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“It is not the critic who counts; not
the man who points out how the strong
man stumbles, or where the doer of
deeds could have done them better. The
credit belongs to the man who is actu-
ally in the arena, whose face is marred
by dust and sweat and blood; who strives
valiantly; who errs, who comes short
again and again, because there is no ef-
fort without error and shortcoming; but
who does actually strive to do the deeds;
who knows great enthusiasms, the great
devotions; who spends himself in a wor-
thy cause; who at the best knows in the
end the triumph of high achievement,
and who at the worst, if he fails, at
least fails while daring greatly, so that
his place shall never be with those cold
and timid souls who neither know vic-
tory nor defeat.”

-- Theodore Roosevelt



RESUMO

A necessidade por mecanismos que auxiliam os movimentos do ser humano vem
crescendo devido ao aumento do número de pessoas portadores de deficiências que afe-
tam a capacidade motora. Nesse cenário, é de grande importância o desenvolvimento de
métodos de controle que auxiliem a interface entre o dispositivo de assistência motora
e o seu usuário. Esse trabalho propõe um controlador para um exoesqueleto com um
grau de liberdade, usando sinais de eletromiografia de superf́ıcie do usuário como sinal de
entrada. Um exoesqueleto foi adaptado para servir de plataforma para o método de con-
trole desenvolvido. Para criar um modelo EMG-ângulo, um conjunto de experimentos foi
conduzido com seis voluntários. O experimento consistiu em uma série de movimentos de
flexo-extensão do cotovelo cont́ınuos e discretos com diferentes ńıveis de carga. Utilizando
os dados do experimento, métodos de identificação de sistemas linear (ARIMAX) e não
linear (Hammerstein-Wiener) foram avaliados para determinar qual o melhor candidato
para a estimação do modelo EMG-Ângulo, baseado em sua acurácia e facilidade de im-
plementação. Um novo experimento foi conduzido para desenvolver um controlador em
tempo real, baseado no modelo FIR e testado em uma aplicação em tempo real. Testes
indicaram que o controlador é capaz de estimar o ângulo da junta do cotovelo com val-
ores de correlação acima de 70% e raiz do erro quadrático médio menor que 25◦, quando
comparados aos valores medidos de ângulo da junta do cotovelo.

Palavras-Chave – Exoesqueleto, EMG, Eletromiografia, Controle proporcional, Identi-
ficação de sistemas.



ABSTRACT

The need for mechanisms that assist human movements has been increasing due to the
rising number of people that has some kind of movement disability. In this scenario, it is
of great importance the development of control methods that assist the interface between
a motor assistive device and its user. This work proposes a controller for an exoskeleton
with one degree of freedom, using surface electromyography signals from the user as the
input signal. An exoskeleton was adapted to serve as platform for the developed control
method. To create an EMG-to-Angle model, a set of experiments were carried out with
six subjects. The experiment consisted of a series of continuous and discrete elbow flexion
and extension movements with different load levels. Using the experimental data, linear
(ARIMAX) and non linear (Hammerstein-Wiener) system identification methods were
evaluated to determine which is the best candidate for the estimation of the EMG-to-
Angle model, based on its accuracy and ease of implementation. A new experiment was
conducted to develop a real-time controller, based on FIR model and tested in a real-time
application. Tests showed that the controller is capable of estimating the elbow joint
angle with correlation above 70% and root-mean-square error below 25◦ when compared
to the measured elbow joint angles.

Keywords – Exoskeleton, EMG, Electromyography, Proportional control, System iden-
tification.
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1 INTRODUCTION

In the Introduction it is presented the context and the need for assistive devices along

with a bibliographic review. It presents an historical review on the usage of EMG to

control prostheses and exoskeletons. As a conclusion the goals of this work are detailed.

1.1 Bibliographic Review

In the United States, the number of people between the age of 18 and 64 that has

some kind of movement disability has increased about 12% from 1981 to 2014 (VON-

SCHRADER; LEE, 2017). In Brazil, about 13 million people has some kind of motor

disability (IBGE, 2012). Two of the main disability causes are stroke and spinal cord

injury. Yearly, 15 million people suffer stroke. From these, 5 million are fatal and 5

million cause a permanent disability. These number have been increasing in recent years

and studies indicate they will increase even further (MACKAY et al., 2004). From 250

thousand to 500 thousand people suffer spinal cord injury yearly. The three main causes

of spinal cord injury are traffic accidents, falls and violence. Moreover, with the rising in

life expectancy of the world population (WATKINS, 2005), the number of people affected

by disabilities that difficult movement also raised.

Due to these factors, there is a growing need for mechanisms that assist human move-

ments. One of these mechanisms is the robotic exoskeleton.

Robotic exoskeletons are electromechanical structures coupled to the human limbs,

capable of doing or assisting movements. A robotic exoskeleton is usually composed of

joints and rigid bodies (PONS, 2008). One of the major problems of exoskeletons is the

user’s intention identification. There are several biological signals that can be used to

control an external device. For exoskeleton control, that has the goal of moving a certain

limb, it is interesting to use the same signals that are used to control the human motion,

like the neural control signals responsible to activate the muscles. Since these signals

cannot be accessed directly, the use of electromyography (EMG) has been explored to
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control these devices.

The surface electromyography (sEMG) signal represents the electrical activity gen-

erated by the motor units of the muscles as a response to the activation provided by

innervating motor neurons and measured on the skin surface. The information present in

the EMG signals is a composition of the synaptic inputs received from the motor neurons

and the electrical properties from the muscle fibers (FARINA; MERLETTI; ENOKA,

2014).

There are several other approaches to the control of a mechanical limb apart from

the EMG signal. Among the relevant methods, some have been used in combination with

EMG for the control of the prostheses or orthoses. These approaches will be described in

section 1.2.2.

1.1.1 EMG Control

In 1955, Battye and colleagues (BATTYE; NIGHTINGALE; WHILLIS, 1955) first

proposed the use of proportional EMG control. The authors developed an apparatus

capable of performing open and close actions so that the test subject could perform a

grasping task. The apparatus consisted of electrodes attached to the skin of the forearm,

an electrical amplifier, a discriminator, which powered a solenoid when input signal was

detected. The solenoid activated a hook, closing it. As a result, the authors were capable

of designing a control system sensitive enough to close, and remain closed, when the test

subject gripped a pencil in the fingers, regardless of the movement of other limbs. They

concluded that the signal captured by the apparatus successfully eliminated the EMG

signal from other muscles.

In 1965, Bottomley et al. (BOTTOMLEY, 1965) proposed another method for EMG-

driven prostheses control. Two EMG electrode channels were placed on the forearm, one

on the hand extensors and another on the hand flexors, to measure the muscle activity.

The signal from the muscles were amplified, rectified and smoothed. To remove the

“cross-talk”, that is, the influence of the neighbor-muscle signals on the targeted muscle

signals, the signal of the neighbor muscle was subtracted from the signal obtained from

the target muscle. These signals were used to control a Split hook capable of grasping

objects, that exerted a force proportional to the EMG signal intensity. To control the

desired force, a force sensor was attached to the hook. This device included a feedback

control system that was capable of increasing or decreasing the Split hook grasping force

based on the measured EMG signal. When the force sensor detected zero force, that
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is, the hook is not grasping the object anymore and it is freely moving, the intensity of

the EMG signal controlled the hook speed. A backlash generator was introduced in the

electrical system to attenuate random variations around a preset threshold, that widens

as the force feedback signal increases. The authors state that, after a few minutes wearing

the apparatus, all the test subjects, even amputees, were able to control the hook in a

graded manner (BOTTOMLEY, 1965).

Also in the sixties of the last century, Alter (ALTER, 1966) designed an exoskeleton

control using two differential electrodes, one on the biceps and one on the triceps. Both

signals were rectified and then the triceps signal was subtracted from the biceps signal

and fed to an adjustable low-pass filter. This signal was used as input signal to a power

amplifier driving an electric motor. Strain gauges were attached to the exoskeleton to

measure the force measurement, and this signal entered the system as a feedback signal.

In 1966, Isidori and Nicolo (ISIDORI; NICOLO, 1966) first described the myopulse

processing technique, which was later developed by Childress et al. (CHILDRESS; HOLMES;

BILLOCK, 1971) and Philipson (PHILIPSON, 1985). The myopulse processor works as

follows: when the absolute value of the EMG exceeds a predetermined threshold value,

the processor output is turned on. When the EMG activity increases, the duty cycle of

the myoprocessor output also increases. An illustration of this method can be seen in

figure 1.

In this system, two sets of electrodes were placed over the targeted muscle where the

detection of electrical signal was desired. The EMG signal was sent to the myopulse pro-

cessor, where the input signal was amplified and transformed into Pulse Width Modulated

(PWM) signal. This PWM signal was sent to the microcomputer. Then, the microcom-

puter processed the PWM signals and sent the output signals to control the prosthetic

arm according to the control algorithm. The myopulse processor is an electrical circuit

composed of a dual comparator, with the value of the resistors defining the threshold

value δ.

The EMG signal is analog, since it is a measure of the electrical activity of the muscle.

To use this signal in a digital controller it should be digitized. However, a major advantage

of the myopulse processor is that there is no need for a conventional analog-to-digital

converter. The author also implemented a classification method for the control of a

prosthesis. Differently from the previous control methods, where the joint actuation was

proportional to the intensity of EMG signal, this system can perform different movements.

In this work, by measuring the intensity of EMG signals from two electrode sets, the author
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Figure 1: Illustration of the myopulse processing technique. The upper trace shows a
typical bandpass-filtered EMG signal recorded with surface electrodes. The output will
remain off as long as the absolute value of the EMG signal in the upper trace is below
the level δ, otherwise the output will be turned on. The lower trace illustrates the output
from the myopulse processor (Source: PHILIPSON, 1985) .

was able to control seven different states. Figure 2 shows the proposed dynamic area for

the prostheses control. Considering the intensity of the input from the two target muscles

one of the seven possible states is performed, according to the corresponding area on the

dynamic area (PHILIPSON, 1985). This control system was applied to a prostheses and

tested on four amputee volunteers. With proper training sessions, the volunteers were

able to perform some daily tasks such as grasping a plastic cup containing water, pouring

the desired amount and then releasing the cup. In the case of the non-amputees, the

subjects could achieve good control over the seven-state control system.

In 1977, Parker et al. (PARKER; STULLER; SCOTT, 1977) sought to develop a

EMG signal processor for a prosthesis with a minimal error in the identification of the

desired action. The authors developed a model that extracts the relevant information

from the myoelectric signal obtained by a bipolar electrode configuration. One of the main

strengths of this model is that the pooled motor unit firing rate reflects the contraction

level and is thus the information parameter in the myoelectric signal. In 1980, Hogan

(HOGAN; MANN, 1980a, 1980b), also in search of a better myoprocessor, developed a

similar mathematical model to estimate muscle force based on EMG signal.
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Figure 2: Diagram showing the possible movement areas according to the muscle inputs
(Source: PHILIPSON, 1985) .
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The myoelectric signal can be modeled as a zero-mean stochastic process. In order to

estimate the user’s control signal, it is necessary to add a nonlinearity to the estimator.

Typically, a full-wave rectifier is used for this nonlinearity, followed by a low-pass filter.

Evans et al. (EVANS et al., 1984) proposed another model based approach to this EMG

control problem. The authors used a logarithmic nonlinearity, followed by a a linear

minimum mean-square error in the EMG-force estimation. In this way a Kalman filter

was inserted to estimate the control signal.

Hudgins (HUDGINS; PARKER; SCOTT, 1993) proposed a control strategy for a

multifunction prosthesis based on the classification of myoelectric patterns into different

movements. Initially, the author conducted tests on both healthy subjects and amputees.

The test consisted of an isometric and isotonic contraction and a contraction (e.g. flexion,

extension, etc.) with no constraints related to force, velocity or range. The subjects were

asked only to make consistent motions, starting from a comfortable neutral position.

By taking the average of the EMG signal for the first 300ms to 600ms of the movement,

that is the onset, it was possible to detect different signal patterns for each movement,

shown in figure 3. Other control schemes, based on steady state levels, are limited to only

three limb functions: for an elbow mechanism, one can only control extension, flexion

and the off-state. The scheme proposed by Hudgins targets the EMG signal of only one

muscle and is capable of assigning as many functions as the number of distinct signal

patterns generated by the muscle.

Since the prosthesis is capable of performing different movements, it is necessary to

implement a classifier that chooses the desired movement or action based on the input

signal. An Artificial Neural Network (ANN) was chosen as the classifier. The authors

proposed a group of parameters, called features, which served as input to the classifier.

The following features were chosen to represent the myoelectric patterns: Mean Absolute

Value (MAV): it is the mean value of the rectified signal throughout the data segment;

Mean Absolute Value Slope: is the difference, in value, between the MAV of each segment;

Zero Crossing (ZC): number of times the waveform crosses the zero value (a ”dead-zone”

must be introduced to avoid noise inducted zero crossings); Slope Sign Changes (SSN): the

number of times the slope of the waveform changes sign (the same ”dead-zone” applied

previously must be applied here); Waveform Length (WL): is the cumulative length of

the waveform throughout the data segment. By using these previous features, one can

get values for waveform amplitude, frequency and duration. This classification method

has become known as the Time Domain feature set (NIELSEN et al., 2009).
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Figure 3: Average of the first 300ms of the EMG recordings for the following movements:
For a healthy subject: a) Isometric contraction; b) elbow flexion; c) Forearm supination;
d) elbow extension; e) wrist flexion; f) forearm pronation; for the amputee subject: g)
inward humeral rotation; h) contraction of the flexor muscle group; i) contraction of the
extensor muscle group and j) biceps/triceps co-contraction (Adapted from HUDGINS;
PARKER; SCOTT, 1993).



22

The tests showed that the subjects were capable of performing up to four different

movements with an accuracy ranging from 70-95%, before training. However, a major

drawback from this control scheme is that, since the classification method only considers

the movement onset, the EMG signal must always start from a resting position. If the

user tries to switch from one movement to another in a period of time smaller then the

averaging window (300ms-600ms), the control scheme will fail.

Englehart (ENGLEHART et al., 1999), further developing the pattern recognition

problem, tested some time-frequency-domain sets for the EMG signal processing. The

sets used were: Short-time Fourier Transform (STFT), Wavelet Transform (WT) and

Wavelet Packet transform (WPT).

The same group also proposed a method to overcome the previous problem regarding

the fast transition between two different movements (ENGLEHART; HUDGINS, 2003).

To do so, instead of segmenting the EMG data into multiple frames for classification, now

the data was acquired continuously on a single, unsegmented window. In this scenario,

the data acquired from 12 subjects were compared using the Time Domain statistics and

using the time-frequency-domain sets. The Time Domain sets outperformed the time-

frequency-domain sets in continuous data acquisition.

Jiang (JIANG; ENGLEHART; PARKER, 2009) proposed a method to estimate force

from the Mean Square Value (MSV) of the EMG signal. MSV is defined as the mean value

of the square of the signal throughout the data segment. By stating that it is possible to

maintain the muscle cross-talk at low levels, it is possible to determine a direct relationship

between muscle force and sEMG measurements.

In 2013, Aung, Al-Jumaily (AUNG; AL-JUMAILY, 2013) proposed a method to es-

timate an upper limb joint angle using a back propagation neural network (BPNN) inte-

grated into a Virtual Human Model (VHM). EMG data from anterior deltoid, posterior

deltoid, biceps brachii and triceps brachii were recorded and used as input to the model.

The applied neural network was composed of three layers: input layer, using the EMG

signal from the four arm muscles; hidden layer using Levenberg-Marquadt algorithm; and,

finally, the output layer.

In 2016, Rahmatian et al. (RAHMATIAN; MAHJOOB; HANACHI, 2016), using

a Support Vector Machine (SVM) algorithm associated with a Time-Delayed Artificial

Neural Network (TDANN), proposed a method for continuous estimation of ankle joint

angle. The authors used sEMG data from tibialis anterior, gastrocnemius medialis and

gastrocnemius lateralis muscles. The SVM algorithm was used for classification of sEMG
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while the TDANN approximated angles and velocities of the ankle joint. The authors

achieved an accuracy of 95.4% for the classification procedure.

Also in 2016, Mamikoglu et al. (MAMIKOGLU et al., 2016) proposed a method

to estimate ankle joint angles based on muscle modeling and the measurement of EMG

signals. The model is based on a multiple input, single output (MISO) Autoregressive

Integrated Moving-Average with Exogenous Input (ARIMAX) model, using integrated

EMG measurements as input and estimating the corresponding joint angles. The proposed

method was capable of achieving fitness values above 0.9 for single speed contractions and

above 0.77 for varying speed contractions.

The addition of a load can decrease the accuracy of EMG-based control systems

up to 60% (AL-TIMEMY et al., 2013). To address this problem, in 2017, Azadet et al.

(AZAB; ARVANCH; MIHAYLOVA, 2017) acquired EMG data from three subjects, using

four different loads and used them for training a k-Nearest Neighbors algorithm (KNN)

and Naive Bayes classifiers (NB). The results showed mean accuracy of 53% and 36%,

for KNN and NB respectively, for subject-dependent conditions, and 22% and 36% for

subject-independent conditions.

1.1.2 Hybrid Control and Other Control Modalities

Hybrid control refers to a group of controllers that combine the information from

different sources in order to perform the control of the mechanism.

1.1.2.1 Hybrid Control

If the subject had some residual shoulder movement it is possible to combine a joy-

stick at the shoulder with EMG for a movement classification method (LOSIER; ENGLE-

HART; HUDGINS, 2007). The system was capable of performing nine different activities.

Eight of then were controlled by the position of the shoulder and one by EMG input when

the user performed a humeral rotation movement. The Time Domain technique was used

to differentiate the EMG readings from humeral rotation from the normal shoulder move-

ments.

Fougner and Stadvahl (FOUGNER et al., 2008; STAVDAHL et al., 2011) used force

sensors on the EMG electrodes to measure external forces. This application is useful for

the cancellation of artifacts caused by these forces (e.g. movement artifacts).

Fougner (FOUGNER et al., 2011) noted that different limb positions associated with
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daily activities can affect the EMG signal results. To overcome this problem, the EMG

signal was associated with accelerometers placed at the user’s forearm and biceps. This

allows the pattern recognition system to know the position and orientation of the limb,

compensating for eventual changes on the EMG signal.

1.1.2.2 Other Control Modalities

If EMG sensors are difficult to place or if they cause discomfort to the user other

techniques such as Mechanomyography (MMG) may be used. Mechanomyography is the

measurement of the mechanical vibrations caused by the contraction of the muscle. In

Silva (SILVA; CHAU; GOLDENBERG, 2003), the MMG sensors were used as a substitute

of the EMG sensors, when the EMG sensors are of difficult placement or unconfortable

for the patient. This method can also be referred as phonomyogram, vibromyogram,

soundmyogram or acoustomyogram, since the sensor is composed of an accelerometer and

a microphone that detects the air vibration between the sensor and the target muscle.

Kenney (KENNEY et al., 1999) used the dimensional change of the muscle as control

signal for his control strategy. This technique is called Myokinemetric. The author

designed a sensor, composed by a Hall Effect sensor and a permanent magnet. The relative

distance between these two components varied according to the dimensional change of the

subject’s muscle. To validate this strategy a tracking test was performed, where the test

subject was supposed to track a signal presented on a screen by controlling the dimensions

of his muscle.

Stadvahl (STAVDAHL; GRONNINGSAETER; E.MALVIG, 1997) used ultrasound to

estimate the muscle force. As the muscle contracts, the shape of the muscle changes. The

ultrasound, when transmitted to a medium, generates an echo signal that can be acquired

with a sensor. Using this information, a relation between ultrasound and force signals can

be determined by the Cross Correlation technique. Chen (CHEN; CHEN; DAN, 2011)

attached ultrasound transducers to the subject’s forearm to estimate the wrist angle using

the ultrasound signal.

Nightingale (NIGHTINGALE, 1985) used force and slip sensors on the Southampton

Hand to detect forces applied to the hand and relative slipping motion between the hand

and objects. By using the force and slip sensors paired with an EMG control, a state

machine controller was implemented. According to the EMG signal magnitude the control

logic would open or close the hand and by using force sensor measurements, more specific

states for the hand movement, like holding or squeezing an object were accessed.
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1.1.3 State-of-the-Art of Exoskeletons and Exoskeleton Control

The exoskeletons can be grouped as a function of their applications: performance

enhancement, haptic interfaces, remote operation, functional assistance (active orthoses

and prostheses), rehabilitation and motor control exploration. In this work two groups

will be focused on: the performance enhancement and the functional assistance. The

performance enhancement exoskeleton allows healthy users to perform a difficult task by

either reducing the forces or the expended energy, or perform a task that is impossible to

accomplish by human strength or skill, solely. The functional assistance assists the user

by modifying or recovering the motor function of the neuromuscular and skeletal system.

However, this distinction, in some cases, can be not as clear (DOLLAR; HERR, 2008).

One of the major incentives to the development of exoskeleton has been the Exoskele-

tons for Human Performance Augmentation (EHPA), a program supported by the Defense

Advanced Project Agency (DARPA), an agency of the United States Department of De-

fense. This program is developing exoskeletons capable of increasing the capabilities of

ground soldiers beyond that of a human. There are three critical technologies that are

the focus of this program: Energy, power and actuation; controls and haptic interface;

design and integration (GARCIA; SATER; MAIN, 2002).

HAL (Hybrid Assistive Limb) is an exoskeleton focused on both performance-augmenting

as well as rehabilitation (SANKAI, 2011). The HAL-5 is a full-body exoskeleton. The

joints are powered by DC motors with harmonic drives placed directly on the joints. The

exoskeleton is attached to the user by harnesses at the hip, thighs, calves, upper arms

and forearms, as well as the shoe that is equipped with ground reaction force sensors.¡.

The HAL-5 utilizes a broad range of sensors for its controller. The intention detection

is done primarily by sEMG sensors. As soon as the EMG level exceeds a threshold, the

motion support is triggered. An assistive torque is provided to the user. This torque

is composed of three parts: an assistive torque; a viscous torque that prevents high

velocities, maintaining safety; and a gravity compensating torque (KAWAMOTO et al.,

2010). In some experiments, the motion intention detection was done by the ground

reaction sensor, to adapt the exoskeleton for patients with spinal cord injury. When the

user shifts its weight to the next stance leg, the reaction force on this leg is higher than

the other, triggering the exoskeleton motion (TSUKAHARA et al., 2015). Also, there are

potentiometers, gyroscopes and accelerometers for the measurement of the angle, speed

and acceleration of limbs and joints.

In (OTSUKA et al., 2011) the authors further developed the HAL upper-limb ex-
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Figure 4: HAL-5 exoskeleton (Source: SANKAI, 2011) .

oskeleton for meal assistance. It is composed of a shoulder joint with three degrees of

freedom and an elbow joint with one degree of freedom. Also, a grasp assistance mecha-

nism is attached to the forearm to allow for manipulation of objects by the user.

One interesting aspect of the HAL exoskeleton is its modularity. Currently, there

are separated products for upper-limbs, lower-limbs, lumbar support, as well as other

modalities, like a heavy-duty and a disaster recovery exoskeleton (CYBERDYNE, 2007).

The manufacturer states that the full-body HAL-5 weighs approximately 23kg, has

a continuous operating time of approximately 2 hours and 40 minutes and is capable

of lifting objects up to 70kg. The HAL R© exoskeleton is capable of performing different

activities such as standing up from a chair, walking and climbing up and down stairs.

The HAL R© exoskeleton is already used in many medical institutions in Japan and

already received certification for clinical use in Europe. It is commercialized by Cyberdyne

Inc.

The Berkeley Lower Extremity Exoskeleton (BLEEX), funded by the DARPA, is a

self-powered exoskeleton that enhances the strength and endurance of a human (KAZE-

ROONI, 2006).

The BLEEX exoskeleton has 7 degrees of freedom (DOF) per leg: 3 DOF at the hip,

1 DOF at the knee and 3 DOF at the ankle. For the hip, both the flexion/extension and
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Figure 5: University of California at Berkeley’s BLEEX exoskeleton (Source: ZOSS;
KAZEROONI; CHU, 2006) .

the abduction/adduction joints are aligned to the human joint, but the rotation joint is

positioned behind the user and under the torso. The reason is that an aligned rotation

joint would result in limited ranges of motion and singularities in some of the human

postures. For the ankle, the flexion/extension axis coincides with the human ankle joint,

but the abduction/adduction and rotation axes do not coincide with the human joint

axes and form a plane outside of the human’s foot. However, the forefoot is compliant,

allowing the toe flexion. The exoskeleton is only rigidly connected to the user at the hip

and the foot (ZOSS; KAZEROONI; CHU, 2006).

The BLEEX structure and actuation was designed based on the clinical gait analysis

(CGA) of an 75-kg person. Analyzing the CGA, it was possible to determine which

exoskeleton joint required actuation, based on the joint torque and power during gait.

From this analysis, it was determined that the flexion/extension joints of hip, knee and

ankle and the abduction/adduction joint of the hip should be actuated.

Initially, the selected actuator for the BLEEX was a double-acting linear hydraulic

actuators. These actuators are compact in size, low weight and capable of exerting high

forces. They are placed in a triangular disposition in relation to the joint, resulting in a

torque that varies according to the joint angle (CHU; KAZEROONI; ZOSS, 2005).
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The average power consumption of the BLEEX during the walking cycle is 1143 W,

compared to 165 W of mechanical power exerted by the human during normal gait. This

exoskeleton is capable of supporting up to 75 kg and walk at speeds up to 1.3 m/s.

In a later study, the feasibility of using electrical motors instead of the previous

hydraulic ones was analyzed. The designed electrical motors weighed an average of 4.1

kg opposed to the 2.1 kg hydraulic actuators. While the electric actuator weight is all

centered in the actual joint, about 40% of the weight hydraulic actuator is located away

from the joint. At test performed at ground-level walking at the speed of 1.3 m/s, it was

measured that the actuator power consumption was 598 W. Comparing both actuators,

the electrical actuator is 95% heavier and 92% more power efficient (ZOSS; KAZEROONI,

2006).

An hybrid Hydraulic-Electric Power unit (HEPU) was designed in the attempt to

provide autonomous energy for the exoskeleton. The hydraulic energy would supply the

necessary mechanical parts of the exoskeleton, while the electrical energy would power

the computer, sensors and other peripherals. Even though the designed HEPU could

provide the necessary requirements of electrical and hydraulic power, it exceeded in both

weight and noise output. The desired weight and noise output were 23 kg and 78 dBA,

respectively. The achieved values were 30 kg and 87 dBA (AMUNDSON et al., 2006).

The control of the BLEEX exoskeleton has no sensors attached to the user. Every sen-

sor is located only on the exoskeleton. It uses the forces applied by the environment and

the user to the exoskeleton as the control signal (STEGER; KIM; KAZEROONI, 2006).

The inverse dynamics of the exoskeleton is used as a feedback so that, when account-

ing for the user force, the control loop gain approaches an unitary value. This control

strategy has two main advantages: it allows for wide bandwidth maneuvers, necessary

since the exoskeleton needs to respond to a wide variety of the human’s movements; it is

independent to changes in the user dynamics. The trade-off of this control strategy is that

it needs an accurate model of the exoskeleton dynamics. To address this, experiments

in (GHAN; KAZEROONI, 2006) applied system identification methods to calculate the

exoskeleton dynamics.

One of the most well-established exoskeletons for disabled users is the ReWalkTM.

The ReWalkTM is a lower extremity, battery powered exoskeleton that allows individuals

with thoracic or lower level motor complete spinal cord injury to walk independently. It is

suitable for adults who have preserved bilateral upper extremity function. The user must

be using crutches to maintain balance. The mechanical structure is composed of bilateral



29

supports parallel to the thighs and legs, articulated at the knee and hip. A rigid shoe

insert fixes the user’s feet. Velcro closures distributed at the legs and thighs and a waist

belt secure the attachment between user and exoskeleton. The computer-based controller

and the batteries are stored within a backpack. A tilt sensor is placed at the exoskeleton

structure, near the waist (ESQUENAZI, 2013).

The active joints of the ReWalkTM are the knee and waist joint. The ankle joint is

passive joint with spring-assisted dorsiflexion. The exoskeleton has five different operation

modes: walk, sit-stand, stand-sit, up steps and down steps. In the ’walk’ mode, the

stepping procedure is triggered by the forward flexion of the upper body, measured by

the tilt sensor. The maximum walking velocity is 2.2 km/h. The mode selection can be

made through an user-operated wrist pad. There is also the option to manually control

the position of the lower limbs (ZEILIG et al., 2012).

Figure 6: The ReWalkTM exoskeleton worn by an user and its basic structure (Source:
ESQUENAZI, 2013) .

Some studies have been performed with the ReWalkTM (ZEILIG et al., 2012; FINEBERG

et al., 2013; TALATY; ESQUENAZI; BRICENO, 2013). Overall, the participants of the

test were satisfied with the device, being able to walk without falling. The volunteers

reached the level of being able to walk 100m with the use of crutches. However, they

have not attained proficiency to use the device on a daily basis. It is stated that the users

found relative difficulty with wearing and adjusting the device.
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Even tough many advancements in this area have been made, the effective use of an

exoskeleton continues to be extremely difficult. Even though many technologies have been

advertised lately, there is a lack of quantitative studies available to researchers (YOUNG;

FERRIS, 2017).

The MIT exoskeleton, a quasi passive exoskeleton concept, explores the passive dy-

namics of human walking trying to achieve a lighter and more efficient exoskeleton. The

tests showed that the total metabolic cost of walking increased when used the exoskeleton

while carrying a load, compared to no exoskeleton being used while carrying the load in a

backpack. The increase in metabolic cost was found to be 10% higher (WALSH; ENDO;

HERR, 2007). Nevertheless, the participants in the tests stated that carrying the load

while wearing the exoskeleton was more comfortable compared to carrying the backpack

alone (VALIENTE, August, 2005). Another study demonstrated the exoskeleton is capa-

ble of transferring up to 90% of the load to the ground, depending on the gait phase, but

increases the metabolic cost in a range from 32% up to 74%, depending on some variations

of the mechanical structure and actuation of the exoskeleton (WALSH, February, 2006).

It has been previously studied that one of the major problems of ambulation de-

vices for paraplegics is the high-energy demands imposed to the user. Franceschini et al.

(FRANCESCHINI et al., 1997) conducted a survey on patients that utilized reciprocating

orthoses (ARGO, RGO, HGO). From the 74 patients, 24 patients abandoned the use of

the mechanism by the end of the study. One of the main reasons was the excessive energy

cost.

1.2 Objective

The objective of this dissertation is to design the controller of a one-degree-of-freedom

exoskeleton using sEMG signals from the user as the input signals. The controller must

be accurate in replicating the movement desired by the user, as well as requiring little

training from the user.
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2 METHODOLOGY

The ideal control method would be one that requires no prior training. The user

would be capable of controlling the mechanism as easily as he can control his own limb.

Of course this is an ideal scenario and, as stated in many previous studies already cited

in this work, we are still far from understanding the real dynamics of limbs, muscles and

electromyography signals.

With those challenges in mind, how can we design a control that is capable of con-

trolling a mechanical ”limb-like” mechanism?

One potential idea is to design a control method that mimics the physical charac-

teristics of the human limb, that is, a biomimetic control. Biomimetics is the study of

biological mechanisms and processes with the purpose of synthesizing similar products

and behaviors by an artificial mechanism which mimics natural ones (MERRIAMWEBS-

TERDICTIONARY, 2009). To achieve this biomimetic behavior, the model-based control

method can be a great candidate.

Biomechatronics, control designing and system modeling must be combined to achieve

an EMG-Driven exoskeleton controller that is both safe and natural to user. Therefore,

it is necessary to approach this design in a structured manner.

First, available and in development exoskeleton platforms at the Biomechatronics

Laboratory at Escola Politécnica of the University of São Paulo (USP) will be analyzed in

respect to its mechanical and electronic design, as well as its sensoring, to better determine

the one that is more appropriate for the application of the EMG-driven controller.

An experimental procedure will be conducted to obtain EMG and angle data of a

predetermined movement, for the design of the controller.

Two different EMG-to-Angle model estimation methods will be applied and evaluated:

a linear method and a nonlinear method. They will serve as a base for the controller design.

The methods will be compared according to their accuracy, complexity and applicability

in the chosen exoskeleton platform.
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The controller will be adapted so it can be applied in real time conditions. The

controller undergoes testing in real time conditions to determine if the goals proposed for

this work were achieved.

Finally, the results are discussed and compared to similar works from the literature.

Figure 7 presents a diagram with this structure in a visual manner.
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Figure 7: Visual representation of framework/methodology



PART II

EXOSKELETON PLATFORMS

In this part, it is described exoskeletons

available and being developed at the

Biomechatronics laboratory that can be

used to implement the control strategies

developed in this work
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3 TRUNK AND LOWER LIMB EXOSKELETON

FOR STABLE AUTONOMOUS WALKING

(ETMICAE)

3.1 Description

The ETMICAE is a bipedal trunk and lower limb exoskeleton to assist the walking

movement of people with motor disabilities. It allows the use of the exoskeleton by people

that cannot maintain a full control of their body and lower limbs. It includes human gait

stability control.

It is currently being developed at the Biomechatronics Laboratory - Mechanical En-

gineering and Mechanical Systems Department - Escola Politécnica of the University of

São Paulo (USP). This project is being developed in collaboration with the Rehabilitation

Medicine Institute of the Clinics Hospital - Medicine School of USP, São Carlos School of

Engineering (EESC-USP).

When the project is completed, it will mainly contribute in two major areas: Clinical

studies and technological studies. For clinical studies, the ETMICAE will be transferred

to a clinic to test and evaluate the exoskeleton on subjects with motor disabilities. For

the technological studies, the exoskeleton will act as platform for testing of mechanical,

electrical and control technologies developed at the Biomechatronics laboratory.

3.2 Mechanical Structure

With the goal of using ETMICAE as a platform to test the sEMG controllers, the

author of this dissertation was responsible in designing the hip, thigh, knee and leg me-

chanical structure, as well as its coupling components. The 3D modeling of the exoskele-

ton can be seen in figure 8. The explanation of this design is described in this section.

Calculations for the mechanical design are described in Appendix A.
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Figure 8: Assemble of the ETMICAE
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3.2.1 Hip

The hip of the exoskeleton will have four degrees of freedom, being the abduc-

tion/adduction and flexion/extension of both thighs. The exoskeleton will not have the

pronation/supination movement of the thighs.

The hips are composed of the following parts:

A base will will attach the hip of the exoskeleton to the support of the motors, located

at the back of the user.

Figure 9: Base

Attached to the base there are two joints that will perform the abduction/adduction

degree of freedom for the thighs. For this coupling a shaft supported by two ball bearings

will allow the relative movement between the two parts. Between the thigh component

and the base, a low friction thrust washer is inserted to support the axial forces and allow

smooth slipping. Another thrust washer is positioned at the external part of the joint to,

in conjunction with an aluminum cover, support the axial forces.

Figure 10: Hip abduction/adduction joint

Linked to these joint, a folded aluminum plate extends to the next hip joint.

The lateral joint allows for the flexion/extension degree of freedom of the thighs. This

joint is also composed by a shaft supported by two ball bearings with a thrust washer
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Figure 11: Hip plate

between the two parts.

Figure 12: Hip flexion/extension joint

3.2.2 Knee

Each knee will have only one degree of freedom, aligned to the flexion/extension joint

of the user. It is constituted of the following parts:

A bar that extends from the flexion/extension joint of the hip to the knee joint. This

bar stays parallel to the user’s thigh.

Attached to the thigh bar, a rotation joint allows the flexion/extension movement of

the mechanism. At this joint a shaft supported by two ball bearings will be used. Between

the two parts of the joint a low friction coefficient thrust washer is positioned to support
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(a) Thigh (b) Leg

Figure 13: Thigh and leg bars

the axial forces and allow for smooth sliding between the parts. Another thrust washer

is positioned at the external part of the joint, along with a metallic cover, to support the

axial forces.

Figure 14: Knee flexion/extension joint

Attached to this joint, another metallic bar extends to the ankle.
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4 UPPER LIMB EXOSKELETON WITH ONE

DEGREE OF FREEDOM (ULEXO)

This chapter briefly describes an upper limb exoskeleton with one degree of freedom

already available at the Biomechatronics laboratory. This system was first designed in

(SOMMER, 2015).

4.1 Mechanical

4.1.1 Structure

The exoskeleton structure is made of aluminum bars. The aluminum structure is

attached to a Power Window Lifter steel mechanism.

The user’s arm is placed at the aluminum structure and held firmly through the use

of rubber straps.

Figure 15: Upper limb exoskeleton with one degree of freedom (Source: SOMMER, 2015)
.
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4.1.2 Actuator

The actuator of the exoskeleton is composed by a (578VA, Mabuchi Motor Co., ltd.,

Japan) DC motor and a Power Window Lifter mechanism.

This DC Motor was chosen because of its high power-to-weight ratio, low dimensions

and low price.

In order to increase the motor torque, the DC motor is attached to a modified Power

Window Lifter, a mechanism with gear coupling with a reduction factor of 10:1. Modeling,

Impedance Control and Sliding Mode Control studies have been conducted with this

exoskeleton and are presented in Appendix B

Figure 16: Power Window Lifter (Source: SOMMER, 2015) .

4.2 Electronics

The electronics system of the exoskeleton is composed of the following parts: An

sEMG sensor, that acquires the sEMG signal of the biceps muscle; a microprocessor to

process the analog sEMG signal, apply the control logic and output a PWM signal; a

motor driver that receives the PWM signal as input and outputs the necessary power to

drive the DC motor.
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Figure 17: Schematic of the electronics (Source: SOMMER, 2015) .

4.2.1 EMG Sensor

The EMG Sensor is (Muscle Sensor V3, Sparkfun Electronics R©, USA).

Three electrodes are attached to this sensor: Two electrodes are placed at the target

muscle and measure the difference of electrical activity and one is placed at an electrically

neutral region of the body, like a bony area, and serves as the ground signal.

The signal from the electrodes is differentially amplified in the AD8221 amplifier; then,

the signal is amplified twice by TL084 operational amplifiers; the signal is rectified using

1N4148 diodes; the rectified signal is attenuated by a filter with 2Hz cutoff frequency; at

last, the signal is amplified with an adjustable gain.

The Sensor output is sent directly to the microprocessor.

4.2.2 Microprocessor

The microprocessor is an (Arduino UNO, Arduino, S.r.l., Italy). It was chosen for

its low cost, ease-of-use, extensive available documentation and easy communication to

the Muscle Sensor V3. It has a built-in 10-bit resolution Analog/Digital converter and

is capable of emitting PWM signals. Also, it is possible to connect more sensors to this

microprocessor, for future adaptations of the exoskeleton.
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4.2.3 Driver

The DC motor demands electrical currents up to 24A. Motor Drivers for 12V, 24A

DC motors are expensive. For this reason, a motor driver was designed for the specific

use on this exoskeleton.

The driver has two inputs (clockwise rotation and counter-clockwise rotation) that

receives the PWM signal from the microprocessor for the desired direction of motion.

There are two outputs that are connected to each one of the motor electrical terminals.

The driver is composed of a H-Bridge of MOSFETs. The chosen components were

IRF4905 for P channel and IRLB3813 for N channel. The gate of the P channel MOSFET

is powered by a TIP122 transistor.

To avoid the situation where every MOSFET of the H-Bridge is activated at the same

time, which would cause a short circuit between the poles of the battery, a protection

circuit was implemented. The protection circuit is composed of 74LS08 AND gates and

74LS04 NOT gates. In case both the inputs are powered, no signal reaches the gates of

transistors, protecting the circuit.

This exoskeleton has some limitations, since it does not contain angular sensors, has

limited speed control and requires extensive work for a feedback controller to be imple-

mented.
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5 MODEXO

This chapter briefly describes a development platform for exoskeleton research avail-

able at the Biomechatronics laboratory. The system was first presented in (SOUZA,

2018)

5.1 Mechanical

5.1.1 Structure

The ModExo is an exoskeleton development platform. It replicates one degree-of-

freedom of an exoskeleton, coupling a motor to a load cell.

A load cell is attached to the structure of the exoskeleton segment, which provides

contact torque between user and exoskeleton (SOUIT, 2016).

The load cell is designed to deform elastically in a Wheatstone bridge configuration

and measured the force applied to the exoskeleton.

A 3D printed case protects the strain gauges wiring and serves as an attachment to a

forearm support.

The ModExo is assembled in a wooden portable case. The assembly can be seen in

figure 18.

5.1.2 Actuator

The actuator of the ModExo is composed of a flat brushless DC motor (EC90 Flat,

Maxon Motors AG, Switzerland). It has integrated an encoder (Encoder MILE, Maxon

Motors AG, Switzerland), and a harmonic reduction (Harmonic Drive 100:1, Harmonic

Drive, Ltd, Japan)).

The motor was chosen for its high torque-velocity curve. It also offers high power-
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Figure 18: User testing the ModExo workbench (Source: SOUZA, 2018) .

to-mass ratio and has low dimensions. Because of its flat design, it reduces the torsional

deflection of the motor when placed in parallel with the human body.

5.2 Electronics

5.2.1 Sensors

Strain gauges, assembled in full Wheatstone bridge, attached to the load cell, provide

contact torque information.

5.2.2 Driver

The driver used is also from Maxon (EPOS2 70/10, Maxon Motors AG, Switzerland).

It receives position commands from the central controller and transmits them to the

Maxon motor. It also receives position feedback from the encoder integrated to the

motor.
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5.2.3 Microprocessors

A microcontroller based on the (Arduino UNO, Arduino, S.r.l., Italy) acts as a high

level controller, implementing the impedance control and position output for the Maxon

motor.

A CAN bus shield (CAN bus Shield, Seedstudio, China) is used as a CAN bus inter-

face, managing communication between the the microcontroller, EPOS driver and ampli-

fication board. It is connected to the microcontroller as a shield.

5.3 Discussion

The ModExo can be used as a platform that imitates the elbow joint in an upper limb

exoskeleton. Since it has position sensors already implemented, an easy-to-use communi-

cation between a personal computer and the platform, and the possibility to implement

different control methods, it is the best candidate between the three exoskeleton platforms,

to implement the control method designed is this work.

With the exoskeleton platform determined, it is necessary to design the controller for

EMG-to-Angle relation. In the next chapter, the controller design is described.



PART III

CONTROLLER DESIGN

In this part, control methods for the EMG

are proposed and designed to be imple-

mented in an exoskeleton platform.
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6 MODEL-BASED EMG-DRIVEN CONTROL

The content of this section is an extended version of two full papers presented at IEEE

Conferences: EMBC 2018 and BioRob2018 (SOMMER et al., 2018) and (SOMMER;

FORNER-CORDERO, 2018).

There are different electrophysiological signals that can be used to control an exoskele-

ton. Therefore, it seems interesting to use the control signals that are used by the body

to activate the muscles. As these neural control signals are not easily accessible, surface

electromyography has been used as a control signal for upper-limb exoskeletons (LENZI

et al., 2012).

6.1 Control Description

The Model-Based control method utilizes a dynamic model of the body to predict the

dynamic response according to the input given to the model. There are basically three

types of dynamic models: mathematical, system identification and artificial intelligence

models (ANAM; AL-JUMAILY, 2012).

For this work it was chosen the system identification modeling approach. It is often

used because of the difficulty in describing the dynamic model with mathematical equa-

tions. To do so, a set of inputs and outputs are measured experimentally and then an

identification algorithm develops the relationship between the system inputs and outputs.

There are certain assumptions needed to use these models, such as linearity/non-linearity,

model structure and model order.

By using a dynamic model that mimics the user’s limb dynamics, the exoskeleton

will be capable of performing limb-like movements using the sEMG signals as input. A

mathematical system modeling should consider the EMG to muscle force generation and,

afterwards, take into account the different muscle forces around a certain joint along with

the corresponding moment arms and inertial parameters of the segments to obtain the
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angle, as shown in figure 19.

Figure 19: Model of the Muscle-Joint system (Source: SOMMER; FORNER-CORDERO,
2018) .

It is important to note that human models are complex and nonlinear (KATO et al.,

2015). One considerable advantage of using system identification as estimation technique

is that it is possible to model the system as a black box. This allows the model estimation

to be calculated without precise knowledge about muscles and joint dynamics (ABBASI-

ASL et al., 2011).

The main disadvantage of this control method is that, in order to develop the dynamic

model, experiments must be conducted on each subject to calculate his/her specific model

parameters. Differences between testing sessions, such as the electrode positioning on the

subjects’ skin can alter the results from the controller. This may require a calibration

procedure to readapt the controller to the new conditions.

6.2 Experimental Methods

This section presents a method to estimate the elbow joint angle from surface elec-

tromyography (sEMG) measurements of biceps, triceps and brachioradialis. This estima-

tion is of major importance for the design of human robot interfaces based on sEMG,

for the modeling of the muscular system and for the design of bio-inspired mechanisms.

However, the interpretation and processing of electromyography signals is challenging due

to nonlinearities, unmodeled muscle dynamics noise and interferences. In order to deter-

mine an estimated model and a calibration procedure for the model parameters, a set

of experiments were carried out with six subjects. The experiments consisted of series

of continuous (cyclical) and discrete elbow flexo-extensions. The sEMG data from the

biceps brachii, triceps brachii and brachioradialis and the joint angle were recorded. Af-
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ter the model was selected, a second experiment was performed in order to validate the

estimation procedure. The results show an effective model for the EMG-to-angle relation

with great values for both correlation and root-mean-square error when compared to the

measured angle data.

The experimental procedures involving human subjects described in this work were

approved by the Comitê de Ética em Pesquisa do Hospital Universitário da Universidade

de São Paulo (CEP-HU/USP).

6.2.1 Subjects and experimental setup

Six volunteers (age: 34.3 ± 14.7 years, height: 1.74 ± 0.1 m, weight: 67.9 ± 15.7 kg,

4 male, 2 female, all right-handed) with no known neuromuscular deficit participated in

the experiments. Elbow joint angle along with the surface electromyography (sEMG) of

three right arm muscles, biceps brachii, triceps brachii and brachioradialis were recorded.

sEMG was measured with 3 pairs of (FREEEMG 1000, BTS Bioengineering Corp., Italy)

electrodes with an electrode separation of 20mm with the electrode diameter being 4mm.

A pair of electrodes was placed on the biceps and other pair on the triceps following the

SENIAM guidelines (SENIAM, 2004). To determine the electrode positioning for the bra-

chioradialis muscle, the subject was asked to apply force to flex the forearm while keeping

it at 90◦. Then, the electrode was placed on the belly of the muscle and its respective

pair placed distally at a 20mm following the muscle fiber direction. The sampling rate

was of 1kHz with 16 bit resolution. The user interface was the BTS FREEEMG software

(BTS, Spa, Italy).

To measure the joint angle, a six degrees of freedom Inertial Measurement Unit (IMU,

VN-100 from VectorNav R©, TX, USA), with 0.01◦ precision, was attached on the internal

aspect of the forearm, located at two-thirds distance from the elbow to the wrist. The

angle values were acquired with a rate of 100 samples per second. The data were collected

with Matlab R© (The MAthworks Inc, MA, USA) using a dedicated library provided by

the inertial sensor manufacturer.

The experimental setup can be seen in figure 20.

6.2.2 Experimental Protocol

The subject sat on a chair, with the knees flexed at 90◦, the back perpendicular to

the ground with the scapulas pressed against the wall. The back of the arm was leaning



51

Figure 20: Experimental setup on a test subject (Source: SOMMER; FORNER-
CORDERO, 2018) .

against a rubber support that was attached to the wall. This setup guaranteed that the

subject was comfortable enough to perform repeated elbow flexions and extensions while

maintaining the upper arm steady.

The experimental protocol had three parts: The first one consisted of an isometric

force test to obtain the Maximum Voluntary Contraction (MVC). The elbow of subject

was kept in a fixed position at 90◦ and he/she was asked to apply the maximal possible

force to flex the elbow. The subject was given a three minute interval before the next set.

In the second part, the subject was asked to perform five consecutive elbow flexion and

extension movements from 50◦ to 140◦ with a frequency of 0.5Hz, that is, five movements in

ten seconds. To help the subject reach the correct target angles a template was attached

to the wall parallel to the subject, to provide visual guidance. To achieve the desired

movement speed a metronome was set at the speed of 60 BPM so that the subject could

synchronize the movements with the sound of the metronome. A minute of rest was given

to the subject before the next part.

In the third part the subject was instructed to make an elbow flexion for 1 second,

hold his forearm at 140◦ for 1 s, then a 1 s extension movement and then hold the forearm
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at 50◦ for another 1 s. This cycle should be repeated five times. Another one minute

resting time was given to the subject. Both of the continuous and interval tests were

repeated with 1.5kg and 3kg extra weight placed at the subject’s hand.

No subjects reported fatigue during the experiment.

The test was repeated in a different day, on all test subjects to further analyze the

repeatability of the model proposed in this work.

All the data from the tests were transferred to Matlab R© (The Mathworks Inc, USA).

for further analysis and processing.

6.2.2.1 Experimental Data Processing

The EMG data were processed as follows. Further explanations can be found on the

literature (ROSE, 2011; HAYASHIBE; GUIRAUD; POIGNET, 2009)

1. high-pass filtering of the EMG data, using a 2nd order Butterworth filter, with a

cutoff frequency of 30 Hz, thus removing movement artifact.

2. Wave rectification

3. Second Order low-pass Butterworth Filter, with 1Hz cutoff frequency.

4. normalization with the peak of MVC

This way, the EMG is smoothed and presented as a percentage of the subject MVC

instead of Volts.

A low-pass, 20 Hz cutoff frequency, second-order Butterworth filter is applied to the

angular data to remove errors and other undesired signals.

Since the position tracking data was sampled at 100 Hz while the EMG data was

sampled at 1KHz, all the position tracking data was resampled to 1000 Hz.

Figure 21 shows an example of the recorded elbow angle and processed sEMG for the

continuous movement with no extra weight.

Both the angular data as well as the EMG envelope had to be detrended for the

models estimation.
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Figure 21: a) Joint angle for the continuous movement with no extra weight, recorded
with the IMU; sEMG values for the b) biceps brachii, c) triceps brachii and d) bra-
chioradialis for the continuous movement with no extra weight (Source: SOMMER;
FORNER-CORDERO, 2018) .
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6.3 Linear System Model

The content of this section has been published in (SOMMER et al., 2018).

6.3.1 Modeling

It was assumed that the arm has the same model with different inertia parameters for

the different weights attached to the arm of the subject arm. Considering a simple model

of the elbow (arm with only 1 degree of freedom):

T = (J +M · L2) · θ̈ +B · θ̇ + (m · l +M · L) · g · cos(θ) (6.1)

Where T is the elbow joint torque, J is the forearm inertia, B is the damping factor

of the joint, m is the forearm mass, M is the dumbbell’s mass, g is the acceleration due

to gravity force and θ is the joint angle. From this simple model it is easy to infer that,

by changing the dumbbell’s mass, the arm model parameters also change.

Four different modeling techniques were applied to determine which one best estimated

the model that provides the elbow angle as an output taking the three EMG signals as

inputs. These modeling techniques were: Auto-Regressive with Exogenous Input (ARX),

Auto-Regressive Moving-Average with Exogenous Input (ARMAX), Auto-Regressive In-

tegrated Moving-Average with Exogenous Input (ARIMAX) and State Space (SS).

ARX and ARMAX are reduced forms of the ARIMAX model. The ARIMAX model

can be described using equation 6.2 (MATHWORKS, 2015):

A(q)ŷ(t) =
3∑

m=1

Bm(q)um(t− nkm) +
Cm(q)

(1− q−1)
e(t) (6.2)

Where ŷ(t) is the output at time t, angle of the elbow joint, in this case; u(t) are the

inputs, being the processed sEMG values from biceps brachii, brachioradialis and triceps

brachii; e(t) is the white-noise disturbance; nk is the delay for each input; q is the delay

operator; m equals 1 for the biceps EMG signal, 2 for the triceps EMG signal and 3 for

the brachioradialis EMG signal; A, B and C are the model parameters, defined by:

A(q) = 1 + a1q
−1 + · · ·+ anaq

−na (6.3)
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B(q) = 1 + b1q
−1 + · · ·+ bnbq

−nb+1 (6.4)

C(q) = 1 + c1q
−1 + · · ·+ cncq

−nc (6.5)

Where na is the number of poles of the system; nb is the number of zeros plus one

and nc is the number of coefficients of the moving average.

In order to find a solution a hard search was done using 1000 models of each type with

random model orders ranging from 1 to 10. A data window of 6s was used to calibrate

the model, while the entire data vector was used to validate the model.

Each model was compared to the reference angle using equation 6.6. The orders of

the model that achieved the highest fitness value were chosen and are presented at table

1. The parameters of the models were estimated using time-domain data in Matlab R©

(The Mathworks Inc, USA).

Fit =

√√√√ ∏3
i=1

∏2
j=1Corrij∏3

i=1

∏2
j=1RMSEij

(6.6)

Where Corrij is the correlation between the measured angle and estimated angle for

each test; RMSEij is the root-mean-square error (RMSE) between the measured angle

and estimated angle (see eq. 6.7); i equals 1 for the 0kg test, 2 for the 1.5kg test and 3

for the 3kg test; j equals 1 for the continuous test and 2 for the intermittent test.

RMSE =
√
mean((y − ŷ)2) (6.7)

Where y is the measured angle and ŷ is the estimated angle.

6.3.2 Results

Figure 22 compares the different models with measured elbow angle and shows the

fitness value for each data set.

The ARX model outperforms the other models for every subject and every test set.

For this reason it was the chosen model for the subsequent estimation procedures.

The model orders calculated are presented in table 1.
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Figure 22: Estimated elbow angle using the models responses compared to the elbow
angle measured with the IMU. The estimated models were ARX, State Space, ARMAX
and ARIMAX (Source: SOMMER et al., 2018) .

The best model is a model with a null value on the auto-regressive part of the equation.

For that reason, the best model is, in fact, a Finite Impulse Response (FIR) model, that

can be considered as a particular case of the ARIMAX model.

The FIR model has the following form, as seen in equation 6.8:

ŷ(t) =
3∑

m=1

Bm(q)um(t− nkm) + e(t) (6.8)

Table 1: Model orders for each subject (Source: SOMMER et al., 2018) .

na nb nk

Subject 1 0 8, 2, 2 1, 2, 2
Subject 2 0 9, 5, 10 1, 3, 0
Subject 3 0 1, 4, 8 5, 0, 1
Subject 4 0 8, 8, 1 0, 0, 8
Subject 5 0 5, 1, 9 2, 8, 0
Subject 6 0 4, 3, 10 3, 0, 0

Using the values from table 1 as the FIR model orders, it was possible to calculate the

model for elbow joint angle using the three sEMG measurements as input and compare

it to the experimentally measured values. As an example, figure 23 shows a comparison

between the calculated and estimated angle, for continuous and intermittent movement.

Using the same model parameters previously calculated, we estimated the response
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Figure 23: Comparison between the measured angle of the elbow joint and the angle
calculated through the use of the estimated model, for subject 2, with a 1.5kg dumbbell.
a) shows the comparison for the continuous movement and b) the comparison for the
discrete movement (Source: SOMMER et al., 2018) .
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Table 2: Correlation factor and root-mean-square error for the calculated and measured
angle values (Source: SOMMER et al., 2018)

Model Estimation, first test set Same model, second test set New model, same orders, second test set
Continuous Intermittent Continuous Intermittent Continuous Intermittent

Correlation RMSE (degrees) Correlation RMSE (degrees) Correlation RMSE (degrees) Correlation RMSE (degrees) Correlation RMSE (degrees) Correlation RMSE (degrees)

0 kg 0.9477 13.73 0.9404 17.36 0.0224 65.02 0.1546 60.29 0.9500 10.84 0.8195 20.76
Subject 1 1.5 kg 0.9615 13.21 0.8042 24.30 0.8067 17.06 0.7250 18.50 0.9458 7.959 0.7118 18.79

3 kg 0.9764 12.30 0.8994 18.10 0.9322 17.23 0.8624 16.80 0.9381 12.64 0.8454 14.47
0 kg 0.9163 14.32 0.9070 17.27 0.8113 32.33 0.9089 21.53 0.9543 11.59 0.9251 13.64

Subject 2 1.5 kg 0.9707 9.715 0.9585 11.50 0.7685 23.11 0.8647 18.06 0.9544 12.20 0.9062 14.65
3 kg 0.9329 18.56 0.9494 12.83 0.8715 21.50 0.9419 16.88 0.9294 12.15 0.9481 11.60
0 kg 0.9766 9.464 0.9349 16.67 0.9667 19.69 0.9078 15.78 0.9810 20.01 0.9218 14.62

Subject 3 1.5 kg 0.9634 13.77 0.9316 13.06 0.9417 12.66 0.9126 16.01 0.9622 11.28 0.9078 16.50
3 kg 0.9345 16.67 0.9382 13.78 0.9470 13.05 0.9363 14.43 0.9672 13.27 0.9355 14.51
0 kg 0.8847 18.46 0.8891 19.72 0.1142 78.67 0.1388 56.36 0.9254 15.57 0.9213 18.62

Subject 4 1.5 kg 0.9463 17.95 0.9147 18.23 0.7432 36.97 0.7774 38.19 0.8878 18.77 0.8045 23.43
3 kg 0.9329 21.59 0.8744 18.40 0.8785 79.74 0.8508 29.37 0.9106 17.12 0.9074 20.04
0 kg 0.9030 17.28 0.8381 25.19 0.9489 26.50 0.8732 17.82 0.9616 11.41 0.9031 19.40

Subject 5 1.5 kg 0.8336 18.24 0.7901 21.25 -0.6302 58.17 -0.6882 70.69 0.9246 15.89 0.9028 13.29
3 kg 0.8989 20.56 0.8347 24.23 0.9499 97.20 0.9264 104.2 0.9772 15.77 0.9295 11.11
0 kg 0.9408 15.91 0.9089 19.34 0.9504 41.71 0.9066 46.66 0.9528 15.21 0.9180 17.30

Subject 6 1.5 kg 0.9406 22.16 0.9468 15.91 0.8456 75.72 0.8487 87.73 0.8572 17.29 0.8812 18.10
3 kg 0.8798 19.65 0.8863 18.88 0.8272 58.04 0.8220 54.78 0.8740 17.39 0.8725 17.10

of the system using a second batch of data, recorded in a different day.

The data acquired from the second experimental set were also used to calculate a new

model, using the same model orders determined in the first experimental set. This way,

it is possible to evaluate if the model orders calculated in one test set can be used to

calculate a new model from a different data set.

To better determine the accuracy of the model, two performance parameters were

used: correlation coefficient and the root-mean-square error (RMSE) between the esti-

mated and the measured elbow joint angles. Table 2 shows the accuracy performance

parameters for each participant and every test set. The different results for each method

described above are presented in columns. The first data set was used to obtain a model

that was used to estimate the joint angles that were compared to the measured angle

values. Afterwards, the model obtained from the first experimental set was used with

the sEMG inputs from the second experimental set to estimate the corresponding joint

angles. Finally, using the same model orders chosen from the first data set, a new set of

model parameters was obtained from the second data set, and the output was compared

to the measured angle data.

6.4 Non-Linear System Model

The contents of this section have been partially published in (SOMMER; FORNER-

CORDERO, 2018).

The non-linear system modeling was developed using the experiment in a smaller

scale. As so, only data from two test subjects were considered.

Due to highly complex and nonlinear human dynamics, a good system identification
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method should be able to predict nonlinearities both on the input signals, since EMG

signal presents nonlinearities, and output signals, because the movement of the elbow joint

also presents nonlinearities in the form of gravitational forces, as an example. Considering

these characteristics, the Hammerstein-Wiener model is a potential candidate for EMG-

to-angle model estimation, since it is capable of estimating models from a black-box

structure and predicting nonlinearities on both input and output signals.

6.4.1 Modeling

The chosen modeling technique to estimate the elbow joint angle using the sEMG data

as input was the Hammerstein-Wiener model. The structure of the Hammerstein-Wiener

model can be seen in fig. 24.

Figure 24: Hammerstein-Wiener model structure (Source: SOMMER; FORNER-
CORDERO, 2018) .

The Hammerstein-Wiener model is a block-oriented model, consisting of a composition

of a linear dynamic block and nonlinear memoryless blocks (WILLS et al., 2013). This

model structure can be expressed as

y(t) = fW (z(t)) (6.9)

z(t) = L(w(t)) =
B

F
w(t) (6.10)

w(t) = fH(u(t)) (6.11)

Here, fH(·) is the input nonlinearity, fW (·) is the output nonlinearity, L(·) is the

Linear Time-Invariant system, B
F

is a transfer function, t is the time variable, u(t) are the

inputs, y(t) is the output, w(t) and z(t) are internal variables.

fH and fW are memoryless nonlinearities, i.e. static functions where the output value

at time t depends only on input value at time t.

Since the system being estimated is a MISO system the linear block is a transfer
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function vector in the form

Bi(q)

Fi(q)
(6.12)

Where i = 1, 2, 3 and q is the delay operator, representing the delay in time for each

input to the system.

To determine the system, the orders of the numerator nb and denominator nf of the

transfer function, as well as the input delays nk, must be specified.

In order to find a solution a hard search was done using 1000 models with random

orders ranging from 1 to 15. A window of 6s from the data vector was used to calibrate

the model, while the entire data vector was used to validate the estimated model.

The following input and output nonlinearities were tested for each model: sigmoid

network, wavelet network, piecewise linear function and one-dimensional polynomial.

Sigmoid network is a nonlinear estimator that combines a neural network with a

sigmoid as the activation function (PATCHARAPRAKITI et al., 2011). It is represented

by the equation 6.13:

y(u) = (u− r)PL+
n∑
i

aif((u− r)Qbi − ci) + d (6.13)

where f is the sigmoid function, given by the following equation:

f(z) =
1

e−z + 1
(6.14)

when u is the input; y is the output; r is the regressor; Q is a nonlinear subspace; P a

linear subspace; L is a linear coefficient; d is an output offset; b is a dilation coefficient; c

a translation coefficient and a is an output coefficient. The sigmoid network is calculated

in Matlab R© (The Mathworks Inc, USA) through the use of an iterative search technique

for estimating parameters.

Wavelet network is a feed-forward neural network using wavelet as an activation func-

tion, based on the following equation 6.15:

y(u) = (u− r)PL+
n∑
i

asif(bs(u− r)Q+ cs) +
n∑
i

awig(bwi(u− r)Q+ cwi) + d (6.15)
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Where u is the input function; y is the output;Q is a nonlinear subspace; P is a linear

subspace; L is a linear coefficient; d is output offset; as is a scaling coefficient; aw is a

wavelet coefficient; bs is a scaling dilation coefficient; bw is a wavelet dilation coefficient; cs

is a scaling translation coefficient and cw is a wavelet translation coefficient. The scaling

function f(.) is shown in equation 6.16 and wavelet function g(.) in equation 6.17:

f(u) = exp(−0.5 ∗ u′ ∗ u) (6.16)

g(u) = (dim(u)− u′ ∗ u) ∗ exp(−0.5 ∗ u′ ∗ u) (6.17)

Its parameters are determined in Matlab R© (The Mathworks Inc, USA) by iterative

minimization.

Piecewise linear nonlinearity is a piecewise-defined function, composed of straight-line

sections (STANLEY, 2004). It is defined by the equation 6.18:

y = F (x, θ) (6.18)

Where y and x are scalars, and θ represents the parameters specifying the number of

break points and the value of nonlinearity at the break points (MATHWORKS, 2016).

One-dimensional polynomial nonlinearity uses a one-dimensional polynomial as non-

linearity. The form of this nonlinearity can be expressed as in equation 6.19:

y = F (x)F (x) = c(1)xn + c(2)x(n−1) + ...+ c(n)x+ c(n+ 1) (6.19)

Each model was compared to the reference angle using equations 6.6 and 6.7. The

model orders that achieved the highest fitness value from these equations were chosen.

The parameters of the models were estimated using time-domain data in Matlab R© (The

Mathworks Inc, USA).

The coefficient of determination R2 was also used to measure the fitness of the pro-

posed model.

R2 = 1− SSres
SStot

(6.20)

Where
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SSres =
∑
i=1

(yi − ŷi)2 (6.21)

SStot =
∑
i=1

(yi − ȳ)2 (6.22)

ȳ =
1

n

n∑
i=1

yi (6.23)

Where ȳ is the mean value of the measured angles.

6.4.2 Results

The model orders calculated are presented in table 3. Since the system is using three

inputs, nb, nf and nk are three dimensional. The input and output nonlinearity that

achieved highest fitness values was the Wavelet Network.

Table 3: Model orders for each subject (Source: SOMMER; FORNER-CORDERO, 2018)
.

nb nf nk

Subject 1 4, 4, 0 9, 15, 0 12, 15, 0
Subject 2 7, 12, 15 2, 3, 14 11, 1, 11

Using the values from table 3 as the Hammerstein-Wiener model orders, we estimated

the model for elbow joint angle using the sEMG data as input and compared the results

to the experimentally measured values. As an example, figure 25 shows a comparison be-

tween the measured and estimated angle, for both continuous and intermittent movement,

for subject 1.

Using the same model orders and parameters calculated previously, a second model

estimation was performed using a second batch of data, recorded in a different day. An

example of the result of this process is shown in figure 26, where the model calculated for

subject 2 was used to estimate the elbow joint angle using the input data acquired from

the second day of testing.

The data acquired from the second experimental set were also used to generate a new

model, using the same model orders determined in first experimental set (table 3). This

way, it is possible to evaluate if the same orders determined in one experiment can be

carried over to tests performed in a different experimental set.
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Figure 25: Comparison between the measured angle of the elbow joint and the angle
calculated through the use of the estimated model, for subject 1, with a 1.5kg dumbbell.
a) shows the comparison for the continuous movement and b) the comparison for the
intermittent movement (Source: SOMMER; FORNER-CORDERO, 2018) .
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Figure 26: Comparison of the estimated and measured joint angle using the same model
calculated with the first data set, but using the EMG data from the second test set as
input for subject 2 with a 1.5kg dumbbell. a) shows the comparison for the continu-
ous movement and b) the comparison for the discrete movement (Source: SOMMER;
FORNER-CORDERO, 2018) .
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To better determine the accuracy of the model, three performance parameters were

used: the correlation coefficient, the determination coefficient and the root-mean-square

Error (RMSE) between the estimated and the measured elbow joint angles. Table 4

shows the accuracy performance parameters for each participant and every test set. The

different results for each method described above are presented in columns. First, using

the first data set to estimate a model and comparing the result to the measured angle

values; second, using the same model calculated for the first experimental set to estimate

the angle, but using the data from the second experimental set as input to the model; and

finally, using the same model orders chosen from the first experimental set, a new model

was generated based on the second data set and comparing the output to the measured

angle data.

Table 4: Correlation factor, coefficient of determination and root-mean-square error for
the calculated and measured angle values (Source: SOMMER; FORNER-CORDERO,
2018) .

Model Estimation, first test set Same model, second test set New model, same orders, second test set
Continuous Intermittent Continuous Intermittent Continuous Intermittent

Correlation R2 RMSE Correlation R2 RMSE Correlation R2 RMSE Correlation R2 RMSE Correlation R2 RMSE Correlation R2 RMSE

0 kg 0.9623 0.9232 9.394 0.9624 0.8932 12.91 0.8780 0.5114 17.86 0.9697 0.9205 9.647 0.9525 0.9044 7.898 0.9708 0.8602 12.79
Subject 1 1.5 kg 0.9780 0.9480 7.390 0.9865 0.9714 6.846 0.9129 0.7403 14.21 0.9666 0.9339 8.870 0.9169 0.8400 11.15 0.9328 0.8470 13.50

3 kg 0.9816 0.9499 6.796 0.9631 0.9200 11.477 0.9330 0.8526 10.31 0.7956 0.6161 22.70 0.9497 0.8912 8.860 0.9730 0.8923 12.03
0 kg 0.9729 0.9440 7.662 0.9620 0.9244 10.10 0.8825 0.7669 16.44 0.9330 0.8657 13.98 0.9787 0.9570 7.062 0.9620 0.9099 11.45

Subject 2 1.5 kg 0.9596 0.9202 8.9476 0.9493 0.8859 11.62 0.9754 0.9425 7.927 0.9413 0.8683 14.09 0.9838 0.9673 5.976 0.9211 0.8482 15.12
3 kg 0.9788 0.9556 6.733 0.9808 0.9612 6.540 0.8767 0.7668 15.35 0.9625 0.9191 11.02 0.9847 0.9688 5.614 0.9721 0.9431 9.246

The estimated models achieved correlation values of 94.90 ± 3.92%, coefficient of

determination of 0.8814± 0.0978 and RMSE values of 10.82± 3.73◦

6.5 Discussion and Conclusions

This chapter proposed a method for determining the elbow joint angle based on the

measurement of the sEMG of biceps brachii, triceps brachii and brachioradialis. The arm

model was estimated using the data collected from the experiment and system identifica-

tion methods. The system identification methods used were ARIMAX and Hammerstein-

Wiener model with Wavelet Network as input and output nonlinearities. With the ac-

quired sEMG data as input to the estimated model, it was possible to obtain an estimation

of the elbow joint angle. Using the data from the IMU it was possible to validate the

estimation based on sEMG.

The experimental data showed that it is possible to use the EMG data to estimate the

joint angle, with prior knowledge of the weight being lifted, at least for the experimental

conditions performed during the tests.

Both methods achieved good results in regards of the precision of angle estimation.
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Since we are aiming at developing a real-time controller for the exoskeleton, a model with

less complexity grants more advantageous characteristics, such as fewer calibration time

and faster real-time calculation for angle estimation. For this reason, the linear model is

the model chosen for further testing in real-time conditions.

In the next part, testing of the linear model, in a real-time condition, is performed.



PART IV

TESTING
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7 CONTROL TESTING

To test the controller, the experiment must be conducted in two steps:

1. Similar to the tests performed for linear and nonlinear model calibration in chapter

6, a calibration procedure is made, recording the signal from the muscles, while the

subject performs arm flexo-extension movements, with different weights. With this

data, it is possible to estimate a dynamic model for the EMG-to-Angle relation;

2. With the dynamic model estimated, the input signal now serves as real-time input

to the model, resulting in the corresponding angle estimation for the exoskeleton.

In the following sections, these experiments are described and the obtained results are

shown.

7.1 Calibration

7.1.1 Equipment and Materials

7.1.1.1 EMG sensor

Even though the (FREEEMG 1000, BTS Bioengineering Corp., Italy) electrodes

present high levels of accuracy, its larger dimensions and difficulty to establish com-

munication with external hardware without dedicated software presents setbacks to its

application in a real-time controller. For this reason, it is necessary to use another sensor

for the acquisition of EMG data.

The chosen device for this end was the (Muscle Sensor V3, Sparkfun Electronics R©,

USA). Its low dimensions together with its ease of communication with microprocessors

makes this device a great candidate for this specific application.

Connected to this sensor, a trio of electrodes must be connected: a pair of these

electrodes is attached to the target muscle, while the third electrode must be attached to
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an electrically neutral portion of the body (such as a bony area), to serve as the ground

reference for the device. The pair of electrodes placed at the muscle do the acquisition of

EMG in an differential configuration, to filter noises in the EMG signal.

The device works by acquiring the signal from the electrodes; the signal is amplified

by the AD8221 differential amplifier; the signal is amplified again in two steps with two

TL084 operational amplifiers; then it is rectified by the 1N4148 diodes; the rectified signal

is filtered in a low-pass filter; the signal is amplified by an adjustable gain amplifier. The

Muscle Sensor V3 output can be connected directly to a microprocessor. An schematic of

this device can be found at the Annex section of this work.

7.1.1.2 Microprocessor

The (FREEEMG 1000, BTS Bioengineering Corp., Italy) did the recording of the

EMG data for the previous experiment. Since the (Muscle Sensor V3, Sparkfun Electronics R©,

USA) has been chosen for this new experiment, a microprocessor is required to do the

recording of the data.

The chosen microprocessor for this end is the (Arduino UNO, Arduino, S.r.l., Italy).

The Arduino Uno has low dimensions, making it portable; communication with the (Mus-

cle Sensor V3, Sparkfun Electronics R©, USA) is straightforward, requiring only the con-

nection of the output from the EMG acquisition device to one of the analog inputs in the

Arduino Uno; it has an embedded Analog-to-Digital converter; the ModExo exoskeleton

already has an Arduino, being possible to modify the current software to record the data

from the EMG acquisition device.

7.1.2 Subjects and experimental setup

One volunteer with no known neuromuscular deficit participated in the experiment.

Surface Electromyography (sEMG) of one right arm muscle, biceps brachii, was recorded.

sEMG was measured with 1 trio of electrodes connected to (Muscle Sensor V3, Sparkfun

Electronics R©, USA), that communicated with the Arduino, the latter recording the EMG

data. Electrodes were placed with a separation of 20mm with the electrode diameter being

4mm. A pair of electrodes was placed on the biceps following the SENIAM guidelines

(SENIAM, 2004). The third electrode was placed at the acromion. The sampling rate

was of 20Hz. The user interface was the Arduino Serial Monitor.
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7.1.3 Experimental protocol

The experimental protocol is similar to the experiment performed in chapter 6, being

adapted to the new hardware setup. The subject sat on a chair, with the knees flexed at

90◦, the back perpendicular to the ground. The back of the arm was leaning against a

rubber support that was attached to the chair.

The subject was asked to perform consecutive elbow flexion and extension movements

from 50◦ to 140◦ with a frequency of 0.5Hz. To achieve the desired movement speed a

metronome was set at the speed of 60 BPM so that the subject could synchronize the

movements with the sound of the metronome. This movement was repeated with 2kg and

3kg extra weight placed at the subject’s hand.

All the data from the tests were transferred to Matlab R© for further analysis and

processing.

To reduce the complexity in processing the data and calibrating the model, the user

did not perform intermittent flexion and extension movements.

7.1.4 Experimental data processing

The signal from the Muscle Sensor V3 is already rectified. A 10-point moving average

was applied to further smooth the signal, to achieve a better result for the estimated

model.

Since the position tracking data was sampled at 100 Hz while the EMG data was

sampled at 20hz, all the position tracking data was resampled to 20 Hz.

7.1.5 Modeling

According to the results found in chapter 6, the FIR model is the linear model that

achieves the best accuracy results. For this reason, it was the chosen model for application

in the exoskeleton. In this case, the FIR model was estimated using data from the biceps

muscle alone.

In order to find a solution, a hard search was done using 1000 different random model

orders ranging from 1 to 10 for the na and nb and 0 to 4 for nk. Reduction of the nk

order has low impact in the model accuracy, while a reduction in its order reduces the

computational effort of the microprocessor. The entire data window was used to calibrate

the model, since the validation will be made through real time testing.
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Each model was compared to the reference angle using equation 6.6. The orders of

the model that achieved the highest fitness value were chosen. The parameters of the

models were estimated using time-domain data in Matlab R©.

7.2 Testing

7.2.1 Data processing

For the testing of the controller, the same hardware configuration was used. The EMG

data was acquired by the (Muscle Sensor V3, Sparkfun Electronics R©, USA), sending the

data to the microprocessor. Data processing occurred as follows:

1. A 10-point moving average filter was applied to the EMG signal, replicating the

same filter applied in the estimation of the model;

2. To simulate the detrending of the EMG data, the mean value of the EMG data used

in the calibration procedure was subtracted in real time from the EMG signal;

3. Then, the data was used as input to the model calibrated on the previous section;

4. Since the output from the model is also a detrended value, to estimate the elbow

joint angle the mean value of the elbow joint angle (acquired in the calibration

procedure) was summed to the output of the model.

The model calculations were performed by the microprocessor.

The estimation of the joint angle can be represented as in 7.1.

A(q)θ(n) = B(q)[V (n− nk)− V̄ ] + θ̄ (7.1)

Where θ(n) is the output angle of the elbow joint at discrete time n; θ̄ is the mean

value of the elbow joint angle; V (n) is the input, being the processed sEMG values from

biceps brachii; V̄ is the mean value of the sEMG signal; nk is the delay for sEMG input;

q is the delay operator; A and B are the model parameters, defined by:

A(q) = 1 + a1q
−1 + · · ·+ anaq

−na (7.2)

B(q) = 1 + b1q
−1 + · · ·+ bnbq

−nb+1 (7.3)
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Where na is the number of poles of the system; nb is the number of zeros plus one.

To smooth the output signal, a low pass filter can be applied. It is interesting to use

a low pass filter with a delay of no more than 100ms. The delay applied by a moving

average filter can be calculated through the following equation

N − 1

2
∗ 1

fsamp
= delay (7.4)

where N is the number of samples and fsamp is the sampling frequency. As a result, it

is possible to apply a 5-point moving average filter to obtain a maximum delay of 100ms.

7.2.2 Results

The model orders calculated in 7.1.5 are presented in table 5.

Table 5: Model orders for test subject

na nb nk

0 10 4

Using the values presented in table 5 as the model orders, it was possible to test

the model in real time, using the sEMG measurement from biceps brachii as input. The

results of this estimation being the elbow joint angle. Figure 27 shows the comparison

between the angle estimated from the model and the elbow joint angle measured from the

test subject.

To determine the accuracy of the estimation, correlation coefficient, coefficient of

determination and RMSE were used once more. Table 6 shows the accuracy performance

parameters for the test sets.

Table 6: Correlation factor, coefficient of determination and Root-mean-square error for
the real time estimated angle values

Correlation R2 RMSE

0kg 0.8950 0.6958 18.16
2kg 0.9364 0.8004 14.61
3kg 0.9064 0.6792 18.55



73

Figure 27: Comparison between the measured angle of the elbow joint and the angle
calculated through the model in real time. a) shows the comparison for no extra weight
b) the comparison for 2kg extra weight and c) the comparison for 3kg extra weight
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7.3 Discussion and Conclusions

This chapter proposed a method and presented an experiment on the feasibility of real

time exoskeleton control, using a linear model estimated through system identification.

The system model was estimated using data collected from the experiment and a linear

system identification method. With the model estimated, EMG data from biceps brachii

was used as real time input for the model. As so, the output angle of the exoskeleton

could be calculated.

The experimental data showed that the real time application of the EMG-driven

controller was successful. Even though the results showed slightly inferior performance

values to the offline testing, they are still deemed good compared to similar works already

developed and referenced in this work.

The results of this testing have been accepted for publication in the conference IEEE

EMBC 2019 (SUPLINO; SOMMER; FORNER-CORDERO, 2019).



PART V

DISCUSSIONS, CONCLUSIONS AND FUTURE

WORK
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8 DISCUSSIONS AND CONCLUSIONS

This work presented the design of an EMG-driven exoskeleton controller. Biomecha-

tronics was combined with control design and system modeling to achieve the design of a

controller that determines the intended movement and joint angle based on sEMG of the

user’s muscles.

Three different exoskeleton platforms, each with its own characteristics, were analyzed

to determine which one better suited the application of the controller designed is this work.

The exoskeleton platforms analyzed were the ETMICAE, ULEXO and ModExo. Built

as an experimental workbench, the ModExo presents many advantages over the other

exoskeletons, such as: embedded position and force sensors; easy-to-use communication

between the platform, a computer and microprocessors; and robust and stable structure.

For these reasons, the ModExo was the exoskeleton platform which better fitted the goals

of this work. The main drawback of this option was the low computing capacities of its

microprocessor.

Experimental procedures were conducted with six volunteers subjects to obtain EMG

and angle data for the controller design. EMG from three arm muscles and elbow joint

angle data were recorded in a controlled environment, where the test subjects were asked

to perform continuous and intermittent elbow flexion and extensions, under three loading

conditions: no load, 1.5kg and 3kg weights on the hand. The experiments were conducted

in two different days for each subject. A total of 72 experimental sets were recorded. Data

acquired through these experiments were used for system identification of the EMG-to-

Angle relation.

Two different EMG-to-Angle model identification methods were proposed: one linear

and the other nonlinear. For the linear method, four different modeling techniques were

applied to determine which one best estimated the model. The modeling techniques were:

ARX, ARMAX, ARIMAX and SS. The FIR model, a particular form of the ARX model,

outperformed the other models and was the chosen modeling technique for linear system

identification.
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For the nonlinear method, the Hammerstein-Wiener model was chosen due to its

capacity of estimating models from a black-box structure and predicting nonlinearities on

both input and output signals.

Results for the linear model show similar precision values to those achieved by other

authors (PANG et al., 2015; LIU; HERZOG; SAVELBERG, 1999; RAHMATIAN; MAHJOOB;

HANACHI, 2016; MAMIKOGLU et al., 2016). For most of the simulations, the model

achieved correlations above 90% and RMSE under 20◦. Considering the worse results, the

correlation was above 70% and the RMSE lower than 25◦.

In most of the subjects, it was not possible to use the same model to estimate the

elbow joint angle for tests conducted in different days. One way to address this problem

would be to rescale the output signal to the angle range, minimizing the RMSE of the

output signal. Since the EMG signals may change for one session to another, due to

several reasons as slight change in electrode position, tissue properties or temperature

(SODERBERG et al., 1975), it may not be possible to determine a model that estimates

the joint angle for data acquired on different days or test setups, using the methods

described in this work. Keeping this in mind, a solution would be to recalibrate the

model at each session.

For subjects 2 and 3, using the same model for experimental data from two different

days achieved correlation above 75% and RMSE below 32◦. For subject 3, specifically,

using the same model achieved values of correlation above 90% and RMSE below 20◦.

However, it is possible to note that the estimation is not as precise as it was when using

the model identification data set as input, these results can be regarded as very good

compared to other similar works. More investigation is required to determine if those

models are capable of estimating the joint angle for any test conducted with these subjects.

The same model order calculated in the first test can be used for the subsequent test

sessions, without a reduction in the accuracy of the predicted angle. This shows that,

even considering that environmental noise affects the EMG signal, it does not change the

system order. With the model orders already calculated, a recalibration procedure can

be quickly applied, minimizing the problem of model non-repeatability.

For the nonlinear model, it achieved better results compared to the linear model. Even

though other authors used the Hammerstein-Wiener model to determine EMG-to-Muscle

Force relation instead of a EMG-to-Angle relation, the results show similar precision

values (ABBASI-ASL et al., 2011; SEBASTIAN et al., 2010; CLANCY et al., 2012).

In most of the simulations, the model achieved values of correlation over 90%, coef-
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ficient of determination over 0.9 and RMSE under 15◦. For both subjects, in the worst

case, correlation was above 79%, coefficient of determination above 0.5 and RMSE below

23◦ when compared to the measured elbow joint angles.

As with the linear model, simulation results when using the same model for different

data inputs are worse than the results presented when using the same data used for model

calibration. But in this case, these results can be favorably compared to other similar

works. Also, as before, the same model orders calculated through the first experimental

set can be used for other test sessions, without loss of accuracy.

Linear system identification method was chosen and adapted for real time experi-

ments. It was chosen over the nonlinear method since it could be better adapted to the

available hardware and required less computational power. As such, the system identi-

fication method was adapted and implemented to function with a microprocessor and a

different EMG acquisition equipment. A new experiment was conducted to calibrate a

model using the new hardware.

With the linear model calibrated, testing of the controller in real time was performed.

The test subject was asked to perform the same consecutive and continuous elbow flexion

and extension performed in previous testing, with no extra weight, 2kg and 3kg extra

weight. The results prove that the real time application of the EMG-driven exoskeleton

control is possible in the proposed environment.

The real time controller achieved values of correlation, coefficient of determination

and RMSE of 91.26% ± 2.14%, 0.7251 ± 0.0657 and 17.11◦ ± 2.17◦, respectively. In the

worst results, correlation was over 89%, coefficient of determination over 0.67 and RMSE

under 20◦. Care must be taken when inferring the applicability of this model to other

test subjects. But as a proof of concept, the controller was successful in estimating the

elbow joint angle in real time conditions.

In the end, the controller was capable of estimating the elbow joint angle using only

EMG data as input, as long as the model was calibrated to the previously known load

being carried by the user.

When referring to indirect results from this work, a database acquired from six test

subjects, totaling 72 test sets of EMG and joint angle data, has been acquired. Even

though this database has only been used for system identification modeling in this work,

its data can be further used and analyzed under a multitude of different techniques, such

as the Time Domain/Frequency Domain feature set, Neural Networks and mathematical

morphological models (e.g. Hill’s muscle model), to name a few.
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9 FUTURE WORK

Much can be done to further improve the work presented in this dissertation. Some

of the opportunities for improvement are described in the following section:

More extensive testing and acquisition of EMG and joint angle can be done, exploring

more complex movements and replicating movements done on a daily basis. A longer

acquisition time could also benefit models that require longer training periods, which

is the case for some Neural Networks. For this end, a more portable hardware will be

required, one that is capable of measuring EMG and angle data for long periods (days,

even) with minimal negative impact on daily activities. This can further increase the

accuracy of the model, as well as serving as data for models capable of performing more

complex activities and movements.

Studying the possibility of estimating one single model for each subject, independent

of the load applied to arm/exoskeleton, can result in an even better controller. One way

to achieve this result would be to use a force sensor on the exoskeleton that measures

the load applied. According to the readings of the sensor, a state machine could make a

transition to the model corresponding to the applied load.

Hammerstein-Wiener models presented better results than the Linear system iden-

tification method. Application of the Hammerstein-Wiener model for real time testing

could present better results than the ones obtained using the linear model. Exploration

of different modeling techniques, such as Neural Networks, and the pairing with other

extensively used morphological mathematical models, such as Hill’s muscle models, can

present even better models for the EMG-to-Angle relation.

More powerful hardware for real time testing could improve both the model accuracy

as well as the output angle. Even though the Sparkfun Muscle Sensor V3 presented

good results, the quality of signal acquisition is far from other equipment, like the BTS

(FREEEMG 1000, BTS Bioengineering Corp., Italy). An EMG acquisition device that

is both portable and accurate would be the ideal hardware for this application. Also, a
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wireless communication between the electrodes and the processing unit would also present

more freedom of movement for the user.

A subject-independent model, that can estimate joint angles for a large group of

subjects, would present a huge improvement by being able to skip the model calibration

procedure necessary between each test session.

ModExo was well suited as a platform for testing and studying the proposed methods.

But it has little to no application for movement assistance in real life activities. The

ideal scenario would be to apply the controller proposed in this work in an exoskeleton

designed for movement assistance in daily activities. When the work on the construction

of ETMICAE is finished, it can prove to be a great platform for further testing of the

proposed controller.

Above all, this work is a product of collaborative effort between many people, from

colleagues and professors at Escola Politécnica - USP to many theorists and specialists in

engineering and medicine. And it is through this collaborative effort that this work will

achieve even higher standards. As many have contributed to this work, I hope this work

will serve as contribution for many others to come.
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IBGE. Censo demográfico 2010 - caracteŕısticas gerais da população, religião e pessoas
com deficiência. IBGE, Rio de Janeiro, Brazil, 2012.

ISIDORI, A.; NICOLO, F. A device for the detection and measurement of some
parameters of myoelectric potentials. Report no. 11, Electrotechnical Institute, University
of Rome, Electrotechnical Institute, University of Rome, 1966.

JIANG, N.; ENGLEHART, K. B.; PARKER, P. A. Extracting simultaneous and
proportional neural control information for multiple-dof prostheses from the surface
electromyographic signal. IEEE Transactions on Biomedical Engineering, v. 56, n. 4, p.
1070–1080, April 2009. ISSN 0018-9294.

KATO, A. et al. Estimating a joint angle by means of muscle bulge movement along
longitudinal direction of the forearm. In: 2015 IEEE International Conference on
Robotics and Biomimetics (ROBIO). [S.l.: s.n.], 2015. p. 614–619.

KAWAMOTO, H. et al. Voluntary motion support control of robot suit hal triggered by
bioelectrical signal for hemiplegia. In: 2010 Annual International Conference of the IEEE
Engineering in Medicine and Biology. [S.l.: s.n.], 2010. p. 462–466. ISSN 1094-687X.

KAZEROONI, H. The berkeley lower extremity exoskeleton. In: . Field and
Service Robotics: Results of the 5th International Conference. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006. p. 9–15. ISBN 978-3-540-33453-8.

KENNEY, L. et al. Dimensional change in muscle as a control signal for powered upper
limb prostheses: a pilot study. Medical Engineering & Physics, v. 21, n. 8, p. 589–597,
1999. ISSN 1350-4533.

LENZI, T. et al. Intention-based emg control for powered exoskeletons. IEEE
Transactions on Biomedical Engineering, v. 59, n. 8, p. 2180–2190, Aug 2012. ISSN
0018-9294.



84

LIU, M.; HERZOG, W.; SAVELBERG, H. Dynamic muscle force predictions from emg:
An artificial neural network approach. Journal of Electromyography and Kinesiology,
v. 9, n. 6, p. 391–400, 1999.

LOSIER, Y.; ENGLEHART, K.; HUDGINS, B. A control system for a powered
prosthesis using positional and myoelectric inputs from the shoulder complex. In: 2007
29th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society. [S.l.: s.n.], 2007. p. 6137–6140. ISSN 1094-687X.

MACKAY, J. et al. The Atlas of Heart Disease and Stroke. [S.l.]: World Health
Organization, 2004. (Academic Search Complete). ISBN 9789241562768.

MAMIKOGLU, U. et al. Elbow joint angle estimation by using integrated surface
electromyography. In: . [S.l.: s.n.], 2016. p. 785–790.

MATHWORKS. armax. Available in:
https://www.mathworks.com/help/ident/ref/armax.html. Access in 06/07/2019.
2015.

MATHWORKS. pwlinear. Available in:
https://www.mathworks.com/help/ident/ref/pwlinear.html. Access in 06/07/2019.
2016.

MERRIAMWEBSTERDICTIONARY. Biomimetics definition. Available in:
https://www.merriam-webster.com/dictionary/biomimetics. Access in 11/07/2017. 2009.

MIRANDA, A. B. W.; FORNER-CORDERO, A. Upper limb exoskeleton control based
on sliding mode control and feedback linearization. In: 2013 ISSNIP Biosignals and
Biorobotics Conference: Biosignals and Robotics for Better and Safer Living (BRC).
[S.l.: s.n.], 2013. p. 1–6. ISSN 2326-7844.

NIELSEN, J. L. G. et al. Enhanced emg signal processing for simultaneous and
proportional myoelectric control. In: 2009 Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. [S.l.: s.n.], 2009. p. 4335–4338. ISSN
1094-687X.

NIGHTINGALE, J. Microprocessor control of an artificial arm. Journal of Microcomputer
Applications, v. 8, n. 2, p. 167 – 173, 1985. ISSN 0745-7138.

OTSUKA, T. et al. Development of upper-limb type hal and reaching movement for
meal-assistance. In: 2011 IEEE International Conference on Robotics and Biomimetics.
[S.l.: s.n.], 2011. p. 883–888.

PANG, M. et al. Electromyography-based quantitative representation method for
upper-limb elbow joint angle in sagittal plane. Journal of Medical and Biological
Engineering, v. 35, n. 2, p. 165–177, 2015.

PARKER, P.; STULLER, J.; SCOTT, R. Signal processing for the multistate myoelectric
channel. Proceedings of the IEEE, v. 65, n. 5, p. 662–674, 1977.

PATCHARAPRAKITI, N. et al. Modeling of photovoltaic grid connected inverters based
on nonlinear system identification for power quality analysis. 2011.



85

PHILIPSON, L. Adaptable myoelectric prosthetic control with functional visual feedback
using microprocessor techniques. Medical and Biological Engineering and Computing,
v. 23, n. 1, p. 8–14, 1985. ISSN 1741-0444.

PONS, J. Wearable Robots: Biomechatronic Exoskeletons. [S.l.]: Wiley, 2008. ISBN
9780470987650.

RAHMATIAN, S.; MAHJOOB, M.; HANACHI, M. Continuous estimation of ankle joint
angular position based on the myoelectric signals. In: . [S.l.: s.n.], 2016. p. 158–163.

ROSE, W. Electromyogram Analysis. Available in:
https://www1.udel.edu/biology/rosewc/kaap686/notes/EMG%20analysis.pdf. Ac-
cess in 12/11/2016. 2011.

SANKAI, Y. Hal: Hybrid assistive limb based on cybernics. In: . Robotics
Research: The 13th International Symposium ISRR. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011. p. 25–34. ISBN 978-3-642-14743-2.

SEBASTIAN, A. et al. Analysis of emg-force relation using system identification and
hammerstein-wiener models. ASME 2010 Dynamic Systems and Control Conference,
v. 1, p. 381–388, Jan 2010. ISSN 0018-9294.

SENIAM. Recommendations for sensor locations in arm or hand muscles., Available in :
http://seniam.org/. Access in 10/11/2016. 2004.

SILVA, J.; CHAU, T.; GOLDENBERG, A. Mmg-based multisensor data fusion for
prosthesis control. In: Proceedings of the 25th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439). [S.l.:
s.n.], 2003. v. 3, p. 2909–2912 Vol.3. ISSN 1094-687X.

SLOTINE, J.-J. E.; LI, W. Applied nonlinear control. Upper Saddle River, NJ: Pearson,
1991.

SODERBERG, G. et al. Selected Topics in Surface Electromyography for Use in the
Occupational Setting: Expert Perspectives. [S.l.]: U.S. Dept. of Health and Human
Services, Public Health Service, CDC, National Institute for Occupational Safety and
Health, 1975. (DHHS publication).

SOMMER, L. F. Upper limb exoskeleton with one degree of freedom. Undergraduate
Thesis, Dept. Mechatronic Eng. and Mech. Systems, Escola Politécnica, University of
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APPENDIX A – ETMICAE

CALCULATIONS,

SIMULATIONS AND

MATERIALS

A.1 Hip

A.1.1 Applied Forces

The weight of the user will be applied at the back support, attached to the hip base.

For design purposes, the maximum user weight will be 1000 N. When walking with the

exoskeleton, there is the possibility of the user tilting forward his upper body. The torque

applied to the hip base due to this misalignment between the upper body and the base is

considered as a 25 Nm torque. The torque applied at the joints is equal to 250 Nm that

is the maximum torque applied by the motors to the joints.

Figure 28: Acting forces on the base

A.1.2 Materials

Aluminum was chosen for the structural plates as well as for the joints due to its low

weight and high resistance/weight coefficient.
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The shafts will be constituted of steel, since they will support high loads. Because of

its low dimensions, it is not critical the usage of low weight materials.

For the coupling of the shafts, ball bearings will be used so that the joints can rotate

with low friction coefficient, as well as being capable of enduring the high loads applied.

The chosen ball bearings were DIN 652 SKF with 2 RS1.

To avoid interference between the two parts of the joints, a Permaglide R© thrust washer

model PAW 26 will be used. This thrust washer has the necessary resistance to withstand

the applied loads. Also, it is low weight and easier to assemble compared to axial bearings.

The cover attached to the shaft will be made of aluminum.

A.1.3 Calculations and simulations

Permaglide R© PAW 26 Thrust Washer:

Torque at the hip due to the misalignment between the upper body and the rotation

axis of the hip is considered as a 25 Nm torque. This torque will be supported by the

thrust washer. That way:

M = 2 · F ·
De
2

+ Di
2

2
(A.1)

A =
π
4
(D2

e −D2
i )

2
(A.2)

σ =
F

A
(A.3)

Figure 29: Acting forces on the abduction/adduction joint
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Figure 30: Acting forces on the flexion/extension joint

Where M is the torque applied to the hip, F is the reaction force in the thrust washer

and cover of the joint, De and Di are the external and internal diameter of the thrust

washer, respectively, A is the thrust washer area that will support the load and σ is the

load.

Resulting in:

σ ∼= 1.5MPa < σcrit

Therefore, the PAW 26 thrust washer is suitable to be used.

DIN 625 SKF with 2 RS1 (SKF 61902-2RS1) ball bearing:

Chosen through the SKFTM bearing selection tool, for a load equal to 500 N and

lifespan of 10000 hours. The tool can be found at: http://www.skf.com/group/knowledge-

centre/engineering-tools/skfbearingselect.html

All components were numerically simulated at the AutodeskTM Inventor 2017 soft-

ware.

A.2 Knee

A.2.1 Applied forces

The forces applied at the knee joint are the torque that the motor applies at the joint

and the weight of the user and exoskeleton.
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Figure 31: Numerical simulation of the base

Figure 32: Numerical simulation of the joint shafts
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Figure 33: Numerical simulation of the cover

Figure 34: Forces applied to the knee joint
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A.2.2 Materials

Aluminum is the metal constituting the joints. This material was chosen for its low

weight and high resistance/weight coefficient.

For the bars, steel bars will be used for its high resistance and easy acquisition.

For the same reasons stated at the hip, the shafts will be made of steel.

Like before, DIN 625 SKF with 2 RS1 ball bearings and PAW 26 Permaglide R© thrust

washers will be used.

A.2.3 Calculations and simulations

Figure 35: Numerical simulation of the knee joint
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APPENDIX B – ACTUATOR CONTROL

Human limb and exoskeleton mechanics are complex and nonlinear. To account for

this complexity, it is necessary to model the interaction between exoskeleton and the

human limb when exposed to an external load.

In this annex, a study of two control methods for the actuation of the exoskeleton is

conducted: impedance control and sliding mode control.

B.1 Exoskeleton Model

B.1.1 Exoskeleton

In order to present this controller, we will use the upper limb exoskeleton described

in chapter 4. It has one degree of freedom on the elbow joint, actuated by a 12V DC

motor (578VA, Mabuchi Motor Co., ltd., Japan) with a Power Window Lifter gear trans-

mission. The transmission has a 10:1 reduction ratio. The structure of the exoskeleton is

constructed on aluminum.

The exoskeleton is illustrated in figure 36. When the user tries to flex his arm, an

electrical voltage is acquired by electrodes placed on the skin on the biceps brachii. The

(Muscle Sensor V3, Sparkfun Electronics R©, USA), was used to measure the EMG. It does

the biceps muscle voltage recording, rectification, low-pass filtering and amplification.

This signal is sent to a microprocessor (ATmega328P, Microchip Technology Inc., USA),

that makes the analog-to-digital conversion and applies a moving average filter. Finally

the voltage signal is transformed into a desired joint angle. Equation B.1 shows the

equation that gives the desired joint angle as a function of the EMG sensor voltage. A

linear relationship between the angular position and the measured voltage was chosen.

The equation was defined by measuring the EMG signal when the arm was fully extended

and when the arm was on a flexed position and linearly scaling it to the minimum angle

of 0 and maximum angle of π
2
. It is important to note that the voltage from the EMG
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sensor is never zero. Even at a relaxed position, the sensor measures a residual voltage

level of -0.29V.

θd = −0.29 + 0.582 ∗ Vemg (B.1)

Figure 36: Diagram showing the exoskeleton block diagram control

With the desired joint angle the pulse-width modulation (PWM) magnitude sent to

the motor driver is calculated with a control logic in order to control the motor that

actuates the exoskeleton. This control logic will be further studied in the next section.

The motor driver input is the PWM voltage (V) and its output is an electrical current

(I). Equation B.2 shows the relationship between PWM voltage and motor current:

I = Kv ∗ V (B.2)

where Kv = 1.42 is the driver gain, V is the voltage applied to the driver and I is the

output current of the driver.

The output electrical current from the driver goes to the motor, actuating in the

exoskeleton and consequently moving the user’s forearm.

B.1.2 Modeling

Even though the exoskeleton has only one degree of freedom on the elbow joint, the

shoulder angle should also be considered because it influences the forces applied to the
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exoskeleton and the arm. The exoskeleton can be modeled as two segments: the upper

arm (between shoulder and elbow) and the forearm (between elbow and wrist).

Figure 37: Free body diagram of the exoskeleton

Figure 37 shows the exoskeleton free body diagram, where the upper arm is considered

to be fixed at a given angle θ1. The angle between the upper arm and the forearm is θ2

with a motion range between 0 and π
2

rad, the torque applied by the motor is τ , the Load

has a range between 0 and 100N, always perpendicular to exoskeleton forearm segment,

the sum of the human forearm and exoskeleton forearm masses M is equal to 2.14 kg, the

distance between the elbow center and the forearm center of mass L1 is 0.12m, the length

of the forearm L2 is 0.22m, the forearm moment of inertia Je is equal to 5.6 · 10−3kg ·m2.

Table 7: Exoskeleton model parameters

Parameter Value

Load 0 to 100N
L1 0.12m
L2 0.22m
Je 5.6 · 10−3kg ·m2

Jm 6 · 10−5kg ·m2

B 1.2732
n 10
Km 0.533

Equation B.3 shows the dynamics of the exoskeleton:

(
Je
n

+ Jm

)
· θ̈m +B · θ̇m = τ +

−L2 · Load− L1 ·M · g · sin
(
θm
n

+ θ1
)

n
(B.3)

Where θm is the angle of the motor shaft, Jm = 6 · 10−5kg ·m2 is the motor moment

of inertia, B = 1.2732 is the damping coefficient of the motor, n = 10 is the reduction

factor and Km = 0.533 is the electrical current gain of the motor.
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Equation B.4 gives the relation between motor input current and output torque:

τ = Km · I (B.4)

Using equations B.2, B.3 and B.4 gives the exoskeleton and human dynamics, without

considering human actuation:

(
Je
n

+ Jm

)
· θ̈m +B · θ̇m = Km ·Kv · V +

−L2 · Load− L1 ·M · g · sin
(
θm
n

+ θ1
)

n
(B.5)

B.2 Control

B.2.1 General Characteristics

The action control will be the voltage V applied to the driver of the motor. The load

applied to the exoskeleton can vary from 0N to 100N. In this way the user will be able

to manipulate different objects without changing the control parameters in a short time

span. The controller goal is to control the exoskeleton position while maintaining safety

and confort. The range of motion of the elbow joint is from 0 to π
2

rad while the maximum

angular velocity must be around π
4

rad/s. There must be no overshoot on the movement.

B.2.2 Impedance Control

The first law will be based on impedance control. Impedance control imposes a

dynamic behavior to the interaction between the target system and the environment,

usually a mass-spring-damper system. Impedance control is suited for tasks that require

contact forces without an accurate control of the end-effector position (e.g. grabing an

object). That is especially important in biomechanical applications since the human arm

is capable of doing delicate tasks without a profound knowledge of necessary forces to be

applied to the target objects. One drawback is that whenever an external force is applied

on the system the final position of the end-effector will not necessarily be the desired

one, instead it controls a combination of force and position. The chosen stiffness for the

dynamic system will regulate this trade-off between contact force and position accuracy.
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B.2.3 Impedance Control Design

The open-loop system dynamics given by equation B.5, can be rewritten as follows:

θ̈m =
−B · θ̇m +

−L2·Load−L1·M ·g·sin( θmn +θ1)

n
+Kv ·Km · V

Je
n

+ Jm
(B.6)

Equation B.6 can be organized in the form:

θ̈m = f + bu (B.7)

Where:

f =
−B · θ̇m +

−L2·Load−L1·M ·g·sin( θmn +θ1)
n

Je
n

+ Jm
(B.8)

b =
Kv ·Km

Je
n

+ Jm
(B.9)

u = V (B.10)

The desired closed loop dynamics to implement an impedance control is:

Md · (θ̈m − θ̈d) +Bd · (θ̇m − θ̇d) +Kd · (θm − θd) = −F (B.11)

Where Md, Bd, Kd, θd are, respectively, the desired inertia, damping, stiffness and

position and the force F is:

F =
L2 · Load

n
(B.12)

Equation B.11 characterizes a mass-spring-damper dynamics that will be imposed to

the system by the controller.

By substituting equation B.11 in equation B.7 and rearranging its terms:

u =
θ̈m − f
b

(B.13)
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V = b−1

(
−f +

Md · θ̈d −Bd · (θ̇m − θ̇d)−Kd · (θm − θd)− F
Md

)
(B.14)

Equation B.14 gives the control law for the system, that can be expressed as (using

B.6 - B.12)

V =
1

Kv ·Km

(B · θ̇m +
L2 · Load

n
+
L1 ·M · g · sin( θm

n
+ θ1)

n
+

(
Je
n

+ Jm)(Md · θ̈d −Bd(θ̇m − θ̇d)−Kd(θm − θd)−
L2 · Load

n
) · 1

Md

)

(B.15)

This control law, as it is presented, cancels the nonlinearities of the system by imposing

a force that counteracts the gravitational and damping forces and imposes the desired

dynamic system behavior to the exoskeleton.

B.2.4 Sliding Mode Control Design

The second applied control law will be the Sliding Mode control. The system dynamics

is the same as shown in equation B.3

The desired sliding surface s is:

s = θ̇m − θ̇d + λ · (θm − θd) (B.16)

The control signal is u and λ is the unique pole of the resulting reduced dynamics

of the system when in sliding mode. To achieve the desired controlled dynamics of the

system, the u value is as follows (SLOTINE; LI, 1991):

u = b̂−1
(
−f̂ + θ̈d − λ · (θm − θd)−K · sat

(
s

φ

))
(B.17)

Where:

b̂ =
Kv ·Km

Je
n

+ Ĵm
(B.18)

f̂ =
−B · θ̇m +

−L2· ˆLoad−L1·M ·g·sin( θmn +θ1)

n

Je
n

+ Ĵm
(B.19)
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Ĵm is the motor inertia with measuring error and ˆLoad is the external load applied to

the exoskeleton with measuring error.

In this way, the system acquires the following dynamics in closed loop:

ds

dt
= (θ̈m − θ̈d) + λ · (θ̇m − θ̇d) (B.20)

That is,

ds

dt
= f + b · b̂−1 · (−f̂) + b · b̂−1 · (θ̈d − λ · (θm − θd)+

− b · b̂−1 ·K · sat( s
φ

)− θ̈m + λ · (θ̇m − θ̇d))
(B.21)

In order to guarantee convergence, the control must satisfy the sliding condition:

1

2

d(s2)

dt
≤ −η · |s| (B.22)

Equation B.22, using B.21:

K ≥ β · (η + F ) + (β − 1) · |û| (B.23)

Where,

β =

√
bmax
bmin

(B.24)

F > |f − f̂ | (B.25)

û = −f̂ + θ̈d − λ · (θm − θd) (B.26)

B.3 Simulation Results

B.3.1 Impedance Control

By choosing Md = 1kg ·m2, Bd = 4N ·m · s,K = 4.5N ·m and θd = 1rad one obtains

ωn = 2π
8

rad/s the natural frequency of the system, t0−90% = 2.4s the time the system

takes to reach 90% of the final position and the damping factor ζ must be greater than
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one since there must be no overshoot.

Figures 38 and 39 show the results of a simulation where θd = 1rad ≈ π
3

and external

load = 0 and 100N, respectively.

Figure 38: Position θ2 versus time for an external load = 0

Figure 39: Position θ2 versus time for an external load = 100 N

B.3.2 Sliding Mode Control

Considering the measured load with 30% error and the measured motor inertia with

20% error, that is, ˆLoad = 130N and Ĵm = 7.2 · 10−5kg ·m2, resulting in β = 1.04, the

system was simulated with the following parameters: η = 5rad/s2, λ = 1 and φ = 10rad/s
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and the results for the position and the sliding surface can be found in figures 40 and 41,

respectively.

Figure 40: Position θ2 versus time

B.4 Conclusions

Human limb mechanics are complex and nonlinear. To design a controller that success-

fully controls the desired movement of the exoskeleton, human and exoskeleton dynamics

were modeled. Two different nonlinear control approaches were proposed: Impedance

control through feedback linearization and sliding mode control. Both control modes can

be adequately applied for exoskeleton control.

Both control approaches have advantages and drawbacks.

The impedance control cannot reach a desired position with utmost accuracy since

the external load, by definition, will take the system out of its desired final position and

the system parameters must be precisely measured in order to guarantee accurate desired

dynamics. Nevertheless, the position error is inferior to 10% of the final position, being

sufficient for the application proposed in this work. One advantage of this control is

that precise activities can be achieved without a deep knowledge of the environment, the

system acquires familiar characteristics in the form of a mass-spring-damper system and

it is safer for the user since the controller changes the position of the system when an

excessive external load is detected.
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Figure 41: Sliding surface versus time

The sliding mode control can achieve great precision and accuracy of desired position

and trajectory and does not require a precise measurement of the system characteristics.

Depending on the application, each one of these control methods could be more appro-

priate. In the case of a wearable exoskeleton, the impedance control is the most suitable

control method, since it offers a dynamic behavior similar to that of a human limb and it

is safer for the user. To control an external robotic arm, the sliding mode control can be

used since it will cause no harm to the user and it is capable of performing actions with

higher accuracy.

Since this work aims to design a controller for an exoskeleton in direct contact with

its user, it can be concluded that the impedance control is more appropriate. Even so, the

sliding mode control is a good candidate and has been deemed fit for exoskeleton control

in past studies (MIRANDA; FORNER-CORDERO, 2013).
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ANNEX A – SPARKFUN MUSCLE

SENSOR V3 SCHEMATIC
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ANNEX B – MODEXO CONTROL

HARDWARE SCHEMATICS








