• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.3.2017.tde-27062017-153407
Document
Author
Full name
Luís Filipe Fragoso de Barros e Silva Rossi
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2017
Supervisor
Committee
Cordero, Arturo Forner (President)
Tonidandel, Flavio
Duarte, Marcos
Moura, Rafael Traldi
Silva, Paulo Sergio Pereira da
Title in Portuguese
Desenvolvimento e implementação de um algoritmo bioinspirado para o controle de marcha em robôs bípedes.
Keywords in Portuguese
Algoritmos
Controle ótimo
Robôs
Robótica
Abstract in Portuguese
Os dispositivos robóticos bípedes tem um grande potencial de aplicações tanto comerciais como para pesquisa. Dentre as presentes lacunas existentes que limitam a sua aplicabilidade prática tem um destaque especial a incapacidade de realizar uma marcha estável, robusta, versátil e eficiente no ponto de vista energético. No presente estado da arte, existem três principais estratégias de abordagem para o problema e algumas de suas implementações obtiveram sucesso em satisfazer pelo menos um dos requisitos listados, porém nunca todos eles de forma simultânea. Dentro deste cenário, este trabalho se propôs desenvolver um novo critério de estabilidade para marcha bípede que possibilite marchas versáteis, robustas e eficientes. Inicialmente foi realizada uma avaliação de diversos simuladores de código aberto e o Simbody foi definido como o mais apropriado para ser utilizado no desenvolvimento das simulações dinâmicas realizadas nesta Tese. Uma toolbox de MATLAB para auxiliar nos cálculos cinemáticos e dinâmicos foi desenvolvida em conjunto com um módulo de Inter Process Communication para realizar a comunicação entre o MATLAB e o simulador. Foi realizado um estudo da marcha bípede, implementando e avaliando as estratégias do Zero Moment Point e do Limit CycleWalking. Este estudo resultou numa proposta de controlador não linear comutado para robôs em Ciclo Limite. Na procura de um novo critério de estabilidade foi abordado o estudo da marcha humana. Um procedimento para identificar os mecanismos que controlam a estabilidade da marcha humana é analisar a mesma sob perturbações, como tropeços, ou na ultrapassagem de obstáculos. Na literatura existiam bastantes referências sobre este tema, porém, faltou uma comparação da marcha humana sob diferentes condições de visão com a marcha de robôs que utilizam o ZMP. Foi descoberto que os seres humanos privados de visão têm uma estratégia de ultrapassagem de obstáculos semelhante a um robô com ZMP. A partir do conhecimento adquirido deste estudo é proposto e formulado um novo critério de estabilidade, o Step Viability, inspirado na marcha humana e no conceito de N-Step Capturability. O Step Viability baseia-se na definição de restrições que garantem a viabilidade de realizar passos futuros que garantam a convergência para um ponto fixo em tempo finito. O critério foi implementado utilizando-se uma otimização de trajetória multi-fase. Múltiplos testes foram realizados utilizando-se o modelo Compass Gait com diferentes parâmetros (distribuição de massa, torque máximo disponível), com diferentes inclinações e com vários padrões de marcha desejados (periódico, aumento uniforme e até aleatório não periódico). Adicionalmente o critério foi testado em um modelo de 5 segmentos, sintetizando uma marcha com variação tanto linear quanto aleatória. O critério foi bem-sucedido na geração de uma marcha estável em todos os testes e os resultados foram consistentes. A marcha pode ser sintetizada completamente desacoplada do critério de estabilidade, e o modelo renunciou automaticamente do padrão desenhado em favor da estabilidade.
Title in English
Development and implementation of a bioinspired algorithm for the control of the gait on biped robots.
Keywords in English
Biped gait
Biped robot
Control
Limit cycle walking
Stability
Zero moment point
Abstract in English
Bipedal robots present a great potential for both commercial and research applications. However, there are some drawbacks that limit their applicability in the real world. The most prominent is the inability to perform a stable, robust, versatile and efficient gait. There are three main state of the art strategies to approach this problem. However, none of them has been successful in satisfying all the listed requirements simultaneously. In this context, this work conducted a study of bipedal gait, both in humans and robots, in order to implement and evaluate existing stability strategies. As a first step, an evaluation of several open source simulators was performed and Simbody was chosen as the most adequate for the dynamic simulations carried out in this Thesis. A MATLAB toolbox to help in the kinematic and dynamic calculations was developed in conjunction with a module of an Inter Process Communication to perform the communication between MATLAB and the simulator. A bipedal gait study was carried out, implementing and evaluating Zero Moment Point and Limit Cycle Walking strategies. This study resulted in a proposed nonlinear switched controller for Limit Cycle robots. In the search for a new stability criterion, human gait was analyzed. A procedure to identify the mechanisms controlling human gait stability is to analyze gait under disturbances such as stumbling or overcoming obstacles. In the literature, there were many references on this subject, however, there was a lack of comparison of the human gait under different vision conditions with the gait of robots that use the ZMP. It was found that vision-deprived humans have an obstacle crossing strategy similar to robots with ZMP. From the knowledge acquired from this study, it is proposed a novel stability criterion, the Step Viability, inspired on human gait and the N-Step Capturability concept. The Step Viability is based on the definition of constraints that ensure the viability of performing future steps that guarantee convergence to a fixed point in finite time. The criterion was implemented using a multi-phase trajectory optimization. Multiple tests were performed using the Compass Gait model with different parameters (mass distribution, maximum available torque), with different slopes and with several desired gait patterns (periodic, uniform increase and even random non-periodic). Additionally, the criterion was tested in a 5-links model, synthesizing a gait with both linear and random velocity variation. The criterion was successful on generating a stable gait in all the tests and the results presented consistent data. The gait could be designed completely uncoupled from the stability criterion, yet the model automatically renounced to follow the desired pattern in favor of maintaining stability.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2017-06-30
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.