
FELIPE LOPES DE SOUZA 
  

BAYESIAN ESTIMATION OF DIRECTIONAL WAVE SPECTRUM 
USING VESSEL MOVEMENTS AND WAVE-PROBES 

 

São Paulo 
2019 

 



FELIPE LOPES DE SOUZA 
 

Thesis presented to the Escola Politécnica  
Universidade de São Paulo, to obtain the 
degree of Doctor of Science. 

BAYESIAN ESTIMATION OF DIRECTIONAL WAVE SPECTRUM 
USING VESSEL MOVEMENTS AND WAVE-PROBES 

 

São Paulo 
2019 

 



 

FELIPE LOPES DE SOUZA 
  

BAYESIAN ESTIMATION OF DIRECTIONAL WAVE SPECTRUM 
USING VESSEL MOVEMENTS AND WAVE-PROBES 

 

São Paulo 
2019 

 

Thesis presented to the Escola Politécnica 
Universidade de São Paulo, to obtain the 
degree of Doctor of Science. 
 
 
Research Area:  
Mechanical Engineering 
Control and Automation 
 
 
Advisor: Prof. Dr. Eduardo Aoun Tannuri 



 

Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio convencional ou eletrônico, para 

fins de estudo e pesquisa, desde que citada a fonte. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Catalogação-na-publicação 
 

 
de Souza, Felipe Lopes  

BAYESIAN ESTIMATION OF DIRECTIONAL WAVE SPECTRUM USING 

VESSEL MOVEMENTS AND WAVE-PROBES / F. L. de Souza – versão corr. -- São 

Paulo, 2019.  
254 p. 

 
Tese (Doutorado) - Escola Politécnica da Universidade de São Paulo.  

Departamento de Engenharia Mecatrônica e de Sistemas Mecânicos. 
 

1.Espectro Direcional 2.Estimação Bayesiana 3.Wave-Probe  
4.Posicionamento Ótimo de Sensores I.Universidade de São Paulo.  
Escola Politécnica. Departamento de Engenharia Mecatrônica e de Sistemas 
Mecânicos II.t. 

 
 



 

ACKNOWLEDGEMENT TO FINANCIAL SUPPORTS 

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal 

de Nível Superior - Brasil (CAPES) - Finance Code 001. The research grant conceded 

by CAPES was indispensable for the development of this work. 

The other resources for this research were provided by the Tanque de Provas 

Numérico da Universidade de São Paulo (TPN-USP) – Numerical Offshore Tank of 

the University of São Paulo, in a partnership with the Brazilian petroleum company 

Petrobras and the Norwegian petroleum company Equinor, previously called Statoil, 

and was financed inside the context of the project “Wave Measurements Aboard FPSO 

Unit in Peregrino Field”. 

  



 

ABSTRACT 

The exploration of oil and natural gas in offshore fields has motivated advanced 

researches about the environmental forces in the oceans. The waves, in particular, 

have been measured using different techniques, as meteorological buoys, with recent 

works proposing motion-based estimations procedures using the vessel, or a floating 

facility, in analogy with the buoys, as a wave sensor. Even though this approach has a 

number of benefits, the vessels, as dynamic systems, have a cut-off frequency that 

degrades the estimation of high-frequency waves, which are important for non-linear 

drift effects predictions. In order to solve this problem, it is proposed the incorporation 

of wave-probes – gauges used to measure the wave elevation in a point – installed on 

the hull of the vessel, based on literature suggestions and simple analytical arguments, 

using the Bayesian statistics as the standing point of a more complete estimation 

algorithm. In order to incorporate the measurements of the wave-probes, an extended 

linear model is proposed, showing that only corrections for the vertical motions of the 

vessel are necessary. The ideal installation positions of the wave-probes are defined 

using as base the utility Bayesian optimal design of experiments, which is shown to 

guarantee an upper bound for other optimal criteria, with the ‘Elbow Criterion” defining 

the optimal number of sensors to be employed. Based on the previous solutions, other 

proposals are made: a heuristic to solve the optimal sensor placement problem and an 

optimal prior exploring the probabilistic nature of the algorithm. Finally, all the 

proposals are tested numerically and experimentally, with a vessel model in a towing 

tank, concluding that the addition of the wave-probes is able to improve not only the 

estimation of high-frequency waves, but also the estimation over a large range of 

frequencies.  For unimodal seas with intermediate draft, the addition of just one wave-

probe reaches approximately a 37%-55% improvement in the energy parameter 

estimations - 𝐻𝑆 and 𝑇𝑃; the addition of two or more probes reaches approximately a 

62%-65% improvement in the same parameters estimations; the addition of four 

probes achieved the best cost benefit for mean direction estimation; and the addition 

of six probes is shown to be the recommendation for the best high-order directional 

estimation in the entire range of the spectrum. 

Key-words: Directional Spectrum, Bayesian Estimation, Wave-Probe, Optimum 

Sensor Placement. 



 

RESUMO 

A prospecção de óleo e gás natural em campos offshore tem motivado pesquisas 

avançadas sobre as forças ambientais em oceanos. As ondas, em particular, têm sido 

medidas através de diferentes técnicas, como boias meteorológicas, com trabalhos 

recentes propondo técnicas baseadas em movimento para que os navios, em analogia 

com as boias, possam ser usados como sensores de onda. Apesar desse método ter 

uma série de vantagens, os navios, como sistemas dinâmicos, têm uma frequência de 

corte que dificulta a estimação de ondas de altas frequências, que são importantes 

para a previsão de efeitos de deriva não-lineares. Para resolver esse problema, 

sugere-se a adição de wave-probes instalados no costado da embarcação, usando 

como justificativas sugestões da literatura e simples argumentos analíticos, com 

estatística Bayesiana como fundamentação para um algoritmo de estimação mais 

completo. Para que as medidas dos wave-probes possam ser incorporadas, um 

modelo linear estendido é proposto, mostrando que apenas correções para os 

movimentos verticais do navio são necessárias. A posição ideal de instalação dos 

wave-probes é definida usando como base o projeto ótimo de experimentos 

Bayesianos por utilidade, mostrando que o mesmo garante o limite superior de outros 

critérios de optimalidade, com o “critério cotovelo” definindo o número ótimo de 

sensores a serem usados. Com base nas soluções anteriores, outras propostas são 

feitas: uma heurística para resolver o problema de posicionamento ótimo dos sensores 

e uma priori ótima, explorando a natureza probabilística do algoritmo. Ao final, todas 

as propostas são testadas numericamente e experimentalmente, utilizando um 

modelo em escala em um tanque de provas, concluindo que a adição de wave-probes 

é capaz de melhorar não só a estimação de ondas em alta-frequência, mas também 

a estimação em uma ampla gama de frequências. Para mares unimodais, com calado 

intermediário, a adição de apenas um sensor alcançou uma melhoria de 

aproximadamente 37-55% na estimação dos parâmetros relacionados à energia - 𝐻𝑆 

e 𝑇𝑃; a adição de dois ou mais sensores alcançou melhorias de 62-65% na estimação 

de tais parâmetros; a adição de quatro sensores alcançou o melhor custo benefício 

para estimação da direção média; e a adição de seis sensores se mostrou ideal para 

estimação de ordem elevada do espectro direcional de energia. 

Palavras-chave: Espectro Direcional, Estimação Bayesiana, Wave-Probe, 

Posicionamento Ótimo de Sensores. 
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1. INTRODUCTION 

The economical exploration of seas, mainly oil and natural gas in offshore fields, 

has motivated advanced studies and researches about oceanic systems and 

environmental forces acting on them. 

In order to reduce operating costs, those researches are conducted aiming two 

main goals. The first one is the improvement of the systems design, acquiring statistical 

bases for scenario modelling, validating mathematical theories and validating 

experimental model tests in towing tanks. The second one is the amplification of safe 

operating windows, using real-time monitoring systems capable of predicting dynamic 

behaviors. The correct modelling of environmental forces plays a major role in both. 

 Oceanic systems – mostly moored offshore floating facilities – experiences 

forces from wind, current and waves, and a number of models were proposed to 

describe them properly, with different levels of complexity. The in loco measurement 

of those environmental actors, however, has always been a challenge. 

The waves, in particular, have been measured using meteorological buoys, 

satellite imagery and radar reconstruction, but all of those solutions have problems, 

respectively: difficult maintenance and high rate of damage after extreme conditions; 

poor resolution around interesting regions; and high sensibility to installation errors with 

high maintenance and acquisition costs. 

The meteorological buoys are floating bodies from which wave induced 

movements are taken, and are the most common method of wave monitoring. With the 

recordings of the movements, it is possible to recover the properties of the wave that 

excited the body and estimate the directional sea spectrum by the methods described 

in (NOAA, 1996). The inherent drawbacks of this method are: firstly, it is, usually, a 

moored system, which means that the depth of the region is a constraint, unless drifting 

buoys are used; secondly, this kind of system has a high rate of failures during stormy 

weather and extreme external load conditions, as the study of (SHIGEMURA, et al., 

1988) shows, for a buoy system in Japan. 

The satellite imagery method, on its turn, was conceived as a climate monitoring 

system, returning global statistics of the oceans in areas of thousands of kilometers 

squared. This kind of system may be useful to predict the main sea components acting 
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on a floating facility inside its monitoring area, since this component varies slowly within 

the large region, but probably will not be able to provide accurate information about 

secondary components that are also important for the facility dynamic response. 

Lastly, the radar method utilizes an on-board system to monitor the wave 

elevation pattern around the offshore installation. This approach presents clear 

advantages over the two previous methods; notwithstanding, the installation and 

maintenance of the antenna is a serious problem and can potentially degrade critically 

the measurements. Even though the method is able to reconstruct entirely the 

directional spread of the sea, other known problem with radars is their poor energy 

prediction capability, since it depends on the correct measurement of the waves 

amplitude, which is not done easily due to improper scaling, (TRAENKMANN, 2008). 

Figure 1 illustrates those three methods. 

 Figure 1 – Meteorological buoy (a), radar (b) and satellite imagery (c). 

 
(a) (b)   (c) 

 Source: (FURG, 2008) (a), (TRAENKMANN, 2008) (b), (NOAA, 2016) (c). 

Recent works in the wave estimation area, however, were able to solve the 

problems presented using the oceanic system itself as a measurement buoy, which is 

called wave-buoy analogy. In this way, motion sensors already installed on the 

facilities, i.e., inertial units, can be used, reducing installation and maintenance costs; 

guaranteeing the maximum resolution in the area of interest – the vessel itself; and 

avoiding damage while monitoring extreme events.  

Despite the improvements, the dynamical behavior of Very Large Crude 

Carriers, VLCCs, one of the most used vessels for floating offshore facilities, presents 
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a low cut-off frequency, around eight seconds, making them unable to predict an 

important range of the wave spectrum, responsible for effects like drift forces. 

Therefore, the methods are still not satisfactory for this important kind of vessel. 

This thesis proposes a possible solution to this drawback, using wave-probes – 

gauges used to measure the wave elevation in a point – installed on the hull of the 

oceanic system as a complementary measuring equipment. 

The approach is justified by the asymptotical behavior of waves encountering a 

free floating system after the cut-off frequency, in which the system starts to behave 

like a wall, reflecting the wave encountering it, i.e., amplifying the wave-elevation 

measurement. Hence, the proposal is able to incorporate high frequencies in the 

spectra estimation without incurring the problems presented so far.  

1.1. Motivation 

As already stated, the proposed solution improves the motion-based estimation 

method, allowing a better estimation of the high-frequency components of the wave 

spectrum, and, consequently, of the drift forces acting on the vessel. 

The correct prediction of the drift forces is important for the mooring design of 

anchored systems, since they can induce both a constant force acting on the system, 

mean drift load, and a low-frequency harmonic component capable of inducing 

resonance, slow drift load. Furthermore, a real-time prediction of those forces can 

anticipate movements during high-risk operations. 

Other systems that can benefit from better estimations are dynamic positioning 

systems (DP), which use global positioning systems (GPS) and thrusters commanded 

by a control law to guarantee a fixed vessel position; mainly in deep seas in which 

conventional mooring is not possible. It is known that a correct drift force prediction, 

used as a feed-forward compensator, is able to improve the DP control response, 

reducing the demanded power and increasing the safe operating window. 

Finally, it is important to emphasize that the proposal is feasible, from an 

operational point of view, because today there are microwave gauges capable of 

performing the measurement from distance, i.e., without being physically on the hull 

and in contact with the water surface, (RS AQUA, 2016) for example, Figure 2. This is 
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important in order to avoid disturb usual platform operations as off-loadings, which 

sometimes demands hull contact with other vessels, like tugboats. 

 Figure 2 – Example of microwave wave-probe. 

 
 Source: Adapted from (SCRIVENS, 2008). 

1.2. Objectives and Contributions 

The main objective of this thesis is the study of the incorporation of wave-probe 

measurements in the motion-based wave estimation method. To accomplish this, the 

work: 

1. Proposes a method to expand the wave-buoy analogy to incorporate wave-

probes, using an estimation algorithm based on Bayesian statistics; 

2. Proposes a method to select the best number and position of the wave-

probes, which can also be applied to select the best vessel motions to be 

used in the estimation; 

3. Validates all the propositions numerically and experimentally. 

During the research, other possible improvements were identified and 

incorporated as new contributions: 

1. Proposition of a new multi-objective optimization heuristic for optimal sensor 

placement, optimized for the particular problem; 

2. Proposition of an optimal prior for a given set of sea states. 
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1.3. Resources and Methods 

This study was financed in part by the Coordenação de Aperfeiçoamento de 

Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. The research grant 

conceded by CAPES was indispensable for the development of this work. 

The other resources for this research were provided by the Tanque de Provas 

Numérico da Universidade de São Paulo (TPN-USP) – Numerical Offshore Tank of 

the University of São Paulo, in a partnership with the Brazilian petroleum company 

Petrobras and the Norwegian petroleum company Equinor, previously called Statoil, 

and was financed inside the context of the project “Wave Measurements Aboard FPSO 

Unit in Peregrino Field”, coordinated by Prof. Alexandre Simos and by Prof. Eduardo 

Tannuri. The facilities are described by (TPN, 2016). 

The vessel dynamic behavior and the wave-elevation on the hull were obtained 

using the wave interaction analysis software Wamit®, running in the computational 

cluster structure provided by the laboratory. It uses the three-dimensional panel 

method to solve equations based on the potential theory. The equations and the theory 

underlining the computations are described by (WAMIT, 2015). 

The numerical simulations, development of optimization strategies and post-

processing of the experiments were conducted using the scientific computing platform 

Matlab®, which contains toolbox for statistical analysis and numerical optimization 

essentials for this work. This simplified the development of the algorithms. 

The experimental part was conducted in the TPN wave basin. The basin is 

capable of generating waves from its entire perimeter, and uses active wave 

absorption. The vessel movements in all degrees of freedom were measured by a high 

precision camera system monitoring reflective dummies on the hull. The basin is shown 

in Figure 3. 

The vessel model was provided by the Instituto de Pesquisas Tecnológicas 

(IPT) – Technological Research Institute. It is a Floating Production Storage and 

Offloading (FPSO) vessel unit based on a moored Very Large Crude Carrier (VLCC), 

with a scale of 1:90. Figure 4 shows the unit. 
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Lastly, the validation methods were based on different error criteria applied on 

the estimation of JONSWAP type spectrum with cosine-squared spread function, and 

are better explained in the sections Numerical Validation and Experimental Validation. 

 

 Figure 3 – Wave basin at TPN-USP. 

 
 Source: (MELLO, 2012). 

 

 Figure 4 – Vessel model provided by IPT. 

 
 Source: Photographed by Pedro Mello. 
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1.4. Structure of the Text 

The next chapters start with a revision of the literature in the area, in the section 

Literature Review, providing information about the historical development and the 

current research and methods to estimate directional sea wave spectra. References 

about wave-probes application and second order wave effects as feed-forward 

compensators are also listed, to emphasize their importance. 

The review is followed by the section Theoretical Background, which provides 

all the theory used in this work. It describes Wave Theory, and the statistical methods 

Bayesian Estimation, Clustering and Optimal Design of Experiments. 

After explaining the base theory, the work follows to the section Proposed 

Methods, which contains the contributions of the text to the area, being the kernel of 

the thesis. 

The methods proposed are then validated numerically and experimentally in the 

sections Numerical Validation and Experimental Validation. All the validating 

procedures are explained and justified, with benchmark comparisons in some cases. 

Complementary information and deductions are presented in appendixes, 

guaranteeing a full treatment of the problem without compromising the flow of the work. 

Finally, the thesis ends in the sections Conclusions and Proposals for Future 

Researches – An Unified Framework for Bayesian Estimation, summarizing the results 

of the thesis and providing insights for future researches in the area. 
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2. LITERATURE REVIEW 

Researches about experimental wave measurement have been conducted 

since the end of the second world war. The first attempts to measure waves in seas 

can be traced back to the works of Longuet-Higgins and his development of 

measurement buoys in 1946 (LONGUET-HIGGINS, 1946) apud (DARBYSHIRE, 

1961). Even the use of on-board measurement systems had already been described 

in works from Tucker in 1956, (TUCKER, 1956) apud (DARBYSHIRE, 1961), in which 

ship-borne pressure transducer were employed. 

 Although those early works were only concerned about the overall spectral 

energy in the sea, the directional spectrum estimation was put into perspective around 

1960, by works from (COTÉ, et al., 1960) apud (MITSUYASU & MIZUNO, 1976); and 

(LONGUET-HIGGINS, et al., 1963) apud (MITSUYASU & MIZUNO, 1976), who 

proposed the cosine-squared parametric form of the directional spread function, which 

is used until today. 

A parametric description of the spectrum of a fully developed sea was proposed 

a few years later by Pierson and Moskowitz, based on statistical theory, in its classical 

paper from 1964, (PIERSON & MOSKOWITZ, 1964); and in 1973, the JONSWAP 

parametric model was developed to model situations in which the wave spectrum had 

not yet reached the fully developed condition, (HASSELMAN, et al., 1973). 

Even though different estimations methods were used, mainly the Discrete Time 

Fourier Transform method and the parametric method, after Longuet-Higgins, the first 

proposal of a high-resolution method, capable of predicting the entire directional 

spread function and not only the principal direction, was given by Capon in 1969, who 

used the maximum-likelihood method to estimate seismic waves, (CAPON, 1969). 

The usage of vessel movements to improve the estimation capabilities is also 

found in pre-1980 works. Takekuma and Takahashi, in 1972, proposed the use of pitch 

movement measurements as an alternative to the ship-borne wave recorders, calling 

the new method “Reverse Operational Method” of sea spectrum estimation, although 

without considering the directional spectrum, (TAKEKUMA & TAKAHASHI, 1972). 

Pos-1980, estimation of the full directional spectrum became the standard 

practice. In the context of on-board measurements, (WEBSTER & DILLINGHAM, 
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1981) showed theoretically how it is possible to use a system of on-board sensors to 

estimate the directional spectra, as long as “the response amplitude operators are 

linear and have some directional dependence”. In the context of estimation algorithms, 

mostly for an array of wave-probes mounted in vessels with low interference in the 

domain field, e.g., catamarans and swat ships, the Maximum Likelihood Method (MLM) 

was applied to the problem of directional sea spectrum estimation by (ISOBE, et al., 

1984); the usage of the Maximum Entropy Principle was proposed by (KOBUNE & 

HASHIMOTO, 1986); and the usage of Bayesian Estimation was proposed by 

(HASHIMOTO & KOBUNE, 1988), which was said to be smoother than the MLM, 

mainly when there are more variables to estimate than equations relating it, and based 

on a general method proposed by Akaike some years earlier, (AKAIKE, 1980). 

In 1987, the MLM was applied to the directional spectrum estimation by using 

only vessel movements in the work of Hirayama, (HIRAYAMA, 1987) apud (ISEKI & 

OHTSU, 1999), which was expanded later by Iseki and co-authors in 1992, (ISEKI, et 

al., 1992). The Bayesian Estimation for this particular problem was introduced by the 

authors few years later, in the work (ISEKI & OHTSU, 1999). It is important to notice 

that, up to this moment, a great effort was being made to solve the so called triple-

valued function, which corrects the Doppler Effect that changes the frequency of a 

wave encountering a vessel with non-negligible forward speed. 

In 2003, in the context of dynamic positioned vessels, (TANNURI, et al., 2003) 

set aside the triple-valued problem, as DP vessels are supposed to be stationary, and 

compared the Bayesian estimation against a more complex parametric estimation 

based on a bimodal spectrum proposed by (HOGBEN & COBB, 1986), which is a 

superposition of a generalized JONSWAP energy distribution with the cosine-squared 

spread function; giving a slightly preference to parametric models after numerical and 

experimental tests. In the work, the authors also proposed a change in the motion base 

used to estimate the sea, using the sway movement instead of the roll movement, 

usually adopted due to the wave-buoy analogy, arguing that the roll motion is affected 

by viscous non-linear effects that would probably degrade its response calibration, 

while the sway motion has the same asymmetric behavior concerning the port and 

starboard incoming wave directions, which is indispensable for a good direction 

estimation. 
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Nielsen started his investigation into the subject in 2005, in his PhD thesis 

(NIELSEN, 2005). In the work, he emphasized the limitation of motion-based methods 

because of the natural filtering properties of the dynamic system, and compared the 

different estimation methods, although not giving preference to any. In the same year, 

(PASCOAL, et al., 2005) put into perspective the non-linearity and non-convexity of 

the parametric estimation optimization problem, suggesting the use of global search 

procedures as the genetic algorithm to find the best solution. The problem was also 

discussed by (NIELSEN, 2006), who showed that improper first guesses for gradient-

based algorithms could potentially reach extremely bad solutions in the parametric 

estimation. One possible solution was given by (PASCOAL & SOARES, 2006), who 

suggested a mixed approach to solve the problem, i.e., starting with non-parametric 

estimation and use it as the first guess for a parametric fitting. 

In 2007, a short full-scale experimental campaign was described by Simos, 

following the previous work of his research group with Tannuri, (SIMOS, et al., 2007). 

In the work, the motion-based estimation using an FPSO was compared against a 

wave-buoy measurement close to the location of the vessel. In this case, however, the 

data suggested that the Bayesian Estimation was more robust than the parametric 

model, demanding, at the same time, much less computational power. 

In the following years, other comparisons and improvements in the Bayesian 

method were made, for example: (NIELSEN, 2007), (NIELSEN, 2008a), (SIMOS, et 

al., 2010) (NIELSEN, 2011), (ISEKI & HIRAYAMA, 2012), (TANNURI, et al., 2012), 

(BISPO, et al., 2012), (NIELSEN, et al., 2013) and (ISEKI & NIELSEN, 2015). In 

general, the improvements proposed in those papers are all included in the estimation 

presented in this thesis, and the comparisons are usually favorable to the Bayesian 

estimation against the parametric model, although Nielsen works do not suggest a 

clear preference. The results were also compared against estimations from wave-

buoys, meteorological satellites and radar imagery, with good consistence. 

Other investigation issues deserve more attention. For example, (NIELSEN, 

2008b) suggests, in the context of parametric estimation, to incorporate measurements 

of the relative motion between the vessel and the water surface for improve the high-

frequency estimation, which provides evidence for the use of wave-probes in a more 

broad sense. (STREDULINSKY & THORNHILL, 2011) also propose a sensor fusion 
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approach, but suggesting the motion-base estimation as a possible correction to radar 

measurements, since radars are known to have good direction and spread estimation 

but poor energy estimation capabilities. 

The works from Lajic in 2010 also deserve attention, (LAJIC, 2010) and (LAJIC, 

et al., 2010). They suggest a new method for selecting the best estimation base called 

“Sensor Fusion Quality Test”, using the online measurement of the cross residual 

estimation – the difference between the estimation of the significant sea height from 

two different degrees of freedom – to find the combination of vessel movements which 

has the best agreement among the measurements it contains. It is interesting to 

emphasize the effort from Lajic to find an automatic method to select the best base of 

movements to be used, based on the fault detection theory, although the drawback 

that the method only provides answer for the ongoing sea state, needing an extensive 

campaign to provide information for all the possible states. A similar problem is 

discussed in this thesis. 

Finally, there are more recent works in the subject, but they do not provide more 

information for the exact problem discussed here, for example: (MOGSTER, 2015), 

which discusses the non-stationary problem; (SINKE, 2015), which discusses the 

motion-based and radar fusion; (NIELSEN, et al., 2015), which describes an interesting 

new technique using a mixed model-based and signal-based approach to enhance the 

waves prediction; and (MONTAZERI, et al., 2016a) and (MONTAREZI, et al., 2016b), 

which improve some aspects of the parametric estimation. 

From the perspective of the DP systems, there are also papers that discussed 

wave-estimation, but they usually adopt methods that estimate the drift-forces in a 

more straightforward manner, which is shown in the next paragraphs. 

Most of the literature indicates Pinkster as the pioneer in the usage of wave 

estimation in feedforward compensators, (PINKSTER, 1978). However, the effects of 

the drift-forces on the vessels, and its consequences as regarding DP systems, were 

described in earlier works: (REMERY & HERMANS, 1971) apud (PINKSTER, 1978), 

(PINKSTER, 1976) apud (PINKSTER, 1978), (VAN OORTMERSSEN, 1976) apud 

(PINKSTER, 1978) and (FALTISEN & LOKEN, 1978) apud (PINKSTER, 1978). 
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In his work, Pinkster suggested a method to estimate the slow drift force by the 

direct integration of the relative motion measured in the hull of the vessel. He justified 

the feasibility of the method arguing that only a finite number of weighted sensors need 

to be used, as the water height varies slowly along the water-line. Despite that, a 

significant number of eight wave-probes were used, and only some forces could be 

estimated. 

A more recent work from Aalbers, in which Pinkster is co-author, (AALBERS, et 

al., 2001), proposed a second method, using two wave-probes located symmetrically 

at the port and starboard, which are used to provide information about the direction of 

the incoming wave, and one wave-probe located at the bow of the ship, to acquire 

energy information. The second method is interesting for this work because it uses the 

drift force transfer functions to estimate the forces, justifying the directional spectrum 

approach. Despite that, Aalbers concluded that the second method is generally worse 

than the Pinkster method and only works for head seas, although he recognizes the 

need of further developments. 

Lastly, a modern treatment of the wave feedforward usage in DP systems can 

be found in (HUGHES, et al., 2009) and (HUGHES, et al., 2010). Initially, they explain 

the reason why first order forces cannot be counteracted by the traditional DP systems, 

since they are forces that change direction faster than the usual propellers are able to; 

despite this, they result in zero-mean movements. Second order forces, however, 

which are described mostly by high-order terms in the Bernoulli’s equation, are non-

zero mean, which eventually results in a non-negligible movement, with a low 

frequency component that can easily be close to the DP system resonance; 

consequently, they must be taken in account, at least in the design phase. The works 

also use the Pinkster approach, with twenty wave-probes around the hull, showing how 

the method is still the standard practice in this subject. 

The proposals of this works can be seen as an expansion of the idea of using 

relative motions, discussed originally by (NIELSEN, 2008b), to high-order non-

parametric procedures for full directional spectra. They can also be seen as a 

combination between Bayesian estimation and the Pinkster method, aiming at 

improving both: increasing the estimation range of the Bayesian algorithm and 

demanding, at the same time, less wave-probes than the Pinkster method.  
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3. THEORETICAL BACKGROUND 

In this section, the theoretical concepts used in this work are presented. 

3.1. Frames of Reference and Nomenclature 

First, it is interesting to present the naval nomenclature used for vessels and 

waves encountering it, Figure 5. Waves coming from 0°, for example, encounter the 

stern of the vessel first and the sea is called following sea. 

 Figure 5 – Naval nomenclature for vessels and seas. 

 
 Source: Elaborated by the author, inspired by a similar figure from (NIELSEN, 2005). 

The local coordinates are chosen to be equal to the unperturbed body system, 

also following the standard nomenclature, Figure 6. Even though the direction of each 

coordinate can vary among the literature, the adopted convention is the same as the 

Wamit® software, mentioned in the section 1.3 Resources and Methods, simplifying 

the algorithms, Figure 7. 

 Figure 6 – Body standard system of reference. 

 
 Source: Elaborated by the author. 
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 Figure 7 – Wamit® reference system. 

 
 Source: (WAMIT, 2015). 

Another important coordinate system is the one used in the directional spectrum 

polar plot, Figure 8. The concentric lines indicate the wave angular frequency, and the 

colors indicate the energy density of that wave component. 

 Figure 8 – Directional spectrum polar plot reference. 

 
 Source: Elaborated by the author. 

𝜔 [𝑟𝑎𝑑/𝑠] 
𝛽 [°] 
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3.2. Wave Theory 

The potential theory of gravity waves and the linear response of a free floating 

body are the bases of the dynamic system used in the estimation algorithm; a classical 

formulation, presented in fundamental hydrodynamic text books as (NEWMAN, 1999). 

This section describes only the consequences of the theory in the dynamics of floating 

bodies, but the unfamiliar reader may benefit from checking APPENDIX A – Potential 

Theory of Surface Waves for a theoretical introduction into the subject. 

3.2.1. Linear response model 

Under the ideal fluid hypothesis, the behavior of the water, including the 

behavior of waves propagating on its surface and the behavior of floating objects with 

small movements inside the domain, is described by a scalar potential function 

𝜑(𝑥, 𝑦, 𝑧, 𝑡) , which determines the velocity vector 𝒗(𝑥, 𝑦, 𝑧, 𝑡)  and the pressure 

𝑝(𝑥, 𝑦, 𝑧, 𝑡) of the fluid, Equations (1) and (2), in which 𝜌 is the specific mass of the fluid, 

∇  the differential operator  [
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
]  and 𝒈  the gravity vector acceleration, 𝒈 =

[0,0, −𝑔] = −∇𝑔𝑧. 

 𝒗(𝑥, 𝑦, 𝑧, 𝑡) = ∇𝜑(𝑥, 𝑦, 𝑧, 𝑡) (1) 

 ∇ (
𝜕𝜑(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡
+
1

2
∇𝜑(𝑥, 𝑦, 𝑧, 𝑡) ⋅ ∇𝜑(𝑥, 𝑦, 𝑧, 𝑡) +

𝑝(𝑥, 𝑦, 𝑧, 𝑡)

𝜌
+ 𝑔𝑧) = 𝟎 (2) 

   

The potential function is determined based on a second-order partial differential 

equation, the Laplace’s equation, Equation (3), in which ∆  is the Laplace’s 

operator  [
𝜕2

𝜕𝑥2
,
𝜕2

𝜕𝑦2
,
𝜕2

𝜕𝑧2
] ; and on boundary equations stating the constraints of the 

domain, the impermeability of the sea bottom, for example, Equation (4), in which the 

depth is ℎ. 

 ∆𝜑 = 0 (3) 

 𝑣𝑧(𝑧 = −ℎ) = 0 →
𝜕𝜑

𝜕𝑧
|
𝑧=−ℎ

= 0 (4) 

   

When a moving floating body is inside the domain, subject to a regular wave – 

plane progressive harmonic wave with a specified amplitude, frequency and direction 
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– the resultant potential is described as a superposition of potentials, accounting 

effects from: 

 Radiation: the potential caused by a unitary movement of the body in each 

degree of freedom, 𝜑𝑗; 

 Diffraction: the unperturbed potential of the incident waves plus the 

scattering disturbance caused by the fixed body, 𝜑𝐴 = 𝜑0 + 𝜑7. 

Assuming an oscillatory body movement, with complex amplitude 𝜉𝑗  in each 

degree of freedom (DoF), the final potential will be the one presented in Equation (5), 

with 𝐴 the amplitude of the wave and 𝜔 its angular frequency. 

 𝜑(𝑥, 𝑦, 𝑧, 𝑡) = 𝑅𝑒 {[∑𝜉𝑗𝜑𝑗(𝑥, 𝑦, 𝑧)

6

𝑗=1

+ 𝐴(𝜑0(𝑥, 𝑦, 𝑧) + 𝜑7(𝑥, 𝑦, 𝑧))] 𝑒
𝑖𝜔𝑡} (5) 

   

This potential, along with the necessary boundary equation, can be solved by 

the panel method, which is used in the software Wamit®. Essentially, the body surface 

is discretized in panels and a superposition of potentials is defined based on the 

discretization – usually, some simple potentials are positioned on the panels, with their 

strength being calibrated to satisfy all the boundary conditions. A complete theoretical 

reference can be found in (WAMIT, 2015). 

After solving the potential problem, the pressure can be found and integrated 

over the floating body in order to find the overall forces. The calculated forces can be 

written in the matrix form, being divided in: added mass 𝑰𝑨(𝜔) – a term proportional to 

the acceleration of the body,  𝑈̇𝑗 ; radiation damping 𝑩(𝜔) – a dissipative term 

proportional to the velocity of the body, 𝑈𝑗; and wave-exciting forces 𝑅𝑒{𝐴𝑒𝑖𝜔𝑡𝑿(𝜔)} – 

a term proportional to the amplitude of the incident wave; Equations (6): 

 [
𝑭
𝑴
]
ℎ𝑦𝑑𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐

= 𝑰𝑨(𝜔)𝑈̇𝑗 + 𝑩(𝜔)𝑈𝑗 + 𝑅𝑒{𝐴𝑒
𝑖𝜔𝑡𝑿(𝜔)} (6) 

   

If the body oscillates around its hydrostatic equilibrium with small movements, 

the hydrostatic forces can be linearized in order to be described by a simple restoration 

matrix 𝑪, Equation (7). 
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 [
𝑭
𝑴
]
ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐

= 𝑅𝑒{𝑪𝝃}, 𝝃 = {𝜉𝑗𝑒
𝑖𝜔𝑡}

𝑗=1,2,…,6 
 (7) 

   

The final dynamic system, applying all the forces on the inertia 𝑰 of the body, is 

then defined by Equation (8): 

 {−𝜔2(𝑰 + 𝑰𝑨(𝜔)) + 𝑖𝜔𝑩(𝜔) + 𝑪}𝝃 = 𝐴𝑿(𝜔) (8) 

   

Since the system is linear, it can be described by a transfer function of each 

possible wave – function of the angular frequency 𝜔 and the incidence angle 𝛽. This 

function can be discretized in a vector called Response Amplitude Operators (RAOs), 

which completely determine the floating body dynamics, Equation (9). 

 𝑹𝑨𝑶(𝜔, 𝛽) =
𝝃(𝜔, 𝛽)

𝐴
= {−𝜔2(𝑰 + 𝑰𝑨(𝜔)) + 𝑖𝜔𝑩(𝜔) + 𝑪}

−1
𝑿(𝜔, 𝛽) (9) 

   

3.2.2. Irregular wave statistics and models 

Although the previous equations were based on regular waves, the sea surface 

elevation is random in nature. Despite that, the linear response model assures the 

validity of the superposition method, Figure 9, and the response can still be determined 

by the RAOs, Equation (10). 

 𝝃(𝑡) = 𝑅𝑒 {∬𝑹𝑨𝑶(𝜔, 𝛽)𝑒𝑖𝜔𝑡𝑑𝐴(𝜔, 𝛽)

 

 

} (10) 

   

 Figure 9 – Irregular sea, formed by the superposition of regular waves. 

 
 Source: (MARTINS, 2003) apud (CARNEIRO, 2012). 



35 
 

In this case, it is not convenient anymore to talk about individual waves, each 

one with its own amplitude, and the most representative description of the sea will be 

the energy spectral density, 𝑆(𝜔) , which distributes the overall energy in each 

component of the spectrum. 

In a deterministic signal, the individual components are calculated via discrete-

time Fourier transform (DTFT), Equation (11), which transforms the time series 𝑦(𝑡) in 

its frequency decomposition 𝑌(𝜔), Figure 10. Hence, the energy spectral density can 

be determined by Equation (12), and it is related to the ‘amplitude’ 𝐴𝑛 of each ‘regular 

wave’ that composes the irregular wave, as shown in Equation (13). 

 𝑌(𝜔) = ∑ 𝑦(𝑡)𝑒−𝑖𝜔𝑡
∞

𝑡=−∞

 (11) 

 𝑆(𝜔) = |𝑌(𝜔)|2 (12) 

 𝑆(𝜔𝑛)𝑑𝜔 =
1

2
𝐴𝑛
2  (13) 

   

Figure 10 – Energy spectral density determined by harmonic decomposition. 

 
 Source: (JOURNÉE & MASSIE, 2011). 
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However, it is possible to show, (Stoica & Moses, 2005), that the same result 

can be obtained by the DTFT of the autocorrelation 𝜌(𝑘) of the signal, a more suitable 

approach for random signals, Equation (14). 

 𝜌(𝑘) = ∑ 𝑦(𝑡)𝑦∗(𝑡 − 𝑘)

∞

𝑡=−∞

→ ∑ 𝜌(𝑘)𝑒−𝑖𝜔𝑘
∞

𝑘=−∞

= 𝑆(𝜔) (14) 

   

In addition, the energy spectral density can be further developed to account 

waves coming from different directions, as shown in Equation (15), in which 𝑆(𝜔, 𝛽) is 

called directional energy spectrum. 

 𝑆(𝜔) = ∫ 𝑆(𝜔, 𝛽)𝑑𝛽

2𝜋

0

 (15) 

 

Finally, the directional energy spectrum can be related to the vessel movements 

through the cross spectra between each degree of freedom, 𝜙𝑖𝑗(𝜔), Equation (16). 

 𝜙𝑖𝑗(𝜔) = ∫ 𝑅𝐴𝑂𝑖(𝜔, 𝛽) ∙ 𝑅𝐴𝑂𝑗
∗(𝜔, 𝛽) ∙ 𝑆(𝜔, 𝛽)𝑑𝛽

2𝜋

0

 (16) 

   

If the wave-elevation is supposed Gaussian, other interesting statistics can be 

derived by the energy spectral density. Defining the spectral moments 𝑚𝑘, it is possible 

to calculate: the significant wave height of the sea 𝐻𝑠 – the average of the highest one 

third of all the waves; and the mean centroid wave period  𝑇1 . The procedure is 

indicated in the Equations (17), (18) and (19). 

 𝑚𝑘 = ∫ 𝜔
𝑘𝑆(𝜔)𝑑𝜔

∞

0

 (17) 

 𝐻𝑆 = 4√𝑚0 (18) 

 𝑇1 = 2𝜋
𝑚0
𝑚1

 (19) 

   

Based on semi-empirical relations, some standard directional energy spectra 

are used. The JONSWAP energy spectral density is, nowadays, the most common 



37 
 

parametric model in the literature, and, consequently, the logical choice for benchmark 

comparisons, given by Equations (20) to (24). The parameter 𝑇𝑃 is called peak period. 

 𝑆(𝜔) =
320𝐻𝑆

2

𝑇𝑃
4 𝜔−5𝑒

{
−1950

𝑇𝑃
4 𝜔−4}

𝛾𝐴 (20) 

 𝛾 = 3.3 (21) 

 

𝐴(𝜔) = 𝑒

{−(

𝜔
𝜔𝑃
−1

𝜎√2
)

2

}

 
(22) 

 𝜎 = 0.07 𝑖𝑓 𝜔 < 𝜔𝑃 , 𝜎 = 0.09 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (23) 

 𝑇𝑃 = 1.199𝑇1 (24) 

   

Even though the spectrum is sometimes expanded, with a more complex 

function for 𝛾, for example, 𝑇𝑃 and 𝐻𝑆 are sufficient to determine the 17th ITTC (1984) 

recommended JONSWAP energy spectral density, (SIMOS, 2014). 

The standard directional energy spectrum is obtained by multiplying the energy 

spectral density by a directional spread function in the form of a cosine-squared – also 

the most common parametric spread function adopted in the literature; as shown in 

Equations (25), (26) and (27).  

 𝑆(𝜔, 𝛽) = 𝑆(𝜔) ∙ 𝐷(𝜔, 𝛽) (25) 

 𝐷(𝜔, 𝛽) = 𝐺(𝑠) ∙ cos2𝑠 (
𝛽 − 𝛽0
2

) (26) 

 𝐺(𝑠) → ∫ 𝐷(𝜔, 𝛽)𝑑𝛽

2𝜋

0

= 1 (27) 

   

The spread function is completely defined by the parameters 𝑠 , which 

determines the spread, and 𝛽0, which determines the main direction. The function 𝐺(𝑠) 

is only a normalizing factor used to guarantee a unitary integral. 

As a consequence of those choices, the seas used in this work, for validation 

and comparison purposes, will be defined, hereinafter, by a function  𝑆(𝜔, 𝛽) =

𝑓(𝐻𝑆, 𝑇𝑃, 𝛽0, 𝑠). Examples of the different components are shown in Figure 11, Figure 

12 and Figure 13. 
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 Figure 11 – Example of JONSWAP energy spectral density. 

 
 Source: Elaborated by the author. 

 Figure 12 – Example of cosine-squared directional spread function. 

 
 Source: Elaborated by the author. 

 Figure 13 – Example of directional energy spectrum. 

 
 Source: Elaborated by the author. 
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3.3. Bayesian Estimation 

Although a number of different estimation procedures exist, this work focuses 

on the Bayesian based procedure. The main reasons are: it is easy to be extended to 

incorporate wave-probes measurements; it is easy to be solved by simple optimization 

algorithms, lowering the time demanded by simulations; and it has already been 

applied successfully to wave estimation problems with clear advantages against other 

methods. The method is described in the next sections, based on (BERGER, 1985), 

(ALPAYDIN, 2004) and (NIELSEN, 2005). 

3.3.1. General Bayesian estimation 

The Bayes’ theorem is the probability law which determines a probability of 

some event 𝐴 after the known occurrence of other event 𝐵, or 𝑃(𝐴|𝐵), as a function of 

the probability of the event 𝐵 after the known occurrence of the event 𝐴, or 𝑃(𝐵|𝐴). Its 

formulation is easy to be shown as a restriction of the probability space Ω, Figure 14, 

and it is described in Equations (28), (29) and (30). 

 𝑃(𝐴|𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
 (28) 

 𝑃(𝐴|𝐵)𝑃(𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴) = 𝑃(𝐴 ∩ 𝐵) (29) 

 𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 (30) 

   

 Figure 14 – Probability space and Bayes rule. 

 
 Source: Elaborated by the author. 
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In the estimation area, those events are assumed to be the state 𝑋, that the 

method aims at estimate, and the measurement 𝑌, that was made by a given sensor. 

Then, the procedure is to choose the state that has the maximum probability given the 

measurement, as stated in Equation (31). 

 max
𝑥
𝑃(𝑋 = 𝑥|𝑌 = 𝑦) =

𝑃(𝑌 = 𝑦|𝑋 = 𝑥)𝑃(𝑋 = 𝑥)

𝑃(𝑌 = 𝑦)
 (31) 

   

As the measure was already made, the denominator is determined and constant 

for all possible 𝑥  values, so it is not necessary to know its value to perform the 

optimization procedure, Equation (32). 

 max
𝑥
𝑃(𝑋 = 𝑥|𝑌 = 𝑦) ≡ max

𝑥
𝑃(𝑌 = 𝑦|𝑋 = 𝑥)𝑃(𝑋 = 𝑥) 

(32) 

   

The estimation function presented is called the posterior probability, 

𝑃(𝑋 = 𝑥|𝑌 = 𝑦) , and can be divided in two terms: the prior knowledge  𝑃(𝑋 = 𝑥) , 

related to the belief of the happening of state 𝑥; and the conditional probability, or 

likelihood, 𝑃(𝑌 = 𝑦|𝑋 = 𝑥), related to the possible sensor outcomes, mainly due to 

noise and non-modelled variables. 

The latter, the likelihood, is easy to be obtained through sensor experiments, 

and usually is modelled as the actual state 𝑥, times a constant, plus a Gaussian noise 

with zero mean and known variance 𝜎2, 𝒩(𝜇 = 0, 𝜎2), Equations (33), (34) and (35). 

 𝑦 = 𝑘𝑥 + 𝜖, 𝜖 = 𝒩(𝜇 = 0, 𝜎2) (33) 

 𝑃(𝜖) = 𝑓(𝜖|𝜇 = 0, 𝜎2)𝑑𝜖 =
1

√2𝜋𝜎2
𝑒
−
(𝜖−𝜇)2

2𝜎2 𝑑𝜖 (34) 

 𝑃(𝑌|𝑋) = 𝑓(𝑦|𝜇 = 𝑘𝑥, 𝜎2)𝑑𝑦 =
1

√2𝜋𝜎2
𝑒
−
(𝑦−𝑘𝑥)2

2𝜎2 𝑑𝑦 (35) 

   

The former, the prior function, however, is difficult to be obtained, since it would 

demand extensive measurement campaigns or, even, could not be obtained at all. To 

solve this problem, an approach is to use this function as a subjective belief about the 

state, giving preference for some outcomes despite others. 
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One interesting example of subjective belief is to not give preference to any 

possible state value, and use a uniform distribution to represent 𝑃(𝑋). The resulting 

estimator, called the likelihood estimator, is presented in Equation (36). 

 max
𝑥
𝑃(𝑌 = 𝑦|𝑋 = 𝑥)𝑃(𝑋 = 𝑥) ≡ max

𝑥

1

√2𝜋𝜎2
𝑒
−
(𝑦−𝑘𝑥)2

2𝜎2 ≡ min
𝑥
(𝑦 − 𝑘𝑥)2 (36) 

   

The solution is equivalent to minimize the squared difference between the 

measurement and the estimation, and it is a known statistical procedure called the 

Least Square Method. The Bayesian procedure, in this case, stablishes a clear 

rationale behind the method: it is the best estimator when Gaussian measurement 

noise are experienced and nothing is known about the state of the measured variable. 

This is the origin of the Maximum Likelihood Method. 

Other interesting example is to describe the state as the result of a second 

independent Gaussian random process – the result of a manufacturing process, for 

example. The estimator is presented in Equation (37). 

 

max
𝑥
𝑃(𝑌 = 𝑦|𝑋 = 𝑥)𝑃(𝑋 = 𝑥) ≡ max

𝑥

1

√2𝜋𝜎𝑦2
𝑒
−
(𝑦−𝑘𝑥)2

2𝜎𝑦
2 1

√2𝜋𝜎𝑥2
𝑒
−
(𝑥−𝜇𝑥)

2

2𝜎𝑥
2

 

≡ max
𝑥

1

√2𝜋𝜎𝑦2√2𝜋𝜎𝑥2
𝑒
−[
(𝑦−𝑘𝑥)2

2𝜎𝑦
2 +

(𝑥−𝜇𝑥)
2

2𝜎𝑥
2 ]

≡ min
𝑥

(𝑦 − 𝑘𝑥)2

2𝜎𝑦2
+
(𝑥 − 𝜇𝑥)

2

2𝜎𝑥2
 

(37) 

   

This result is interesting because it is the base of stochastic filters, as the 

Kalman filter. 

A third interesting example, and a more subjective one, is to penalize some 

possible states that differs from an expected one, formulating an idealized Gaussian 

function with a chosen penalty factor  𝛼 . Based on the same procedure shown 

previously, the result is presented in Equation (38). 

 
min
𝑥

(𝑦 − 𝑘𝑥)2

2𝜎𝑦2
+
(𝑥 − 𝜇𝑥)

2

2𝜎𝑥2
≡ min

𝑥
(𝑦 − 𝑘𝑥)2 +

𝜎𝑦
2(𝑥 − 𝜇𝑥)

2

𝜎𝑥2
 

≡ min
𝑥
(𝑦 − 𝑘𝑥)2 + 𝛼2(𝑥 − 𝜇𝑥)

2 

(38) 
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The estimator is easily expanded for the multivariate case, more suitable for 

state space modelling of multi-degrees of freedom systems. In this case, the Gaussian 

multivariate distribution is used, been defined by a mean vector 𝝁 =

[𝐸[𝑋1], 𝐸[𝑋2], … , 𝐸[𝑋𝑘]] and the covariance matrix 𝚺 = [Cov[𝑋𝑖, 𝑋𝑗]], Equation (39). 

 𝑓(𝒙) =
1

√(2𝜋)𝑘|𝚺|
𝑒
(−
1
2
(𝒙−𝝁)𝑇𝚺−1(𝒙−𝝁))

 (39) 

   

Hence, assuming that each component of the measurement vector is 

independent and with same variance 𝜎𝑦
2, adopting 𝝁𝒙 = 𝟎 and knowing that the inverse 

of the covariance matrix is always positive definite and can be decompose by the 

Cholesky factorization – 𝚺𝑥
−1 = 𝚪T𝚪; the penalty approach is described by Equations 

(40), (41) and (42). 

 min
𝒙
(𝒚 − 𝑲𝒙)𝑇𝚺y

−1(𝒚 − 𝑲𝒙) + 𝒙𝑇𝚺𝑥
−1𝒙 

(40) 

 
min
𝒙

1

𝜎𝑦2
(𝒚 − 𝑲𝒙)𝑇(𝒚 − 𝑲𝒙) + 𝒙𝑇𝚪T𝚪𝒙 (41) 

 min
𝒙
‖𝑲𝒙 − 𝒚‖2 + 𝛼2‖𝚪𝒙‖2 

(42) 

   

The final result is also a known statistical procedure, called Tikhonov 

regularization. It is the most common regularization method, used when the least 

square problem is ill-posed, i.e., there are more variables than equations to solve the 

problem and the solution is non-unique. 

The method essentially stablishes preferences for choosing the best solution of 

the problem. Some possible preferences are: 

 Minimum energy:  

𝚪 = 𝑰𝑘𝑥𝑘 → min
𝒙
‖𝑲𝒙 − 𝒚‖2 + 𝛼2‖𝒙‖2; 

 Minimum energy in selected states:  

Γ𝑖𝑗 = 1 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖𝑠 𝑎𝑛𝑑 𝑗𝑠 → min
𝒙
‖𝑲𝒙 − 𝒚‖2 + 𝛼2‖{𝑥𝑖𝑗}‖

2
; 

 Minimum first derivative module: 

𝚪𝒙 = {Δ𝑥(𝑥𝑖+1 − 𝑥𝑖)} →  min
𝒙
‖𝑲𝒙 − 𝒚‖2 + 𝛼2‖{Δ𝑥(𝑥𝑖+1 − 𝑥𝑖)}‖

2. 
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Lastly, the Bayesian approach presented so far also has a great property. 

Without establishing any restrictions about the problem, but maintaining the general 

structure using Gaussian probability functions, Equations (43) and (44), the problem 

has a closed form solution, Equation (45). 

 
𝒃 = 𝑨𝒙 + 𝝐, 𝝐 = 𝓝(𝝁 = 𝟎, 𝚺𝒚) 

 

(43) 

 

max
𝒙
𝑃(𝒀 = 𝒃|𝑿 = 𝒙)𝑃(𝑿 = 𝒙) ≡ 

≡ max
𝒙

1

√(2𝜋)𝑚|𝚺𝒚|

𝑒
(−
1
2
(𝒃−𝑨𝒙)𝑇𝚺𝒚

−1(𝒃−𝑨𝒙)) 1

√(2𝜋)𝑛|𝚺𝒙,|

𝑒
(−
1
2
(𝒙−𝒙𝟎)

𝑇𝚺𝒙
−1(𝒙−𝒙𝟎))

≡ 

≡ min
𝒙
(𝑨𝒙 − 𝒃)𝑇𝚺𝒚

−1(𝑨𝒙 − 𝒃) + (𝒙 − 𝒙𝟎)
𝑇𝚺𝒙
−1(𝒙 − 𝒙𝟎) 

 

(44) 

 

𝒙̂ = (𝑨𝑇𝑷𝑨 + 𝑸)−1(𝑨𝑇𝑷𝒃 + 𝑸𝒙𝟎) 

𝑜𝑟 𝒙̂ = 𝒙𝟎 + (𝑨
𝑇𝑷𝑨+ 𝑸)−1(𝑨𝑇𝑷(𝒃 − 𝑨𝒙𝟎)) 

𝑷 = 𝚺𝒚
−1 𝑎𝑛𝑑 𝑸 = 𝚺𝒙

−1 

(45) 

   

The closed form solution means that, for each estimation, the algorithm needs 

only to perform simple matrix calculations, and reaches the global optimal solution of 

the problem. A great advantage compared to other estimation methods. 

The main drawback, however, is that the linear system for Bayesian estimation 

is often ill-posed, possessing more variables than equations, classifying it as a high-

order method. Consequently, a prior function must be used, with all the subjectivity and 

ad hoc hypothesis needed. 

3.3.2. Bayesian estimation applied to wave spectrum estimation 

In the particular case of directional wave spectrum estimation, the linear system 

is formulated by the discretization of the cross-spectra calculation previously 

presented. The discretization in 𝐾 directions is shown in Equation (46). 

 𝜙𝑖𝑗(𝜔) ≈ ∑𝑅𝐴𝑂𝑖(𝜔, 𝛽) ∙ 𝑅𝐴𝑂𝑗
∗(𝜔, 𝛽) ∙ 𝑆(𝜔, 𝛽)∆𝛽

𝐾

𝑘=1

, ∆𝛽 =
2𝜋

𝐾
 (46) 
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It is important to emphasize the complex nature of the quantities involved, which 

almost double the number of equations – one for the real part and other for the 

imaginary part. In this case, for a particular angular frequency 𝜔𝑚, the system, using 

𝑁 degrees of freedom, is given by Equations (47)-(50). 

 
𝝓𝑚 =  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜙11
𝜙22
⋮
𝜙𝑖𝑖
⋮
𝜙𝑁𝑁

𝑅𝑒{𝜙12}

𝑅𝑒{𝜙13}
⋮

𝑅𝑒{𝜙23}
⋮

𝑅𝑒{𝜙𝑖𝑗}

⋮
𝑅𝑒{𝜙𝑁−1𝑁}

𝐼𝑚{𝜙12}
⋮

𝐼𝑚{𝜙𝑖𝑗}

⋮
𝐼𝑚{𝜙𝑁−1𝑁} ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
   (47) 

𝑨𝒎 ∙
1

∆𝛽
= 

[
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑅𝐴𝑂1(𝜔𝑚, 𝛽1)
2 … 𝑅𝐴𝑂1(𝜔𝑚, 𝛽𝑘)

2 … 𝑅𝐴𝑂1(𝜔𝑚, 𝛽𝐾)
2

⋮  ⋮  ⋮ 
𝑅𝐴𝑂𝑖(𝜔𝑚, 𝛽1)

2 … 𝑅𝐴𝑂𝑖(𝜔𝑚, 𝛽𝑘)
2 … 𝑅𝐴𝑂𝑖(𝜔𝑚, 𝛽𝐾)

2

⋮  ⋮  ⋮ 
𝑅𝑒{𝑅𝐴𝑂1(𝜔𝑚, 𝛽1)𝑅𝐴𝑂2(𝜔𝑚 , 𝛽1)

∗} … 𝑅𝑒{𝑅𝐴𝑂1(𝜔𝑚, 𝛽𝑘)𝑅𝐴𝑂2(𝜔𝑚, 𝛽𝑘)
∗} … 𝑅𝑒{𝑅𝐴𝑂1(𝜔𝑚, 𝛽𝐾)𝑅𝐴𝑂2(𝜔𝑚, 𝛽𝐾)

∗}
⋮  ⋮  ⋮

𝑅𝑒{𝑅𝐴𝑂𝑖(𝜔𝑚, 𝛽1)𝑅𝐴𝑂𝑗(𝜔𝑚, 𝛽1)
∗} … 𝑅𝑒{𝑅𝐴𝑂𝑖(𝜔𝑚, 𝛽𝑘)𝑅𝐴𝑂𝑗(𝜔𝑚, 𝛽𝑘)

∗} … 𝑅𝑒{𝑅𝐴𝑂𝑖(𝜔𝑚, 𝛽𝐾)𝑅𝐴𝑂𝑗(𝜔𝑚, 𝛽𝐾)
∗}

⋮  ⋮  ⋮
𝑅𝑒{𝑅𝐴𝑂𝑁−1(𝜔𝑚, 𝛽1)𝑅𝐴𝑂𝑁(𝜔𝑚, 𝛽1)

∗} … 𝑅𝑒{𝑅𝐴𝑂𝑁−1(𝜔𝑚, 𝛽𝑘)𝑅𝐴𝑂𝑁(𝜔𝑚, 𝛽𝑘)
∗} … 𝑅𝑒{𝑅𝐴𝑂𝑁−1(𝜔𝑚, 𝛽𝐾)𝑅𝐴𝑂𝑁(𝜔𝑚, 𝛽𝐾)

∗}
⋮  ⋮  ⋮

𝐼𝑚{𝑅𝐴𝑂𝑖(𝜔𝑚, 𝛽1)𝑅𝐴𝑂𝑗(𝜔𝑚, 𝛽1)
∗} … 𝐼𝑚{𝑅𝐴𝑂𝑖(𝜔𝑚, 𝛽𝑘)𝑅𝐴𝑂𝑗(𝜔𝑚, 𝛽𝑘)

∗} … 𝐼𝑚{𝑅𝐴𝑂𝑖(𝜔𝑚, 𝛽𝐾)𝑅𝐴𝑂𝑗(𝜔𝑚, 𝛽𝐾)
∗}

⋮  ⋮  ⋮
𝐼𝑚{𝑅𝐴𝑂𝑁−1(𝜔𝑚, 𝛽1)𝑅𝐴𝑂𝑁(𝜔𝑚, 𝛽1)

∗} … 𝐼𝑚{𝑅𝐴𝑂𝑁−1(𝜔𝑚, 𝛽𝑘)𝑅𝐴𝑂𝑁(𝜔𝑚, 𝛽𝑘)
∗} … 𝐼𝑚{𝑅𝐴𝑂𝑁−1(𝜔𝑚, 𝛽𝐾)𝑅𝐴𝑂𝑁(𝜔𝑚, 𝛽𝐾)

∗}]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

   (48) 

 

 

𝒙𝑚 =

[
 
 
 
 
𝑆(𝜔𝑚, 𝛽1)

⋮

𝑆(𝜔𝑚, 𝛽𝑘)
⋮

𝑆(𝜔𝑚, 𝛽𝐾)]
 
 
 
 

  
(49) 

 
 

𝝓𝑚 = 𝑨𝑚𝒙𝑚 
(50) 

   

The equations can be further composed to describe a range of  𝑀  angular 

frequencies, resulting in a system with 𝑁2 ∙ 𝑀  equations and 𝐾 ∙ 𝑀  variables, 

Equations (51) and (52). 
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 𝒃 = 𝑨𝒙 (51) 

 

 

(52) 

   

If three degrees of freedom are used, the most common formulation, 𝐾 greater 

than nine is enough to underdetermine the system. In effect, the number of variables 

greatly surpasses the number of equations, since 𝐾 is usually chosen to be greater 

than 36 – ten degree discretization. As a consequence, prior information is needed to 

guarantee the uniqueness of the solution. 

The priors usually found in the literature follows (SIMOS, et al., 2009), who 

suggest a prior with three components to incentivize smoothness: a term penalizing 

the second order difference in frequencies, at a given direction; a term penalizing the 

second order difference in directions, at a given frequency; and a term penalizing 

energies at frequencies that do not cause relevant vessel movements.  

The purpose of the first and the second ones is to decrease the noise of the 

spectrum, increasing its ‘smoothness’. The third one, on the other hand, guarantees 

that the noise in extreme high or low frequencies – in which the rotational vessel 

response amplitude operator are low – will not be misinterpreted as extreme vessel 

movements, i.e., “if the system cannot sense, it is preferable to assume it is zero”. 

A specific penalty factor is assigned to each one of those priors, which are called 

hyperparameters 𝑢1, 𝑢2 and 𝑢3 in the Bayesian context. The complete formulation is 

shown in Equations (53)-(57). 

 𝜀1𝑚𝑘 = 𝑆(𝜔𝑚, 𝛽𝑘−1) − 2𝑆(𝜔𝑚, 𝛽𝑘) + 𝑆(𝜔𝑚, 𝛽𝑘+1) (53) 

 𝜀2𝑚𝑘 = 𝑆(𝜔𝑚−1, 𝛽𝑘) − 2𝑆(𝜔𝑚, 𝛽𝑘) + 𝑆(𝜔𝑚+1, 𝛽𝑘) (54) 

 ∑𝜀1𝑚𝑘
2 = 𝒙𝑇𝑯1𝒙 (55) 

 ∑𝜀2𝑚𝑘
2 = 𝒙𝑇𝑯2𝒙 (56) 

 

∑ ∑ 𝑆(𝜔𝑚, 𝛽𝑘)
2

𝑙𝑜𝑤 𝑙𝑖𝑚𝑖𝑡

𝑚=1

𝐾

𝑘=1

+∑ ∑ 𝑆(𝜔𝑚, 𝛽𝑘)
2

𝑀

𝑚=ℎ𝑖𝑔ℎ 𝑙𝑖𝑚𝑖𝑡

𝐾

𝑘=1

= 𝒙𝑇𝑯3𝒙 

(57) 
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 The resulting estimator is given in Equations (58) and (59). 

3.4. Clustering 

Other useful statistical method is the clustering; technique used to group 

together similar entities, accordingly to a specified metric. The procedure is applied in 

different parts of this work, and its utility will become evident in further sections. 

The deductions presented are based on (ALPAYDIN, 2004), (BISHOP, 2006) 

and (HASTIE, et al., 2008). 

3.4.1. K-means clusters 

In the Euclidian metric space, the similarity measurement is the distance 

between data points, as illustrated in Figure 15. 

Figure 15 – Euclidian space clusters. 

 
Source: Elaborated by the author. 

In this context, the K-means procedure is the simplest method. It states that, 

given a number of clusters 𝐾, the best cluster assignment for 𝑁 data points is the one 

which minimizes the functional in Equation (62), which depends on the binary indicator 

variable 𝑟𝑛𝑘, Equation (60), and on the centroids  𝝁𝑘 of each cluster, Equation (61). 

 min
𝒙
𝐽(𝒙) = ‖𝑨𝒙 − 𝒃‖2 + 𝒙𝑇[𝑢1

2𝑯1 + 𝑢2
2𝑯2 + 𝑢3

2𝑯3]𝒙 
(58) 

 𝒙 = (𝑨𝑇𝑨 + [𝑢1
2𝑯1 + 𝑢2

2𝑯2 + 𝑢3
2𝑯3])

−1𝑨𝑇𝒃 (59) 
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 {
𝑟𝑛𝑘 = 1, 𝑖𝑓 𝑝𝑜𝑖𝑛𝑡 𝑛 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑘
𝑟𝑛𝑘 = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                         

 (60) 

 𝝁𝑘 =
1

∑ 𝑟𝑛𝑘
𝑁
𝑛=1

∑𝑟𝑛𝑘𝒙𝑛

𝑁

𝑛=1

 (61) 

 𝐽 = ∑∑𝑟𝑛𝑘‖𝒙𝑛 − 𝝁𝑘‖
2

𝑁

𝑛=1

𝐾

𝑘=1

 (62) 

   

The formulation becomes clear when a new point is added to an existing 

configuration. In this case, the new point will be assigned in a way that it will represent 

the least increment in the sum of the ‘inertias’ of the clusters, Figure 16. 

 

Figure 16 – Least increment in inertia. 

 
Source: Elaborated by the author. 

 

The formulation will also give preference to clusters with the same size and 

number of data points. Comparing Figure 16 against Figure 17, it is possible to notice 

that the increase in the size of both clusters are quite similar; however, the first solution 

will be chosen by the algorithm due to the squared sum penalization, resulting in 

clusters almost equal. 
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Figure 17 – Wrong solution with greater increment in inertia. 

 
Source: Elaborated by the author. 

The idea presented can be extended to any N-dimensional space, with a proper 

reasoning about each dimension scale. 

Although a number of algorithms and heuristics exist to solve the k-means 

optimization, which is NP-Hard, they will not be detailed in this text, and the default 

Matlab® solver will be used, with a trial and error configuration set for each case. 

3.4.2. ‘Elbow’ criterion 

The formulation of the k-mean clustering technique assumes that the number 𝐾 

of clusters was provided. Even though this number is easy to infer up to the three-

dimensional case, it is not possible to visualize high-dimensional problems, and, as a 

consequence, the choice of the number of clusters is always a subject of controversy. 

In this work, however, the exact number of clusters is not important, but only 

how different they are between them, and how similar the clustered data is. This allows 

the use of a known graphical subjective analysis called the ‘elbow’ criterion. 

This analysis has a strong statistical base, interpreting the cluster squared sum 

as the variance of a Gaussian mixture process. In this sense, the sum of the variances 

will decrease until a linear plateau is found, in which the decrease is only due to the 
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segmentation of the real groups. This moment can be identified by an ‘elbow’ in the 

squared sum graph. An example is given in Figure 18 to Figure 21. 

 Figure 18 – Example with five groups and four clusters, with high inertia. 

 
 Source: Elaborated by the author. 

 

 Figure 19 – Same example with five clusters, and considerably less inertia. 

 
 Source: Elaborated by the author. 
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 Figure 20 – Same example with six clusters, and slightly less inertia. 

 
 Source: Elaborated by the author. 

 

Figure 21 – Five clusters selected, based on the 'elbow' criterion of the example. 

 
Source: Elaborated by the author. 

 

It is also possible to interpret the method as a theoretical cost-benefit analysis, 

in which the number of cluster is the cost and the squared sum is the benefit. In this 

sense, a small number of clusters – consequently, a small cost; is able to achieve most 

of the benefit, and, at some point, adding another cluster will not improve almost 

anything, i.e., the marginal cost-benefit is almost zero. 

‘Elbow’ 
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3.5. Optimal Design of Experiments 

The last statistical procedure covered in this section is the optimal design of 

experiments. In the system identification context, the design of experiment guides the 

choice of experiments to be done in order to excite the most the dynamic system to be 

identified, mainly when limited resources cause extensive campaigns to be impossible.  

In this text, the method will be used in a different, but analog, manner, in order 

to select the best position of the wave-probes, which will be explained in further 

sections. The deductions presented, valid for both applications, are based on (HABER, 

2008) e (CHALONER & VERDINELLI, 1995), and a general reference in the area is 

given by (PUKELSHEIM, 1948). 

3.5.1. Optimal design of experiments general theory 

It is possible to modify the linear dynamic model with Gaussian noise, Equation 

(63), to estimate, through experiments, the parameters of a dynamic system, using the 

same procedures shown in section 3.3 Bayesian Estimation. It is done by isolating the 

parameters of matrix 𝑨 in a vector form 𝒂, and mounting a number of different inputs 

and outputs of the system in the experiment matrix 𝑿 – formed by 𝑛 experiments – and 

in the response vector 𝒚, as shown in Equations (64) and (65). 

 𝑨𝒙 = 𝒃 + 𝝐, 𝝐 = 𝓝(𝝁 = 𝟎, 𝜎2𝑰) (63) 

 

𝒚𝑖 = 𝒃𝑝×1 = 𝑨𝑝×𝑘𝒙𝑘×1 = 𝑿𝑖𝒂 = [
𝒙𝑇   𝟎
 ⋱  
 𝟎  𝒙𝑇

]

[
 
 
 
 
 
 
 
𝑎11
⋮
𝑎1𝑘
𝑎21
⋮
𝑎𝑝1
⋮
𝑎𝑝𝑘]
 
 
 
 
 
 
 

 (64) 

 𝒚 = 𝑿𝒂,

[
 
 
 
 
𝒚1
⋮
𝒚𝑖
⋮
𝒚𝑛]
 
 
 
 

=

[
 
 
 
 
𝑿1
⋮
𝑿𝑖
⋮
𝑿𝑛]
 
 
 
 

𝒂 (65) 

   

The system parameters are, then, identified by an estimation procedure; the 

Tikhonov regularized least-square estimation, for example, Equation (66). 
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 𝒂̂ = (𝑿𝑇𝑿 + 𝛼2𝚪𝑇𝚪)−1𝑿𝑇𝒃 (66) 

   

In this context, the design of experiment is concerned about choosing the best 

experiment matrix 𝑿 to guarantee the best estimation, mainly in an environment of 

limited resources and high cost experiments. One possible solution, for example, is to 

try to minimize the expected squared error between the real parameter and the 

estimation, Equation (67), which can be further developed, Equation (68), and 

decomposed in a bias and a variance, Equation (69).  

 𝐸[‖𝒂̂ − 𝒂‖2] (67) 

 

𝐸[‖(𝑿𝑇𝑿 + 𝛼2𝚪𝑇𝚪)−1𝑿𝑇𝒃 − 𝒂‖2] = 

= 𝐸[‖(𝑿𝑇𝑿 + 𝛼2𝚪𝑇𝚪)−1𝑿𝑇(𝑨𝒙 − 𝝐) − 𝒂‖2] = 

= 𝐸[‖(𝑿𝑇𝑿 + 𝛼2𝚪𝑇𝚪)−1𝑿𝑇(𝑿𝒂 − 𝝐) − 𝒂‖2] = 

= 𝐸[‖(𝑪−1𝑿𝑇𝑿− 𝑰)𝒂 − 𝑪−1𝑿𝑇𝝐‖2], 𝑪 = (𝑿𝑇𝑿 + 𝛼2𝚪𝑇𝚪)  

(68) 

 
𝐸[‖𝒂̂ − 𝒂‖2] = 𝛼4‖𝑪−1𝚪𝑇𝚪𝒂‖2⏟          

𝑏𝑖𝑎𝑠

+ 𝜎2 trace(𝑿𝑪−2𝑿𝑇)⏟            
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

 
(69) 

   

When the estimator is unbiased, which means 𝛼 = 0 , and the estimator is 

reduced to the least-square problem, the minimization implies Equation (70), a 

classical solution called the A-optimal design of experiment. 

 min
𝑿
𝐸[‖𝒂̂ − 𝒂‖2] ≡ min

𝑿
trace(𝑿𝑪−2𝑿𝑇) ≡ min

𝑿
trace((𝑿𝑇𝑿)−1) 

(70) 

   

The unbiased estimator, however, is not appropriate for the ill-posed problem in 

this work, which demands a regularized estimator. Therefore, the procedure must be 

expanded. 

3.5.2. Bayesian optimal design of experiments 

The Bayesian optimal design starts before zeroing the parameter  𝛼 , which 

means the bias must be taken in account. If the parameter vector 𝒂  is assumed 

Gaussian with covariance matrix 𝚺𝒂, the design criterion can be reduced to Equation 

(71). The equation can be further simplified if the inverse of the covariance matrix is 

taken being equal to the Tikhonov matrix, 𝚺𝒂 = (𝚪
𝑇𝚪)−1 – reminding that this is the 

origin of the regularization matrix in the Bayesian perspective, as shown in section 

3.3.1 General Bayesian estimation, Equation (41). The final result can be obtained by 
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the generalized singular value decomposition of 𝑿 and  𝚪 , achieving the A-optimal 

Bayesian design of experiments, Equation (72). 

  min
𝑿
𝐸[‖𝒂̂ − 𝒂‖2] ≡ min

𝑿
α4trace(𝑩𝚺𝒂𝑩

𝑇) + 𝜎2trace(𝑿𝑪−2𝑿𝑇) , 𝑩 = 𝑪−1𝚪𝑇𝚪 (71) 

 min
𝑿
𝐸[‖𝒂̂ − 𝒂‖2] ≡ min

𝑿
trace(𝑪−1) = min

𝑿
trace((𝑿𝑇𝑿 + 𝛼2𝚪𝑇𝚪)−1) (72) 

   

It is important to emphasize that this result is based on the strong hypothesis 

that the prior is exactly the probability of each state, which was already discussed and 

does not hold true, since the prior can be used as regularization and only represents a 

subjective belief about the state, e.g., smoothness or low energy.  

Despite this, the simple optimal design formulation is seductive, and it can be 

assumed that the subjective prior is similar enough to the real prior so as to produce 

good results and the same qualitative reasoning about the experiments, i.e., 

experiment 𝜂1 will be better than 𝜂2 either using the subjective prior or the real prior. 

Of course, the final verdict must be given by numerical and small scale experiments. 

3.5.3. Utility optimal design of experiments 

The squared error criterion is not necessarily the best criterion to select an 

experiment, and a general concept can be formulated as to maximize a utility function 

select appropriately for the experiment objectives. 

In this sense, a design 𝜂  is chosen, a parameter 𝒂  happens, and a 

measurement 𝒚 is taken. After that, the experiment utility is verified as a function of 

each term, 𝑈(𝜂, 𝒂, 𝒚). The optimal design is then the one that maximize the expected 

utility of the experiment, Equation (73). 

 𝐸[𝑈(𝜂)] = ∬𝑈(𝜂, 𝒂, 𝒚)𝑝(𝒚|𝒂)𝑝(𝒂)𝑑𝒂𝑑𝒚 (73) 

   

Using the utility framework, the A-optimal Bayesian design of experiment is 

obtained easily by defining 𝑈(𝜂, 𝒂, 𝒚) = ‖𝒂̂ − 𝒂‖2. 

In this work, it is used a general utility in the form of a weighted error squared 

sum. Using this function, it is possible to give importance to the estimation of some 
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parameters over others. The final expectation and the optimal design derived from it 

are shown in Equations (74), (75) and (76).   

 𝑈(𝜂, 𝒂, 𝒚) = ‖𝑾(𝒂̂ − 𝒂)‖2 = (𝒂̂ − 𝒂)𝑇𝑾2(𝒂̂ − 𝒂), 𝑾2 = 𝑾
𝑇𝑾 (74) 

 𝐸[𝑈(𝜂)] = −∬(𝒂̂ − 𝒂)𝑇𝑾2(𝒂̂ − 𝒂)𝑝(𝒚|𝒂)𝑝(𝒂)𝑑𝒂𝑑𝒚 (75) 

 max𝜂
𝐸[𝑈(𝜂)] ≡ min

𝑿
trace(𝑾2𝑪

−1) = min
𝑿
trace(𝑾2(𝑿

𝑇𝑿 + 𝛼2𝚪𝑇𝚪)−1) 
(76) 

   

This function is useful in a number of cases. A clear example happens when the 

parameters come from 𝑙  different and independent dynamic systems. In this case, 

defining 𝛼 = 0 to simplify, the experiment matrix 𝑿 will be a block diagonal matrix, 

Equations (77) and (78).  

 𝑿 = [
𝑿1  𝟎
 ⋱  
𝟎  𝑿𝑙

] → 𝑿𝑇 = [
𝑿1
𝑇  𝟎
 ⋱  
𝟎  𝑿𝑙

𝑇
]  𝑎𝑛𝑑 𝑿𝑇𝑿 = [

𝑿1
𝑇𝑿1  𝟎
 ⋱  
𝟎  𝑿𝑙

𝑇𝑿𝑙

] (77) 

 𝑿𝑇𝑿 = [
𝑿1
𝑇𝑿1  𝟎
 ⋱  
𝟎  𝑿𝑙

𝑇𝑿𝑙

] → (𝑿𝑇𝑿)−1 = [
(𝑿1
𝑇𝑿1)

−1  𝟎
 ⋱  
𝟎  (𝑿𝑙

𝑇𝑿𝑙)
−1
] (78) 

   

The weight matrix 𝑾 can be chosen to be an identity matrix at a particular 

system position 𝑖, and zero elsewhere, Equation (79). 

 𝑾 = [
𝟎  𝟎
 𝑰𝑖  
𝟎  𝟎

] → 𝑾2 = 𝑾
𝑇𝑾 = [

𝟎  𝟎
 𝑰𝑖  
𝟎  𝟎

] (79) 

   

Consequently, the optimal design of experiments is given by Equation (80). 

 trace(𝑾2(𝑿
𝑇𝑿)−1) = trace([

𝟎  𝟎
 (𝑿𝑖

𝑇𝑿𝑖)
−1  

𝟎  𝟎
]) = trace((𝑿𝑖

𝑇𝑿𝑖)
−1) = (80) 

   

This example illustrates how a proper choice of the weight matrix, when the 

dynamic system is composed by smaller independent systems, is capable of selecting 

a particular one and achieving the expected result, which would be obtainable by 

applying the A-optimal design only on the small system. 
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In this work, the presented procedure allows the evaluation of the estimation 

capabilities for individual angular frequencies and individual directions, which is 

explained in further sections. 

3.5.4. Optimal design of experiments applied to input estimation 

Up to this point, the optimal design was applied to select the best experiment to 

estimate the parameters of the system. In this context, the procedure can be 

interpreted as choosing the inputs which excites the most the dynamic system, in order 

to have a glance of the influence of each parameter. In this work, however, the 

estimation is concerned about what was the input that caused a given measurement, 

and which degree of freedom to select to have the best estimation.  

Since the mathematical formulations of both problems are equivalent, the 

optimal design can be reinterpreted as choosing the degrees of freedom most affected 

by the environment, in order to have a glance of the influence of each possible 

frequency and direction on the final response. Using this interpretation, it is possible to 

use the optimal design framework to select the degrees of freedom and positions of 

the wave-probes that result in the best estimation, reducing a problem naively solved 

by extensive simulations campaigns to a simple matrix calculation, Equations (81), (82) 

and (83). 

 𝑨𝒙 = 𝒃 + 𝝐 ≡  𝑿𝒂 = 𝒚 + 𝝐  (81) 

 ∬𝑈(𝜂, 𝒙, 𝒃)𝑝(𝒃|𝒙)𝑝(𝒙)𝑑𝒙𝑑𝒃 ≡ ∬𝑈(𝜂, 𝒂, 𝒚)𝑝(𝒚|𝒂)𝑝(𝒂)𝑑𝒂𝑑𝒚 (82) 

 min
𝑨
trace(𝑾2(𝑨

𝑇𝑨+ 𝛼2𝚪𝑇𝚪)−1) ≡ min
𝑿
trace(𝑾2(𝑿

𝑇𝑿+ 𝛼2𝚪𝑇𝚪)−1) 
(83) 

   

Finally, in the formulation used in this work, the optimal degrees-of-freedom 

selection is given by Equation (84). 

 𝑂𝐷𝑜𝐹 = min
𝑨
trace(𝑾2(𝑨

𝑇𝑨 + [𝑢1
2𝑯1 + 𝑢2

2𝑯2 + 𝑢3
2𝑯3])

−1) 
(84) 

   

A general survey about optimal sensor placement, including the A-optimal 

Bayesian Design, can be found in (KRAUSE, et al., 2008). 
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4. PROPOSED METHODS 

In this section, the methods proposed in the present work are described, 

applying the theoretical background previously explained to solve the directional wave 

estimation problem. 

4.1. The Extended Linear Model 

The first problem which is solved by this work is how to incorporate the wave-

probe measurements in the traditional Bayesian estimation algorithm.  

The problem seems difficult when the estimation is interpreted as the inverse of 

the dynamical behavior of the vessel, but it is trivial if the vessel is simply thought as a 

sensor, with the RAOs as the state observer of the wave amplitudes. Using this 

perspective, the wave-probe measurements are new sensors, which need just to be 

added to the observation matrix. 

At the same time, if the dynamic behavior is put into perspective, the wave-

probes can be seen as new degrees of freedom of the system, with its own transfer 

function for each regular wave, in a way that the linear model must be simply 

expanded. 

Reassuring the similarity between the wave-elevation pattern and the vessel 

dynamic response, it is convenient to recover the vessel dynamics, Equation (85), the 

general form of the domain potential, Equation (86), and the free surface elevation in 

a chosen point, Equation (87), using as input a single progressive plane wave without 

loss of generality, as the superposition principle is always valid for linear systems. 

 
𝝃 = 𝐴 ∙ 𝑹𝑨𝑶(𝜔, 𝛽) 

 

(85) 
 
 

 
𝜑(𝑥, 𝑦, 𝑧, 𝑡) = 𝑅𝑒 {[∑𝜉𝑗𝜑𝑗(𝑥, 𝑦, 𝑧)

6

𝑗=1

+ 𝐴(𝜑0(𝑥, 𝑦, 𝑧) + 𝜑7(𝑥, 𝑦, 𝑧))] 𝑒
𝑖𝜔𝑡} = 

= 𝑅𝑒 {[{𝜑𝑗(𝑥, 𝑦, 𝑧)}
𝑇
∙ 𝝃 + 𝐴(𝜑0(𝑥, 𝑦, 𝑧) + 𝜑7(𝑥, 𝑦, 𝑧))] 𝑒

𝑖𝜔𝑡} = 

= 𝐴 ∙ 𝑅𝑒 {[{𝜑𝑗(𝑥, 𝑦, 𝑧)}
𝑇
∙ 𝑹𝑨𝑶(𝜔, 𝛽) + (𝜑0(𝑥, 𝑦, 𝑧) + 𝜑7(𝑥, 𝑦, 𝑧))] 𝑒

𝑖𝜔𝑡} = 

= 𝐴 ∙ 𝜑̅(𝑥, 𝑦, 𝑧, 𝑡) 

(86) 
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 𝜁(𝑥, 𝑦, 𝑡) = −
1

𝑔

𝜕𝜑

𝜕𝑡
|
𝑧=0

= 𝐴 ∙ (−
1

𝑔

𝜕𝜑̅

𝜕𝑡
|
𝑧=0
) = 𝐴 ∙ 𝑓(𝜔, 𝛽) (87) 

   

The function 𝑓(𝜔, 𝛽), which linearly relates the surface elevation with the wave 

amplitude, is, by definition, a response amplitude operator. As a consequence of this 

fact, if arbitrary points are chosen to represent the surface elevation, the equations can 

be written as a single linear system, with a more general RAO matrix, Equation (88). 

 [
𝝃
𝜻
] = 𝐴 ∙ [

𝑹𝑨𝑶𝒗𝒆𝒔𝒔𝒆𝒍
𝑹𝑨𝑶𝒘𝒂𝒗𝒆−𝒆𝒍𝒆𝒗𝒂𝒕𝒊𝒐𝒏

] (88) 

   

In the same way, it is possible to expand the cross-spectra formulation, but now 

with the general RAO matrix and the general cross-correlation, 𝜙𝑖𝑗(𝜔), not only among 

the vessel DoFs but also among the wave-elevation measurements, Equation (89).  

 𝜙𝑖𝑗(𝜔) ≈ ∑𝑅𝐴𝑂𝑖(𝜔, 𝛽) ∙ 𝑅𝐴𝑂𝑗
∗(𝜔, 𝛽) ∙ 𝑆(𝜔, 𝛽)∆𝛽

𝐾

𝑘=1

, 𝑖, 𝑗 = 𝐷𝑜𝐹𝑠 + 𝑃𝑟𝑜𝑏𝑒𝑠 (89) 

   

Even though the wave-elevation is entirely calculated by Wamit®, the wave-

probe measurements differ significantly from it due to the vessel movements. This 

happens because some of the vessel movements, mainly when transmitted to the 

wave-probes, have the same magnitude as the surface elevation, interfering directly 

with the height measured by the sensor. A simple example is when the vessel is excited 

by large period waves with wave length greater than the vessel length, and, as a 

consequence, the wave-hull elevation presents almost no variation, since the vessel 

follows the wave, Figure 22. On the other hand, for high frequencies, the vessel will 

present a small motion-response but the wave-hull elevation is very similar to the actual 

wave elevation; remembering that the wave elevation is the summation of the incoming 

wave amplitude, the diffraction and the irradiation, due to the presence of the vessel. 

Figure 22 – Low-frequency waves versus high-frequency waves. 

 
Source: (NIELSEN, 2005). 
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The general influences of each degree of freedom in the wave-probe 

measurement are shown in Figure 23 to Figure 28, in which 𝑊𝑃𝑚𝑒𝑎𝑠. is the wave-probe 

measurement, i.e., the distance between the sensor and the water surface, and it is a 

function of the wave elevation 𝜁 and the vessel movements 𝜉. 

Figure 23 – Wave-probe measurement affected by the surge movement. 

 
Source: Elaborated by the author. 

Figure 24 – Wave-probe measurement affected by the sway movement. 

 
Source: Elaborated by the author. 

Figure 25 – Wave-probe measurement affected by the heave movement. 

 
Source: Elaborated by the author. 
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Figure 26 – Wave-probe measurement affected by the roll movement. 

 
Source: Elaborated by the author. 

 

Figure 27 – Wave-probe measurement affected by the pitch movement. 

 
Source: Elaborated by the author. 

 

Figure 28 – Wave-probe measurement affected by the yaw movement. 

 
Source: Elaborated by the author. 

 



60 
 

Despite the non-linearity of the influence of the vessel motions due to the 

change in the position of the wave elevation measurement, 𝜁, it can be shown that only 

the vertical motions have contributions in the same order of magnitude of the wave 

elevation and the influence of them can be linearized. This approach, and the entire 

underlying hypothesis, are validated numerically in APPENDIX B – Superposition of 

Vessel Motions. 

In conclusion, only the heave, the roll and the pitch movements are used, and 

linear corrections are enough to describe their influence. It means that a choice can be 

made: the wave-probe measurement time series can be processed and converted to 

the wave-elevation time series by subtracting the measurements from the other 

movements, in a way that the estimation is based on the wave-elevation RAOs; or 

RAOs for the wave-probe measurements can be previously calculated and directly 

incorporated into the estimation, dismissing the need of pre-processing the time series.  

In this text, the wave-probe RAOs are used, avoiding errors due to phase shifts 

in the sensors series, and the conversion between the wave-elevation RAOs and the 

wave-probe RAOs are shown in Equations (90), (91) and (92). 

 [
𝝃𝒗𝒆𝒔𝒔𝒆𝒍
𝝃𝒑𝒓𝒐𝒃𝒆

] = [
𝑰 𝟎
𝑿 𝑰

] [
𝝃𝒗𝒆𝒔𝒔𝒆𝒍
𝜻𝒆𝒍𝒆𝒗𝒂𝒕𝒊𝒐𝒏

] = 𝐴 ∙ [
𝑰 𝟎
𝑿 𝑰

] [
𝑹𝑨𝑶𝒗𝒆𝒔𝒔𝒆𝒍
𝑹𝑨𝑶𝒆𝒍𝒆𝒗𝒂𝒕𝒊𝒐𝒏

] = 𝐴 ∙ [
𝑹𝑨𝑶𝒗𝒆𝒔𝒔𝒆𝒍
𝑹𝑨𝑶𝒑𝒓𝒐𝒃𝒆

] 
 

(90) 
 

 𝑹𝑨𝑶𝒑𝒓𝒐𝒃𝒆 = 𝑹𝑨𝑶𝒆𝒍𝒆𝒗𝒂𝒕𝒊𝒐𝒏 − 𝑹𝑨𝑶𝒉𝒆𝒂𝒗𝒆 − 𝑦𝑤𝑝 ∙ 𝑹𝑨𝑶𝒓𝒐𝒍𝒍 + 𝑥𝑤𝑝 ∙ 𝑹𝑨𝑶𝒑𝒊𝒕𝒄𝒉 (91) 

 𝑿𝑖 = [0 0 −1 −𝑦𝑤𝑝𝑖 +𝑥𝑤𝑝𝑖 0] (92) 

   

4.2. Positioning and Selecting the Number of Probes 

The second issue this work discusses is how to choose the best wave-probe 

positions, and how to decide, in a reasonable manner, how many probes to employ. 

Restating the estimation algorithm, Equations (93) and (94), the problem can be 

reformulated as to choose the 𝑨 matrix, formed by the RAOs of each generalized 

degree of freedom, which results in the best estimation. However, what is a ‘good 

estimation’ will be always subjective, as it depends on the adopted criterion. 

 min
𝒙
𝐽(𝒙) = ‖𝑨𝒙 − 𝒃‖2 + 𝒙𝑇[𝑢1

2𝑯1 + 𝑢2
2𝑯2 + 𝑢3

2𝑯3]𝒙 
(93) 

 𝒙 = (𝑨𝑇𝑨 + [𝑢1
2𝑯1 + 𝑢2

2𝑯2 + 𝑢3
2𝑯3])

−1𝑨𝑇𝒃 (94) 
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A simple criterion is the expected squared error, Equation (95), discussed in 

section 3.5.2 Bayesian optimal design of experiments, which is enough to choose 

which vessel degrees of freedom to employ in the usual estimation, as it is shown in a 

FPSO example in Table 1. 

 min
𝑨
𝐸[‖𝒙̂ − 𝒙‖2] = min

𝑨
trace((𝑨𝑇𝑨+ [𝑢1

2𝑯1 + 𝑢2
2𝑯2 + 𝑢3

2𝑯3])
−1) (95) 

 

   

Table 1 – Trace criterion for all possible 3DoF combination of a FPSO employed in a conventional 
Bayesian estimation, with periods ranging from 8 sec. to 30 sec., from the best to the worst. 

Degrees of Freedom Combination Trace Criterion 

Sway-Heave-Pitch 0.0160 109 

Sway-Heave-Surge 0.0218 109 

Roll-Heave-Pitch 0.0220 109 

Roll-Heave-Surge 0.0233 109 

Roll-Surge-Pitch 0.0262 109 

Sway-Surge-Pitch 0.0276 109 

Sway-Roll-Heave 0.0429 109 

Sway-Roll-Surge 0.0466 109 

Sway-Roll-Pitch 0.0471 109 

Heave-Surge-Pitch 0.7030 109 

Source: Elaborated by the author. 

The example illustrates how the method is capable of suggesting bases similar 

to the ones obtained by (TANNURI, et al., 2003), (NIELSEN, 2005) and (LAJIC, 2010), 

using arguments based on the odd and even properties of each DoF. Furthermore, it 

classifies the different bases in a clear way, in which changing similar DoFs, e.g., roll-

sway or pitch-surge, does not imply much worsening, but keeping only DoFs that have 

similar properties, removing roll and sway, for example, causes a fast deterioration of 

the estimation capabilities, since the rest of the DoFs act as equations that are a linear 

combination of the others, and do not aggregate anything to the linear system. 
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When wave-probes are added, however, the average criterion may not be 

enough to decide the best configuration, as it ‘masks’ some undesirable behaviors. 

One of them is to add probes that improve the most the estimation of periods that are 

inside the vessel estimation capabilities, which is against the main objective of 

enlarging the range of estimated frequencies. Other problem is probe configurations 

that have blind spots, i.e., some incoming directions that have poor estimations 

capabilities, and can only be perceived by intensive campaigns simulations, if an 

average criterion is used. 

Those problems are solved by using the utility design of experiments to set a 

multi-objective criterion, which is capable of evaluating each angular frequency and 

incoming direction independently. The values calculated for each frequency are, then, 

grouped and three objective functions are defined: the maximum trace among all the 

frequencies, the standard deviation of the traces and the average trace; and the same 

is done for the incoming directions, totalizing six objective functions. After a proper 

choice of the optimum, this guarantees that the estimation will be well behaved in all 

the possible seas. The objective functions are presented in Equations (96) to (102). 

 min
𝑨
MAX(trace(𝑾𝒍2

(𝑨𝑇𝑨 + [𝑢1
2𝑯1 + 𝑢2

2𝑯2 + 𝑢3
2𝑯3])

−1)) (96) 

 min
𝑨
AVERAGE (trace(𝑾𝒍2

(𝑨𝑇𝑨 + [𝑢1
2𝑯1 + 𝑢2

2𝑯2 + 𝑢3
2𝑯3])

−1)) (97) 

 
min
𝑨
STD(trace(𝑾𝒍2

(𝑨𝑇𝑨 + [𝑢1
2𝑯1 + 𝑢2

2𝑯2 + 𝑢3
2𝑯3])

−1)) 

 

 

(98) 

 𝑾𝒍2
= 𝑾𝒍

𝑇𝑾𝒍, 𝑾𝒍 = {𝑤𝒊𝒋} (99) 

 
𝒙𝑚 =

[
 
 
 
 
𝑆(𝜔𝑚, 𝛽1)

⋮

𝑆(𝜔𝑚, 𝛽𝑘)
⋮

𝑆(𝜔𝑚, 𝛽𝐾)]
 
 
 
 

, 𝒙 =

{
 
 

 
 
𝒙1
⋮

𝒙𝑚
⋮

𝒙𝑀}
 
 

 
 

  

 

 
 
 

(100) 

 𝑤𝒊𝒋 = 1  𝑖𝑓  𝒍 ∙ 𝐾 ≤ 𝑖 = 𝑗 ≤ 𝒍 ∙ (𝐾 + 1), 𝑓𝑜𝑟 𝑡ℎ𝑒 𝒍𝑡ℎ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (101) 

 𝑤𝒊𝒋 = 1  𝑖𝑓  𝑖 = 𝑗 = 𝑛𝐾 + 𝒍, 𝑛 = 0,… ,𝑀, 𝑓𝑜𝑟 𝑡ℎ𝑒 𝒍𝑡ℎ 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 (102) 

   

Lastly, the choice of the number of the probes is solved by using the ‘elbow’ 

criterion in a similar way to its usage for clusters, section 3.4.2 ‘Elbow’ criterion. In this 

case, the value of the trace will decrease until the estimation system becomes fully 
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determined. After that, a plateau happens, in which the trace decrease is only due to 

the addition of more redundancies, reducing the variance of the estimation, which is 

expected under the hypothesis of independent noise in the measurements. 

Even if a completely determined system is not obtainable, because of the great 

number of sensors it would demand, for example, the ‘elbow’ plot can also be used to 

evaluate how much improvement one is not having by not employing a new sensor. 

4.3. Optimization Heuristic 

The proposed objective functions, and the optimal design of experiments in 

general, are discrete, highly non-linear and non-convex. It means that numerical 

gradient-based optimizations, as Sequential Quadratic Programming (SQP), cannot be 

applied in a satisfactory manner, since it can be stuck in local minima. Furthermore, 

those algorithms are not easily employed in multi-objective problems. 

Since the exhaustive search is prohibitive, a number of different algorithms has 

been used, the so called global optimization algorithms: simulated annealing, genetic 

algorithms, tabu search and branch-and-bound approaches; (KRAUSE, et al., 2008). 

However, a heuristic approach is proposed in this text, which was found to perform 

better due to the idiosyncrasies of the problem. 

In general, the presented algorithms work by evaluating a possible solution, or 

a set of possible solutions, and then figuring out, using a rationale, the next solution to 

be evaluated, probably best than the previous. Differently than the gradient-based 

algorithms, the global search algorithms usually accept worse solutions for a moment, 

accordingly to some criteria, avoiding being captured by a local minimum. Despite the 

name “global optimization algorithms”, it is important to emphasize that there is no 

guarantee that the algorithms will, indeed, find the global minimum in a finite time. 

The simulated annealing algorithm is based on thermodynamic ideas. Using the 

concept of ‘temperature’, the algorithm ‘jumps’ from one possible solution to other. The 

higher the temperature, the larger can be the jumps, and the worse can be the 

accepted new solutions. During each step the temperature is lowered, in a way that 

the algorithm will, hopefully, converge to the best solution, since the jumps will get 

lower and lower, and only the best solutions will start to be accepted. 
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The genetic algorithm is based on the Darwinist evolution theory. Starting from 

a population of possible solutions, which is called the parents, its properties are 

combined to form a new population. A parent with a better objective function will have 

more probability of have its characteristics passed to a new generation, which provides 

the optimization property of the algorithm. Essentially, after some generations, the 

algorithm will have internally learned successfully strategies of the particular problem, 

and only the best individuals will be in the population.  

On the one hand, the previously presented algorithms try to walk freely on the 

solution domain, choosing a path which will possibly reach the best solution; on the 

other hand, tabu search and branch-and-bound algorithms usually try to exhaust the 

domain in an intelligent way, avoiding the verification of regions that are known to be 

always worse. The tabu search stores in the memory previously visited solutions, 

avoiding unnecessary spending of resources; and branch-and-bound tries to 

enumerate all the solutions and to group similar ones together, dismissing bad groups 

by evaluating their maximum and minimum value, or its bounds. As a consequence of 

their methods, these algorithms are usually computationally expensive. 

However, there is a property of the optimal design of experiments that can be 

used to accelerate the branch-and-bound algorithm: adding a new experiment, or DoF, 

that is a linear combination of the others will not modify the objective function 

significantly. It means that, if there is already some possible DoFs and the algorithm 

must choose the last DoF to be added, instead of verifying each of possible new DoFs, 

it is possible to verify if a group, consisted about the average of some of the remaining 

DoF values, will increase the objective function. If that is true, it is known that the best 

DoF will be inside the group; if it is false, it is known that the group can be dismissed. 

Essentially, a divide and conquer strategy. 

A naively method would consist about using all the DoFs in a first evaluation, 

and then removing one by one selecting, in each step, the DoF that gives the least 

improvement in the objective function, until the desired number of DoFs is found. This 

would mean that, if 𝑛 DoFs are possible and 𝑘 DoFs are desired, 𝑛 + (𝑛 − 1) + ⋯+

(𝑘 + 1) =
(𝑛+𝑘+1)∙(𝑛−𝑘)

2
 evaluations would be necessary, considerably less than all the 

possible combinations 
𝑛!

(𝑛−𝑘)!𝑘!
. If one hundred possible wave-probe positions were 
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evaluated and five positions were desired, for example, the exhaustive search would 

mean 75.3 million cases, and the improved method only five thousand. 

The approach, however, has two problems. The first one is that it will not always 

reach the best solution, as shown in the example in Table 2. 

Table 2 – Example of the naive method. 

Matrix Trace Criterion 

𝑨 =

[
 
 
 
 
𝑨1
⋮
𝑨𝑖
⋮
𝑨𝑛]
 
 
 
 

= [

1 0 0
0 1 0
0 0 1
0 0.8 0.8

]  

𝛼2 ∙ 𝚪𝑇𝚪 = 0.01 ∙ 𝑰3×3 

trace((𝑨𝑇𝑨+ 𝛼2𝚪𝑇𝚪)−1) = 2.6424 

First Step: Remove the least significant DoF 

𝑨 = [

𝑨1
𝑨2
𝑨3

] = [
1 0 0
0 1 0
0 0 1

] 𝑡𝑟 = 2.9703 best 

𝑨 = [

𝑨1
𝑨2
𝑨4

] 𝑜𝑟 [

𝑨1
𝑨3
𝑨4

] = [
1 0 0
0 1 0
0 0.8 0.8

]  𝑡𝑟 = 4.4597 

𝑨 = [
𝑨2
𝑨3
𝑨4

] = [
0 1 0
0 0 1
0 0.8 0.8

] 𝑡𝑟 = 101.4268 

DoF 4 is the least significant DoF 

Second Step: Remove the least significant DoF 

𝑨 = [
𝑨1
𝑨2
] 𝑜𝑟 [

𝑨1
𝑨3
] 𝑜𝑟 [

𝑨2
𝑨3
] = [

1 0 0
0 1 0

] 𝑡𝑟 = 101.9802 

All remaining solutions are equal 

However, the best solution HAS the DoF 4 

𝑨 = [
𝑨1
𝑨2
] 𝑜𝑟 [

𝑨1
𝑨3
] 𝑜𝑟 [

𝑨2
𝑨3
] = [

1 0 0
0 1 0

] 𝑡𝑟 = 101.9802 

𝑨 = [
𝑨1
𝑨4
] = [

1 0 0
0 0.8 0.8

] 𝑡𝑟 = 101.7653 best 

Source: Elaborated by the author. 
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This problem arises when, in an intermediate step, one DoF is the linear 

combination of other couple DoFs that are still in the group but will be removed later. 

Since only one DoF remains, the DoF that is the linear combination would give a better 

result, as the other DoFs need each other to complement their response. 

The second problem arises when the computational cost of the algorithm is 

evaluated. It is much more expensive to evaluate a matrix with one hundred DoFs than 

a matrix with five DoFs, as it is shown in Figure 29 – evaluation of a single period, with 

36 incoming directions. The computations were made in a notebook with Intel Core i7-

5500U, 2.4GHz Dual-Core processor; 16Gb of DDR3 RAM, 1600MHz; Windows 10, 

64 bits; and Matlab® 2016a. 

Figure 29 – Experimental computation cost and polynomial fitting. 

 
Source: Elaborated by the author. 

Using the same previously illustrative example, if one hundred possible wave-

probe positions were evaluated and five positions were desired, the total computation 

time to evaluate the five thousand cases would be around 1770.3 seconds times the 

number of wave periods, which is enough to evaluate 158486 matrices with 5-DoF 

combinations, more than 30 times more evaluations. 

The heuristic proposed in this thesis is capable of lowering the optimization time 

using the same idiosyncrasy presented, but grouping together similar DoFs and 

evaluating all the combinations among the groups as if they, characterized by the 

average of its DoFs, were the real DoF. In that manner, only matrices with the needed 

number of DoFs are used and, even if the number of evaluated combinations is greater, 

the total computation time is lower. 



67 
 

Essentially, two hypotheses are made: 

1. The best solution will contain DoFs that have the most different responses 

among them: it means that, if there is a group of similar wave-probes, the 

best solution WILL NOT contain more than one of them, i.e., one is enough 

because adding another results in redundancy. 

2. The average response of a group of similar DoFs is enough to represent the 

influence of the best of its DoFs: since the average is the linear combination 

of all the DoFs, if a particular response of one of the grouped DoFs is needed 

to determine the system, the average is enough to indicate that the needed 

response is among the DoFs of the group. 

One possible example of the first hypothesis is to choose among the following 

DoFs: [0 0 0.9], [0 0 1] and [0 0 1. 1]. In a scenario of limited resource, i.e., 

more variables than equation, to choose ONLY the third one is the best approach, as 

the others will only add redundancy because their similarity, but will not add more 

estimation capability to the system, as they are very similar among them. The choice 

of the highest value is always justified because it results in the best information-noise 

ratio, since all the noise is independent and of equal amplitude in a well-conditioned 

estimation problem; if that is not true, a weigh matrix must be used in the likelihood to 

guarantee the probabilistic interpretation. 

One possible example of the second hypothesis is a system that already has 

two DoFs defined and need to choose the last one. Using the system [
1 0 0
0 1 0

], and 

choosing among DoFs organized in two groups: 𝐺1 = {[0.9 0.1 0], [1.1 0.04 0]} 

and 𝐺2 = {[0.1 0.9 0], [0 0.85 0.03], [0.2 0.95 0]}, it is obvious that the best 

solution is achieved by choosing the second element of group 2, since it determines 

the system because it is the only one that has a value in the third column. In this case, 

if the average of each group is calculated, 𝐺1̅̅ ̅ = [1 0.07 0]  and 𝐺2̅̅ ̅ =

[0.1 0.9 0.01], it becomes clear how using the average of each group can be used 

to evaluate the potential of their members, as all the possible information they can 

provide is taken in account. This example also illustrates the reason because the 

average is preferable against the simple summation, as the summation would benefit 

large groups, giving the wrong impression of a greater information-noise ratio. 
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In the particular case of choosing the best wave-probe positions, the clustering 

technique is more intuitive, as it will group together wave-probes that are close to each 

other and the average response is, usually, very similar to the response of the wave-

probe that is in the middle of the group. An example with one hundred possible 

positions grouped together in twenty four clusters is given in Figure 30, in which each 

cluster is represented by one color, and the average position of the cluster is 

represented by a black X. 

Figure 30 – Example of clustered wave-probes. 

 
Source: Elaborated by the author. 

The final algorithm is presented in the following block diagrams. The first one 

presents the pre-processing step, Figure 31. 

 Figure 31 – Pre-processing before the optimization algorithm. 

 
 Source: Elaborated by the author. 
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After the pre-processing, the possible positions are grouped together by 

similarity, in order to reduce the number of combinations to evaluate, Figure 32. 

Figure 32 – Clustering by similarity. 

 
Source: Elaborated by the author. 
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And, finally, the optimization algorithm selects the possible best candidates. The 

final optimal candidate must be chosen using the six objective functions, Figure 33. 

Figure 33 – Optimization algorithm. 

 
Source: Elaborated by the author. 
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Before detailing each step of the algorithm, a simple prediction of its running 

time can be made. If there are one hundred possible positions, and it is desired five 

positions, twenty clusters can be made, resulting in 7752 combinations, already 

removing the symmetric ones. Selecting twelve candidates on the Pareto Frontier, the 

maximum possible combination of the probes inside them is (
𝑛𝑝𝑟𝑜𝑏𝑒𝑠

𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠
)
𝑛𝐷𝑜𝐹𝑠

= (
100

20
)
5

=

3125, totalizing 12 ∙ 3125 + 7752 = 45252. It means that the algorithm is, at least, 3.5 

times faster than the naïve algorithm. Considering that usually the clusters do not have 

the same quantity of probes, it is possible to verify that the previous calculation defines 

a really high upper limit. For example, one cluster can have 7 probes and other 3: 7 ∙

7 ∙ 5 ∙ 3 ∙ 3 = 2205 , totalizing 12 ∙ 2205 + 7752 = 34212 , 4.6 times faster; or even 

combinations of clusters that have only three probes: 7 ∙ 7 ∙ 3 ∙ 3 ∙ 3 = 1323 , 23628 

evaluations, 6.7 times faster. The upper limit of the number of calculations of each 

objective function is given by Equation (103), in which 𝑘𝑠𝑦𝑚. is a factor which defines 

the number of combinations after removing the symmetric clusters, and its upper limit 

is 𝑘𝑠𝑦𝑚. ≤ 0.5 +
1

𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠
, presented in further deductions. 

 
𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠!

(𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 − 𝑛𝐷𝑜𝐹𝑠)! 𝑛𝐷𝑜𝐹𝑠!
∙ 𝑘𝑠𝑦𝑚. + 𝑛𝑃𝑎𝑟𝑒𝑡𝑜 ∙ (

𝑛𝑝𝑟𝑜𝑏𝑒𝑠

𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠
)
𝑛𝐷𝑜𝐹𝑠

 (103) 

   

The number of clusters which has the minimum upper-bound execution time will 

usually be between 22 and 26, for a large range of parameters: 80 ≤ 𝑛𝑝𝑟𝑜𝑏𝑒𝑠 ≤ 200, 

1 ≤ 𝑛𝐷𝑜𝐹𝑠 ≤ 10 and 6 ≤ 𝑛𝑃𝑎𝑟𝑒𝑡𝑜 ≤ 18. 

Some of the above steps deserve more attention, and are detailed in the further 

subsections. 

RAO MATRIX CONDITIONING 

The pre-conditioning of the RAO matrix is simply made by multiplying it by a 

weight matrix, and the ideal conditioning must be done by an experiment based 

evaluation of each sensor noise, to guarantee noise independence and noise scale. 

Despite of this, a general procedure is possible if the sensor data is not directly 

obtained, which is based on normalizing the dimensions of the measurements. 

Essentially, as most of the DoFs, the probes and the translational motions of the 
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vessel, are in meters – or a distance measurement – they will be taken as the 

standards, and their noise will be considered independent and equal in magnitude. The 

angular movements, however, need to be corrected, as they are expressed in radians, 

and the adopted procedure will be multiplying them by half of the vessel length, in the 

case of the pitch and the yaw movements; and half of the vessel beam, i.e. the width, 

in the case of the roll movement. It can be justified by the fact that those measurements 

are the translational value in the stern, or bow; and in the port, or starboard, of the 

vessel, so they can be measured by the same distance sensors employed to measure 

the translational movements. 

It is interesting to notice how the wave-probe RAOs are automatically weighted 

by the wave-probe positions when converting from wave-elevation, which also gives 

support to the method. 

CLUSTERING AND AVERAGE RAOS 

The clustering technique used is the K-mean clustering, and the similarity 

among the wave-probes is measured taken the RAO of each period and frequency as 

a particular dimension, and measuring the summation of the squared distance of each 

RAO. The complex nature of the RAO values results in a distance in the format of 

Equation (104), and in a general clustering problem formulation in Equations (105), 

(106) and (107). 

 

‖𝑅𝐴𝑂𝑖(𝜔𝑚, 𝛽𝑘) − 𝑅𝐴𝑂𝑗(𝜔𝑚, 𝛽𝑘)‖
2

 

= 𝑅𝑒{𝑅𝐴𝑂𝑖(𝜔𝑚, 𝛽𝑘) − 𝑅𝐴𝑂𝑗(𝜔𝑚, 𝛽𝑘)}
2
+ 𝐼𝑚{𝑅𝐴𝑂𝑖(𝜔𝑚, 𝛽𝑘) − 𝑅𝐴𝑂𝑗(𝜔𝑚, 𝛽𝑘)}

2
 

 

(104) 

{
𝑟𝑝𝑐 = 1, 𝑖𝑓 𝑝𝑟𝑜𝑏𝑒 𝑝 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐

𝑟𝑝𝑐 = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                         
 (105) 

𝝁𝑐 =
1

∑ 𝑟𝑝𝑐
𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠
𝑝=1

∑ 𝑟𝑝𝑐

[
 
 
 
 
 
 
𝑅𝑒{𝑅𝐴𝑂𝑝(𝜔1, 𝛽1)}

𝐼𝑚{𝑅𝐴𝑂𝑝(𝜔1, 𝛽1)}

⋮
𝑅𝑒{𝑅𝐴𝑂𝑝(𝜔𝑚, 𝛽𝑘)}

𝐼𝑚{𝑅𝐴𝑂𝑝(𝜔𝑚, 𝛽𝑘)}

⋮ ]
 
 
 
 
 
 

1×2∙𝑀∙𝐾

 

𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠

𝑝=1

 (106) 

min
𝑟𝑝𝑐
𝐽 = ∑ ∑ 𝑟𝑛𝑘‖𝑹𝑨𝑶𝑝 − 𝝁𝑐‖

2

𝑛𝑝𝑟𝑜𝑏𝑒𝑠

𝑝=1

𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠

𝑐=1

 

 
 

(107) 
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It is interesting to notice that no position value is included in the problem, but, as 

expected, the final groups always contain probes that are neighbors from each other. 

The value 𝝁𝑐 is taken as the RAOs of the average DoF, which is used in the first 

step of the optimization. 

FORCING SYMMETRIC CLUSTERS AND REMOVING SYMMETRIC COMBINATIONS 

Even though the clusters contain neighbor probes, there is no guarantee that 

the calculated clusters will be the same at port and starboard, because the clustering 

problem has multiple solutions. In order to force symmetry, a simple algorithm identifies 

the side with more clusters and mirror it, resulting in a symmetric arrange. The 

symmetry is important because it can reduce the number of combinations to evaluate 

almost to the half, since it is easy to realize that two configurations, in which one is the 

mirror of the other, will have the same overall performance in the estimation. 

If only one probe is used during the estimation, it is easy to see that there are 

𝑛𝑝𝑟𝑜𝑏𝑒𝑠 − 2  symmetric probes, as the stern and the bow probes are discounted, 

resulting in a reduction of 0.5 +
1

𝑛𝑝𝑟𝑜𝑏𝑒𝑠
 in the number of combinations, or 

𝑛𝑝𝑟𝑜𝑏𝑒𝑠−2

2
+

2 = 𝑛𝑝𝑟𝑜𝑏𝑒𝑠 ∙ (
1

2
+

1

𝑛𝑝𝑟𝑜𝑏𝑒𝑠
)  final value. When more probes are used, there are 

combinations containing the stern and the bow probes that ARE symmetric, so only a 

percentage of the 
1

𝑛𝑝𝑟𝑜𝑏𝑒𝑠
 will be non-symmetric and the reduction will be always 

greater, which establishes the upper bound of 𝑘𝑠𝑦𝑚.. 

CALCULATING THE TRACE CRITERION 

The complete trace criterion is very expensive to be calculated, but using some 

interesting block diagonal matrix properties, Equations (108)-(112), and knowing that 

all the matrix involved are block diagonal, the calculations can be simplified and the 

execution time is significantly lowered, mainly the calculation of the inverse of the 

functions. The algorithm can be further accelerated by techniques for sparse matrices. 
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 𝑨 = [
𝑨𝟏  𝟎
 𝑨𝒎  
𝟎  𝑨𝑴

] (108) 

 𝑨𝑇 = [

𝑨𝟏
𝑇  𝟎

 𝑨𝒎
𝑇  

𝟎  𝑨𝑴
𝑇

] , 𝑨𝑇𝑨 = [

𝑨𝟏
𝑇𝑨𝟏  𝟎

 𝑨𝒎
𝑇 𝑨𝒎  

𝟎  𝑨𝑴
𝑇 𝑨𝑴

] (109) 

 𝑨−1 = [

𝑨𝟏
−1  𝟎

 𝑨𝒎
−1  

𝟎  𝑨𝑴
−1

] (110) 

 𝑨 + 𝑩 = [
𝑨𝟏 + 𝑩𝟏  𝟎

 𝑨𝒎 + 𝑩𝒎  
𝟎  𝑨𝑴 + 𝑨𝑴

] (111) 

 trace(𝑨) = ∑ trace(𝑨𝒎)

𝑴

𝒎=𝟏

 (112) 

   

In the case of the objective functions for the independent frequencies, a further 

simplification can be made because the dynamic system is independent among the 

frequencies, and the utility design of experiments is reduced to the optimal design of 

experiment applied to each system, as explained in the example in section 3.5.3, Utility 

optimal design of experiments. The equivalence is summarized in Equation (113). 

 

trace(𝑾𝒍2
(𝑨𝑇𝑨 + [𝑢1

2𝑯1 + 𝑢2
2𝑯2 + 𝑢3

2𝑯3])
−1) 

≡ 

trace ((𝑨𝒎
𝑇 𝑨𝒎 + [𝑢1

2𝑯1𝒎 + 𝑢2
2𝑯2𝒎 + 𝑢3

2𝑯3𝒎])
−1
) 

(113) 

   

Finally, a great improvement can also be made if the independency of the 

individual blocks calculations is taken in account. Using this property, the problem can 

be solved using parallel techniques, since multi-core computers are now available 

even for domestic users. 

PARETO FRONTIER 

The Pareto Frontier is a useful tool for multi-objective optimizations that is used 

when there is not a rule that dictates the preference or relation among the objective 

functions. Since there is no preference, the idea is that a given solution 𝐴 is better than 

a solution 𝐵 only if ALL the objective function values are better; if just one is not better, 
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the solutions are equally good. The frontier is, then, formed by the solutions that are 

not completely dominated by any other. 

In the algorithm, since the solution which indicates the optimum clusters is an 

approximation, more layers of the Pareto-Frontier are used, lowering the risk of 

discarding a solution that can become the best one when the real evaluation is made. 

A graphical explanation of the Pareto Frontier, and the idea of layers, is given 

in Figure 34. 

 Figure 34 – Example of a Pareto Frontier. 

 
 Source: Elaborated by the author. 

4.4. Optimization of Degrees of Freedom Usage by Frequency 

One of the wave estimation utilities is the real-time prediction of waves around 

the vessel. This demands that the algorithm is as fast as possible, but without losing 

its reliability.  

It is known that some DoFs respond better for some frequencies than others. 

The vessel response, for example, is preferable for wave periods ranging from 10 

seconds to 30 seconds; and wave-elevations are preferable for wave periods below 8 

seconds. It means that the matrix of RAOs, the 𝑨 matrix, does not need to include all 

the chosen DoFs in each frequency matrix 𝑨𝑚. If three wave-probes and three vessel 
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DoFs are used, for example, instead of having an 𝑨 matrix with 62 ∙ 𝑀 rows and 𝐾 ∙ 𝑀 

columns, it is possible to have an 𝑨 matrix with  32 ∙ 𝑀 rows and 𝐾 ∙ 𝑀 columns with 

almost the same performance, but using only the probes in the low period matrices, a 

mixing of probes and vessel DoFs in intermediate period matrices, and only vessel 

DoFs in the high period matrices. This can be done because the removed DoFs do not 

cause any degradation of the estimation capabilities, since their responses are 

negligible for the selected range of periods. 

In this case, the optimization is done for each period, and the exhaustive search 

is possible. Comparing the resulting matrix with a matrix that demands the same 

computational effort during the estimation, it is possible to notice how the mixed-DoF 

matrix can use more different DoFs and has a lower trace-criterion. The proposal is 

summarized in Figure 35. 

Figure 35 – Proposed RAO matrix. 

 
Source: Elaborated by the author. 

The previous explanation would be unnecessary if the closed form of the 

estimation problem could be used. The matrices involved in the estimation, and the 

inverse of them, could be pre-calculated and an estimation matrix 𝑬 could be defined, 

reducing the problem to a simple matrix multiplication, Equation (114). This procedure 

is so fast that further reductions would not be necessary. 
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 𝒙̂ = (𝑨𝑇𝑨 + [𝑢1
2𝑯1 + 𝑢2

2𝑯2 + 𝑢3
2𝑯3])

−1𝑨𝑇𝒃 = 𝑬𝒃 (114) 

   

However, as the vector 𝒙 represents an energy measurement, it cannot assume 

negative values, and an inequality constraint must be added to the optimization 

problem. It means that the closed form does not exist anymore and a quadratic 

programming algorithm must be used, Equations (115) to (118). The size of matrix 𝑨 

is very important in this case, producing a huge impact in the optimization 

computational cost. 

 min
𝒙,𝑥𝑖>0

𝐽(𝒙) = ‖𝑨𝒙 − 𝒃‖2 + 𝒙𝑇[𝑢1
2𝑯1 + 𝑢2

2𝑯2 + 𝑢3
2𝑯3]𝒙 

(115) 

 ‖𝑨𝒙 − 𝒃‖2 = (𝑨𝒙 − 𝒃)𝑇(𝑨𝒙 − 𝒃) = 𝒙𝑻𝑨𝑻𝑨𝒙 − 2𝒃𝑻𝑨𝒙 + 𝒃𝑻𝒃 (116) 

 min
𝒙,𝑥𝑖>0

𝐽(𝒙) ≡ min
𝒙,𝑥𝑖>0

1

2
𝒙𝑻[𝑨𝑻𝑨 + 𝑢1

2𝑯1 + 𝑢2
2𝑯2 + 𝑢3

2𝑯3]𝒙 − (𝑨
𝑻𝒃)𝑻𝒙 (117) 

 min
𝒙,𝑥𝑖>0

1

2
𝒙𝑻𝑯𝒙 + 𝒇𝑻𝒙,𝑯 (118) 

   

Details about the settings of the quadratic programming algorithm can be found 

in APPENDIX C – Numerical Issues. 

It is important to remember that the trace criterion assumes the solution in the 

closed form, which means that eventually two approximations were done: the prior was 

assumed equal to the real state distribution; and the closed form solution is close to 

the quadratic programming solution. 

4.5. Optimal Prior 

If there is some information about the possible states that one aims to estimate, 

and given some conditions, it is possible to estimate an optimal prior for a given 

criterion. 

If the complete probability distribution of the states was known, it would be 

possible to calculate the exact prior using particle methods or general approximation 

tools, like neural networks. However, it is not interesting to abandon the quadratic form 

of the current prior: it guarantees solutions that can be achieved by fast computations 

and a global minimum, since all the functions involved are quadratic with only boundary 

constraints. 
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The optimal quadratic prior can be estimated by a sample of seas using the 

Bayesian method with the following formulation, Equations (119) and (120): 

 max
𝚪,𝒙𝟎

𝑃(𝚪, 𝒙𝟎|𝒙𝒔𝒂𝒎𝒑𝒍𝒆) = 𝑃(𝒙𝒔𝒂𝒎𝒑𝒍𝒆|𝚪, 𝒙𝟎)𝑃(𝚪, 𝒙𝟎)/𝑃(𝒙𝒔𝒂𝒎𝒑𝒍𝒆) (119) 
 

 max
𝚪,𝒙𝟎

𝑃(𝚪, 𝒙𝟎|𝒙𝒔𝒂𝒎𝒑𝒍𝒆) ∝ 𝑃(𝒙𝒔𝒂𝒎𝒑𝒍𝒆|𝚪, 𝒙𝟎)𝑃(𝚪, 𝒙𝟎) (120) 
 

 

The idea of the formulation is to choose the more probable 𝒙𝟎 vector and 𝚪 

matrix given the sample, i.e., which would be the more probable probability function, 

in a given format, that would have generated the sample. 

If no preference is given to any 𝚪 or 𝒙𝟎, 𝑃(𝚪, 𝒙𝟎) = 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, the 

Bayesian problem is equivalent to maximize the likelihood function, i.e., what are the 

vector 𝒙𝟎 and the matrix 𝚪 that, if the sample was generated from them, the sample 

would have the maximum probability of happening? Essentially, Equation (121). 

 max
𝚪,𝒙𝟎

𝑃(𝚪, 𝒙𝟎|𝒙𝒔𝒂𝒎𝒑𝒍𝒆) ≡ max
𝚪,𝒙𝟎

𝑃(𝒙𝒔𝒂𝒎𝒑𝒍𝒆|𝚪, 𝒙𝟎) (121) 

   

Recovering the general quadratic Tykhonov regularization problem, Equation 

(122), and guaranteeing a proper prior, i.e., ∫ 𝑃(𝒙|𝚪, 𝒙𝟎)𝑑𝒙
+∞

−∞
= 1 , the Tykhonov 

equivalent prior can be written as Equation (123). This form can be easily inferred when 

the Tykhonov regularization is interpreted as a Gaussian prior with 𝚺−1 = 𝚪T𝚪. 

 min
𝒙
‖𝑨𝒙 − 𝒃‖2 + 𝛼2‖𝚪(𝒙 − 𝒙𝟎)‖

2 
(122) 

 𝑃(𝒙|𝚪, 𝒙𝟎) =
1

√(2𝜋)𝑛|(𝚪T𝚪)−1|
𝑒
(−
1
2
(𝒙−𝒙𝟎)

𝑇𝚪T𝚪(𝒙−𝒙𝟎))
 (123) 

   

Renaming 𝚪T𝚪 = 𝐐−1 , for reasons that will be clear soon, the maximization 

problem, with a number 𝑛𝑠𝑎𝑚𝑝𝑙𝑒 of seas samples, becomes Equation (124) and, finally, 

Equation (125). 
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 max
𝐐,𝒙𝟎

𝑃(𝒙𝒔𝒂𝒎𝒑𝒍𝒆|𝐐, 𝒙𝟎) = max
𝐐,𝒙𝟎

𝑃(𝒙𝟏 ∩ 𝒙𝟐 ∩ …∩ 𝒙𝑛𝑠𝑎𝑚𝑝𝑙𝑒|𝐐, 𝒙𝟎) = 
(124) 

 = max
𝐐,𝒙𝟎

∏
1

√(2𝜋)𝑛|𝑸|
𝑒
(−
1
2
(𝒙𝑖−𝒙𝟎)

𝑇𝐐−1(𝒙𝒊−𝒙𝟎))

𝑛𝑠𝑎𝑚𝑝𝑙𝑒

𝑖=1

 (125) 

   

This problem is a known maximum likelihood problem solved by general matrix 

calculus rules, with (DWYER, 1967) being an earlier reference. 

Taking the natural logarithm of the objective function – the logarithm is a 

monotonically increasing function, which means that the maximum point of the original 

positive objective function will be the same of the logarithm of this function – the 

problem can be rewritten as Equation (126). 

 ln(𝑓(𝑸, 𝒙𝟎)) = 𝑐𝑡𝑒. −
𝑛𝑠𝑎𝑚𝑝𝑙𝑒

2
ln(|𝑸|) −

1

2
∑ (𝒙𝑖 − 𝒙𝟎)

𝑇𝑸−1(𝒙𝑖 − 𝒙𝟎)

𝑛𝑠𝑎𝑚𝑝𝑙𝑒

𝑖=1

 (126) 

Taking the derivatives with respect to 𝑸 and 𝒙𝟎, Equation (127) and (128), and 

equating both to zero, the parameters that define the maximum point can be found, 

Equation (129) and (130) – (DWYER, 1967) profs that this indeed a maximum point. 

 
𝜕 ln(𝑓(𝑸, 𝒙𝟎))

𝜕𝒙𝟎
= −

1

2
∑ (−2𝑸−1(𝒙𝑖 − 𝒙𝟎))

𝑛𝑠𝑎𝑚𝑝𝑙𝑒

𝑖=1

= 𝑸−1 ∑ (𝒙𝑖 − 𝒙𝟎)

𝑛𝑠𝑎𝑚𝑝𝑙𝑒

𝑖=1

 (127) 

 
𝜕 ln(𝑓(𝑸, 𝒙𝟎))

𝜕𝑸
= −

𝑛𝑠𝑎𝑚𝑝𝑙𝑒

2
𝑸−1 +

1

2
𝑸−1 ∑ [(𝒙𝑖 − 𝒙𝟎)(𝒙𝑖 − 𝒙𝟎)

𝑇]

𝑛𝑠𝑎𝑚𝑝𝑙𝑒

𝑖=1

𝑸−1 (128) 

 
𝜕 ln(𝑓(𝑸, 𝒙𝟎))

𝜕𝒙𝟎
= 0 → ∑ (𝒙𝑖 − 𝒙𝟎)

𝑛𝑠𝑎𝑚𝑝𝑙𝑒

𝑖=1

= 0 → 𝒙𝟎 = ∑ 𝒙𝑖

𝑛𝑠𝑎𝑚𝑝𝑙𝑒

𝑖=1

= 𝝁𝒙 (129) 

 
𝜕 ln(𝑓(𝑸, 𝒙𝟎))

𝜕𝑸
= 0 → 𝑸 =

∑ [(𝒙𝑖 − 𝒙𝟎)(𝒙𝑖 − 𝒙𝟎)
𝑇]

𝑛𝑠𝑎𝑚𝑝𝑙𝑒
𝑖=1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒
= 𝚺𝒙 (130) 

It means that the maximum likelihood quadratic prior, calibrated by sample seas, 

is equivalent to a Gaussian probability function, using the sample mean and the sample 

covariance of the seas, Equation (131). The estimation problem can be re-written, 

Equations (132) and, if the covariance matrix of the measurement errors is properly 

normalized, Equation (133). 
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𝑿 = [𝒙𝟏 𝒙𝟐 … 𝒙𝒏], 𝒙𝟎 = 𝑎𝑣𝑔(𝑿), Σ𝒙 = 𝑐𝑜𝑣(𝑿) 

 

(131) 
 
 

 

max
𝒙
𝑃(𝒀 = 𝒃|𝑿 = 𝒙)𝑃(𝑿 = 𝒙) ≡ 

≡ max
𝒙

1

√(2𝜋)𝑚|𝚺𝒚|

𝑒
(−
1
2
(𝒃−𝑨𝒙)𝑇𝚺𝒚

−1(𝒃−𝑨𝒙)) 1

√(2𝜋)𝑛|𝚺𝒙,|

𝑒
(−
1
2
(𝒙−𝒙𝟎)

𝑇𝚺𝒙
−1(𝒙−𝒙𝟎))

≡ 

≡ min
𝒙
(𝑨𝒙 − 𝒃)𝑇𝚺𝒚

−1(𝑨𝒙 − 𝒃) + (𝒙 − 𝒙𝟎)
𝑇𝚺𝒙
−1(𝒙 − 𝒙𝟎) 

 

(132) 

 𝐽(𝒙) = (𝑨𝒙 − 𝒃)𝑇(𝑨𝒙 − 𝒃) + (𝒙 − 𝒙𝟎)
𝑇𝑢2𝑯(𝒙 − 𝒙𝟎) (133) 

 

It is important to emphasize that the resulting prior does not mean that the 

sample can indeed be represented by the Gaussian probability function. Actually, in 

seas estimation, the values in the vector 𝒙  usually assume zeros with a higher 

probability than the Gaussian function suggests – it is simple to visualize it when it is 

known that when a wave comes from a particular direction, everywhere else is zero, it 

means that the values in a particular direction will happen approximately (𝑛𝛽 − 1)/𝑛𝛽 

more often than the Gaussian function suggests.  

Despite of this, the formulation is still valid, since it was desired a quadratic 

function that would best fit a given training data in the maximum likelihood sense. The 

maximum likelihood sense can also be though as the quadratic prior which is the 

closest to the equal probability of happening of each sample sea, i.e., maintains the 

shape of the spectrum without giving preference to any parameter. 

Other criterion that can be used to find the optimal prior is to find a linear 

estimator 𝑲 that minimizes the expected squared error between the estimation and the 

true state, Equation (134): 

 min
𝑲
𝐸[(𝒙 − 𝒙𝒆𝒔𝒕)

2] , 𝒙𝒆𝒔𝒕 = 𝑲 ⋅ 𝒚 
(134) 

   

A simple unidimensional example can be used to illustrate the problem, 

Equations (135) to (139). Knowing that the measurement 𝑦 is connected with the state 

𝑥 by a linear system, assuming that the measurement error 𝜖  and the state 𝑥  are 

uncorrelated, i.e., 𝐸[𝑥𝜖] = 0, and adopting 𝐸[𝑥] = 0: 
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 𝑦 = 𝐴𝑥 + 𝜖 (135) 

 min
𝑘
𝐸[(𝑥 − 𝑘𝑦)2] ≡ min

𝑘
𝐸 [(𝑥 − 𝑘(𝐴𝑥 + 𝜖))

2
] (136) 

 min
𝑘
𝐸[(𝑥(1 − 𝑘𝐴) − 𝑘𝜖)2] 

(137) 

 𝐸[(𝑥 − 𝑘𝑦)2] = (1 − 𝑘𝐴)2𝐸[𝑥2] + 𝑘2𝐸[𝜖2] − 2(1 − 𝑘𝐴)𝑘𝐸[𝑥𝜖]⏞
0

 (138) 

 𝐸[(𝑥 − 𝑘𝑦)2] = (1 − 𝑘𝐴)2𝐸[𝑥2] + 𝑘2𝐸[𝜖2] = (1 − 𝑘𝐴)2𝜎𝑥
2 + 𝑘2𝜎𝑦

2 (139) 

 

Deriving the criterion by 𝑘 and equating to zero, Equation (140): 

 
𝑑𝐸[(𝑥 − 𝑘𝑦)2]

𝑑𝑘
= −2𝐴𝜎𝑥

2 + 2𝑘𝐴2𝜎𝑥
2 + 2𝑘𝜎𝑦

2 = 0 (140) 

 𝑘𝑏𝑒𝑠𝑡 =
𝐴𝜎𝑥

2

𝐴2𝜎𝑥2 + 𝜎𝑦2
 (141) 

 𝑥𝑒𝑠𝑡 = 𝑘𝑦 = (𝐴𝜎𝑥
2𝐴 + 𝜎𝑦

2)
−1
(𝐴𝜎𝑥

2𝑦) 
(142) 

 

   

The resulting estimation, Equations (141) and (142), is exactly the closed form 

of the Bayesian estimation shown in Equation (45), i.e., without assuming anything 

about the probability of the state and anything about the probability of the measurement 

error, if a linear estimator is desired, the best estimation is equivalent to the Bayesian 

problem with the prior equals to the covariance matrix of the possible states. This is a 

known result from the linear stochastic filtering theory and the deduction of the 

complete matrix formula for it can be found in (DAVIS, 2013). 

In conclusion, the covariance of a sample of known possible states is the optimal 

prior in those two reasonable criteria, i.e., if the estimation problem format is defined 

as linear in the resulting estimator or quadratic in the originating cost functional, with 

no prior hypothesis about the real probability distribution function. This strong result 

will be shown to hold true in experimental trials during this thesis. 
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5. NUMERICAL VALIDATION 

All the proposals so far are only based on the theory, so they need to be tested 

to be validated. As stated before, proposals as the optimal design of experiments – to 

select the best wave-probe position; and the utility design of experiments – to foresee 

the estimation capabilities of the final matrix 𝑨; are based in some strong hypothesis 

concerning the prior distribution of the waves and the optimal estimation result. Despite 

the assumptions, the proposals are not related to the physical hypothesis concerning 

the model, which need to be tested experimentally, it means that a numerical validation 

is enough to give a preliminary proof of concept.  

The numerical validation can also give an interesting comparison between the 

estimation with only vessel DoFs against the estimation with wave-probes, and provide 

important insights in the design of the physical experiments. 

5.1. Error Criteria 

The evaluation about how good the estimation algorithm is must follow a 

criterion, or a set of criteria, which is capable of quantifying how much the estimated 

sea differs from the inputted sea. Since it is interesting to compare the proposed 

methods against the standard practice in the area, all the error metrics that were found 

in the literature will be used. 

The first set of error criteria quantifies the difference in each component of the 

directional sea spectrum independently, assuming that the directional spread function 

depends only on the direction. This is useful when the proposal is compared against 

methods that can only provide some of the components, e.g., radars, which are best 

to predict the directional spread function; or ship-borne wave recorders, which are best 

to predict the spectral energy density. They are shown in Equations (143) to (149). 

 𝐸𝑟𝑟𝑆𝜔
2 = ∫ (𝑆(𝜔) − 𝑆̂(𝜔))

2
𝑑𝜔

∞

0

= ∫ (∫ 𝑆(𝜔, 𝛽)𝑑𝛽

2𝜋

0

−∫ 𝑆̂(𝜔, 𝛽)𝑑𝛽

2𝜋

0

)

2

𝑑𝜔

∞

0

 (143) 

 |𝐸𝑟𝑟𝑆𝜔| = ∫|𝑆(𝜔) − 𝑆̂(𝜔)|𝑑𝜔

∞

0

= ∫ |∫ 𝑆(𝜔, 𝛽)𝑑𝛽

2𝜋

0

−∫ 𝑆̂(𝜔, 𝛽)𝑑𝛽

2𝜋

0

| 𝑑𝜔

∞

0

 (144) 
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 𝐸𝑟𝑟𝑆𝜔% =
∫ |𝑆(𝜔) − 𝑆̂(𝜔)|𝑑𝜔
∞

0

∫ 𝑆(𝜔)𝑑𝜔
∞

0

=
∫ |∫ 𝑆(𝜔, 𝛽)𝑑𝛽

2𝜋

0
− ∫ 𝑆̂(𝜔, 𝛽)𝑑𝛽

2𝜋

0
| 𝑑𝜔

∞

0

∫ ∫ 𝑆(𝜔, 𝛽)𝑑𝛽
2𝜋

0
𝑑𝜔

∞

0

 (145) 

 𝐸𝑟𝑟𝐷𝛽
2  = ∫ (𝐷(𝛽) − 𝐷̂(𝛽))

2
𝑑𝛽

2𝜋

0

 (146) 

 |𝐸𝑟𝑟𝐷𝛽|  = ∫ |𝐷(𝛽) − 𝐷̂(𝛽)|𝑑𝛽

2𝜋

0

 (147) 

 𝐸𝑟𝑟𝐷𝛽% =
∫ |𝐷(𝛽) − 𝐷̂(𝛽)|𝑑𝛽
2𝜋

0

∫ 𝐷(𝛽)𝑑𝛽
2𝜋

0

 (148) 

 𝑺𝝎𝜷𝑀∙𝐾×1 = 𝑴(𝑺𝝎) × 𝑫𝜷𝐾×1 → 𝑫̂𝜷 = pinv (𝑴(𝑺̂𝝎)) × 𝑺̂𝝎𝜷 (𝑚𝑎𝑡𝑟𝑖𝑥 𝑓𝑜𝑟𝑚) (149) 

   

The second set of errors is that concerning the parameters of the standard seas, 

which can be useful when comparing the proposed approach against parametric 

estimation algorithms. They are listed in Equations (150) to (157). 

 𝐸𝑟𝑟𝐻𝑠
2 = (𝐻𝑠 − 𝐻̂𝑠)

2
=

(

 4√∫ ∫ 𝑆(𝜔, 𝛽)𝑑𝛽

2𝜋

0

𝑑𝜔

∞

0

− 4√∫ ∫ 𝑆̂(𝜔, 𝛽)𝑑𝛽

2𝜋

0

𝑑𝜔

∞

0
)

 

2

 (150) 

 |𝐸𝑟𝑟𝐻𝑠| = |𝐻𝑠 − 𝐻̂𝑠|, 𝐸𝑟𝑟𝐻𝑠% =
|𝐻𝑠 − 𝐻̂𝑠|

𝐻𝑆
 (151) 

 𝐸𝑟𝑟𝑇1
2 = (𝑇1 − 𝑇̂1)

2
= (2𝜋

∫ ∫ 𝑆(𝜔, 𝛽)𝑑𝛽
2𝜋

0
𝑑𝜔

∞

0

∫ 𝜔 ∫ 𝑆(𝜔, 𝛽)𝑑𝛽
2𝜋

0
𝑑𝜔

∞

0

− 2𝜋
∫ ∫ 𝑆̂(𝜔, 𝛽)𝑑𝛽

2𝜋

0
𝑑𝜔

∞

0

∫ 𝜔 ∫ 𝑆̂(𝜔, 𝛽)𝑑𝛽
2𝜋

0
𝑑𝜔

∞

0

)

2

 (152) 

 |𝐸𝑟𝑟𝑇1| = |𝑇1 − 𝑇̂1|, 𝐸𝑟𝑟𝑇1% =
|𝑇1 − 𝑇̂1|

𝑇1
 (153) 

 𝐸𝑟𝑟𝑇𝑃 = 1.199𝐸𝑟𝑟𝑇1 , 𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝐼𝑇𝑇𝐶 𝐽𝑂𝑁𝑆𝑊𝐴𝑃 (154) 

 |𝐸𝑟𝑟𝛽0| = |𝛽0 − 𝛽̂0| = |atan [
∫ ∫ 𝑆(𝜔, 𝛽) sin(𝛽) 𝑑𝛽

2𝜋

0
𝑑𝜔

∞

0

∫ ∫ 𝑆(𝜔, 𝛽) cos(𝛽) 𝑑𝛽
2𝜋

0
𝑑𝜔

∞

0

] − atan [
∫ ∫ 𝑆̂(𝜔, 𝛽) sin(𝛽) 𝑑𝛽

2𝜋

0
𝑑𝜔

∞

0

∫ ∫ 𝑆̂(𝜔, 𝛽) cos(𝛽) 𝑑𝛽
2𝜋

0
𝑑𝜔

∞

0

]| (155) 

 𝑠̂ = min
𝑠,𝑠∈ℤ|1≤𝑠≤100

[𝑺̂𝝎𝜷𝑀∙𝐾×1 −𝑴(𝑺̂𝝎) × 𝑫(𝐺(𝑠) ∙ cos
2𝑠 (
𝛽 − 𝛽̂0
2

))]

𝟐

 (156) 

 |𝐸𝑟𝑟𝑠| = |𝑠 − 𝑠̂|, 𝐸𝑟𝑟𝑠% =
|𝑠 − 𝑠̂|

𝑠
 (157) 

 

Other set of error criteria are described and proposed by (BISPO, et al., 2012), 

and are metrics related to the high-resolution difference between the estimated and 
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the inputted spectra. The first error quantifies a quadratic difference in each region of 

the polar plot, and the second one tries to measure how dislocated the spectra are 

from each other, using a normalizing factor to mask possible magnitude differences. 

They are shown in Equations (158) and (159). 

 𝐸𝑟𝑟𝑆𝜔𝛽
2  = ∫ ∫ (𝑆(𝜔, 𝛽) − 𝑆̂(𝜔, 𝛽))

2

𝑑𝛽

2𝜋

0

𝑑𝜔

∞

0

 (158) 

 𝐸𝑟𝑟𝑆̅(𝜔,𝛽),𝑛𝑜𝑟𝑚.
2  = ∫ ∫ (𝑆̅(𝜔,𝛽)− 𝑆̂̅(𝜔,𝛽))

2

𝑑𝛽

2𝜋

0

𝑑𝜔

∞

0

= ∫ ∫ (
𝑆(𝜔,𝛽)

max(𝑆(𝜔,𝛽))
−

𝑆̂(𝜔,𝛽)

max(𝑆̂(𝜔,𝛽))
)

2

𝑑𝛽

2𝜋

0

𝑑𝜔

∞

0

 (159) 

   

It is also possible to expand the concepts to define a high-resolution absolute 

error and a high-resolution percent error, Equations (160) and (161). 

 |𝐸𝑟𝑟𝑆𝜔𝛽| = ∫ ∫ |𝑆(𝜔, 𝛽) − 𝑆̂(𝜔, 𝛽)|𝑑𝛽

2𝜋

0

𝑑𝜔

∞

0

 (160) 

 𝐸𝑟𝑟𝑆𝜔𝛽% =
∫ ∫ |𝑆(𝜔, 𝛽) − 𝑆̂(𝜔, 𝛽)|𝑑𝛽

2𝜋

0
𝑑𝜔

∞

0

∫ ∫ 𝑆(𝜔, 𝛽)𝑑𝛽
2𝜋

0
𝑑𝜔

∞

0

 (161) 

   

Finally, it is interesting to define errors related to the numerical aspect of the 

method, without considering the model behind it, Equations (162), (163) and (164). 

 𝐸𝑟𝑟𝒙
2 = ‖𝒙 − 𝒙̂‖ = ∑(𝑥𝑖 − 𝑥̂𝑖)

2

𝑀∙𝐾

𝑖=1

 (162) 

 |𝐸𝑟𝑟𝒙| = ∑|𝑥𝑖 − 𝑥̂𝑖|

𝑀∙𝐾

𝑖=1

 (163) 

 𝐸𝑟𝑟𝒙% =
∑ |𝑥𝑖 − 𝑥̂𝑖|
𝑀∙𝐾
𝑖=1

∑ 𝑥𝑖
𝑀∙𝐾
𝑖=1

 (164) 

   

There are some important numerical aspects in those calculations. Firstly, the 

denominators of the percent errors are always positive, since they represent energy, 

so they do not need to be put in absolute values. Lastly, the numerical integration in 𝛽 

must be done carefully, since numerical problems can happen, as discussed in 

APPENDIX C – Numerical Issues. 
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5.2. Wave-Probe Positioning 

In order to validate the trace criterion, only a small number of positions were 

defined as possible, since the reduced number would allow the evaluation of all the 

combinations among them. Twelve positions were defined, since this is the number of 

gauges available for the physical experiments, and they were chosen using cluster 

techniques. The idea was to define twelve clusters and select the mean position of 

each one, in order to guarantee probes with the more diverse response among them, 

enlarging the possible trace criterion outcomes, Figure 36 and Table 3. 

 Figure 36 – Position of the wave-probes for the experiments. 

 
 Source: Elaborated by the author. 

Table 3 – Position of the wave-probes in the model scale, in millimeters. 

 1 2 3 4 5 6 7 8 9 10 11 12 

X -12 322 322 945 945 1697 1697 2410 2410 2925 2925 3679 

Y 0 237 -237 323 -323 323 -323 323 -323 320 -320 0 

Source: Elaborated by the author. 

5.3. Description of the Campaign 

The objective of the numerical validation campaign is to provide information for 

the following questions: 

 Which error criteria can be correctly predicted by the trace criterion? 

 What are the possible improvements of adding wave-probes to the 

estimation algorithm? 

The answers, however, have a strong dependency with the sea statistics, and 

would only be valid for the specific tested conditions. 

Usually, the sea statistics are raised experimentally in regions of interest, and 

are organized in metocean reports, which summarizes meteorological and sea state 

information. It is safe to assume that the reports will contain some kind of JONSWAP-
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based spectral density function, some kind of cosine-squared-based spread function, 

a possible frequency table with the probability of occurrence of a doublet 𝐻𝑆 × 𝑇𝑃, a 

possible frequency table with the probability concerning the incoming directions 𝛽0, 

and a possible frequency table with some kind of spread factor 𝑠. 

In this text, an idealized metocean is used, with a frequency table in the format 

shown in Table 4. The parameter 𝛽0 can assume any value between 0° and 360° with 

uniform probability; and the parameter 𝑠 can assume integers values between 1 and 

100, also with uniform probability. 

 Table 4 – Idealized joint occurrence of 𝐻𝑆 and 𝑇𝑃. 

Tp  

Hs  

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

                  
0,5 1,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1,0 1,5 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0 

1,5 2,0 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0 

2,0 2,5 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0 

2,5 3,0 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0 

3,0 3,5 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0 

3,5 4,0 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0 

4,0 4,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 Source: Adapted from (PETROBRAS, 2010). 

The frequency table is used to seed a Monte-Carlo simulation, producing 1000 

different seas. The seas are, then, estimated by different matrices 𝑨, and the results 

are summarized in the next sections. 

5.4. Verification of the Error Metrics 

Before running estimation procedures, it is interesting to perform a verification 

of the error metrics. It allows the verification of bias and alias in the estimation of the 

parameters and in the decomposition of the seas. The importance of this section will 

become evident with the results presented. 

Each one of the sea vectors are generated by the procedure in Equation (165) 

and their parameters are estimated by the procedure in Equation (166). The errors are, 

then, calculated comparing the parameters used to seed the sea against the 

parameters estimated using the sea generated, without adding any kind of noise. 
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 𝒙 = 𝑓(𝐻𝑆, 𝑇𝑃 , 𝛽0, 𝑠) = 𝑆(𝜔) ∙ 𝐷(𝛽), 𝑆(𝜔) = 𝑔(𝐻𝑆, 𝑇𝑃), 𝐷(𝛽) = ℎ(𝛽0, 𝑠) (165) 

 [𝐻̂𝑆, 𝑇̂𝑃, 𝛽̂0, 𝑠̂, 𝑆̂(𝜔), 𝐷̂(𝛽)] = 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛(𝒙) (166) 

   

For the first trial, a discretization of 40 values of 𝜔, varying from 2𝜋/30 to 2𝜋/4, 

and 40 values of 𝛽 was used. 

The numerical errors 𝐸𝑟𝑟𝒙
2, |𝐸𝑟𝑟𝒙| and 𝐸𝑟𝑟𝒙% are, of course, exactly zero, since 

the vector is the same. The high resolution errors 𝐸𝑟𝑟𝑆𝜔𝛽
2 , |𝐸𝑟𝑟𝑆𝜔𝛽| , 𝐸𝑟𝑟𝑆𝜔𝛽%  and 

𝐸𝑟𝑟𝑆̅(𝜔,𝛽),𝑛𝑜𝑟𝑚.
2  are also exactly zero, since 𝑆(𝜔, 𝛽) is just the vector 𝑥 reshaped.  

The decomposition of the vector in the components 𝑆(𝜔) and 𝐷(𝛽) however, 

are not exactly zero, since some calculations are necessary to estimate each part. 

Despite of this, the errors 𝐸𝑟𝑟𝑆𝜔
2 , |𝐸𝑟𝑟𝑆𝜔| , 𝐸𝑟𝑟𝑆𝜔% , 𝐸𝑟𝑟𝐷𝛽

2 , |𝐸𝑟𝑟𝐷𝛽|  and 𝐸𝑟𝑟𝐷𝛽%  are 

always smaller than 10-12, indicating that the difference is only due to numerical 

truncation. 

The parametric errors, however, are non-negligible for some parameters, and 

selected error metrics can be seen in Figure 37. 

 

Figure 37 – Parametric errors during verification with 40 𝜔 and 40 𝛽. 
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Source: Elaborated by the author. 
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The errors in 𝐻𝑆 and 𝑇𝑃 have a clear relation with the 𝑇𝑃 of the generated sea. It 

happens because of the upper limit of the values 𝜔 in the discretization – lower limit of 

the values of the period. The theoretical JONSWAP spectrum are defined for an infinite 

range of frequencies; when the range is constrained, some of the energy of the 

spectrum will be lost, so the parameters calculated by integral formulations will be 

always smaller than the real ones. Lower 𝑇𝑃 spectra are close to the truncation point, 

so they will experience more error. Since the error is large and deterministic, it can be 

classified as a bias, and can be simply corrected even when noise is applied. 

The errors in the 𝑠 estimation are exactly zero, without any bias. However, the 

errors in 𝛽0 can reach around 1.5° when the seas present spread factor equals to one. 

In this case, the error can be seen as an alias, i.e., there is a range of the parameter 

that causes almost the same output response due to discretization. It makes sense 

that this happens for small values of 𝑠, since in these cases the spread function will be 

almost a flat plateau around the incoming direction, and small variations of 𝛽0 will 

cause almost no variation. In this case, the error may not be simply corrected when 

noise is applied, since it is related with the small difference between the correct value 

and, thus, can be classified as an alias. 

The discretization used, however, are too high for estimation purposes. A 

second trial is, then, performed reducing the discretization of 𝛽 to 20. The selected 

metrics for this case are shown in Figure 38. 

Figure 38 – Parametric errors during verification with 40 𝜔 and 20 𝛽. 
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Source: Elaborated by the author. 

In this case, a new kind of directional parameters error starts to appear for 

spread factors greater than 50. With a detailed analysis, it is possible to see that this 

kind of error happens when the sea 𝛽0 is between two points in the discretization. In 

these cases, when the spread factor is greater than 50, 𝐷(𝛽) has a high pronounced 

peak, and a small difference in the incoming direction cause huge differences in the 

shape of the response, meaning that the estimated spread factor will have to be 

corrected to account for this difference. Finally, the two estimated parameters are able 

to reach a value that results in a 𝐷(𝛽) with almost no difference against the real 

function, but with significantly different parameters, a clear case of alias. Figure 39 

shows an example. In spite of the difference in 𝑠, there is almost no variation in the 

function shape. Again, this error is not corrected easily, and is classified as an alias. 

Figure 39 – Example of alias in 𝐷(𝛽).  

 
Source: Elaborated by the author. 
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Finally, a third trial is done with both discretizations equal to 20. The only 

difference is that the errors in 𝐻𝑆  and 𝑇𝑃  are not monotonically descending, but 

oscillates when the 𝑇𝑃 value is between the discretization points. The error, however, 

can still be classified as a bias, and easily corrected.  

Figure 40 – Parametric errors during verification with 20 𝜔 and 20 𝛽. 

 

 
Source: Elaborated by the author. 

Despite the alias in the estimation of the directional parameters, it can be argued 

that the alias does not cause a sensible change in the characterization of the spectrum, 

so it is not a real error, which is true. However, knowing that an alias can happen, and 

in which cases it happens, is important when analyzing the possible improvements by 

employing wave-probes in the estimation. 
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It is interesting to perform a final verification, adding some noise to the estimated 

sea. The purpose of the study is to verify if it is really possible to correct the bias in the 

estimation. Firstly, a sea is generated, Equation (167), and the bias is calculated 

estimating the parameters of the sea without noise, Equation (168); secondly, noise is 

added, Equation (169), and the parameters are estimated for the noisy sea, Equation 

(170); lastly the error metrics are calculated comparing the noise sea estimation 

against the biased real parameters. The results are shown in Figure 41 and Figure 42. 

 𝒙 = 𝑓(𝐻𝑆, 𝑇𝑃, 𝛽0, 𝑠) (167) 

 [𝐻𝑆 + 𝑏𝐻𝑠 , 𝑇𝑃 + 𝑏𝑇𝑃 , 𝛽0 + 𝑏𝛽0 , 𝑠 + 𝑏𝑠] = 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛(𝒙) (168) 

 𝒙∗ = 𝒙 + |0.001 ∙ 𝝐𝟏| + 0.1 ∙ 𝑰 × 𝝐𝟐
𝑇 × 𝒙, 𝝐𝟏𝑎𝑛𝑑 𝝐𝟐 𝑎𝑟𝑒 𝒩(𝝁 = 𝟎, 𝚺 = 𝑰) (169) 

 [𝐻𝑆
∗, 𝑇𝑃

∗, 𝛽0
∗, 𝑠∗] = 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛(𝒙∗) (170) 

   

Figure 41 – Parameter errors without removing bias. 
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Source: Elaborated by the author. 

 

Figure 42 – Parameter errors removing bias. 
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Source: Elaborated by the author. 
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In conclusion, as expected, the numerical bias could be removed from the 

estimations of 𝐻𝑆 and 𝑇𝑃, but not from the estimations of 𝛽0 and 𝑠, since the last two 

errors are caused by alias related with the problem discretization; notwithstanding, the 

estimation of the directional parameters also had a slight improvement. 

5.5. Validation of the Trace Criterion 

After correcting the numerical bias, and knowing the possible alias in the 

direction estimation, it is possible to perform the simulations in order to validated the 

proposals made. The first validating results are those concerning the trace criterion. 

This trial of numerical tests was performed with all the combinations among the 

twelve possible wave-probe positions. The vessel DoFs used were the sway-heave-

pitch combination, as proposed by (SIMOS, et al., 2009), with the hyperparameters 

defined by (BISPO, et al., 2012). The number of wave-probes was also fixed in three, 

since the objective of this trial is to validate the hypothesis: “the least the trace criterion 

of a combination, the best is the estimation”; totalizing 
12!

3!9!
= 220 combinations. 

For each combination, 1000 seas were generated and estimated, and the trace 

criterion was calculated. The errors of the estimation of each sea were, then, 

calculated, and their means were compared against the trace criterion. 

5.5.1. Noiseless simulation 

Firstly, simulations without the addition of noise were performed, Figure 43. 

Figure 43 – Trace criterion versus different error metrics in noiseless estimation. 
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Source: Elaborated by the author. 

The first conclusion is that there is a clear tendency indicating that low trace 

values generate low mean errors in all the error metrics proposed, even with the strong 

hypothesis made that the prior is exactly the probability distribution of the sea and that 

the optimal solution calculated by the closed form is equal to the one calculated by the 

quadratic programming with constraints. 

The relation with 𝐸𝑟𝑟𝒙
2 is almost linear, which is expected by the theory; and 

metrics related with the spectrum energy shape have a strong relation with the 

criterion: |𝐸𝑟𝑟𝑆𝜔𝛽|, 𝐸𝑟𝑟𝑆𝜔𝛽%, |𝐸𝑟𝑟𝑆𝜔|, 𝐸𝑟𝑟𝑆𝜔%, |𝐸𝑟𝑟𝐻𝑠|, 𝐸𝑟𝑟𝐻𝑠%, |𝐸𝑟𝑟𝑇𝑝| and 𝐸𝑟𝑟𝑇𝑝%.  

Metrics related with the directional spread function do not have a tendency so 

strong with the criterion; notwithstanding, it is possible to affirm that if you take a value 

in a region with low trace, it probably will present a low error and the maximum possible 
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error will be small if compared against regions with higher trace, see, for example, 

Figure 44. This happens in |𝐸𝑟𝑟𝐷𝛽|, 𝐸𝑟𝑟𝐷𝛽%, |𝐸𝑟𝑟𝑠| and 𝐸𝑟𝑟𝑠%.  

Figure 44 – Regions with low trace have lower worst-case. 

 
Source: Elaborated by the author. 

If it is desired to minimize the errors in those criterions, the trace criterion can 

be used to calculate some optimal candidates, which can be then simulated until the 

best one is found. This is particular interesting if the computational time is put in 

perspective, since the trace calculation is between 8000 and 12000 faster than the 

simulation of 1000 seas, i.e., even if only 500 seas were used, which is in the limit of 

the convergence of the Monte-Carlo simulations, an optimization routine that takes 5 

minutes with the trace criterion would take around 17 days to be completed. If the trace 

criterion is used to select ten best candidates, which are, then, simulated, the 

optimization would take no more than 10 minutes. 

The error |𝐸𝑟𝑟𝛽𝑜|, however, has a region in which the errors seem to be smaller 

than in the low-trace region. Despite of that, there are some candidates in the low-trace 

region that have errors close to the optimal candidate, so the low-trace region remains 

a good starting point to optimize this particular metric. 

As a consequence of the previous analysis, the trace criterion is also a good 

starting point of a multi-objective optimization that uses a combination of different mean 

error metrics. 

Until now, the mean of each error metric was observed, but that does not reflect 

completely the estimation capabilities of each combination. Twenty combinations were 
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chosen, equally spaced, to perform a more detailed analysis, Figure 45. The 

combination ID indicates how the probes were chosen, the ID 1, for example, 

represents the probes 1-2-3, the ID 2, 1-2-4, and so on. 

 Figure 45 – Chosen combination for detailed analysis. 

 
 Source: Elaborated by the author. 

The detailed analysis is done by a histogram type of graphic, allowing the 

visualization not only of the mean value but also of the cumulative distribution for each 

error. Essentially, it is possible to verify what is the maximum error – the error that 

100% of the cases are below – what is the error that 90% of the cases are below, what 

is the error that 80% are below and so on. Only some error metrics are shown, since 

the others tend to follow them, Figure 46. 

Figure 46 – Histogram of the combinations performing noiseless estimation. 
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Source: Elaborated by the author. 

For the metrics 𝐸𝑟𝑟𝑥
2 and |𝐸𝑟𝑟𝐻|, the 10% largest errors greatly surpass the error 

of the other 90% of the cases, but the maximum value also tends to decrease with the 

decrease of the trace. The metric |𝐸𝑟𝑟𝑇𝑝| also has a strong tendency with the trace 

criterion, not only the mean value but all the observed errors. 

The mean direction metric, |𝐸𝑟𝑟𝛽𝑜|  also has the 10% largest errors greatly 

surpassing the error of the other 90% of the cases, with a slightly tendency to follow 

the trace decrease. Despite of this, it seems that the most important thing for 𝐸𝑟𝑟𝛽𝑜 is, 

actually, to avoid positions with high trace.  

Finally, the metric |𝐸𝑟𝑟𝑠| does not seem to have a tendency, using the chosen 

combinations. 

5.5.2. Simulations with noise 

In order to validate the method, it is important to add noise to the measurements. 

The model assumes an error with normal distribution and same magnitude in each 

position of the response vector, so this formulation will be used in the simulations, 

Equation (171). 

 𝒃 = 𝑨𝒙 + 𝝐, 𝝐 = 𝒩(𝝁 = 𝟎, 𝚺 = 𝜎2𝑰)   (171) 

   

Different orders of error magnitudes were tested, and the mean error of the 

parameters were acquired for the combination with the minor trace, Table 5. It is 
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possible to conclude that 𝝐 = 𝒩(𝝁 = 𝟎, 𝚺 = (0.1)2𝑰)  was the noise with the most 

reasonable effect, causing errors close to the errors observed in real applications; 

being so, that was the noise used in this numerical trials. 

Table 5 – Comparison of the estimation errors for different noise magnitudes. 

𝝈 |𝑬𝒓𝒓𝑯𝒔| |𝑬𝒓𝒓𝑻𝒑| |𝑬𝒓𝒓𝜷𝒐| |𝑬𝒓𝒓𝒔| 

0.01 0.02 0.1 1 9 

0.10 0.2 0.9 5 18 

1.00 1.5 2.9 40 43 

Source: Elaborated by the author.  

The results are shown in Figure 47. 

Figure 47 – Trace criterion versus different error metrics in estimation with noise. 
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Source: Elaborated by the author. 

Comparing the results of the estimation with noise against the results of the 

noiseless estimation, it is possible to notice that the relation with the trace criterion is 

stronger with noise, for all the error metrics proposed. 

The relation with 𝐸𝑟𝑟𝒙
2 remains almost linear, following the theory; and metrics 

related to the directional spread function start to have a strong relation too: |𝐸𝑟𝑟𝐷𝛽|, 

𝐸𝑟𝑟𝐷𝛽%, |𝐸𝑟𝑟𝑠|, 𝐸𝑟𝑟𝑠% and, even, |𝐸𝑟𝑟𝛽𝑜|. The errors related with the spectrum density 

energy, |𝐸𝑟𝑟𝑆𝜔|, 𝐸𝑟𝑟𝑆𝜔%, |𝐸𝑟𝑟𝐻𝑠|, 𝐸𝑟𝑟𝐻𝑠%, |𝐸𝑟𝑟𝑇𝑝| and 𝐸𝑟𝑟𝑇𝑝%, become more noisy 

than in the noiseless simulation, but the tendency is strong too; furthermore, the 

maximum possible error in a specified region decreases with the trace, giving support 

to the hybrid “trace criterion-simulation” approach, Figure 48. 

Figure 48 – Regions with low trace also have lower worst-case. 

 
Source: Elaborated by the author. 
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There is a strong mathematical explanation for this behavior, Eq. (172) to (177). 

 

𝐸𝑟𝑟𝑆𝜔
2 = ∫ (𝑆(𝜔) − 𝑆̂(𝜔))

2

𝑑𝜔

∞

0
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𝑡𝑟𝑎𝑐𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 ≡ 𝐸𝑟𝑟𝑆𝜔𝛽
2  = ∫ ∫ (𝑆(𝜔, 𝛽) − 𝑆̂(𝜔, 𝛽))

2

𝑑𝛽

2𝜋

0

𝑑𝜔

∞

0

= 

= ∫ (∫ (𝐸𝑟𝑟(𝜔, 𝛽))
2
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𝑆𝑐ℎ𝑤𝑎𝑟𝑧′𝑠 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 → (∫𝜓1(𝑥)𝜓2(𝑥)𝑑𝑥

𝑏
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(∫ 𝐸𝑟𝑟(𝜔, 𝛽) 𝑑𝛽
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2
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 𝐸𝑟𝑟𝑆𝜔
2 ≤ 2𝜋 ⋅ 𝐸𝑟𝑟𝑆𝜔𝛽

2  (177) 
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The previous equations prove that an optimal trace criterion, which is expected 

to minimize 𝐸𝑟𝑟𝑆𝜔𝛽
2 , limits the upper bound of 𝐸𝑟𝑟𝑆𝜔

2 . Similar results can be obtained for 

the other error metrics. 

Again, more detailed analysis can be made using histogram graphs, Figure 49, 

using the same combinations that were shown in the previous case. 

 

Figure 49 – Histogram of the combinations performing estimation with noise. 
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Source: Elaborated by the author. 
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It is interesting to notice, in the graphs, that the mean error trend represents the 

trend of most of the waves, as put in evidence by the tendency of all the contour lines. 

The maximum error, however, only possesses a strong relation with the trace in the 𝐻𝑆 

estimation, indicating that, perhaps, if the maximum error is the objective, more probes 

will have to be employed. 

In conclusion, observing all the available data, the trace criterion proposal is 

strongly validated, for any error metric among the presented ones. It means that the 

optimization of the probes position can be made by simple algorithms in a fast manner, 

and extensive simulation campaigns are not necessary. 

Although the data also suggests that the trace criterion is enough to predict the 

behavior in all possible waves, even if it is a mean criterion, it may not be true when 

fewer wave-probes are used, so more analysis are further presented. 

5.6. Study of the Usage of Different Number of Wave-Probes 

Another interesting study that can be done is the impact of the usage of different 

number of wave-probes in the estimation result. 

In this set, the number of possible wave probes was varied from 0 to 12, and 

the combination of positions with the best trace was used in each case. The trace result 

is shown in Figure 50 and the best positions are shown in Figure 51. The noise 

amplitude is equal to the used in the previous section, 0.1. 

 Figure 50 – Best trace criterion for different number of wave-probes. 

 
 Source: Elaborated by the author 



115 
 

Figure 51 – Best position of the wave-probes for different number of gauges. 

 

 
Source: Elaborated by the author. 
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The results of this simulation are shown in Figure 52 and Figure 53. 

Figure 52 – Error metrics for different number of wave-probes. 
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Source: Elaborated by the author.  

Figure 53 – Histogram of the errors for different number of wave-probes. 
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Source: Elaborated by the author. 

The first important information provided by the data is the validation of the 

‘elbow’ criterion. By applying the criterion in the trace vs number of probes figures, it is 

possible to estimate the best number of probes as something between 2 and 4. 

The usage of two wave-probes seems to be the best choice for energy related 

parameters, 𝐻𝑆 and 𝑇𝑃, which can be visualized by the mean error vs trace criterion 

curves; while the usage of four probes would be recommended to improve the 

estimation of directional parameters, 𝛽0 and 𝑠. This is also perceived in the histogram 

graphs, in which ‘elbow’ shape curves can be seen in each contour, at least up to the 

90% contour, suggesting the same number of probes discussed. 

An interesting conclusion of the data is that the energy estimation of the 

directional spectrum converges earlier than the spread function, which is expected. 

The second interesting conclusion is that the ‘elbow’, indeed, happens when the 

system is fully determined: if 20 directions are used, it would be necessary 20 

equations in each frequency; using two probes plus three vessel movements 𝑁2 = 25 

equations are determined, i.e., it is expected that the system will be fully determined if, 

at least, two probes are employed. Of course the number of equations do not 

guarantee that they will be linearly independent, so two wave-probes would be the 

minimum necessary. 

The last conclusion can possibly suggest a rationale guiding the choice of the 

discretization. While the frequency discretization can be guided by the sample 
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frequency and its impact in the spectral estimation with the Welch’s method, which are 

described in the experimental section, the direction discretization could be determined 

by the number of degrees of freedom used in the estimation algorithm.  

5.7. Validation of the Heuristic 

In this section, an analysis of the heuristic results is provided.  

Following the proposed algorithm, the wave-probe RAOs for the one hundred 

positions were calculated by the software Wamit®, and were grouped together in 24 

clusters, Figure 54. 

Figure 54 – One hundred positions grouped together in 24 clusters. 

 
Source: Elaborated by the author. 

Using those clusters, two cases were calculated: the addition of one wave-probe 

and the addition of three wave-probes. The first case, the addition of one wave-probe, 

results in the first layer of the Pareto Frontier with only three candidates. More layers 

were added to provide 11 possible wave-probe combinations, or 11 matrices 𝑨. The 

trace results are shown in  Figure 55. 

 Figure 55 – Values obtained for the addition of one wave-probe. 

 
 Source: Elaborated by the author. 



123 
 

The second case, the addition of three wave-probes, results in the first layer of 

the Pareto Frontier with 26 candidates. The trace results are shown in Figure 56. 

 Figure 56 – Values obtained for the addition of three wave-probes. 

 
 Source: Elaborated by the author. 

Comparing the results, it is possible to notice that the addition of three wave-

probes resulted in a great decrease in the trace values, as expected. 

The positions suggested by the algorithm for the one-wave-probe problem are 

shown in Figure 57. It interesting to notice that, as expected, symmetric positions 

perform equally well when the algorithm evaluates both. In this case, some symmetric 

positions are evaluated because the clusters at the stern and at the bow have mirrored 

internal components, which are not removed by the symmetrical filtering. 

 

Figure 57 – Positions suggested by the algorithm for a single wave-probe. 

 
Source: Elaborated by the author. 

 

For the three-wave-probe problem, the cases with indices equal to 1 and equal 

to 10 are shown in Figure 58. 
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Figure 58 – Suggested solutions for the three-wave-probe problem. 

 

 
Source: Elaborated by the author. 

 

A simple comparison was made against a genetic algorithm, in which only the 

total trace criterion was used, and each gene was configured to be the selected wave-

probe position. The average results are shown in Table 6. 

 

Table 6 – Comparison between the algorithms. 

Algorithm Final Optimal Total Trace Criterion Execution Time 

Heuristic 0.23 5 minutes 

Genetic Algorithm 0.25 16 hours 

Source: Elaborated by the author. 

 

It is important to emphasize that a specific optimized genetic algorithm probably 

would have a performance more close to the heuristic than the presented one. The 

overall hypothesis of the heuristic, however, have a strong validation with the results. 

1

1 

1

10 
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5.8. Validation of the Optimal Prior 

During the trace criterion validation, it was emphasized that the main hypothesis 

is that the prior functions defined are similar to the real prior of the sea. The prior 

functions suggested in the literature have general smoothing properties, and do not 

account for the problem idiosyncrasies, so it was expected that the trace criterion would 

not be a perfect metric to measure the errors. 

In this section, the optimal prior based on sample seas will be validated, based 

on the shape information of the expected spectra. If it is assumed that the spectrum is 

almost always a JONSWAP type spectrum, and no preference is given to the 

parameters 𝐻𝑆, 𝑇𝑃, 𝛽0 and 𝑠, it is possible to calibrate a generic prior using Monte-

Carlo simulations. To avoid the inherent random nature of the Monte-Carlo, it is 

possible to generate a set of seas with parameters varying accordingly with the 

discretization of the problem, Table 7. If it is used a 20 × 20 discretization, 360000 

possible seas are generated. 

 

Table 7 – Proposed discretization to calculate the new prior. 

 𝑯𝑺 𝝎𝑷 = 𝟐𝝅/𝑻𝑷 𝜷𝟎 𝒔 

Minimum 1 min(𝜔𝑖) min(𝛽𝑖) 1 

Interval 0.5 Δ𝜔 Δ𝛽 1 

Maximum 5 max(𝜔𝑖) max(𝛽𝑖) 100 

Source: Elaborated by the author. 

 

Formally, the generated sample of the seas does not pass in any of the 

multivariate normality tests in the package developed by (KORKMAZ, et al., 2014). 

Despite of this, as discussed in section 4.5 Optimal Prior, the formulation is still valid, 

since it was desired a quadratic function that would best fit a given training data in the 

maximum likelihood sense. The maximum likelihood sense can also be though as the 

quadratic prior which is the closest to the equal probability of happening of each sample 

sea, i.e., maintains the shape of the spectrum without giving preference to any 
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parameter; and a third interpretation is that the proposed optimal prior results in the 

best linear estimator of the problem. 

If the prior is generated directly by the sample, however, a problem can happen. 

The sample mean is not equal zero, since all the sea energy is positive, but equal to a 

constant value, since no preference was given to any direction and any 𝑇𝑃 . This 

constant value, however, can deliver wrong results with vectors close to the null space 

of the RAO matrix. If 𝑨𝒙𝒏𝒖𝒍𝒍 = 𝟎, the best value will be determined by the prior and 

𝒙∗ = 𝒙𝟎 = 𝒄𝒕𝒆., despite any measurement being made.  

This can be easily solved by forcing 𝒙𝟎 = 𝟎, which is equivalent to duplicate the 

sample of the seas with the negative values of them, Equation (178). It makes sense, 

since the purpose of the prior is to describe the general shape of the sea vector values, 

which will be maintained to −𝒙𝒔𝒂𝒎𝒑𝒍𝒆 . Moreover, the quadratic programming non-

negative constraint limits the prior probability, and it is clear, by the general histogram 

of the sea vector values, that the quadratic prior, with non-negative constraints, must 

be centralized in zero to represent the best the probability, Figure 59. 

 

 
∑ [(𝒙𝑖 − 𝒙𝟎)(𝒙𝑖 − 𝒙𝟎)

𝑇]
𝑛𝑠𝑎𝑚𝑝𝑙𝑒
𝑖=1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒
|

𝒙𝟎=𝟎

=
∑ [(𝒙𝑖)(𝒙𝑖)

𝑇]
𝑛𝑠𝑎𝑚𝑝𝑙𝑒
𝑖=1

2𝑛𝑠𝑎𝑚𝑝𝑙𝑒
+
∑ [(−𝒙𝑖)(−𝒙𝑖)

𝑇]
𝑛𝑠𝑎𝑚𝑝𝑙𝑒
𝑖=1

2𝑛𝑠𝑎𝑚𝑝𝑙𝑒
 (178) 

 

Figure 59 – Histogram in a particular sea vector row. The occurrence of zero values is greater than 
shown in the histogram, it was cropped for visualization purposes. 

 
Source: Elaborated by the author. 
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The maximum likelihood quadratic prior is given by Equations (179) and (180). 

 𝑯𝑴𝑳𝑸𝑷 = 𝑖𝑛𝑣 (𝑐𝑜𝑣([𝑿𝒔𝒂𝒎𝒑𝒍𝒆; −𝑿𝒔𝒂𝒎𝒑𝒍𝒆])) (179) 

 𝚪𝑴𝑳𝑸𝑷 = 𝑐ℎ𝑜𝑙𝑒𝑠𝑘𝑦 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑯𝑴𝑳𝑸𝑷) (180) 

   

Despite the high number of seas, the computer is able to handle the data with 

no problem, and the generation of the set only takes a few seconds. If memory is a 

problem, the mean and covariance can be estimated by online algorithms, so the 

generated seas do not need to be stored. 

To evaluate the new proposal, it is interesting to plot it against the prior proposed 

in the literature, taking in account the hyperparameters. The values for the literature 

hyperparameters are the same used in the numerical trials, and the hyperparameter of 

the new prior was calibrated in order to give approximately the same magnitude of 

values in the analyzed region, Figure 60. 

 

Figure 60 – Comparison between the column of the priors. 

 
Source: Elaborated by the author. 

 

The above figure shows a strong conclusion: the two priors are similar. It is 

interesting to notice, however, how the new prior have non-zero covariance in some 

other positions of the matrix, since not only the local relation is taken into account – in 

the sense of neighbor 𝜔𝑖 values – but the overall spectrum. This actually can be a 

drawback, since spectra with other shapes can happen, like bimodal spectra, but this 
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is easily solved adding more spectra types in the simulation or zeroing the covariance 

in positions far from the diagonal, i.e., maintaining only the local relation. 

The main advantage of this prior is that only one hyperparameter needs to be 

calibrated, as if this only hyperparameter is a base value and the hyperparameters of 

the literature prior are automatically weighed inside the new matrix. Moreover, with 

further developments, this parameter may be automatically adjusted by the 

measurement errors, since that, in the exact Bayesian formulation, 𝑢2 = 𝜎𝑦
2.   

There is other advantage, concerning how the prior penalizes noisy seas 

possibilities. In order to evaluate that, it is interesting to evaluate the proportion 

between the penalization of the ideal sea and a sea contaminated by some kind of 

noise. Some test seas were generated using the values in Table 8, and the sea with 

added noise is 𝒙𝒏𝒐𝒊𝒔𝒆 = 𝒙𝒊𝒅𝒆𝒂𝒍 + 0.1 ∙ [
𝜀1  0
 ⋱  
0  𝜀𝑛

] ⋅ 𝒙𝒊𝒅𝒆𝒂𝒍 , 𝜺 = 𝒩(𝝁 = 𝟎, 𝚺 = 𝑰) , i.e., for 

each position of the 𝒙 vector it is possible to happen up to 10% of error of the value in 

this position. 

 

Table 8 – Proposed test set. 

 𝑯𝑺 𝝎𝑷 = 𝟐𝝅/𝑻𝑷 𝜷𝟎 𝒔 

Minimum 1 min(𝜔𝑖) 0° 1 

Interval - Δ𝜔 - 10 

Maximum 1 max(𝜔𝑖) 0° 100 

Source: Elaborated by the author. 

 

Essentially, the 𝐻𝑆 value is kept at one, since its variation will only cause an 

amplification of all priors; the 𝛽0 value is kept at 0°, since the priors are indifferent to 

the incoming direction; and the 𝑠  value is varied with bigger interval, to improve 

visualization using less points. The results for each prior can be seen in Figure 61 and 

Figure 62, the higher the proportion between the penalization of the noisy sea and the 

penalization of the ideal sea, the better. 
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Figure 61 – Penalization of the conventional prior. 

 
Source: Elaborated by the author. 

Figure 62 – Penalization of the maximum likelihood quadratic prior (MLQP). 

 
Source: Elaborated by the author. 

It can be seen that the optimal prior is capable of identifying noisy seas better 

than the conventional prior, probably due to its global perspective, versus the local 

perspective of the second derivative. 

The optimal prior also changes the optimal positioning result obtained by the 

trace criterion. In order to evaluate the relation among the new trace criterion and the 

error metrics, numerical simulations were performed for all possible combinations 

among three wave-probes with sway-heave-pitch vessel movements; and with 

measurement noise equals to 0.01 – the second most reasonable error magnitude, to 

avoid replicate the result of the numerical trials. Finally, the results were compared 

against the results obtained by the conventional prior, Figure 63. 
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Figure 63 – Trace criterion versus errors for different priors.  
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Source: Elaborated by the author. 

 

The most evident conclusion of the graphs is that the tendency with the trace 

criterion is stronger with the optimal prior, even for directional parameters. Other 

important conclusion is that the best combination was able to perform equally well or 

better with this new prior, when compared against the literature prior.  

In conclusion, the optimal prior seems to be really better than the usual prior in 

the literature; and even if the optimal prior provided no gain against the literature prior, 

it would be still the most suitable one to be used to calculate the trace criterion for 

optimal sensor placement purposes. 
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6. EXPERIMENTAL VALIDATION 

The numerical simulations are not able to provide information about the 

limitations of the assumed models of the vessel and the wave-elevation pattern; 

consequently, an experimental validation is necessary. 

6.1. Experimental Proposal 

The experiments are designed to answer the following questions: 

 In the context of wave estimation, do the vessel movements and the wave-

probe RAOs behave as predicted by the linear theory? 

 The usage of wave-probes is indeed capable of improving the estimation 

capabilities of the method, even in other conditions as extreme events, 

bimodal seas and other drafts? 

 Does the optimal prior really improves the results of the estimation? 

6.1.1. Experimental setup 

The experimental campaign was conducted under the coordination of Pedro 

Mello, with a small scale VLCC model provided by IPT, with a scale 1:90, Figure 64. 

 Figure 64 – Vessel model. 

     
 Source: Photographed by Pedro Mello. 

The main dimensions and the center of gravity of the real vessel, on which the 

model is based, are shown in Figure 65. 
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Figure 65 – Main dimensions of the real vessel. 

 
Source: Elaborated by the author. 

Despite the fact that multiple drafts were used in the experiment, the longitudinal 

variation of the center of gravity is around one meter, which is negligible. The other 

properties, however, are not negligible and are listed in Table 9. The parameter 𝑧𝐶𝐺 is 

the position of the center of mass along the 𝑧 direction, measured from the keel; the 

paremeters 𝑅𝑖𝑖 are the radius of gyration, normalized by the length 𝐿 or the width 𝐵 of 

the vessel; and ‘displacement’ is the mass of the vessel, which is equal to the mass of 

the displaced water body in hydrostatic equilibrium, and it is given in tons. 

Table 9 – Inertia and draft properties of the vessel. 

Draft Draft [m] 𝒛𝑪𝑮 [m] 
𝑹𝒙𝒙
𝑩

 
𝑹𝒚𝒚

𝑳
 
𝑹𝒛𝒛
𝑳

 Displacement [ton] 

Ballasted 

(empty) 
10 16.9 0.40 0.27 0.26 141921 

Intermediate 15 13.9 0.39 0.25 0.24 220403 

Full 18.5 13.9 0.37 0.25 0.23 278294 

Source: Elaborated by the author. 

The properties of the model were estimated by CAD drawings with experimental 

correction: 3-point weight measurement, to determine the center of gravity; and bifilar 

torsional pendulum test, to determine the inertia of the hull, (HINRICHSEN, 2014); and 

the desired inertia properties were obtained by adding standard solid ballasts. The final 

properties were validated by measuring the natural period of oscillation in roll, pitch 

and heave with the vessel on the water, throughout decay tests, which determines the 

vessel dynamics; and static inclination, to guarantee the center of gravity position. 

The wave basin that was used is the Hydrodynamic Calibrator at Numerical 

Towing Tank (CH-TPN). Its dimensions are 14𝑚 × 14𝑚 × 4.1𝑚 𝑑𝑒𝑝𝑡ℎ, being a wave 

basin dedicated to small scale experiments. It is capable of generating waves along all 
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its perimeter, using 148 moving wave generators, or flaps, and has active wave 

absorption, Figure 66. A complete description is found in (MELLO, et al., 2013). 

 Figure 66 – Wave basin drawing. 

 
 Source: Adapted from (CARNEIRO, 2012). 

The system is capable of generating regular waves with frequencies from 0.4Hz 

to 2.0Hz, and maximum wave height of 0.4m at 0.75Hz. The maximum allowed 

steepness of the waves, 
𝐻𝑠

𝜆𝑃
=

𝐻𝑠
𝑇𝑃
2𝑔

2𝜋

, is 5%, and final constraints are imposed by physical 

limitations of the actuators: the stroke of the flaps and the limited screw velocity. The 

resulting valid region is shown in Figure 67. 

 Figure 67 – Valid region due to physical constraints. 

 
 Source: Adapted from (CARNEIRO, 2012). 



139 
 

The vessel movements were measured by a Qualisys® optical tracking system, 

which monitors reflective dummies attached to the hull, a non-intrusive method with 

linear displacement uncertainty around 0.1mm. Components of the system are shown 

in Figure 68. 

 Figure 68 – Reflective dummy and Qualisys® camera. 

             
 Source: (QUALISYS, 2016) 

The wave-elevation was measured by twelve wave-probes positioned around 

the vessel, Figure 69. They are capacitive sensors with uncertainty around 1mm, 

Figure 70, with dynamic response shown in Figure 71. 

Figure 69 – CAD drawing of the model test with the wave-probes. 

 
Source: Elaborated by the author. 

 Figure 70 – Wave-probes. 

 
 Source: Photographed by the author. 
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Figure 71 – Wave-probes dynamic response, in real scale. 

 
Source: (MELLO, 2012). 

 

A similar test with the complete system can be seen in Figure 72. In the figure, 

differently than what is proposed, the probes are not installed on the vessel. The real 

test can be seen in Figure 73, with the twelve probes installed on the hull. 

 

Figure 72 – Test with similar configuration. 

 
Source: Adapted from (MELLO, 2012). 
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Figure 73 – Real test setup. 

 
Source: Photographed by Pedro Mello. 

Although it is not possible to see, the vessel is moored in four points with soft 

springs, which guarantees the translational positioning without major interference in 

the dynamic response. 

The positions of the wave-probes were defined equal to the ones in the 

numerical trials, using cluster techniques, allowing a comparison between the 

experimental outcome and the numerical predictions. 

6.1.2. Wave selection 

A considerable number of tests is necessary to answer the proposed questions, 

but the resources, e.g., wave basin time allocation, are limited; consequently, a wave 

selection method must be applied.  

The proposed method divides the experiments in some sets: statistical set, used 

to validate the prior hypothesis using real metocean data; extreme sea set, used to 

validate the linear model using real extreme wave data; bimodal set, designed to 

evaluate the principle of superposition and the capabilities of the algorithm to estimate 

bimodal seas, i.e., waves coming from different directions; and multiple drafts set, 

aiming at evaluating the robustness of the method against extreme drafts, ballasted 

and full. In all the sets, the experimental directional spectrum was obtained using the 

maximum entropy method with an array of 12 wave-probes, distributed in the towing 

tank without the vessel model. 

METOCEAN SET 

As stated before, the metocean reports are the references for the real probability 

of the seas, so they need to be used in order to validate prior hypothesis assumed for 
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the optimal design of experiments techniques. In this thesis, the metocean of Bacia de 

Campos – Campos Basin – is used, originated from a region located on the southeast 

Brazilian coast in the state of Rio de Janeiro. 

As assumed, the report proposes a JONSWAP type spectrum with some 

modifications, which was not included in the experiment. No spread function is 

proposed, so a spread factor equals to ∞ was used, i.e., unidirectional experiment. 

Even though a probability distribution of the sea directions is provided, it was 

assumed that the vessel can encounter the waves with any heading, so every test was 

made with a quintuple of incoming directions equals to [0° 45° 90° 135° 180°], 

or the mean directions of the following sea, the quartering sea, the beam sea, the bow 

sea and the head sea.  

Finally, for this first set of experiments, only the average draft was used, in order 

to maximize the possible duplets [𝐻𝑆 𝑇𝑃] that could be tested. The complete joint 

occurrence of the duplets is found in Table 10. It is important to emphasize that the 

frequency of each duplet did not need to be reproduced by the experiments, since each 

sea trial has multiple possible estimations intervals and a weighted statistic can be 

calculated. 

 Table 10 – Joint occurrence of 𝐻𝑆 and 𝑇𝑃. 

Tp  

Hs  

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

                  
0,0 0,5 34 185 40 8 10 10 35 72 88 88 130 75 73 11 13 7 5 

0,5 1,0 160 1358 775 265 245 128 139 272 298 224 148 64 55 11 1 0 1 

1,0 1,5 3 458 998 724 558 491 291 259 267 152 61 26 14 1 1 1 0 

1,5 2,0 0 13 307 563 413 374 268 191 196 118 80 11 5 3 1 0 0 

2,0 2,5 0 0 25 150 250 178 138 131 156 111 60 9 7 1 0 0 0 

2,5 3,0 0 0 1 15 74 70 69 68 87 52 39 13 8 4 0 0 0 

3,0 3,5 0 0 0 3 14 29 22 22 42 35 16 2 5 2 0 0 0 

3,5 4,0 0 0 0 0 1 2 14 23 20 15 19 3 3 2 1 0 0 

4,0 4,5 0 0 0 0 0 1 7 9 7 12 10 10 3 0 0 0 0 

4,5 5,0 0 0 0 0 0 0 1 2 2 2 6 3 2 0 0 0 0 

5,0 5,5 0 0 0 0 0 0 0 1 2 1 3 1 4 0 0 0 0 

5,5 6,0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

6,0 6,5 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

6,5 7,0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

 Source: (PETROBRAS, 2010). 



143 
 

In order to select the waves that represent the most the metocean, it is 

interesting to separate the duplets in wave families, and use an average criterion to 

select only one member to represent the entire family. This is done by the K-mean 

clustering algorithm. 

Firstly, only 99% of the waves are maintaining, since some extreme events are 

easily identified and could potentially degrade the algorithm response. This is enough 

to remove sea states with annual occurrence equal or lower than nine. 

For the K-mean calculations, the spectral density in each period is an 

independent dimension, and the responses of the vessel are calculated for pitch, roll 

and heave, for each of the incoming directions. Each period, in each response, for 

each direction, is also taken as an independent dimension. In the end, each possible 

sea is characterizes by a 𝑀 + 3 ∙ 5 ∙ 𝑀 vector, with 𝑀 equal the number of discretized 

periods, the first one being due to the spectral density; the number 3 due to the vessel 

movements; and the number 5 due to the directions used. It is important to use both 

the vessel movements and the sea spectrum because some similar vessel responses 

can occur for quite different seas, mainly low period seas; and similar seas can cause 

quite different vessel responses, mainly close to the resonance of some DoFs. 

Using the ‘elbow’ criterion, 25 clusters would be enough to represent the 

metocean, Figure 74. Despite of that, 30 clusters were chosen, in order to guarantee 

some redundancy. 

Figure 74 – 'Elbow' criterion applied to the clustering of the metocean data. 

 
Source: Elaborated by the author. 

‘Elbow’ 

Number of Clusters Chosen 



144 
 

It is interesting to notice that no information was provided concerning the values 

of 𝐻𝑆 and 𝑇𝑃, but the clusters obtained by the algorithm are formed by neighbor cells, 

as expected, Table 11. 

 Table 11 – Clustered joint occurrence of 𝐻𝑆 and 𝑇𝑃. 

Tp  

Hs  

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

                  
0,0 0,5 34 185 40 8 10 10 35 72 88 88 130 75 73 11 13 7 5 

0,5 1,0 160 1358 775 265 245 128 139 272 298 224 148 64 55 11 1 0 1 

1,0 1,5 3 458 998 724 558 491 291 259 267 152 61 26 14 1 1 1 0 

1,5 2,0 0 13 307 563 413 374 268 191 196 118 80 11 5 3 1 0 0 

2,0 2,5 0 0 25 150 250 178 138 131 156 111 60 9 7 1 0 0 0 

2,5 3,0 0 0 1 15 74 70 69 68 87 52 39 13 8 4 0 0 0 

3,0 3,5 0 0 0 3 14 29 22 22 42 35 16 2 5 2 0 0 0 

3,5 4,0 0 0 0 0 1 2 14 23 20 15 19 3 3 2 1 0 0 

4,0 4,5 0 0 0 0 0 1 7 9 7 12 10 10 3 0 0 0 0 

4,5 5,0 0 0 0 0 0 0 1 2 2 2 6 3 2 0 0 0 0 

5,0 5,5 0 0 0 0 0 0 0 1 2 1 3 1 4 0 0 0 0 

5,5 6,0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

6,0 6,5 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

6,5 7,0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

 Source: Elaborated by the author. 

The similarity among the waves in the same cluster can be seen in Figure 75. 

The colors in the figure do not match the colors in the table, for the sake of clarity. 

Figure 75 – Spectra density in each cluster. 

 
Source: Elaborated by the author. 
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Due to the physical limitations of the tank, the cluster with the smallest 𝐻𝑆, the 

red one in the table, and the clusters with 𝑇𝑃 lower than 7s could not be generated, 

resulting in 27 final duplets, or 27 × 5 = 135 experiments, accounting the five incoming 

directions. The final duplets are shown in Table 12. 

Table 12 – Selected duplets: the averages of each cluster. 

Tp 7.1 7.2 8.1 8.1 8.1 8.5 9.0 9.9 9.9 9.9 9.9 10.1 10.9 

Hs 0.9 2.4 1.3 1.7 3.0 2.2 3.0 2.0 2.8 3.3 3.8 1.0 3.5 

11.3 11.3 11.3 11.8 11.8 12.8 13.2 13.2 13.2 13.7 13.7 14 14.2 14.7 

1.8 2.3 2.8 1.3 3.5 4.3 2.3 3.3 3.8 1.8 2.8 0.8 4.3 1.3 

Source: Elaborated by the author. 

The obtained values are not the average [𝐻𝑆 𝑇𝑃] of the cluster, but the duplet 

obtained when the parameters of the average spectrum density are calculated. This 

guarantees a final spectrum more centralized inside its family. 

EXTREME WAVES SET 

The second set of experiments is concerned about testing the limits of the linear 

system of equations, i.e., the vessel and the wave-probe RAOs. 

The extreme events were taken from the same metocean used previously, as 

the waves with returning period equals to ten and one hundred years, Table 13. 

 Table 13 – Decenary and centenary waves. 

DIRECTION PARAMETER RETURN PERIOD (YEARS) 

10 100 

N Hs:          SIGNIFICANT WAVE HEIGHT (m) 5,20 6,30 

TP:          PEAK PERIOD (s) 9,28 10,00 

NE Hs:          SIGNIFICANT WAVE HEIGHT (m) 4,70 5,40 

TP:          PEAK PERIOD (s) 8,99 9,40 

E Hs:          SIGNIFICANT WAVE HEIGHT (m) 4,20 4,70 

TP:          PEAK PERIOD (s) 9,05 9,21 

SE Hs:          SIGNIFICANT WAVE HEIGHT (m) 5,50 6,70 

TP:          PEAK PERIOD (s) 10,76 11,35 

S Hs:          SIGNIFICANT WAVE HEIGHT (m) 6,10 7,00 

TP:          PEAK PERIOD (s) 14,00 14,70 

SW Hs:          SIGNIFICANT WAVE HEIGHT (m) 6,90 7,80 

TP:          PEAK PERIOD (s) 14,62 15,35 

W/NW Hs:          SIGNIFICANT WAVE HEIGHT (m) 4,00 4,60 

TP:          PEAK PERIOD  (s) 8,14 8,19 
 Source: (PETROBRAS, 2010). 
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In order to reduce the number of directions to be tested, two mooring systems 

were assumed as possible: the spread mooring system and the turret mooring system. 

The turret mooring system, Figure 76, allows the vessel to rotate around a fixed 

position. It means that is reasonable to expect that the vessel will be aligned with the 

extreme conditions, i.e., the extreme conditions will be always head seas. 

 Figure 76 – Turret mooring system. 

 
 Source: Adapted from (BLUEWATER, 2016).  

The spread mooring system, on its turn, is fixed in a constant heading, usually 

pointing to southwest. It means that each extreme sea does not need to be tested in 

all possible directions, but only in its incoming direction in relation with the southwest 

heading; reducing the number of experiments considerably. The mooring system is 

shown in Figure 77. 

 Figure 77 – Spread mooring system. 

 
 Source: (FUKY MarinTech, 2016). 
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Merging the triplet [𝛽0 𝐻𝑆 𝑇𝑃] for each case, and combining with similar seas 

in the metocean set, a final set with 18 experiments is obtained, Table 14. 

 

Table 14 – Extreme seas set of experiments. 

            𝜷𝟎[°]             𝑯𝑺[𝒎]             𝑻𝑷[𝒔] 

180° 4.3 8.5 

180° 5.3 9.5 

180° 6.5 10.0 

180° 5.5 11.0 

180° 6.5 11.5 

180° 6.0 14.0 

180° 7.0 14.5 

180° 8.0 15.5 

135° 4.3 8.0 

135° 6.0 14.0 

135° 7.0 15.0 

90° 4.3 8.0 

90° 5.5 11 

90° 6.5 11.5 

45° 5.0 9.0 

45° 6.5 10 

0° 4.5 9.0 

0° 5.5 9.5 

Source: Elaborated by the author. 
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BIMODAL SET 

This set of experiments is proposed to validate the superposition principle in the 

context of directional spectrum estimation. 

The sea conditions are assumed to be 90° apart from each order, simplifying 

the generation, since the main sea can be produced from side 1 to side 3 of the wave 

basin, and the second sea from side 2 to side 4. 

The vessel heading is varied among the values [225° 180° 135°], by the 

same argument used for the turret mooring systems, i.e., the vessel probably faces the 

main environmental force. 

The spectrum energy density parameters were taken among the waves defined 

in the metocean set, and are 𝑆1 = [𝐻𝑆 = 2.8, 𝑇𝑃 = 9.9]; 𝑆2 = [𝐻𝑆 = 4.3, 𝑇𝑃 = 12.8]; 𝑆3 =

[𝐻𝑆 = 2.8, 𝑇𝑃 = 13.7]. The idea was to take two sets with similar 𝐻𝑆 – 𝑆1 and 𝑆3 – and 

two sets with similar 𝑇𝑃 – 𝑆2 and 𝑆3; and to combine them to generate 6 possible seas: 

(𝑆1, 𝑆1), (𝑆1, 𝑆2), (𝑆1, 𝑆3), (𝑆2, 𝑆2), (𝑆2, 𝑆3) and (𝑆3, 𝑆3). Totalizing 6 ∙ 3 = 18 tests. 

MULTIPLE DRAFTS 

The multiple drafts experiment was designed to evaluate if the method is robust 

against extreme draft variations. Two drafts were used: the ballasted draft, equals to 

10m; and the full draft, equals to 18.5m. Those extreme situations can result in non-

negligible non-linearity, so two significant heights are used with three optimal peak 

period set. In this case, all the standard directions are necessary, 

[0° 45° 90° 135° 180°], totalizing 2 × 2 × 3 × 5 = 60 experiments. 

The duplets were also selected among the waves defined in the metocean set, 

but using the optimal design of experiments framework. The waves were classified in 

families with similar 𝐻𝑆, and for each one all the possible combinations of three 𝑇𝑃 were 

tested, until finding the best one accordingly with the trace criterion – in this case, the 

trace criterion is applied in the input matrix 𝑿, in order to excite the most the RAOs. 

Lastly, the two most promising categories were selected, achieving not only excitations 

in different frequencies but also with different amplitudes. The selected duplets are 

shown in Table 15. 
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Table 15 – Selected duplets for the multiple drafts set. 

Category 𝑯𝑺[𝒎] 𝑻𝑷[𝒔] 

𝐼 3.0 8.1 

𝐼 2.8 9.9 

𝐼 2.8 13.7 

𝐼𝐼 4.3 8.0 

𝐼𝐼 4.3 9.9 

𝐼𝐼 4.3 14.2 

Source: Elaborated by the author. 

 

6.2. Validation of the Extended Linear Model 

6.2.1. Validation of the extended linear model for intermediate draft 

The most important objective of the experiment is to confirm if the linear models 

of the vessel and of the wave-probe responses are valid. If the models fail to describe 

the observed behaviors, the algorithm developed so far is useless. 

Firstly, the RAOs were experimentally obtained through spectral system 

identification applied on the irregular wave responses, (ISERMANN & MUNCHOF, 

2011). Essentially, the transfer function is defined as the ratio of the cross-spectra – 

between the input wave and the DoF output – and the spectral energy density; which 

is easily done by the Matlab® function “tfestimate”.  

For the spectral calculations, standard Matlab functions were used, employing 

the Welch’s method with Hamming window, with the length defined as the greatest 

before the spectra starts to oscillate.  

The RAOs were calculated for each experiment, but only the estimates in 

frequencies that present more than 20% of the energy of the peak of the spectrum 

were considered, since the estimates outside of this region tend to be just noise. 

In order to put in evidence a possible non-linearity, the results obtained by seas 

with different 𝐻𝑆 were separated in categories identified by colors in the graphs. The 
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significant heights were divided in three groups: 𝐼. 𝐻𝑆 ≤ 2, 𝐼𝐼. 2 < 𝐻𝑆 ≤ 3 and 𝐼𝐼𝐼. 3 <

𝐻𝑆, respectively blue, green and red. 

The Wamit®’s model was recalibrated to account for roll differences in the 

natural period, probably due to imprecise inertia calibrations; and damping coefficient, 

which was calibrated by the wave with the smallest amplitude, following the linear 

model expected valid region. Selected results for the intermediate draft are shown in 

Figure 78 to Figure 80. 

Figure 78 – Selected RAOs for 𝛽 = 0°. 
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Source: Elaborated by the author. 
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Figure 79 – Selected RAOs for 𝛽 = 45°. 
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Source: Elaborated by the author. 
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Figure 80 – Selected RAOs for 𝛽 = 90°. 
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Source: Elaborated by the author. 

 

In general, for the intermediate draft, the linear model of the vessel response 

was validated experimentally, for most of the vessel movements. For the roll 

movement, however, there is a significant change in the RAOs due to the variation of 

the 𝐻𝑆  of the wave, probably due to viscous non-linear damping effects, since the 

response tends to get lower with higher movement amplitude, Figure 81.  

This effect was already expected, and motivates the usage of the sway 

movement in the estimation with only vessel DoFs in works like (TANNURI, et al., 

2003). The idea was to avoid the roll motion without loosing its ability to discriminate 

among different incoming directions. 
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 Figure 81 – Non-linearity in roll response. 

 

 
 Source: Elaborated by the author. 

The extended linear model, i.e., the wave-probe response linear model, is also 

validated for most of the situations. For beam seas, however, almost all wave-probes 

present non-linearity, since they are affected by the roll motion, Figure 82. 
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 Figure 82 – Example of wave-probe response affected by the roll non-linearity. 

 
 Source: Elaborated by the author. 

Other anomalous situation happens with some RAOs at 135°, Figure 83. 

 Figure 83 – RAOs with discrepancy at 135°. 

 
 Source: Elaborated by the author. 

At first sight, the 135° error does not seem to be related with the roll non-

linearity, since it does not vary to much with 𝐻𝑆. A more detailed analysis reveals that 

the cancelation around 14s happens because the phase of the roll response, the 

predominant effect of the vessel interference, is almost in the opposite phase of the 

wave-elevation in the wave-probe position. However, as can be seen in Figure 84, 

there is a discrepancy in the theoretical and experimental roll phases around 70°. 
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 Figure 84 – Discrepancy in roll phases. 

 
 Source: Elaborated by the author. 

 

If the expanded linear model is recalculated using the roll RAO with a phase 

shift of 70°, the new theoretical versus experimental result is given in Figure 85. 

 

 Figure 85 – Expanded linear model with roll phase shift. 

 
 Source: Elaborated by the author. 
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It is possible to see that the wave-probe response discrepancy was completely 

corrected, i.e., the anomalous behavior is also an effect of the roll model mismatch, 

but not due to non-linear viscous damping. 

In conclusion, the extended linear model was almost completely validated 

during the experiments, and most of the discrepancies were caused by effects from 

the roll movement.  

One possible approach to solve this problem is given in the section 4.4, 

Optimization of Degrees of Freedom Usage by Frequency, and consist in avoiding the 

usage of wave-probes around 12s, avoiding the roll influence. In that case, the 

estimation of waves with peak around 12s will be similar to the estimations using only 

vessel DoFs, which are already good in this range. 

 

6.2.2. Validation of the extended linear model for extreme draft 

So far, the linear model was only validated by the intermediate draft. Extreme 

draft, however, can present a non-negligible non-linear behavior even in other vessel 

DoFs than roll, so they need to be tested separately. 

Vessels in the ballasted draft condition, i.e., with the minimum displacement, 

are highly susceptible to external forces, which can result in higher accelerations, 

higher velocities and, consequently, an increased non-linear viscous effect. 

Vessels in the full draft condition, i.e., with the maximum displacement, have 

large underwater body volume, and their movement can cause non-negligible drag in 

translational movements. The roll movement is also affect negatively by the larger 

underwater body volume, and even the linearity of the hydrostatic restoration matrix 

can be affected. 

The results for the ballasted draft are shown in Figure 86 to Figure 88, and the 

results for the full draft are shown in Figure 89 to Figure 91. 
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Figure 86 – Selected RAOs for the ballasted condition, 𝛽 = 0°. 

 
Source: Elaborated by the author. 
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Figure 87 – Selected RAOs for the ballasted condition, 𝛽 = 45°. 
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Source: Elaborated by the author. 
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Figure 88 – Selected RAOs for the ballasted condition, 𝛽 = 90°. 

 
Source: Elaborated by the author. 
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Figure 89 – Selected RAOs for the full condition, 𝛽 = 0°. 

 
Source: Elaborated by the author. 
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Figure 90 – Selected RAOs for the full condition, 𝛽 = 45°. 
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Source: Elaborated by the author. 
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Figure 91 – Selected RAOs for the full condition, 𝛽 = 90°. 

 
Source: Elaborated by the author. 
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The results for the ballasted condition are better than the results for the 

intermediate draft. The non-linear viscous effects are less evident, but the roll phase 

shift effects are still present in the wave-probe responses. In general, the wave-probe 

response is accurate up to 12s. 

For the full condition, however, the results seem to be worse than the results for 

the intermediate draft. At 90°, the heave damping is significantly underestimated by 

the linear model, and non-linear viscous effects in roll are evident. The wave-probe 

responses seem to have a smaller validity region, only up to 10s-11s, and the phase 

shift effects become more apparent, being also affected by the heave discrepancy.  

In conclusion, it can be stated that for all the drafts the vessel movements, 

excluding the roll movement, agree with the linear model, with some discrepancies for 

the heave movement at 90° in full conditions. The wave-probe response also has a 

good agreement with the linear expanded model, however this agreement happens 

only up to 12s, since, after this period, roll effects affect the response. 

6.3. Validation of the Usage of the Wave-Probes 

6.3.1. Validation of the wave-probes usage for intermediate draft 

In order to validate the estimation algorithm, and evaluate the possible 

improvements brought by the wave-probe employment, the number of wave-probes 

used in the estimations were varied from 0 to 6, and, for each number, the best 

combination of them were determined by the single-objective trace criterion, Figure 51, 

in the section 5.6 Study of the Usage of Different Number of Wave-Probes. The probes 

measurements were incorporated in all frequencies, despite the known discrepancies 

after 12s, in order to evaluate if these discrepancies affect the estimation outcome. 

The estimation procedure follows the method described in the numerical trials. 

The vessel DoFs were fixed in Sway-Heave-Pitch, and the hyperparameters were kept 

the same used in the Only-DoFs case. It means that the following results can be 

potentially obtained only by adding wave-probe measurements in the estimation, 

without any modification or recalibration in the algorithm. 

The results are expressed in histogram graphs, already presented in the 

numerical section, summarizing the results inside a given set of waves. The errors in 
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the parameters – 𝐻𝑆, 𝑇𝑃, 𝛽0 and 𝑠 – are used as an estimation quality measurement, 

since this allows comparisons not only against high-order methods but also against 

parametric methods.  

The histograms, Figure 92, are plotted using the absolute and the percent error 

as metrics. In the significant height case, the percent error reflects the fact that the 

uncertainties in the estimation follows the increase in the height, the greater the height 

the grater the uncertainty, so the errors must be weighted. In the peak period case, the 

percent error reflects the desire to estimate better low period peak period, giving more 

weight to them. The estimation of 𝛽0, by its turn, has no ‘preference’ or ‘weighting 

factor’, using the absolute value; the same for the 𝑠 parameter. 

Figure 92 – Histograms of the parametric errors. 

 

 



170 
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Source: Elaborated by the author. 

In the 𝐻𝑆 histograms, it is possible to notice that most of the improvement is 

achieved when using two probes, with the trend presenting an ‘elbow’ shape, as 

hypothesized previously. The maximum absolute error does not present a clear trend, 

but in the percent error the trend is clear. It is also interesting how the addition of an 

odd number of wave-probes seems to be worse than the addition of an even number, 

which can be justified by the difference of estimation between the starboard and the 

port estimation, when an odd number is used. 

The 𝑇𝑃 histograms follow the 𝐻𝑆 histograms closely, what was expected since 

both are energy related metrics. The ‘elbow’ shape is even more pronounced, with two 

wave-probes being a stabilization point. 

Combining the conclusions for these first two parameters, the addition of just 

one wave-probe is already enough to decrease the percent error of 90% of the waves 

from 35% to 22% in the 𝐻𝑆 estimation, and from 16.5% to 7.5% in the 𝑇𝑃 estimation; 

approximately a 37%-55% improvement in the parameters estimations. The addition 

of two or more probes decreases the error from 35% to 13.5% in the 𝐻𝑆 estimation, 

and from 16.5% to 5% in the 𝑇𝑃 estimation; approximately a 62%-65% improvement in 

the parameters estimations. 

The 𝛽0 histogram, instead of the others, does not present a clear ‘elbow’ shape, 

or trend of improvement. Some possible reasons of that will be raised when discussing 

particular results, but, for now, although the maximum error becomes greater with the 
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addition of 2 probes, an improvement happens in 90% of the sea states; furthermore, 

with 4 and 6 probes a great improvement can be noticed in the direction estimation, 

with the maximum error below 18°, the discretization used during the estimation. 

The directional spread factor, 𝑠, has a slightly tendency to improve with the 

increase of the number of wave-probes, however it is known, from section, 5.4 

Verification of the Error Metrics, that there is an alias phenomenon that deteriorates 

the estimation of this parameter. In order to overcome this, the histogram of the error 

in the directional spread function can be used, to verify the improvement in the 

directional aspect of the estimation, Figure 93. 

Figure 93 – Histogram of the directional spread function error. 

 
Source: Elaborated by the author. 

Using the directional metric above the tendency becomes clear. Even though 

most of the improvement can be achieved with two and four probes, the metric seems 

to suggest that there is still a proportional improvement when six wave-probes are 

employed.  

Summarizing the results so far: the usage of just one wave-probe is already able 

to achieve a considerably improvement in all the criteria; the usage of at least 2 wave-

probes is recommended if it is desired to improve the most the spectral energy density 

estimation, which is related with the 𝐻𝑆 and 𝑇𝑃 parameters; the usage of at least 4 

wave-probes is recommended if it is desired to know the mean direction of the 

incoming wave; and the usage of 6 probes is recommended for directional estimation.  
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Some particular results are able to illustrate the behavior of the histogram plots. 

The estimation results are compared against the experimental spectrum provided by 

the tank, which was estimated using an array of probes by the method of the Maximum 

Entropy with a finer frequency-direction grid; the rediscretization of the experimental 

spectra provided is discussed in APPENDIX C – Numerical Issues. 

Firstly, it is important to analyze cases that represent the main objective of this 

work, which is to improve the estimation of waves with low 𝑇𝑃. The estimation for waves 

coming from 0° are shown in Figure 94 to Figure 98. 

Figure 94 – Low 𝑇𝑃 wave, coming from 0°, estimated without wave-probes. 

 
Source: Elaborated by the author. 

Figure 95 – Low 𝑇𝑃 wave, coming from 0°, estimated with 1 wave-probe. 

 
Source: Elaborated by the author. 
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Figure 96 – Low 𝑇𝑃 wave, coming from 0°, estimated with 2 wave-probes. 

 
Source: Elaborated by the author. 

Figure 97 – Low 𝑇𝑃 wave, coming from 0°, estimated with 4 wave-probes. 

 
Source: Elaborated by the author. 

Figure 98 – Low 𝑇𝑃 wave, coming from 0°, estimated with 6 wave-probes. 

 
Source: Elaborated by the author. 
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The results are a clear representation of the histogram conclusions. The 

addition of one probe already results in an improvement of the estimation, with 𝑇𝑃 

improving faster than 𝐻𝑆 ; the addition of two probes already recovers most of the 

energy of the spectrum; and the addition of four to six probes improves the directional 

estimation. 

In this particular case, the addition of two wave-probes already give a 

reasonable directional estimation, which is also the case for waves coming from 90° 

and 180°, Figure 99 to Figure 102. 

Figure 99 – Low 𝑇𝑃 wave, coming from 90°, estimated without wave-probes. 

 
Source: Elaborated by the author. 

Figure 100 – Low 𝑇𝑃 wave, coming from 90°, estimated with 2 wave-probes. 

 
Source: Elaborated by the author. 
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Figure 101 – Low 𝑇𝑃 wave, coming from 180°, estimated without wave-probes. 

 
Source: Elaborated by the author. 

 

Figure 102 – Low 𝑇𝑃 wave, coming from 180°, estimated with 2 wave-probes. 

 
Source: Elaborated by the author. 

 

The sufficiency of two probes, however, is not true for quartering and bow seas, 

i.e., waves coming respectively from 45° and 135°, Figure 103 to Figure 110.This is 

expected, since there is, at the same time, non-negligible movements from sway and 

pitch, preventing a correct direction estimation by the vessel movements; and when 

two or four wave probes are employed the behavior is similar to a wave encountering 

a wall with a single wave-probe, which is not capable of providing a proper direction 

discrimination, only the energy measurement Figure 111. 
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Figure 103 – Low 𝑇𝑃 wave, coming from 45°, estimated without probes. 

 
Source: Elaborated by the author. 

Figure 104 – Low 𝑇𝑃 wave, coming from 45°, estimated with 2 wave-probes. 

 
Source: Elaborated by the author. 

Figure 105 – Low 𝑇𝑃 wave, coming from 45°, estimated with 4 wave-probes. 

 
Source: Elaborated by the author. 
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Figure 106 – Low 𝑇𝑃 wave, coming from 45°, estimated with 6 wave-probes. 

 
Source: Elaborated by the author. 

Figure 107 – Low 𝑇𝑃 wave, coming from 135°, estimated without wave-probes. 

 
Source: Elaborated by the author. 

Figure 108 – Low 𝑇𝑃 wave, coming from 135°, estimated with 2 wave-probes. 

 
Source: Elaborated by the author. 
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Figure 109 – Low 𝑇𝑃 wave, coming from 135°, estimated with 4 wave-probes. 

 
Source: Elaborated by the author. 

Figure 110 – Low 𝑇𝑃 wave, coming from 135°, estimated with 6 wave-probes. 

 
Source: Elaborated by the author.  

Figure 111 – Energy spectral density with 0 and 2 probes. 

 
Source: Elaborated by the author. 
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In conclusion, although two wave-probes are already capable of recovering the 

energy of the incoming wave, it is necessary six wave-probes to recover its direction 

characteristic, i.e., two wave-probes at the same side of the vessel.  

Other interesting conclusion is how the wave-probes are capable of recovering 

the energy values beyond what is possible using only vessel DoFs. In Figure 111, for 

example, the energy beyond 𝜔 > 1𝑟𝑎𝑑/𝑠 → 𝑇 < 6.3𝑠 is completely recovered, even 

the tail due to the tank cut-off frequency after 2Hz – ~1.26rad/s in the real scale – an 

information that could not have come from the prior, but only from the measurements. 

The results at 135° are not completely satisfactory, for this wave with the lowest 

tested 𝑇𝑃, however the energy is positioned correctly in the first quadrant of the polar 

plot, which is already enough for a preliminary estimation of the drift forces, and the 

result improves for waves with higher 𝑇𝑃s, Figure 115 to Figure 117, for example. 

The results shown so far, for the lowest 𝑇𝑃, are replicated for higher 𝑇𝑃 waves 

and different 𝐻𝑆; with two probes delivering most of the improvement, and six probes 

giving the best directional estimation. The improvements happen up to 12s, following 

the expected valid region of the expanded linear model, as discussed when analyzing 

the RAOs. The estimations of a medium 𝑇𝑃 wave coming from 0° are shown in Figure 

112 to Figure 114; and for the same medium 𝑇𝑃 wave coming from 135° in Figure 115 

to Figure 117. 

Figure 112 – Medium 𝑇𝑃 wave, coming from 0°, estimated without wave-probes. 

 
Source: Elaborated by the author. 
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Figure 113 – Medium 𝑇𝑃 wave, coming from 0°, estimated with 2 wave-probes. 

 
Source: Elaborated by the author. 

Figure 114 – Medium 𝑇𝑃 wave, coming from 0°, estimated with 6 wave-probes. 

 
Source: Elaborated by the author. 

Figure 115 – Medium 𝑇𝑃 wave, at 135°, estimated without wave-probes. 

 
Source: Elaborated by the author. 
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Figure 116 – Medium 𝑇𝑃 wave, at 135°, estimated with 2 wave-probes. 

 
Source: Elaborated by the author. 

 

Figure 117 – Medium 𝑇𝑃 wave, at 135°, estimated with 6 wave-probes. 

 
Source: Elaborated by the author. 

 

For waves with peak period higher than 12s, coming from complicated 

directions, like 135°, the usage of a small number of wave-probes can lead to an 

estimation worse than estimation with only Sway-Heave-Pitch, due to the differences 

caused by the roll interference. This is easily solved by employing the wave-probes in 

frequencies until 0.52 rad/s, 𝑇 = 12𝑠, using the procedure described in section 4.4, 

Optimization of Degrees of Freedom Usage by Frequency. Furthermore, if more wave-

probes are used the problem is attenuated, and the algorithm provides good 

estimations. 
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Figure 118 – High 𝑇𝑃 wave, coming from 135°, estimated without wave-probes. 

 
Source: Elaborated by the author. 

Figure 119 – High 𝑇𝑃 wave, coming from 135°, estimated with 2 wave-probes. 

 
Source: Elaborated by the author. 

Figure 120 – High 𝑇𝑃 wave, coming from 135°, estimated with 6 wave-probes. 

 
Source: Elaborated by the author. 
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6.3.2. Validation of the wave-probes usage for extreme draft 

The same analysis can be made for the extreme draft set of experiments. 

 

Figure 121 – Histograms for the ballasted condition. 
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Source: Elaborated by the author. 

For the ballasted condition, i.e., low draft, the conclusions are quite equivalent 

to the conclusions drawn for the intermediate draft, Figure 121. The usage of just one 

wave-probe is already able to achieve a considerably improvement, in all the criteria; 

the usage of at least 2 wave-probes is recommended if it is desired to improve the 

most the energy spectral density estimation; the usage of at least 4 wave-probes is 

recommended if it is desired to know the mean direction of the incoming wave; and the 

usage of 6 probes is recommended for directional estimation. 

The general result is consistent with the intermediate case, Figure 122 to Figure 

124. Furthermore, Following the RAO analysis, even for a small number of wave-

probes, waves with 𝑇𝑃 > 12𝑠 are well estimated, Figure 125 to Figure 127. 
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Figure 122 – Ballasted condition, medium 𝑇𝑃, without probes. 

 
Source: Elaborated by the author. 

Figure 123 – Ballasted condition, medium 𝑇𝑃, with 2 probes. 

 
Source: Elaborated by the author. 

Figure 124 – Ballasted condition, medium 𝑇𝑃, with 6 probes. 

 
Source: Elaborated by the author. 
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Figure 125 – Ballasted condition, high 𝑇𝑃, without probes. 

 
Source: Elaborated by the author. 

Figure 126 – Ballasted condition, high 𝑇𝑃, with 2 probes. 

 
Source: Elaborates by the author. 

Figure 127 – Ballasted condition, high 𝑇𝑃, with 6 probes. 

 
Source: Elaborated by the author. 
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Figure 128 – Histograms for the full draft condition. 
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Source: Elaborated by the author. 

 

For the full draft condition, the convergence for 𝐻𝑆  and 𝑇𝑃  seems to happen 

faster, with only one wave-probe; with the mean direction still converging to four 

probes; and the directional estimation converging to six probes. In general, a behavior 

also following the conclusions of the intermediate draft. In this draft situation, however, 

one probe is already enough to estimate waves with medium and high 𝑇𝑃; although for 

low 𝑇𝑃 one probe is still insufficient, Figure 129 to Figure 134. 

 

Figure 129 – Full draft condition, low 𝑇𝑃, without probes. 

 
Source: Elaborated by the author. 
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Figure 130 – Full draft condition, low 𝑇𝑃, with 1 probe. 

 
Source: Elaborated by the author. 

Figure 131 – Full draft condition, medium 𝑇𝑃, without probes. 

 
Source: Elaborated by the author. 

Figure 132 – Full draft condition, medium 𝑇𝑃, with 1 probe. 

 
Source: Elaborated by the author. 
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Figure 133 – Full draft condition, high 𝑇𝑃, without probes. 

 
Source: Elaborated by the authors. 

 

Figure 134 – Full draft condition, high 𝑇𝑃, with 1 probe. 

 
Source: Elaborated by the author. 

 

6.3.3. Validation of the wave-probes usage for bimodal seas 

The final analysis concerns the validation of the estimation of bimodal seas. In 

this case, the parametric estimation for each peak is not a simple task, so only the 

global parameters 𝐻𝑆, 𝑇𝑃 and 𝛽0 will be taken in account. The histograms are shown 

in Figure 135. 
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Figure 135 – Histograms of the estimation of bimodal seas. 
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Source: Elaborated by the author. 

It is important to remind that the bimodal set was generated by the following 

duplets: (𝐻𝑆 = 2.8, 𝑇𝑃 = 9.9), (𝐻𝑆 = 4.3, 𝑇𝑃 = 12.8) and (𝐻𝑆 = 2.8, 𝑇𝑃 = 13.7). It means 

that 5/6 of the seas have components with 𝑇𝑃 > 12𝑠, i.e., regions that are outside of 

the wave-probe RAO valid region. This explains the reason why for 3 to 4 probes there 

is a worsening in the 𝐻𝑆 metric, which is better only for 1 probe – which does not have 

roll influence – and for 5 and 6 probes – a higher number of probes that is known to 

not be affected so much by the discrepancies after 12s.  

Knowing that, the effective analysis of the bimodal set can only be done when 

wave-probes are employed just up to 12s. The following case, with all the energy peaks 

below 12s, illustrates the potential improvement Figure 136 to Figure 147. 
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Figure 136 – Bow-Quartering, Low 𝑇𝑃, without wave-probes. 

 
Source: Elaborated by the author. 

Figure 137 – Bow-Quartering, Low 𝑇𝑃, with 2 wave-probes. 

 
Source: Elaborated by the author. 

Figure 138 – Bow-Quartering, Low 𝑇𝑃, with 4 wave-probes. 

 
Source: Elaborated by the author. 



197 
 

Figure 139 – Bow-Quartering, Low 𝑇𝑃, with 6 wave-probes. 

 
Source: Elaborated by the author. 

Figure 140 – Head-Beam, Low 𝑇𝑃, without wave-probes. 

 
Source: Elaborated by the author. 

Figure 141 – Head-Beam, Low 𝑇𝑃, with 2 wave-probes. 

 
Source: Elaborated by the author. 
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Figure 142 – Head-Beam, Low 𝑇𝑃, with 4 wave-probes. 

 
Source: Elaborated by the author. 

Figure 143 – Head-Beam, Low 𝑇𝑃, with 6 wave-probes. 

 
Source: Elaborated by the author. 

Figure 144 – Bow-Bow, Low 𝑇𝑃, without wave-probes. 

 
Source: Elaborated by the author. 
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Figure 145 – Bow-Bow, Low 𝑇𝑃, with 2 wave-probes. 

 
Source: Elaborated by the author. 

Figure 146 – Bow-Bow, Low 𝑇𝑃, with 4 wave-probes. 

 
Source: Elaborated by the author. 

Figure 147 – Bow-Bow, Low 𝑇𝑃, with 6 wave-probes. 

 
Source: Elaborated by the author. 
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In general, the low 𝑇𝑃  spectrum is not correctly estimated using only vessel 

movements; two wave-probes are already able to recover most of the expected result; 

four wave probes are able to provide good mean direction estimation; and six wave-

probes are able to achieve a good agreement with the experimental spectrum. It means 

that the conclusions remain the same as those for the intermediate draft. 

6.4. Validation of the Optimal Prior 

For the experimental evaluation, the optimal prior was implemented in the 

algorithm using a value of hyperparameter such as to minimize the metric 

‖𝑢2𝑯𝑴𝑳𝑸𝑷 − [𝑢1
2𝑯𝟏 + 𝑢2

2𝑯𝟐 + 𝑢3
2𝑯𝟑]‖

2
. The histograms for the intermediate draft, for 

the conventional and optimal priors, are given in Figure 148. 

Figure 148 – Histograms comparing the conventional and the MLQP prior. 
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Source: Elaborated by the author. 

It is possible to notice that most of the impact of the new prior happens for the 

estimations with only vessel movements or with only one wave-probe, with the cases 

with two probes changing slightly and the cases with three or more without any 

changes in the response. 

Firstly, the cases with only vessel DoFs present a significantly improvement. In 

the 𝐻𝑆  metrics, the error of 90% of the waves drops from 1.1m to 0.63m, with the 

percent error dropping from 36% to 19.5%. In the 𝑇𝑃 metrics, the error of 90% of the 

waves drops from 1.52s to 1.15s, with the percent error dropping from 16.5% to 9%. 

In the 𝛽0 metric, the error of 90% of the waves drops from 24° to 12°; and in the 𝐷(𝜃) 

metric, dropping from 1.36 to 1.18. Examples can be seen in Figure 149 to Figure 154. 

Figure 149 – Directional spectrum at 135° estimated with conventional prior. 

 
Source: Elaborated by the author. 
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Figure 150 – Directional spectrum at 135° estimated with MLQP. 

 
Source: Elaborated by the author. 

 Figure 151 – Energy spectral density at 135° for different priors. 

 
 Source: Elaborated by the author. 

Figure 152 – Directional spectrum at 0° estimated with conventional prior. 

 
Source: Elaborated by the author. 
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Figure 153 – Directional spectrum at 0° estimated with MLQP. 

 
Source: Elaborated by the author. 

 Figure 154 – Energy spectral density at 0° for different priors. 

 
 Source: Elaborated by the author. 

Accordingly, to the results, the improvement seems to come from a better 

recovering of the energy in high frequencies/low periods using the optimal prior. This 

is important because the usage of this prior, by itself, can potentially improve the 

estimation of energies causing drift forces, the main goal of the thesis, without the 

installation of the wave-probes. 

For extreme drafts there is no significantly change in the conclusions, so they 

will not be detailed in the text. 

For the bimodal set, however, the results are important, since only unimodal 

seas were used to calibrate the optimal prior and a possible drawback of this approach 

would be not being able to estimate properly multi-modal seas. The histograms for the 
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only vessel movements cases are shown in Figure 155; the other cases, with wave-

probes, were omitted, since it was already concluded that the addition of the wave-

probes diminish the influence of the change in priors. 

 

Figure 155 – Histograms for the bimodal set comparing the priors. 
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Source: Elaborated by the author. 



209 
 

The results are consistent with the conclusions obtained for the unimodal set, 

i.e., the MLQP training with only unimodal seas is still adequate for the bimodal seas 

tested. This probably happens because the bimodal seas are the summation of 

independent unimodal seas with a reasonable distance, in the 𝒙 vector indices sense, 

i.e., seas that are almost uncorrelated, in the covariance of the training set sense. 

Some particular cases are shown in Figure 156 to Figure 159. 

 

Figure 156 – Quartering-bow spectrum, conventional prior. 

 
Source: Elaborated by the author. 

 

Figure 157 – Quartering-bow spectrum, MLQP. 

 
Source: Elaborated by the author. 
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Figure 158 – Head-beam spectrum, conventional prior. 

 
Source: Elaborated by the author. 

 

Figure 159 – Head-beam spectrum, MLQP. 

 
Source: Elaborated by the author. 
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7. CONCLUSIONS 

In order to overcome limitations in the current methods in directional spectrum 

estimation, mainly in the context of wave-buoy analogy based estimations, this thesis 

evaluated the usage of wave-probes as a complementary measurement strategy for 

enlarging the estimation period range for low periods, below 8s. There were already 

studies exploring this possibility, but a complete treatment was not yet available. 

The thesis aimed to answer three main questions: how to incorporate the wave-

probes in the chosen estimation method? How to define the best position of those 

wave-probes? How to define the best number of the wave-probes? 

The incorporation of the wave-probes was solved by the extended linear model 

formulation, allowing the usage of the probes in a simple manner with simple linear 

corrections for accounting the vertical vessel movements. Starting from this model, a 

Bayesian Estimation approach, selected due to good results already shown in different 

works from different authors, was readily derived. 

With the proposed method, it was possible to deduce a criterion to define the 

best position of the wave-probes, based on the A-optimal design of experiments or, 

more specifically, the utility Bayesian optimal design of experiments. Furthermore, it 

was proven mathematically and numerically that this simple method would provide the 

minimization of the upper bound of different error criteria, given support to the strategy. 

After defining the best position for a given number of wave-probes, the ideal 

number of gauges was defined using the Elbow Criterion, a simple approach also 

supported by a mathematical rationale and observed experimentally. 

The answers to the original questions arisen other new important questions, 

motivated by the strong probabilistic interpretation of the methods described, 

concerning how to solve the optimal design of experiments problem and the possibility 

of an optimal prior. 

The optimization problem was solved by a heuristic method, which was able to 

explore some particularities of the problem, having a great potential to be expanded to 

more general optimal sensor placement problems due its easy adaptability to multi-

objective formulations. 
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The optimal prior, by its turn, was proposed to be the covariance of a sample of 

the seas expected for a given region, with three rationale pointing to it: the maximum 

likelihood quadratic prior; the prior that results in the best linear estimator; and the prior 

that is the closest to the real probability function given the Gaussian functional format. 

All the propositions were tested and validated experimentally with a model in 

the towing tank at the TPN laboratory, concluding, for unimodal seas with intermediate 

draft, that: the addition of just one wave-probe reached approximately a 37%-55% 

improvement in the energy parameters estimations - 𝐻𝑆 and 𝑇𝑃; the addition of two or 

more probes reached approximately a 62%-65% improvement in the parameters 

estimations; the addition of four probes achieved the best cost benefit for mean 

direction estimation; and the addition of six probes was the recommendation for the 

best directional estimation in the entire range of the spectrum.  

The optimal prior was able to improve the estimation capabilities mainly when 

zero or one wave-probes were used, i.e., when the prior is more needed to complement 

the measurement information. Furthermore, it was shown that the usage of this prior 

was able to increase the trace criterion impact on the other errors, i.e., it should be 

used at least to define the best DoFs and the best positions of wave-probes to be used. 

Summarizing what was presented, the thesis was able to contribute directly with 

the area, opening and giving support to new possibilities, hopefully contributing to the 

exploration of new frontiers in the offshore industry. 
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8. PROPOSALS FOR FUTURE RESEARCHES – AN UNIFIED FRAMEWORK FOR 

BAYESIAN ESTIMATION 

The contributions of this thesis, despite the improvements achieved, are far from 

exhausting the Bayesian estimation possibilities. This final section aims to draw a 

general framework exploring the method capabilities, in order to map the contributions 

of the thesis and some next steps that can be taken in future researches. 

The general framework proposed can be seen in Figure 160. 

Figure 160 – General framework for Bayesian estimation. 

 
Source: Elaborated by the author. 

SEA MODELS 

One of the main contributions of the thesis was the idea of using model based 

calibrated priors instead of subjective ones. Starting from a sample of seas, it is 

possible, given an error criterion and estimator formulation, to derive an optimal prior. 

This approach can be expanded for a different number of sea models, including 

bimodal models and other parametric formulations far more complex than the 

JONSWAP used during this text. Future researches in the area could explore those 

diverse models studying not only the best one in each situation, but also the robustness 

of each model when a set of seas different from the training sample is experienced. 



214 
 

VESSEL MODEL WITH UNCERTAINTIES 

The same approach used in this thesis in order to define an optimal prior could 

be used to define the optimal normalization matrix based on the uncertainties of the 

sensors employed in the estimation. Researches in this subject shall be concerned 

about evaluating sensors employed in real vessels, studying some possible errors, 

water spray, for example, and noise patterns, in order to explorer those patterns in the 

Bayesian estimation formulation. 

A further step in this subject would be to incorporate uncertainties in the vessel 

model, or even non-linearities in the nominal model, which could potentially solve the 

roll problem, or give the algorithm an objective metric to ignore automatically this 

movement and its influence when estimating some frequencies or directions. 

Researches in this subject can use mathematical formulations as the total least 

square, or more general error in variables models, which provide highly flexible tools 

for working with general types of uncertainties. 

ERROR CRITERION AND ESTIMATOR FORMULATION 

This topic complements the previous ones. During this thesis, it was shown that 

an optimality can be achieved for the maximum likelihood quadratic prior and for the 

linear estimator. The estimator formulation, however, can be expanded beyond those 

frameworks, using the exact probability distribution of the functions, neural networks, 

Bayesian nets and others models in order to increase the estimation capabilities. 

Researches in this topic shall be concerned not only about the possibilities of 

an exact modelling of the probabilities, but also about the computational costs of the 

solutions. 

ADAPTIVE LAW AND ALGORITHM REFORMULATION 

During the thesis, one of the conclusions stated that the usage of wave-probes 

would be recommended only before the roll peak, avoiding the non-linearities. This is 

an example of an algorithm reformulation based on benchmark comparisons. This kind 

of conclusion, however, can be performed automatically by an online adaptive law, 

which makes the estimation algorithm more robust against unmodelled situations. 



215 
 

Some authors have already explored this possibility. One example is (LAJIC, 

2010), using fault-detection methods in onboard systems. This work is a nice example 

that shows that the algorithm adaptation does not need to use necessarily a 

benchmark, but can be based only on the onboarding measurements, comparing one 

measurement against the others. 

A possible research in this subject could explore an algorithm based on 

reweighted least squares, which essentially modifies the normalization matrix of the 

likelihood function based on how much the noise of each sensor should be in order to 

explain the deviation between the measurements and the estimated sea. This is a 

powerful framework, with a strong probabilistic reasoning, and whose convergence 

was already proved in the literature. 

An adaptive algorithm like the described ones could potentially have excluded 

the wave-probe measurements around the roll peak automatically, giving a small 

weight to those measurements after noticing how the discrepancies got bigger in this 

region. 

Other possibilities could be using radars, satellite imagery or wave buoys in 

order to perform an online calibration of the algorithm, using the strongest part of each 

estimation system in the process and avoiding their weaknesses. 

OPTIMAL ESTIMATION ALGORITHM 

Finally, researches covering all the areas above would provide substance for 

the formulation of an optimal estimation algorithm. The main work of the designer of a 

particular estimation problem, then, would be to provide information about the models, 

the uncertainties and the desired computational cost, already accounting for possible 

adaptive laws, and an optimal algorithm could be automatically defined combining all 

those information, achieving a general framework for the Bayesian estimation problem. 
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APPENDIX A –  POTENTIAL THEORY OF SURFACE WAVES 

This section contains a simplified deduction of the potential theory of surface 

waves, for the unfamiliar reader. The formulations are based on (NEWMAN, 1999) and 

(SIMOS, 2014). 

POTENTIAL THEORY 

Under the hypothesis of ideal fluid, the water can be modeled as a homogenous, 

incompressible and frictionless continuous medium. 

Using the homogenous and incompressible properties, it is possible to state that 

the mass, characterized by the specific mass of the fluid 𝜌,  in a specified control 

volume 𝑉, will not change with time, i.e., the flux of mass through the boundary of the 

volume 𝜕𝑉 will be zero. The equation can be further modified to a volume integral, 

using the divergence theorem, achieving the so called continuity equation, Equation 

(181), with 𝒗 being the velocity vector of the fluid in a point, 𝒏 the normal vector of the 

boundary in the same point and ∇ the differential operator [
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
]. 

 𝜌∬𝒗 ∙ 𝒏𝜕𝑉

 

𝜕𝑉

= 𝜌∭∇ ∙ 𝒗𝑑𝑉

 

𝑉

= 0 → ∇ ∙ 𝒗 = 0 (181) 

 

The frictionless property also has a consequence, derived by the Kelvin 

theorem, or the circulation conservation theorem, Equation (182), which states that, 

under conservative forces, the circulation of a fluid does not change with time. 

Assuming that the fluid is in rest at an infinity previous time, the circulation will always 

be zero, which results, by applying the Stokes theorem, that the ideal fluid is 

irrotational, Equation (183). In the equations, 𝑆 is a surface, 𝜕𝑆 its closed contour and 

𝑑𝒓 an element over the contour. 

 
𝑑

𝑑𝑡
∫𝒗 ∙ 𝑑𝒓

 

𝜕𝑆

= 0 (182) 

 ∫𝒗 ∙ 𝑑𝒓

 

𝜕𝑆

=∬∇× 𝒗 ∙ 𝒏𝑑𝑆

 

𝑆

= 0 → ∇ × 𝒗 = 0 (183) 
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The Helmhotz theorem states that every irrotational vector field can be 

described as the gradient of a scalar field. Consequently, the velocity field can be 

described as a potential field 𝜑, Equation (184), which gives the name potential theory. 

 ∇ × 𝒗 = 0 → 𝒗 = ∇𝜑 (184) 

   

As a result, by merging Equation (181) and Equation (184), the ideal fluid 

problem can be stated as a second-order partial differential equation, the Laplace’s 

equation, Equation (185), in which ∆ is the Laplace’s operator [
𝜕2

𝜕𝑥2
,
𝜕2

𝜕𝑦2
,
𝜕2

𝜕𝑧2
]. 

 
∇ ∙ 𝒗 = 0

𝒗=∇𝜑
→   ∇ ∙ ∇𝜑 = ∇2𝜑 = ∆𝜑 = 0 (185) 

   

The relation between the velocity field and the scalar pressure field,𝑝, is given 

by the Euler’s equation, Equation (187), obtained by applying the Newton’s laws to an 

elemental volume, Equations (186). Using the potential relation, it is possible to 

achieve the Bernoulli’s equation, Equation (188). The gravity acceleration is 

[0,0, −𝑔] = −∇𝑔𝑧 = 𝒈. 

 𝑭 =
𝑑(𝜌𝒗)

𝑑𝑡
= 𝜌 (

𝜕𝒗

𝜕𝑡
+ (∇ ∙ 𝒗) ∙ 𝒗 )  𝑎𝑛𝑑 𝑭 = −∇𝑝 + 𝜌𝒈 (186) 

 
𝜕𝒗

𝜕𝑡
+ (∇ ∙ 𝒗) ∙ 𝒗 +

∇𝑝

𝜌
− 𝒈 = 𝟎 (187) 

 ∇ (
𝜕𝜑

𝜕𝑡
+
1

2
∇𝜑 ⋅ ∇𝜑 +

𝑝

𝜌
+ 𝑔𝑧) = 𝟎 (188) 

   

Finally, the forces, 𝑭, and moments, 𝑴, acting on a floating body are obtained 

through pressure integration over its surface, 𝑆𝑏, Equations (189) and (190), with 𝒓𝒐 a 

vector from the moment reference to the integration point. 

 𝑭 =∬𝑝𝒏𝑑𝑆

 

𝑆𝑏

 
(189) 

 𝑴𝒐 =∬𝑝(𝒓𝒐 × 𝒏)𝑑𝑆

 

𝑆𝑏

 
(190) 

Resulting in a system of equations that is enough, along with some boundary 

conditions, to describe the fluid behavior in a deterministic manner that is validated 

experimentally in a considerable number of cases, despite the strong hypothesis. 
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SURFACE WAVES 

Not surprisingly, waves arise as a possible solution of the Laplace’s equation. 

Plane progressive waves, for example, are described by the potential in Equation 

(191), in which: 𝑘 =
2𝜋

𝜆
 is the wave number, 𝜔 =

2𝜋

𝑇
 is the angular frequency, 𝑧 is the 

depth, 𝑥  the progressive direction and 𝐶𝑖  constants which depends on the 

characteristics of each particular problem.  

 𝜑(𝑥, 𝑧, 𝑡) = 𝑅𝑒[(𝐶1𝑒
𝑘𝑧 + 𝐶2𝑒

−𝑘𝑧)𝑒−𝑖𝑘𝑥+𝑖𝜔𝑡], ∇2𝜑 = 0 (191) 

   

In general, the constants are defined by some boundary conditions that are 

always applied for waves: the impermeability of the sea bottom, which can be ignored 

in some cases; and the Cauchy-Poisson condition, which establishes the kinematic 

and the dynamic properties of the water surface. 

The first one, impermeability of the sea bottom, is stated simply as a kinematic 

boundary, zeroing the velocity of the fluid encountering the obstacle at depth  −ℎ, 

Equation (192). The potential, then, assumes the form in Equation (193). 

 𝑣𝑧(𝑧 = −ℎ) = 0 →
𝜕𝜑

𝜕𝑧
|
𝑧=−ℎ

= 0 (192) 

 𝜑(𝑥, 𝑧, 𝑡) = 𝑅𝑒[𝐶 cosh(𝑘(𝑧 + ℎ)) 𝑒−𝑖𝑘𝑥+𝑖𝜔𝑡] (193) 

   

The second usual condition, the Cauchy-Poisson condition, states that, on the 

wave surface 𝜁(𝑥, 𝑡) = 𝐴 cos(𝑘𝑥 − 𝜔𝑡), the pressure will be equal to the atmospheric 

pressure – dynamic condition, Equation (194); relating, at the same time, the velocity 

of the fluid with the surface variation – kinematic condition, Equation (195). The union 

of both statements results in Equation (196), and in the final constant defining the 

potential, described in Equation (197). 𝐴 is the wave amplitude. 

Two important simplifications are made: firstly, the amplitude of the wave is 

assumed small in comparison with the potential order of magnitude, which means that 

the boundary condition can be applied in 𝑧 = 0 ~𝐴 cos(𝑘𝑥 − 𝜔𝑡); secondly, the high 

order terms in the Bernoulli’s equation are ignored, by the same argument, i.e., 

∇𝜑(𝑥, 𝑦, 0, 𝑡)2~0. 
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𝜕𝜑

𝜕𝑡
|
𝑧=0

+
1

2
∇𝜑(𝑥, 𝑦, 0, 𝑡)2 + 𝑔𝜁 = −

𝑝 − 𝑝0
𝜌

= 0 ≈
𝜕𝜑

𝜕𝑡
|
𝑧=0

+ 𝑔𝜁 → 𝜁 = −
1

𝑔

𝜕𝜑

𝜕𝑡
|
𝑧=0

 (194) 

 
𝑣𝑧(𝑧 = 0) =

𝜕𝜁

𝜕𝑡
→
𝜕𝜑

𝜕𝑧
|
𝑧=0

=
𝜕𝜁

𝜕𝑡
 

 
(195) 

 
𝜕2𝜑

𝜕𝑡2
|
𝑧=0

+ 𝑔
𝜕𝜑

𝜕𝑧
|
𝑧=0

= 0 (196) 

 𝜑(𝑥, 𝑧, 𝑡) = 𝑅𝑒 [
𝑖𝑔𝐴

𝜔 cosh(𝑘ℎ)
cosh(𝑘(𝑧 + ℎ)) 𝑒−𝑖𝑘𝑥+𝑖𝜔𝑡] (197) 

   

Applying the boundary in Equation (196) to the potential in Equation (197), it is 

possible to relate the angular frequency with the wave number, obtaining the 

dispersion relation, Equation (198). It relates the length and the frequency of the 

waves, accordingly with the region depth. It also gives the interesting result that the 

waves will travel with different velocities, depending on their frequency. 

 𝑘 =
𝜔2

𝑔 tanh(𝑘ℎ)
 (198) 

   

If the depth is greater than half of the wave-length, ℎ >
1

2
𝜆, the potential can be 

further simplified to an infinite-depth potential, Equations (199) and (200). 

 𝜑(𝑥, 𝑧, 𝑡) = 𝑅𝑒 [
𝑖𝑔𝐴

𝜔
𝑒𝑘𝑧𝑒−𝑖𝑘𝑥+𝑖𝜔𝑡] =

𝑔𝐴

𝜔
𝑒𝑘𝑧 sin(𝑘𝑥 − 𝜔𝑡) (199) 

 𝑘 =
𝜔2

𝑔
 (200) 

   

The potential obtained so far can be modified and combined to satisfy other 

boundary conditions. For example, if an impermeable wall is present at 𝑥 = 0, a new 

boundary condition appears, Equation (201), which is satisfied by the superposition of 

two potentials propagating in different directions, Equations (202) and (203). 

 𝑣𝑥(𝑥 = 0) = 0 →
𝜕𝜑

𝜕𝑥
|
𝑥=0

= 0 (201) 

 𝜑(𝑥, 𝑧, 𝑡) =
𝑔𝐴

𝜔
𝑒𝑘𝑧 sin(𝑘𝑥 − 𝜔𝑡) −

𝑔𝐴

𝜔
𝑒𝑘𝑧 sin(𝑘𝑥 + 𝜔𝑡) = −2

𝑔𝐴

𝜔
𝑒𝑘𝑧 cos(𝑘𝑥) sin(𝜔𝑡) (202) 

 
𝑣𝑥 =

𝜕𝜑

𝜕𝑥
= 2𝑘

𝑔𝐴

𝜔
𝑒𝑘𝑧 sin(𝑘𝑥)⏞    

=0 𝑖𝑓 𝑥=0

sin(𝜔𝑡) 

 
(203) 
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 Figure 161 – The superposition of two potentials satisfies the boundary condition. 

 
 

 Source: Elaborated by the author. 

This example, illustrated in Figure 161, is important because it justifies formally 

the use of wave-probes, since it also describes the asymptotical behavior of the hull of 

a non-moving vessel. Acting as a wall, the hull doubles the amplitude of short waves 

encountering it directly, in the point of contact, motivating the use of the approach 

proposed in this work, Equation (204). 

 𝜁(𝑥 = 0, 𝑡) = −
1

𝑔

𝜕𝜑

𝜕𝑡
|
𝑧=0

= 2𝐴 cos(𝑘𝑥) cos(𝜔𝑡) =
𝑥=0

𝟐𝑨 cos(𝜔𝑡) (204) 

   

In this ideal case, with an infinity wall, the resulting wave is a simple stationary 

wave; in a more complex scenario, however, other effects happen. 

LINEAR RESPONSE MODEL 

When a moving floating body is inside the domain, the resultant potential can 

also be described as a superposition of potentials. It must account effects from: 

 Radiation: the potential caused by a unitary movement of the body in each 

degree of freedom, 𝜑𝑗; 

 Diffraction: the unperturbed potential of the incident waves plus the 

scattering disturbance caused by the fixed body, 𝜑𝐴 = 𝜑0 + 𝜑7. 

Assuming an oscillatory body movement, with amplitude 𝜉𝑗 in each degree of 

freedom (DoF), the final potential will be the one presented in Equation (205). 
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 𝜑(𝑥, 𝑦, 𝑧, 𝑡) = 𝑅𝑒 {[∑𝜉𝑗𝜑𝑗(𝑥, 𝑦, 𝑧)

6

𝑗=1

+ 𝐴(𝜑0(𝑥, 𝑦, 𝑧) + 𝜑7(𝑥, 𝑦, 𝑧))] 𝑒
𝑖𝜔𝑡} (205) 

In this case, the hypothesis made previously must be taken carefully: firstly, the 

frictionless hypothesis will depend on the shape of the floating body – the body must 

be ‘smooth’ – and will depend on how fast it is moving – if the body movement is too 

fast, non-linear effects will take control, and the potential theory is no more valid; 

secondly, the size of the vessel will determine the order of magnitude of the potential 

and, thus, the validity of the approximations made in surface wave developments – the 

wave amplitude must be small in comparison with the vessel.  

For all potential terms, the governing equations are the previously presented 

continuity equation, or Laplace’s equation; the Cauchy-Poisson condition; and the 

bottom impermeability condition. Moreover, extra equations are applied to the radiation 

potential and to the diffraction potential: the moving body impermeability, Equation 

(206); and the fixed body impermeability, Equation (207). 

Again, the moving body impermeability condition, as written in the above 

equations, demands small movements of the body, so they can be stated as small 

oscillations around the same position.  

And finally, by using the Bernoulli’s equation, without considering high order and 

hydrostatic terms, it is possible to calculate the pressure in the domain and, thus, the 

forces and moments acting on the body; Equations (208), (209) and (210). 

 𝑝(𝑥, 𝑦, 𝑧, 𝑡) = −𝜌
𝜕𝜑

𝜕𝑡
 (208) 

 𝑭 = −𝜌𝑅𝑒 {∑[𝑖𝜔𝜉𝑗𝑒
𝑖𝜔𝑡∬𝜑𝑗𝒏𝒃𝑑𝑆

 

𝑆𝑏

]

6

𝑗=1

} − 𝜌𝑅𝑒 {𝑖𝜔𝐴𝑒𝑖𝜔𝑡∬𝜑𝐴𝒏𝒃𝑑𝑆

 

𝑆𝑏

} (209) 

 𝑴 = −𝜌(𝑅𝑒 {∑[𝑖𝜔𝜉𝑗𝑒
𝑖𝜔𝑡∬𝜑𝑗(𝒓 × 𝒏𝒃)𝑑𝑆

 

𝑆𝑏

]

6

𝑗=1

} − 𝜌𝑅𝑒 {𝑖𝜔𝐴𝑒𝑖𝜔𝑡∬𝜑𝐴(𝒓 × 𝒏𝒃)𝑑𝑆

 

𝑆𝑏

} (210) 

 

 
𝜕𝜑𝑗

𝜕𝑛𝑏
|
𝑆𝑏

= 𝑖𝜔𝑛𝑗(𝑡), 𝑗 = 1,2,3    
𝜕𝜑𝑗

𝜕𝑛𝑏
|
𝑆𝑏

= 𝑖𝜔(𝒓 × 𝒏(𝑡))
𝑗−3
, 𝑗 = 4,5,6 (206) 

 
𝜕𝜑𝐴
𝜕𝑛𝑏

|
𝑆𝑏

= 0 →
𝜕𝜑7
𝜕𝑛𝑏

|
𝑆𝑏

= −
𝜕𝜑0
𝜕𝑛𝑏

|
𝑆𝑏

 (207) 
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Despite the complete analytical formulation, the equations presented need to 

be solved numerically, due to the complex geometry of the floating bodies of interest. 

The numerical methods often consist about discretizing the entire domain and solving 

the system of equations arising from it, but this particular problem can be facilitated by 

the third Green’s identity.  

The identity states that, if 𝜑 is a harmonic function, the potential in any point 𝑃 of 

the domain can be determined by an integration over its boundary, Equation (211), 

with 𝑟𝑃 the distance between the point of integration on the surface and the point 𝑃 in 

the domain. It means the problem only needs to be discretized over the domain 

surface, and, with further developments, only over the floating body surface.  

 𝜑(𝑃) =
1

4𝜋
∬[

1

𝑟𝑃
∇𝜑 − 𝜑∇ (

1

𝑟𝑃
)] ∙ 𝒏𝑑𝑆

 

𝜕𝑉

 
(211) 

This property results in a fast and accurate solving method called the panel 

method, which is used in the software Wamit®. Essentially, the body surface is 

discretized in panels and a superposition of potentials is defined based on the 

discretization – usually, some simple potentials are positioned on the panels – with 

their strength being calibrated to satisfy all the boundary conditions. A complete 

theoretical reference can be found in (WAMIT, 2015). 

After solving the potential problem, the calculated forces can be written in the 

matrix form, and be divided in: added mass 𝑰𝑨(𝜔)  – a term proportional to the 

acceleration of the body, 𝑈̇𝑗; radiation damping 𝑩(𝜔)– a dissipative term proportional 

to the velocity of the body,  𝑈𝑗 ; and wave-exciting forces 𝑅𝑒{𝐴𝑒𝑖𝜔𝑡𝑿(𝜔)}  – a term 

proportional to the amplitude of the incident wave; Equations (212), (213) and (214): 

 𝑈𝑗(𝑡) = 𝑅𝑒(𝑖𝜔𝜉𝑗𝑒
𝑖𝜔𝑡) (212) 

 𝑈̇𝑗(𝑡) = −𝑅𝑒(𝜔
2𝜉𝑗𝑒

𝑖𝜔𝑡) (213) 

 [
𝑭
𝑴
]
ℎ𝑦𝑑𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐

= 𝑰𝑨(𝜔)𝑈̇𝑗 + 𝑩(𝜔)𝑈𝑗 + 𝑅𝑒{𝐴𝑒
𝑖𝜔𝑡𝑿(𝜔)} (214) 

If the body oscillates around its hydrostatic equilibrium with small movements, 

the hydrostatic forces can be linearized in order to be described by a simple restoration 

matrix 𝑪, Equation (215). 
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 [
𝑭
𝑴
]
ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐

= 𝑅𝑒{𝑪𝝃}, 𝝃 = {𝜉𝑗𝑒
𝑖𝜔𝑡}

𝑗=1,2,…,6 
 (215) 

The final dynamic system, applying all the forces on the inertia 𝑰 of the body, is 

then defined by Equation (216): 

 {−𝜔2(𝑰 + 𝑰𝑨(𝜔)) + 𝑖𝜔𝑩(𝜔) + 𝑪}𝝃 = 𝐴𝑿(𝜔) (216) 

Since the system is linear, it can be described by a transfer function of each 

possible wave – function of the angular frequency 𝜔 and the incidence angle 𝛽. This 

function can be discretized in a vector called Response Amplitude Operators (RAOs), 

which completely determine the floating body dynamics, Equation (217). 

 𝑹𝑨𝑶(𝜔, 𝛽) =
𝝃

𝐴
= {−𝜔2(𝑰 + 𝑰𝑨(𝜔)) + 𝑖𝜔𝑩(𝜔) + 𝑪}

−1
𝑿(𝜔) (217) 
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APPENDIX B – SUPERPOSITION OF VESSEL MOTIONS 

Usually, only the vertical motions of the vessel – heave, pitch and roll – are 

incorporated in the correction of the wave-probe measurements, but it is convenient to 

perform a sensibility analysis to justify this approach, that disregards the horizontal 

motions of the vessel – surge, sway and yaw.  

The following analysis is made by simplifying the potential of two seas, a beam 

sea coming from port and a head sea, and verifying the effects of each movement in 

the measurements of a wave-probe located at the port of the vessel, as shown in 

Figure 162. 

 Figure 162 – Seas used in the sensibility analysis. 

 
 Source: Elaborated by the author. 

Each movement is evaluated separately, and the angular movements are 

linearized, as the vessel angular displacements hardly ever surpass 0.1 radians, and, 

thus, the linearization error is usually much below than 0.5%. The interference 

equations are illustrated in Figure 163 to Figure 168, in which 𝑊𝑃𝑚𝑒𝑎𝑠. is the wave-

probe measurement, i.e., the distance between the sensor and the water surface, and 

it is a function of the wave elevation 𝜁 and the vessel movements 𝜉. 

Figure 163 – Wave-probe measurement affected by the surge movement. 

 
Source: Elaborated by the author. 
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Figure 164 – Wave-probe measurement affected by the sway movement. 

 
Source: Elaborated by the author. 

 

Figure 165 – Wave-probe measurement affected by the heave movement. 

 
Source: Elaborated by the author. 

 

Figure 166 – Wave-probe measurement affected by the roll movement. 

 
Source: Elaborated by the author. 
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Figure 167 – Wave-probe measurement affected by the pitch movement. 

 
Source: Elaborated by the author. 

Figure 168 – Wave-probe measurement affected by the yaw movement. 

 
Source: Elaborated by the author. 

The first sea, the beam sea, is chosen aiming at exciting the most the sway and 

the roll movements. The potential is simplified to an interpolation between a full 

reflected sea, when the period is below six seconds, and an unperturbed one, when 

the period is above twenty seconds. The resulting potential will be defined by the value 

of 𝐶𝑅, which is the amplification coefficient, Equation (218). 

 𝜑(𝑥, 𝑦, 𝑧, 𝑡) =
𝑔𝐴

𝜔
𝑒𝑘𝑧 sin(𝑘 ∙ (−𝑦) − 𝜔𝑡) − 𝐶𝑅

𝑔𝐴

𝜔
𝑒𝑘𝑧 sin(𝑘 ∙ (−𝑦) + 𝜔𝑡) (218) 

   

Although the proposed potential is an approximation, it represents the 

qualitative behavior of the studied waves; producing, at the same time, a simple wave-

elevation pattern more suitable for the sensibility analysis, Equation (219). 

 𝜁(𝑥, 𝑦, 𝑡) = 𝐴 cos(𝑘 ∙ (−𝑦) − 𝜔𝑡) + 𝐶𝑅𝐴 cos(𝑘 ∙ (−𝑦) + 𝜔𝑡) (219) 
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The vessel response is easily obtained via Wamit®, and the result is shown in 

Figure 169, for the floating body six degrees of freedom. 

Figure 169 – Vessel response in a beam sea. 

 
Source: Elaborated by the author. 

The wave elevations in six positions along the port are shown in Figure 170. 

Figure 170 – Wave-elevation in six different port positions. 

 
Source: Elaborated by the author. 
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The responses along the starboard are shown in Figure 171. 

Figure 171 – Wave-elevation in six different starboard positions. 

 
Source: Elaborated by the author. 

The data is favorable to the approximations adopted. Firstly, the angular 

movements are always much below than 0.1 radians; and secondly, the idea of the 

superposition of a regular and a reflected sea is clearly seen in the port responses – 

which starts with twice the wave amplitude and softly converges to one – and in the 

starboard response – which represents the potential that is able to pass through the 

vessel and that is not reflected. 

The wave amplification coefficient can be calculated, for each period, by the 

average wave-elevation responses on the port, Figure 172. 

Figure 172 – Amplification coefficient based on the wave-elevation on the port. 

 
Source: Elaborated by the author. 
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Finally, the maximum disturbance caused by each DoF can be calculated. For 

the angular movements, it is used half of the length and half of the width of the vessel 

as a reference for the wave-probe position; and for the horizontal movements, the 

phases of the responses are taken into account and the worst case is when the 

difference between the measured and the real wave-elevation is the greatest. The 

results are shown in Figure 173. 

Figure 173 – Maximum disturbance cause by each DoF. 

 
Source: Elaborated by the author. 

The results above suggest a clear dominance of the vertical movements. The 

sway horizontal movement, however, presents a non-negligible influence, around 3.5% 

of the wave amplitude, or 1.75% of the wave-elevation – reminding that, below 10 

seconds, the wave-elevation on the hull is twice the wave amplitude. Despite this, the 

effect is non-linear and it is not easily incorporated in the estimation algorithm, so it will 

be ignored, since the cost suppresses the possible improvements. 

The second sea, the head sea, is chosen aiming at exciting the most the surge 

and the pitch movements. In this case, the potential is simplified to an unperturbed 

regular progressive wave potential, 𝜁(𝑥, 𝑦, 𝑡) = 𝐴 cos(𝑘 ∙ (−𝑥) − 𝜔𝑡) , a reasonable 

approximation if the beam, i.e., the width, of the vessel is small if compared against its 

length. 
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The vessel response for this case is also obtained via Wamit®, and the result is 

shown in Figure 174. 

Figure 174 – Vessel response in a head sea. 

 
Source: Elaborated by the author. 

The wave elevations in six positions along the port are shown in Figure 175. 

Figure 175 – Wave-elevation in six different port positions. 

 
Source: Elaborated by the author. 
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The responses of the probes at the starboard are not necessary, due to the 

symmetry of the problem. 

Using the responses, the approximate potential used in the analysis is justified, 

mainly in the probes in the middle of the array – 2, 3, 4 and 5 – which present responses 

almost always equal to one; the expected result in an unperturbed potential.  

The final disturbances are calculated with the same considerations used in the 

previous example, and are shown in Figure 176. 

Figure 176 – Maximum disturbance cause by each DoF. 

 
Source: Elaborated by the author. 

In this case, the only horizontal motion that has influence is the surge 

movement. However, it only represents 0.8% of the wave amplitude and the wave 

elevation – the wave-elevation is equal to the wave amplitude – consequently, this 

movement is, indeed, negligible. The vertical movements, as in the previous case, 

have disturbances in the same order of magnitude that the wave-elevation, so they 

need to be corrected. 
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APPENDIX C –  NUMERICAL ISSUES 

In this appendix, relevant numerical issues of the algorithms are listed. The 

solutions for the issues are described based on the Matlab® R2016a framework, 

including sample code, but can be easily expanded to any environment. 

INTEGRATION IN THE DIRECTIONAL DOMAIN 

 Some error metrics and parametric calculations demand the integration through 

the direction domain, for example Equations (220) and (221): 

𝑆(𝜔) = ∫ 𝑆(𝜔, 𝛽)𝑑𝛽

2𝜋

0

 (220) 

 
𝐷(𝜔, 𝛽) =

1

∫ cos2𝑠 (
𝛽 − 𝛽0
2 ) 𝑑𝛽

2𝜋

0

∙ cos2𝑠 (
𝛽 − 𝛽0
2

) 
(221) 

   

Suppose, for example, two discrete directional spread functions generated 

using the following parameters: 𝑠 = 100, Δ𝛽 = 360°/20, 𝛽01 = 0° and 𝛽02 = 180°. It 

would be expected that the integration of those two functions would result in the same 

value, since they are just a translation for each other – in the first one the wave is 

coming from 0°, in the other one the wave is coming from 180° – however, this is not 

the case: 

betas = linspace(0,360,20+1)*pi/180; 
betas(end) = []; % beta(end) = 360° = beta(1) = 0° 

  
s = 100; 
beta01 = 0*pi/180; 
beta02 = 180*pi/180; 

  
Dbeta1 = cos( (betas-beta01)/2 ).^(2*s); 
Dbeta2 = cos( (betas-beta02)/2 ).^(2*s); 

  
intDbeta1 = trapz(betas,Dbeta1); 
intDbeta2 = trapz(betas,Dbeta2); 

 

intDbeta1 =   intDbeta2 = 

     0.1967        0.3669 

 

The difference source becomes clear when the resulting functions are plotted 

against the generating discrete directions, Figure 177. 
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Figure 177 – Directional spread functions. 

 
Source: Elaborated by the author. 

It is possible to see that, due to the discretization, the final trapezium in 𝐷1(𝛽), 

which is used in the numerical integration, is not present, causing the observed 

difference. 

The solution for this issue is simple: to add the final trapezium. This is easily 

done by the function listed below: 

function intFbeta = fullDirectionTrapz(betas,Fbeta) 

  
    betas(end+1) = betas(1)+2*pi; % betas in radians 
    Fbeta(end+1) = Fbeta(1); 
    intFbeta = trapz(betas,Fbeta); 

  
end % function directionTrapz(betas,Fbeta) 

 

Essentially, the function adds the final integration point, completing the 

trapeziums before performing the numerical integration. It is important to notice that 

this is a simple function to illustrate the procedure, which does not verify the validity of 

the inputs, neither accounts for cases in which the input Fbeta is a matrix. 

The effectiveness of the solution can be attested by the following code, that 

generates 100000 different functions, with random parameters, and compare them: 



240 
 

for indExp = 1:100000 

  
    betas = linspace(0,360,rand*170+10+1)*pi/180; 
    betas(end) = []; % beta(end) = 360° = beta(1) = 0° 

  
    s = round(rand*99 + 1); 
    beta01 = 0*pi/180; 
    beta02 = betas(floor(rand*length(betas)+1)); 

  
    Dbeta1 = cos( (betas-beta01)/2 ).^(2*s); 
    Dbeta2 = cos( (betas-beta02)/2 ).^(2*s); 

  
    intDbeta1 = fullDirectionTrapz(betas,Dbeta1); 
    intDbeta2 = fullDirectionTrapz(betas,Dbeta2); 
    dif(indExp) = abs(intDbeta1-intDbeta2); 

     
end % for indExp 

  

max(dif) =  

3.9413e-15 

 

After the correction, the difference happens only due to numerical truncation. 

QUADRATIC PROGRAMMING DETAILS 

After all the considerations, the final estimation algorithm consists in a quadratic 

programming problem with boundary constraints, Equations (222) and (223). 

 min
𝒙,𝑥𝑖>0

𝐽(𝒙) ≡ min
𝒙,𝑥𝑖>0

1

2
𝒙𝑻[𝑨𝑻𝑨 + 𝑢1

2𝑯1 + 𝑢2
2𝑯2 + 𝑢3

2𝑯3]𝒙 − (𝑨
𝑻𝒃)𝑻𝒙 (222) 

 min
𝒙,𝑥𝑖>0

1

2
𝒙𝑻𝑯𝒙 + 𝒇𝑻𝒙,𝑯 (223) 

   

The above problem is solved by the following Matlab® code, implementing the 

optimization problem in Equation (224), subject to the constraints in the Equation (225), 

and with initial guess equally to 𝑥0: 

x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options); 

 min
𝒙 

1

2
𝒙𝑻𝑯𝒙 + 𝒇𝑻𝒙,  (224) 

  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 {
𝑨𝒙 ≤ 𝒃

𝑨𝒆𝒒𝒙 = 𝒃𝒆𝒒
𝒍𝒃 ≤ 𝒙 ≤ 𝒖𝒃

 (225) 

Resulting, for the particular problem of this thesis, in: 

x = quadprog(H,f,A,b,[],[],zeros(size(x0)),[],x0,options); 
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The “options” field controls the optimization solver in different manners. The 

most significant one is the selection of the solver algorithm, which can be one of the 

followings: 

 interior-point-convex: the default algorithm, ignores the initial search 

vector 𝑥0; 

 trust-region-reflective: allows the usage of initial search vector; 

 active-set: will be removed in future releases. 

Ignoring the last one, since it will be removed in future releases, the two options 

would be expected to perform equally well, mainly because the quadratic programming 

problem with only boundary constraints is a convex problem, i.e., the local minimum is 

also the global minimum.  

However, if only vessel movements are used with low 𝑇𝑃 waves, or, in a more 

general sense, if the DoF base is not capable of fully determine the minimum-square 

problem, some errors can happen in the estimation with the interior-point-convex 

algorithm, Figure 178, and with the trust-region-reflective algorithm if the initial guess 

was not provided, Figure 179. 

 

Figure 178 – Estimation with interior-point-convex algorithm. 

 
Source: Elaborated by the author. 
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Figure 179 – Estimation with trust-region-reflective algorithm without initial guess. 

 
Source: Elaborated by the author. 

A detailed analysis reveals that the problem happens in low periods – with 

frequency higher than 0.75, i.e., periods lower than 8s – exactly when the minimum-

squared part of the estimation has the smallest response.  

When no initial guess is provided, each algorithm has its own particular 

procedure, but, as a general rule, the vector 𝑥 will be initiated with non-zero values, 

usually much higher than the values expected for this particular problem. After this 

initial guess, the algorithms change the vector aiming at improving the cost function 

outcome, until some convergence criterion is reached. 

Combining the results of the analysis with the knowledge about the algorithms, 

it is possible to explain why this kind of error occurs. After the first non-zero guess, the 

algorithm changes the medium and high period parts of the vector first, since they 

cause most of the cost function change, and the low period part starts to converge 

slowly, due to the low impact in the minimum-squared part of the problem, reaching 

the relative tolerance convergence criterion before achieving the expected zero 

response in those positions of the vector. Being so, non-negligible energy is 

“estimated” beyond the DoF base estimation capabilities.  

The most straightforward solution would be increase the value of the relative 

tolerance criterion, but this would demand more iterations of the algorithms, increasing 

the time demanded to calculate the estimated response.  
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A simpler strategy is to provide an initial point for the algorithm, with all position 

equal to zero. This strategy guarantees that the vector will change its value to non-

zero only if it really causes non-negligible differences in the cost function, otherwise, it 

will remain equals to zero, acting as a form of regularization. 

In conclusion, it is recommended that the trust-region-reflective algorithm is 

used, with initial guess equals to zero, correcting this kind of error, Figure 180. 

options = optimset('Algorithm','trust-region-reflective'); 
x0 = zeros(size(x)); 

lb = zeros(size(x)); 
x = quadprog(H,f,A,b,[],[],lb,[],x0,options); 

Figure 180 – Estimation with trust-region-reflective, initial guess equals to zero. 

 
Source: Elaborated by the author. 

It is important to emphasize that the response is still “bad” because a low 𝑇𝑃 

wave is being estimated using only vessel DoFs; but the result does not “create” energy 

beyond the estimation capabilities anymore, correcting the issue.  

REDISCRETIZATION OF THE SPECTRUM 

During the error calculations based on differences between two directional 

spectra – experimental and estimated, for example – it is necessary the spectra to be 

in the same discretization, which is not always the case, mainly when the compared 

spectrum comes from different estimation strategies. A naïve approach is to interpolate 

the spectra using the new discretization in frequency and direction, but this procedure 

can cause non-negligible distortions that need to be taken in account. 



244 
 

In order to analyze possible rediscretization strategies, the process can be 

divided in two: rediscretization in frequencies and rediscretization in directions. 

The rediscretization in frequencies is a function that maps 𝑆1(𝜔1𝑖, 𝛽𝑗), 𝜔1𝑖 =

𝑘𝑖Δ𝜔1, min(𝜔) ≤ 𝜔1𝑖 ≤ max(𝜔) , 𝛽𝑗 = 𝑘𝑗Δ𝛽, 0° ≤ 𝛽𝑗 ≤ 360° , into 𝑆2(𝜔2𝑖, 𝛽𝑗) , 𝜔2𝑖 =

𝑘𝑖Δ𝜔2,min(𝜔) ≤ 𝜔2𝑖 ≤ max(𝜔), and the linear system in Equation (226) into the linear 

system in Equation (227): 

 𝑏1 = 𝐴1𝑥1 → 𝜙
𝑝𝑘
(𝜔1𝑖) =∑𝑅𝐴𝑂𝑝 (𝜔1𝑖, 𝛽𝑗 ) ∙ 𝑅𝐴𝑂𝑘

∗ (𝜔1𝑖, 𝛽𝑗) ∙ 𝑆 (𝜔1𝑖, 𝛽𝑗)∆𝛽

𝐽

𝑗=1

 (226) 

 𝑏2 = 𝐴2𝑥2 → 𝜙
𝑝𝑘
(𝜔2𝑖) =∑𝑅𝐴𝑂𝑝 (𝜔2𝑖, 𝛽𝑗 ) ∙ 𝑅𝐴𝑂𝑘

∗ (𝜔2𝑖, 𝛽𝑗) ∙ 𝑆 (𝜔2𝑖, 𝛽𝑗) ∆𝛽

𝐽

𝑗=1

 (227) 

   

It is possible to notice that the rediscretization transforms the linear system 

completely, changing all its rows, and essentially the problem becomes how to 

rediscretize the cross spectra of two signals. 

Since each harmonic of a signal is independent of the other harmonics, when 

the signal is decomposed in a set of harmonics it is impossible to recover the amplitude 

of harmonics that are outside of the first set, and, in this sense, it seems that it is 

impossible to perform a rediscretization, unless the new 𝜔2𝑖 set is an exact subset of 

the original set 𝜔1𝑖; however, it is a premise of the problem that the energy spectral 

density is a continuous, smooth function, and the same with the response amplitude 

operators that translate it into movements and, consequently, the cross spectra. It 

means that an interpolation is enough to give a good estimate of an unknown harmonic 

that is between two other known harmonics. 

The previous argument can be illustrated by the following example: given a set 

of 20 values 𝜔1𝑖, a set of 30 values 𝜔2𝑖, and a set of values 𝜔3𝑖 ∋ {𝜔1𝑖 ∪ 𝜔2𝑖}. In a 

particular position 𝛽𝑗 , the theoretical directional spectrum is given by 𝑆(𝜔𝑘𝑖, 𝛽𝑗) =

𝑆(𝜔𝑘𝑖) ∙ 𝐷(𝛽𝑗). Since the function 𝑆(𝜔𝑘𝑖, 𝛽𝑗) is a smooth, continuous function, when it 

is plotted using different discretization procedures, the resulting values will be one 

above the other, which can be seen in Figure 181. 
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Figure 181 – Different discretizations superimposed. 

 
Source: Elaborated by the author. 

It means that the function can be approximately converted from a higher 

discretization to a lower discretization by simple interpolation, Figure 182. 

Figure 182 – Rediscretization using interpolation. 

 
Source: Elaborated by the author. 

Once more, the rediscretization from different frequencies is only possible 

because the function is assumed smooth and continuous, which is not true in a general 

spectral density function. 
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The rediscretization in directions is a function that maps 𝑆1(𝜔𝑖, 𝛽1𝑗) , 𝜔𝑖 =

𝑘𝑖Δ𝜔,min(𝜔) ≤ 𝜔𝑖 ≤ max(𝜔) , 𝛽1𝑗 = 𝑘1𝑗Δ𝛽1, 0° ≤ 𝛽1𝑗 ≤ 360° , into 𝑆2(𝜔𝑖, 𝛽2𝑗) , 𝛽2𝑗 =

𝑘2𝑗Δ𝛽2, 0° ≤ 𝛽2𝑗 ≤ 360°, and the linear system in Equation (228) into the linear system 

in Equation (229): 

 𝑏 = 𝐴1𝑥1 → 𝜙
𝑝𝑘
(𝜔𝑖) =∑ 𝑅𝐴𝑂𝑝 (𝜔𝑖, 𝛽1𝑗 ) ∙ 𝑅𝐴𝑂𝑘

∗ (𝜔𝑖, 𝛽1𝑗) ∙ 𝑆 (𝜔𝑖, 𝛽1𝑗)∆𝛽1

𝐽1

𝑗1=1

 (228) 

 𝑏 = 𝐴2𝑥2 → 𝜙
𝑝𝑘
(𝜔𝑖) =∑ 𝑅𝐴𝑂𝑝 (𝜔𝑖, 𝛽2𝑗 ) ∙ 𝑅𝐴𝑂𝑘

∗ (𝜔𝑖, 𝛽2𝑗) ∙ 𝑆 (𝜔𝑖, 𝛽2𝑗)∆𝛽2

𝐽2

𝑗2=1

 (229) 

   

It is possible to notice that the rediscretization does not transform the linear 

system completely, since the vector 𝑏, the cross spectra, is the same for both systems. 

However, the columns of the linear systems are different. The rediscretization, in this 

case, must guarantee that the cross spectra vector remains approximately the same, 

Equation (230). It means that, if 𝛽2𝑗 is a subset of 𝛽1𝑗, Equation (231) holds true; and, 

assuming RAOs almost constant in small Δ𝛽 intervals, Equation (232) is valid. 

 

∑ 𝑅𝐴𝑂𝑝(𝜔𝑖, 𝛽1𝑗 ) ∙ 𝑅𝐴𝑂𝑘
∗(𝜔𝑖, 𝛽1𝑗) ∙ 𝑆(𝜔𝑖, 𝛽1𝑗)∆𝛽1

𝐽1

𝑗1=1

= ∑ 𝑅𝐴𝑂𝑝(𝜔𝑖, 𝛽2𝑗 ) ∙ 𝑅𝐴𝑂𝑘
∗(𝜔𝑖, 𝛽2𝑗) ∙ 𝑆(𝜔𝑖, 𝛽2𝑗)∆𝛽2

𝐽2

𝑗2=1

 

(230) 

 

𝑅𝐴𝑂𝑝(𝜔𝑖, 𝛽2𝑗 ) ∙ 𝑅𝐴𝑂𝑘
∗(𝜔𝑖, 𝛽2𝑗) ∙ 𝑆(𝜔𝑖, 𝛽2𝑗)∆𝛽2

= ∑ 𝑅𝐴𝑂𝑝(𝜔𝑖, 𝛽1𝑗 ) ∙ 𝑅𝐴𝑂𝑘
∗(𝜔𝑖, 𝛽1𝑗) ∙ 𝑆(𝜔𝑖, 𝛽1𝑗)∆𝛽1

𝛽1𝑗≤𝛽2𝑗+
Δ𝛽2
2
 

𝛽2𝑗−
Δ𝛽2
2
≤𝛽1𝑗

 
(231) 

 𝑆(𝜔𝑖, 𝛽2𝑗)∆𝛽2 = ∑ 𝑆(𝜔𝑖, 𝛽1𝑗)∆𝛽1

𝛽1𝑗≤𝛽2𝑗+
Δ𝛽2
2
 

𝛽2𝑗−
Δ𝛽2
2
≤𝛽1𝑗

 (232) 

   

The previous procedure results in the values for each 𝛽2𝑗, Equation (233). 
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 [
⋮

𝑆(𝜔𝑖, 𝛽2𝑗)

⋮

] =
1

Δ𝛽2

[
 
 
 
 
 

⋮

∑ 𝑆(𝜔𝑖, 𝛽1𝑗)∆𝛽1

𝛽1𝑗≤𝛽2𝑗+
Δ𝛽2
2
 

𝛽2𝑗−
Δ𝛽2
2
≤𝛽1𝑗

⋮ ]
 
 
 
 
 

 (233) 

   

Until now, 𝛽2𝑗 had to be a subset of 𝛽1𝑗, but the result can be generalized by 

generating a more discretized spectrum following Equations (234) and (235). 

 {𝛽1𝑗 ∪ 𝛽2𝑗} ∈ 𝛽3𝑗, Δ𝛽3 = 𝑐𝑡𝑒. |  Δ𝛽1 = 𝛼Δ𝛽3 𝑎𝑛𝑑 Δ𝛽2 = 𝛽Δ𝛽3, 𝛼 𝑎𝑛𝑑 𝛽 ∈ ℤ+
∗  (234) 

 𝑆(𝜔𝑖, 𝛽3𝑘) = 𝑆(𝜔𝑖, 𝛽1𝑗), 𝛽1𝑗 −
Δ𝛽1
2
≤  𝛽3𝑘 ≤ 𝛽1𝑗 +

Δ𝛽1
2

 (235) 

   

This spectrum with a higher discretization always satisfies Equation (236), since 

there will be exactly 𝛼 values 𝑆(𝜔𝑖, 𝛽3𝑘) inside the interval, and they will be equal to 

𝑆(𝜔𝑖, 𝛽1𝑗), Equation (237). 

 𝑆(𝜔𝑖, 𝛽1𝑗)∆𝛽1 = ∑ 𝑆(𝜔𝑖, 𝛽3𝑘)∆𝛽3

𝛽3𝑘≤𝛽1𝑗+
Δ𝛽1
2
 

𝛽1𝑗−
Δ𝛽1
2
≤𝛽3𝑘

 (236) 

 𝑆(𝜔𝑖, 𝛽1𝑗)∆𝛽1 = ∑ 𝑆(𝜔𝑖, 𝛽1𝑗)∆𝛽3

𝛽3𝑘≤𝛽1𝑗+
Δ𝛽1
2
 

𝛽1𝑗−
Δ𝛽1
2
≤𝛽3𝑘

= 𝑆(𝜔𝑖, 𝛽1𝑗)𝛼∆𝛽3 (237) 

   

Using this new spectrum, 𝑆(𝜔𝑖, 𝛽2𝑗) can be calculates by Equation (233), since 

𝛽2𝑗 is a subset of 𝛽3𝑗. 

 The previous argument can be illustrated by the following example: given a set 

of 20 values 𝛽1𝑗, a set of 30 values 𝛽2𝑗, and generating a set of values 𝛽3𝑗 ∋ {𝛽1𝑗 ∪ 𝛽2𝑗}. 

Assuming all sets with the first value equals 0°, the following code performs the 

rediscretization. 

% defining discretizations 
omegas = linspace(2*pi/30,2*pi/4,20)'; 
betas1 = linspace(0,2*pi,70 + 1)';betas1(end) = []; 
betas2 = linspace(0,2*pi,20 + 1)';betas2(end) = []; 
Dbetas2 = betas2(2)-betas2(1); 
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% simple set that always contains betas1 and betas2 
% Dbetas2/Dbetas3 = 70, Dbetas1/Dbetas3 = 20 
betas3 = linspace(0,2*pi,70*20 + 1)';betas3(end) = []; 
Dbetas3 = betas3(2)-betas3(1); 

  
% generating directional spectrum example 
Hs = 1;Tp = 7;beta0 = pi;s = 1000; 
[x1,S1] = genNewSea([],omegas,betas1,Hs,Tp,beta0,s); 

  
% creating spectrum with higher discretization. The spectrum S1 
% is duplicated to avoid errors when beta3>max(beta1). 
S3 = interp1([betas1;betas1+2*pi],[S1;S1],betas3,'nearest'); 

  
% pre-initializing matriz with the rediscretized spectrum 
S12 = zeros(length(betas2),length(omegas)); 

  
% solving in each frequency 
for indOmega = 1:length(omegas) 

     
    Sbeta3 = S3(:,indOmega); 
    for indBeta2 = 1:length(betas2) 
        integrationInterval = (betas3>=betas2(indBeta2)-Dbetas2/2 &... 
                               betas3<=betas2(indBeta2)+Dbetas2/2); 
        integralVector(indBeta2) = ... 
                          sum(Sbeta3(integrationInterval)*Dbetas3); 
    end % for indBeta 
    Sbeta12 = integralVector/Dbetas2; 
    S12(:,indOmega) = Sbeta12; 

     
end % for indOmega 

  
% generating directional spectrum in the second discretization for 
% comparison purposes 
[x2,S2] = genNewSea([],omegas,betas2,Hs,Tp,beta0,s); 

 

The result of the discretization can be seen in Figure 183. 

Figure 183 – Original and rediscretized spectrum. 

 
Source: Elaborated by the author. 
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The previous figure illustrates how the peak of the energy becomes less 

pronounced in order to maintain the energy integration. This becomes clear when the 

spectral energy density is evaluated for each case, and both are equal, Figure 184. 

Figure 184 – Comparison of the spectral energy densities. 

 
Source: Elaborated by the author. 

It is also interesting to compare the rediscretized spectrum against the ideal 

spectrum that would be generated by the 𝛽2𝑗 discretization, Figure 185, concluding 

that the rediscretized spectrum indeed recover the ideal result. 

Figure 185 – Rediscretized and ideal spectrum. 

 
Source: Elaborated by the author. 

The simple interpolation, on its turn, causes a distortion in the energy, since it 

takes the value of the peak, and not the value of the integral, as can be seen in Figure 

186 and Figure 187. 
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Figure 186 – Rediscretized spectrum by simple interpolation. 

 
Source: Elaborated by the author. 

 

Figure 187 – Spectral energy density of the interpolated spectrum. 

 
Source: Elaborated by the author. 

 

One could argue that this is just an amplification matter, and a simple constant 

would correct it; however, if the peak of the spectrum with higher discretization is not 

exactly in a point of the new rediscretization, but slightly translated, the amplification 

factor changes considerably.  

It happens because the interpolation takes the value that is exactly in the 

specific interpolated point, and the directional translation change this value. This 

property can be seen in Figure 188, Figure 189 and Figure 190. 



251 
 

Figure 188 – Interpolation of spectrum slightly translated. 

 
Source: Elaborated by the author. 

Figure 189 – Comparison with the ideal spectrum. 

 
Source: Elaborated by the author. 

Figure 190 – The amplification factor changes drastically. 

 
Source: Elaborated by the author. 
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The proposed rediscretization procedure, however, is robust against this effect, 

Figure 191 and Figure 192. 

Figure 191 – Rediscretization is robust against translations. 

 
Source: Elaborated by the author. 

Figure 192 – Rediscretization still compatible with the ideal spectrum. 

 
Source: Elaborated by the author. 

Finally, the general discretization, in frequencies and directions, is performed 

one rediscretization by turn. Firstly, the spectrum is interpolated through the 

frequencies; secondly, the spectrum obtained by the previous procedure is 

rediscretized through the directions following the integral preserving method described. 

 

 
 


