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ABSTRACT 

In a global warming scenario, an increase temperature is expected in addition to the 

occurrence and intensity of extreme climate events. One example of extreme events is 

the marine heat waves, which are a major threat to marine macroalgae. Ulva fasciata 

is a cosmopolitan species that occur in the whole Brazilian coast. This study was 

performed in two regions of Rio de Janeiro State (RJ) coast. Both regions are tropical, 

however, Arraial do Cabo/RJ is naturally colder than Niterói/RJ due upwelling 

phenomenon. This study aimed to: (i) confirm that U. fasciata individuals from these 

two Brazilian coast regions are of the same species; and (ii), physiologically analyze 

individuals of U. fasciata in the field and under in-laboratory controlled temperature 

experiment. We hypothesized that U. fasciata populations grown at thermally 

different locations would present distinct ecophysiological responses. In the field, it 

was accessed maximum quantum yield (Fv/Fm) and pigment content, and in 

laboratory, it was also evaluated growth rate. The in-laboratory controlled experiment 

comprised three phases: (i) a temperature gradient; (ii) a 5-day heat wave (+ 5 °C); 

and (iii) a 5-day recovery (- 5 °C). The molecular data allow us to state that the two 

populations belong to the same species. No differences of the fluorescence-derived 

factors were observed between individuals from both populations in the field, 

suggesting acclimation. However, differences were detected along all three 

experimental phases. The analysis of pigment content field data evidenced that 

individuals from the population of Niterói (warmer site) had higher concentrations of 

chlorophyll a than individuals from Arraial do Cabo (colder site). However, 

individuals of population from Niterói when cultured at 21 °C showed the lowest 

values of pigment. The differences observed suggest ecotypes. In conclusion, as the 

planet becomes warmer and extreme weather events become more frequent, the 

likelihood that heat wave to occur is higher. Therefore, U. fasciata from Arraial do 

Cabo showed better physiological responses to the effects of heat wave, what could 

confer them higher competitiveness ability to overcome thermal stress. 

 

KEY WORDS: Chlorophyll, extreme events, fluorescence, Fv/Fm, global warming, 

heat wave, PAM, pigments, temperature, upwelling. 
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RESUMO 

Num cenário de aquecimento global, um aumento da temperatura é esperado, assim 

como a ocorrência e intensidade de eventos climáticos extremos. Um exemplo de 

evento extremo são as ondas de calor marinhas, que são a principal ameaça a 

macroalgas marinhas. Ulva fasciata é uma espécie cosmopolita que ocorre em toda 

costa brasileira. Esse estudo foi realizado em duas regiões da costa do Estado do Rio 

de Janeiro (RJ). Ambas regiões são tropicais, mas Arraial do Cabo/RJ é naturalmente 

mais fria que Niterói/RJ devido ao fenômeno de ressurgência. Esse estudo objetivou: 

(i), confirmar que os indivíduos de U. fasciata dessas duas localidades da costa 

brasileira são da mesma espécie; e (ii) analisar fisiologicamente indivíduos de U. 

fasciata em campo e  em experimentos de temperatura em condições controladas de 

laboratório. Nossa hipótese era de que populações de U. fasciata procedentes de 

localidades termicamente diferentes iriam apresentar respostas ecofisiológicas 

distintas . Em campo, foi acessado o rendimento quântico máximo (Fv/Fm) e o 

conteúdo pigmentar, e em laboratório, foi também avaliada a taxa de crescimento. O 

experimento em condições controladas de laboratório consistiu de três fases: (i) 

gradiente de temperatura; (ii) onda de calor (+5 °C) de 5 dias; e (iii) recuperação (- 4 

°C) de 5 dias. Os dados moleculares permitiram afirmar que as duas populações 

pertencem à mesma espécie. Não foram detectadas diferenças nos fatores derivados 

da fluorescência entre os indivíduos das duas populações avaliadas em campo, 

sugerindo aclimatação. Contudo, foram detectadas diferenças ao longo das três fases 

experimentais. A análise do conteúdo pigmentar em campo evidenciou que os 

indivíduos da população de Niterói (região mais quente) tinham mais clorofila a do 

que os indivíduos de Arraial do Cabo (região mais fria). No entanto, indivíduos da 

população de Niterói, quando cultivados em 21 °C, mostraram valores menores de 

pigmentos. As diferenças observadas sugerem ecótipos. Em conclusão, conforme o 

planeta se torna mais quente e eventos extremos climáticos se tornam mais frequentes, 

a probabilidade de ocorrência de ondas de calor é maior. Dessa forma, U. fasciata de 

Arraial do Cabo mostro melhor resposta fisiológica aos efeitos da onda de calor, o que 

lhe pode conferir maior capacidade de competição para superar estresses térmicos. 

 

PALAVRAS-CHAVE: Aquecimento global, clorofila, eventos extremos, 

fluorescência, Fv/Fm, onda de  calor, PAM, pigmentos, ressurgência, temperatura. 
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 Chapter 1 

 
General introduction 

 
Introdução geral 

 

BACKGROUND 

Temperature 

Anthropogenic climate change is any change in climate caused by the effect of 

human activity, such as the increase of greenhouse gases in the atmosphere. The 

magnitude of anthropogenic global climate change is currently considered irreversible 

at human time scales (Turra et al. 2013). Global warming is one of the major 

processes resulting from climate change in the marine environment. The warming has 

been confirmed by ocean temperature data recorded in recent years (Field et al. 2014, 

Vergés et al. 2014). A rise of 2-4 °C from the average temperature of the planet, 

including the oceans is speculated to 2100 (Field et al. 2014, Vergés et al. 2014). 

Temperature dramatically influences biological processes, acting from 

molecules to the whole biota (Turra et al. 2013, Ferreira et al. 2014). Thus, global 

warming is expected to produce major changes in the marine environment, such as 

changes in the distribution and abundance of species and also changes in the structure 

of communities, including local extinctions (Harley et al. 2012, Turra et al. 2013, 

Ferreira et al. 2014). Hereof, recent studies show that climate change is a major threat 

to marine macroalgae (Wernberg et al. 2011, Harley et al. 2012, Ferreira et al. 2014). 

Marine macroalgae are key components of benthic marine ecosystems and 

their abundance and diversity have fundamental implications for ecosystem services 

and life in the coastal zone (Dayton and Tegner 1984). Although some macroalgae 

species have shown high tolerance, or even have benefited from, the global warming 

increase in temperature tends to bring drastic changes to benthic communities 

(Mayer-Pinto et al. 2012). Abiotic ecological processes influence marine macroalgae, 

however, we still lack knowledge on how distinct temperatures promote population 

structure, geographic differentiation and acclimation/adaptation (Poloczanska et al. 

2013). 
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The effects of temperature on chemical reactions, molecular structures, and 

physiology of algae are well documented (see Raven and Geider 1988, Davison et al. 

1996), although not so well elucidated. The gaps in knowledge are attributed to the 

difficulty in isolating the factor temperature from other environmental factors 

(Oliveira et al. 2013). In most cases, due to effects on chemical and molecular levels, 

macroalgae are physiologically benefited by the increase in temperature (Davison 

1991, Wang et al. 2012). The increase in temperature may show no differences on 

physiology of macroalgae that have their maximum yield close to their physiological 

limit, which can wrongly suggest toleration of such a situation (Davison 1991, 

Pearson and Davison 1996, Necchi 2004, Chaloub et al. 2010).  

Species naturally exposed to a wider temperature range between summer and 

winter (temperate species) generally have a higher thermal tolerance when compared 

to individuals from environments with lower annual thermal amplitude (tropical 

species) (Padilla-Gamiño and Carpenter 2007). At a smaller scale, marine species that 

occur in habitats characterized by large temperature variations (e.g., supra and 

mesolittoral) tend to live closer to their physiological temperature limits, so they may 

be more vulnerable to global warming than species less tolerant to temperature rising, 

such as those present on the infra-littoral (Stillman 2003, Ferreira et al. 2014). Under 

a background of global warming, organisms living close to their physiological limits 

are likely to be the first to be affected (i.e., tropical species habiting mesolittoral, e.g., 

species of the genus Ulva). 

 

Ulva spp. 

Among marine macroalgae, Ulva spp. is probably the most studied genus, due 

to its cosmopolitan distribution and easy collection (inhabiting the upper mesolittoral) 

(Joly 1965, Villaça et al. 2010). Ulva species have prominent ecological and 

economic importance such as applications in bioremediation (Neori et al. 1991, 

Vijayaraghavan and Joshi 2014, Oliveira et al. 2016), production of noxious blooms 

(Kong et al. 2011, Wang et al. 2011, Guidone and Thornber 2013), study of the 

bacterial-algae interaction (Provasoli and Pinter 1980), as bioindicators of 

eutrophication conditions (Kozhenkova et al. 2006), potential source of biofuels (Li et 

al. 2013), and as a source of food (Mabeau and Fleurence 1993). Ulva species also 

produce bioactive molecules with biomedical applications on cancer and other 

therapies (Ryu et al. 2013, Wang et al. 2013). Moreover, Ulva species are also often 
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used as a model organism in studies of photosystem II fluorescence, photochemistry, 

algal productivity (Beer et al. 2000, Longstaff et al. 2002, Liu et al. 2012), and 

temperature (Rautenberger and Bischof 2006, Chaloub et al. 2010, Teichberg et al. 

2010). 

Temperature is one of the most important factors in the metabolism of Ulva 

spp. (Steffensen 1976), where an increase of 5 °C showed to be harmful and an 

increase of 10 °C lethal (Steffensen 1976, Fortes and Lüning 1980). Thus, the optimal 

temperature for Ulva growth often coincides with the average temperature of the 

environment (Steffensen 1976, Fortes and Lüning 1980, Han and Choi 2005). The 

temperature decrease of 5 °C, albeit harmful, has been shown to stimulate 

reproduction in Ulva fasciata (Mohsen et al. 1972) and U. pertusa Kjellman (Han and 

Choi 2005). No spore release was observed when temperatures dropped by 10 °C 

(Han and Choi 2005). Mohsen et al. (1972) cultivated individuals of U. fasciata from 

the Mediterranean Sea, in laboratory under a temperature gradient of 15 - 35 °C and 

observed that: i) maximum growth occurred at 25 °C (same as local average); ii) a 

temperature drop of 10 °C promoted reduction of mass and total nitrogen; iii) the 

temperature of 35 °C was harmful; and iv) gamete formation occurred at 15 °C. 

Another work in which U. fasciata from India was cultured on a temperature gradient 

(15-35 °C), the maximum growth was observed between 25 °C and 30 °C (the local 

average was 25 °C), and the treatment at 35 °C was harmful (Mantri et al. 2011). 

Although widely studied, the genus Ulva currently forms a large species 

complex. Two of the first molecular studies pointed out that Linneaus was right: the 

genus Ulva grouped with the genus Enteromorpha (until then distinct), and the two 

genera were merged (Hayden et al. 2003, Shimada et al. 2003). Shimada et al. (2003) 

when analyzing specimens from Japan, separated U. fasciata and U. lactuca Linneaus 

based on molecular data. Nevertheless, the existence of inconsistencies in the 

taxonomy of U. lactuca around the world was warned: many specimens that were 

referred to U. lactuca were receiving the wrong epithet while specimens belonging to 

the true U. lactuca would be erroneously receiving other epithets (Butler 2007). After 

this alert, O’Kelly et al. (2010) stated, based on molecular data, that U. fasciata from 

Hawaii (USA) should be referred to as U. lactuca. After Butler (2007) and O’Kelly et 

al. (2010), several articles considered both species (U. fasciata and U. lactuca) as a 

single entity (U. lactuca). Concomitantly, two papers using on molecular data 

indicated probable taxonomic errors regarding U. lactuca in Australia, (Kraft et al. 
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2010, Kirkendale et al. 2013). However, in a later review, Comarci et al. (2014) based 

on Butler (2007) and O’Kelly et al. (2010) suggested that only U. fasciata from 

Hawaii should be referred to U. lactuca, and therefore, while new studies are not 

published, U. fasciata and U. lactuca should be considered as two distinct and valid 

species. It is noteworthy that U. fasciata and U. lactuca can co-occur in the same site 

in Brazil (Yoneshigue 1985). 

Ulva fasciata Delile has isomorphic diplobiont life history (Figure 1.1) and the 

phases show similar physiological performance (Beach et al. 1995, Wichard 2015). 

Diploid sporophytes produce haploid zoospores by meiosis. These zoospores, when 

under favorable conditions, migrate towards the substrate, where will settle and give 

rise to gametophytes that produce gametes by mitosis. After the fertilization of 

gametes and formation of the zygote, the sporophyte will be generated, restarting the 

historic (Beach et al. 1995, Wichard 2015). U. fasciata has simple morphology (two 

thin layers of cells), abundance and global distribution, including the whole Brazilian 

coast (Joly 1965, Kraft et al. 2010, Villaça et al. 2010). Because of these 

characteristics, the species can be used as a model in physiological studies that take 

into account factors such as temperature. 
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Figure 1.1: The isomorphic diplobiont life history of Ulva spp.. The green color of the 

thalli represents vegetative region; the brownish color represents a fertile region. 

Dashed arrows indicate rare parthenogenic events. (+) and (−) indicate mating types 

(mt) (Wichard 2015). 

 

Differences in physiological responses of a species and its populations may 

result from processes of acclimation or adaptation. However, physiological studies in 

natural populations alone, do not allow the distinction between these processes, since 

several environmental variables could mask possible conclusions about the effects of 

certain abiotic factors (Plastino and Guimarães 2001, Ferreira et al. 2014). Therefore, 

to study populations in nature together to laboratory-controlled temperature variation 

is crucial to determine patterns of physiological response by individuals from 

different populations in response to increase temperature of 4 °C. The data obtained in 

this study, using Ulva fasciata as a model organism, should help better predict the 

effects of rising temperatures on the future of marine communities under a global 

warming scenarios. 

 

OBJECTIVES 

This study aimed to analyze the effect of temperature on individuals from two 

tropical populations of Ulva fasciata occurring in thermally distinct environments. 
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Although both regions are located in a tropical environment, one is naturally colder 

than the other due to a coastal deep-water upwelling phenomenon. By analyzing 

populations occurring under different thermal conditions, we intend to investigate 

their local acclimation and adaptation to distinct climate scenarios. 

 

SPECIFIC OBJECTIVES 

• Confirm that Ulva fasciata individuals from two Brazilian coast 

regions are the same species; 

• Identify in situ physiological differences between two populations with 

different thermal characteristics, based on photosynthetic performance and pigment 

content; 

• Evaluate growth rates, chlorophyll a fluorescence and pigment content 

of specimens of two populations when exposed to a temperature gradient (16 - 31 °C) 

under laboratorial controlled conditions; and 

• Evaluate the effects caused by a sudden temperature increase 

(simulated heat wave) and the recoverability of specimens from distinct populations, 

considering growth rates and maximum quantum yield as dependent variables. 

 

HYPOTHESES 

• Individuals of Ulva fasciata from two populations with distinct thermal 

characteristics have different photosynthetic performances and pigment content when 

evaluated in the field; 

• Individuals of Ulva fasciata from two distinct populations with distinct 

thermal characteristics respond differently when subjected to the same controlled 

conditions in the laboratory, characterizing themselves as ecotypes. 

 

GENERAL APPROACHES  

Specimens 

Ulva fasciata was collected on the upper mesolittoral zone, at two thermally 

distinct sites on the Rio de Janeiro State (RJ) coast, Brazil (Niterói and Arraial do 

Cabo). Five transects, three meter long each, were placed perpendicularly to the 

coastline, three meters away from each other and over the target population. On each 

transect one healthy individual was collected from four randomly selected points 



	
	

16	

totaling 20 specimens per population. After macroscopic epibionts were removed, 

thalli were transported to the laboratory in seawater soaked paper inside a thermal 

box. Voucher specimens from Niterói and Arraial do Cabo populations were 

deposited in the herbarium of the Institute of Bioscience, University of São Paulo 

(SPF-57878 and SPF-57877, respectively). 

 

Niterói site (NI) 

The NI population refers to the Itacoatiara beach (22°58’ S and 43°02’ W) and 

was sampled on 5th February 2015 and then on 8th February 2016. Samples from 2015 

were used in laboratory experiments while samples collected in 2016 were sued to 

obtain field data. Itacoatiara beach has very low anthropogenic impact including the 

absence of any nearby sewage influence (Carneiro et al. 1987, Teixeira et al. 1987, 

Catanzaro et al. 2004). However, small levels of localized impact by sunbathers are 

occasionally observed, mainly during the summer. The sea surface temperature ranges 

from 21 to 28 °C along the year, averaging 24 °C (Marazzo and Nogueira 1996, 

Catanzaro et al. 2004). This site is characterized as a non-upwelling region. 

 

Arraial do Cabo site (AC) 

The AC population refers to Prainha beach (22°58’ S and 42°02’ W) and was 

sampled on 4th February 2015 and on 7th February 2016. Samples collected in 2015 

were used in laboratory experiments while collections from 2016 were used to obtain 

field data. The region is characterized by the occurrence of the southeastern Brazil 

coastal upwelling phenomenon (Valentin et al. 1987). This upwelling is a result of the 

combination of northeast winds, the proximity of the continental shelf break, an 

abrupt change in coastline, and also the Earth rotation itself (Valentin et al. 1987). 

Low temperatures and high amounts of nutrients characterize the upwelled waters. 

When the upwelling phenomenon is on its maximum (January-March) sea surface 

temperatures reach values as low as 15 °C. The maximum sea surface temperature in 

the AC site is 28 °C and the annual average is 20 °C (Guimaraens and Coutinho 1996, 

2000). The algal collection in this site occurred during the austral summer when 

upwelling is the strongest (Valentin et al. 1987). 
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Chapter 4 
 

Final considerations 

 
Considerações finais 

 

The main aim of this study was to analyze the effect of temperature on 

physiological processes of individuals from two tropical populations of Ulva fasciata 

occurring in thermally distinct environments using both field and laboratory 

controlled experiments. Molecular data confirmed that the two populations belong to 

the same species, with low genetic differentiation between them. In the laboratory, 

specimens were cultured under a temperature gradient (16 °C, 21 °C, 26 °C and 31 

°C) followed by a heat wave (+ 4 °C) and recovery period (- 4 °C). We analyzed 

growth rates, fluorescence and pigment content. In the field, we analyzed fluorescence 

and pigment content from both populations within a 24-hour time difference between 

assessments. By comparing populations occurring under different thermal conditions, 

we intended to discuss and generate knowledge about thermal acclimation or 

adaptation of this species under warming scenarios. Novel data on how different 

organisms respond to distinct thermal conditions, such as those presented in this 

study, have received renewed interested due to our need to better understand the 

relationship among population dynamics, the effect of local (e.g., the upwelling 

phenomenon) and global processes (e.g., global warming) and also to calibrate 

ecological models (Guimaraens et al. 2005, Cheung et al. 2009, Harley et al. 2012). 

The analysis of field data evidenced more chl a in individuals of U. fasciata 

from Niterói (warmer site) than individuals from Arraial do Cabo (colder site), 

although no differences in fluorescence parameters could be detected between both 

populations. The differences in chl a concentration might be due to differences in 

turbidity between sites. The upwelled waters have less turbidity (Valentin et al. 1987), 

and then, there is more solar irradiance available for benthic organisms, when they are 

submerged, and an inverse correlation between pigment content and irradiance has 

been observed (Ramus et al. 1976a, 1976b, 1977). However, the water temperature 

could also be affecting the chl a concentration, since low temperature can be damage 
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to Ulva species, promoting a reduction on pigment content (Mohsen et al. 1972, 

Mantri et al. 2011). 

The similar values of fluorescence-derived parameters contents suggest that 

these two populations were well acclimated to field conditions at the moment of 

measurements. We speculate that both populations being located at similar latitude, 

thus, under similar solar irradiance, could explain this pattern. In macroalgae exposed 

to extreme abiotic fluctuations and conditions, especially those occurring in 

mesolittoral in tropical areas, the photoperiod is determinant to photosynthesis 

performance (Henley and Ramus 1989, Plastino and Oliveira 2002). The comparison 

between our data to the literature suggests that the putative differences between both 

collecting sites are not enough to create detect disparity in photosynthetic 

performances. Ulva spp. was described to adjust its chlorophyll content to irradiance 

variations linked to location and time of the year (Merceron et al. 2007). Although we 

have examined only once, our collection occurred when the upwelling phenomenon is 

described to be on its maximum (January – March) (Valentin et al. 1987). Because of 

that, we expected physiological differences to be more pronounced between 

populations.  

Although no differences could be detected for fluorescence field data, there 

were differences on maximum quantum yield between individuals from NI and AC 

populations of U. fasciata considering specimens in all three laboratorial experimental 

phases: the temperature gradient, the heat wave simulation, and the recovery period. 

The fluorescence data for laboratory experiments were opposite to what we expected 

for heat wave and recovery results. Results strongly suggested that individuals from 

AC have higher competitive ability to overcome thermal stress (warming) than 

individuals from NI, which can have implications for the distribution and 

conservation of different genetic stocks in a warmer future. Furthermore, we expected 

that individuals from NI would obtain higher photosynthetic performance at higher 

temperatures, considering that the NI population experiences higher temperatures 

along the year due to the absence of the upwelling phenomenon and, also because the 

optimal temperature of Ulva often coincides with the environment average 

(Steffensen 1976, Fortes and Lüning 1980, Han and Choi 2005). Indeed, maximum 

growth rates for individuals from Niterói were observed at 26 °C (2 °C higher than the 

24 °C annual average), however, for individuals from AC, the maximum growth rates 
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occurred at 26 °C and 31 °C (6 °C and 11 °C higher than the 20°C annual average, 

respectively).  

During heat wave, however, maximum growth rates of U. fasciata were 

observed for individuals from AC (at 30 °C), while the temperature of 35 °C did not 

promote growth in both populations. In addition, the maximum quantum yield data 

revealed negative physiological effects on U. fasciata during the heat wave simulation 

being more pronounced during the night than during the day. The period of the night 

promoted a sharp drop in Fv/Fm values, which was not recovered when returned to 

light. This pattern was even more pronounced in individuals previously acclimated to 

higher temperatures. Similar results have been previously observed for terrestrial 

alpine shrubs (Buchner et al. 2013), therefore, the ameliorating effects to heat stress 

could be phylogenetically widespread within the autotrophs. However, due to the lack 

of studies supporting this affirmation, generalizations should be considered with care. 

Decrease in temperature induced U. fasciata gametes production in both NI 

and AC populations in laboratory experiments. We suppose all the individuals used in 

experiments were gametophytes due to the swimming orientation of the propagules 

and the lack of plantlets growing in vials’ walls. Lower temperature is considered an 

environmental stress for tropical species, thus formation of spores and gamete release 

can be considered an adaptation to avoid unfavorable environmental conditions such 

as the decrease in temperature for tropical species, in other words, an escape strategy. 

In conclusion, we could not detect drastic physiological differences when 

characterizing individuals of U. fasciata from two thermally distinct populations of 

Rio de Janeiro State coast. However, when individuals from these two populations 

were brought to laboratory and cultivated under similar conditions, physiological 

differences could be detected. As the planet becomes warmer and extreme weather 

events become more frequent (Field et al. 2014) the likelihood that 1 - 4 °C warmer 

sites will experience 4 - 5 °C heat waves are more likely (Smale and Wernberg 2013, 

Field et al. 2014, Hobday et al. 2016a). U. fasciata from AC showed better 

physiological responses to the effects of heat wave. In a global warming scenario, 

gradual changes in the spatial distribution of ecotypes of U. fasciata along the two 

collecting sites is likely to occur due to the observed differences in thermal responses 

between the two populations. Further studies should help better understand 

phenotypic and genotypic components of these responses of U. fasciata and also 
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improve our knowledge on physiological ecology of organisms inhabiting regions 

impacted by upwelling waters.  
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