 CPM. Values were centered by subtracting the average expression across all 
53,513 cells analyzed: ERi,j = Ei,j-average[Ei,1…53,513].  
 
Processing of bulk RNA-seq data  
 

Single-end reads were aligned to the GHCh38/hg38 human genome using Bowtie and 
expression values were quantified using RSEM. Data are presented as Ei,j = log2[(TPMi,j) + 1], 
where TPMi,j refers to transcript-per-million for gene i in sample j, as calculated by RSEM.  
 
 
Cell line assignment  
 

We used both expression-based and SNP-based methods to assign cells to cell lines. In 
each of these methods, we compared the single cells to external bulk data of the corresponding cell 
lines and then either assigned the cells to the most similar cell line or excluded them as potential 
doublets or low-quality cells. The remaining assignments that were consistent between both 
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methods were retained for further analysis. Bulk RNA-seq data was obtained from the DepMap 
portal (https://depmap.org/; 18q3 data release) (Ghandi et al., 2019) for the eight CCLE-based 
pools and was generated as described above for the eight cell lines in the custom pool.   

For SNP based classification, for each cell we determined the cell line from the pool whose 
SNP profile (based on bulk RNA-seq data) best matched the observed reference and alternate allele 
reads across a panel of SNP sites, similar to the Demuxlet method (Kang et al., 2018). Specifically, 
we used a logistic regression model for each cell, where the probability of a read at SNP site i 
being from the alternate allele is modeled as Pi = s(b0+bj*Xi,j), where s  is the logistic function, 
Xi,j is the allelic fraction of cell line j at site i (estimated from bulk RNA-sequencing data), and the 
b are parameters estimated for each single cell and reference cell line by maximizing the data 
likelihood under a binomial model. Models were fit using the R package glmnet (Friedman et al., 
2010), and the cell line whose SNP profile produced the highest likelihood under this model was 
selected. Goodness-of-fit was quantified by the model deviance relative to the null-model 
deviance. We used a reference panel of 100k SNPs that were frequently detected across a panel of 
200 cancer cell lines (based on bulk RNA-seq data), and that were detected in 10x scRNA-seq data 
from the same cell lines.  

We used a broadly similar approach to classify single cells based on their gene expression 
profiles. We applied a local ‘smoothing’ to the normalized and centered single-cell expression 
profiles (ER), using a Gaussian kernel applied to the cell-cell distances in tSNE embedding space. 
We used the Rtsne R package to estimate 3 tSNE embedding dimensions for each cell. The 
Gaussian kernel bandwidth was set using the method ‘sigest’ from the R package kernlab. We also 
subsetted the gene expression data to genes that were expressed in at least half of all cells or had a 
maximal expression (measured by the 98th percentile of that gene’s expression across all cells) 
greater than 3. Finally, for each cell we identified the reference cell line from the pool with the 
most similar bulk RNA-seq gene expression profile (using log2(CPM) data mean-subtracted across 
samples per gene, and Pearson correlation similarity).   

Detection of putative ‘doublets’, where pairs of cells get labeled with the same barcode 
during droplet-based library preparation, was done based on the SNP data, using the same 
generalized linear modeling approach to identify a mixture of two reference cell lines whose 
combined SNP profiles best explained the SNP data from a given cell. To efficiently estimate the 
best-fitting reference cell line pair we used a Lasso-regularized generalized linear model. After 
determining the best-fitting ‘singlet’ and ‘doublet’ models for each putative cell, we then 
determined whether each putative cell was a singlet, doublet, or a ‘low-quality’ cell based on 
several statistics. To identify low quality cells we took the max of the deviance explained by the 
singlet model and the deviance explained by the doublet model. We observed that the max 
deviances formed a bimodal distribution. We thus used the local minimum between the two 
distributions as a threshold and classified all cells with a max deviance below this threshold as 
‘low quality’. To separate putative doublets from singlets, we then fit a two-component Gaussian 
mixture model using three variables: i) the amount of deviance explained by the singlet model, ii) 
the (log-transformed) deviance-improvement of the doublet model over the singlet model, and iii) 
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the fraction of genes detected in that cell. Cells with a probability greater than 0.75 of belonging 
to the cluster with higher average doublet improvement were classified as doublets. Lastly, cell 
lines with less than 50 high quality assigned cells were excluded.   
 
Systematic characterization of transcriptional heterogeneity 
 

For each of the 198 cell lines passing QC, we applied two distinct approaches to identify 
discrete and continuous patterns of expression heterogeneity. First, to identify discrete (highly 
distinct) subpopulations within cell lines, we used tSNE followed by DBSCAN, which assumes 
that clusters are contiguous regions with high density of cells. tSNE was applied to each cell line 
individually using relative expression values (Er) and perplexity of 30. To identify dense regions, 
DBSCAN classifies each point according to a minimum points (minPts) threshold, defined as the 
minimum number of neighbors within a user-defined radius (eps) around core points. To optimize 
this parameter selection, we tested the ability of  DBSCAN to correctly distinguish cells from two 
distinct cell lines. We combined cells from two different cell lines and tested the classification 
accuracy of DBSCAN using different eps (0.6 – 3) and minPts thresholds (5 and 10). DBSCAN 
classification was evaluated using Fisher’s exact test and considered correct if p < 0.001. Such 
procedure was repeated 1,000 times and in each iteration we randomly selected the cell lines, the 
total number of cells (56 – 898) and the number of cells selected per cell line (2-98 % of total). 
The parameter combination yielding the highest rate of correct classification (eps = 1.8, minPts = 
5) was used in further analyses. We also applied DBSCAN with additional, less stringent eps 
values (1.2 and 1.5) to show the robustness of the results. To define gene signatures that 
characterize the discrete subpopulations identified, we compared gene expression of cells in a 
given cluster to all other cells within the same cell line using t-test. Genes with fold change >= 2 
and p < 0.001 were selected and the top 50 (by fold change) were defined as the gene signature. 
Clusters containing above 90% of the cells of a given cell line were excluded from this analysis.  

Second, we analyzed each cell line using NMF to identify both discrete and continuous 
programs of expression heterogeneity. NMF was applied to the relative expression values (Er), by 
transforming all negative values to zero, as previously described (Puram et al., 2017). We 
performed NMF with k (the number of factors) ranging from 6-9, and initially defined expression 
programs as the top 50 genes (by NMF score) for each k. For each cell line, we sought robust 
expression programs by selecting those with an overlap of at least 70% (35 out of 50 genes) with 
a program obtained using a different value of k. To avoid redundancies, from each set of 
overlapping programs from a single cell line, we only kept one program, selected based on having 
the highest overlap with a NMF program identified in another cell line. The association between 
programs and technical artifacts was inspected by calculating, for each cell line, Pearson’s 
correlation coefficient between the number of genes detected in a cell (complexity) and the 
respective NMF program score. This approach identified a cluster of NMF programs (based on 50 
minus the number of overlapping genes across expression programs) that share negative 
correlations with complexity. This cluster appeared to reflect technical artifacts (based also on 
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manual inspection and inclusion of many mitochondrial genes and pseudogenes) and was excluded 
from further analysis. 

In order to identify RHPs across cell lines, we compared expression programs derived from 
DBSCAN and NMF, separately, by hierarchical clustering, using 50 minus the number of 
overlapping genes as a distance metric. Given the high number of NMF programs, clustering was 
restricted to programs with at least a minimum overlap of 20% (10 out of 50 genes) with a program 
observed in another cell line. Twelve clusters were defined by manual inspection of the 
hierarchical clustering results. For each cluster of NMF programs, a RHP was then defined as all 
genes included in at least 25% of the constituent programs. We then used hypergeometric test to 
assess the enrichment of RHP signatures with H and C5:BP gene-sets  from MSigDB (Liberzon, 
2014), and p < 0.001 were considered significant.  

Pool effect analysis 
 

To evaluate the impact of the pooling procedure on the cell lines we used three different 
approaches. First, we determined the proportion of the similarity observed among the global 
expression profiles of cell lines and among expression heterogeneity patterns that was dependent   
on the pool of origin. We calculated pairwise correlations between global expression profiles, 
defined as the average expression, by gene, of all cells from each given cell line, and used one-
way ANOVA to computed the proportion of the total variance (h2) explained by whether or not 
cell lines were in the same CCLE pool. This same procedure was applied to evaluate the pairwise 
correlations between NMF programs across gene scores. Second, we inspected the distribution of 
the RHP across all CCLE pools, to ensure no pool-specific bias. Finally, we applied NMF (factor 
= 6) to scRNA-seq data of the tongue squamous cell carcinoma cell line SCC25 profiled in two 
different conditions: as part of the CCLE pool ID #19 and as part of the custom HNSCC pool. We 
compared programs by hierarchical clustering using one minus Pearson correlation coefficient 
across NMF gene scores as a distance metric.  
 
Defining program scores in each cell 

Program scores were calculated for each cell individually in order to evaluate the degree 
to which they express a given RHP. Cells with higher complexity (i.e. number of genes detected) 
would be expected to have higher cell scores for any gene-set. To account for this effect, for each 
gene-set analyzed, we created a control gene-set to be used in the calculation of a normalization 
factor, as previously described (Tirosh et al., 2016b). Control gene-sets are selected in a way that 
ensures similar properties (distribution of expression levels) to that of the input gene-set. First, all 
genes analyzed are ordered by average expression across all cell lines and divided into 75 bins. 
Next, for each gene in the given gene-set, we randomly select 100 genes from the same expression 
bin. Finally, given an input set of genes (Gj), we defined a score, SCj(i), for each cell i, as the 
average relative expression of the genes in Gj. We then calculate a similar cell score for the 
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respective control gene-set and subtract it from the initial cell scores: SCj(i) = average[ER(Gj,i)] 
– average[ER(Gj

cont,i)].  
 
Comparison of in vitro and in vivo programs 
 

In vivo programs of expression heterogeneity were previously defined (Puram et al., 2017; 
Tirosh et al., 2016a) or generated using published single cell data (Chung et al., 2017; Lambrechts 
et al., 2018) and the NMF-based strategy described above. For each in vivo program we calculated 
the maximum similarity (Jaccard index) and maximum single cell score (SC) correlation with in 
vitro programs. Correlations were calculated using the cell lines harboring the respective in vitro 
program. Next, we identified the overall maximum similarity and maximum correlation obtained 
by permutating each in vitro program 100 times. To generate permutated gene sets, we first ordered 
all genes by average expression across all cell lines and divided them into 75 bins. Each gene in a 
given gene set was then replaced by a randomly select gene from the same expression bin. In vivo 
programs presenting both maximum similarity and maximum correlation above the permutation 
threshold were selected. Among selected programs we focused on the top 10 with highest 
correlation, and manually identified 5 main groups: melanoma MITF, melanoma AXL, HNSCC 
epithelial differentiation, HNSCC pEMT, and melanoma/HNSCC stress. We defined which in 
vitro RHP most closely recapitulate the 5 selected in vivo programs based on the average similarity 
and correlation of the constituent programs.   
 
Computational cell cycle analysis 
 

Scoring cells for the G1/S and G2/M RHPs reveals a circle-like structure, reflecting 
different phases of the cell cycle (Fig. S3C). This pattern recurs across cell lines, and was also 
previously described for different human cancers and mouse hematopoietic stem cells (Kowalczyk 
et al., 2015; Tirosh et al., 2016a; Tirosh et al., 2016b). Since these patterns are continuous, borders 
between cell cycle phases are unclear and by manual inspection we conservatively defined a 
classification into four patterns (Fig. S3C): non-cycling (SCG1/S < -0.75 and SCG2/M < -0.5), G1 
(SCG1/S > -0.5 and SCG2/M < 0), S (SCG1/S > 0.25 and SCG2/M > 0), and G2/M cycling (SCG1/S < 
0.25 and SCG2/M > 0.5). 
 
Defining program variability in each cell line 
 

To evaluate the degree of heterogeneity of RHPs in each cell line, we examined the 
variability of cell scores. First, given a program j and cell line i, we defined program variability, 
PVj(i), by first ranking cells according to the program score (SCj) and comparing the average signal 
of the top vs. bottom 10% cells: PV(j) = average[SCj(top10%)] – average[SCj(bottom10%)]. 
Next, to control for the potential association between mean and variability of program scores, we 
applied a local polynomial regression with smoothing span of 0.8 to infer the relationship between 
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program variability and mean in each cell line, and used the residuals of the model as the corrected 
program variability score: PVc(j) = PV(j) - RG(mean(SCj)), where RG represents the local 
regression model for PV based on the average program scores, SC.  
 
Association between program variability and mutations or drug responses 
 

Mutation calls (coding region, germline filtered) were downloaded from the CCLE portal 
(https://portals.broadinstitute.org/ccle), and drug response data (CTRP v2, area under the curve, 
AUC) were downloaded from the CTD2 portal (https://ocg.cancer.gov/programs/ctd2/data-portal). 
We restricted the analysis to non-silent mutations and compounds tested in at least 160 out of the 
198 cell lines analyzed. We compared program variability scores of mutated and wild-type cell 
lines using two-sided t-test. The association between drug sensitivity (1-AUC) and program 
variability scores was assessed using multiple linear regression, with cancer type as a covariate: 
Yd ∼ cancer type + PVj, for drug d and program j.   
 
CNA estimation 
 

Initial values (CNA0) were estimated by first sorting the analyzed genes by their 
chromosomal location and calculating a moving average of relative expression values (ER), with 
sliding window of 100 genes, as previously described (Tirosh et al., 2016b). To avoid considerable 
impact of any particular gene on the moving average, in this analysis, we limited relative 
expression values to [−3,3]. In order to define proper CNA reference values to be used as the 
baseline, we downloaded gene level copy number data (Affymetrix SNP6.0 arrays, log2(copy 
number/2)) from the CCLE portal (https://portals.broadinstitute.org/ccle) and calculated, for each 
cell line, the average copy number signal by chromosome arm. Next, for each chromosome arm 
we selected a set of reference cell lines, defined as those presenting an average copy number signal 
ranging from -0.2 to 0.2. For a given CNA window, in a given chromosome arm, we then 
calculated the average CNA estimates of the respective reference cell lines and define the 
minimum (BaseMin) and maximum (BaseMax) values obtained as the lower and upper baseline 
limits. The final CNA estimate of cell i at position j was defined as:  
 

"#$%(', )) = ,
	"#$.(', )) − 0123415()),			'6	"#$.(', )) > 0123415()) + 0.1
"#<.(', )) − 01234'=()),			'6	"#$.(', )) < 01234'=()) − 0.1
0,										'6	01234'=()) − 0.1 < "#$.(', )) < 0123415()) + 0.1

 

 

46

______________________________________________________________________________Chapter 1



 

CNA subclones detection within cell lines  
 

To identify CNA-based subclones with high confidence we focused on CNAs 
encompassing whole chromosome arms, as these are more reliable than focal CNAs. We reasoned 
that the presence of multiple  subclones in a single cell line would translate into a multimodal 
distribution of CNA signal for at least one chromosome arm, across cells from a given cell line. 
Thus, we first calculated for each cell and each chromosome arm, the average CNA0 estimate 
across all loci in the chromosome arm. Next, we examined, for each cell line, if the distribution of 
arm-level CNA values was multimodal for any chromosome arm. To this end, we fitted each 
distribution to a Gaussian mixture model (GMM) and calculated the probability for each cell to 
belong to each mode by an expectation-maximization algorithm, implemented by the R function 
Mclust. A cell line was defined as having subclones if, for at least one chromosome arm, a 
minimum of 20 cells were classified into a second mode with at least 99%  confidence. Cells were 
then assigned to subclones based on their mode for all chromosome arms with a multimodal 
distribution. CNA0 were used instead of CNAf since the normalization procedure introduces a bias 
(zero inflation) in signal distribution. 
 
Association between programs of variability and CNA subclones  

 
In cell lines presenting discrete programs of variability and CNA subclones, we evaluated 

the association between the expression-based classification of cells into subpopulations, as defined 
by DBSCAN, and the subclone-based classification, as defined by GMM, using Fisher’s exact test 
In cell lines presenting continuous programs of variability and CNA subclones, we compared NMF 
cell scores of each program between clones using t-test. P < 0.001 were considered statistically 
significant.  
 
Drug screen analysis 

In order to define potential hits from the primary screen for follow-up in the secondary 
screen, we considered the differential viability between the EpiSen-high and EpiSen-low states for 
each compound in each cell line. In order to define hits that were differentially sensitive for only 
one cell line, we used 2.5 standard deviations from the mean of the difference in viability of the 
vehicle (DMSO-treated) controls between states as the threshold. In order to define shared hits that 
were differentially sensitive between the EpiSen-high and EpiSen-low states in both cell lines we 
used a threshold of 2 standard deviations from the mean of the difference in viability of the vehicle 
controls between states. Statistical significance of enrichment for shared hits was evaluated by 
hypergeometric test (p = 0.006, significant for EpiSen-high, p = 0.943 n.s. for EpiSen-low). A third 
category of compounds that killed cells in both the EpiSen-high and EpiSen-low states at 10 µM 
(defined as ≤ 10% viability) was also selected for follow-up in the secondary screen at lower 
concentration (1 µM).  

47

______________________________________________________________________________Chapter 1



 

The secondary screen was performed in duplicates. In order to determine the differential 
viability between the EpiSen-high and EpiSen-low states, we compared the mean of each duplicate 
measurements. To avoid an impact from outlier measurements, in each case where the difference 
between duplicates was larger than 20%, we calculated three potential values for differential 
viability between EpiSen-high and EpiSen-low populations: one value based on the mean of the 
two duplicate measurements and two additional values based on each measurement alone. We then 
conservatively used the minimal value of differential viability to ensure that individual outlier 
measurements will not lead to the appearance of differential viability. In order to define hits in the 
secondary screen, the threshold was defined by the upper and lower bounds of the adjusted control 
values over replicates between states.  

A subset of  compounds that were differentially sensitive between the EpiSen-high and 
EpiSen-low cell lines were selected for follow-up dose response studies in SCC47 in each sorted 
subpopulation (EpiSen-low, EpiSen-high, reference). To generate dose response curves, viability 
at each concentration of the seven-point dose response series was averaged over replicates and 
normalized to the viability of vehicle (DMSO) controls. Percent change in viability was calculated 
at each concentration using the normalized viability and curves were fit using these values with a 
three-parameter nonlinear regression model in GraphPad Prism 8 (GraphPad Software, La Jolla 
CA, USA). A paired t-test was performed using the aggregated differences in viability at each 
concentration to determine statistical significance (P ≤ 0.05) of differential viability between 
curves (Table S6).   
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Figure S1. Identifying discrete and continuous programs of heterogeneity. (A) Performance 
of DBSCAN using different sizes of epsilon neighborhood (eps) and minimum numbers of points 
required to form a dense region (MinPts). We randomly selected cells from two different cell lines 
and tested the ability of DBSCAN to distinguish between them using different parameter 
combinations. The procedure was repeated 1,000 times and the combination yielding the highest 
rate of correct classification was applied in the subsequent analyses. (B) tSNE plots for two 
additional examples of cell lines from each of the four classes defined by presence and number of 
discrete subpopulations identified by DBSCAN (as in Fig. 2B). (C)-(D) Identification of discrete 
programs of heterogeneity, as in Fig. 2B-C, using less stringent eps (1.2 and 1.5) highlights 
common trends. (E) Number of heterogeneity programs identified per cell line using NMF. NMF 
was applied to each cell line using k (number of factors) of 6-9, and gene programs identified as 
variable with 2 or more values of k were retained (left panel). To identify common expression 
programs varying within multiple cell lines, we excluded programs with limited similarity to all 
other programs as well as those associated with technical confounders (right panel). (D) Pairwise 
similarities between programs identified by NMF across all the cell lines analyzed, with cell lines 
ordered by hierarchical clustering. Programs with limited similarity to all other programs were 
excluded. Top panel indicates correlations between program scores and cell complexity (i.e. 
number of genes detected per cell). The group of programs that correlates with complexity 
(indicated by dashed lines) was excluded from subsequent analyses.  
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Figure S2. Comparison between cell cycle in vitro and in vivo. (A) Heatmap depicts pairwise 
similarities between programs identified in fresh tumor samples using NMF. NMF was applied to 
each tumor with k (number of factors) of 6-9 and gene programs identified as variable with 2 or 
more values of k were retained. To identify common expression programs varying within multiple 
tumors, we excluded programs with limited similarity to all other programs. Top panel shows 
tumor type and correlations between program scores and cell complexity (i.e. number of genes 
detected per cell). Hierarchical clustering emphasizes multiple metaprograms (shown by squares), 
one of which is correlated with cell complexity and thus excluded as a potential technical artifact. 
(B) NMF scores of G1/S genes (top panel) and G2/M genes (bottom panel) genes across cell lines 
with corresponding cell cycle programs. Genes are ranked in each panel by average scores, and 
their assignment to in vitro and in vivo cell cycle programs is indicated on the right, demonstrating 
that G1/S programs differ both across cell lines and between cell lines and tumors, while G2/M 
programs are more consistent. Venn diagrams  (right) illustrate the overlap between in vivo and in 
vitro RHPs. (C) Single-cell profiles showing G1/S and G2/M program score thresholds used to 
assign cells to different cell cycle phases. (D) Examples of genes with distinct cell cycle induction 
in vitro and in vivo. Expression of HIST genes (preferentially induced in vitro) and MCM genes 
(preferentially induced in vivo) is shown along the cell cycle (relative to cells in G0) in cell lines 
(C, green lines) and tumors (D, yellow lines). (E) Comparison of cell cycle phase distribution in 
vitro and in vivo. Scatterplot shows the percentage of cells in G0 (x-axis) and the ratio between 
the percentage of cells in G1/S and G2/M (y-axis) for each cell line (green) and tumor (yellow) 
analyzed. Cell lines display a significantly lower percentage of cells in G0 cells (p = 2e-10, t-test).  
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Figure S3. The pooling procedure has a limited impact on intra-cell line expression 
heterogeneity.  (A) Distribution of pairwise similarities between expression patterns of cell lines 
in the same (blue) and in different (red) pools. Left: The comparison was done for  all NMF 
programs detected in the corresponding cell lines, by correlation of the NMF gene scores (for all 
analyzed genes). Right: The comparison was done between the average expression profiles of the 
cell lines, by correlation across all analyzed genes. Comparisons were performed across all cell 
lines or separated by cancer type (only most abundant types are shown). The proportion of total 
variance (h2) explained by whether or not programs/cell lines were in the same pool, calculated 
using one-way ANOVA, suggests that patterns of expression heterogeneity (left) are largely 
unaffected by the pool microenvironment, while the average expression profiles (right) are more 
affected. (B) Distribution of the pool of origin of RHPs. Each RHP was observed in multiple pools, 
underscoring the lack of pool-specific effects. (C) Pairwise correlations between NMF programs 
obtained for the HNSCC cell line SCC25, which is the only cell line that was profiled in two 
different pools. Hierarchical clustering reveals highly concordant programs in the two pools.  
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Figure S4. Cell lines recapitulate programs of heterogeneity observed in tumor samples. (A) 
Scatterplot shows maximum single-cell score correlation (X-axis) and overlap (Y-axis) between 
each in vivo program and the  in vitro programs shown in Fig. 3A. The top 10 in vivo programs 
with highest correlations are annotated, and relevant ones are also highlighted in Fig. 3B top. (B)  
Scatterplots show mean single-cell score correlations (X-axis) and mean similarities (Y-axis) 
between relevant in vivo programs and the 10 in vitro RHPs. The five RHPs with highest 
correlations/similarities are marked in Fig. 3B right. (C) Heatmap shows relative expression of 
genes shared by paired in vivo and in vitro programs in selected melanoma and HNSCC cell lines 
and tumors, highlighting similar patterns of variability in vivo and in vitro. Cells are sorted 
according to the relative average expression of genes in each program, showing the negative 
correlation between the AXL and MITF programs in melanomas and the pEMT and EpiSen 
programs in HNSCC. Programs are annotated (right) and selected genes are indicated (left).  
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Figure S5. Determinants and consequences of cellular heterogeneity. (A) Single-cell profiles 
show a negative correlation between the skin pigmentation and the EMT-I RHPs within each of 
six melanoma cell lines. (B) Association between RHP variability scores and somatic non-silent 
mutations. We compared the variability score of each program in mutated and non-mutated cell 
lines using t-test. Model cell lines (high variability score) of EMT-II, IFN response and p53-
dependent senescence RHPs are depleted of NOTCH4, MRE11 and TP53 mutations, respectively. 
Association between drug response (CTRP database) and program variability calculated using 
linear regression including tumor type and program variability as independent variables. Increased 
sensitivity to NOTCH inhibition (gamma secretase inhibitors), MDM2 inhibition (Nutlin-3) were 
observed in model cell lines (high program variability) of the EMT-II, and p53-dependent 
senescence respectively. (C) Median RHP scores of cells in each phase of the cell cycle, 
emphasizing the high expression of the senescence, stress and EMT-III metaprograms in non-
cycling cells (G0). Cell cycle state was estimated for each individual cell based on the relative 
expression of the G1/S and G2/M metaprograms. For each RHP we only considered the respective 
model cell lines. (D) Heatmap depicts relative expression of the 6,000 top highly expressed genes 
(rows) in primary lung bronchial cells 9 days after induction of senescence by etoposide treatment 
for 48 h in two concentrations. Bars on the right show the frequency of RHP signature genes within 
sliding windows of 300 genes. RHPs are sorted from left to right by their enrichment with 
upregulated and downregulated genes, respectively. EpiSen and cell cycle programs were the two 
extreme programs, and selected genes from these programs are labeled. (E) Induction of 
senescence confirmed by SA-b-gal staining.  
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Figure S6. Inferred CNAs are consistent with expected chromosomal aberrations. Heatmap 
depicts inferred CNAs for individual cells (rows) from 6 glioblastoma (top) and 19 HNSCC 
(bottom) cell lines, based on the average expression of sliding windows of 100 genes. Arrows 
highlight expected hallmark alterations - the gain of chromosome 7 and loss of chromosome 10 in 
glioblastoma, and the loss of chromosome 3p and gain of chromosome 3q in HNSCCs.  
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Figure S7. Interrogating EpiSen and EMT-II in model cell lines, refers to Fig. 5. (A) Isolation 
by FACS of the EpiSen-high population (AXL-CLDN4+), the EpiSen-low population 
(AXL+CLDN4-) and a third unsorted control population based on AXL and Claudin4 expression 
analyzed immediately after sorting (day 0) and at two additional time points in culture (day 7 and 
14) in JHU006. The density plots correspond to the pie charts depicting dynamics in Fig. 5c. 
Gating was determined by the unstained control at each time point. (B) FACS analysis of cell cycle 
by the DNA binding dye propidium iodide (PI) on sorted EpiSen-high and EpiSen-low cells in 
SCC47. The table (lower inset) summarizes cell cycle analysis for both SCC47 and JHU006 
(shown in Fig. 6D). (C) Isolation by FACS of the EMT-II-high population (AXL+ITGA6+) and 
the EMT-II-low population (AXL-ITGA6-) in JHU006 and images of subsequent gap closure 
(migration) assay on unsorted, unsorted TGFb3-treated, EMT-II-high, and EMT-II-low cells at 0 
h and 12 h following gap generation. (D) Comparison of EMT program induced upon TGFb 
treatment of unsorted JHU006 and SCC47 vs. the EMT-II cell line metaprogram. 

(A) (B)

(D)(C)

SCC47 
EpiSen-
high

SCC47 
EpiSen-
low

G0/G1 68.99 55.36

G2/M 6.73 14.6

S 5.58 8.87
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Figure S8. Co-existing cellular states differ in drug sensitivity (primary drug screen, refers 
to Fig. 6). EpiSen-high cells, EpiSen-low cells, and a neutral reference population were isolated 
by FACS in JHU006 and SCC47, then treated with a compound library in 384-well format for 48 
h and viability was determined by CTG assay (n = 2198 compounds screened per state, per cell 
line). (A) Pie charts depicting the relative proportions of hits by type in the primary screen for both 
JHU006 and SCC47. (B) Shared hits between SCC47 and JHU006 for compounds that were 
differentially sensitive in the EpiSen-high state (green) and EpiSen-low state (orange). Thresholds 
are cell line-dependent. Significance of overlap of hits between cell lines for EpiSen-high: p = 
0.006 (significant), for EpiSen-low: p = 0.943 (not significant) by hypergeometric test. (C) 
Viability of the reference population (X-axis) and differential viability of the EpiSen-high vs. 
EpiSen-low populations (Y-axis) upon treatment with 2198 compounds in JHU006 (left) and 
SCC47 (right). Dotted lines represent the thresholds for defining differential sensitivity between 
the EpiSen-high and EpiSen-low states, hits are colored by enriched target categories. (D) Dose 
response curves of selected compounds (continued from Fig. 6C) for follow-up EC50 studies in 
SCC47 in each sorted subpopulation (EpiSen-low, EpiSen-high, reference) performed in duplicate. 
Percent change in viability was calculated at each concentration using the viability normalized to 
vehicle (DMSO-treated) controls and curves were fit using these values with a three-parameter 
nonlinear regression model. Error bars represent S.D. 
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Supplementary Tables S2,3,5,6 were omitted/modified due to limited space 
 
Table S1. Cell lines profiled. 
Name Primary 

 Disease 
Cells Analyzed  

Post QC Pool ID 

YD38_UPPER_AERODIGESTIVE_TRACT Head and Neck Cancer 624 6 
NCIH1299_LUNG Lung Cancer 534 6 
IGR37_SKIN Skin Cancer 347 6 
BFTC909_KIDNEY Kidney Cancer 379 6 
NCIH460_LUNG Lung Cancer 837 6 
IGR1_SKIN Skin Cancer 725 6 
PANC1_PANCREAS Pancreatic Cancer 159 6 
VMCUB1_URINARY_TRACT Bladder Cancer 478 6 
JHOC5_OVARY Ovarian Cancer 145 6 
42MGBA_CENTRAL_NERVOUS_SYSTEM Brain Cancer 518 6 
DAOY_CENTRAL_NERVOUS_SYSTEM Brain Cancer 281 6 

SNU1077_ENDOMETRIUM Endometrial/Uterine 
Cancer 172 6 

HT1080_SOFT_TISSUE Sarcoma 516 6 
LI7_LIVER Liver Cancer 196 6 
A375_SKIN Skin Cancer 593 6 
SBC5_LUNG Lung Cancer 102 6 
FTC133_THYROID Thyroid Cancer 140 6 
OVK18_OVARY Ovarian Cancer 178 6 
ACCMESO1_PLEURA Lung Cancer 162 6 
HMC18_BREAST Breast Cancer 293 6 
TOV112D_OVARY Ovarian Cancer 78 6 
SJSA1_BONE Bone Cancer 110 6 
JHH6_LIVER Liver Cancer 206 6 
A2058_SKIN Skin Cancer 294 6 
TCCSUP_URINARY_TRACT Bladder Cancer 316 9 
TOV21G_OVARY Ovarian Cancer 305 9 
VMRCRCZ_KIDNEY Kidney Cancer 300 9 
PK59_PANCREAS Pancreatic Cancer 174 9 
HUH6_LIVER Liver Cancer 338 9 
MSTO211H_PLEURA Lung Cancer 297 9 
HS852T_SKIN Skin Cancer 162 9 
SKMEL30_SKIN Skin Cancer 353 9 
T47D_BREAST Breast Cancer 221 9 
CALU6_LUNG Lung Cancer 258 9 
NCIH522_LUNG Lung Cancer 208 9 
DANG_PANCREAS Pancreatic Cancer 143 9 
LMSU_STOMACH Gastric Cancer 255 9 
SNUC4_LARGE_INTESTINE Colon/Colorectal Cancer 467 9 
RVH421_SKIN Skin Cancer 239 9 
OVSAHO_OVARY Ovarian Cancer 227 9 

MFE280_ENDOMETRIUM Endometrial/Uterine 
Cancer 217 9 

HS939T_SKIN Skin Cancer 236 9 
GOS3_CENTRAL_NERVOUS_SYSTEM Brain Cancer 191 9 
SNU738_CENTRAL_NERVOUS_SYSTEM Brain Cancer 379 9 
PC3_PROSTATE Prostate Cancer 169 9 
PATU8988S_PANCREAS Pancreatic Cancer 244 9 
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JHOS2_OVARY Ovarian Cancer 213 9 
OVTOKO_OVARY Ovarian Cancer 209 9 
TE1_OESOPHAGUS Esophageal Cancer 206 9 
NCIH2087_LUNG Lung Cancer 219 10 

HEC59_ENDOMETRIUM Endometrial/Uterine 
Cancer 385 10 

EFM192A_BREAST Breast Cancer 333 10 
HS729_SOFT_TISSUE Fibroblast 215 10 
SNU423_LIVER Liver Cancer 212 10 
KPL1_BREAST Breast Cancer 276 10 
NCIH727_LUNG Lung Cancer 270 10 
NCIH358_LUNG Lung Cancer 336 10 
COLO792_SKIN Skin Cancer 271 10 
NCIH2077_LUNG Lung Cancer 445 10 
KYSE520_OESOPHAGUS Esophageal Cancer 323 10 
KMRC3_KIDNEY Kidney Cancer 245 10 
MKN7_STOMACH Gastric Cancer 258 10 
NCIH1944_LUNG Lung Cancer 414 10 
HCC1419_BREAST Breast Cancer 221 10 
NCIH1568_LUNG Lung Cancer 287 10 
NCIH1048_LUNG Lung Cancer 400 10 
TE6_OESOPHAGUS Esophageal Cancer 551 10 
ZR751_BREAST Breast Cancer 309 10 
PANC0203_PANCREAS Pancreatic Cancer 506 10 
SW1990_PANCREAS Pancreatic Cancer 307 10 
RD_SOFT_TISSUE Sarcoma 261 10 
CL34_LARGE_INTESTINE Colon/Colorectal Cancer 378 10 
NCIH1792_LUNG Lung Cancer 111 10 
PK45H_PANCREAS Pancreatic Cancer 271 10 
LS180_LARGE_INTESTINE Colon/Colorectal Cancer 361 15 
RERFLCAI_LUNG Lung Cancer 763 15 
CAMA1_BREAST Breast Cancer 291 15 
SNU449_LIVER Liver Cancer 282 15 
A204_SOFT_TISSUE Sarcoma 250 15 
HUCCT1_BILIARY_TRACT Bile Duct Cancer 241 15 
MKN45_STOMACH Gastric Cancer 118 15 
SNU1196_BILIARY_TRACT Bile Duct Cancer 286 15 
HEP3B217_LIVER Liver Cancer 118 15 
HOS_BONE Bone Cancer 829 15 
SKMES1_LUNG Lung Cancer 144 15 
EBC1_LUNG Lung Cancer 186 15 
NCIH292_LUNG Lung Cancer 213 15 
OUMS23_LARGE_INTESTINE Colon/Colorectal Cancer 107 15 

HEC151_ENDOMETRIUM Endometrial/Uterine 
Cancer 250 15 

MDAMB436_BREAST Breast Cancer 281 15 
ABC1_LUNG Lung Cancer 311 15 
NCIH1373_LUNG Lung Cancer 164 15 
TE9_OESOPHAGUS Esophageal Cancer 248 15 
HCC56_LARGE_INTESTINE Colon/Colorectal Cancer 99 15 
HT55_LARGE_INTESTINE Colon/Colorectal Cancer 211 15 
RT4_URINARY_TRACT Bladder Cancer 106 15 
SKES1_BONE Bone Cancer 91 15 
NCIH1435_LUNG Lung Cancer 267 15 
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CCK81_LARGE_INTESTINE Colon/Colorectal Cancer 127 16 
NCIH2110_LUNG Lung Cancer 1990 16 
NCIH650_LUNG Lung Cancer 271 16 

EFE184_ENDOMETRIUM Endometrial/Uterine 
Cancer 86 16 

HUPT3_PANCREAS Pancreatic Cancer 136 16 
MDAMB361_BREAST Breast Cancer 135 16 
BCPAP_THYROID Thyroid Cancer 152 16 
PECAPJ49_UPPER_AERODIGESTIVE_TRACT Head and Neck Cancer 202 16 
EKVX_LUNG Lung Cancer 146 16 
2313287_STOMACH Gastric Cancer 103 16 
BICR56_UPPER_AERODIGESTIVE_TRACT Head and Neck Cancer 81 16 
NCIH2170_LUNG Lung Cancer 142 16 
DETROIT562_UPPER_AERODIGESTIVE_TRACT Head and Neck Cancer 163 16 
SW1088_CENTRAL_NERVOUS_SYSTEM Brain Cancer 128 16 
BHY_UPPER_AERODIGESTIVE_TRACT Head and Neck Cancer 145 16 
CAS1_CENTRAL_NERVOUS_SYSTEM Brain Cancer 133 16 
HCC1428_BREAST Breast Cancer 127 16 
HDQP1_BREAST Breast Cancer 64 16 
OSRC2_KIDNEY Kidney Cancer 126 16 
RERFLCKJ_LUNG Lung Cancer 87 16 
HUPT4_PANCREAS Pancreatic Cancer 56 16 
NCIH2126_LUNG Lung Cancer 264 18 
SW579_THYROID Thyroid Cancer 217 18 
C32_SKIN Skin Cancer 554 18 
NCIH446_LUNG Lung Cancer 196 18 

HEC251_ENDOMETRIUM Endometrial/Uterine 
Cancer 107 18 

MFE319_ENDOMETRIUM Endometrial/Uterine 
Cancer 191 18 

SKNAS_AUTONOMIC_GANGLIA Neuroblastoma 226 18 
NCIH2452_PLEURA Lung Cancer 538 18 
COLO741_SKIN Skin Cancer 329 18 
WM88_SKIN Skin Cancer 242 18 
JHH7_LIVER Liver Cancer 198 18 
KNS42_CENTRAL_NERVOUS_SYSTEM Brain Cancer 172 18 
MCF7_BREAST Breast Cancer 143 18 
HT1197_URINARY_TRACT Bladder Cancer 74 18 
SNU899_UPPER_AERODIGESTIVE_TRACT Head and Neck Cancer 83 18 
HCC38_BREAST Breast Cancer 200 18 

HEC108_ENDOMETRIUM Endometrial/Uterine 
Cancer 172 18 

HT1376_URINARY_TRACT Bladder Cancer 120 18 
SNU308_BILIARY_TRACT Gallbladder Cancer 94 18 
TYKNU_OVARY Ovarian Cancer 117 18 
SW1271_LUNG Lung Cancer 115 18 
TM31_CENTRAL_NERVOUS_SYSTEM Brain Cancer 116 18 
NCIH747_LARGE_INTESTINE Colon/Colorectal Cancer 80 18 
KPNSI9S_AUTONOMIC_GANGLIA Neuroblastoma 129 18 
8305C_THYROID Thyroid Cancer 459 19 
NCIH2228_LUNG Lung Cancer 367 19 
TE10_OESOPHAGUS Esophageal Cancer 219 19 
ASPC1_PANCREAS Pancreatic Cancer 290 19 
HCC366_LUNG Lung Cancer 202 19 

66

______________________________________________________________________________Chapter 1



 

BICR16_UPPER_AERODIGESTIVE_TRACT Head and Neck Cancer 212 19 

HEC6_ENDOMETRIUM Endometrial/Uterine 
Cancer 161 19 

KALS1_CENTRAL_NERVOUS_SYSTEM Brain Cancer 288 19 
NCIH2444_LUNG Lung Cancer 237 19 
SNU46_UPPER_AERODIGESTIVE_TRACT Head and Neck Cancer 236 19 
OAW28_OVARY Ovarian Cancer 161 19 
SNU1214_UPPER_AERODIGESTIVE_TRACT Head and Neck Cancer 188 19 
NCIH2073_LUNG Lung Cancer 176 19 
SKMEL5_SKIN Skin Cancer 297 19 
OVCAR4_OVARY Ovarian Cancer 283 19 
UACC257_SKIN Skin Cancer 239 19 
ONCODG1_OVARY Ovarian Cancer 270 19 
HUH28_BILIARY_TRACT Bile Duct Cancer 139 19 
IM95_STOMACH Gastric Cancer 185 19 
TE14_OESOPHAGUS Esophageal Cancer 474 19 
U118MG_CENTRAL_NERVOUS_SYSTEM Brain Cancer 244 19 
CAKI2_KIDNEY Kidney Cancer 278 19 
SU8686_PANCREAS Pancreatic Cancer 82 19 
SQ1_LUNG Lung Cancer 238 22 
CAOV3_OVARY Ovarian Cancer 221 22 
IALM_LUNG Lung Cancer 322 22 
BT474_BREAST Breast Cancer 125 22 
DKMG_CENTRAL_NERVOUS_SYSTEM Brain Cancer 271 22 
BT549_BREAST Breast Cancer 266 22 
BICR6_UPPER_AERODIGESTIVE_TRACT Head and Neck Cancer 286 22 
SH10TC_STOMACH Gastric Cancer 351 22 
UMUC1_URINARY_TRACT Bladder Cancer 197 22 
LS1034_LARGE_INTESTINE Colon/Colorectal Cancer 146 22 
CCFSTTG1_CENTRAL_NERVOUS_SYSTEM Brain Cancer 246 22 
NCIH226_LUNG Lung Cancer 235 22 
LNCAPCLONEFGC_PROSTATE Prostate Cancer 129 22 
RCC10RGB_KIDNEY Kidney Cancer 233 22 
NCIH2347_LUNG Lung Cancer 145 22 

TEN_ENDOMETRIUM Endometrial/Uterine 
Cancer 316 22 

RERFLCAD1_LUNG Lung Cancer 243 22 
COLO680N_OESOPHAGUS Esophageal Cancer 523 22 
SKMEL2_SKIN Skin Cancer 276 22 
BICR31_UPPER_AERODIGESTIVE_TRACT Head and Neck Cancer 248 22 
SKMEL3_SKIN Skin Cancer 194 22 
RCM1_LARGE_INTESTINE Colon/Colorectal Cancer 128 22 
COV434_OVARY Ovarian Cancer 88 22 
SNU1079_BILIARY_TRACT Bile Duct Cancer 73 22 
SCC47_UPPER_AERODIGESTIVE_TRACT Head and Neck Cancer 592 custom 
JHU029_UPPER_AERODIGESTIVE_TRACT Head and Neck Cancer 797 custom 
SCC25_UPPER_AERODIGESTIVE_TRACT Head and Neck Cancer 898 custom 
SCC9_UPPER_AERODIGESTIVE_TRACT Head and Neck Cancer 475 custom 
JHU011_UPPER_AERODIGESTIVE_TRACT Head and Neck Cancer 717 custom 
93VU_UPPER_AERODIGESTIVE_TRACT Head and Neck Cancer 572 custom 
SCC90_UPPER_AERODIGESTIVE_TRACT Head and Neck Cancer 258 custom 
JHU006_UPPER_AERODIGESTIVE_TRACT Head and Neck Cancer 325 custom 
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Table S3. Cell lines harboring each of the non-cell cycle recurrently heterogeneous 
expression programs (RHP).  
 

Skin 
Pigmentation 

C32_SKIN, COLO741_SKIN, WM88_SKIN, SKMEL2_SKIN, SKMEL3_SKIN, 
IGR1_SKIN, A2058_SKIN, SKMEL30_SKIN, RVH421_SKIN, HS939T_SKIN, 
COLO792_SKIN, SKMEL5_SKIN, UACC257_SKIN 

EMT I C32_SKIN, COLO741_SKIN, WM88_SKIN, IGR1_SKIN, A2058_SKIN, SKMEL30_SKIN, 
SKMEL5_SKIN, UACC257_SKIN,  

EMT II 

93VU_UPPER_AERODIGESTIVE_TRACT, BCPAP_THYROID, 
BICR31_UPPER_AERODIGESTIVE_TRACT, CAMA1_BREAST, 
DKMG_CENTRAL_NERVOUS_SYSTEM, BT549_BREAST, EFM192A_BREAST, 
NCIH1048_LUNG, EKVX_LUNG, VMRCRCZ_KIDNEY, 
JHU006_UPPER_AERODIGESTIVE_TRACT, 
JHU011_UPPER_AERODIGESTIVE_TRACT, NCIH2073_LUNG, NCIH2228_LUNG, 
OVCAR4_OVARY, RD_SOFT_TISSUE, SCC25_UPPER_AERODIGESTIVE_TRACT, 
SCC47_UPPER_AERODIGESTIVE_TRACT 

IFN Response 

42MGBA_CENTRAL_NERVOUS_SYSTEM, A204_SOFT_TISSUE, BCPAP_THYROID, 
BICR56_UPPER_AERODIGESTIVE_TRACT, COLO680N_OESOPHAGUS, 
DKMG_CENTRAL_NERVOUS_SYSTEM, FTC133_THYROID, JHH6_LIVER, 
KALS1_CENTRAL_NERVOUS_SYSTEM, LS1034_LARGE_INTESTINE, 
NCIH2073_LUNG, NCIH2452_PLEURA, PANC0203_PANCREAS, RD_SOFT_TISSUE, 
UACC257_SKIN 

EMT III 

ASPC1_PANCREAS, BICR6_UPPER_AERODIGESTIVE_TRACT, 
BICR16_UPPER_AERODIGESTIVE_TRACT, HUCCT1_BILIARY_TRACT, 
JHOS2_OVARY, KYSE520_OESOPHAGUS, MKN7_STOMACH, NCIH2347_LUNG, 
RERFLCAD1_LUNG, SW1990_PANCREAS, TE9_OESOPHAGUS, 
TE10_OESOPHAGUS 

p53-Dependent 
Senescence 

A375_SKIN, HEC151_ENDOMETRIUM, HT1080_SOFT_TISSUE, IM95_STOMACH, 
KPNSI9S_AUTONOMIC_GANGLIA, LS180_LARGE_INTESTINE, MCF7_BREAST, 
NCIH292_LUNG, NCIH460_LUNG, NCIH1373_LUNG, NCIH1944_LUNG, 
OVK18_OVARY, RCC10RGB_KIDNEY, SNUC4_LARGE_INTESTINE, 
SW1990_PANCREAS, TEN_ENDOMETRIUM, TOV21G_OVARY 

Epithelial 
Senescence 

BICR16_UPPER_AERODIGESTIVE_TRACT, 
BICR31_UPPER_AERODIGESTIVE_TRACT, COLO680N_OESOPHAGUS, 
DETROIT562_UPPER_AERODIGESTIVE_TRACT, EKVX_LUNG, 
HT1376_URINARY_TRACT, HUPT3_PANCREAS, HUPT4_PANCREAS, 
JHU006_UPPER_AERODIGESTIVE_TRACT, 
JHU011_UPPER_AERODIGESTIVE_TRACT, 
JHU029_UPPER_AERODIGESTIVE_TRACT, NCIH358_LUNG, 
NCIH747_LARGE_INTESTINE, NCIH1048_LUNG, NCIH2126_LUNG, 
PANC0203_PANCREAS, PK59_PANCREAS, RERFLCKJ_LUNG, 
SCC25_UPPER_AERODIGESTIVE_TRACT, 
SCC47_UPPER_AERODIGESTIVE_TRACT, 
SNU899_UPPER_AERODIGESTIVE_TRACT, 
SNU1214_UPPER_AERODIGESTIVE_TRACT, TE10_OESOPHAGUS, 
TE14_OESOPHAGUS, UMUC1_URINARY_TRACT, VMCUB1_URINARY_TRACT, 
YD38_UPPER_AERODIGESTIVE_TRACT 

Stress 
Response 

42MGBA_CENTRAL_NERVOUS_SYSTEM, 93VU_UPPER_AERODIGESTIVE_TRACT, 
ASPC1_PANCREAS, BCPAP_THYROID, BFTC909_KIDNEY, CAOV3_OVARY, 
CAS1_CENTRAL_NERVOUS_SYSTEM, COLO680N_OESOPHAGUS, 
DKMG_CENTRAL_NERVOUS_SYSTEM, EBC1_LUNG, 
GOS3_CENTRAL_NERVOUS_SYSTEM, HCC56_LARGE_INTESTINE, 
HEC59_ENDOMETRIUM, HEC251_ENDOMETRIUM, HOS_BONE, 
HT1376_URINARY_TRACT, HUPT3_PANCREAS, JHOS2_OVARY, 
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JHU006_UPPER_AERODIGESTIVE_TRACT, KALS1_CENTRAL_NERVOUS_SYSTEM, 
KNS42_CENTRAL_NERVOUS_SYSTEM, KYSE520_OESOPHAGUS, 
MDAMB436_BREAST, MFE280_ENDOMETRIUM, MKN45_STOMACH, 
NCIH226_LUNG, NCIH727_LUNG, NCIH747_LARGE_INTESTINE, NCIH1299_LUNG, 
NCIH1435_LUNG, NCIH2077_LUNG, NCIH2126_LUNG, NCIH2347_LUNG, 
OAW28_OVARY, ONCODG1_OVARY, PC3_PROSTATE, PK45H_PANCREAS, 
RCC10RGB_KIDNEY, RD_SOFT_TISSUE, RERFLCAD1_LUNG, 
SNU46_UPPER_AERODIGESTIVE_TRACT, SNU738_CENTRAL_NERVOUS_SYSTEM, 
SNU1077_ENDOMETRIUM, SNU1079_BILIARY_TRACT, SW1271_LUNG, 
SW1990_PANCREAS, TE9_OESOPHAGUS, TEN_ENDOMETRIUM, 
TM31_CENTRAL_NERVOUS_SYSTEM, TYKNU_OVARY, 
U118MG_CENTRAL_NERVOUS_SYSTEM, VMCUB1_URINARY_TRACT 

Protein 
Maturation 

C32_SKIN, DETROIT562_UPPER_AERODIGESTIVE_TRACT, HS729_SOFT_TISSUE, 
HUCCT1_BILIARY_TRACT, LMSU_STOMACH, MSTO211H_PLEURA, 
NCIH1568_LUNG, NCIH2087_LUNG, OUMS23_LARGE_INTESTINE, 
OVTOKO_OVARY, PATU8988S_PANCREAS, 
PECAPJ49_UPPER_AERODIGESTIVE_TRACT, SNU423_LIVER, 
TEN_ENDOMETRIUM, UACC257_SKIN, UMUC1_URINARY_TRACT 

Proteasomal 
Degradation 

42MGBA_CENTRAL_NERVOUS_SYSTEM, 8305C_THYROID, 2313287_STOMACH, 
A204_SOFT_TISSUE, A375_SKIN, A2058_SKIN, ABC1_LUNG, BCPAP_THYROID, 
BFTC909_KIDNEY, BHY_UPPER_AERODIGESTIVE_TRACT, 
BICR6_UPPER_AERODIGESTIVE_TRACT, 
BICR16_UPPER_AERODIGESTIVE_TRACT, 
BICR31_UPPER_AERODIGESTIVE_TRACT, 
BICR56_UPPER_AERODIGESTIVE_TRACT, BT549_BREAST, C32_SKIN, 
CAKI2_KIDNEY, CALU6_LUNG, CAMA1_BREAST, CAOV3_OVARY, 
CAS1_CENTRAL_NERVOUS_SYSTEM, CL34_LARGE_INTESTINE, 
COLO680N_OESOPHAGUS, COLO741_SKIN, DANG_PANCREAS, 
DAOY_CENTRAL_NERVOUS_SYSTEM, 
DETROIT562_UPPER_AERODIGESTIVE_TRACT, 
DKMG_CENTRAL_NERVOUS_SYSTEM, EBC1_LUNG, EFM192A_BREAST, 
FTC133_THYROID, GOS3_CENTRAL_NERVOUS_SYSTEM, HCC1419_BREAST, 
HCC1428_BREAST, HDQP1_BREAST, HEC59_ENDOMETRIUM, 
HEC108_ENDOMETRIUM, HEC151_ENDOMETRIUM, HEC251_ENDOMETRIUM, 
HEP3B217_LIVER, HMC18_BREAST, HOS_BONE, HS729_SOFT_TISSUE, 
HS852T_SKIN, HS939T_SKIN, HT55_LARGE_INTESTINE, HT1080_SOFT_TISSUE, 
HT1197_URINARY_TRACT, HT1376_URINARY_TRACT, HUCCT1_BILIARY_TRACT, 
HUH6_LIVER, HUH28_BILIARY_TRACT, HUPT3_PANCREAS, IALM_LUNG, 
IGR1_SKIN, IM95_STOMACH, JHH7_LIVER, JHOS2_OVARY, 
KALS1_CENTRAL_NERVOUS_SYSTEM, KMRC3_KIDNEY, 
KNS42_CENTRAL_NERVOUS_SYSTEM, KPL1_BREAST, LI7_LIVER, 
LMSU_STOMACH, LNCAPCLONEFGC_PROSTATE, LS180_LARGE_INTESTINE, 
MCF7_BREAST, MDAMB436_BREAST, MFE280_ENDOMETRIUM, 
MFE319_ENDOMETRIUM, MKN7_STOMACH, MKN45_STOMACH, 
MSTO211H_PLEURA, NCIH226_LUNG, NCIH292_LUNG, NCIH358_LUNG, 
NCIH446_LUNG, NCIH460_LUNG, NCIH522_LUNG, NCIH650_LUNG, 
NCIH727_LUNG, NCIH747_LARGE_INTESTINE, NCIH1048_LUNG, NCIH1299_LUNG, 
NCIH1373_LUNG, NCIH1435_LUNG, NCIH1568_LUNG, NCIH1944_LUNG, 
NCIH2073_LUNG, NCIH2077_LUNG, NCIH2170_LUNG, NCIH2228_LUNG, 
NCIH2347_LUNG, NCIH2444_LUNG, NCIH2452_PLEURA, OAW28_OVARY, 
ONCODG1_OVARY, OSRC2_KIDNEY, OVCAR4_OVARY, OVSAHO_OVARY, 
OVTOKO_OVARY, PANC0203_PANCREAS, PANC1_PANCREAS, 
PATU8988S_PANCREAS, PC3_PROSTATE, 
PECAPJ49_UPPER_AERODIGESTIVE_TRACT, RCC10RGB_KIDNEY, 
RD_SOFT_TISSUE, RERFLCAI_LUNG, RT4_URINARY_TRACT, RVH421_SKIN, 
SCC9_UPPER_AERODIGESTIVE_TRACT, SCC25_UPPER_AERODIGESTIVE_TRACT, 
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SH10TC_STOMACH, SKMEL2_SKIN, SKMEL3_SKIN, SKMEL5_SKIN, 
SKMEL30_SKIN, SKMES1_LUNG, SNU46_UPPER_AERODIGESTIVE_TRACT, 
SNU308_BILIARY_TRACT, SNU423_LIVER, SNU449_LIVER, 
SNU738_CENTRAL_NERVOUS_SYSTEM, 
SNU899_UPPER_AERODIGESTIVE_TRACT, SNU1077_ENDOMETRIUM, 
SNU1196_BILIARY_TRACT, SNU1214_UPPER_AERODIGESTIVE_TRACT, 
SNUC4_LARGE_INTESTINE, SQ1_LUNG, SU8686_PANCREAS, 
SW1088_CENTRAL_NERVOUS_SYSTEM, SW1271_LUNG, SW1990_PANCREAS, 
T47D_BREAST, TCCSUP_URINARY_TRACT, TE1_OESOPHAGUS, 
TE6_OESOPHAGUS, TE9_OESOPHAGUS, TE10_OESOPHAGUS, 
TE14_OESOPHAGUS, TEN_ENDOMETRIUM, TOV21G_OVARY, 
U118MG_CENTRAL_NERVOUS_SYSTEM, UACC257_SKIN, 
UMUC1_URINARY_TRACT, VMCUB1_URINARY_TRACT, VMRCRCZ_KIDNEY, 
WM88_SKIN, YD38_UPPER_AERODIGESTIVE_TRACT, ZR751_BREAST 

 
 
Table S4. Gene annotation of recurrently heterogeneous expression programs (RHP). 
 

Cell Cycle -
G1/S 

HIST1H4C, CLSPN, ATAD2, E2F1, HELLS, RRM2, HIST2H2AC, HIST1H1E, FAM111A, 
GINS2, CENPU, CDCA5, ASF1B, CHAF1A, TCF19, HIST1H1D, KIAA0101, FEN1, 
HIST1H1B, PCNA, FBXO5, HIST1H1C, CDCA4, MYBL2, PKMYT1, FAM111B, USP1, 
CDC6, EZH2, PSMC3IP, GMNN, HMGB2, ORC6, TYMS, DNAJC9, CDK1, UBE2T, 
SLBP, BRCA1, C21orf58, CDT1, ESCO2, TEX30, ATAD5, CCNE1, RAD51AP1 

Cell Cycle -
G2/M 

AURKA, CENPF, PLK1, TOP2A, UBE2C, ASPM, TPX2, CENPA, CKAP2, GTSE1, 
CCNB1, ARL6IP1, MKI67, CENPE, CKS2, HMMR, DEPDC1, NUSAP1, PRC1, SGOL2, 
CCNA2, KPNA2, CDCA8, HMGB2, NUF2, KNSTRN, CDCA3, CEP55, KIF20B, 
FAM83D, PIF1, CDC20, DLGAP5, KIF2C, PRR11, ARHGAP11A, KIF23, AURKB, CDK1, 
KIF14, FAM64A, CCNB2, PSRC1, NEK2, CDCA2, BIRC5, TACC3, CKAP2L, HJURP, 
KIF4A, UBALD2, CDC25B, RACGAP1, SGOL1, ECT2, CCNF, UBE2S, ANLN, CDKN3, 
DBF4, G2E3, PBK 

Skin 
Pigmentation 

PHACTR1, DCT, MITF, CHCHD6, MBP, GDF15, MLANA, TBC1D7, TNFRSF14, 
TRPM1, ASAH1, CAPN3, LINC00518, BIRC7, FXYD3, GPNMB, GPR137B, LGALS3, 
MXI1, NOV, PMEL, TBC1D16, WIPI1, GYPC, ISG20, PLP1, APOE, AVPI1, C11orf96, 
DAB2, FAM210B, GJB1, GPR56, HES6, NBL1, RAB27A, RAB38, RAB5B, RRAGD, 
S100B, SEMA6A, SH3BP5, STX7, TIMP2, TRIM2, ZFYVE16, ZNF106 

EMT I 

DKK1, PMEPA1, C12orf75, CYR61, IL8, SORBS2, THBS1, TPST1, CAV1, KRT7, 
LIMA1, LIMCH1, MAP1B, MGLL, MXD4, PRSS23, RRAS, S100A16, TPM1, CCND1, 
CTGF, DDIT4, FN1, FOSL1, HOXB2, IER3, KRT81, NT5E, PLAUR, PPFIBP1, PTRF, 
RND3, S100A4, SMURF2, TGFBI, TNFRSF12A, TSC22D1, AC093673.5, ACTG2, CAV2, 
CCDC107, CD82, CDKN1A, CEBPD, CSRP1, CXCL1, DCBLD2, EVA1A, FAM20C, 
FHL2, FLNB, FRMD6, GLIPR1, HEBP2, HPCAL1, ITGA3, KDELR3, KRT18, 
LINC00152, MIR4435-1HG, MYL9, MYLK, NGFR, NME3, NNMT, PDLIM7, PEG10, 
PNRC1, PRKCDBP, PRNP, PTGES, S100A2, SERPINE2, SFRP1, SPRY2, TGM2, TIMP3, 
USP53, ZNF655 

EMT II 
MYL9, SERPINE1, THBS1, FN1, IL32, LAMC2, MYH9, TAGLN, CLIC3, COL5A1, 
IGFBP3, INHBA, PMEPA1, CDC42EP3, CST6, CYR61, GLIPR1, TPM1, VIM, AKAP12, 
AXL, EDN1, FLNA, FST, FSTL1, IGFBP7, PRSS23, PTPRF 

IFN Response 

ISG20, IFIT3, ISG15, OASL, IFIT1, IFIT2, IFI44, PMAIP1, RARRES3, ZC3HAV1, 
HERC5, SAMD9, WARS, IGFBP6, SAMD9L, CCL5, IFI6, APOL2, HES4, IFIH1, IRF1, 
PARP14, PSMB9, ZNFX1, HLA-B, IL7R, APOL6, B4GALT5, DDX58, DDX60, FAM46A, 
JUNB, KLF4, PLAUR, RSAD2, SAR1A, SDC4, SQRDL, ZFP36L2, APOL1, C15orf48, 
CDKN1A, FGF2, GRB10, HIP1R, IL6, TNIP1, UBE2L6, USP18 
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EMT III 

LAMA3, LAMB3, LAMC2, CDKN1A, FAM83A, ITGA2, PLAU, C15orf48, JUP, MAST4, 
RHOD, SERPINB1, SERPINE1, AHNAK2, COL17A1, DMKN, ELK3, F3, G0S2, IL32, 
INHBA, LRRC8A, NDRG1, NEAT1, S100A14, SLPI, TSPAN1, CDA, CDH1, CDH3, 
CST6, DHRS9, EPCAM, FN1, FXYD3, HBEGF, KLK10, LCN2, LSR, POLD4, PTGS2, 
SEMA3C, SERPINB2, SLFN5, SMIM22, SOX4, SRCAP, VAMP8, WFDC2 

p53-Dependent 
Senescence 

CDKN1A, NEAT1, POLD4, MXD4, MMP24-AS1, PNRC1, HIST1H2BK, SLPI, TP53TG1, 
IFI27L2, IGBP1, AHNAK2, FDXR, GPRC5A, IFI27, ISG15, KRT19, S100P, TP53I3 

Epithelial 
Senescence 

SLPI, LCN2, ELF3, S100A9, S100P, SAA1, C15orf48, SPRR1B, AQP3, LY6D, ASS1, 
CLDN4, FXYD3, KRT15, S100A14, S100A8, SERPINB1, AGR2, CXCL1, KRT13, KRT16, 
ADIRF, C9orf169, CD9, CTSD, GSN, MMP7, NEAT1, PI3, PSCA, RARRES3, SAA2, 
SAMD9, SAT1, SNCG, TACSTD2, TNFAIP2, WFDC2 

Stress 
Response 

DDIT3, SNHG12, SLC3A2, PPP1R15A, GADD45B, GADD45A, RSRC2, TXNIP, ATF3, 
TAF1D, TRIB3, ASNS, EPB41L4A-AS1, KLF10, SNHG15, PDRG1, CARS, SNAPC1, 
CCNL1, SQSTM1, TSC22D1, DDIT4, XBP1, HERPUD1, IER2, NFKBIA, RAE1, JUN, 
RELB, BTG1, IRF1, ZNF622, HIST1H2AC, OSER1, SERTAD1, SNHG8 

Protein 
Maturation 

HSPA5, RPN2, SLC3A2, PDIA3, LGALS3BP, MCM7, XRCC6, EPRS, VCP, COPB2, 
EIF4A3, KPNA2, OS9, PRKCSH, UBC, ANXA1, APP, CYR61, HSPA1A, HSPA8, 
LAPTM4A, NDUFS2, PGK1, APLP2, ATP6AP2, CTSL, GRN, LAMB3, LAMP1, 
MAGED2, NASP, POLR2B, SDHA, SON 

Proteasomal 
Degradation 

PSMA3, PSMC4, PRDX1, PSMC2, EIF4A3, MDH1, PSMA4, ANXA1, MRPL13, PGK1, 
DCAF13, PSME2, PRMT1, PSMB3, CCT8, SSBP1, CCNB1, CDC123, DPM1, NDUFS2, 
PDHA1, LAPTM4A, PSMB1, PCMT1, PSMB6, NDUFA9, POLR2G, CCT5, RTCB, 
HSPA5, DDX39A, MCTS1, SNRPB2, XRCC6, PSMD13, EIF3I, SSB, NUP37, ILF2, 
EIF4A1, FH, IMPDH2, CCT7, MAGOH, RBM42, SLC3A2 
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Melatonergic system-based two-gene index is prognostic in
human gliomas

Abstract: Gliomas, the most common primary brain tumors in adults, are

classified into four malignancy grades according to morphological features.

Recent studies have shown that melatonin treatment induces cytotoxicity in

glioma-initiating cells and reduces the invasion and migration of glioma cell

lines, inhibiting the nuclear factor jB (NFjB) oncopathway. Given that C6 rat

glioma cells produce melatonin, we investigated the correlation between the

capacity of gliomas to synthesize/metabolize melatonin and their overall

malignancy. We first characterized the melatonergic system of human gliomas

cell lines with different grades of aggressiveness (HOG, T98G, and U87MG)

and demonstrated that glioma-synthesized melatonin exerts an autocrine

antiproliferative effect. Accordingly, the sensitivity to exogenous melatonin

was higher for the most aggressive cell line, U87MG, which synthesized/

accumulated less melatonin. Using The Cancer Genome Atlas RNAseq data

of 351 glioma patients, we designed a predictive model of the content of

melatonin in the tumor microenvironment, the ASMT:CYP1B1 index,

combining the gene expression levels of melatonin synthesis and metabolism

enzymes. The ASMT:CYP1B1 index negatively correlated with tumor grade,

as well as with the expression of pro-proliferation and anti-apoptotic NFjB
target genes. More importantly, the index was a grade- and histological type-

independent prognostic factor. Even when considering only high-grade glioma

patients, a low ASMT:CYP1B1 value, which suggests decreased melatonin and

enhanced aggressiveness, was strongly associated with poor survival. Overall,

our data reveal the prognostic value of the melatonergic system of gliomas and

provide insights into the therapeutic role of melatonin.
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Introduction

Gliomas are the most common primary brain tumors in
adults and presumably arise from mature glia cells or their
less differentiated progenitor cells [1, 2]. The World Health
Organization (WHO) morphological classification of glio-
mas into four grades (I–IV) is a key factor influencing
treatment decisions. However, it is subjected to interob-
server variability and lacks reproducibility [3, 4]. The
detailed molecular characterization of gliomas can comple-
ment the WHO grading through the identification of
tumor specific subgroups and contribute to the develop-
ment of new treatment strategies [5]. Glioblastomas
(GBMs, glioma grade IV), which account for approxi-
mately 50% of gliomas, are still associated with very poor
survival (12–15 months), despite macroscopic complete
resection combined to radio and chemotherapy [1, 6].
Melatonin (N-acetyl-5-methoxytryptamine) is an indo-

lamine synthesized by the pineal gland during the night,
in response to signals from the central biological clock
[7]. The production and release of this hormone by the
pineal gland translates the dark phase to the organism,
ensuring the synchronization of circadian and seasonal
rhythms [8, 9]. Melatonin synthesis has a conserved
biosynthesis pathway, involving the conversion of

serotonin to N-acetylserotonin (NAS) by the enzyme ary-
lalkylamine N-acetyltransferase (AANAT) and the subse-
quent NAS methylation by the enzyme acetylserotonin
O-methyltransferase (ASMT) [7]. In humans, melatonin
is metabolized by the hepatic cytochrome P450 1A1/2
(CYP1A1/2) to 6-hydroxymelatonin (6OH-MEL), conju-
gated with sulfate and excreted in the urine [10]. Cyto-
chrome P450 1B1 (CYP1B1), which is not significantly
expressed in the liver, is responsible for the 6-hydroxyla-
tion of melatonin in the brain [11].
Melatonin synthesis has been detected in many extra-

pineal tissues, including retina, skin, gastrointestinal tract,
liver, kidney, and brain [12]. Except for some tissues such
as retina, the absence of a daily rhythm of extra-pineal
melatonin synthesis suggests that it is not regulated by the
environmental light–dark cycle [13]. Generally, extra-
pineal melatonin is poorly released into the circulation,
acting locally in an autocrine and paracrine manner [13,
14]. Interestingly, rat astrocytes and C6 glioma cells syn-
thesize melatonin in vitro and have been shown to express
the necessary biosynthetic enzymes [15]. Additionally, we
have previously demonstrated that melatonin production
by rat cerebellar glia cells selectively protects the cerebel-
lum from neuroinflammation toxicity in a receptor-depen-
dent manner [16].

J. Pineal Res. 2015
Doi:10.1111/jpi.12293
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Quantitative real-time polymerase chain reaction

Total RNA was extracted using InviTrap Spin Tissue
RNA Mini Kit (Invitek GmbH, Berlin, Germany) and
RNAs (1 lg) were reverse transcribed into complementary
DNA by the SuperScript III First-Strand Synthesis System
for RT-PCR (Life Technologies), following the manufac-
ture’s instructions. Quantitative real-time polymerase
chain reaction (qPCR) was performed using SYBR Green
PCR Master Mix (Applied Biosystems, Foster City, CA,
USA) and carried out in an Icycler iQ5 machine (BIO-
RAD, Hercules, CA, USA). Primer sets were designed
using the software Prime-Blast (National Center for
Biotechnology Information, Bethesda, MD, USA):
GAPDH, sense 50-GAGTCCACTGGCGTCTTCAC-30,
antisense 50-ATGACGAACATGGGGGCATC-30; CYP1B1,
sense 50-CCACTATCACTGACATCTTCGG-30, antisense
50-GATCCAATTCTGCCTGCACT-30. Thermal cycling
conditions were 95°C for 10 min followed by 40 cycles at
95°C for 15 s and 60°C for 1 min. Each run was completed
with a melting curve analysis to confirm the specificity of
amplification and lack of primer dimers. The 2!DDCT equa-
tion was applied to calculate the expression of CYP1B1
relative to GAPDH; the mean DCT of T98G cells was used
as the calibrator.

Melatonin measurement

The content of melatonin in the cell medium after 6 hr of
culture was measured through enzyme-linked immunosor-
bent assays (Melatonin ELISA; IBL, Hamburg, Germany)
according to the manufacturer’s instructions. Values were
normalized per million of cells and the assay has a detec-
tion limit of 3 pg/mL.

MTT cell growth assay

Cells (1 9 104 per well) were seeded on 96-well plates
overnight and subsequently treated for 48 hr with various
concentrations of luzindole (10!12–10!9

M), a competitive
antagonist of melatonin receptors, and/or melatonin
(10!9–10!3

M), both obtained from Sigma-Aldrich. Cells
were then incubated with methylthiazolyldiphenyl-tetrazo-
lium bromide (MTT; 0.5 mg/mL, Sigma-Aldrich) for 4 hr
at 37°C. The reduced crystals of MTT (formazan) were
dissolved in isopropanol:DMSO (1:1 v:v, 30 min, room
temperature). The absorbance was measured at 570 nm,
with background subtraction at 690 nm, in a SpectraMax
250 spectrophotometer (Molecular Devices, Sunnyvale,
CA, USA).

TCGA RNAseq dataset

Gene expression data were generated using the Illumina
HiSeq 2000 RNA Sequencing platform by the University
of North Carolina TCGA genome characterization center.
Level 3 interpreted data and clinical information of 101
gliomas grade II, 98 gliomas grade III, and 152 primary
GBMs were downloaded from the TCGA data portal
(https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm).

Kinker�et�al.

It� is� well� established� that� melatonin� exerts� oncostatic�
effects,� in� both� a� receptor-dependent� and� -independent�
manners,� across� a� wide� variety� of� tumors,� including� sar-
comas,� melanomas,� and� breast� cancer� [17].� At� millimo-
lar� concentrations,� melatonin� inhibits� the� proliferation�
of� C6� rat� glioma� cells� and� the� invasion� and� migration�
of� human� GBM� cell� lines� [18,� 19].� In� both� cases,� this�
indolamine� decreases� the� intracellular� basal� free� radical�
levels,� inhibiting� the� redox-sensitive� activation� of� the�
nuclear� factor� jB� (NFjB)� oncopathway.� Additionally,�
recent� studies� have� demonstrated� that� melatonin� also�
promotes� cytotoxic� effects� in� human� glioma-initiating�
cells,� thereby� enhancing� the� efficacy� of� chemotherapeutic�
drugs� [20,� 21].
Although� evidence� shows� the� potential� therapeutic� role�

of� melatonin� in� glioma� treatment� [18–21],� no� previous�
studies� evaluated� the� pathophysiologic� relevance� of�
glioma-synthesized�melatonin.�Therefore,�the�present�work�
investigated�the�correlation�between�the�capacity�of�human�
gliomas�to�synthesize/metabolize�melatonin�and�their�over-
all�malignancy,�as�well�as�patient�survival.

Materials�and�methods

Cell�culture

Human� glioma� cell� lines�HOG,�T98G,� and�U87MG�were�
maintained� in� RPMI� 1640� medium� (Life� Technologies,�
Carlsbad,�CA,�USA)� supplemented�with� 10%�heat-inacti-
vated� fetal� bovine� serum� (FBS)� (Life� Technologies),�
100� IU/mL� penicillin,� and� 100�lg/mL� streptomycin� (Life�
Technologies),�at�37°C� in�a�humidified�atmosphere�of�5%
CO2.�T98G� and�U87MG�GBM� cell� lines�were� purchased�
from� ATCC,� while� HOG,� established� from� a� grade� III�
anaplastic�oligodendroglioma� [22],�was�kindly�provided�by�
Dr.� MC� Sogayar� (University� of� S~ao� Paulo,� S~ao� Paulo,�
Brazil).�All� cell� lines�were� authenticated� by� short� tandem�
repeat� DNA� profiling� using� the� GenePrint� 10� System�
(Promega,�Madison,�WI,�USA).

Immunofluorescence

Cells�were�fixed�with�4%�paraformaldehyde�(15�min,�room�
temperature),�permeabilized�with� 0.1%�Triton�X� (10�min,�
room� temperature),� and� blocked� with� 2%� bovine� serum�
albumin� (BSA)� in� PBS� (1�hr,� room� temperature).� Next,�
cells� were� incubated� overnight� at� 4°C� with� rabbit� anti-
AANAT� (IM-0450),� pAANAT� (IM-0451)� or� ASMT�
(IM-0441)�primary� antibodies� (Imuny�Biotechnology,�S~ao�
Paulo,� Brazil).� Cells� were� washed� three� times� with� PBS�
before� incubation� with� FITC-conjugated� anti-rabbit� IgG�
antibody�(Sigma-Aldrich,�St.�Louis,�MO,�USA)�for�1�hr�at�
room� temperature.� After� three� washes� with� PBS,� the�
nuclear�DNA�was�stained�with�DAPI�(5�min,�room�temper-
ature,�Santa�Cruz�Biotechnology,�Santa�Cruz,�CA,�USA).�
In�each�experiment,�images�of�three�randomly�chosen�fields�
per� well� were� captured� using� a� fluorescence� microscope�
(Axio�Scope�A1;�Zeiss,�Gottingen,�Germany)�and�analyzed�
with� ImageJ� 1.41� Software.� The�mean� fluorescence�mea-
sured�in�each�field�was�used�in�the�statistical�analysis.
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Expression levels were RSEM-normalized and log2(x + 1)-
transformed.

ASMT:CYP1B1 index calculation

The ASMT and CYP1B1 RSEM expression levels were
used to design a two-gene expression index, as previously
described [23], by z-normalizing the log2-transformed val-
ues for each gene and calculating the difference between
them (ASMT–CYP1B1).

Gene set enrichment analysis

To account for differences among tumor histological
types, gene set enrichment analysis (GSEA) was restricted
to astrocytomas (grades II–IV). Genes were ranked
according to Pearson’s correlation coefficient between the
ASMT:CYP1B1 index value and the expression levels
obtained from the TCGA RNAseq dataset. GSEA of GO
biological processes (C5:BP) was performed using GSEA
v4.0 (Broad Institute, M.I.T.). Enrichment scores (ESs)
were calculated based on a Kolmogorov–Smirnov-like
statistic and further normalized (NES) to account for the
size of each gene set. The proportion of false positives was
determined by calculating the false discovery rate (FDR)
corresponding to each NES [24]. We considered a FDR
cutoff of less than 25%.

Statistics

The Cutoff Finder survival algorithm was used to identify
the optimal cutoff values, defined as the points with the
most significant (log-rank test) data split [25]. Further sta-
tistical analyses were performed with the GraphPad Prism
6, the JMP 11 or the R software (http://www.r-projec-
t.org). Two-group comparisons were analyzed using two-
sided Student’s t-test. Three-group comparisons were ana-
lyzed using one-way ANOVA with Tukey’s correction or
nonparametric Kruskal–Wallis test with Dunn’s correc-
tion. To determine correlations, we calculated Spearman’s
rank (rs) or Pearson’s (r) correlation coefficients. Fisher’s
exact test was used to analyze the associations between
various categorical clinicopathological characteristics and
the dichotomized ASMT:CYP1B1 index. Univariate anal-
ysis of survival was performed using the Kaplan–Meier
method and compared by the log-rank test. Multivariate
analysis of survival was performed using Cox proportional
hazards regression. Hazard ratios (HRs) including 95%
confidence intervals were calculated. P-values < 0.05 were
considered statistically significant.

Results

To investigate the association between the melatonergic
system of gliomas and their overall malignancy, we first
analyzed three human glioma cell lines with different
grades of aggressiveness: HOG, an oligodendroglioma
grade III, T98G, a GBM, and U87MG, a highly tumori-
genic GBM [26]. HOG, a lower grade glioma, showed an
overexpression of ASMT when compared to T98G and
U87MG GBM cell lines (Fig. 1A). The most aggressive

cell line, U87MG, presented the highest protein levels of
total AANAT and the active form, pAANAT (Fig. 1A),
as well as an overexpression of the melatonin catabolic
enzyme CYP1B1 (Fig. 1B). Interestingly, as observed for
U87MG, lower protein levels of ASMT (Fig. 1A), com-
bined with a higher expression of CYP1B1 (Fig. 1B), were
associated with a reduced content of melatonin detected in
the cell culture medium (Fig. 1C). Notably, given that the
pineal gland also secretes high levels of NAS, the precur-
sor of melatonin, during the night [27], ASMT would play
a major role in the control of melatonin production by
gliomas in vivo.
As we sought to determine the functional relevance of

glioma-synthesized melatonin, cell lines were treated for
48 hr with increasing concentrations of the competitive
antagonist of MT1 and MT2 melatonin receptors, luzin-
dole. Luzindole significantly increased the cell growth of
HOG and T98G, whereas no difference was detected for
U87MG (Fig. 2A), which accumulates lower levels of
melatonin in its microenvironment (Fig. 1C). To further
investigate the oncostatic properties of this indolamine,
cell lines were cultured in the presence of exogenous mela-
tonin. Interestingly, 1 nM melatonin, acting in a receptor-
dependent manner, significantly decreased the cell growth
of U87MG but not HOG and T98G after 48 hr (Fig. 2B,
C). In fact, both of the latter cell lines produce and accu-
mulate greater amounts of this indolamine (Fig. 1C) prob-
ably sufficient to virtually saturate the receptor binding
sites and exert an autocrine, antiproliferative effect. Never-
theless, the treatment with a high concentration of mela-
tonin (1 mM), previously shown to inhibit the NFjB
pathway of gliomas in a receptor-independent manner [18,
19], reduced the cell growth of all three cell lines by
15–25% (Fig. 2B).
Given our findings that glioma cell lines produce mela-

tonin, which can exert an autocrine antiproliferative effect,
we then further investigated the melatonergic system of
human gliomas using the publicly available TCGA RNA-
seq data of 351 patients. AANAT was homogeneously
expressed among all glioma grades, and ASMT had a sig-
nificantly decreased expression in GBMs, as compared to
grade II tumors (Fig. 3A). Furthermore, GBMs presented
a significantly higher mRNA expression of CYP1B1 than
gliomas grade II and grade III (Fig. 3A). In accordance
with this, each tumor grade presented a distinct profile in
the combined analysis of ASMT and CYP1B1 expression.
As such, the density map indicates a gradual increase in
the proportion of tumors concomitantly expressing high
CYP1B1 and low ASMT from grades II to IV (GBM)
(Fig. 3B).
Using the TCGA data, we designed a predictive model

of melatonin content in the tumor microenvironment, the
ASMT:CYP1B1 expression index, which attempts to com-
bine the rates of melatonin synthesis and metabolism. The
two-gene index negatively correlated with tumor grade
(rs = !0.187, P = 0.0004), with the lowest values observed
for GBMs. In a way to confirm the biological relevance of
this two-gene molecular signature, we performed a GSEA
with TCGA RNAseq genes ranked according to Pearson’s
correlation with the ASMT:CYP1B1 index. Gene sets
associated with the positive control of cell proliferation,
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BCL2A1, CFLAR, TNFAIP3, BIRC3, and SOD2
(Fig. 4B), as well as the pro-proliferation INHBA,
TNFSF13B, IL6, IL8, and RELB (Fig. 4C).
We next performed survival analyses in regard to the

ASMT:CYP1B1 index, using a log-rank test-based algo-
rithm to access the optimal cutoff to dichotomize each
dataset (all patients or only high-grade gliomas, HGGs).
The index was a significant prognostic factor when consid-
ering all patients or only HGGs (astrocytomas grade III–
IV). In both cases, a low ASMT:CYP1B1 value, indicative
of decreased melatonin, was strongly associated with a
poor survival rate (all patients: HR = 1.9, P = 0.0002;
HGGs: HR = 2.28, P < 0.0001) (Fig. 5A,B). The analysis
of the relationship between the dichotomized index and
clinicopathological features of all patients further con-
firmed its negative correlation with tumor grade
(P = 0.006; Table 1). Moreover, patients with a low

Fig. 1. The melatonergic system of glioma cell lines with different grades of aggressiveness (HOG, T98G, and U87MG). (A) Immunofluo-
rescence detection of total AANAT (green), pAANAT (green), and ASMT (green). Nuclear DNA was stained with DAPI (blue). Fluores-
cence intensity values were normalized by the mean signal detected on U87MG cells. (B) qPCR analysis of CYP1B1 mRNA expression.
The 2–∆∆CT equation was applied to calculate the relative expression; values were normalized by GAPDH expression and T98G cells were
used as the calibrator. (C) The content of melatonin (per million of cells) in the medium after 6 hr of culture, determined by ELISA assay.
Data are shown as mean " S.E.M. of three independent experiments in triplicate. Comparisons were performed using one-way ANOVA
with Tukey’s correction (A and B) or nonparametric Kruskal–Wallis test with Dunn’s correction (C). Scale bar: 10 lm.

the�negative�control�of�apoptosis�and� the�activation�of� the�
NFjB� were� significantly� enriched� and� negatively� corre-
lated�with�the�index�(Fig.�4A).
The� aberrant� activation� of� the� NFjB� pathway� is�

increasingly�recognized�as�a�crucial�player� in�cancer� initia-
tion� and�progression,� as�well� as� in� chemo-� and� radiother-
apy� resistance� [28].� In�most� quiescent� cells,�NFjB� dimers�
are�sequestered� in� the�cytoplasm� in�an� inactive�state,�com-
plexed�with� the� inhibitory�protein� IjB� [29].�Pro-inflamma-
tory� stimulus� and� genotoxic� stress� lead� to� the� IjB� kinase�
(IKK)-dependent� phosphorylation� of� IjB� and� release� of�
NFjB,�which�translocates�to�the�nucleus�where� it�can�acti-
vate�the�transcription�of�genes�associated�with�cell�prolifer-
ation,� metastasis,� angiogenesis,� inflammation,� and�
suppression�of�apoptosis� [30,�31].�Accordingly,�the�ASMT:�
CYP1B1� index� also�negatively� correlated�with� the� expres-
sion� of� NFjB� target� genes� such� as� the� anti-apoptotic
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Fig. 2. Melatonin inhibits glioma cell
growth. HOG, T98G, and U87MG cells
were cultured for 48 hr in the presence of
(A) various concentration of luzindole
(10!12–10!9

M), a competitive antagonist
of melatonin receptors, or the respective
vehicle (10!9–10!6% ethanol); (B)
melatonin (1 nM or 1 mM) or the
respective vehicle (3 9 10!7 or
3 9 10!1% ethanol); and (C) melatonin
(1 nM) and/or luzindole (1 lM). Cell
growth was estimated by the MTT
reduction, and values were normalized by
the mean absorbance detected on the
respective control or vehicle groups. Data
are shown as mean " S.E.M. of three
independent experiments in quadru-
plicates. *P < 0.05 and **P < 0.001
compared to the respective vehicle group;
#P < 0.05 compared to the melatonin
group. Comparisons were performed
using the two-sided Student’s t-test.

Fig. 3. The melatonergic system of human gliomas (A) RNAseq analysis of AANAT, ASMT and CYP1B1 expression in each tumor
grade. Values were RSEM-normalized and log2(x + 1)-transformed. The box extends from the 25th to 75th percentiles, the central bold
line shows the median, with whiskers being drawn down to the 10th percentile and up to the 90th. Comparisons were performed using
one-way ANOVA with Tukey’s correction. (B) Density maps comparing ASMT and CYP1B1 expression for each tumor grade. Color
bars on top indicate relative density. GII: glioma grade II, n = 101. GIII: glioma grade III, n = 98. GBMs: glioblastomas (astrocytomas
grade IV), n = 152.
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(HR = 0.261, P = 0.498; Fig. 6B). The analysis of an inde-
pendent dataset (GSE16011, n = 264) confirmed that the
two-gene index negatively correlates with tumor grade
(rs = !0.223, P = 0.0003) and has more power than either
gene alone in the multivariate analysis of survival (Fig. S2;
Table S1).

Discussion

Previous studies have suggested a potential therapeutic role
for exogenous melatonin in the treatment of gliomas [18–
21]. However, there are no available data assessing the bio-
logical implications of glioma-synthesized melatonin. As
such, here we characterized the melatonergic system of
human gliomas and demonstrated its relevance in progno-
sis, providing further insights into the therapeutic role of
melatonin. Our findings indicate that the ability of gliomas
to synthesize/accumulate melatonin negatively correlates
with tumor malignancy. Moreover, we demonstrated
that tumor-synthesized melatonin exerts an autocrine

(A) (B)

(C)

Fig. 4. The correlation between the ASMT:CYP1B1 index and the gene expression profile of gliomas. (A) Gene Set Enrichment Analysis
(GSEA) on genes ranked according to Pearson’s correlation coefficient with the ASMT:CYP1B1 index. Normalized enrichment scores
(NES) and false discovery rate (FDR) q -values are indicated. Pearson’s correlation between ASMT:CYP1B1 and the expression of NFjB
target genes involved in the regulation of (B) apoptosis and (C) proliferation.

ASMT:CYP1B1� value�were� significantly�older� (P�=�0.001;�
Table�1)� and�more� frequently� diagnosed�with� a� grade� IV�
GBM�tumor�(P�=�0.006;�Table�1).
Multivariate� Cox� analysis� adjusting� for� age,� gender,�

KPS� score,� histological� type,� and� tumor� grade� revealed�
that�the�ASMT:CYP1B1� index� is�an� independent�prognos-
tic� factor�stronger� than�either�gene�alone,�being�significant�
for�either�all�patients�or�only�HGGs�(Table�2;�Fig.�S1).�As�
the�index�and�the�expression�of�CYP1B1�were�shown�to�be�
grade-independent� prognostic� factors� for�HGGs,� we� fur-
ther� analyzed� the� survival� (log-rank� test)� of� astrocytomas�
grade� III� and� GBMs� patients� separately.� According� to�
the�HGGs� cutoff,� a� low�ASMT:CYP1B1� value�was� again�
associated� with� poor� survival� (astrocytomas� grade� III:�
HR�=�4.67,� P�=�0.001;� GBM:� HR�=�1.54,� P�=�0.026;�
Fig.�6A),� suggesting�an�additional�prognostic�value� to� the�
histological� diagnosis.� Even� though� a� high� CYP1B1�
expression� was� associated� with� poor� survival� of� GBM�
patients� (HR�=�0.56,� P�=�0.007;� Fig.�6B),� no� prognostic�
value� was� observed� in� regard� to� grade� III� astrocytomas
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antiproliferative effect. Thus, a more aggressive glioma,
which synthesized/accumulated less melatonin, was more
sensitive to the treatment with exogenous melatonin. Addi-
tionally, we designed a predictive model of the content of
melatonin in the tumor microenvironment, the ASMT:
CYP1B1 index, which negatively correlated with tumor
grade, as well as with the expression of anti-apoptotic and
pro-proliferation genes. More importantly, the ASMT:
CYP1B1 index was revealed to be an independent prognos-
tic factor, even when considering only HGG patients.

To our knowledge, there is a single investigation that
assessed the relationship of tumor-synthesized melatonin
and cell malignancy [32]. It was shown that cholangiocar-
cinoma cells synthesize significantly less melatonin than
nonmalignant cholangiocytes and that patients with intra-
hepatic cholangiocarcinomas have decreased levels of
melatonin in bile compared to healthy subjects. Moreover,
the overexpression of AANAT reduced tumor growth
in vitro, corroborating the idea that an increased produc-
tion/accumulation of melatonin by malignant cells is asso-
ciated with a less aggressive phenotype. Thus, measuring
the content of melatonin in tumor microenvironment and
modulating its production by malignant cells may have a
role in the prognosis and treatment of melatonin-synthe-
sizing tumors, such as cholangiocarcinomas and gliomas.
Melatonin has been shown to act through several biolog-

ical mechanisms, ranging from antioxidant properties,
binding to calmodulin and acting through its membrane
receptors [33]. Oncostatic mechanisms of this indolamine
include: modulation of cell cycle, apoptosis, and differenti-
ation; inhibition of angiogenesis, invasion, and telomerase
activity; and activation of the immune system [17]. Taken
together with previous studies [18, 19], our data indicate
that melatonin decreases glioma cell growth in both a
receptor-dependent and independent manner, similarly to
what was reported for other malignant neoplasms such as
melanoma, prostate, and breast cancer [34–36]. Accord-
ingly, the overexpression of the G protein-coupled mela-
tonin receptor MT1 in melanoma and breast cancer cell
lines was shown to enhance the growth suppressive effects
of melatonin, both in vitro and in vivo [34, 37, 38]. More-
over, a recent study with ductal breast carcinomas revealed
that the expression of MT1, which negatively correlates

Fig. 5. The ASMT:CYP1B1 index is prognostic in gliomas (TCGA). Kaplan–Meier survival curves comparing (A) all patients or (B) only
HGGs with a high vs low ASMT:CYP1B1 index. Comparisons were performed using the log-rank test. Histogram of ASMT:CYP1B1
values denote the cutoff determined for all patients (!0.687) or only HGGs (!0.727). All tumors, n = 351. HGGs: high-grade gliomas
(astrocytomas grade III and grade IV), n = 202. HR: hazard ratio.

Table 1. Association between the ASMT:CYP1B1 index and clin-
icopathological features of glioma patients (TCGA)

Variables

ASMT:CYP1B1 index

Low
(n = 116)

High
(n = 235) P-value*

Age, yr
Mean (S.D.) 53.7 (1.4) 48.1 (1.1) 0.002

KPS
Mean (S.D.) 80.5 (1.5) 82.7 (1.2) 0.301

Gender, %
Male 57.8 59.6 0.817
Female 42.2 40.4

Histological type, %
Astrocytoma 75.9 58.7 0.006
Oligodendroglioma 14.6 23.0
Oligoastrocytoma 9.5 18.3

Histological grade, %
II 21.5 32.3 0.006
III 23.3 30.2
GBM 55.2 37.5

*Two-sided Student’s t-test (continuous variables) or Fisher’s
exact test (categorical variable).
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32, 45, 46]. Additionally, as observed in gliomas, ASMT
levels also decrease with the grade of pineal parenchymal
tumors, reinforcing its potential role as a prognostic indi-
cator [47].
Gene expression profiling of gliomas can contribute to

the identification of gene signatures that accurately distin-
guish different cellular phenotypes, providing a molecular
basis for the WHO grading [48, 49]. As such, given the
role of ASMT and CYP1B1 in melatonin synthesis and
metabolism, as well as their differential expression among
glioma grades, we designed a two-gene index, ASMT:
CYP1B1, revealed to be an independent prognostic factor
that negatively correlates with tumor grade. Models com-
bining two or three prognostically relevant genes have
been shown to provide robust classifiers with small error
rates [50]. Thus, simple models, such as the ASMT:
CYP1B1 index, have the potential to translate high-
throughput transcriptome data into practical diagnostic
assays for clinical use.

Table 2. Multivariate Cox regression analysis of overall survival in glioma patients (TCGA)

Variables

Overall Survival

All patients HGGs

HR (95% CI) P-value HR (95% CI) P-value

Age 1.038 (1.015–1.061) 0.0008 1.029 (1.005–1.053) 0.014
Gender
Female 1 1
Male 0.858 (0.539–1.364) 0.518 0.833 (0.513–1.350) 0.458

KPS score 0.974 (0.957–0.992) 0.004 0.975 (0.958–0.994) 0.008
Histological type
Astrocytoma 1
Oligodendroglioma 0.302 (0.089–1.027) 0.055
Oligoastrocytoma 0.354 (0.078–1.594) 0.176

Tumor grade
II 1
III 1.671 (0.544–5.128) 0.369 1
Glioblastoma 4.587 (1.270–16.567) 0.020 2.968 (1.253–7.033) 0.013

ASMT:CYP1B1 index
High 1 1
Low 1.571 (1.020–2.421) 0.040 1.85 (1.165–2.936) 0.009

Age 1.040 (1.018–1.063) 0.0003 1.034 (1.010–1.058) 0.005
Gender
Female 1 1
Male 0.916 (0.575–1.461) 0.714 0.755 (0.453–1.258) 0.281

KPS score 0.975 (0.957–0.993) 0.006 0.977 (0.959–0.995) 0.016
Histological type
Astrocytoma 1
Oligodendroglioma 0.33 (0.092–1.177) 0.087
Oligoastrocytoma 0.415 (0.091–1.901) 0.257

Tumor grade
II 1
III 1.584 (0.499–5.024) 0.434 1
Glioblastoma 4.514 (1.205–16.913) 0.025 3.124 (1.322–7.386) 0.009

ASMT
High 1 1
Low 2.733 (0.617–12.085) 0.185 0.884 (0.534–1.465) 0.634

CYP1B1
High 1 1
Low 0.675 (0.347–1.314) 0.248 0.496 (0.289–0.851) 0.011

HGGs, high-grade gliomas (astrocytomas grades III and IV); HR, hazard ratio; CI, confidence interval. Bold text indicates P-values
calculated for the ASMT:CYP1B1 index or for the expression of ASMT and CYP1B1.

with� tumor� grade,� is� an� independent� prognostic� factor,�
indicating� a� potential� prognostic� and� therapeutic� signifi-
cance�for�the�melatonergic�system�of�such�tumors�[39].
The� melatonin� catabolic� enzyme� CYP1B1� is� a� tumor-

associated�antigen�overexpressed�in�a�wide�range�of�human�
malignant� neoplasms� including� breast,� prostate,� lung,�
esophagus,� and� skin� cancer� [40,� 41].� In� accordance� with�
our� data,� the� expression� of�CYP1B1� has� been� previously�
shown� to�negatively�correlate�with�glioma�grade�and�over-
all�malignancy� [42].�As�CYP1B1�has�a� relatively� restricted�
expression� profile� in� normal� tissues,� it� has� been� exploited�
as� a� target� for� immunotherapy� [41,� 43].� Interestingly,� a�
phase� I� clinical� trial� of� a�CYP1B1�DNA� vaccine� demon-
strated�that�all�patients�with�solid�and�hematologic�tumors�
who� increased� anti-CYP1B1� immunity� presented� clinical�
benefits� [44].� The� expression� of� the� melatonin� synthesis�
enzyme�ASMT,� on� the� other� hand,� was� only� detected� in�
few� types�of� cancer,� such�as�human� retinoblastoma,�mela-
noma,�and�cholangiocarcinoma,�besides�rat�C6�glioma� [15,
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Understanding the basic biology and pathogenesis of
gliomas plays a major role not only in classification
and prognosis, but also in the stratification of patients
in treatment-specific subgroups [5]. In this sense, the
ASMT:CYP1B1 index was shown to decrease with the
expression of many NFjB target genes involved in
tumor development and progression. Levels of NFjB
activity in gliomas are higher than in normal brain tis-
sue and positively correlate with tumor grade [51, 52].
Moreover, the inhibition of NFjB attenuates the malig-
nant phenotype of GBM cell lines, enhancing the effect
of chemotherapeutic drugs [53]. Accordingly, individuals
with tumors presenting a low ASMT:CYP1B1 index,
which suggests enhanced NFjB activity, could greatly
benefit from the treatment with melatonin, previously
shown to act as a free radical scavenger, inhibiting the
reactive oxygen species (ROS)/NFjB pathway of glioma
cells [18,19]. Thus, the detailed molecular characteriza-
tion of such tumors can contribute to the development
of personalized, more effective, target therapies.
In conclusion, the present findings are the first to

reveal the prognostic value of the melatonergic system of
gliomas, highlighting the potential use of ASMT and
CYP1B1 as clinically relevant biomarkers and pharma-
ceutical targets. Overall, our data indicate that glioma-
synthesized melatonin has a role in tumor progression
and thus lays some groundwork for further investiga-

tions of the autocrine anticancer effects of this indola-
mine. Challenges in the treatment of gliomas include the
difficulty of drug delivery across the blood–brain barrier
and their neurotoxicity associated side effects [54, 55]. In
this sense, melatonin is soluble in both water and lipid
and therefore readily crosses the blood–brain barrier
[56]. Additionally, it exerts neuroprotective effects in
many brain pathologies, including Parkinson’s and Alz-
heimer’s disease [57]. Thus, as melatonin inhibited glioma
cell growth also in a receptor-dependent manner, our
data reinforce the therapeutic potential of this indola-
mine and analogous in the treatment of gliomas, espe-
cially those with a reduced production/accumulation of
melatonin.
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Supplemental Materials and Methods 

Gene Expression Omnibus (GEO) validation dataset 

GSE16011 HG-U133 Plus 2 (Affymetrix) microarray dataset was downloaded from the 

public repository GEO (http://www.ncbi.nlm.nih.gov/geo/). Raw data (.CEL files) from 264 

gliomas were normalized by the robust multiarray averaging (RMA) method and probesets were 

annotated using Affymetrix library files. The probesets 210551_s_at and 202436_s_at were 

chosen to represent ASMT and CYP1B1 expression, respectively. Raw data processing was 

performed using Bioconductor R Packages (http://www.bioconductor.org/). Clinical data were 

obtained from the related article [1]. 
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Supplemental Table 

Table S1. Multivariate Cox regression analysis of overall survival in glioma patients 
(GSE16011) 

Overall Survival 
All patients HGGs 

Variables HR (95% CI) P-value HR (95% CI) P-value
Age 1.036 (1.024 – 1.048) <0.0001 1.035 (1.021 – 1.049) <0.0001 
Gender 
   Female 1 1 
   Male 1.231 (0.923 – 1.642) 0.157 1.180 (0.841 – 1.658) 0.337 
KPS score 0.977 (0.970 – 0.985) <0.0001 0.967 (0.960 – 0.980) <0.0001 
Histological type 
   Astrocytoma 1 
   Oligodendroglioma 0.266 (0.145 – 0.491) <0.0001 
   Oligoastrocytoma 0.569 (0.293 – 1.104) 0.096 
Histological grade 
   II 1 
   III 1.475 (0.784 – 2.774) 0.228 1 
   Glioblastoma 2.008 (1.130 – 3.567) 0.018 1.131 (0.636 – 2.010) 0.675 
ASMT:CYP1B1 index 
   High 1 1 
   Low 1.841 (1.203 – 2.818) 0.005 1.619 (1.030 – 2.544) 0.037 

Age 1.034 (1.022 – 1.046) <0.0001 1.034 (1.020 – 1.048) <0.0001 
Gender 
   Female 1 1 
   Male 1.200 (0.876 – 1.645) 0.255 1.161 (0.824 – 1.636) 0.393 
KPS score 0.977 (0.970. – 0.985) <0.0001 0.968 (0.958 – 0.978) <0.0001 
Histological type 
   Astrocytoma 1 
   Oligodendroglioma 0.273 (0.147 – 0.505) <0.0001 
   Oligoastrocytoma 0.570 (0.293 – 1.108) 0.097 
Histological grade 
   II 1 
   III 1.468 (0.777 – 2.772) 0.237 1 
   Glioblastoma 2.050 (1.136 – 3.701) 0.017 3.124 (1.322 – 7.386) 0.009 
ASMT 
   High 1 1 
   Low 1.043 (0.777 – 1.400) 0.776 0.957 (0.681 – 1.347) 0.804 
CYP1B1 
   High 1 1 
   Low 0.916 (0.665 – 1.263) 0.593 0.501 (0.265 – 0.948) 0.034 

HGGs, high-grade gliomas (astrocytomas grade III and IV); HR, hazard ration; CI, confidence interval. 
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Kinker et al. Supplemental Data 

 

Supplemental Figures 

Figure S1. Single-gene based analysis of survival (TCGA). Kaplan-Meier survival curves 

comparing patients with (A) high vs. low ASMT expression (all patients, cutoff 1.662; HGGs, 

cutoff 0.919) and (B) high vs. low CYP1B1 expression (all patients, cutoff 10.20; HGGs, cutoff 

8.710). Comparisons were performed using the long-rank test. All patients, n = 351. HGGs: 

high-grade gliomas (astrocytomas grade III and IV), n = 202. HR: hazard ratio. 
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Kinker et al. Supplemental Data 

 

Figure S2. The ASMT:CYP1B1 index is prognostic in gliomas (GSE16011). Kaplan-Meier 

survival curves comparing patients with (A) high vs. low ASMT expression (all patients, cutoff 

4.697; HGGs, cutoff 4.677); (B) high vs. low CYP1B1 expression (all patients, cutoff 8.572; 

HGGs, cutoff 10.940) and (C) high vs. low ASMT:CYP1B1 index (all patients, cutoff -1.808; 

HGGs, cutoff -1.808). Comparisons were performed using the long-rank test. All patients, n = 

264. HGGs: high-grade gliomas (astrocytomas grade III and IV), n = 171. HR: hazard ratio.
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Abstract 
Introduction: Primary brain tumors remain among the deadliest of all cancers. Glioma grade IV 
(glioblastoma), the most common and malignant type of brain cancer, is associated with a 5-year 
survival rate <5%. Melatonin has been widely reported as an anticancer molecule and we have 
recently demonstrated that the ability of gliomas to synthesize and accumulate this indolamine in 
the surrounding microenvironment negatively correlates with tumor malignancy. However, our 
understanding of the specific effects mediated through the activation of melatonin membrane 
receptors remains limited. Thus, here we investigated the specific roles of MT1 and MT2 in 
gliomas and medulloblastomas. Methods and Results: Using the MT2-selective antagonist DH97 
we showed that MT1 activation has a negative impact on the proliferation of human glioma and 
medulloblastoma cell lines, while MT2 activation has an opposite effect. Accordingly, gliomas 
have a decreased mRNA expression of MT1 (also known as MTNR1A) and an increased mRNA 
expression of MT2 (also known as MTNR1B) compared to normal brain cortex. Moreover, the 
MT1/MT2 expression ratio negatively correlates with the expression of cell cycle-related genes 
and is a positive prognostic factor in gliomas. Notably, we showed that functional-selective drugs 
that simultaneously activate MT1 and inhibit MT2 exert robust anti-tumor effects in vivo and in 
vitro, downregulating the expression of cell cycle and energy metabolism genes in glioma stem-
like cells. Discussion: Overall, we provided the first evidence regarding the differential roles of 
MT1 and MT2 in brain tumor progression, highlighting their relevance as druggable targets.   
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Introduction 
 

Despite decades of research progress, brain tumors remain among the cancers that hold 
the poorest prognosis. Glioma grade IV (glioblastoma), the most common and malignant type of 
brain cancer, is associated with a median survival of approximately 15 months in adults (Chinot et 
al., 2014; Gilbert et al., 2014). Brain tumors are also the most common solid tumors affecting 
children and adolescents, and survivors often display neurocognitive impairment in adulthood due 
to the exposure of the developing brain to diverse medical interventions (Smith & Reaman, 
2015). Challenges in the treatment of such tumors include their invasive nature and cellular 
heterogeneity, as well as the difficulty of drug delivery across the blood-brain barrier (Aldape 
et al., 2019). Recently, the World Health Organization Classification of Central Nervous 
System Tumors has incorporated biologically and clinically relevant molecular features to the 
traditional histological diagnosis (Louis et al., 2016; Reifenberger, Wirsching, Knobbe-
Thomsen, & Weller, 2017). Diffuse gliomas in adults are now divided into three main groups with 
progressively worse prognosis: isocitrate dehydrogenase (IDH)-mutant and 1p/19q co-deleted 
tumors with oligodendroglial morphology; IDH-mutant and non-1p/19q co-deleted tumors with 
astrocytic morphology; and IDH-wild type glioblastomas. New entities also include diffuse 
midline pediatric glioma with H3 K27M–mutations, RELA fusion–positive ependymoma, 
medulloblastoma WNT-activated, and medulloblastoma SHH-activated (Louis et al., 2016; 
Reifenberger et al., 2017).  

Melatonin synthesized by the pineal gland at night translates the environmental dark phase 
to the organism and ensures the synchronization of circadian and seasonal rhythms (Hardeland, 
Madrid, Tan, & Reiter, 2012; Reiter, 1993). The production of melatonin has also been detected 
in many extrapineal tissues, including retina, gastrointestinal tract and brain (Acuña-Castroviejo 
et al., 2014; Markus, Fernandes, Kinker, da Silveira Cruz-Machado, & Marçola, 2018). Generally, 
extra-pineal melatonin is poorly released into the circulation, acting locally in autocrine and 
paracrine manners (Bubenik, 2002; Pinato et al., 2015; Venegas et al., 2012). Melatonin acts 
through several mechanisms, including activating G protein-coupled receptors in the cytoplasmic 
and mitochondrial membranes (Jockers et al., 2016), binding to calmodulin in the cytoplasm 
(Benítez-King & Antón-Tay, 1993), and directly scavenging free radicals (Tan et al., 2002). 
Human MT1 and MT2 melatonin receptors share 55% of amino acid sequence similarity and bind 
melatonin with high affinity (Reppart, Weaver, & Godson, 1996). Both are typically coupled to 
Gi/o proteins, while MT1 can also be couple to Gq, evoking phospholipase-c calcium-
dependent signaling (Brydon et al., 1999; Jockers et al., 2016). Melatonin receptors are widely 
expressed throughout the central nervous system (Klosen et al., 2019) and play a role in circadian 
entrainment, synaptic function and neurodevelopment (Ng, Leong, Liang, & Paxinos, 2017). 
Interestingly, altered expression of melatonin receptors has been reported in different 
neurodegenerative conditions such as Alzheimer's and Parkinson’s diseases (Adi et al., 2010; 
Savaskan et al., 2005, 2002). 
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Exogenous melatonin has been shown to exert oncostatic effects, in both receptor-
dependent and -independent manners, across a wide variety of tumors (Cutando, López-Valverde, 
Arias-Santiago, DE Vicente, & DE Diego, 2012; Li et al., 2017). In the mM concentration range, 
this indolamine impairs the invasion and migration of human glioma cell lines and reduces the 
viability of glioma-initiating cells (Martín et al., 2014; Wang et al., 2012; Zheng et al., 2017). 
Additionally, we have recently demonstrated that the ability of gliomas to synthesize and 
accumulate melatonin negatively correlates with their overall malignancy (Kinker et al., 2016). 
High-grade gliomas have a decreased expression of acetylserotonin O-methyltransferase (ASMT), 
the final enzyme of melatonin biosynthesis, combined with a high expression of cytochrome P450 
1B1 (CYP1B1), the main enzyme of melatonin extra-hepatic metabolism. Remarkably, we 
designed a predictive model of the content of melatonin in the tumor microenvironment, the 
ASMT:CYP1B1 expression index, which was shown to be a positive prognostic factor, 
independent of glioma grade and histological subtype (Kinker et al., 2016). 

Here, to provide further support for the use of melatonin and analogous in brain cancer 
therapy, we investigated the specific roles of melatonin receptors MT1 and MT2 in the oncostatic 
actions of this indolamine. Using a MT2-selective antagonist we showed that MT1 impairs, while 
MT2 promotes, the proliferation of glioma and medulloblastoma cell lines. Accordingly, patients 
expressing high MT1 (also known as MTNR1A) and low MT2 (also known as MTNR1B) presented 
a significantly better prognosis. These results suggest that, in glioma and medulloblastomas, the 
balance between MT1 and MT2 levels in tumor cells might limit the therapeutic effects of 
melatonin. Notably, we show that functional-selective drugs displaying MT1 agonist and MT2 
antagonist properties exert robust anti-tumor effects in vivo and in vitro, and likely interfere with 
the proliferation and metabolism of glioma stem cells.  
 
 
Materials and methods 
 
Cell lines 
 

Human glioma cell lines HOG, T98G, U87MG, U87MG-luc (expressing a luciferase 
reporter gene), and human medulloblastoma cell line DAOY were cultured in RPMI 1640 medium 
(Thermo Fisher Scientific) supplemented with 10% heat-inactivated fetal bovine serum (Thermo 
Fisher Scientific), 100 IU/mL penicillin (Thermo Fisher Scientific), and 100 µg/mL streptomycin 
(Thermo Fisher Scientific). T98G, U87MG and DAOY were purchased from ATCC, HOG was 
kindly provided by Dr. Suely K. N. Marie (University of Sao Paulo, Brazil), and U87MG-luc was 
kindly provided by Dr. Andrew L. Kung (Memorial Sloan Kettering Cancer Center, New York, 
USA). Cancer stem cell-enriched cultures MGG23 and MGH143 were derived from glioblastoma 
specimens at the Massachusetts General Hospital and kindly provided by Dr. Mario Suvà 
(Dana-Farber Cancer Institute, USA). MGG23 and MGH143 cells were grown as neurospheres 
and maintained in neurobasal medium (Thermo Fisher Scientific) supplemented with L-glutamine 
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(Thermo Fisher Scientific), B27 supplement (Thermo Fisher Scientific), N2 supplement (Thermo 
Fisher Scientific), 100 IU/mL penicillin (Thermo Fisher Scientific), 100 µg/mL streptomycin 
(Thermo Fisher Scientific), 20 ng/mL EGF (Sigma), and 20 ng/mL FGF2 (Peprotec). All cell lines 
were cultured at 37°C in a humidified atmosphere of 5% CO2. 

 
Drugs 
 
 Melatonin was purchased from Sigma, and DH97, a MT2-selective antagonist (pKiMT2= 
8.03, 89-fold selectivity over MT1), was purchased from Tocris. Melatonin receptor ligands that 
act as MT1 agonist and MT2 antagonist, 5-HEAT (Nonno et al., 2000) and N-{2-[(3-
methoxyphenyl)benzylamino]ethyl}acetamide (UCM799) (Rivara et al., 2007), were synthesized 
at Dr. Gilberto Spadoni laboratory (University of Urbino, Italy). DH97 was solubilized to 40 mM 
in DMSO. Melatonin, 5-HEAT and UCM799 were solubilized to 50 mM also in DMSO.  
 
Flow cytometry 
 

Cells were detached with 0.2% EDTA (10 min, room temperature), fixed with 2% PFA 
PBS (20 min, on ice), permeabilized with 0.1% TritonX-100 PBS (10 min, room temperature), 
blocked with 2% BSA PBS (1h, room temperature) and incubated overnight at 4°C with goat anti-
MT1 (1:100, sc-13186, Santa Cruz Biotechnology) or goat anti-MT2 (1:100, sc-13177, Santa Cruz 
Biotechnology) primary antibodies. Cells were washed twice with 2% BSA PBS before incubation 
with FITC-conjugated anti-goat IgG secondary antibody (1:200, sc-2777, Santa Cruz 
Biotechnology) for 1 h at room temperature. Cells stained with the secondary antibody alone were 
used as the isotype control. Data were acquired on a Amnis FlowSight flow cytometer (Merck 
Millipore) and analyses were carried on using the IDEAS software (Merck Millipore) and FlowJo 
v9. 

 
MTT proliferation assay 
 

Cells (4 x 103 per well) were seeded on 96-well plates, left to attach overnight and treated 
with DH97 (3 x 10-10 – 10-6 M), 5-HEAT (10-9 – 10-6 M), UCM799 (10-9 – 10-6 M), or the 
appropriate vehicle for 48 h. Culture media was then replaced with a MTT solution (0.5 mg/mL in 
PBS, Sigma) and cells were maintained in the incubator for 4 hr. Reduced MTT crystals 
(formazan) were dissolved in isopropanol:DMSO (1v:1v) for 10 minutes at room temperature. 
Absorbance was measured at 570 nm, with background subtraction at 690 nm, in a SpectraMax 
250 spectrophotometer (Molecular Devices).  
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U87MG-luc orthotopic xenograft model 
 

U87MG-luc cells (5 × 105) suspended in 5 µL PBS were injected into the right striatum of 
female/male 8–10-week-old Balb/C nude mice (Charles River International) using a 10 µL 
Hamilton syringe attached to a Harvard 22 syringe pump (Harvard Apparatus), as previously 
describe (Lopes et al., 2015; Wasilewska-Sampaio, Santos, Lopes, Cammarota, & Martins, 
2014). Two weeks after tumor implantation, animals were randomly assigned to four experimental 
groups: vehicle (0.2% DMSO, n = 7), 10-4 M melatonin (n = 5), 10-4 M 5-HEAT (n = 5) and 10-4 
M UCM799 (n = 5). Treatments were continuously infused (0.25 µl/hr) into the right striatum of 
mice for 14 days using ALZET mini osmotic pumps (model 1002) and the ALZET brain infusion 
kit 3 (DURECT Corporation). Prior to implantation, pre-filled pumps were primed in sterile 0.9% 
saline overnight at 37°C, according to manufacturer’s instructions. For in vivo bioluminescence 
imaging, animals were anesthetized with isoflurane, injected intraperitoneally with D-luciferin (50 
µg/g, PerkinElmer) and placed into an In Vivo FX PRO imaging system (Bruker). Analyses were 
performed using the MI Software (Bruker). Fourteen days post-treatment mice were euthanized 
by deep anesthesia and encapsulated tumors were resected. Tumor volume (mm3) was determined 
using width (a) and length (b) measurements (V = (a2 x b)/2, where a ≤ b). Institutional guidelines 
for animal welfare and experimental conduct were followed. The study was approved by the 
Animal Ethics Committee of the A. C. Camargo Cancer Center (process 076/17), and by the 
Animal Ethics Committee of the Institute of Bioscience, University of Sao Paulo (process 
284/2017). 
 
TCGA and GTEx data 
 

The Cancer Genome Atlas (TCGA) RNA-seq and clinical data from 662 primary gliomas 
(509 lower grade gliomas and 153 glioblastomas) and Genotype-Tissue Expression (GTEx) RNA-
seq data from 283 normal brain cortex were downloaded from the UCSC XENA Browser 
(Goldman et al., 2018). RNA-seq data were generated using the Illumina HiSeq 2000 RNA 
sequencing platform and quantified by RSEM. Estimated counts were upper quartile normalized, 
log2(normalized counts + 1) transformed and converted to z-score.  
 
Survival analysis 
 

We evaluated the association between the MT1/MT2 expression ratio and patient 10-year 
survival using tumors expressing MT1 and/or MT2 (331 lower grade gliomas and 91 
glioblastomas). Cutoffs used for patient dichotomization were defined using a log-rank test-based 
approach that identifies the most statistically significant data split, as previously described 
(Budczies et al., 2012). Univariate analyses of survival were performed using Kaplan-Meier curves 
and the log-rank test. Multivariate analyses of survival adjusting for clinically significant 
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parameters were performed using Cox proportional hazards regression. Hazard ratios including 
95% confidence intervals were calculated. 

 
Predictive model of the content of melatonin in the microenvironment 
 

The concentration of melatonin synthesized and accumulated by tumor cells in the 
microenvironment was estimated using gene expression data by calculating the ASMT:CYP1B1 
index, as previously described (Kinker et al., 2016). The index reflects the ratio between the 
expression of ASMT, the final enzyme in the biosynthetic pathway of melatonin, and CYP1B1, the 
main enzyme of melatonin metabolism in the brain. Tumors were classified as having low or high 
melatonin using the median ASMT:CYP1B1 index value as the split point.  

 
RNA-seq 
 

MGH143 and MGG23 cells (1,000 per well) were seeded in 96-well plates, left to rest 
overnight and treated with 5-HEAT (10-6 M) or vehicle (2 x 10-3 % DMSO) for 48 h. Culture media 
was removed after centrifugation and 10 µL of RNasin lysis buffer (SMART-Seq V4 Ultra Low 
Input RNA Kit; Clontech) was added to each well. Samples were incubated for 5 min at room 
temperature and transferred to −80°C. Once samples were thawed, reverse transcription and cDNA 
amplification (17 cycles) were performed with the SMART-Seq V4 Ultra Low Input RNA Kit 
according to the manufacturer's protocol. Following Agencourt Ampure XP beads cleanup 
(Beckman Coulter), 200 pg of amplified DNA were used for library preparation, as previously 
described (Blecher-Gonen et al., 2013). Individual barcodes were ligated to each sample to allow 
multiplexing. Between 10 and 12 million single-end reads were sequenced per sample using 
Sequencing was performed on the Illumina NextSeq500 instrument using the Illumina NextSeq 
High Output Kit (75 cycles). Reads were aligned to the GHCh38/hg38 human genome using 
Bowtie and expression values were quantified using RSEM. Data are presented as log2(TPM +1).  
 
GSEA 
 

For the TCGA RNA-seq data analysis, we selected tumors expressing MT1 and/or MT2 
(331 lower grade gliomas and 91 glioblastomas), and used Pearson’s correlation coefficient with 
the MT1/MT2 expression ratio as the ranking metric. For the glioma stem-like cells RNA-seq data 
analysis, genes were ranked according to the average log2(fold change) observed across samples 
treated with 5-HEAT compared to the vehicle group. GSEA was performed using the GSEA 
desktop application v3.0 (Subramanian et al., 2005) and Reactome pathways (Fabregat et al., 
2016). Enrichment scores (ES) were calculated based on a weighted Kolmogorov–Smirnov-like 
statistic and normalized (NES) to account for gene set size. P-values corresponding to each NES 
were calculated using 1,000 gene set permutations and corrected for multiple comparisons with 
the false discovery rate (FDR) procedure. Adjusted p-values < 0.1 were considered statistically 
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significant. The Cytoscape plug-in EnrichmentMap was used to generate network-based 
enrichment maps of significantly enriched gene sets (Merico, Isserlin, Stueker, Emili, & Bader, 
2010).  
 
 
Additional statistical analysis 
 

We used two-sided Student’s t test to perform two-group comparisons and Pearson’s 
correlation to assess associations between continuous variable. Where specified, p values were 
corrected for multiple comparisons using the FDR procedure and combined using Fisher’s method. 
Sample size and number of experimental and technical replicates are reported in Figure Legends. 
P-values < 0.05 were considered statistically significant. Analyses were performed with GraphPad 
Prism 6 and R (www.r-project.org). 
 
 
Results 
 
Melatonin receptors MT1 and MT2 differentially control the proliferation of glioma and 
medulloblastoma cell lines 
 

To explore the biological role of melatonin receptors in brain tumors, we first showed the 
expression of MT1 and MT2 in three human glioma cell lines (HOG, an oligodendroglioma grade 
III; T98G, a glioblastoma; and U87MG, a tumorigenic glioblastoma; Fig. 1A). The less aggressive 
cell lines HOG and T98G synthesize and accumulate significant amounts of melatonin in their 
microenvironment (Kinker et al., 2016). Using luzindole, a non-selective antagonist of melatonin 
receptors, we have previously demonstrated that this glioma-synthesized melatonin exerts an 
autocrine anti-proliferative effect in a receptor-dependent manner (Kinker et al., 2016). Thus, to 
elucidate the specific roles of MT1 and MT2, we treated cells with the MT2 antagonist DH97, 
which display 89-fold selectivity over MT1. Surprisingly, the selective blockage of MT2 by 10-8 
M DH97 significantly decreased the proliferation of HOG and T98G (Fig. 1B). This effect was 
reverted, in a concentration dependent manner (DH97 10-7 – 10-6 M), probably by the concomitant 
inhibition of both melatonin receptors, suggesting opposite roles for MT1 and MT2 (Fig. 1B). 
Indeed, the treatment with 10-6 M DH97 mimicked the effects of the non-selective antagonist 
luzindole and stimulated the proliferation of HOG and T98G (Kinker et al., 2016). Similar results 
were obtained using the medulloblastoma cell line DAOY, which expresses MT1, MT2, and the 
enzymes involved in melatonin synthesis aralkylamine N-acetyltransferase (AANAT), its active 
form PAANAT, and ASMT. DAOY also accumulates significant amounts of melatonin (9.8 ± 0.7 
pg/mL, n = 6, 6 h incubation) in the culture media (Fig. S1A-B). No difference was observed for 
the glioma cell line U87MG (Fig. 1A), which produces low levels of melatonin, and is also 
unaffected by luzindole (Kinker et al., 2016). 
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Figure 1. The activation of MT1 and MT2 receptors play opposite roles in the control of 
glioma proliferation. (A) Detection of melatonin receptors by indirect immunofluorescence using 
flow cytometry. Isotype control corresponds to cells stained with secondary antibody alone. (B) 
High- (HOG and T98G) and low-melatonin (U87MG) glioma cell lines were cultured for 48 h in 
the presence of DH97 (3 x 10-10 – 10-6 M), an MT2-selective antagonist (pKi = 8.03, 89-fold 
selectivity over MT1), or the respective vehicle (7 x 10-7 – 2 x 10-3 % DMSO). Cell number was 
estimated by MTT assay and values were normalized by the mean absorbance detected in the 
respective vehicle group. Data are shown as mean ± SEM of four independent experiments in 
quadruplicates. * Significantly different from the respective vehicle group (p < 0.05) using the 
two-sided Student’s t test.  
 

 

Clinical relevance of MT1 and MT2 expression in glioma  
 

Analysis of TCGA and GTEx RNAseq data revealed that lower grade gliomas and 
glioblastomas have a decreased expression of MT1 and an increased expression of MT2 compared 
to normal brain cortex (Fig. 2A). Moreover, gliomas simultaneously expressing high MT1 and low 
MT2 (high MT1/MT2 ratio) were associated with significantly better 10-year survival (Fig. 2B). 
Such effect was especially relevant in gliomas predicted to synthesize and accumulate more 
melatonin, for which the MT1/MT2 ratio was a positive prognostic factor of 10-year survival 
independent of age, gender, IDH mutation and 1p/19q co-deletion (Table 1). Similar results were 
obtained for 5-year survival (Table S1). Next, in a way to assess whether a high MT1/MT2 ratio 
translates into enhanced MT1-induced Gq activation, using GSEA we showed that the ratio 
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positively correlates with the expression of gene sets associated with calcium-dependent signaling 
(Fig. 2C, Table S2). Moreover, in accordance with the in vitro results suggesting that MT1 has a 
negative and MT2 a positive impact on glioma growth, the MT1/MT2 ratio also negatively 
correlated with the expression of cell cycle-related gene sets (Fig. 2C, Table S2).  

 

 

 
Figure 2. Expression of MT1 and MT2 differentially impact glioma patient survival. (A) 
Expression of MT1 and MT2 and the MT1/MT2 ratio in normal brain cortexes (n = 283) from 
GTEx and primary lower grade gliomas (n = 509) and glioblastomas (n = 153) from TCGA. Boxes 
extend from the 25th to the 75th percentile, the central bold line shows the median, and whiskers 
are drawn from the 5th to the 95th percentile. Comparisons were performed using the two-sided 
Student’s t test. (B) Kaplan-Meier survival curves of gliomas patients with high vs. low MT1/MT2 
expression ratios. Comparisons were performed using the log-rank test. (C) Gene set enrichment 
analysis testing the correlation between the MT1/MT2 expression ratio and the expression of genes 
related to the cell cycle and phospholipase C signaling in gliomas. Bar plots show normalized 
enrichment scores of the Reactome gene sets analyzed. FDR adjusted p values < 0.1 were 
considered statistically significant.  
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Table 1. Multivariate Cox analysis of 10-year survival in gliomas. 
 10-year survival 

 Low melatonin gliomas* High melatonin gliomas* 

 Univariate Multivariate Univariate Multivariate 

Variable HR 
(95% CI) 

P 
value 

HR 
(95% CI) 

P 
value 

HR 
(95% CI) 

P 
value 

HR 
(95% CI) 

P 
value 

Gender  
(male vs. female) 

0.79 
(0.52-1.22) 0.297 1 

(0.64-1.56) 0.984 1.75 
(1.06-2.9) 0.03 1.46 

(0.87-2.45) 0.156 

Age 1.07 
(1.05-1.09) <0.001 1.05 

(1.03-1.06) <0.001 1.07 
(1.05-1.09) <0.001 1.04 

(1.02-1.06) <0.001 

IDH mutation   
(yes vs. no) 

0.12 
(0.07-0.2) <0.001 0.16 

(0.08-0.32) <0.001 0.15 
(0.09-0.25) <0.001 0.32 

(0.16-0.64) 0.001 

1p/19q codel   
(yes vs. no) 

0.29 
(0.14-0.6) 0.001 0.62 

(0.26-1.49) 0.285 0.21 
(0.09-0.49) <0.001 0.38 

(0.15-0.97) 0.043 

MT1/MT2 ratio  
(high vs. low) 

0.61 
(0.38-0.97) 0.035 1.03 

(0.63-1.69) 0.897 0.48 
(0.27-0.86) 0.013 0.48 

(0.27-0.87) 0.015 

HR: hazard ratio. CI: confidence interval 
*As predicted by the ASMY:CYP1B1 index 
 

 

Functional-selective drugs that simultaneously activate MT1 and inhibit MT2 exert robust 
anti-tumor effects 
 

Given the opposite roles of melatonin receptors suggested by our data, we reasoned that 
drugs able to activate MT1 while inhibiting MT2 would have promising therapeutic potential. We 
tested two high affinity compounds that act as agonists of MT1 and antagonists of MT2: 5-HEAT, 
that bears an hydroxyethoxy group on the C5-indole position of melatonin (Nonno et al., 2000), 
and UCM799, which is a N-anilinoethylamide derivative carrying a benzyl substituent on the 
aniline nitrogen (Rivara et al., 2007). 5-HEAT and UCM799 inhibited the in vitro proliferation of 
all four cell lines analyzed (HOG, T98G, U87MG, DAOY; Fig. 3A-B, S1C), including the low-
melatonin cell line U87MG. Next, we tested the therapeutic efficiency of such compounds in vivo 
using the U87MG-luc orthotopic xenograft model. We expect 5-HEAT and UCM799 to be 
effective regardless of the content of melatonin in the tumor microenvironment. For instance, given 
the limited capacity of U87MG cells to produce and accumulate melatonin, we postulate that in 
vivo, during the day, such compounds would act mainly by activating MT1, while at night they 
would antagonize the binding of pineal melatonin to MT2. Notably, continuous brain infusion of 
5-HEAT or UCM799 for 14 days reduced tumor growth by approximately 75% compared to 
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vehicle, a robust therapeutic effect that likely reflects the complementary mechanisms of action of 
these functional-selective drugs (Fig. 3C). Moreover, the fact that the N-anilinoethylamide 
UCM799 reproduces the effect of the indoleamine 5-HEAT implies that the antioxidant activity 
ascribed to the indole ring of 5-HEAT plays a minor role in its growth suppressive action. Finally, 
the effect of melatonin was variable and not significant, what could reflect dynamic fluctuations 
of MT1 and MT2 levels in the tumor bulk.  

Cancer stem cells are a small subpopulation within tumors that has enhanced 
tumorigenicity and is capable of self-renewal and differentiation (Batlle & Clevers, 2017). In 
glioblastomas, the failure of current gold-standard therapies to eliminate tumor stem cells has been 
considered a major factor contributing to the inevitable tumor recurrence (Lathia, Mack, 
Mulkearns-Hubert, Valentim, & Rich, 2015). Thus, to better understand the mechanism of action 
of the functional-selective melatonergic compounds, we used glioma stem cell-enriched 
neurosphere cultures MGG23 and MGH143, previously shown to maintain primary tumor 
phenotype and genotype (Neftel et al., 2019; Wakimoto et al., 2012). Neurospheres were treated 
with vehicle or 5-HEAT for 48 h and profiled by RNA-seq. We then used GSEA to explore gene 
sets differentially expressed upon treatment in both cell lines. We identified 73 gene sets negatively 
enriched compared to the vehicle group, whereas no gene sets were positively enriched (Fig. 4A, 
Table S3). In both cell lines 5-HEAT inhibited the expression of cell cycle genes including 
CCND1, CDK4, CKD9, regulators of DNA replication RPA2, GINS2 and RFC2/5, as well as 
tubulins (Fig. 4B, Table S4). 5-HEAT also impaired the expression of multiple RNA processing 
and translation genes, and important regulators of cellular metabolism such as the glycolysis 
enzymes GAPDH and ENO1, translocases of inner mitochondrial membrane TOMM22, 
TIMM17B/22/50, and CYC1, which encodes a subunit of the cytochrome bc1 complex, the third 
complex in the electron transport chain of the mitochondrial (Fig. 4B, Table S4). The 48h 
treatment did not induce apoptosis/necrosis (Fig. S2), suggesting that, in glioma stem cells, the 
oncostatic effects of 5-HEAT likely involve cell cycle arrest .  
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Figure 3. The simultaneous activation of MT1 and inhibition of MT2 by functional-selective 
drugs impairs glioma growth in vitro and in vivo. (A)-(B) High- (HOG and T98G) and low-
melatonin (U87MG) glioma cell lines were cultured for 48 h with drugs that simultaneously 
activate MT1 and inhibit MT2, 5-HEAT (10-9 – 10-6 M) and UCM799 (10-9 – 10-6 M), or the 
respective vehicle (2 x 10-6 – 2 x 10-3 % DMSO). Cell number was estimated by MTT assay and 
values were normalized by the mean absorbance detected in the respective vehicle group. Data are 
shown as mean ± SEM of four independent experiments in quadruplicates. (C) Mice with pre-
stablished U87MG-luc orthotopic tumors received continuous brain infusions of vehicle (0.2% 
DMSO), 10-4 M 5-HEAT, 10-4 M UCM799 or 10-4 M melatonin. Mice were euthanized 14 days 
post treatment initiation for tumor volume evaluation. Values were normalized by the average 
tumor volume of the vehicle group. Data are shown as mean ± SEM of five independent 
experiments. (D) In vivo bioluminescence imaging of tumor burden 14 days post-treatment. * 
Significantly different from the respective vehicle group (p < 0.05) using the two-sided Student’s 
t test. 
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Figure 4. Impact of 5-HEAT on the expression profile of glioma stem-like cells. (A) MGG23 
and MGH143 stem cell-enriched neurosphere cultures were incubated with 10-6 M 5-HEAT or 
vehicle (2 x 10-3 % DMSO) for 48 h and profiled by RNA-seq. Reactome gene sets differentially 
expressed in 5-HEAT treated cells compared to vehicle were identified using GSEA. Enrichment 
map shows negatively enriched gene sets (FDR adjusted p < 0.1) composing 4 main modules. Each 
gene set is a node and edges represent the similarity between gene sets. Node size shows 
enrichment significance (-log10(FDR-adjusted p)) and edge thickness is proportional to the 
overlap coefficient between gene sets. (B) Heatmap depicts the expression profile of 5-HEAT 
treated cells. Genes are ranked according to their average log2(expression fold change) in the 5-
HEAT group compared to the vehicle. Bars on the right show the frequency of genes from selected 
gene sets within sliding windows of 500 genes. Relevant genes from each of the four gene set 
modules are highlighted in the bottom. Data correspond to three independent experiments. 
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Discussion 
 

The detailed characterization of the biological roles of melatonin receptors is essential for 
a rational clinical application of melatonin and other melatonergic compounds (Cecon, Liu, & 
Jockers, 2019). Despite the widespread interest in using melatonin as an adjuvant anticancer 
therapy, our understanding of the specific effects mediated through MT1 and MT2 receptor 
activation remains limited. Importantly, although accumulating studies have supported the 
anticancer properties of melatonin in different tumor types, in vitro and in vivo animal models 
experiments often involve millimolar concentrations of this indolamine (Li et al., 2017), which 
likely trigger diverse receptor-independent mechanisms, masking the impact of MT1 and MT2 
activation. In this respect, here we demonstrated that in glioma and medulloblastoma the receptor-
dependent anti-proliferative effect of melatonin is mediated by the activation of MT1, whereas 
MT2 seems to play a pro-tumor role, displaying a significantly higher mRNA expression in tumors 
compared to the normal brain cortex. Accordingly, the ratio between MT1/MT2 expression is a 
positive prognostic factor of patient survival, being particularly relevant when considering tumors 
predicted to have higher concentrations of melatonin in the microenvironment. Finally, we also 
showed the potential of MT1 and MT2 receptors as druggable targets, as the simultaneous 
activation of MT1 and inhibition of MT2 promotes a decrease in the expression of cell cycle-, 
metabolism- and translation-related genes in glioma stem-like cells, besides impairing tumor 
growth in vitro and in vivo. 

Notably, MT1 has often been recognized as the mediator of receptor-dependent antitumor 
actions of melatonin (Li et al., 2017). Studies with melanoma and breast cancer cell lines 
demonstrated that MT1 overexpression potentiates the growth suppressive effects of melatonin 
(Collins et al., 2003; Kadekaro et al., 2004; Yuan, Collins, Dai, Dubocovich, & Hill, 2002). In 
glioblastoma stem cells, MT1 activation has been recently shown to inhibit the expression of 
nestin, p-c-Myc(S62), and c-Myc, suppressing neurosphere formation and inducing G2/M arrest 
(H. Lee, Lee, Jung, Shin, & Kim, 2018). In estrogen receptor positive ductal breast carcinomas, 
MT1 protein levels decrease with tumor grade and positively correlates with patient overall 
survival (Jablonska et al., 2013). Moreover, mRNA expression of MT1 is significant decreased in 
colorectal cancer compared to the adjacent mucosa (Nemeth et al., 2011).  

In contrast, in the brain, activation of MT2 receptors has been linked to the neuroprotection 
conferred by melatonin following ischemic strokes (Chern, Liao, Wang, & Shen, 2012; C. H. Lee 
et al., 2010). Treatment with melatonin enhances endogenous neurogenesis and cell proliferation 
in the peri-infarct regions in a MT2-dependent manner, improving survival rates and the neural 
functioning of mice (Chern et al., 2012). Under high glucose conditions, melatonin has also been 
shown to prevent neuronal cell apoptosis via a MT2/Akt/NF-κB pathway (Onphachanh et al., 
2017). Importantly, in Alzheimer's disease patients, the hippocampal expression of MT1 is up and 
of MT2 is downregulated (Savaskan et al., 2005, 2002). Moreover, MT2 activation prevents the 
disruption of dendritic complexity and spine induced by amyloid β in hippocampal neuron cultures 
(Tang et al., 2019). All together, these findings corroborate the idea that MT1 and MT2 have 
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opposite roles controlling cell proliferation in the brain, a pattern that seems to be preserved in 
brain tumor cells, as revealed by our data. 

Recent studies using subtype selective receptor ligands and knockout mice suggest that 
MT1 and MT2 also play differential roles in process such control of sleep and body temperature 
(Gobbi & Comai, 2019; López-Canul et al., 2019). Activation of MT1 receptors seems to be 
implicated in the regulation of rapid eye movement (REM) sleep, whereas MT2 receptors 
selectively increase non-REM (NREM) sleep (Gobbi & Comai, 2019). MT1 knockout mice have 
an increase in NREM sleep and a decrease in REM sleep, while MT2 knockout mice have a 
decrease in NREM sleep. Regarding thermal regulation, administration of the MT1-selective 
partial agonist UCM871 and the MT2-selective partial agonist UCM924 have been shown to 
impact body temperature at different times of the dark phase and with opposite magnitude. 
UCM871 enhances body temperature just after the light–dark transition, whereas UCM924 
decreases body temperature just before the dark–light transition (López-Canul et al., 2019).  

The current mainstay treatment of glioblastomas (i.e. maximal surgical resection, 
concurrent chemoradiation and adjuvant chemotherapy) offers only palliation and is normally 
followed by tumor recurrence (Stupp et al., 2009). In this regard, the clinical significance of glioma 
stem cells is supported by studies showing their ability to promote radioresistance by preferential 
activation of the DNA damage responses (Bao et al., 2006), and to propagate tumor growth after 
chemotherapy (Chen et al., 2012). Single-cell RNA-seq characterization of different types of 
glioma, including glioblastomas, have also shown that cycling cells within human tumors are 
enriched in stem-like subpopulation (Filbin et al., 2018; Neftel et al., 2019; Tirosh et al., 2016). 
Notably, the MT1 agonist and MT2 antagonist 5-HEAT suppressed the expression of multiple cell 
cycle and translation related genes in stem cell-enriched cultures, as well as seemed to interfere 
with their energy metabolism; mechanisms that likely contribute the robust growth suppressive 
effect of 5-HEAT observed in vivo. Additionally, the ability of 5-HEAT to downregulate the 
expression of both glycolysis enzymes and mitochondrial proteins might be specially beneficial 
given the capacity of glioblastoma stem cells to rely on both oxidative and non-oxidative glucose 
metabolism, depending on the environment conditions (Marin-Valencia et al., 2012; Vlashi et al., 
2011).  

Overall, here we provided the first evidences regarding the differential role of MT1 and 
MT2 in brain tumor progression, supporting further investigations of the specific signaling 
pathways, as well as the relevance of melatonin receptors homo (MT1/MT1 and MT2/MT2) 
and heterodimers (MT1/MT2) (Ayoub et al., 2002). Our findings suggest that melatonin antitumor 
effects mediated by MT1 can be counterbalanced by the pro-tumor MT2 activation, what could be 
especially relevant in tumors expressing low MT1 and high MT2. Accordingly, we lay a 
substantial groundwork for the use of functional-selective melatonergic compounds that activate 
MT1 and/or inhibit MT2 receptors in brain cancer therapy. 
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Supplementary materials and methods 
 
Melatonin quantification 
 

Cells (5 x 105 per well) were seeded on 24-well plates and left to attach overnight. Next, 
culture media was replaced and melatonin accumulated following 6 h of incubation was measured 
through enzyme-linked immunosorbent assays (Melatonin ELISA; IBL, Hamburg, Germany) 
according to the manufacturer’s instructions. Values are shown per millions of cells. The assay has 
a detection limit of 3 pg/mL.  
 
Immunofluorescence microscopy 
 

Cells (3 x 104 per well) were seeded on 8-well chamber slides (Merck) and left to attach 
overnight. Next, culture media was removed and cells were washed with PBS prior to fixation with 
4% paraformaldehyde (15 min, room temperature). Cells were then permeabilized with 0.1% 
Triton X (10 min, room temperature), blocked with 2% BSA (1 h, room temperature) and incubated 
overnight at 4°C with rabbit anti-AANAT (1:200, IM-0450), pAANAT (1:200, IM-0451) or 
ASMT (1:200, IM-0441) primary antibodies (Imuny Biotechnology). Cells were washed three 
times with PBS before incubation with FITC-conjugated anti-rabbit IgG antibody (1:200, Sigma-
Aldrich) for 1 hr at room temperature. After three washes with PBS, nuclear DNA was stained 
with DAPI (5 min, room temperature, Santa Cruz Biotechnology. Images were captured using an 
Axio Scope A1 (Zeiss, Gottingen) fluorescence microscope. 
 
Cell death assay 
 

MGH143 and MGG23 cells (1,000 per well) were seeded in 96-well plates, left to rest 
overnight and treated with 5-HEAT (10-6 M) or vehicle (2 x 10-3 % DMSO) for 48 h. Cell death 
was assessed using the Annexin V APC Apoptosis Detection Kit from Biogems, according to 
manufacturer’s instruction. Briefly, cells were washed twice with PBS, incubated with APC-
conjugated annexin V and 7AAD for 15 min at room temperature, and analyzed using the LSD II 
(BD Biosciences) and the FCS Express v.6 software. 
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Supplementary Figures 
 
 

 
 
Figure S1. Biological relevance of MT1 and MT2 melatonin receptors in medulloblastoma. 
(A) Immunofluorescence detection of AANAT, PAANAT, ASMT, MT1 and MT2 in the human 
medulloblastoma cell line DAOY. Nuclear DNA was stained with DAPI (blue). (B)-(C) DAOY 
cell lines were cultured for 48 h with the MT2-selective antagonist DH97 (3 x 10-10 – 10-6 M) and 
with the MT1 agonist and MT2 antagonist 5-HEAT (10-9 – 10-6 M). Cell number was estimated 
by MTT assay and values were normalized by the mean absorbance detected in the respective 
vehicle group. Data are shown as mean ± SEM of four independent experiments in quadruplicates. 
* Significantly different from the respective vehicle group (p < 0.05) using the two-sided Student’s 
t test. 
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Figure S2. 5-HEAT does not induce cell death in glioma stem-like cells. MGG23 (left) and 
MGH143 (right) stem cell-enriched neurosphere cultures were incubated with 10-6 M 5-HEAT or 
vehicle (2 x 10-3 % DMSO) for 48 h and cell death was assessed by measuring annexin V (APC) 
and 7AAD staining using flow cytometry. Data correspond to two independent experiments. 
 
 
 
Supplementary Tables (Tables S2-4 were omitted due to limited space) 
 

Table S1. Multivariate Cox analysis of 5-year survival in gliomas. 
 5-year survival 
 Low melatonin gliomas* High melatonin gliomas* 
 Univariate Multivariate Univariate Multivariate 

Variable HR 
(95% CI) 

P 
value 

HR 
(95% CI) 

P 
value 

HR 
(95% CI) 

P 
value 

HR 
(95% CI) 

P 
value 

Gender  
(male vs. female) 

0.82  
(0.52-1.3) 0.397 0.97  

(0.6-1.55) 0.889 1.78  
(1.05-3.04) 0.033 1.4  

(0.81-2.41) 0.232 

Age 1.07  
(1.05-1.09) <0.001 1.05  

(1.03-1.07) <0.001 1.07  
(1.05-1.09) <0.001 1.04  

(1.02-1.07) <0.001 

IDH mutation   
(yes vs. no) 

0.08 ( 
0.05-0.15) <0.001 0.23  

(0.11-0.46) <0.001 0.13  
(0.08-0.23) <0.001 0.34  

(0.16-0.72) 0.005 

1p/19q codel   
(yes vs. no) 

0.16  
(0.06-0.43) <0.001 0.28  

(0.09-0.88) 0.029 0.16  
(0.06-0.45) <0.001 0.34  

(0.11-1.02) 0.054 

MT1/MT2 ratio  
(high vs. low) 

0.56  
(0.35-0.91) 0.019 0.83  

(0.51-1.36) 0.459 0.48  
(0.27-0.86) 0.013 0.49  

(0.27-0.88) 0.017 

HR: hazard ratio. CI: confidence interval 
*As predicted by the ASMY:CYP1B1 index 
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Conclusions 
 

Causes and consequences of tumor cell plasticity and heterogeneity 

 
Tumor cell plasticity and heterogeneity are key mechanism underlying disease progression 

and therapeutic resistance (Dagogo-Jack & Shaw, 2018). Recent advances of single-cell 

technologies have allowed the profiling of tumors at unprecedented depth, enabling the dissection 

of potential cell trajectories associated with changes in phenotypes (Neftel et al., 2019; Peng et al., 

2019; Puram et al., 2017; Tirosh, Izar, et al., 2016; Tirosh, Venteicher, et al., 2016; Venteicher et 

al., 2017; Zhang et al., 2019). Nevertheless, the molecular mechanisms underlying such changes 

and ways of modulating it remain poorly understood. Most studies of intratumoral heterogeneity 

have focused on genetic alterations, as genome instability represents a prominent fuel for cell-to-

cell variation and hence selection and evolution (Campbell et al., 2010; de Bruin et al., 2014; 

Gerlinger et al., 2012; Harbst et al., 2016; Jamal-Hanjani et al., 2017; Yates et al., 2015). However, 

as evidenced by our work, even genetically homogenous cells show significant expression 

heterogeneity. Remarkably, by analyzing scRNA-seq data of dozens of cell lines from diverse 

cancer types we demonstrated that most heterogeneity observed within tumors reflect non-genetic 

mechanisms that generate continuous programs of expression diversity, characterized by spectra 

of cellular states.  

Expression heterogeneity of genetic homogeneous cellular populations, could reflect, for 

instance: i) the intrinsic fluctuations due to the randomness inherent to transcription; ii) epigenetic 

developmental programs; and iii) responses to microenvironmental factors. Interestingly, we 

showed that many of the continuous programs observed in cell lines are recurrent and recapitulate 

those seen in fresh human tumors, even though in vitro conditions lack a native and spatially-

variable microenvironment. These observations suggest that some cellular developmental 

hierarchies present in normal tissues, such as those observed during wound-healing and cellular 

aging, are at least partially preserved in tumors (and cell lines), representing a prominent source 

of phenotype variability. As illustrated by experiments with the HNSCC cell lines JHU006 and 

SCC47, which harbor a variability program of epithelial senescence (EpiSen) also seen in clinical 
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samples of HNSCC, such non-genetic heterogeneity is reversible and dynamic, and could thus 

more directly regulate cellular phenotypes.  

Non-genetic variability can also contribute to therapeutic resistance by multiple different 

mechanisms. For instance, we demonstrated that cells with high expression of the EpiSen program 

are more sensitive to inhibitors of the PI3K/AKT pathway and less sensitive to inhibitors of the 

cell cycle when compared to the EpiSen low population. Thus, epigenetic manipulation of cancer 

cells that makes expression patterns more uniform could be a powerful therapeutic tool to improve 

the efficacy of targeted/chemo therapies by reducing the risk of resistant phenotypes. Notably, by 

showing the relevance of certain cell lines as models of intratumoral heterogeneity, we provided 

the framework for the scientific community to start testing such innovative hypothesis. In coming 

years, major challenges will likely involve the transferring of the acquired knowledge "from bench 

to bedside". More specifically, developing cost- and time-effective ways to assess expression 

heterogeneity in clinical samples, as well as generating protocols on how to use this information 

to guide therapeutic decisions.  

The melatonergic system in cancer prognosis and treatment 

Over the past decades, melatonin, best known as the “hormone of darkness” or the “pineal 

hormone”, has been revealed as a pleiotropic molecule with diverse biological functions: it is 

produced by multiple tissues (Acuña-Castroviejo et al., 2014); has clinical relevance as a treatment 

for conditions such as insomnia and Alzheimer´s disease (Liu et al., 2016); and even 

shows anticancer properties (Cutando et al., 2012). Adding to this list, here, we are the first to 

show the role of glioma-synthesized melatonin as an autocrine/paracrine suppressor of disease 

progression. Remarkably, analysis of RNA-seq data of more than 4,500 samples from The 

Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx), revealed that in 

almost all cancer types the content of melatonin locally produced and accumulated, as 

predicted by the ASMT:CYP1B1 expression index, is significantly lower than in matched 

normal tissues (Fig. 1). Accordingly, as observed in gliomas, a low index value, indicative of 

decreased melatonin, is associated with poor prognosis in bladder urothelial carcinoma, 

colorectal adenocarcinoma, medulloblastoma, metastatic melanoma, lung squamous 

cell carcinoma, pancreatic adenocarcinoma, pheochromocytoma/paraganglioma, and 

stomach adenocarcinoma (Fig. 2). 
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Figure 1. Melatonin levels, as predicted by the ASMT:CYP1B1 expression index, in normal and 
malignant tissues. The index value was calculated for each sample according to the mRNA levels of 
melatonin synthesis (ASMT) and metabolism (CYP1B1) enzymes, as previously described (Kinker et al., 
2016). Comparisons were performed using the two-sided Students t-test. Gene expression data were 
downloaded from public databases (GTEx and TCGA). 
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Figure 2. The prognostic value of the ASMT:CYP1B1 index in solid tumors. Kaplan-Meier survival 
curves of patients with tumors presenting low vs. high ASMT:CYP1B1 index scores. The index value was 
calculated for each sample based on the mRNA levels of the melatonin synthesis (ASMT) and metabolism 
(CYP1B1) enzymes, as previously described (Kinker et al., 2016). Gene expression and clinical data were 
obtained from public database repositories (Cho et al., 2011, for medulloblastomas, and TCGA, for all other 
tumors). 
 

 

Although further studies are needed to define if decreased levels of tissue melatonin are a 

cause or consequence of tumorigenesis, we can speculate about the role of this indolamine as a 

major modulator of the malignant behavior. Given the tissue- and context- specific effect of 

melatonin receptors activation, it is possible that this apparent universal trend is linked to the more 

primitive role of melatonin as a broad-spectrum antioxidant (Tan et al., 2009). Reactive oxygen 

species (ROS) can be produced from endogenous sources, including organelles such as 

mitochondria, peroxisomes and endoplasmic reticulum, where the oxygen consumption is high, as 

well as from pollution, alcohol, tobacco smoke, and UV radiation (Di Meo et al., 2016). Keeping 

the cellular redox state well-balanced is essential for the maintenance of tissue homeostasis, and it 

is now clear that ROS have a dual role in cancer (Reczek & Chandel, 2017). Slightly increased 

levels of ROS can promote genomic instability and activate pro-tumorigenic signaling such as 

NFkB (A. C. H. Chen et al., 2011). Too high concentrations, on the other hand, can cause excessive 

oxidative damage and cell death (Y. Chen et al., 2008). Thus, locally produced melatonin might 
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act, together with others known antioxidant systems (e.g. thioredoxin and glutathione systems), as 

a buffer, ensuring optimal levels of free radical in the tissues. Of note, recent studies with neuronal 

cells (Suofu et al., 2017) and oocytes (He et al., 2016) have shown that melatonin can be 

synthesized in the mitochondria, where it plays a role avoiding electron leakage. 

As described earlier, apart from functioning as an elector donor, melatonin can also activate 

high-affinity G-protein coupled receptors, MT1 and MT2. Although this indolamine is 

increasingly referred as a potential adjuvant in cancer treatments, few serious attempts have been 

made to understand the effects associated with the activation of each one of these receptors. Most 

in vitro studies use concentrations of melatonin that are much higher than those required for the 

saturation of MT1 and MT2 receptor binding sites, and thus likely trigger many receptor-

independent effects. Importantly, in patients, achieving high concentrations of melatonin in the 

tumor microenvironment through systemic administration might be a challenge, limiting the 

reproduction of such in vitro observations in the clinics. Moreover, as anticancer drug discovery 

moves towards the development of more rational and biologically-grounded treatments, it 

becomes clear that the comprehensive characterization of targeted molecular networks is 

essential for improving therapeutic efficacy while avoiding adverse effects. In this regard, 

surprisingly, we showed that in gliomas and medulloblastomas MT1 and MT2 play 

opposite roles in controlling disease progression. Compounds that activate MT1 and 

inhibit MT2 displayed a remarkable growth suppressive effect in glioma xenografts, while the 

therapeutic benefits of melatonin were variable and with no significant trend. All together, we 

provided the first robust evidence of the therapeutic relevance of MT1 and MT2 receptors as 

druggable targets in brain cancer, which now must be tested clinically.  
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