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Resumo

O estudo dos aspectos fisiológicos da corrida é importante não somente pela popu-

laridade dessa atividade como também pelo seu papel na manutenção da saúde. Dessa

maneira, é interessante identificar marcadores sensíveis aos efeitos agudos e crônicos desse

exercício e capazes de, potencialmente, trazer informações sobre o estado fisiológico dos

corredores. Nesse contexto, estimadores do controle cardíaco, como a variabilidade car-

díaca (VC) e a complexidade cardíaca (CC) (cujos valores, quando baixos, estão asso-

ciados à problemas de saúde), parecem ser particularmente importantes. No entanto,

existem diversas controvérsias e lacunas no estudo da associação desses estimadores com

a corrida. Para abordar esse problema, o presente estudo foi dividido em diversas etapas.

Em um primeiro momento, foi necessário elaborar uma análise de complexidade cardíaca

capaz de consistentemente caracterizar séries temporais. Dessa maneira, foi desenvolvida

a a1ApEn, a qual é capaz de corrigir problemas identificados em outras análises não line-

ares; sendo robusta, consistente e com um tempo computacional adequado. Em seguida,

investigou-se o efeito agudo da corrida na VC e na CC em 3 protocolos experimentais

(velocidades constantes, crescentes e decrescentes). Foi possível observar que a VC e a

CC se correlacionam positivamente com a frequência cardíaca (FC) e que essa relação é

melhor observada no protocolo de velocidades crescentes. Nesse protocolo, foi observado,

ainda, que uma correlação negativa entre a1ApEn-CC e FC está associada com seden-

tarismo. Essa correlação foi aprofundada sob a óptica do histórico de treinamento em

maratonistas. Nesse contexto, foi possível concluir que a complexidade cardíaca obtida

via a1ApEn é capaz de discernir maratonistas em função do tempo treinando para provas

de longa duração. Finalmente, em experimentos realizados em velocidade constante, foi

observado um componente oscilatório nos resultados tanto de VC quanto de CC. Esse

componente é mais proeminente em resultados de CC e está, potencialmente, associado
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com fatores termorregulatórios. Dessa maneira, as abordagens propostas foram capazes

de não apenas trazer diversas informações novas sobre as alterações associadas com a cor-

rida no controle cardíaco mas, também, introduzir metodologias com grande potencial

em outros contextos.

Palavras Chave: Fisiologia do Exercício, Fisiologia Cardiovascular, Variabilidade Car-

díaca, Complexidade Cardíaca.
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Abstract

A better understanding of the physiological aspects of running is important due to the in-

creasing popularity of this activity and, also, for its role in maintaining health. Therefore,

it is interesting to identify markers capable of detecting the acute and chronic effects of

this exercise and, potentially, bring additional information about the physiological status

of runners. In this context, heart rate control estimators, such as heart rate variability

(HRV) and heart rate complexity (HRC) (both indexes, when low, are associated with

health disorders), appears to be particularly important. Nevertheless, there are several

controversies and missing information regarding the association between these estimators

and running. To approach these issues, the present study was divided in four parts. First

of all, it was necessary to create a HRC analysis capable of consistently characterizing

time series. Thereunto, the a1ApEn was developed; a robust, consistent analytical tool

with an adequate computational time that is capable of correcting problems that arose in

other nonlinear analyses. Next, the acute effect of running in HRV and HRC was investi-

gated utilizing three experimental protocols (constant, increasing and decreasing speeds).

HRV and HRC are positively correlated with heart rate (HR), a relationship better ob-

served in the protocol with increasing speeds. In this protocol, it was observed that a

negative correlation between a1ApEn-HRC and HR is associated with sedentary. This

correlation was further studied under the scope of the training background of marathon-

ers. In this context, it was possible to conclude that the heart rate complexity, obtained

through a1ApEn, is capable of discriminating marathoners in regard to the number of

years training for long distance running. Finally, in experiments performed at constant

speed, it was detected an oscillatory component in the HRV and HRC results. This

component is more prominent in the HRC results and is, potentially, associated with

termorregulatory factors. To conclude, the proposed approaches are capable of bringing
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several new information to the study of the effects of running in heart rate control and,

moreover, to introduce new methodologies of great potential in other contexts.

Keywords: Exercise Physiology, Cardiovascular Physiology, Heart Rate Variability,

Heart Rate Complexity.
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Capítulo 1

Introdução

1.1 A corrida

A importância do estudo dos aspectos fisiológicos da corrida passa, em um primeiro mo-

mento, pela sua grande popularidade, a qual pode ser evidenciada pelo alto número de

participantes em diversas competições ao redor do mundo. Tomando o exemplo extremo

da maratona, provas como as de Berlim, Londres e Nova Iorque foram completadas por

28.999, 35.817 e 30.108 participantes, respectivamente, em 2015 (Berlin Marathon, 2015;

Marathon Guide, 2015; New York City Marathon, 2011), números esses que só não são

maiores por existir um limite máximo de inscritos. No Brasil, a Maratona Internacio-

nal de São Paulo reuniu, em 2015, cerca de 19.000 pessoas nas diferentes modalidades

(maratona, 25 e 10 quilômetros e caminhada) (Maratona Internacional de São Paulo,

2015). Adicionalmente, é possível observar que a prática de corridas de rua está em

franca ascensão já que, segundo os dados da Federação Paulista de Atletismo (2015), é

possível constatar que o número de provas regulamentadas, somente no estado de São

Paulo, subiu de 11 em 2001 para 361 em 2014, enquanto o número de participantes subiu

de 146.022 em 2004 para 653.140 em 2015.

Essa forma de exercício merece uma atenção especial não só pela natureza competitiva
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mas, também, pela sua importância na evolução do gênero Homo. Isso é observável

pois diversas características anatômicas e fisiológicas que surgiram nesse grupo (e estão

presentes nos humanos atuais) beneficiam a prática de corridas de longa duração de forma

mais marcante do que a caminhada (Bramble & Lieberman, 2004).

A corrida possui, ainda, um papel importante no controle de massa corpórea, con-

dicionamento físico e manutenção da saúde (McArdle et al., 1998). Estes fatores estão

relacionados com o estudo dos aspectos fisiológicos do exercício, os quais, se melhores

entendidos, podem levar não só a uma melhor compreensão dos sistemas envolvidos nessa

atividade, como também a uma melhora na performance de praticantes.

Uma rápida análise pode identificar alterações em diversas variáveis fisiológicas, de

diversos sistemas, associadas com a corrida. Porém, por uma questão de objetividade, o

presente estudo focará na relação da corrida com estimadores do controle cardiovascular.

1.2 Sistema Cardiovascular

1.2.1 Função e Controle

A função do sistema cardiovascular é manter um ambiente apropriado nos diversos tecidos

do corpo (Guyton & Hall, 2006), sendo que sua importância está associada, principal-

mente, ao transporte de nutrientes e oxigênio para os tecidos ativos e à rápida remoção

de certos produtos do metabolismo, como gás carbônico (McArdle et al., 1998).

Alterações no fluxo sanguíneo local são controladas de acordo com as necessidades

(i.e., demanda) do tecido (Guyton & Hall, 2006) e, no caso da corrida, essas alterações

podem ser bem drásticas. Tomando o caso extremo do exercício na taxa metabólica má-

xima, 90% do fluxo sanguíneo é direcionado para o tecido muscular e 90% do consumo de

𝑂2 ocorre nos músculos locomotores (Weibel & Hoppeler, 2005). Essas alterações, frente

à alta demanda energética associada com a corrida, são moldadas por mudanças, agudas

e crônicas, no sistema cardiovascular e pelo controle associado com essas mudanças.
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As alterações agudas estão associadas a mudanças na periferia do sistema vascular,

como mudanças no diâmetro de vasos e a abertura de um maior número de capilares

(McArdle et al., 1998), e no próprio coração. O aumento do fluxo para os tecidos lo-

comotores também está associado a um aumento do débito cardíaco (DC), o qual é

consequência de um aumento do volume sistólico e da frequência cardíaca (FC) (Guyton

& Hall, 2006). Finalmente, durante o exercício, ocorrem alterações no coração associ-

adas com a mudança tanto no seu eixo mecânico, quanto na pressão transmural atrial

relacionada à pressão intratorácica e ao retorno venoso (Casadei et al., 1996; Bernardi

et al., 1990).

As alterações crônicas também resultam em uma melhor distribuição de recursos,

trazendo melhorias aos processos agudos e, em última instância, à captação, transporte e

utilização do oxigênio. Por exemplo, o treinamento aumenta tanto a massa do miocárdio

quanto o volume sistólico, de forma que obtemos um aumento do DC (em relação a

indivíduos não treinados) mesmo com FC menores (McArdle et al., 1998). É importante

destacar que essas alterações na FC mostram que o treinamento é capaz de modificar o

controle cardíaco. No entanto, sabendo que essa variável não é um marcador totalmente

confiável do treinamento para corridas de longa duração (Lambert et al., 1998; Borresen

& Lambert, 2008), é interessante observar como outras medidas associadas com esse

controle são afetadas pelo condicionamento físico.

Um adendo importante precisa ser feito em relação à frequência cardíaca. A limitação

exposta acima não diminui a importância fisiológica dessa variável, uma vez que é clara

a sintonia entre o controle cardíaco, frequência cardíaca e potência mecânica gerada.

Temos, ao contrário, que é interessante observar a variação do controle cardíaco (nosso

objeto de estudo) frente a alterações da FC, aqui propiciadas pela corrida (de maneira

similar ao feito em Platisa & Gal, 2006b,a).

Retornando às alterações crônicas, temos, ainda, outras mudanças que contribuem

com o transporte de nutrientes como, por exemplo, o aumento do volume plasmático e
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um aumento do fluxo e da distribuição de sangue (McArdle et al., 1998).

Essas alterações, tanto agudas quanto crônicas, são mediadas por diferentes formas

de controle, as quais podem ser divididas em mecanismos locais, hormonais e neurais

(Rhoades & Tanner, 2005). Os mecanismos locais estão associados com mudanças agudas

no grau de constrição dos vasos sanguíneos em decorrência de estímulos químicos e físicos

na microcirculação. Os controles hormonais, por sua vez, envolvem a ação de mensageiros

químicos na regulação do sistema cardiovascular. Vale ressaltar que a secreção desses

hormônios é estimulada por neurônios da via de controle neural, de forma que existe uma

integração entre esses mecanismos de controle (Rhoades & Tanner, 2005, ver adiante).

Finalmente, temos o controle associado com o sistema nervoso autônomo (SNA) que age

tanto no calibre dos vasos sanguíneos quanto no próprio coração (McArdle et al., 1998).

1.3 Controle Neural Cardíaco e a Variabilidade Cardíaca

A frequência das contrações do coração é gerada por um sistema especializado capaz

de produzir e transmitir (conduzir) um impulso rítmico proporcionando a contração dos

átrios e dos ventrículos (Guyton & Hall, 2006). A ritmicidade do coração e sua força de

contração são processos modulados pelas ações do sistema nervoso autônomo (Uusitalo

et al., 2011). A ação do SNA parassimpático se dá pela liberação de acetilcolina, que

reduz o ritmo sinusal e a excitabilidade de parte das fibras cardíacas (Task Force, 1996;

Guyton & Hall, 2006), com diminuição da frequência cardíaca e até, em casos extremos,

o bloqueio atrioventricular (Guyton & Hall, 2006). A ação do SNA simpático acarreta,

através da liberação epinefrina e norepinefrina, um aumento das descargas do nodo sinusal

e da excitabilidade de todas as porções do coração, além de um aumento na força de

contração (Guyton & Hall, 2006). Em condições de repouso, os efeitos parassimpáticos

se sobressaem aos simpáticos (Task Force, 1996), ou seja, o nó sino atrial é mantido sob

o efeito do SNA parassimpático.
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Dada a natureza dos sistemas simpático e parassimpático, é esperado que exista uma

rápida modulação dos dois em resposta a mudanças das demandas ambientais (Thayer

et al., 2010). Levando em conta o grande número dessas mudanças, padrões de variabili-

dade organizada (ou flexibilidade dinâmica) são preservados, ao invés de níveis estáticos

(Thayer et al., 2010). A variabilidade decorrente desta interação, mensurada pela os-

cilação no intervalo entre batimentos cardíacos consecutivos (e.g., intervalos entre duas

ondas R, chamados R-R, no eletrocardiograma) (Task Force, 1996), é tomada como uma

medida indireta do controle cardíaco autonômico (Billman, 2009). A contrapartida da

relação descrita acima é o desbalanço autonômico, que ocorre quando o SNA simpático

passa a ser mais ativo que o parassimpático (Thayer et al., 2010; Billman, 2009), uma

situação que acarreta um maior gasto energético (Thayer et al., 2010). Este desbalanço

está associado a um enfraquecimento da flexibilidade dinâmica (uma diminuição da vari-

abilidade) e, de maneira relacionada, da saúde (Thayer et al., 2010; Porges, 1992); e está

associado com diversas doenças (Uusitalo et al., 2011; Task Force, 1996; Thayer et al.,

2010).

Essa variabilidade é chamada de variabilidade cardíaca (VC) quando analisada

por métodos no domínio do tempo e da frequência, e complexidade cardíaca (CC)

quando estimada por via de ferramentas não lineares (ver abaixo).

1.3.1 Variabilidade entre Batimentos Cardíacos e sua Aplicação

Existem fortes evidências da conexão entre a redução da VC/CC durante o repouso com

morbidade/mortalidade. Um valor baixo de variabilidade cardíaca está associado com

neuropatia diabética, transplante cardíaco, disfunção e infarto do miocárdio (Task Force,

1996). Adicionalmente, esse índice possui um papel importante na previsão de mortes

súbitas por arritmia ventricular (Billman, 2009) e no pós infarto do miocárdio (Task

Force, 1996). De maneira semelhante, um baixo valor de complexidade cardíaca está

relacionado com fibrilação atrial paroxística (de maneira mais robusta do que utilizando
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métodos lineares, Shin et al., 2006), sepse neonatal (Lake et al., 2002), presença de

endotoxinas (Rassias et al., 2005), mortalidade pós infarto do miocárdio (Stein et al.,

2005), além de ser capaz de detectar mudanças no controle cardíaco promovida por

fármacos (Kuusela et al., 2002).

É sugerido, também, que o desbalanço autonômico seja um fator anterior aos fatores

de risco dessas doenças, de forma que tal desbalanço seria uma via final comum que

ligaria eventuais desordens à morte e à doença (Thayer et al., 2010).

Em linhas gerais, a mensagem a ser passada é que a baixa VC/CC resultante desse

desbalanço autonômico é considerada um dos marcadores mais promissores para diag-

nóstico de problemas cardiovasculares (Billman, 2009).

1.3.2 Análise da Variabilidade Cardíaca

A variabilidade e a complexidade cardíaca são obtidas através da análise de séries tem-

porais contendo todos períodos entre batimentos cardíacos normais consecutivos.

A variabilidade cardíaca pode ser estimada por métodos no domínio do tempo ou da

frequência. Existem várias maneiras de extrair informações no domínio do tempo como,

por exemplo, o desvio padrão do intervalo entre batimentos cardíacos (Task Force, 1996).

No entanto, ao contrário dos estimadores que serão descritos a seguir, a informação obtida

com essa metodologia está associada à dispersão dos dados e não à organização temporal

do vetor de dados (é facilmente observável que o embaralhamento da série temporal altera

a organização, ver abaixo, mas não a sua dispersão). Dessa maneira, o presente estudo

(seguindo a tendência da literatura atual) não utilizará essa forma de análise.

A variabilidade cardíaca no domínio da frequência é estimada através da análise da

densidade espectral de potência (DEP). A DEP fornece informação de como as potên-

cias se distribuem em função das diferentes frequências que compõem o sinal, sendo

recomendada para o estudo de séries temporais curtas (i.e., ∼= 5 minutos) (Task Force,

1996).
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A DEP pode ser obtida por diversos métodos (e.g. transformada rápida de Fourier -

TRF), sendo possível identificar, ao medir séries temporais curtas, 3 componentes (Task

Force, 1996): um pico numa banda de alta frequência (HF, 0.15−0.4𝐻𝑧); um pico numa

banda de baixa frequência (LF, 0.04 − 0.15𝐻𝑧) e um componente de frequência muito

baixa (VLF, ≤ 0.04𝐻𝑧). Enquanto o componente HF estaria relacionado à atividade

parassimpática, o componente LF estaria relacionado tanto à atividade simpática quanto

à parassimpática (Task Force, 1996; Billman, 2009; Perini & Veicsteinas, 2003; Aubert

et al., 2003). Finalmente, a razão LF/HF é utilizada como um indicador do balanço

autônomo (Task Force, 1996).

Apesar da capacidade de discriminar entre os dois ramos do controle autônomo ser

considerada uma das vantagens dessa forma de análise (Aubert et al., 2003), a exata

relação entre a atividade desses ramos e os componentes da DEP é alvo de controvérsia.

Parte dessa discussão envolve a dubiedade do componente LF, que, por ser um marcador

fraco da atividade simpática, mostra que a fisiologia por trás dessa abordagem pode

ser ainda obscura (Houle & Billman, 1999). Essa incerteza em relação ao papel da LF

também afeta, dada a maneira como é calculada, a análise do balanço autônomo, outro

conceito que se torna alvo de muitas críticas (Parati et al., 2006; Eckberg, 1997).

Essas críticas, e outras relacionadas a questões de nomenclatura e à confiabilidade dos

estudos que usam DEP para analisar VC, estão presentes na revisão de Eckberg (1997), na

qual o autor enfatiza a necessidade de um melhor entendimento dos aspectos fisiológicos

associados essa forma de análise. Réplicas e tréplicas podem ser encontradas em Malik

(1998). Pontos de vista opostos também são encontrados em Parati et al. (2006), com

diversas respostas em Malliani (2006), mostrando a ausência de um consenso sobre o

tópico.

Em linhas gerais, é possível reconhecer na relação entre VC e os dois componentes

do SNA a origem das inconsistências descritas acima. Dessa maneira, é interessante

procurar uma forma de análise capaz de extrair informações da DEP independentes
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dessa associação. Esse é o objetivo do Capítulo 5, onde um componente oscilatório de

baixa frequência é identificado nos resultados tanto de VC como de CC (Figura 5.1),

sendo mais proeminente no segundo (Figura 5.3). Sugere-se, em tal Capítulo, que esse

padrão está associado a componentes termorregulatórios.

1.3.3 Análise da Complexidade Cardíaca

Ferramentas não-lineares (i.e., complexidade cardíaca) são consideradas promissoras no

acesso às informações do controle cardíaco (Task Force, 1996), uma vez que fenômenos

não lineares certamente estão envolvidos na gênese da variação entre batimentos do

coração (Task Force, 1996; Jafarnia-Dabanloo et al., 2007). Uma comparação entre

diversas ferramentas não lineares utilizadas no estudo da CC pode ser encontrada em

Kuusela et al. (2002). Dentre as citadas podemos destacar métodos baseados na teoria

da informação pelo seu uso mais frequente.

Segundo essa teoria, a quantidade de informação em uma mensagem está relacionada à

incerteza de seu conteúdo (Shannon, 1948), sendo que a mensagem será mais informativa

quanto menor for a probabilidade dela ser recebida. Essa visão pode ser adequada para

análises de séries temporais considerando, ao invés da probabilidade de um novo sinal,

a frequência dos símbolos (que podem ser entendidos como padrões) que a constituem.

Em linhas gerais, essa é a estratégia utilizada pela ApEn1 para estimar a CC (e.g., Shin

et al., 2006; Lake et al., 2002; Rassias et al., 2005; Stein et al., 2005).

Apesar de alcançar seus objetivos em diversas situações, a ApEn possui problemas

de consistência (Santos et al., 2009) e esforços em melhorar essa ferramenta, como a

SampEn (Richman & Moorman, 2000), ApEn máxima (Lu et al., 2008) e vApEn (Santos

et al., 2009), também possuem desvantagens (conf. Capítulo 2). Dessa maneira, para um

melhor entendimento do efeito da corrida no controle cardíaco, é necessário um estimador

1ApEn (Approximate Entropy) é uma medida de complexidade desenvolvida por Pincus (1991) que
compara padrões, de tamanho 𝑚, retirados do vetor de dados com a própria série temporal, dada uma
tolerância 𝑟.
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da complexidade cardíaca consistente e que não apresente os problemas das ferramentas

não lineares tipicamente utilizadas.

O presente estudo apresenta, no Capítulo 2, a a1ApEn (definida como a área sob a

curva de ApEn versus a tolerância 𝑟, para 𝑚 = 1) como um estimador capaz corrigir

as falhas descritas acima. No capítulo em questão, é possível observar que a a1ApEn

apresenta uma consistência maior que as outras opções (conf. Tabela 2.1 e 2.2), com um

tempo computacional adequado (Figura 2.5) permitindo, assim, sua ampla utilização.

Dessa maneira, nos demais capítulos, o controle cardíaco foi estimado através da HF e

razão HF/LF, para VC, e a1ApEn, para CC.

1.4 Variabilidade/Complexidade Cardíaca Durante o Exer-

cício

Uma conhecida maneira de elevar o grau de controle cardíaco é o exercício físico habitual,

o qual já se mostrou efetivo em aumentar a atividade do sistema parassimpático (Thayer

et al., 2010; Task Force, 1996; Billman, 2009; Bernardi et al., 1996; De Meersman, 1993;

Sacknoff et al., 1994; Jensen-Urstad et al., 1997), sendo, assim, um eficaz método para

prevenção de doenças como fibrilação ventricular e disfunções do miocárdio (Billman,

2009).

Apesar dessa conexão ser bem estabelecida, ainda existem lacunas no seu melhor

entendimento, uma vez que os experimentos que mediram a VC durante o exercício,

realizados majoritariamente em bicicletas ergométricas, apresentaram resultados contra-

ditórios. Se, por um lado, Casadei et al. (1995); Perini & Veicsteinas (2003) observaram

um aumento da VC com o tempo/intensidade de exercício, Tulppo et al. (1996); Brenner

et al. (1997); Tulppo et al. (1998); Arai et al. (1989) observaram o padrão oposto.

Divergências semelhantes são encontradas nos poucos estudos relacionando CC com

o exercício. Por exemplo, enquanto Lewis & Short (2007) mostrou que a CC aumenta
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no começo do exercício e, em sequência, decresce gradativamente; Tulppo et al. (1996)

obteve uma diminuição inicial de CC seguida por um aumento. Dada a semelhança

entre os protocolos experimentais, é possível que essa diferença esteja relacionada aos

problemas de consistência que as ferramentas analítica utilizadas (ApEn e SampEn)

apresentam (conf. seção 1.3.3).

O panorama apresentado ilustra a inexistência de um consenso sobre o efeito do exer-

cício tanto na variabilidade cardíaca quando na complexidade cardíaca. O motivo dessa

inconsistência não é claro, porém é sugerido que a melhor compreensão da VC/CC é

limitada pela grande diferença em protocolos experimentais (Aubert et al., 2003; Perini

& Veicsteinas, 2003; Sandercock & Brodie, 2006; Task Force, 1996). Essa diversidade me-

todológica é observada, por exemplo, nos protocolos de velocidades utilizadas. Enquanto

alguns estudos analisaram o controle cardíaco instantâneo em velocidades moderadas

(caminhada ou 50% de carga máxima - Dixon et al., 1992; Tulppo et al., 2001; Yoshino

et al., 2004), outros utilizaram protocolos com velocidades crescentes (Arai et al., 1989;

Lewis & Short, 2007; Tulppo et al., 1996, 1998; Casadei et al., 1995; Boettger et al.,

2010).

É importante ressaltar que esse último protocolo traz um problema adicional, uma vez

que não é possível distinguir se eventuais alterações no controle cardíaco são provenientes

da alteração da velocidade ou do tempo de experimento (representando cansaço). Dessa

maneira, o melhor entendimento da VC/CC passa por um protocolo bem definido e capaz

de separar os diferentes componentes que afetam os estimadores.

O capítulo 3 aborda esses pontos para esclarecer o efeito da corrida nos estimadores

de controle cardíaco. Para tanto, foi medida a complexidade cardíaca, estimada via

a1ApEn, e a variabilidade cardíaca em 15 indivíduos correndo em esteiras nos seguintes

protocolos: velocidade constante, velocidades crescentes e decrescentes. Foi possível

observar, em todos os protocolos, e de maneira mais proeminente no de velocidades

crescentes, a existência de uma correlação positiva e significativamente diferente de zero
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entre VC/CC e frequência cardíaca (Tabela 3.2). Discute-se que esse aumento de VC/CC

estaria relacionado a uma reserva de componentes não neurais afetando a frequência

cardíaca. Esse capítulo sugere, ainda, que a correlação entre CC e frequência cardíaca

pode ser capaz de distinguir entre diferentes níveis de treinamento.

1.4.1 Variabilidade/Complexidade cardíaca e o histórico de treina-

mento

A relação entre VC/CC e a condição de treinamento, assim como o potencial uso das

primeiras como marcadores da segunda, ainda precisam ser melhor estudadas (Borresen

& Lambert, 2008; Aubert et al., 2003). Isso ocorre pois, assim como exposto acima para

o efeito agudo do exercício, a relação do controle cardíaco instantâneo com o histórico de

treinamento é objeto de controvérsia. Essa falta de consenso pode ser observada mesmo

em estudos que compararam as diferenças, teoricamente mais marcantes, entre indivíduos

treinados e não treinados. Entre estudos nos quais os dados são adquiridos durante

o repouso, de maneira longitudinal e transversal, diversos encontraram um aumento

da modulação cardíaca com o treinamento (e.g., Rennie et al., 2003; Buchheit et al.,

2004; Sloan et al., 2009; Schuit et al., 1999), enquanto outros não obtiveram diferenças

significativas (e.g., Melo et al., 2005; Migliaro et al., 2001; Uusitalo et al., 2004; Loimaala

et al., 2000).

Também existe uma falta de consenso em relação ao efeito do treinamento quando a

VC ou a CC são obtidas durante o exercício, uma vez que também já foram observados

tanto efeitos de aumento (Tulppo et al., 1998) quanto não significativos (Perini et al.,

2002; Levy et al., 1998). Quando essa relação é expandida para a diferença no controle

cardíaco instantâneo entre corredores com diferentes históricos de treinamento, existe

uma completa escassez de estudos.

No contexto desses indivíduos, o estudo de maratonistas surge como alvo de alto in-

teresse uma vez que a participação nessa prova, de grande popularidade, está associada
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com diversos problemas de saúde agudos e crônicos como: doenças cardíacas (Neilan

et al., 2006; George et al., 2011; Sheppard, 2012), desordens gastrointestinais (Nicholl

& Willians, 1982; Sanchez et al., 2006), hiponatremia (Sheppard, 2012; Sanchez et al.,

2006), além de lesões musculoesqueléticas (Sanchez et al., 2006; Satterthwaite et al., 1999;

Nicholl & Willians, 1982). Dessa maneira, e considerando a importância de adequar o

treinamento de cada indivíduo com a sua fisiologia cardiovascular (Schmermund et al.,

2008), é interessante observar se estimadores de controle cardíaco são capazes de discer-

nir maratonistas com diferentes históricos de corridas de longa duração. Essa estratégia

pode contribuir para a formulação de protocolos de treinamento mais precisos e, conse-

quentemente, para a mitigação de problemas de saúde enfrentados por maratonistas.

Nesse cenário, a abordagem sugerida no Capítulo 3 parece ser capaz de trazer grandes

contribuições. Nesse Capítulo, a correlação entre estimadores de controle cardíacos e

frequência cardíaca (a qual chamaremos de acoplamento metabólico) é apontada como

um fator capaz de discriminar entre indivíduos treinados e não treinados. É interessante

observar que é sugerido que indivíduos não treinados possuam uma correlação negativa

devido a uma incompatibilidade entre o controle cardíaco e a demanda metabólica e,

dessa maneira, pode-se hipotetizar que essa incompatibilidade também seja observada

em maratonistas que possuam um perfil de treinamento inadequado para um tal prova.

Esse problema é abordado no Capítulo 4 através do estudo do acoplamento metabólico

como estimador do histórico de treinamento em maratonistas. Para tanto, considerou-se

que um histórico de treinamento inadequado para a maratona estaria relacionado à falta

de experiência nessa prova e/ou ao baixo número de anos de treinamento para provas

de longa duração. Em um panorama mais específico, foi comparada a inclinação da re-

gressão linear entre VC/CC e frequência cardíaca entre seis indivíduos que realizaram

sua primeira maratona e cinco praticantes com experiência nesse tipo de prova. Adici-

onalmente, os mesmo atletas foram divididos em dois grupos em relação ao tempo de

treinamento para provas de longa duração (sete indivíduos com mais de dez anos e qua-
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tro indivíduos com menos de três anos). Os resultados obtidos indicam que a correlação

VC/CC x FC não é capaz de discernir entre grupos com diferentes quantidades de mara-

tonas completadas (Tabela 4.2), porém a correlação a1ApEn x FC é capaz de separar os

sujeitos experimentais em relação a quantidade de anos de treinamento para provas de

longa duração (Tabela 4.3). Esses resultados reafirmam o potencial da análise de acopla-

mento metabólico e, adicionalmente, sugerem a importância de realizar um treinamento

prolongado antes da prática de uma maratona.
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Chapter 2

Improvements in Approximate

Entropy: area under the curve as a

fast and robust tool to address

temporal organization.

Abstract

Approximate Entropy (ApEn) and Sample Approximate Entropy (SampEn) are widely

employed tools to characterize temporal organization in time-series. These tools rely

on two arbitrary choices of parameters: the window size of comparison, 𝑚, and the

tolerance for distinguishing two vectors, 𝑟. The arbitrary choice of the parameters is a

huge drawback in these tools since two very distinctive series may be classified differently

depending on the choice of the parameters. There are two attempts to overcome such

a drawback. One, pApEn, is based on the peak value of ApEn for a given 𝑚. The

other, vApEn, is based on a double summation of ApEn values along all suitable 𝑚
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and 𝑟, resulting in a pseudo-volume below the surface thus obtained. pApEn is much

more robust than ApEn (and SampEn), even though the arbitrary choice of 𝑚 still poses

subjectivity in the analysis. Moreover, recently we made a set of tests with pApEn

and observed that some inconsistencies emerged for different values of 𝑚. vApEn, on

the other hand, is extremely demanding on computational time/resources, and turns

out prohibitive for series containing more than 400 points even in powerful conventional

computers. Here we propose an approach based on the construction of the area under the

curve of ApEn versus tolerance 𝑟, and it differs from the other tools: (a) from pApEn,

which takes only one ApEn value and have no prescriptions for 𝑚; and (b) from vApEn,

which takes all the areas for all possible windows size 𝑚. The tool, a1ApEn, consists in

constructing a detailed tolerance vector and to compute the ApEn values, for the window

size 𝑚 = 1. We normalize the tolerance vector and compute the area from the ApEn

values relative to the normalized tolerances. The window size 1 is chosen because it can

be proven that it results in the largest area compared to 𝑚 = 2, 3, 4, . . . 𝑁−1; remaining

then no subjectivity in the parameters’ choice. We tested the consistency of the tool using

a set of standard time-series. The results show that a1ApEn is an adequate approach

to characterize temporal organization of time-series without the problems suffered by

pApEn and vApEn.

2.1 Introduction

Approximate Entropy (ApEn) is a widely employed tool to characterize temporal or-

ganization in time-series. This method seeks to estimate the degree of organization by

counting the number of equal events (matches) of a sub-vector 𝑖 of size 𝑚 along the

original vector (of size 𝑁), given a tolerance (𝑟). More details may be found in Pincus

(1991) and Santos et al. (2009), but the central idea is to count all the matches (#) for

certain 𝑖, 𝑚 and 𝑟 as:
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𝐶𝑚
𝑖 (𝑟) =

#𝑚
𝑖

𝑁 −𝑚 + 1
(2.1)

Then, the function 𝜑 is given by the overall mean count:

𝜑𝑚(𝑟) =
1

𝑁 −𝑚 + 1

𝑁−𝑚+1∑︁
1

ln(𝐶𝑚
𝑖 ) (2.2)

Finally, ApEn is obtained through:

𝐴𝑝𝐸𝑛(𝑚,𝑟,𝑁) = 𝜑𝑚(𝑟) − 𝜑𝑚+1(𝑟) (2.3)

ApEn is known to successfully achieve its objectives in many cases, such as: ability

to test adequacy of pseudo-random numbers generators (Rukhin, 2000); prediction of

survivability through body temperature regularity (Cuesta et al., 2007); estimation of

machine health via analysis of vibration in rolling bearings (Yan & Gao, 2007); charac-

terization of motor unit activity in amyotrophic lateral sclerosis patients (Zhou et al.,

2011) and prediction of paroxysmal atrial fibrillation through heart rate variability (Shin

et al., 2006). Nevertheless, some drawbacks can be found and, consequently, there is

room for improvement.

A minor issue regards its “positional sensitivity”, i.e. two arbitrary chosen fragments

of the same original data may possess very distinct ApEns. This problem holds even

for highly organized series such as the sum of two sine waves (Figure 2.1 A), where is

possible to observe a twofold increase in the ApEn for different samples (Figure 2.1 B).

This problem is usually mitigated, as shown in Figure 2.1 B, by a moving ApEn window

to obtain the mean complexity of a given time series (Zhou et al., 2011; Hu et al., 2008;

Chen et al., 2009).

A more important issue is that this tool rely on two arbitrary choices of parameters to

obtain the estimated value, namely, the window size of comparison, 𝑚, and the tolerance
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Figure 2.1: Sum of two sine waves and the corresponding moving ApEn. (A) Sum of two
sine waves, one with angular frequency of 0.025 and the other with angular frequency of
0.1, as a function of a time x. (B) A moving ApEn of the two sine waves where each
sample consists of an ApEn of a 150 points moving sub-vector from the original time-
series. The dashed line represents the mean value of complexity obtained. Notice that
the higher ApEn obtained is almost two times the lower ApEn.
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for distinguishing two vectors as non-equals, 𝑟. This arbitrariness is a huge drawback in

these tools since two very distinctive series may be classified differently depending on the

choice of the parameters (Santos et al., 2009). A well known variation of ApEn, sample

entropy (SampEn, developed by Richman & Moorman (2000)), also from suffers from

this disadvantage.

There are two attempts to overcome such a drawback. One is based on a collection

of tolerance values constructed in order to obtain the highest (peak) ApEn for a given m

(pApEn - Lu et al. (2008)). The logic behind this approach is clear when comparing this

peak in different time-series (Figure 2.2). Due to the formulation of equation 2.3, small

tolerances are associated with a small ApEn (i.e., the counting is as small for 𝑚𝑋 as it is

for 𝑚𝑋 + 1), which rises to a peak and then decreases as the allowed tolerance increases.

Therefore, it is possible to observe that the use of a single value of 𝑟, as suggested by

Pincus (1991) (e.g., the typically used 0.15 as illustrated in Figure 2.2) may result in

different regions of the curves being used to classify the organizations of different time

series.

pApEn is much more robust than ApEn (and SampEn), nevertheless, some inconsis-

tencies are observed (exemplified in Table 2.1, check Appendix A for full tables with all

simulations). Firstly, there still is a dependency on the value of 𝑚, since the classification

of different complexities may change depending on this parameter (Table 2.1 A). Second,

there is a high dependency on the size of the vector analyzed, since discrepant results are

obtained with small differences in size (Table 2.1 B). Finally, well organized time series

(e.g., a sine) analyzed through only one period may present a higher complexity than a

more variable series (Table 2.1 C).

The other alternative approach is based on a double summation of ApEn values

along all suitable 𝑚 and 𝑟, resulting in a pseudo-volume below the surface thus obtained

(vApEn, developed by Santos et al. (2009)). vApEn is, likewise, much more robust than

ApEn and SampEn, however it is extremely demanding on computational time/resources,



Chapter 2. Improvements in Approximate Entropy: area under the curve as a fast and
robust tool to address temporal organization. 36

Figure 2.2: ApEn across different 𝑟 (tolerance) for four data-sets. ApEn with window
size 𝑚 = 2 for all possible normalized tolerances 𝑟 (therefore, ranging from 0 to 1) for the
following time-series: sum of 2 sine waves (parameters: angular frequency (𝜔) = 0.025
and 0.1); uniformly distributed random numbers; Logistic map (parameter = 3.7) and
sum of 4 sine waves (parameters: 𝜔 = 0.025, 0.1, 0.051 and 0.078). The vertical line
denotes the typically used 𝑟 = 0.15.
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Table 2.1: Examples of the inconsistencies found with the use of pApEn. "Size" indicates
the number of points utilized in the analyses and "𝑚" is the size of the window employed
to compute the pApEn. The values of pApEn are presented as the mean results (number
of samples= 2 · Size) ± standard deviation. (A) It is possible to observe that, depending
on the 𝑚 of choice, both time-series may be classified as the most organized. (B) Vector
of different sizes diverge on which signal possesses a higher complexity. (C) According to
pApEn, one sine analyzed through only one period of oscillation is more complex than a
logistic map in the deterministic chaos zone (Pomeau–Manneville scenario). Names are
standardized for future reference, more information in section 2.1. Parameters utilized:
1 sine B: angular frequency (𝜔) = 0.1; 4 sines: 𝜔 = 0.025, 0.051, 0.078 and 0.1. Tent
map A: parameters = 0.2; 0.4. Autoregressive models: A, second order 0.1, 0.499; B,
first order parameters: 0.4499. Logistic map B: parameter = 3.7.

A
Size 𝑚 4 sine waves Tent map A

210 1 0.756 ± 0.054* 0.324 ± 0.015
210 3 0.192 ± 0.021 0.310 ± 0.012*

B
Size 𝑚 Autoregressive A Autoregressive B

210 2 1.231 ± 0.014* 1.198 ± 0.018
240 2 1.269 ± 0.023* 1.243 ± 0.021
270 2 1.296 ± 0.028* 1.284 ± 0.020
300 2 1.317 ± 0.032 1.327 ± 0.020*

C
Size 𝑚 1 sine B Logistic map B

210 1 0.737 ± 0.085* 0.488 ± 0.006
240 1 0.733 ± 0.088* 0.487 ± 0.006
270 1 0.761 ± 0.067* 0.488 ± 0.007

* Significantly higher: 𝑃 < 0.01.
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and turns out prohibitive for series containing more than 400 points even in powerful

conventional computers. In short, pApEn and vApEn are much more reliable than ApEn,

but the tools deserve further improvement.

2.2 a1ApEn

Here we propose an approach which might be considered as a step forward in relation to

pApEn and a step backward in relation to vApEn. a1ApEn is based on the construction

of the area under the curve of ApEn versus tolerance 𝑟 (Figure 2.2) and is defined for a

time-series 𝑆 of size 𝑁 as:

𝑎1𝐴𝑝𝐸𝑛(𝑆) =

∫︁ 1

0
𝐴𝑝𝐸𝑛(𝑚 = 1,𝑟,𝑁)𝑑𝑟 (2.4)

Notice, that the tolerance vector is normalized (thus, 𝑟 ∈ [0,1]) for appropriate com-

parison between different time-series.

The window size 1 is chosen because it can be shown that it results in the largest

area compared to 𝑚 = 2, 3, 4, . . . 𝑁 − 1. This is performed by considering the number

of matches in equation 2.1 as a function of the window size 𝑚, as follows:

𝐶𝑖(𝑚,𝑟) =
#𝑖(𝑚)

𝑁 −𝑚 + 1
(2.5)

resulting in the number of total counts as:

𝜑(𝑚,𝑟) =
1

𝑁 −𝑚 + 1

𝑁−𝑚+1∑︁
1

ln[𝐶𝑖(𝑚,𝑟)] (2.6)

which may be rewritten as:

𝜑(𝑚,𝑟) =
1

𝑁 −𝑚 + 1
ln

[︂𝑁−𝑚+1∏︁
1

#𝑖(𝑚)

𝑁 −𝑚 + 1

]︂
(2.7)
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or:

𝜑(𝑚,𝑟) =
ln[

∏︀
#𝑖(𝑚)]

𝑁 −𝑚 + 1
− ln(𝑁 −𝑚 + 1) (2.8)

Substituting #𝑖(𝑚) for a mean value of counts 𝑋(𝑚), then:

ln

[︂∏︁
#𝑖(𝑚)

]︂
= ln[𝑋(𝑚)]𝑁−𝑚+1 (2.9)

which, replacing in equation 2.8, results in:

𝜑(𝑚,𝑟) = ln[𝑋(𝑚)] − ln(𝑁 −𝑚 + 1) (2.10)

Notice that, now, we consider 𝜑 as a value related to the mean counting. Conse-

quently, from equation 2.3:

𝐴𝑝𝐸𝑛(𝑚,𝑟) ∼= 𝜑𝑚(𝑟) − 𝜑𝑚+1(𝑟) (2.11)

Replacing equation 2.10 in 2.11 results in an ApEn value related to the mean counts

in each window:

𝐴𝑝𝐸𝑛(𝑚,𝑟) = ln

[︂
𝑋(𝑚) · (𝑁 −𝑚)

𝑋(𝑚 + 1) · (𝑁 −𝑚 + 1)

]︂
(2.12)

Let us call this the expected ApEn value. If 𝑁 → ∞ is considered, then:

𝐴𝑝𝐸𝑛(𝑚,𝑟) = ln

[︂
𝑋(𝑚)

𝑋(𝑚 + 1)

]︂
(2.13)

It is clear now that the expected ApEn depends on how 𝑋(𝑚) increases in proportion

to 𝑋(𝑚+ 1). It is not possible to define the rule of such relation, but it is known that it

must respect the following conditions: 𝑟 = 0 → 𝑋(𝑚,0) = 1 and 𝑟 = 1 → 𝑋(𝑚,1) = 𝑁

(since 𝑁 → ∞ and 𝑟 is normalized). Nevertheless, in this framework, even an arbitrary
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rule may still give valuable information about the behavior of the curve ApEn versus

tolerance.

Consider the following formulation that obeys the above conditions and is able to

reproduce the curves in Figure 2.2:

𝑋(𝑚,𝑟) = 1 + (𝑁 − 1) · 𝑟𝑞(𝑚) (2.14)

With this rule, it is possible to observe that if 𝑞(𝑚) possess a linear behavior (i.e.,

𝑞(𝑚) = 𝑎 + 𝑏𝑚), ApEn(𝑚 = 1) encompasses the ApEn for all other windows sizes (see

Figure 2.3). Furthermore, the only situation in which an area(𝑚 = 2)ApEn is higher

than an area(𝑚 = 1)ApEn is when 𝑞(3)
𝑞(2) ≫

𝑞(2)
𝑞(1) .

Figure 2.3: Expected ApEn as a function of tolerance (equation 2.14). Solid lines: 𝑚 = 1;
dashed lines: 𝑚 = 2. (A) Factor 𝑞(1) = 1; 𝑞(2) = 2; 𝑞(3) = 3. (B) Factor 𝑞(1) = 0.25;
𝑞(2) = 1.5; 𝑞(3) = 3. The insets contain real ApEn values for white noise (in A) and
a sine wave (in B). Notice the resemblance of the expected curves and the real ones.
Expected values computed for 𝑁 = 200.

Generally, this last situation is not expected since for each inclusion of a new di-

mension in the state-space (i.e., 𝑚, 𝑚 + 1, 𝑚 + 2 . . . ) almost never there would be an

increase in the number of counts for a suitable window size 𝑚 ≪ 𝑁 and for non straight

lines series. This is particularly accurate for less organized time-series, given that the

probability of increasing the number of counts remains the same with the addition of a

new dimension.

Therefore, the area under the curve of ApEn versus tolerance 𝑟 for an 𝑚 = 1 is
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appropriate, remaining then no subjectivity in the parameters’ choice.

2.3 Analysis

a1ApEn, ApEn, pApEn and vApEn were obtained through a set of implemented scripts in

the Matlab suite (MATLAB version 7.10.0.499 Natick, Massachusetts, USA: The Math-

Works Inc.). ApEn was calculated for a window size 𝑚 = 2 and tolerance 𝑟 = 0.15.

Unless stated otherwise, pApEn and a1ApEn were calculated for window size 𝑚 = 1.

Sample’s variances between moving ApEn, moving a1ApEn and moving pApEn of

180 points in data sets of 360 points were compared using a F-test. This was performed

for the following 19 time-series: one sine A (parameters: amplitude (𝐴) = 1, angular

frequency (𝜔) = 0.025); one sine B (parameters: 𝐴 = 1, 𝜔 = 0.1); sum of two sine

waves A (parameters: 𝐴 = 0.2, 𝜔 = 0.025 and 𝐴 = 1, 𝜔 = 0.1); sum of two sine

waves B (parameters: 𝐴 = 0.1, 𝜔 = 0.025 and 𝐴 = 1, 𝜔 = 0.1); sum of two sine

waves C (parameters: 𝐴 = 1, 𝜔 = 0.025 and 𝐴 = 0.2, 𝜔 = 0.1); sum of four sine

waves (parameters: 𝐴 = 1, 𝜔 = 0.025; 𝐴 = 1, 𝜔 = 0.1; 𝐴 = 1, 𝜔 = 0.051 and 𝐴 = 1,

𝜔 = 0.078); autoregressive model A (AR A, second order, parameters: 0.1, 0.499);

autoregressive model B (AR B, first order, parameters: 0.4499); moving average A

(MA A, fifth order, parameters: 0.4, 0.2, 0.1, 0.1, 0.5); moving average B (MA B, fifth

order, parameters: 0.1, 0.7, 0.9, 0.4, 0.2); tent map A (TM A, parameters: 0.2, 0.4);

tent map B (TM B, parameters: 0.6, 0.1); tent map C (TM B, parameters: 0.041,

0.9); logistic map A (LM A, parameter: 3.6); logistic map B (LM B, parameter: 3.7);

normally distributed random numbers A (n.d.r.n A); normally distributed ran-

dom numbers B (n.d.r.n B); uniformly distributed random numbers A (u.d.r.n.

A); uniformly distributed random numbers B (u.d.r.n. B).

The data sets where inconsistencies were found utilizing a moving pApEn (i.e. 4 sines

x TM A, AR A x AR B and 1 sine x LM B, Table 2.1) were compared with a moving
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a1ApEn, where shifting sub-vectors of size 𝑛 = 210, 240, 270, 300 were analyzed over a

data set of size 𝑛 · 2. The comparisons between each pair of time-series were performed

with a Student’s t-test.

Computational time differences between ApEn, vApEn and a1ApEn were compared

analyzing normally distributed random numbers (n.d.r.n. A) for different vector sizes

(𝑛 = 90, 120, 150,. . . , 300) over 100 samples. The means between a1ApEn and the other

two tools were compared using a using a paired Student’s t-test.

2.4 Results

2.4.1 Positional sensitivity

The issue of positional sensitivity is still present in the a1ApEn, however the variance

of the different samples of a moving sub-vector is significantly lower (all 𝑝 < 0.01) than

the ones obtained using pApEn for all the 19 data sets analyzed. Regarding the ApEn,

the variance of a1ApEn was significantly lower in 18 cases (all 𝑝 < 0.01, Figure 2.4 A),

the exception being the tent map C. Due to its bimodal composition (Figure 2.4 B), this

time-series is poorly characterized for 𝑟 = 0.15 (Figure 2.4 C), resulting in an equally

small value of ApEn for all sub-vectors sampled ( 1.56·10−5) and, therefore, zero variance.

Hence, this exception reinforces the benefits of the area approach.

2.4.2 pApEn inconsistencies

Utilizing the area ApEn to reanalyze the data sets from Table 2.1 it is possible to observe

that those inconsistencies are no longer a problem (Table 2.2). More specifically, tent

map A has a higher complexity than the sum 2 sine waves for both 𝑚 (Table 2.2 A); for

all vector sizes analyzed, autoregressive A possess a higher a1ApEn than autoregressive B

(Table 2.2 B) and, finally, one sine is, as expected, more organized than the logistic map

B (Table 2.2 C). It is important to point out that these results utilize different values of
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Figure 2.4: Comparison, with a detailed exception, of the variance of 19 data-sets with
ApEn and a1ApEn. (A) Variance of 19 different time-series, described in section 2.3,
from a moving ApEn and a moving a1ApEn of 180 points over a original data set of 360
points. Notice that the variance of a1ApEn is smaller for all time series but tent map C
(B) Tent map C (parameters 0.041, 0.9) as a function of a time x. (C) ApEn of tent map
C (shown in (B)) for window size 𝑚 = 2 for all possible normalized tolerances 𝑟, notice
that the typically utilized 𝑟 (0.15, the vertical line) does not properly cover informative
values of ApEn.
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𝑚 for comparative purposes, however all consistencies pointed out are also detected for

𝑚=1 (i.e., a1ApEn).

Table 2.2: a1ApEn results for the time-series generated in machina. (A) The vector con-
sisting of four added sine waves is more organized than the tent map A independently of
the window size. (B) Auto regressive A is significantly more complex than autoregres-
sive B for all vector sizes. (C) One sine possess a lower complexity than a logistic map
(parameter= 3.7). Check Table 2.1 legend for further details of the data sets.

A
Size 𝑚 4 sine waves Tent map A

210 1 0.041 ± 0.009 0.136 ± 0.004*
210 3 0.030 ± 0.007 0.132 ± 0.004*

B
Size 𝑚 Autoregressive A Autoregressive B

210 2 0.249 ± 0.009* 0.233 ± 0.004
240 2 0.254 ± 0.010* 0.236 ± 0.005
270 2 0.254 ± 0.012* 0.238 ± 0.006
300 2 0.250 ± 0.011* 0.241 ± 0.007

C
Size 𝑚 1 sine B Logistic map B

210 1 0.080 ± 0.001 0.242 ± 0.002*
240 1 0.080 ± 0.001 0.242 ± 0.002*
270 1 0.081 ± 0.001 0.243 ± 0.001*

* Significantly higher: 𝑃 < 0.01.

2.4.3 Computational time

The a1ApEn analysis is significantly slower than the ApEn (𝑝 = 0.023) but, in a more

drastic manner, significantly faster than vApEn (𝑝 = 0.014); a pattern more prominent

when analyzing larger vectors (Figure 2.5).
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Figure 2.5: Computational time of ApEn, a1ApEn and vApEn for different vector sizes.
Mean time (points) and standard deviation (error bars) of 100 analysis of ApEn, a1ApEn
and vApEn for each vector size (90, 120, 150, 180, 210, 240, 270 and 300).

2.5 Discussion

The present work proposes a tool that considers the area beneath the curve of ApEn ver-

sus the tolerance 𝑟 given a 𝑚 = 1 (hence, a1ApEn) to characterize temporal organization.

This is not the first attempt to improve ApEn, as observed by the already cited sampEn,

pApEn and vApEn. However, a1ApEn corrects some problems that arise in those tools.

Our simulations show that a1Apen is a robust, consistent tool with an appropriate com-

putational time even for large vectors. Therefore, it is possible to conclude that a1ApEn

is an adequate approach to characterize temporal organization of time-series without the

problems suffered by pApEn and vApEn.
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Chapter 3

Evaluation of Heart Rate Control

Estimators in Running

Abstract

There is not an isolated marker capable of diagnose the level of training of athletes in

general and runners, in particular. The study of instantaneous heart rate frequency

changes (i.e., beat-to-beat changes) as an estimator of cardiac control, obtained through

heart rate variability (HRV) and heart rate complexity (HRC), may contribute to this

scenario. However, there are known issues. Previous studies using these approaches

provided contradictory results and, in addition, the typical tools for HRC analysis suffer

from consistency problems. Moreover, there is a problem regarding the diversity of

protocols in the literature, which typically merge different and even unaccounted effects

in the same experiment, and consequently obscure the physiologic interpretation. The

present study intends to overcome these drawbacks by assessing HRC (estimated by

a1ApEn, an analytical tool of proved consistency) and HRV for 15 subjects in three

different protocols of speeds (constant, increasing and decreasing) as a function of the

three parametric variables: duration of experiment, speed and heart rate (for a more
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physiological relationship). Our results show that, for all protocols, there is a positive

correlation between HRC/HRC and all parametric variables. This correlation is more

prominent in the protocol with increasing speeds, and more specifically for the correlation

with heart rate, an empirical finding seldom accounted for in the literature. Finally, in

this situation, the correlation was disrupted for poorly trained subjects. We conclude

that this positive relationship occurs basically in high intensity activities, and this seems

to be the main source of the contradictory results cited above. Also, the results suggest

that this phenomenon is associated with a reserve of non-neural cardiac adjustments,

which sedentary people do not possess.

3.1 Introduction

The study of the physiological aspects of running is important not only due to the increas-

ing popularity of this activity but also for its role in maintaining health. There is not,

however, an isolated marker capable of diagnose training problems and/or overtraining

(Armstrong & VanHeest, 2002; Smith et al., 2011). Furthermore, typical markers, such

as heart rate, are not able to discriminate the level of training in long distance runners

(Borresen & Lambert, 2008; Lambert et al., 1998).

The study of heart rate (HR) changes (i.e. beat-to-beat variation), as a result of the

balance between sympathetic and parasympathetic excitation of the heart, emerges as an

interesting tool to investigate this scenario. Variability between heart beats is considered

to be an estimator of cardiac control (Billman, 2009) and currently is commonly obtained

through frequency domain indexes (heart rate variability, HRV) and nonlinear methods

(heart rate complexity, HRC). In both approaches, a low value of the estimator, during

rest, is associated with health problems such as, for HRC, paroxysmal atrial fibrillation

(Shin et al., 2006), neonatal sepsis (Lake et al., 2002), presence of endotoxins (Rassias

et al., 2005), mortality after myocardial infarction (Stein et al., 2005) and, for HRV,



Chapter 3. Evaluation of Heart Rate Control Estimators in Running 50

diabetic neuropathy, heart transplant and myocardial infarction (Task Force, 1996).

Nevertheless, the acute effect of exercise in instantaneous heart rate changes is still

obscure. There are some controversies regarding the association of HRV and the two

facets of the cardiac autonomic control (Eckberg, 1997; Malik, 1998; Parati et al., 2006)

suggesting that the physiology is not well understood under this approach (Eckberg,

1997). This is particularly important considering that HRV measured during exercise has

provided contradictory results (Perini & Veicsteinas, 2003; Tulppo et al., 1998; Aubert

et al., 2003; Sandercock & Brodie, 2006).

In this context, HRC obtained through nonlinear analysis appears as an interesting

alternative to investigate this process since nonlinear phenomena are present at the very

genesis of cardiac control (Task Force, 1996; Jafarnia-Dabanloo et al., 2007). Among the

alternatives, it is possible to highlight Approximate Entropy (ApEn - Pincus (1991), a

nonlinear method employed to quantify the degree of order in time-series. To achieve this

goal, it counts the number of equal events in a sub-vector 𝑖 of size 𝑚 along the original

vector, given a tolerance 𝑟.

ApEn is capable of achieving its goals in many cases (conf. Chapter 2); however, the

effect of exercise in HRC measured through this tool, and other similar, is unclear as well.

Lewis & Short (2007) showed that HRC increased with the onset of physical activity and

then continually decreased, whereas Tulppo et al. (1996) obtained a decrease at the start

followed by an increase. Finally, Boettger et al. (2010) founded HRC to be not suitable

to quantify autonomic cardiac control during higher exercise intensities. Nevertheless,

two regards must be put forward about this approach. Firstly, the number of studies that

utilize ApEn, and other nonlinear tools, to characterize HRC is considerably smaller than

the ones employing frequency domain methods, hence, additional data are still necessary

to test the above mentioned patterns. Second, ApEn has consistency problems by itself

(Santos et al., 2009) and the attempts to improve this tool, such as SampEm (Richman

& Moorman, 2000), maximum ApEn (Lu et al., 2008) and vApEn (Santos et al., 2009),
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also suffers some drawbacks (Chapter 2). There is an alternative, the area beneath the

curve of ApEn versus the tolerance 𝑟 given an 𝑚 = 1 (a1ApEn, Chapter 2), that corrects

the problems that arose in those methodologies but it has not yet been applied to the

study of beat-to-beat changes. Still, a1ApEn has the potential of shedding some light in

the relationship between HRC and exercise.

In addition to the specific setbacks from each tool, there are problems shared by the

frequency domain and nonlinear analyses. It is known that the diversity in protocols

(analytical and experimental) impairs a better understanding of HR control in exercise

(Aubert et al., 2003; Perini & Veicsteinas, 2003; Sandercock & Brodie, 2006) and in

other situations (Task Force, 1996). One example of this methodological diversity is the

protocol of speeds utilized. While some studies analyzed the instantaneous HR changes

in a constant moderate speed protocol (walking or 50% maximum workload - Dixon

et al. (1992); Tulppo et al. (2001); Yoshino et al. (2004)), others employed plateaus of

increasing intensity (e.g., Arai et al., 1989; Lewis & Short, 2007; Tulppo et al., 1996, 1998;

Casadei et al., 1995; Boettger et al., 2010) making, due to the diversity of approaches,

even more difficult to compare the results. Moreover, with the exception of the works of

Yoshino et al. (2004) and Tulppo et al. (2001), where the subjects walked on treadmills,

all the above cited experiments were performed in cycle ergometers. While this apparatus

provides a good control of experimental conditions as well as facilitating data acquisition,

it deviates from understanding the effect of running in HRV and HRC. In this matter,

Cottin et al. (2007) assessed the ventilatory threshold through HRV and obtained an

increase in parasympathetic activity in faster speeds. However, this was performed in a

particular experimental group (professional football players) in a 200 meters track with

heart rate monitors (instead of the more accurate electrocardiogram). Therefore, it is

interesting to test the generality of these results in a more controlled environment.

Finally, in the line of protocol improvements, the procedure utilizing increasing inten-

sities (which is the most employed) brings an extra interpretative drawback, namely the
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experimental arrangement does not allow one to distinguish the effect of different speeds

from the effect of the time of experiment itself (associated with weariness). There are

two options to mitigate this setback. One requires multiple protocols to cover both ef-

fects separately while the other utilizes a third variable to parameterize the beat-to-beat

control. Even though the former was taken into consideration in our study, the latter

deserves further attention, as we explain next.

Heart rate emerges as a parameter variable of potential interest because, not sur-

prisingly, it ties the effect of time and speed (i.e., both variables lead to an increase in

metabolism mediated through HR). Moreover, it is interesting and important to note

that heart rate is also a link between the studied metabolic changes associated with ex-

ercise and the system responsible for its control (estimated through HRV and HRC). The

relationship between HR control and HR was already explored during resting conditions

(Platisa & Gal, 2006b; Migliaro et al., 2001; Tsuji et al., 1996) and further studies showed

that the absence of this connection is associated with cardiovascular illness (Platisa &

Gal, 2006a). Similarly, previous experiments in our laboratory, with 5 subjects running

on a treadmill, obtained a positive HRV/HRC x HR relationship in normal conditions,

whereas deviations were associated with a lower fitness level. However, proper experi-

mentation still was necessary to test this pattern.

To clarify all these issues, our experiment measured HRC, estimated through a1ApEn,

and HRV for 15 individuals running in treadmills in three protocols: constant speed,

increasing speeds and decreasing speeds. The subjects took part in all three protocols.

In all cases, the relationship between these variables and the time of the experiment or

HR were analyzed. We hypothesize that HRV and HRC will be positively correlated to

HR in all three protocols, and in all subjects except in those poorly trained ones.
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3.2 Material and Methods

The experiments were conducted in 15 healthy male voluntaries (mean age: 29 years,

range 20− 35; mean body mass index: 23.86, range 19.58− 32.95) with different degrees

of fitness, from completely sedentary (no weekly exercise, one subject) to highly trained

amateurs (ironman and ultra marathons finishers, three subjects). All subjects were

instructed to be hydrated and not drink coffee and alcohol in the day of the experiment

and to avoid extreme physical activity in the day before. The experiments were conducted

at the Biosciences Institute of the University of São Paulo and the experimental protocol

was approved by the local ethics committee (Comissão de Ética no Uso de Animais-

Instituto de Biociências (CEUA-IB)). All electrocardiogram (ECG) data were collected

at ambient temperatures of 21 − 24 ∘C and always at the same preferential time of the

day for physical activity for each individual.

During the first part of the experiment, ECG data were recorded for 5 minutes dur-

ing rest, and afterwards each participant had its preferential speed (𝑢) estimated. Then,

the experimental procedures described below were executed, one in each day in a ran-

domized order. Each session consisted in a warm-up of 5 minutes at 0.9𝑢, followed by

ECG recording during 25 minutes of running in the following protocols: constant speed

(𝑢), increasing speeds (0.8𝑢, 0.9𝑢, 𝑢, 1.1𝑢, 1.2𝑢; during 5 minutes at each speed) and

decreasing speeds (1.2𝑢, 1.1𝑢, 𝑢, 0.9𝑢, 0.8𝑢, during 5 minutes at each speed). Data from

one individual at constant speed were discarded due to signal noise.

ECG data were acquired by means of three superficial electrodes (Unilect Electrodes,

Maersk Medical LTD, Copenhagen, Denmark) in the CM5 configuration. ECG was

recorded and digitalized using a sampling rate of 1000𝐻𝑧 by a MP30 interface and the

Biopac Student Lab Pro software (Biopac Systems Inc., Goleta, CA, USA). The following

procedures are exemplified in Figure 1. From the raw data obtained (Figure 3.1 A), R-R

intervals (period between two consecutive R waves in an ECG) were extracted (Figure
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3.1 B). For the exercise segment, the intervals obtained were separated in five blocks,

each one representing five minutes of experiment (associated with different speeds in the

"increasing" or "decreasing" protocols). In each block, the first 2 minutes of data were

discarded to avoid non stationary behavior resulting from the transition between speeds.

From each block (and for the resting data), excerpts of 300 uninterrupted points were

taken for analysis (Figure 3.1 C). To obtain a more clear temporal relationship and to

increase the robustness of the analysis (as discussed for complexity analysis in Chapter

2), all procedures were performed in a moving window of 256 points along the original

300 vectors, resulting in 44 values of HRC (Figure 3.1 D), HRV (Figure 3.1 E-F) and

mean HR for each block.

For each segment of the moving window, the mean HR was obtained. To obtain heart

rate variability, a fast Fourier transform was carried out in the vector of R-R intervals.

The obtained spectral components were separated in ≤ 0.04𝐻𝑧 for very low frequencies

range, 0.04 − 0.15𝐻𝑧 for low frequencies range (LF, related to both sympathetic and

parasympathetic activity) and 0.15 − 0.4𝐻𝑧 for high frequencies range (HF, associated

with the parasympathetic activity) (Task Force, 1996). Variability was estimated via the

normalized HF (nuHF, in the present study calculated by 𝑛𝑢𝐻𝐹 = 𝐻𝐹
(𝑉 𝐿𝐹+𝐿𝐹+𝐻𝐹 )) and

the ratio between HF and LF (from now on simply referred as to "ratio"). Heart rate

complexity was obtained by means of a1ApEn (Chapter 2). Notice that we chose to ex-

press the ratio as 𝐻𝐹
𝐿𝐹 , instead of the typical 𝐿𝐹

𝐻𝐹 (Task Force, 1996), so a higher value of all

three estimators studied was related to a higher level heart rate variability/complexity.

Both R-R extraction and subsequent analysis were performed through a set of imple-

mented scripts in Matlab (MATLAB version 7.10.0.499 Natick, Massachusetts, USA:

The MathWorks Inc.).
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Figure 3.1: Example of the methodological proceedings performed for one subject run-
ning in the protocol with increasing speeds. (A) Electrocardiogram record. (B) Period
between two consecutive R waves in the ECG (R-R intervals – seconds) versus the sam-
ple number (i.e. order) of the R-R intervals. (C) R-R intervals divided in 5 blocks (one
for each speed) of 300 points, which were utilized for analysis. (D) Heart rate complex-
ity, estimated through a1ApEn. (E) Normalized high frequency component of the heart
rate variability spectral analysis. (F) Ratio between high frequency and low frequency
components of the heart rate variability spectral analysis. Heart rate variability and
complexity were calculated for a moving window of 256 points (44 ordered samples) for
each of the 5 blocks; see text for more details. In panels (C) to (F), the different shades
of grey are related to speeds, the darker the slower.
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3.2.1 Statistical Analysis

HRC, nuHF and ratio were compared between rest and the first five minutes of exercise

using Student’s t-test and differences were considered significant for 𝑝 ≤ 0.05. To test

the relationship between each estimator and the moment of experiment (sample ordering

as a representative of time), a linear regression was performed. The same procedure

was executed for the estimators versus mean HR. The relationships were considered

significant if the confidence interval did not cross zero (𝐶.𝐼. = 95%). All statistical

tests were performed using Matlab built in scripts. Figures were produced in the R

environment (R Core Team, 2013).

3.3 Results

3.3.1 Exercise versus Rest

The HRC, measured through a1ApEn, and the nuHF component of the HRV were signif-

icantly lower during exercise for all 15 subjects (all 𝑝 < 0.001). On the other hand, the

HRV ratio was significantly higher at rest for 8 individuals whereas it was significantly

higher during exercise for the remaining 7 (all 𝑝 < 0.001).

3.3.2 HRV and HRC as a Function of Speed and the Time of Exercise

The results, summarized in Table 3.1, show that it is neither possible to associate

HRV/HRC only to speed (since these variables change even during the constant speed

protocol) nor to duration of the exercise (given that different patterns are obtained in

the protocols with increasing and decreasing speeds).

Even though speed and time do not independently explain the changes in HRC/HRV,

they, however, appear to contribute to them. This may observed by the predominantly

positive relationship found in the constant protocol (i.e., HRV/HRC increase with time

of experiment) and the predominantly negative relationship obtained with decreasing
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Table 3.1: Slopes of linear regressions between heart rate complexity (HRC) and heart
rate variability (HRV) as a function of time for the 3 speed regimes used in this study.
The cells contain for the 15 subjects (14 in the protocol with constant speed) the number
of events in which the slope of the linear regression of HRV and HRC as a function of time
was positive and significantly different from zero, negative and significantly different from
zero and non significantly different from zero. HRV was estimated utilizing the spectral
components of the fast Fourier transform (normalized high frequency, nuHF, and the
ratio between high and low frequencies) and HRC was estimated employing a1ApEn.

Speed Qualitative behavior of the slope of the linear
regression as a function of time

Constant Positive Negative Not different from 0
a1ApEn 7 3 4
nuHF 9 1 4
Ratio 8 2 4

Increasing Positive Negative Not different from 0
a1ApEn 13 2 0
nuHF 11 2 2
Ratio 12 2 1

Decreasing Positive Negative Not different from 0
a1ApEn 3 8 4
nuHF 7 6 2
Ratio 6 7 2
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speeds (i.e., HRV/HRC decreases with lower speeds). Finally, the regime with increasing

speeds appears to combine these two effects (i.e., time and speed), given the observation

that the positive relationship is more frequent than in the other protocols tested.

3.3.3 HRV and HRC as a Function of Heart Rate

The results are summarized in Table 3.2. Differently from what was observed in the

previous section, the relationship obtained for a1ApEn, nuHF and HF/LF ratio is pre-

dominantly positive regardless of the protocol utilized (an example of the positive slope

obtained is found in Figure 3.2 B). Once again this pattern is more conspicuous with

increasing speeds (exemplified for a1ApEn in Figure 3.2).

Table 3.2: Slopes of linear regressions between heart rate complexity (HRC) and heart
rate variability (HRV) as a function of heart rate (HR) for the 3 speed regimes used
in this study. The cells contain for the 15 subjects (14 in the protocol with constant
speed) the number of events in which the slope of the linear regression of HRV and
HRC as a function of HR were positive and significantly different from zero, negative
and significantly different from zero and non significantly different from zero. HRV was
estimated utilizing the spectral components of the fast Fourier transform (normalized
high frequency, nuHF, and the ratio between high and low frequencies) and HRC was
estimated employing a1ApEn.

Speed Qualitative behavior of the slope of the linear
regression as a function of heart rate

Constant Positive Negative Not different from 0
a1ApEn 9 3 2
nuHF 8 3 3
Ratio 8 4 2

Increasing Positive Negative Not different from 0
a1ApEn 13 2 0
nuHF 11 2 2
Ratio 12 3 0

Decreasing Positive Negative Not different from 0
a1ApEn 9 3 3
nuHF 8 6 1
Ratio 7 5 3
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Figure 3.2: Heart rate (HR) and heart rate complexity (HRC) in increasing speeds for
one subject. (A) HRC, estimated through a1ApEn, and mean heart rate (in beats per
minute) calculated for a moving window of 256 points (ordered samples) in a subject
running in increasing speeds. (B) For the same dataset, the linear regression of HRC as
a function of heart rate. The obtained equation and the coefficient of determination 𝑟2

are present in the Figure.
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3.3.4 Relationship with Sedentary

Among the three protocols, only the one with increasing speeds was able to discriminate

the level of training of the subjects. This is particularly true for a1ApEn: there are two

subjects in which we observe a negative correlation between HRC and HR (see Table

3.2); one of them is the completely sedentary individual whereas the other is relatively

sedentary (some exercise but without regularity) and this subject also shows the highest

body mass index (𝐵𝑀𝐼 = 32.95) among our sample. HRV, measured through nuHF

and ratio, does not completely discriminate the training level of the subjects since it

included these two sedentary individuals as well as non-sedentary ones in the group with

non-positive correlation.

3.4 Discussion

The experiments were conducted to investigate the effect of running on heart rate changes.

For short, our results show that the onset of exercise is associated with a decrease in

nuHF and a1ApEn, but with an inconsistent pattern in HRV ratio analysis. During

exercise, HRV/HRC appear to have a positive correlation with the duration (time) and

the speed of running. These independent variables are combined in the protocol with

increasing speeds, where the positive correlation is even more prominent. Moreover, it

is possible to interpret these changes through the increase in HR they generate. Finally,

it was observed that, in the protocol with increasing speeds, deviation from this positive

pattern was found in poorly trained individuals.

3.4.1 Exercise versus Rest

Running led to a decrease in HRV measured through nuHF and in HRC. The nuHF

decrease was expected since there is an withdraw of parasympathetic activity during

exercise, resulting in a higher HR (Aubert et al., 2003; Perini & Veicsteinas, 2003; Arai
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et al., 1989; Boettger et al., 2010; Tulppo et al., 1996). Given that HRC does not

possess a theoretical direct relationship with any branch of the autonomous nervous

system (Tulppo et al., 1996), its interpretation is not as straightforward as HRV in such

a realm. HRC tends to decrease as a result of cardiovascular perturbations (conf. section

3.1); therefore, our results suggest that the beginning of exercise may be considered as a

disturbance in basal heart rate control, i.e., changes associated with acute effects.

To compare our HRC results with others is not a straightforward task. This is because

of the small number of previous studies, different protocols and different types of analyses.

Tulppo et al. (1996) and Lewis & Short (2007) obtained in similar experiments, using

a cycle ergometer, patterns different from each other. These rest x exercise differences

may be associated with the choice of the nonlinear tool of analysis, since the former

utilized ApEn whereas the latter employed SampEn. Additionally, Lewis & Short (2007)

concluded that SampEn is a worse discriminator of resting and exercise conditions than

linear tools. In another experiment where subjects walked on a treadmill and data

were analyzed with ApEn, Tulppo et al. (2001) obtained a higher HRC during exercise.

However, the authors analyzed the last 500 R-R intervals from a 30 minutes experiment,

a time when the subjects have higher and increasing HRC as presently shown.

The analysis of HRV ratio produced inconsistent results. This ratio is considered to

be associated with sympathovagal balance (Task Force, 1996; Goldberger, 1999). How-

ever, there are known problems in linking the LF and HF power with the sympathetic

and the parasympathetic nervous systems, respectively (Eckberg, 1997), and even sup-

porters of the HRV analysis consider the LF component to be associated with both the

sympathetic and parasympathetic nervous systems, limiting the interpretation of the

ratio (Task Force, 1996). In exercise, the ratio is considered not adequate to estimate

sympathovagal balance (Goldberger, 1999; Perini & Veicsteinas, 2003). Therefore, in the

following sections we will focus on the nuHF component of HRV.
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3.4.2 Difference Between Protocols

The results regarding the relationship between HRV/HRC and HR/time of experiment

demonstrate that the increasing speeds protocol produced more consistent results. In this

protocol, the cumulative effect of speed and duration of exercise showed that, as expected

(see below), HR is an important determiner of HRV/HRC. Moreover, regarding the effect

of HR, the presence of inconsistencies in the protocol of decreasing and constant speeds

suggests that unaccounted effects may still be influencing these regimes. One parameter

that could possibly explain these differences is the preferential speed. Considering that

there is some subjectivity in its choice, an inadequacy between the speed and the cardio-

vascular physiology of a subject may lead to discrepant results. This is particularly true

for the constant protocol, where the beat-to-beat changes could be too low or too high,

and for the protocol with decreasing speeds, where the beginning of the experiment is at

the highest speed. This could result in different cardiovascular responses depending on

the subject’s relationship to this particular speed which may, as a consequence, disrupt

the among subjects homogeneity of the protocol.

More studies are necessary to understand what do exactly influence these protocols,

but, nevertheless, the regime with increasing speeds seems to overcome such problems.

This in turn suggests that the heart rate control is able to deal more regularly with

steady increases in the metabolic rate. This is, indeed, the most utilized protocol (see

section 3.1) and our data attest this to be the most appropriate one.

3.4.3 HRV/HRC as a Function of Heart Rate

Considering that the results and the discussion regarding the more consistent relationship

between HRV/HRC and heart rate may be easily extrapolated to the relationship between

HRV/HRC and time of experiment, this and the following sections will focus on the heart

rate.

The tight relationship between HRV/HRC and HR should be no mystery since in
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exercise the cardiac control is constantly adjusted to the metabolic changes deriving from

the mechanical output variation. Even if not explicitly, such a relationship is present in

studies measuring heart rate control for different oxygen consumption levels (e.g., Tulppo

et al., 1996; Perini et al., 1990), and also as an indicator of the intensity of exercise (Lewis

& Short, 2007).

During rest, Platisa & Gal (2006b) obtained a quadratic relationship between these

variables (i.e., 𝐻𝑅𝑉 ≈ 𝐻𝑅2). On the other hand, Migliaro et al. (2001) e Tsuji et al.

(1996) obtained, similarly to the present study, a linear relationship. This difference may

be associated with the data acquisition, given that Platisa & Gal (2006b) utilized 24

hour ECG Holter monitoring (and therefore different ranges of HR) whereas the other

studies, including ours, acquired the ECG during shorter controlled periods of time.

Finally, the above cited authors obtained a lower HRV/HRC at higher HR. Consid-

ering the paradigm of nuHF as a representation of the parasympathetic activity such a

result shows that, as expected at rest, this facet of the autonomous nervous system is

associated with lower heart rates.

3.4.4 HRV/HRC in Running

Contrary to what was described in the last section for rest, the results of our experiments

showed a positive relationship between the HRV/HRC and heart rate. For nuHF-HRV,

this kind of relationship was also obtained in some studies (e.g., Perini & Veicsteinas,

2003; Casadei et al., 1995), although others show the opposite (e.g., Tulppo et al., 1996;

Brenner et al., 1997; Tulppo et al., 1998; Arai et al., 1989; Aubert et al., 2003). As dis-

cussed in section 3.4.2, it is possible that this difference in the results might be associated

with the intensity at the onset of exercise. Even though all subjects reached exhaustion,

Tulppo et al. (1996) and Tulppo et al. (1998) started the cycling experiment at 50𝑊

and 25𝑊 , respectively, whereas Casadei et al. (1995) started at 100𝑊 . Another possi-

bility is that the positive relationship between HRV and HR is associated with a higher
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total power output of the exercise since it is suggested that the relationship between

nuHF and the parasympathetic system holds true only for low intensities (Sandercock

& Brodie, 2006). For instance, Brenner et al. (1997) obtained a negative relationship in

experiments performed at 50%�̇� 𝑂2max whereas Perini et al. (1998) and Perini & Veic-

steinas (2003) only obtained an increase in nuHF when the �̇� 𝑂2max was higher than

60% and 70%, respectively. Moreover, with regards to running experiments, Cottin et al.

(2007) obtained a positive relationship between nuHF and speed, but only beyond the

first anaerobic threshold.

Once again, due to the similarity of protocols of Tulppo et al. (1996) and Lewis &

Short (2007), the obtained increase and the obtained decrease, respectively, of heart rate

complexity at high intensities are not easily associated with differences in the experi-

mental design, hence, they could be related to the analytical tool (ApEn x SampEn).

In addition, further comparisons, regarding HRV and HRC, are problematic since there

exists a great variety of protocols, many of which are poorly described. Also, most of the

works cited above were executed in cycle ergometers.

Despite all these relevant considerations, it is possible to affirm that running consti-

tutes a high intensity activity in which there is an increase in the heart rate variability

and heart rate complexity with higher heart rates unrelated with the expected changes

in the sympathovagal balance. A plausible explanation is that at higher magnitudes of

exercise the non-neural components (e.g., changes in the mechanical cardiac axis, atrial

transmural pressure associated with intratoraxic pressure and venous return - Casadei

et al. (1996); Bernardi et al. (1990)) of heart rate adjustments becomes significant and,

therefore, the parasympathetic component of HRV becomes less detectable (Sandercock

& Brodie, 2006) or even less relevant. Casadei et al. (1996), for example, compared the

non-neural contribution in HF power during mild exercise and obtained a 32% increase

(range from 17% to 75%) in comparison to rest and, furthermore, they suggested that

these non-neural components could explain the behavior of LF and HF during severe
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exercise. In addition, Bernardi et al. (1990) compared HRV between normal and heart

transplanted subjects and concluded that a non-autonomic mechanism is superimposed

on the autonomic modulation of heart rate during peak exercise.

Therefore, considering that the conditions attained by the subjects in the present

study are importantly related to non-neural components of cardiac control, our experi-

ments show that HRV and a1ApEn-HRC are able to identify the same patterns at dif-

ferent levels of physiological activity. Moreover, the detected increase in cardiac control,

despite its decrease at the onset of exercise, advocates toward a reserve of non-neural con-

trol to which the cardiovascular system may resort in situations with a higher metabolic

demand.

3.4.5 Sedentary versus Trained

An important and interesting result of our study is the possibility to discriminate between

different fitness degrees utilizing the relationship between heart rate control and HR via

a1ApEn. A similar result was obtained by Perini & Veicsteinas (2003). The authors

gathered data from different studies and observed that professional cyclists possessed

a higher tendency to increase the HF component at elevated �̇� 𝑂2max. This pattern

corroborates our suggestion the existence of a non-neural reserve, which is utilized at

high effort intensities. Apparently, sedentary individuals fail to have such a reserve and

therefore suffer from an impaired cardiac control at higher metabolic demands.

Regarding the individual with a higher BMI, Rennie et al. (2003) observed that

trained men in such conditions (𝐵𝑀𝐼 > 25𝑘𝑔
𝑚2 ) possessed HRV levels similar to normal-

weight sedentary man. Therefore, it is possible to infer that our experimental subject

with a high body mass might not have, likewise, the above mentioned non-neural reserve.

A limitation of our experiment is that the subjects were not separated in clear cate-

gorical groups (i.e., sedentary versus trained). Therefore, apart from the clear extreme

conditions described in the Material and Methods, many individuals could be classified
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in the midrange fitness level, obscuring the depth of our results.

Hence, further experiments are necessary to ensure the comprehensiveness of our

study. For the same reason, even though the pattern discussed above was not as consistent

in HRV measurements as it is in HRC, it is not possible to discard frequency domains

analyses for detecting such a pattern without more tests.

3.5 Conclusion

The present study has shown that both heart rate complexity and heart rate variability

varies positively with heart rate and that the protocol with increasing speeds is more

suited to detect such a relationship. Furthermore, we observed that a deviation from this

pattern is associated with a poor fitness degree. Finally, we may suggest that previous

contradictory results were due to diversity of methodologies (particularly regarding the

intensity of exercise) and inconsistencies in the analytical tools of choice (especially with

the nonlinear tools).
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Chapter 4

Heart Rate Control in Amateur

Marathoners with Different Training

Backgrounds

Abstract

Marathon running is a popular activity associated with several health adversities. There

is not, however, a single marker capable of describing the level of training in long distance

runners. Such marker may provide training guidelines and, potentially, mitigate the

health issues. Heart rate control estimators (heart rate variability, HRV, and heart rate

complexity, HRC) may contribute to this scenario. Previous studies suggested that the

sign of the slope of the linear regression between HRC and heart rate (HR) is associated

with the amount of training. The present study intends to test this pattern in regards to

the training background in marathoners. For this objective, HRV/HRC were obtained

for eleven amateur marathoners running on treadmills. The subjects were separated by

the number of marathons completed (one and more than three) and by the number of

years training for long distance running (less than three, 3Y, and more than ten, 10Y).
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Independently of the estimator, the utilized approach was not able to classify the groups

according to the number of marathons. On the other hand, the slopes between HRC and

HR of all subjects of the 10Y group were significantly positive whereas the same slopes

were non-positive for the 3Y group. This confirms that the current analysis is capable of

assessing differences in training backgrounds and cardiovascular physiological status.

4.1 Introduction

A better understanding of the physiological aspects of exercise is important not only

because it allows for a better comprehension of the physiological systems involved in such

activity, but also, due to the role of this activity in maintaining health. For instance,

exercise is considered an effective way to prevent ventricular fibrillation and myocardial

dysfunction (Billman, 2009). Nevertheless, it is known that excessive physical activity

might cause health problems (Kim et al., 2014; Möhlenkamp et al., 2008).

This is particularly true for marathon running, which is associated with several adver-

sities such as, acutely, cardiac diseases (George et al., 2011; Neilan et al., 2006; Sheppard,

2012), gastrointestinal disorders (Nicholl & Willians, 1982; Sanchez et al., 2006), hypona-

tremia (Sanchez et al., 2006; Sheppard, 2012) and musculoskeletal injuries (Nicholl &

Willians, 1982; Sanchez et al., 2006; Satterthwaite et al., 1999); and chronically, high

blood pressure (Kim et al., 2014) and cardiac damage (Breuckmann et al., 2009). This

is utterly important considering the current popularity of marathon races among ama-

teur athletes, a group not as medically supervised and, generally, healthy as professional

athletes (Predel, 2014).

Still, there is not an isolated marker capable of diagnose training problems and/or

overtraining (Armstrong & VanHeest, 2002; Borresen & Lambert, 2008; Smith et al.,

2011). As a consequence, further studies are necessary to identify the optimal individual

dose and intensity of long-term endurance exercise (Predel, 2014).
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Cardiovascular dysfunctions are the main cause of exercise-related sudden death (Kim

et al., 2014), but it is known that typical markers, for instance heart rate, are not able

to discriminate the level of training of long distance runners (Borresen & Lambert, 2008;

Lambert et al., 1998).

The analysis of instantaneous heart rate changes may greatly contribute to this sce-

nario. The study of the variation of sequential heart beats (obtained in a electrocardio-

gram, ECG) is considered an estimator of cardiac control (Billman, 2009) and may be,

more commonly, measured by a frequency domain index (denominated heart rate vari-

ability, HRV) and nonlinear tools (termed heart rate complexity, HRC). In both cases,

a low value of those estimators is associated with several cardiovascular problems (Lake

et al., 2002; Shin et al., 2006; Stein et al., 2005; Task Force, 1996).

In this context, HRV/HRC have the potential to bring new information regarding

the cardiac control response to the extended high metabolic demand endured by long

distance runners (an issue better explained below), possibly allowing for the discrimina-

tion, for instance, among different running backgrounds. This is important considering

the necessity to adequate the training of each individual to his/her cardiovascular fitness

and risk factor (Schmermund et al., 2008). Therefore, this approach may contribute

to more precise training protocols formulations and, consequently, to the mitigation of

marathon runners’ health issues. However, there are no studies relating HRV/HRC to

the individual historical of training. In addition, studies comparing the, more explicit,

differences between instantaneous heart rate changes in trained and untrained individuals

are controversial, as it will be exposed shortly.

Typically, regular physical activity increases the cardiac control, estimated though

HRV/HRC, by augmenting the parasympathetic nervous system activity (Billman, 2009;

Task Force, 1996). This is more prominently observed in cross-sectional studies compar-

ing HRV in groups of trained and untrained individuals (conf. Aubert et al., 2003, for

a review). For example, in an experiment with 3,328 participants, Rennie et al. (2003)



Chapter 4. Heart Rate Control in Amateur Marathoners with Different Training
Backgrounds 76

found a higher HRV in men experiencing a routine of vigorous physical activity (it is

interesting to point out that this pattern was not observed in women). A higher instan-

taneous cardiac control was also obtained in many other studies (e.g., Bonaduce et al.,

1998; Buchheit et al., 2004; De Meersman, 1993; Jensen-Urstad et al., 1997). Neverthe-

less, situations where no differences in frequency domain indexes are observed do exist

(e.g., Lazoglu et al., 1996; Melo et al., 2005; Migliaro et al., 2001) and even a study where

trained subjects possessed a lower HRV is reported (Sacknoff et al., 1994).

Even though the longitudinal approach possess benefits (e.g., it is less sensitive to

intra group variation), inconsistent results are also found. While some studies obtained an

increase in instantaneous heart rate control with training (Al-Ani et al., 1996; Melanson

& Freedson, 2001; Schuit et al., 1999; Sloan et al., 2009) other studies did not find

a significant trend (Bonaduce et al., 1998; Boutcher & Stein, 1995; Loimaala et al.,

2000; Perini et al., 2002; Uusitalo et al., 2004). It has been suggested that the lack

of correlation is associated with training protocols of short duration and low intensity

(Boutcher & Stein, 1995; Levy et al., 1998; Loimaala et al., 2000; Melanson & Freedson,

2001). However, there is an intrinsic difficulty to compare these studies since they utilize

a high diversity of training protocols and different experimental subjects.

An additional problem is that the majority of studies that compared trained and un-

trained individuals measured HRV/HRC during rest (e.g., De Meersman, 1993; Jensen-

Urstad et al., 1997; Sacknoff et al., 1994) or post-exercise (conf. Borresen & Lambert,

2008; Du et al., 2005, for examples). Therefore, these studies did not take into consid-

eration the acute effect of exercise (related to the high metabolic demand) in the heart

rate control of the subjects. A possible consequence of not considering this acute effect is

found in the work of Tulppo et al. (1998), in which differences in the modulation of heart

rate were found when the estimators were measured during exercise, but not during rest.

In this context, Uusitalo et al. (2004) suggest that a correlation between training and

high instantaneous heart rate control is more commonly found when data is acquired
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during physical activity.

Nonetheless, other studies that acquired data during exercise did not find such rela-

tionship (e.g., Dixon et al., 1992; Gregoire et al., 1996; Levy et al., 1998; Perini et al.,

2002). Moreover, Sandercock & Brodie (2006) consider that the few studies which ana-

lyzed the instantaneous cardiac control measured during exercise are, at best, equivocal.

Therefore, independently of the moment of data acquisition, the above presented scenario

illustrates that the relationship between HRV/HRC and the level of training, as well as

the potential use of the first as a marker of the second, still needs to be better studied

(Aubert et al., 2003; Borresen & Lambert, 2008). Finally, it is worth pointing out that,

since there is a shortage of HRC studies in this area, most of the above cited studies

utilized frequency domain HRV (Tulppo et al., 1998, is the exception).

The work presented in Chapter 3 has the potential of shedding some light in this

matter. We measured the heart rate variability and complexity in subjects running

during 25 minutes in 3 different speed protocols. We observed a significant correlation

between beat-to-beat control and heart rate (HR) in the protocol with increasing speeds,

and such a correlation is able to discriminate between fitness degrees.

The ability to distinguish between trained and untrained individuals was only observ-

able with HRC obtained through a1ApEn (a variation of ApEn (Pincus, 1991) developed

in Chapter 2) but not by HRV estimators. Hence, this analytical tool can, by itself,

contribute to the scenario established in this manuscript. Moreover, it is worth pointing

out that we suggested that a significantly positive correlation is related to an adequacy

between cardiac control and metabolic demand (to what we shall refer, from now on,

as metabolic coupling) obtained at high intensity exercises, a situation disrupted in un-

trained individuals (conf. Chapter 3).

The present work aims for a step forward to the study of Chapter 3 and utilizes

the correlation between cardiac control estimators and heart rate in the context of our

initial problem: the discrimination between different running backgrounds. For this
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objective, we assume that the lack of metabolic coupling may be found even in highly

trained individuals (such as marathon finishers). Thereunto, this study hypothesize that

amateur athletes who have recently ran their first marathon should have a mechanical-

cardiovascular relationship less well-matched than runners who finished more marathons

and, therefore, a non-positive correlation between HRC and heart rate.

Even though there are not, to our knowledge, other studies comparing first-time

with experienced marathoners, the hypothesis above is made considering that the high

metabolic demand of this event has not yet been experienced by the first-marathon group

(Coyle, 2007). Furthermore, similarly to what was obtained by in Chapter 3, we expect

that this pattern will not be observable with the HRV estimators.

To test this hypothesis, heart rate variability and complexity were analyzed in 11

marathon finishers divided in the two groups described above. Experiments were per-

formed a few weeks after a marathon and consisted in HRV/HRC analyses of the ECG

data acquired during a treadmill run in variations of the last marathon mean speed of

the given individual.

4.2 Material and Methods

The experiments were conducted in 13 male subjects; however, two datasets were dis-

carded after cardiovascular disorders were detected. The remaining 11 individuals were

divided in the following groups. The first marathon group (1M) included 4 individuals

who have recently completed their first marathons and 2 who have completed their sec-

ond marathon but reported problems in one of them (i.e., careless training and inability

to run the whole marathon). The experienced group (3M) included 5 individuals who

have completed at least 3 marathons in the last 5 years.

At the same time, for a broader categorization of the different running backgrounds,

the same subjects were also separated in relation to the number of years of training
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for long distance running: less than 3 years (3Y) and more than 10 years (10Y). This

configuration resulted in 4 subjects in the 3Y group and 7 individuals in the 10Y group.

General information of all groups is shown in Table 4.1.

Table 4.1: General information of the studied groups. Age (in years), body mass index
(BMI, in 𝑘𝑔

𝑚2 ), time between the marathon and the experiment (in days) and marathon
conclusion time (in hours:minutes) for the following four groups: subjects that completed
one marathon, more than 3 marathons, subjects that trained for endurance running for
less than 3 years and subjects that trained for long distance running for more than 10
years. Data is shown in mean (range).

First Marathon More than 3
Marathons

Less than 3
years of training

More than 10
years of training

Age (years) 39 (32-55) 43 (32-59) 42 (33-55) 40 (32-59)
BMI ( 𝑘𝑔

𝑚2 ) 23.1 (20.3-25.6) 23.2 (20.8-25.7) 22.5 (20.3-24.0) 23.5 (20.8-25.7)
Time to experiment

(days) 34 (15-62) 53 (42-99) 38 (15-62) 45 (26-99)

Marathon time
(hours:minutes) 3:30 (3:10-4:40) 3:50 (3:30-4:07) 3:37 (3:12-4:40) 3:40 (3:10- 4:07)

Experiments were performed between 2 and 14 weeks after the completion of the

marathon. All subjects were non-smokers and were instructed to be hydrated and not

drink coffee and alcohol in the day of the experiment and to avoid extreme physical

activity in the day before. The experiments were conducted at the Biosciences Institute

of the University of São Paulo and the experimental protocol was approved by the local

ethics committee (Comissão de Ética no Uso de Animais-Instituto de Biociências (CEUA-

IB)). All electrocardiogram (ECG) data were collected at ambient temperatures of 21 −

24 ∘C during the morning (8 a.m. to 11:30 a.m.).

ECG data was recorded for 10 minutes during rest and, afterwards, the participants

warmed up at 90% of each individual’s mean marathon speed (𝑢) for 5 minutes. Sub-

sequently, ECG was recorded in the following speeds: 0.85𝑢, 0.9𝑢, 𝑢 and 1.1𝑢; during 5

minutes at each speed. At 19 minutes of experiment the subjects were inquired if they

would proceed to the last speed, 1.15u, for more 5 minutes. Therefore, the total time of
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running was between 20 and 25 minutes. Only one subject (from the 3M/10Y groups)

has chosen to stop at the 20 minutes mark and no other volunteer reached exhaustion

during the experiment.

ECG data was acquired by means of three superficial electrodes (Unilect Electrodes,

Maersk Medical LTD, Copenhagen, Denmark) in the CM5 configuration. ECG was

recorded and digitalized using a sampling rate of 1000 Hz by a MP30 interface and

the Biopac Student Lab Pro software (Biopac Systems Inc., Goleta, CA, USA). From

the raw data, R-R intervals (period between two consecutive R waves in an ECG) were

extracted. The first minute of data were discarded to avoid transient behaviors. The

following analyses were performed in a moving window of 256 points along the R-R

vector.

For each segment of the moving window, the mean HR was obtained. To obtain heart

rate variability, a fast Fourier transform was carried out in the vector of R-R intervals.

The obtained spectral components were separated in ≤ 0.04𝐻𝑧 for very low frequencies

range, 0.04 − 0.15𝐻𝑧 for low frequencies range (LF, related to both sympathetic and

parasympathetic activity) and 0.15 − 0.4𝐻𝑧 for high frequencies range (HF, associated

with the parasympathetic activity) (Task Force, 1996). HRV was estimated via the

normalized HF (nuHF, in the present study calculated by 𝑛𝑢𝐻𝐹 = 𝐻𝐹
(𝑉 𝐿𝐹+𝐿𝐹+𝐻𝐹 )) and

the ratio between HF and LF (from now on simply referred as to "ratio"). Finally, HRC

was obtained by means of a1ApEn. Notice that we chose to express the ratio as 𝐻𝐹
𝐿𝐹 ,

instead of the typical 𝐿𝐹
𝐻𝐹 (Task Force, 1996), so a higher value of all three estimators

studied was related to a higher level of heart rate variability/complexity. Both R-R

extraction and subsequent analysis were performed through a set of implemented scripts

in Matlab (MATLAB version 7.10.0.499 Natick, Massachusetts, USA: The MathWorks

Inc.).
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4.2.1 Statistical Analysis

The time between the marathon and the experiment, marathon conclusion time, age

and BMI were compared between groups using Student’s t-test and differences were

considered significant for 𝑝 ≤ 0.05. To test the relationship between each estimator and

the heart rate, a linear regression was performed. The relationships were considered

significant if the confidence interval did not cross zero (𝐶.𝐼. = 95%). All statistical

tests were performed using Matlab built-in scripts. Figures were produced in the R

environment (R Core Team, 2013).

4.3 Results

4.3.1 Differences between groups

The 1M group was not significantly different from the 3M group in relation to age (𝑝 =

0.59), body mass index (BMI, 𝑝 = 0.91), marathon time (𝑝 = 0.08) and time between

marathon and the experiment (𝑝 = 0.20). Similarly, the 3Y group was not significantly

different from the 10Y group in relation to age (𝑝 = 0.70), BMI (𝑝 = 0.41), marathon

time (𝑝 = 0.52) and time between marathon and the experiment (𝑝 = 0.64).

4.3.2 HRV and HRC as a function of HR for the 1M group and the

3M group

The behavior of the slopes of the linear regressions between HRV/HRC and heart rate

for the 1M and 3M groups are shown in Table 4.2. Even though a significantly positive

slope is consistently found among subjects with more than 3 marathons (exemplified for

a1ApEn in Figure 4.1), there is not, regardless of the analytical tool of choice, a clear

pattern in the first-marathon group. Nevertheless, it is possible to observe a majority of

non-positive slopes when utilizing a1ApEn.
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Table 4.2: Slopes of linear regressions of heart rate complexity (HRC) or heart rate
variability (HRV) as a function of heart rate for the first marathon group (1M) and for
the more than 3 marathons group (3M) of this study. The cells contain, for a total of 11
subjects (6 for the 1M group and 5 for the 3M group), the number of events in which the
slope of the linear regression was positive and significantly different from zero, negative
and significantly different from zero and non significantly different from zero. HRV was
estimated utilizing the spectral components of the fast Fourier transform (normalized
high frequency, nuHF, and the ratio between high and low frequencies) and HRC was
estimated employing a1ApEn.

Groups Qualitative behavior of the slope of the linear
regression as a function of heart rate

1M Positive Negative Not different from 0
a1ApEn 2 3 1
nuHF 3 1 2
Ratio 4 0 2

3M Positive Negative Not different from 0
a1ApEn 5 0 0
nuHF 5 0 0
Ratio 5 0 0



83 4.3. Results

Figure 4.1: Heart rate (HR) and heart rate complexity (HRC) for one subject. (A) HRC,
estimated through a1ApEn, and mean heart rate (in beats per minute) calculated for a
moving window of 256 points (ordered samples) in a subject running in increasing speeds.
(B) For the same dataset, the linear regression of HRC as a function of heart rate. The
obtained equation and the coefficient of determination 𝑟2 are present in the Figure.
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4.3.3 HRV and HRC as a function of HR for the 3Y group and the

10Y group

The results are summarized in Table 4.3. It is possible to observe that the a1ApEn results

show a positive trend in all subjects in the 10Y group (Figure 4.2 A) and a non-positive

trend in all subjects in the 3Y group (Figure 4.2 B). Therefore, this analytical tool is

able to discriminate between the 3Y and 10Y groups. On the other hand, both HRV

analyses show a positive trend between the estimators and heart rate regardless of the

group (Table 4.3) and, therefore, are unable to discriminate between them.

Table 4.3: Slopes of linear regressions of heart rate complexity (HRC) or heart rate
variability (HRV) as a function of heart rate for the less than 3 years of training group
(3Y) and for the more than 10 years of training group (10Y) of this study. The cells
contain, for a total of 11 subjects (4 for the 3Y group and 7 for the 10Y group), the
number of events in which the slope of the linear regression was positive and significantly
different from zero, negative and significantly different from zero and non significantly
different from zero. HRV was estimated utilizing the spectral components of the fast
Fourier transform (normalized high frequency, nuHF, and the ratio between high and
low frequencies) and HRC was estimated employing a1ApEn.

Groups Qualitative behavior of the slope of the linear
regression as a function of heart rate

3Y Positive Negative Not different from 0
a1ApEn 0 3 1
nuHF 3 1 0
Ratio 3 0 1

10Y Positive Negative Not different from 0
a1ApEn 7 0 0
nuHF 5 0 2
Ratio 6 0 1

4.4 Discussion

The cardiovascular risk factor related to excessive exercise habits are, currently, an area

of research of increased interest (Kim et al., 2014). In such a broad context, the present
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Figure 4.2: Heart rate complexity (HRC) for 11 marathoners. HRC, estimated through
a1ApEn, calculated for a moving window of 256 points (ordered samples) for: (A) 7
subjects who have trained for endurance running for more than 10 years; (B) 4 subjects
who have trained for endurance running for less than 3 years. Different shades of gray
represent individuals.
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manuscript approached this issue by studying how the metabolic coupling behaves in

marathoners with different running backgrounds. Our results show that the slope of

the linear regression between heart rate complexity and heart rate successfully classified

the subjects by the number of years training for long distance running. On the other

hand, the slope of the linear regression between HRV/HRC and heart rate is not able to

discriminate between individuals in regard to the number of finished marathons.

4.4.1 Differences between Groups

Within-groups, the subjects of this study were not homogeneous; however, the groups

were similar in their heterogeneity. Therefore, it is possible to affirm that the results

were not a consequence of differences in age, BMI, marathon conclusion time or period

between the marathon and the experiment. Nevertheless, some considerations must be

put forward.

On the matter of the age of the subjects, it is important to point out that this

variable is considered one of the major determinants of instantaneous heart rate control

information (Tsuji et al., 1996) and different results are expected for young versus middle-

aged/older adults (Melanson & Freedson, 2001). Therefore, further studies with a wider

range of ages are necessary to test the generality of the patterns obtained here.

Another important point is that, even though the number of days between the

marathon and the experiment diverged considerably among subjects, it is known that

biomarkers indicating potential myocardial damage regress to normal values between

24 to 48 hours after a marathon (Oxborough et al., 2010; Predel, 2014). Moreover,

impairments in the systolic and/or diastolic function after long distance running (i.e.,

exercise-induced cardiac fatigue) appear to be, in general, transient (less than 48 hours,

Oxborough et al., 2010). Hence, it is not likely that the period between the marathon

and the experiment influenced our analyses.
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4.4.2 Estimators of heart rate control as a function of heart rate

The acute effect of the current protocol in the correlation between of heart rate con-

trol and heart rate is discussed in Chapter 3. Nevertheless, the nature of the present

study allows some speculations about the chronic effect of exercise in the interaction of

these variables. In the context of training for long distance running, the majority of

studies associate the decrease of HR during rest to an increase in HRV via changes in

the parasympathetic tone (e.g., Rennie et al., 2003; Sloan et al., 2009). However, other

studies observed, with training, a decrease in the heart rate without changes in HRV

(Bonaduce et al., 1998; Gregoire et al., 1996), while another observed changes in HRV

but not in heart rate (Melanson & Freedson, 2001).

Our results show that HRV/HRC indexes during exercise could increase or even

decrease with higher heart rates, and also this relationship is dependent of the training

background. Therefore, to expect a fixed negative correlation, acutely and/or chronically,

between HRV/HRC and HR may be misleading. Hence, it is important that future

studies consider that different training regimes might change the HRV/HRC versus HR

relationship and, moreover, that these changes may be better observable during the

exercise section itself.

Another interesting benefit of our approach is that it proposes a clear threshold

between different groups (i.e., the positive/non-positive slope). This advantage is eas-

ily recognized considering that typical beat-to-beat heart rate control studies suffer the

drawback of lacking a formal definition of normal measurements (Migliaro et al., 2001)

and, as a consequence, an intrinsic difficulty to compare different individuals (Al-Ani

et al., 1996). On the other hand, utilizing the present methodology it is possible to cate-

gorize an individual regardless of his/her absolute values of HRV/HRC or any additional

standardization.

The non-positive slopes bring an interesting new perspective as well. The study of

Chapter 3 obtained such non-positive slopes for sedentary individuals and, therefore,
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it is possible that these slopes may be a marker of an impairing effect of completing

a marathon in some highly trained individuals. This suggests that, even though basic

cardiac functions are restored shortly after a marathon (see section 4.4.1), the effect of a

high metabolic demand on cardiac control could last longer.

4.4.3 Metabolic coupling in relation to the number of completed marathons

On the contrary of our initial hypothesis, the slope of the linear regression of HRV/HRC

versus heart rate is not adequate to discriminate individuals who have completed their

first marathon from subjects who have completed more than 3 marathons in the last

5 years. However, it is interesting to observe that, regardless of the cardiac control

estimator, all individuals who have completed more marathons possessed the behavior

expected for trained individuals (i.e., a significantly positive correlation, see Chapter 3).

This is, to our knowledge, the first study that compares HRV/HRC in individuals sep-

arated by the number of completed marathons. However, some studies have shown that

the number of marathons appears to be related to cardiac disorders. For instance, there

is a positive correlation between the number of marathons and coronary artery calcifica-

tion (Möhlenkamp et al., 2008) or myocardial fibrosis assessed through late gadolinium

enhancement (Wilson et al., 2011). It is important to point out that those studies were

performed in individuals with more than 50 years (mean 57 years, in both), indicating

a possible effect of age, and, more importantly, all subjects passed an inclusion criterion

more stringent than ours, as described below.

The work of Möhlenkamp et al. (2008) included subjects that had completed 5

marathons in the previous 3 years, i.e., more than one per year. The volunteers of

the study of Wilson et al. (2011), that included professional athletes, completed a mean

number of 178 marathons (range 20-650). Therefore, it is possible to propose the exis-

tence of an upper limit on the number of marathons above which it may affect negatively

the cardiovascular system. Even though these studies are, as a whole, different from ours,
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such scenario allows us to hypothesize that the correlation between heart rate control

estimators and heart rate should be negative in individuals that participated in a high

number of marathons over a short period of time, a matter that deserves further studies.

Finally, the absence of a defined pattern in the individuals who completed their first

marathon suggests that the first marathon by itself does not influence the metabolic

coupling as we expected. It is possible that this absence of pattern is associated with the

internal differences in training background of the group, an issue better discussed below.

4.4.4 Metabolic coupling in relation to the number years of training

for endurance running

The results show that differences in the slope of the linear regression between heart rate

complexity and heart rate were able to discriminate individuals by years of training for

endurance running. Therefore, in our analyses and in the range of number of marathons

studied, the amount of years training for long distance running is more influential than

the number of marathons completed.

The importance of a prolonged period of endurance training has already been sug-

gested by other authors. Loimaala et al. (2000) obtained no significant differences in HRV

with training and, consequently, suggested that such intervention needs to be performed

for many years before changes in the studied variables become detectable. Moreover,

Bonaduce et al. (1998) obtained higher values of HRV in detrained subjects than in

controls, illustrating that HRV is affected by the training background.

Another interesting point is that the positive correlation is more consistently obtained

though a1ApEn-HRC. This was also the case in Chapter 3 and corroborates the proposal

that nonlinear heart rate analyses show different information from HRV analyses (Hef-

fernan et al., 2007; Tulppo et al., 2001). Hence, the use of a1ApEn-HRC may contribute

to a better understanding of the effect of training in instantaneous cardiac control, the

conflictive scenario presented in the section 4.1.
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Our original hypothesis did not include the number of years training for long dis-

tance running as a classification criterion. This pattern was observed during the anal-

ysis and additional data may confirm such trend. Nevertheless, within the paradigm

of HRC/HRC as an estimator of cardiac control, our results bring up a strong sugges-

tion: endurance runners should train for more than three years before running their first

marathon. Moreover, the present study successfully confirms the potential of the study

of the linear regression between HRC and heart rate as an index of physiological status.

4.5 Conclusions

In summary, our results demonstrated that the slope of the linear regression between

heart rate complexity and heart rate is capable of discriminating between the number

of years of training for endurance running. This may contribute to the discussion of

heart rate control in the context of exercise physiology and, potentially, supply criteria

for training protocols.
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Chapter 5

Oscillatory patterns in heart rate

variability and complexity: a

meta-analysis

Abstract

The study instantaneous heart rate changes is a non invasive form to obtain indirect

information about heart rate control. This beat-to-beat variation is denominated heart

rate variability (HRV) and when estimated through frequency domain methods provides

information about the sympathetic (SNS) or parasympathetic (PNS) nervous system.

Beat-to-beat variation can also be estimated by nonlinear methods, then termed heart

rate complexity (HRC). Even though HRC does not possess a straightforward relation-

ship with the SNS or PNS, these estimators are also utilized to infer changes in the

autonomous nervous system (ANS). In many situations, a low value of both indexes

(HRV/HRC) is associated with several cardiovascular diseases. On the other hand, there

are scenarios (such as, exercise and temperature challenges) in which those indexes ap-

pear to be less informative, mainly because the association between HRV/HRC and the
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ANS ceases to hold tight. Therefore, it is interesting to extract additional information

from HRV/HRC analyses that could lead to a broader understanding of cardiac control.

Previous experiments in our laboratory suggested the existence of an oscillatory compo-

nent in HRV/HRC results along the time of experiment. The present study tested the

existence of this pattern in HRV/HRC of 13 subjects running at constant speed. For

this purpose, sine wave, linear and quadratic models were fitted to the results of these

estimators. The sine wave model significantly, and more adequately than the other mod-

els, fitted the results obtained. Furthermore, the correlation obtained was significantly

higher for the HRC data. As far as we know, this is the first time a meta-analysis of this

kind is applied to HRV/HRC data and it reveals a new way to approach cardiac control.

We suggest that the observed oscillatory pattern is associated with thermoregulation.

5.1 Introduction

The variation in sequential heart rate beats arises from the dynamical interaction between

sympathetic and parasympathetic nervous systems and is considered an estimator of

heart rate control (Billman, 2009). These instantaneous heart rate (HR) changes are

studied through variations in R-R intervals (period between two consecutive R waves in an

electrocardiogram - ECG) and may be, more commonly, measured by a frequency domain

index (heart rate variability, HRV) and nonlinear methods (heart rate complexity, HRC).

HRV employs a fast Fourier transform and the different ranges of the obtained spectrum

(low frequencies, LF, and high frequencies, HF) are associated with the sympathetic

(LF) or parasympathetic nervous system (LF and HF) (Task Force, 1996). Typically,

a high value of HRV is associated with an increase in the parasympathetic activation

(Task Force, 1996). On the other hand, HRC employs, among other options, methods

deriving from the informational theory (such as a1ApEn, Chapter 2) to quantify the

degree of disorder in time series. Even though the relationship is not as straightforward
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as in HRV, many studies utilized nonlinear methods to infer alterations the branches of

the autonomic nervous system (e.g., Boettger et al., 2010; Flouris et al., 2014; Heffernan

et al., 2007; Kuusela et al., 2002; Platisa & Gal, 2006).

In both cases, a low value of such estimators is associated with several cardiovascular

diseases (Lake et al., 2002; Rassias et al., 2005; Stein et al., 2005; Task Force, 1996).

Nevertheless, the physiology behind these analyses is considered obscure (Eckberg, 1997).

The main problem is that HRV/HRC data does not match what is expected for the

branches of the autonomous nervous system (ANS) in many situations (Eckberg, 1997;

Malik, 1998; Parati et al., 2006). This issue can be illustrated in the context of HRV/HRC

during exercise and also as response to temperature changes. Even though our study

focuses on the former process, some discussions shall be extrapolated to the latter.

It is well known that the relationship between beat-to-beat and ANS is particularly

problematic when studied during exercise at higher intensities. This is because the in-

crease in HRV/HRC obtained may not be explained by the decrease in parasympathetic

activation typically expected for these conditions (conf. Casadei et al. (1995); Perini &

Veicsteinas (2003) and Chapter 3). A plausible rationalization is that at higher mag-

nitudes of exercise, non-neural regulation (e.g., changes in the mechanical cardiac axis

due to changes in the ventilatory pattern, and/or atrial transmural pressure associated

with intratoraxic pressure and venous return (Bernardi et al., 1990; Casadei et al., 1996))

becomes more relevant (Sandercock & Brodie, 2006). This suggestion is corroborated by

data that include experiments with ganglion blockage (Casadei et al., 1996) and heart

transplanted subjects (Bernardi et al., 1990). However, since beat-to-beat analyses (espe-

cially HRV) are limited to inferences regarding the sympathetic and the parasympathetic

autonomous nervous systems, there is not a clear way to extract this non-neural infor-

mation in normal subjects.

The constraints imposed by the HRV/HRC versus sympathovagal modulation paradigm

are also reflected in other parameters influencing the heart rate control, leading to the
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conclusion that the relationship between cardiac control and specific ranges of a spectral

power analysis is too simplistic (Parati et al., 1995). This is observable, for example, in

the few existing studies regarding the effect of high temperatures in HRV/HRC. Brenner

et al. (1997) obtained, during 50%�̇� 𝑂2max exercise at high temperatures, a non sig-

nificant decrease in the parasympathetic activity estimated through the HF component

and, moreover, a significant increase in the LF/HF ratio (representing sympathovagal

balance). Furthermore, Flouris et al. (2014) studied the instantaneous heart rate con-

trol, during exercise, and obtained an increase in the parasympathetic activity in 75 of the

102 variables measured (including linear, frequency domain and nonlinear methods) in a

protocol along 14 days of high temperature acclimation. It is possible to identify, there-

fore, a variety of protocols (from a simple exposure to acclimation) designed to better

understand the relationship between instantaneous heart rate control and temperature.

However, this interpretation is, once again, only related to changes in the branches of the

autonomous nervous system. This restraint is highlighted in the work of Flouris et al.

(2014), where 102 heart rate control estimators were utilized to reach a single conclusion.

This is of great relevance considering that thermoregulation affects very low frequency

components of heart rate control (Aubert et al., 2003; Parati et al., 1995), which are not

typically covered by heart rate analysis. Moreover, it is suggested that hot-induced

alterations are associated with the necessity to sustain venous return (Brenner et al.,

1997) which provoke, in the first instance, cardiac changes unrelated to the ANS (Bernardi

et al., 1990).

In this context, even though the HRV/HRC versus sympathovagal modulation con-

tributes to many fields of physiology, it is interesting to extract additional information

from HRV/HRC analyses that could lead to a broader understanding of cardiac control

and, more specifically, to a better comprehension of the beat-to-beat changes during, as

exemplified, exercise or temperature challenges.

Previous experiments in our laboratory measuring HRC and HRV in 7 subjects walk-
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ing in treadmills suggested that the estimators exhibit an oscillatory pattern along the

time of experiment. Despite the potential to extract new information from this pattern,

it is required, first and foremost, additional analysis with a new set of data to test if this

pattern is ubiquitous. For this objective, 13 new subjects were studied. We analyzed

HRV and HRC, measured through a1ApEn, during 25 minutes of running; a situation

when the autonomous neural components of cardiac control become less detectable (conf.

Chapter 3 and Sandercock & Brodie (2006). Moreover, it was suggested that, for same

data utilized in this study, that the HRV/HRC obtained possess non-neural origin (Chap-

ter 3).

5.2 Material and Methods

The present study utilized part of the data of Chapter 3. However, from the original 15

subjects, 2 were discarded due to noise, resulting in 13 healthy male voluntaries (mean

age: 29 years, range 20 − 35; mean body mass index: 24.88, range 19.58 - 32.95) with

different degrees of fitness. All subjects were instructed to be hydrated and not to drink

coffee and alcohol in the day of the experiment and to avoid extreme physical activity

in the day before. The experiments were conducted at the Biosciences Institute of the

University of São Paulo and the experimental protocol was approved by the local ethics

committee (Comissão de Ética no Uso de Animais-Instituto de Biociências (CEUA-IB)).

All ECG data were collected at ambient temperatures of 21 − 24 ∘C and always at the

preferential time of the day for physical activity for each individual.

For control purposes, electrocardiogram data was recorded for 5 minutes during rest-

ing conditions, and afterwards each participant had its preferential speed (𝑢) estimated

and warmed-up during 5 minutes at 0.9𝑢. Subsequently, ECG was recorded during 25

minutes of running at constant speed 𝑢.

ECG data was acquired by means of three superficial electrodes (Unilect Electrodes,
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Maersk Medical LTD, Copenhagen, Denmark) in the CM5 configuration. ECG was

recorded and digitalized using a sampling rate of 1000 Hz by a MP30 interface and the

Biopac Student Lab Pro software (Biopac Systems Inc., Goleta, CA, USA). From the

raw data, R-R intervals were extracted. The first minute of data were discarded to avoid

transient behaviors. All of the following procedures were performed in sequential (time-

ordered) series of 256 points sub-vectors, with 231 points of overlap between each pair of

sub-vectors, along the original data set.

For each sub-vector, the heart rate variability and heart rate complexity were an-

alyzed. Heart rate variability, via fast Fourier transform (FFT) was carried out and

the spectral components were separated in ≤ 0.04𝐻𝑧 for very low frequencies range,

0.04− 0.15 Hz for low frequencies range (LF, related to both sympathetic and parasym-

pathetic activity) and 0.15 − 0.4 Hz for high frequencies range (HF, associated with the

parasympathetic activity) (Task Force, 1996). Variability was estimated via the normal-

ized HF (nuHF, in the present study calculated by 𝑛𝑢𝐻𝐹 = 𝐻𝐹
(𝑉 𝐿𝐹+𝐿𝐹+𝐻𝐹 )) and the ratio

between HF and LF (from now on simply referred as to "ratio"). Heart rate complexity

was obtained by means of a1ApEn (Chapter 3). Notice that we chose to express the

ratio as 𝐻𝐹
𝐿𝐹 , instead of the typical 𝐿𝐹

𝐻𝐹 (Task Force, 1996), so a higher value of all three

estimators studied was related to a higher level heart rate variability/complexity.

Both R-R extraction and subsequent analyses were performed through a set of im-

plemented scripts in Matlab (MATLAB version 7.10.0.499 Natick, Massachusetts, USA:

The MathWorks Inc.). Since the original dataset is sequentially analyzed, we obtain

sequential results, i.e., time-ordered resulting vectors.

The resulting vectors were DC corrected (i.e., shifted along the y axis) in order to

have zero mean. These resulting data were fitted through a single sine wave (nonlinear

least squares method: Trust-Region algorithm), a linear polynomial and a quadratic

polynomial (linear least squares). To verify the correlation that each model provided,

the HRV/HRC vectors and the 3 models were compared utilizing a Pearson’s correlation
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test. To infer the best adequacy of the models, the correlation value obtained and the

adjusted 𝑅2 were compared between models utilizing a paired Student’s t-test. Similarly,

we also investigated which of the 3 estimators is better described by the most adequate

model. All differences were considered significant for 𝑝 ≤ 0.05. All statistical tests were

performed using Matlab built in scripts. Figures were produced in the R environment

(R Core Team, 2013).

5.3 Results

5.3.1 Comparing the 3 models

An example of the three fits obtained for an a1ApEn vector is found in Figure 5.1. The

sine wave model was significantly correlated to a1ApEn, nuHF and HF/LF ratio data

in all 13 subjects. On the other hand, the linear polynomial was significantly correlated

to a1ApEn and nuHF in 8 individuals and to HF/LF ratio in 10 subjects. Finally, the

quadratic polynomial was significantly correlated to a1ApEn and HF/LF ratio in 12 cases

and to nuHF in 8 subjects.

The correlation coefficient and adjusted 𝑅2 were significantly higher in the sine wave

model than in the linear and quadratic polynomial for a1ApEn (all 𝑝 < 0.001) and for

nuHF (all 𝑝 < 0.01). Figure 5.2 shows such results for adjusted 𝑅2 for a1ApEn data.

On the other hand, the sine wave model for the HF/LF ratio possessed a correlation

coefficient and adjusted 𝑅2 higher than the linear polynomial (both 𝑝 < 0.01) but not

significantly different from the quadratic polynomial (𝑝 = 0.33 for the correlation coeffi-

cient and 𝑝 = 0.12 for adjusted 𝑅2).

These results imply that the sine wave model explains significantly the HRC/HRV

data and, moreover, better than the linear and quadratic polynomial for a1ApEn and

nuHF.
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Figure 5.1: Heart rate complexity (HRC) and three models fitted. (A) HRC, estimated
through a1ApEn, calculated for sub-vectors of 256 points (ordered samples) for one
subject running. To this data, it was fitted: (B) a sine wave, (C) a linear polynomial
and (D) a quadratic polynomial.
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Figure 5.2: Adjusted 𝑅2 for 3 models (sine wave - black circles; linear polynomial - grey
triangles; quadratic polynomial - grey squares) fitted to HRC data in 13 subjects. See
text for discussion.

5.3.2 Sine wave fit for the three estimators

A sine wave fit for the three estimators in one subject is exemplified in Figure 5.3. The

sine wave model correlation coefficient and adjusted 𝑅2 were significantly higher for

a1ApEn than for nuHF (𝑝 < 0.05) and HF/LF ratio (𝑝 < 0.01).

Furthermore, it is important to point out that the a1ApEn data had only one subject

(#9 in Figure 5.2) in which the sine wave fit was poorer than the other models. This

is particularly interesting because, differently from what was observed for nuHF in 2

subjects and HF/LF ratio in 3 subjects, the a1ApEn vector for subject #9 possessed a

positive trend summed upon the oscillatory component (Figure 5.4). Finally, the sine

wave parameters and the approximate period obtained are shown in Table 5.1.
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Figure 5.3: Example of a sine wave fit to heart rate variability (HRV) and heart rate
complexity (HRC) data (ordered samples in the x-axis). (A) HRC estimated through
ApEn. (B) Normalized high frequency component of the heart rate variability spectral
analysis (C) Ratio between high frequency and low frequency components of the heart
rate variability spectral analysis.
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Table 5.1: Parameters and approximate period of the sine waves fitted to a1ApEn results.
The cells contain the parameters of the sine waves (𝐴, 𝜔 and 𝜃 in 𝑦 = 𝐴(sin𝑥(𝜔𝑥 +
𝜃))) where 𝑥 is the ordered samples (representing time) adjusted to the a1Apen results
obtained for the 13 subjects running. Moreover, the approximate period (in minutes)
for the same sine waves are reported. Finally, the subject #9 data (shown in Figure
5.4) provided a poor fit and, therefore, it was not possible to estimate the approximate
period.

Parameters obtained for the sine wave fit: Approximate period
𝑦 = 𝐴(sin𝑥(𝜔𝑥 + 𝜃)) (minutes)

Subject A 𝜔 𝜃

1 0.0369 0.1597 -0.1857 10

2 0.0314 0.0368 -2.1782 25

3 0.0268 0.0608 -3.1166 20

4 0.0371 0.2309 0.6964 8

5 0.0245 0.0913 -2.5731 15

6 0.0299 0.1625 3.2285 9

7 0.0256 0.0996 -0.5413 17

8 0.0299 0.0870 0.6085 14

9 0.3424 0.0021 -0.1361 -

10 0.0243 0.1677 -0.0210 8

11 0.0243 0.0496 -2.9991 25

12 0.0254 0.0719 -2.2586 19

13 0.0279 0.0736 0.5641 19
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Figure 5.4: Heart rate complexity (HRC) and three models fitted for subject #9. (A) Raw
HRC data, estimated through a1ApEn, calculated for sub-vectors of 256 points (ordered
samples). Fits: (B) Sine wave, (C) Linear polynomial; (D) Quadratic polynomial.

5.4 Discussion

The present study aimed to identify unaccounted information in the results from typical

instantaneous heart rate control estimators. To this end, 3 different models (sine wave,

linear and quadratic polynomials) were adjusted to HRV and HRC results obtained from

13 subjects during 25-minutes treadmill exercise. This meta-analysis demonstrated that

the sine wave model significantly, and more adequately than the other models, explains

the results obtained with a1ApEn (the highest correlation) and nuHF, but not with the

HF/LF ratio.

The discordant results obtained for HF/LF ratio were not a surprise since this es-

timator is highly dependent on the capacity of LF to describe the sympathetic nervous

system activity, a highly questioned relationship (Eckberg, 1997). Moreover, another

study from our group that included the same R-R data from the present one also found
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that HF/LF ratio shows different and less consistent results in comparison to the other

estimators (Chapter 3). Thus, the HF/LF ratio will not be further taken into account.

On the other hand, for a1ApEn and nuHF, it is shown, therefore, that cardiac vari-

ability/complexity are phenomena possessing oscillatory components. In other words, the

cardiac control itself shows an organized variation in time. Moreover, the consistency of

these results for all the subjects strongly suggests a physiological basis underlying the

process. Next, we put forward a hypothesis for that.

Since thermoregulation is associated with very low frequency components of heart

rate control and, potentially, non-neural aspects of cardiac control (conf. section 5.1),

we suggest that at least part of the obtained cardiac control oscillatory pattern may be

related to this process. Nevertheless, proper experimentation with protocols including

different thermal stresses are still necessary to test this hypothesis. An interesting sug-

gestion is that temperature differences may be associated not only to the existence of

the oscillatory pattern but, also, to the frequency of the oscillations. Some efforts of our

group are now directed to approach such an issue.

This is not the first time that, with a focus on slower oscillatory patterns, an al-

ternative to the emblematic LF and HF components is proposed. There are attempts

to extract information from the very low frequency component of the spectral analy-

sis (VLF, FFT range ≤ 0.04𝐻𝑧). The study of VLF produces interesting results: for

example it is known that this estimator increases with physical activity (Aubert et al.,

2003; Sandercock & Brodie, 2006). Nevertheless, the physiological processes behind it

are questioned, even among supporters of LF and HF analyses (Aubert et al., 2003;

Task Force, 1996). In this sense, its use is discouraged for short term ECGs, i.e., of the

order of minutes (Aubert et al., 2003; Task Force, 1996). It is important to point out

that short term ECGs are usually contrasted with long term 24 hours ECGs, in which

is suggested that VLF gains relevance (Task Force, 1996). Therefore, in addition to the

dubious theoretical background, there are no clear methodological guidelines to the use
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this estimator in situations of intermediary data set size.

The present study shows a number of relevant points to cardiac control analysis.

Firstly, our approach by-passes the above mentioned problems because it is a meta-

analysis of the estimators themselves, and their potential oscillatory behavior. This

allows the HRV and HRC analyses to be performed in 256 points vectors, within the

range recommended by Task Force (1996). In addition, instead of dealing with the

debatable use of VLF from ECG recordings, we extract direct information in regard to

low frequency oscillations of the cardiac control itself; and such information comes from

better understood estimators: nuHF-HRV and, specially, a1ApEn-HRC.

It is important to emphasize that we are not suggesting that the pattern detected in

this meta-analysis is associated with the sympathetic or parasympathetic nervous system.

As already cited, our results from a parallel study concluded that this association does not

stand and, moreover, suggested that these estimators are, indeed, detecting non-neural

aspects of the cardiac control (Chapter 3).

It is interesting to note that both the putative non-neural and the oscillatory com-

ponents of cardiac control were better detected by the use of a1ApEn. This tool is,

therefore, able to characterize the dominant aspect of cardiac control regardless of its

origin.

In conclusion, we propose an innovative approach to extract additional information

from heart rate control analyses by studying the time-variation of its estimators them-

selves. Particularly in the present case, our meta-analysis was able to detect an oscil-

latory pattern in typical HRV/HRC and we suggest that, maybe, it is associated with

thermoregulation. Nevertheless, future studies are required to reveal the full potential of

this approach.
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Capítulo 6

Conclusões

Essa tese investigou a influência de alterações associadas com a corrida no controle car-

díaco e possibilitou as seguintes conclusões.

A a1ApEn é uma ferramenta robusta, consistente e com um tempo computacional

adequado, sendo uma abordagem adequada para caracterizar séries temporais. Adicio-

nalmente, a complexidade cardíaca obtida com essa forma de análise é capaz de identificar

estados fisiológicos de maneira mais consistente que ferramentas no domínio da frequên-

cia.

Em relação ao efeito agudo da corrida na variabilidade cardíaca (VC) e na comple-

xidade cardíaca (CC), temos que: 1) as inconsistências encontradas na literatura estão

associadas às diferenças nos protocolos experimentais e analíticos; 2) a VC e a CC se cor-

relacionam, de maneira geral, positivamente com a frequência cardíaca; 3) O protocolo

com velocidades crescentes soma os efeitos da velocidade e do tempo nos estimadores e,

assim, é o mais adequado ao estudo dessa correlação; 4) Em tal protocolo, uma correla-

ção negativa entre a1ApEn-CC e frequência cardíaca está associada com sedentarismo; 5)

Dessa maneira, a inclinação da regressão linear entre complexidade cardíaca e frequência

cardíaca é uma abordagem eficaz para diferenciar estados fisiológicos.

O estudo da correlação dos estimadores de controle cardíaco com a frequência cardíaca
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em maratonistas permitiu concluir que complexidade cardíaca obtida via a1ApEn é capaz

de discernir maratonistas em função do tempo de treinamento para provas de longa

duração.

Finalmente, para os casos nos quais os experimentos eram realizados em velocidade

constante, existe um componente oscilatório nos resultados tanto de HF-VC quanto de

CC. Esse componente é mais proeminente para CC e está, potencialmente, associado

com fatores termorregulatórios.

Em relação à tese como um todo, temos que as abordagens propostas foram capazes

de não apenas trazer diversas informações novas sobre as alterações associadas com a

corrida no controle cardíaco mas, também, introduzir metologias com grande potencial

em outros contextos.



Apêndice A

Area Apen, and pApEn for 19

time-series
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