
UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA

POST-GRADUATION PROGRAM IN MECHANICAL ENGINEERING

GUILHERME PHILLIPS FURTADO

Formulation of Impedance Control Strategy as an Optimal Control Problem

São Paulo

2018

GUILHERME PHILLIPS FURTADO

Formulation of Impedance Control Strategy as an Optimal Control Problem

Revised version that includes the remarks
and changes requested by the judging com-
mittee in September 6th, 2018. The original
version can be found on the Library of Poly-
technic School - USP, Department of Mechan-
ical Engineering and on the Digital Library
of Thesis and Dissertations of USP (BDTD),
as defined by Resolution CoPGr 6018, from
October 13th, 2011.

Supervisor: Prof. Dr. Arturo Forner-Cordero

São Paulo

2018

 Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio
convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

Este exemplar foi revisado e corrigido em relação à versão original, sob
responsabilidade única do autor e com a anuência de seu orientador.

São Paulo, ______ de ____________________ de __________

Assinatura do autor: ________________________

Assinatura do orientador: ________________________

Catalogação-na-publicação

Furtado, Guilherme Phillips
 Formulation of impedance control strategy as an optimal control problem
/ G. P. Furtado -- versão corr. -- São Paulo, 2018.
 106 p.

 Dissertação (Mestrado) - Escola Politécnica da Universidade de São
Paulo. Departamento de Engenharia Mecânica.

 1.Mecãnica elétrica (Controle) 2.Equações de Riccati 3.Controle ótimo
4.Programação quadrática 5.Manipuladores redundantes I.Universidade de
São Paulo. Escola Politécnica. Departamento de Engenharia Mecânica II.t.

Dissertation authored by Guilherme Phillips Furtado, under the title “Formulation of
Impedance Control Strategy as an Optimal Control Problem”, presented to the
Escola Politécnica of the University of São Paulo, to obtain the title of Master of Science
from the Post-Graduation Program in Mechanical Engineering, in the area of concentration
Control and Mechanical Automation Engineering, approved in September 6th, 2018, by
the judging committee composed by:

Prof. Dr. Arturo Forner-Cordero

Institution: Escola Politécnica da Universidade de São Paulo

President

Prof. Dr. Bruno Augusto Angélico

Institution: Escola Politécnica da Universidade de São Paulo
Titular

Prof. Dr. Jacques Elisabeth Joseph Duysens

Institution: Katholieke Universiteit Leuven
Titular

Acknowledgements

I would like to express my gratitude to my advisor, Prof. Dr. Arturo Forner-Cordero,

for the continued support during my Master study, in every aspect. This work would not

have been possible without his contributions and assistance.

I would also like to thank Rafael Sanchez Souza, Carlos Noriega and Prof. Dr.

Rafael Traldi Moura, for helping me with the execution of the experiments. I am also

grateful to Rafael Sanchez Souza for the collaborative work that has been conducted

during my studies.

Additionally, I would like to thank all members of the Laboratory of Biomechatronics,

for all the stimulating discussions that we had.

Last but not the least, I would like to thank my family for supporting me, not only

during the my studies, but also during my life in general.

Abstract

PHILLIPS FURTADO, Guilherme. Formulation of Impedance Control Strategy
as an Optimal Control Problem. 2018. 106 p. Dissertation (Master of Science) –
Polytechnic School, University of São Paulo, São Paulo, 2018.

A formulation of impedance control for redundant manipulators is developed as a particular
case of an optimal control problem. This formulation allows the planning and design of an
impedance controller that benefits from the stability and efficiency of an optimal controller.
Moreover, to circumvent the high computational costs of computing an optimal controller,
a sub-optimal feedback controller based on the state-dependent Ricatti equation (SDRE)
approach is developed. This approach is then compared with the quadratic programming
(QP) control formulation, commonly used to resolve redundancy of robotic manipulators.
Numerical simulations of a redundant planar 4-DOF serial link manipulator show that the
SDRE control formulation offers superior performance over the control strategy based QP,
in terms of stability, performance and required control effort.

Keywords: Impedance control. Ricatti equations. Optimal control. Quadratic programming.
Redundant manipulators.

Resumo

PHILLIPS FURTADO, Guilherme. Formulação da Estratégia de Controle de
Impedância como um Problema de Controle Ótimo. 2018. 106 f. Dissertação
(Mestrado em Ciências) – Escola Politécnica, Universidade de São Paulo, São Paulo, 2018.

Uma formulação do controle de impedância para manipuladores redundantes é desen-
volvida como um caso particular de um problema de controle ótimo. Essa formulação
permite o planejamento e projeto de um controlador de impedância que se beneficia da
estabilidade e eficiência de um controlador ótimo. Para evitar lidar com os elevados custos
computacionais de se computar um controlador ótimo, um controlador em malha fechada
sub-ótimo, baseado na abordagem das equações de Ricatti dependentes de estado (SDRE),
é desenvolvido. Essa abordagem é comparada com a formulação de um controlador baseado
em programação quadrática (QP), usualmente utilizado para resolver problemas de re-
dundância em manipuladores robóticos. Simulações numéricas de um manipulador serial
plano de quatro graus de liberdade mostram que o controlador baseado em SDRE oferece
performance superior em relação a um controlador baseado em programação quadratica,
em termos de estabilidade, performance e esforço de controle requerido do atuador.

Palavras-chaves: Impedância elétrica (controle). Equações de Ricatti. Controle ótimo.
Programação quadrática. Manipuladores redundantes.

List of Figures

Figure 1 – The equilibrium positions of the virtual shoulder and virtual elbow, over

time. 43

Figure 2 – The external force applied at the robot end-effector, fm, which is ”trans-

mitted” to the virtual end-effector. Fx and Fy correspond, respectively,

to the horizontal and vertical force directions. 43

Figure 3 – An external force, fm, is applied at the robot end-effector. This force

is transferred to the virtual model that reacts according to its defined

dynamics. This response is translated into motion of the robot end-

effector. Since the robot end-effector is constrained to the virtual end-

effector, both will present the same apparent impedance (or admittance)

to the environment. 44

Figure 4 – Simulation I: Comparison between performances of the system with

the QP (a and c) and SDRE (b and d) strategies. The robot starts

at q(0) = [−2.65 − 4.42 0.68 2.60]T , and the virtual system starts at

θ(0) = [0.52 2.62]T . Under QP formulation, the system demonstrates

instability, which is not observed when the controls are obtained via the

SDRE approach. 48

Figure 5 – Simulation I: Comparison between performances of the system with

the QP (a and c) and SDRE (b and d) strategies. The robot starts

at q(0) = [−2.65 − 4.42 0.68 2.60]T , and the virtual system starts at

θ(0) = [0.52 2.62]T . When the controls are obtained via QP formulation,

the joint angles drift away, and very high torque norms are observed. On

the other hand, when the system is controlled via SDRE formulation,

the joint angles and torque norms remain bounded. 49

Figure 6 – Simulation II: Behavior of the system with QP formulation, with inertia-

weighted torque optimization criterium. Initial conditions are identical

to Simulation I. 50

Figure 7 – Simulation III: Behavior of the system under perturbations, with ini-

tial conditions away from the optimal (q(0) = [π π 0 π]T and θ(0) =

[0.52 2.62]T). The joints are disturbed with a random uniformly dis-

tributed torque of amplitude 0.1Nm and zero mean. 51

Figure 8 – Simulation IV: Behavior of the system when when no external forces

or disturbances are applied with initial conditions: q(0) = [−2.65 −

4.42 0.68 2.60]T and θ(0) = [0.52 2.62]T . The robot executes repeatable

motions on the joint space, even without considering a repeatability

criterion in the objective function. 52

Figure 9 – 1-DOF Upper Limb free-body diagram 67

Figure 10 – Comparison between experimental and simulated angular velocity profile

when M= 0kg. 72

Figure 11 – Comparison between experimental and simulated angular velocity profile

when M= 2kg. 73

Figure 12 – Comparison between experimental and simulated angular velocity profile

when M= 3kg. 74

Figure 13 – Model Reference Adaptive Control. 78

Figure 14 – Diagram representing workspace and coupled coupled plant. 80

Figure 15 – Tracking performance and parameter estimation for a step input of

3 Nm and parameter uncertainty of 20% and reference model set for

transparent behavior. 81

Figure 16 – Tracking performance and parameter estimation for a step input of

3 Nm with zero prior knowledge of the plant and assistive control. . . . 81

Figure 17 – Tracking performance and parameter estimation for a sinusoidal input

of amplitude 3 Nm with zero prior knowledge of the plant and assistive

control. 82

Figure 18 – Tracking performance and parameter estimation for a smoothed square

input of amplitude 3 Nm with zero prior knowledge of the plant and

assistive control . 83

Figure 19 – Tracking performance and parameter estimation for a smoothed square

entrance of amplitude 3 Nm with zero prior knowledge of the plant,

assistive control and plant parameters variation. 83

List of Tables

Table 1 – Parameter Values of the Human Arm Model and 4-DoF Serial Manipulator 46

Table 2 – List of Parameters of the 1-DoF Human Arm 68

Table 3 – List of Parameter Values for the Optimal Time Experiment 71

Table 4 – Comparison Between Experimental and Simulation Results 71

Contents

1 Introduction and Motivation . 12

2 A Brief Overview of Optimal Control 19

3 Robot dynamics and Impedance control 22

4 Redundancy Resolution via Quadratic Optimization 25

5 Formlation of Impedance control as a Particular case of an

Optimal Control Problem . 28

6 State-Dependent Ricatti Equations 36

7 Implementation of QP and SDRE in a Redundant Manipulator 42

7.1 Results: Comparison Between QP and SDRE approaches 46

7.2 Discussions . 53

8 Conclusions and Future Works 57

Bibliography . 59

APPENDIX A – Generating Human-like Motion with optimal

control . 66

A.1 Upper Limb flexion extension against gravity 66

A.2 Objective Function . 68

A.3 Description of the experiment . 70

A.4 Results and Discussion . 71

APPENDIX B – Implementation of Impedance Control via

Adaptive Control 76

B.1 Model-Reference Adaptive Control (MRAC) 77

B.2 Simulations and Results . 79

B.3 Discussions . 84

APPENDIX C – Symbolic Manipulation Code 85

APPENDIX D – Numerical Simulation Codes 96

D.1 Ordinary Differential Equation and Input Computation Code 96

D.2 Numerical Integrator Code . 100

12

1 Introduction and Motivation

This work presents a controller formulation, based on optimal control theory,

that aims to solve the impedance control problem of redundant robotic manipulators.

First proposed by Hogan (1984), impedance control is a strategy that aims to regulate

the dynamic behavior of a system as it interacts with the environment. It resulted

from the combination of hybrid position and force control methods (MASON, 1981).

Unlike pure force or pure position control, impedance control maintains a prescribed

relationship between interaction forces and displacements resulting from this interaction.

A well-designed dynamical behavior enables, effectively, simultaneous control of position

and contact force of an end-effector, as it interacts with an unknown environment. By

formulating impedance control as a particular case of an optimal control problem, it

is possible to not only generate an efficient controller according to multiple, conflicting

optimization criteria, but also handle mixed input/state constraints and, more importantly,

assure global stability. Assuring stability, an open problem in the context of redundancy

resolution, specially for an impedance controller, has been overcame in this work by

implementing a sub-optimal impedance controller. Moreover, repeatability of the joint

motion in the nullspace was achieved as an indirect consequence of asymptotic convergence

to optimality. The results of this work have been submitted for publication (FURTADO;

FORNER-CORDERO, 2018).

The impedance control strategy has been successfully applied in a wide range

of engineering problems that involve intermittent contact between distinct systems. In

teleoperation, for example, impedance control has been used both for designing the

compliance of the operated robot and for enabling a human operator to control it, according

to haptic feedback (TAFAZOLI et al., 2002; OKAMURA, 2004; FERRAGUTI et al., 2015).

Another important application of impedance control is the simulation of virtual dynamical

interactions. These types of control problems are often encountered in the design of

interactive virtual environments with haptic interfaces (ADAMS; HANNAFORD, 1999)

and healthcare assistive devices (AGUIRRE-OLLINGER et al., 2007; TSAGARAKIS;

CALDWELL, 2003). Impedance control can also be implemented in order to control the

compliance of an autonomous robot, as it interacts with unknown environments. In this

context, some examples include the generation stable legged locomotion, during ground

13

contact (AREVALO; GARCIA, 2012; PARK, 2001; SEMINI et al., 2015), and soft grasping

of objects (XU, 2013; SCHLEGL et al., 2001).

Over the years, several implementations of impedance control were developed. In

the simplest case, it can be designed as proportional-derivative (PD) position controller,

in which both the position and velocity feedback generate an apparent impedance on

the manipulator. The most general case involves replacing the original dynamics of the

end-effector with the desired dynamics, often selected as a set linear spring-mass-damper

system on the task-space (HOGAN, 1984), due to the ease of designing and inferring its

characteristics. Anderson and Spong (1988) introduced a hybrid impedance control strategy,

combining hybrid position/force control with impedance control, so position and force can

be controlled while impedance is carefully monitored. To address the issue of uncertainty

in the robot model and estimate the environment parameters, adaptive impedance control

strategies were presented by Carelli and Kelly (1991) and Singh and Popa (1995). In the

same context, Lu and Goldenberg (1995) proposed a combination of sliding-mode control

and impedance control to design a robust impedance controller. More recently, He, Dong

and Sun (2016) developed an adaptive impedance control employing neural networks,

considering uncertainties and input saturation. We briefly present the formulation of

impedance control with model-reference adaptive control approach in Appendix B, which

is part of a work presented at IFAC BMS 2018 (SOUZA et al., 2018).

The implementation of impedance control assumes that the relationship between

task-space coordinates and joint-space coordinates is known beforehand, as impedance

is defined with respect to the end-effector. The problem of finding the transformation

between the task-space coordinates of the end-effector to joint-space coordinates is known

as the inverse kinematics problem. If the manipulator is non-redundant, the solution is

straightforward. On the other hand, in the presence of redundancies, there are infinite

feasible solutions that map task-space coordinates to joint-space coordinates. Whereas the

number of solutions offers adaptability and flexibility to the redundant manipulator, it

comes at the cost of increasing mathematical complexity. In general, for a given application,

the objective is to find the best solution that solves the inverse kinematics problem.

The usual approach to address redundancy resolution in real-time is by formulating

the problem as a linearly constrained quadratic optimization problem. It consists of solving

an under-determined linear system, while minimizing a quadratic-like objective function

involving the system variables, and may also include inequality constraints (NAKAMURA;

14

HANAFUSA; YOSHIKAWA, 1987; NENCHEV, 1989; KHATIB, 1987; PETERS et al.,

2008; ZHANG et al., 2017). The linear system is obtained from the kinematic relationship

between the task-space and joint-space coordinates, defined by the Jacobian of the mapping

between both spaces. The Jacobian acts as a linear transformation map, and redundancy

resolution consists of finding the best inverse mapping for a set of given criteria. The

criteria are formulated as objective functions to be minimized, where the quantity being

measured is usually the instantaneous velocity norm, instantaneous torque norm or some

deviation of the manipulator with respect to a certain distance. It can be interpreted as a

point-wise optimization, in the sense that the future costs for controlling the robot are

not taken into consideration. The control actions, either forces or torques, to be applied

on the system, are a result of this optimization. If inequality constraints are not present

and a single quantity is to be optimized, the inverse problem has an explicit solution, the

weighted Moore-Penrose pseudoinverse. In addition, lower priority tasks can be included

by projecting them on the nullspace of the linear transformation, at the cost of optimizing

the original objective function. When redundancy resolution is treated as a quadratic

optimization problem that includes inequality constraints or multiple objectives, it is

formulated as a quadratic programming (QP) process (ZHANG et al., 2017).

However, for some given predefined optimization criteria, undesirable phenomena

can appear in the nullspace of the inverse linear transformation: self-motion, joint drifting

during repeated tasks and joint instability, often due to the non-integrability of the

inverse map (MUSSA-IVALDI; HOGAN, 1991), even in the absence of modelling errors.

The pioneering works of Hollerbach and Suh (1987), Suh and Hollerbach (1987) that

attempted to optimize local joint torques already noted the presence of instabilities in the

nullspace. In 2002, O’NEIL proved that for mechanisms with one degree of redundancy,

quadratic optimization of velocity, torques or acceleration vectors diverges to infinity

in finite time for almost all possible resolution schemes, even with linear dissipation of

nullspace velocities. More critically, the author showed that some conservative schemes

that are not divergent, including the dynamically consistent redundancy scheme, also

known as the inertia-weighted pseudo-inverse (CHANG; KHATIB, 1995), still suffer from

a rapid rise of joint velocities, resulting in large joint accelerations and torques. The

author concluded that even the more conservative redundancy resolution schemes can

have undesired instabilities. In fact, control of the null-space is often treated as the major

control problem of redundant robots (NEMEC; ZLAJPAH, 2000).

15

In order to address these shortcomings, there are a number of techniques entailing

a trade-off between task performance and optimality of the optimization criteria. To cite a

few, these techniques generally involve 1- introducing weighting matrices extrinsic to the

original optimization (MUSSA-IVALDI; HOGAN, 1991); 2- introducing secondary tasks

that do not emerge from the original optimization problem, but that are still projected

on the nullspace of the manipulator through nullspace projection (SADEGHIAN et al.,

2014); 3- controlling the nullspace directly (ORIOLO, 1994; HU; GOLDENBERG, 1993)

and 4- including additional criteria in the objective function (ZHANG et al., 2017). For

example, Peters et al. (2008) resorted to a PD scheme to stabilize the nullspace trajectories

of a 7-DOF manipulator, where joint torques were being optimized, pulling the joints

of the robot toward a preferred configuration. On the other hand, Zhang et al. (2017)

observed that the minimum velocity norm criterion in a 6-DOF manipulator led to drifting

problems, which were remedied by including a criterion that penalized the joint deviations

from a defined position.

In the context of impedance control, the aforementioned problems are exacerbated

when inertia shaping is present, e.g. the target inertia of the end-effector is different from

the inertia of the virtual system (OTT; DIETRICH; ALBU-SCHÄFFER, 2015). While the

QP formulation has been very successful over the years, generating effective control laws

for a myriad of complex robots, the fact that even simple, important objective functions,

such as local joint torque norm minimization or joint velocity norm minimization, may

induce internal motion instability indicates the need for an alternative formulation, from

the optimization perspective. The global performance of this method is limited by the

local scope of the optimization, where each instant is treated separately. The minimization

of the objective function, for some given kinematic map, is a point-wise optimization, also

labeled local optimization (PETERS et al., 2008), where the evolution of the system is

completely disregarded, and so are future states. Since the local choice of joint torques

at an instant will affect the future configuration of the robot, and thus the availability

of future feasible solutions, the cumulative effect the local optimal actions on the system

may deviate it from the optimum, for a given task, over the course of time.

In contrast with an optimal solution of an inverse kinematics problem, an optimal

control solution (PONTRYAGIN, 1987; KALMAN, 1963; BELLMAN, 1957) optimizes an

objective function that considers the cost of an action at some instant, and all successive

actions, over the entire duration of the task execution. The optimization achieved is the

16

sum of a quantity over an entire time interval, for every instant, present and future. By

nature of the optimization, undesirable phenomena arising from a cumulative choice of

actions based on point-wise optimal choices (such as self-motion and instability), would

be avoided. In fact, an optimal controller guarantees global stability. This can be easily

verified by observing that the associated Bellman Cost function of the controlled system

satisfies Lyapunov stability criterion (SALLE; LEFSCHETZ, 2012). Another advantage

is to consider the optimization of global quantities over the entire duration of the task

(e.g. total energy consumed and overall control effort). Due to the global scope, drifting

is unlikely to occur, and repeatability is expected in the joint coordinate motion when

the end-effector repeats closed trajectories, unless there exist multiple global optimal

solutions of nullspace trajectories for a given problem. In the latter case, the issue could

be easily avoided by defining a priority between solutions, through the manipulation of

the objective function. The superior performance of an optimal control approach over a

pointwise-optimization procedure has been observed by Suh and Hollerbach (1987), where

a comparison between the solutions found by local joint optimization and an optimal

controller showed that the latter outperformed the former. Optimal control theory has

been successfully applied in a vast number of fields, from trajectory spacecraft optimization

(ENRIGHT; CONWAY, 1991) to human gait prediction (ANDERSON; PANDY, 2001).

Nevertheless, due the relatively high computational cost for finding an optimal control

policy, the application of a point-wise optimization has often been justified in real-time

applications, despite of its drawbacks.

Finding an optimal control action in real-time is often unfeasible, as it involves

solving a large scale nonlinear problem (FAHROO; ROSS, 2000) or multi-point boundary

value problems (PESCH, 1989a; PESCH, 1989c). However, if it is possible to use an

approximate and optimal controller that retains some desirable traits of optimal controllers,

such as local stability and local optimality, then it can be expected to get rid from nullspace

instability and joint drifting. One class of controller that satisfies these requirements is

obtained from the State-Dependent Ricatti Equation control approach (SDRE) (CIMEN,

2008). It is essentially a sub-optimal control strategy that requires the nonlinear dynamics

and objective function to be described by state-dependent matrices, which are then used

to create state-dependent Ricatti equations, to be solved in real time. Even though the

SDRE approach lacks the global characteristics of an optimal control solution, as long as

17

the system starts sufficiently close to an optimal configuration, it should exhibit superior

performance over a QP formulation.

Although the SDRE control strategy has been extensively used in the aerospace

industry and other fields (CIMEN, 2012), its presence in robotics is less pronounced.

In 2001, Erdem and Alleyne (2001) utilized SDRE control strategy to control 2-link

underactuated pendular robot in real-time, where it outperformed the linear-quadratic

regulator (LQR) control strategy. In 2009, Watanabe et al. (2009) utilized this strategy to

control a three-link snake robot moving on a plane. More recently, Korayem et al. (2014)

have applied the concept of SDRE to different types or robotic systems, for instance, to

plan the motion of a 6-DOF cable-suspened robot considering obstacles. Korayem and

Nekoo (2015a) also employed the finite time horizon formulation of the SDRE strategy

to control a flexible manipulator when inequality constraints were involved. A general

investigation for tracking problems was also provided (KORAYEM; NEKOO, 2015b).

However, an SDRE control design that address problems where the feedback law is a

function of external forces, as is the case of impedance control, has yet to be formulated,

and this is another contribution of the present work.

Goals and Contribution

The currently growing research interest in application fields such as autonomous

service robotics and health care assistive devices leads to an increasing demand for efficient

manipulators with a load to weight ratio comparable to that of human arms. These

manipulators should be able to perform compliant manipulation when interacting with an

unknown environment, while and guaranteeing the safety of humans in physical contact

with them. In that sense, an efficient feedback control laws that is not subject to internal

instability and drifting is essential. Initially, the goal of this work was to model and

understand human arm motion within an optimal control framework, with the intention

of subsidizing the control design of health care assistive devices, where some preliminary

results are presented in Appendix A. However, as the limitation of current redundancy

resolution schemes became apparent, the goal of this work evolved.

The goal of this work is to present a novel formulation of impedance control for

redundant manipulators as a particular case of an optimal control problem. The solution

18

of this problem yields a inherently stable, efficient behavior, with repeatable motions and

configurations, thus addressing, simultaneously, all the major issues that negatively affect

the performance of redundancy resolution schemes based on quadratic optimization.

The method is validated with a simulated serial link 4-DOF planar manipulator

with a highly nonlinear, state-dependent, impedance, based on a mathematical model of a

human arm. The main contributions are:

1. The formulation of impedance control as a particular case of an optimal control

problem, addressing the problem of including external forces within the control law,

despite the fact that they can be measured, but not predicted;

2. The solution of an impedance control problem where the dimension of the task space

is different from the number of degrees of freedom of the desired behavior;

3. The presentation of a process to formulate state-dependent coefficient (SDC) matrices

related to impedance control. These SDC matrices can be used to derive a sub-optimal

closed-loop control law from the SDRE control approach;

4. The validation, via numerical simulations, that the SDRE control formulation offers

superior performance over the QP formulation for redundancy resolution. It is shown

that the SDRE formulation does not suffer either from instabilities or joint drifting,

even when the system is disturbed. The SDRE formulation guarantees performance

and stability without requiring direct control of the nullspace of the manipulator

nor introduction of additional tasks and optimization criteria.

19

2 A Brief Overview of Optimal Control

From the regulation of physiological functions (JOSHI, 2002) to modeling economic

growth (BROCK; SCHEINKMAN, 1976) to minimizing the fuel consumption of powertrains

(PFIFFNER; GUZZELLA; ONDER, 2003), optimal control problems (OCPs) are of great

interest in a myriad of fields. Solving an OCP consists into finding the best control action

that moves a system from an initial condition to a terminal, desired condition. A brief

overview of an OCP, solved via Pontryagin’s minimum principle, is presented in this

chapter. The discussion will be restricted to the OCP in Lagrange form:

I =

∫ tf

t0

L(x(t), u(t), t)dt (1)

Subject to the constraints

ẋ(t) = f(x(t), u(t), t), (2)

x(t0) = x0, (3)

ψ(x(tf)) = 0, (4)

h(x(t), u(t), t) ≤ 0. (5)

The necessary conditions that the optimal solution x∗(t) and the optimal control

policy u∗(t) must satisfy are obtained via Pontryagin’s minimum principle (PMP). First,

the Hamiltonian is defined as

H(x(t), u(t), λ) = L(x(t), u(t), t) + λT f(x(t), u(t), t) + µT h(x(t), u(t)), (6)

and an auxiliary function as

Φ = νTψ. (7)

With the PMP (PESCH, 1989b; PONTRYAGIN, 1987), the following adjoint equations

are obtained

ẋ(t)T = Hλ, (8)

λ̇(t)T = Hx, (9)

20

and the following conditions hold:

Hu = 0, (10)

Huu ≥ 0, (11)

x(tk) = x0, (12)

λ(tf)
T = Φx|(t=tf), (13)

H|tf = 0, (14)

µT h(x(t), u(t), t) = 0. (15)

The PMP converts the original OCP into a two-point boundary value problem

(TPBVP). In the field of differential equations, a boundary value problem (BVP) is a

differential equation together with a set of additional constraints, called the boundary

conditions, arising in several branches of mathematics, physics and engineering (BURTON;

MILLER, 1971; UNO; KAWATO; SUZUKI, 1989; PORSA; LIN; PANDY, 2016; HUNT-

INGTON; BENSON; RAO, 2007; GARCÍA-HERAS; SOLER; SÁEZ, 2014). Boundary

value problems are similar to initial value problem (IVP), in the sense that they involve

ordinary differential equations (ODEs). An IVP has all the conditions specified at the

same value of the independent variable in the equation (known as the “initial condition”)

while a BVP, specifically, a TPBVP, has the conditions specified at the extremes of the

independent variable in the equation (boundaries). Presently, it is much easier to solve

numerically IVPs than TPBVPs; algorithms that solve IVPs are faster and convergence is

generally not an issue. When dealing with BVPs, however, the current available algorithms,

which are mainly based on shooting methods or collocation, are not only comparably

slower, but requires a solution as an initial guess to the problem, and not only the rate of

convergence will depend on the quality of the initial guess, but the convergence itself will

also depend on it. Solving an OCP via PMP is referred as an indirect method. While it

is relatively reliable for offline applications, solving a TPBVP in real time for a complex

system is still a formidable challenge. For online applications, besides solving the TPBVP

21

in real time, one has the option of computing a set of optimal solutions for different initial

and terminal conditions, store them and create a map (x, x(tf)) 7→ u that can be accessed

offline to estimate the optimal control action (ITO; SCHROETER, 2001; MARKMAN;

KATZ, 2000; MARKMAN; KATZ, 2002). While it can yield satisfactory results, it is

unfeasible for a system with large number of states and terminal conditions.

In light of the limitations presented by numerical methods addressing TPBVP,

one can also look for direct methods. Unlike indirect methods, that are based in PMP,

in a direct method, first the continuous states, control variables and objective function

are approximated using an appropriate function approximation, (e.g. polynomial approx-

imation). Then, the coefficients of the function approximations are treated as variables

and the problem is transcribed to a nonlinear optimization problem. Thus, the system

is first discretized, and then optimized. Direct Methods are often preferred over indirect

methods due to easier convergence rate and computation. They have been successfully

used both in offline applications and real-time applications (ROSS et al., 2015). While still

challengening for systems with large number of states, recent advances both in numerical

methods and computation hardware indicate that soon online computation may be feasible

for more complex systems.

If one cannot solve the original OCP using either direct or indirect methods

sufficiently fast, it is also possible to use approximate methods, such as the Iterative Linear-

Quadratic Regulator (TODOROV; LI, 2005), the State-Dependent Ricatti Equations

(SDRE) (CIMEN, 2008) or a power series approximations of the value function of Hamilton-

Jacobi-Bellman equation (BEELER; TRAN; BANKS, 2000). In this work, the optimal

control problem is solved with the SDRE method, mainly due to its local stability,

asymptotic convergence to the optimal solution and ease of computation.

22

3 Robot dynamics and Impedance control

An impedance control strategy defines a desired behavior of the robot end-effector,

when it is under the effect of some measured external action, for every relevant degree

of freedom needed to execute the task. The desired behavior, that can be regarded as a

virtual system, is described by a system of ordinary differential equations (ODE). The

physical system is also described by another set of ODEs. Three different spaces will be

used: the virtual space Vs ∈ Rm, the joint space Vj ∈ Rn and the task space Vt ∈ Rs.

The behavior, in virtual coordinates, may be expressed as:

ÿ = fy(y, ẏ, fm(t), κ(t)), (16)

where t denotes the independent variable (i.e. time); y ∈ Rm denotes the virtual system

position vector; ẏ ∈ Rm denotes the virtual system velocity vector; fm ∈ Rm denotes

measured external actions acting on the physical system, usually contact forces; and κ

denotes the set of parameters that govern the system behavior, such as stiffness and

equilibrium position. For readability, the time dependency of the system states y and ẏ y

and ẏ is suppressed from now on.

The dynamics of the robot end-effector (i.e. the physical system), in joint coordinates,

described in matrix form, are usually expressed as

D(q)q̈ +G(q, q̇) = τ + JTp (q)fm(t), (17)

where q ∈ Rn denotes the joint space coordinates; D(q) ∈ Rn×n denotes the symmetric

positive definite inertia matrix; G(q, q̇) ∈ Rn denotes a vector that includes dissipative,

gravitational, inertial and state-dependent effects; τ ∈ Rn denotes the control input at

joint level; and JT (q) ∈ Rn×m denotes the transpose of the Jacobian that maps joint state

velocities to task space velocities.

The relationship between the task space coordinates and the joint space coordinates

is defined by the function p : q ∈ Rn 7→ xq ∈ Rs, where s ≤ n, expressed as

p(q) = xq, (18)

where xq ∈ Rs denotes the task space coordinates of the end-effector. Redundancy occurs

when s < n.

23

The function r : y ∈ Rm 7→ xy ∈ Rs, that maps the relationship between the task

space coordinates and the virtual system coordinates, is defined as

r(y) = xy, (19)

where xy ∈ Rs denotes the task space coordinates of the virtual system.

In the majority of cases, the task space coordinates coincide with the virtual system

coordinates, so equation (19) can be omitted. In this case, y can be expressed directly

as a function of q, and so can ẏ and ÿ. However, in the more general case, there might

not be a closed form expression of y = r−1(xy). More importantly, if s 6= m, then (19) is

non-invertible. It means that for some arbitrary xy, either there will be multiple solutions

for y, or no consistent solutions at all. As the latter is the case of the example provided in

chapter 7, this notation will be preserved.

The necessary control inputs to impose the desired behavior to the manipulator

end-effector, at joint level, are computed as a function of the joint space coordinates. They

are obtained by imposing a motion constraint consisting of the equivalence between the

task space coordinates of the end-effector and the task space coordinates of the virtual

system, xq = xy. Ideal impedance control is realized when the physical states of the

end-effector are equivalent to the virtual system states, when under the effect of the same

external measured action fm(t), for every time instant. The constraint can be stated as

0 = r(y)− p(q). (20)

An ideal second-order impedance controller can be represented by a set of under-

determined differential-algebraic system of equations (DAE), expressed as:
q̈ = D(q)−1(−G(q, q̇) + τ + JT (q)fm),

ÿ = fy(y(t), ẏ(t), fm(t), κ(t)),

0 = r(y)− p(q).

(21)

To find the control inputs τ , at joint level, necessary to impose the desired behavior

of the end-effector, equation (20) is differentiated twice with respect to time, yielding

Jr(y)ẏ = Jp(q)q̇, (22)

and

J̇r(y)ẏ + Jr(y)ÿ = J̇p(q)q̇ + Jp(q)q̈, (23)

24

where Jp(q) ∈ Rs×n and Jr(y) ∈ Rs×m are the jacobians of p(q) and r(y), respectively.

If there exists an unique inverse mapping r−1(xy), all y dependencies of (22) and

(23) can be replaced by explicit expressions of q. Otherwise, (16) has to be solved by

integration in order to find the values of y and ẏ.

Equation (21) can be solved for Jp(q)D(q)−1τ with equation (22) and equation (23)

by straightforward substitution, yielding

Jp(q)D(q)−1τ = Jp(q)D(q)−1(G(q, q̇)− JT (q)fm) + J̇r(y)ẏ + Jr(y)ÿ − J̇p(q)q̇ (24)

If an inverse transformation Jp(q)
+ can be found, such as Jp(q)

+Jp(q) = I, where

I is the identity matrix of multiplication, then τ can be obtained by multiplying both

sides of (24) by D(q)Jp(q)
+. However, as redundant manipulators have more degrees of

freedom (n) than the dimension of the task-space (s), Jp(q) is a rectangular, s× n matrix

that lacks an uniquely defined inverse. Thus, while the mapping of joint velocities to task

velocities may be unique, the mapping of task velocities to joint velocities is not. The lack

of an unique inverse of the Jacobian is the reason why designing controllers for redundant

manipulators is more complex than for kinematically determined ones: there are infinitely

many combinations of joint coordinates pointing to the same task-coordinates.

It is not, however, necessary to always satisfy 20 everywhere to achieve impedance

control. Asymptotic convergence toward satisfying it is often sufficient in practice. To

illustrate it, the next chapter provides an example of impedance control being realized

with an adaptative control strategy. The idea is to achieve an specified impedance despite

lacking full knowledge of the model and system parameters. The example consists of a

1-DoF exoskeleton coupled with a human arm.

25

4 Redundancy Resolution via Quadratic Optimization

In the context of impedance control, if redundancy resolution would consist, gener-

ally, of solving

Jp(q)D(q)−1τ = Jp(q)D(q)−1(G(q, q̇)− JT (q)fm) + J̇r(y)ẏ + Jr(y)ÿ − J̇p(q)q̇ (25)

for τ , solving

Jp(q)q̇ = Jr(y)ẏ (26)

for q̇, or solving

Jp(q)q̈ = J̇r(y)ẏ + Jr(y)ÿ − J̇p(q)q̇ (27)

for q̈. Which equation would be solved depends on the specific criteria adopted to define the

”best” solution. For instance, torque optimization would generally employ equation (25),

joint velocity minimization would employ equation (26) and joint acceleration minimization

would employ equation (27).

In the more general context of redundant resolution, the problem is to find at least

one solution of the linear system

Jb = c. (28)

The general solution of the system, in the least-square sense, is given by:

b = J+c+Nbp, (29)

where J+ is a generalized inverse and N is the null space projector matrix

N = (I − J+J), (30)

so that JNbp = ~0 for every bp. The product Nbp = ~0 corresponds to the homogeneous

solution of the linear system. In robotics, if b = q̇, then Nbp = ~0 is referred as the

self-motion, which does not affect the coordinates of the end-effector in the task-space. It

can be used to project additional tasks to improve the performance of the robot, at the

expense of optimizing objective function, since ||bp|| ≥ 0.

Given that equation (28) has an infinite number of solutions, it is desirable to

choose the ”best” one. More specifically, the solution of equation (28) that minimizes some

quantity σqp(b).

26

The inverse kinematics problem can be formulated as a quadratic optimization

problem by defining

σqp(b) = bTWb+ dT b, (31)

where W is a positive definite square weighting matrix and d is a vector with the same

dimension of b. This optimization problem can be solved numerically via a quadratic

programming procedure (QP). If inequality constraints are not present and d = ~0, then

the problem has an explicit solution:

J+ = W−1JT (JW−1JT)−1. (32)

In particular, if W is the identity matrix, then J+ is the Moore-Penrose pseudo-

inverse. The quantity b is usually a vector representing the states of the system, accelerations

or control inputs. Thus, the evolution of the robot configuration will be defined by J+.

With this formulation, it is assumed that the constraint (28) is always satisfied. However,

in practice, this is difficult to realize, given the presence of modeling errors and noise. As

an alternative, the constraint can be inserted in the optimization function, leading to the

quadratic optimization problem where the objective function where the following quantity

should be minimized

βbTWb+ (Jb− c)T (Jb− c). (33)

The solution of the unconstrained optimization problem is given by

b = W−1JT (JW−1JT + βI)−1c. (34)

The above method is known as the damped least-square method, and generally

produces a better performance for the system near Jacobian singularities. The lower the

value of β, the more accurate the solution, at the expense of robustness near singularities.

From now on, without loss of generality, it is assumed that the objective is to

minimize the norm of the joint torque. This is a conceptually important objective function,

as it is related to the energy consumption of acting on the system and the size of the

actuators. It is also a convenient choice to compare the QP and the SDRE formulations,

because it is known to present instabilities. It is emphasized that the QP approach does

not generally yield a solution to an optimal control problem. Otherwise, neither stability

nor drifting phenomena would be observed. Rather, it yields an optimal solution to the

27

algebraic problem of finding an optimal instantaneous action with regard to some particular

configuration (i.e. a point-wise optimization in time). Taking this into account, it is defined:

b = τ, (35)

σqp(τ) = τT τ, (36)

J = Jp(q)D(q)−1, (37)

and

c = Jp(q)D(q)−1(G(q, q̇)− JT (q)fm) + J̇r(y)ẏ + Jr(y)ÿ − J̇p(q)q̇. (38)

The point-wise optimal torque is given by Jp(q)
+c, which is known to yield an

unstable system over the course of time (HOLLERBACH; SUH, 1987; SUH; HOLLER-

BACH, 1987). Instead of compensating the shortcomings of the QP formulation with

ad-hoc solutions, such as secondary optimization criteria or introduction of PID controllers

in the joint-space, the optimization could be the sum of kt future values of τ between some

interval [t0, tkt]. If kt is sufficiently large, then it is expected that ||τ || will be bounded

and the system will not be subject to instabilities. The torque can be normalized at every

instant by weighting it with the ratio:

∆t =
tk+1 − tk

kt
. (39)

In that case, the objective function would be:

kt∑
k=0

τ(tk)
T τ(tk)∆t. (40)

Taking the limit of expression (40) for ∆t→ 0 as kt →∞, the objective function becomes

t∞∫
tk

τT τdt. (41)

Optimization of expression (41) is possible by formulating the impedance control

strategy as an optimal control problem.

28

5 Formlation of Impedance control as a Particular case of an Optimal Con-
trol Problem

An optimal control problem can be summarized as finding the best control policy

over a specified domain, according to some performance index (i.e. objective function), for

a dynamical system. Formally, the optimal control addressed here consists of minimizing a

cost function of the form:

V (x, u) =

∫ ∞
t0

L(x(t), u(t), t)dt (42)

subject to the constraints

ẋ(t) = f(x(t), u(t), t), (43)

x(t0) = x0, (44)

h(x(t), u(t)) ≤ 0, (45)

where t ∈ [t0,∞) ⊂ R denotes the independent variable; x(t) : t 7→ Rnx denotes the state

vector of the system; u(t) : t 7→ Rnu denotes the control policy; V : R×Rnx ×Rnu → R

denotes the cost function in Lagrange form, with the function L : R×Rnx ×Rnu → R

assumed to be positive and twice differentiable; function h : Rnx ×Rnu → Rnh generates

the path constraints; function f : Rnx ×Rnu ×R→ Rnx represents the system dynamics

and it is assumed to be Lipschitz continuous. If equation (42) is compared with equation

(41), it becomes evident that when the constraints described by equations (43) and (45)

are replaced by the DAE stated by equations (21), then impedance control becomes a

particular case of an optimal control problem. To ease readability, all dependencies of

time for all states and control inputs will be suppressed. The optimal control problem is

often solved based on the necessary conditions of optimality from Pontryagin’s minimum

principle (PONTRYAGIN, 1987), rather than using the necessary and sufficient conditions

from Bellman’s principle of optimality (BELLMAN, 1957) and Hamilton-Jacob-Bellman

(HJB) equations. This comes as a practical necessity, due to the complexity of solving

HJB equations via dynamic programming. By applying Pontryagin’s minimum principle,

the original problem is converted to a two-point boundary value problem (TPBVP), which

is easier to solve. However the solution is, in the strict sense, an extreme solution, rather

than a global optimal solution. Nevertheless, it is usual to address the TPBVP solution as

the optimal solution, and it will be addressed as such in this work.

29

Within optimal control theory, it is more convenient to represent the dynamics as

a system of first-order differential equations, in state-space representation. Therefore, the

system of second-order differential equations (21) is converted to a system of first-order

differential equation. Defining for the physical system:

q =
[
x1 x2 · · · xn

]
, (46)

q̇ =
[
xn+1 xn+2 · · · x2n

]
, (47)

where

x =



x1

x2
...

xn

xn+1

xn+2

· · ·

x2n



. (48)

For the virtual system, it is defined:

y =
[
z1 z2 · · · zm

]
, (49)

ẏ =
[
zm+1 zm+2 · · · z2m

]
, (50)

where

z =



z1

z2
...

zm

zm+1

zm+2

· · ·

z2m



. (51)

30

The equations of motion are also generalized to a control-affine system. In that case,

τ = P (x)u, (52)

where P (x) is a n×nu non-singular transmission matrix and u ∈ Rnu is the control vector.

It is enforced that n ≤ nu, in order to avoid under-actuation.

The following selection matrices are introduced:

S(k) =
[
Ik 0k,k

]
, (53)

and

S⊥(k) =
[
0k,k Ik

]
, (54)

where Ik is a k × k multiplication identity matrix and 0k,k is a k × k null matrix. Matrix

S(k) extracts the positions from a state vector with span of 2k and matrix S⊥(k) extracts

the velocities of a state vector with span of 2k.

The mappings given by equations (18) and (19) are converted to a nonlinear

mapping r ∈ Rm 7→ p ∈ Rn representing equation (20), given by the equation:

r(S(m)z) = p(S(n)x). (55)

The dynamical equations of the robot end-effector is given by:

ẋ = f(x, u, fm(t)), (56)

where

f(x, u, fm(t)) =



xn+1

xn+2

...

x2n

fp(x, u, fm(t)),


, (57)

and

fp(x, u, fm(t)) = D−1(x)(JTp (x)fm(t) + P (x)u−G(x)). (58)

For the virtual system, it is defined that:

fv(z, fm(t), κ(t)) =



zm+1

zm+2

...

z2m

fy(z, fm(t), κ(t))


, (59)

31

and

ż = fv(z, fm(t), κ(t)). (60)

After collecting equations (56), (59) and (55), the optimal control problem can be

formulated as

Minimize

V [u, x] =

∫ tkt

t0

L(x, u, t)dt (61)

subject to

ẋ = f(x, u, fm(t)), (62)

ż = fv(z, fm(t), κ(t)), (63)

x(t0) = x0, (64)

p(S(n)x)− r(S(m)z) = 0, (65)

z(t0) =

 p(S(n)x0)

J(x)S⊥(n)x0

 , (66)

h(x, u) ≤ 0. (67)

Note that equation (56) must be solved together with equation (59). In order to find

the optimal control policy, the entire structure of the virtual behavior must be known, and

explicitly stated. That is because the optimal control policy must consider how the virtual

system will evolve over the course of time. It is the main characteristic of the impedance

control strategy being formulated as an optimal control problem: the configuration of the

physical system at some specified time will be selected based on the anticipation of all

future states it must track.

Inserting the virtual system states as constraints in an optimal control problem

may be simple from the theoretical point of view. However, there are important practical

drawbacks: it increases the difficulty of computing the solution; it reduces the space of

feasible solutions; and, more importantly, due to modelling errors and disturbances, the

constraints will very likely be violated. If the constraints cannot be always satisfied, it

is not possible to guarantee neither a consistent numerical solution nor system stability.

32

If, instead, it is assume that the constraints can be violated in practice, it is expedient

to include them as another criteria in the objective function. However, in order to avoid

interference between satisfying the constraint function and optimizing the original function,

the constraint function must have a significant large weight, which may lead to numerical

ill-conditioning. Also, since the original constraint will no longer be always satisfied, for

every t, it is also prudent to include higher derivatives of the constraint in the objective

function, as the end-effector should be as close as possible to the intended behavior with

respect to position, velocities and accelerations. To that end, a component of the cost

function is defined as some metric σ : (x, z, t) 7→ [0,∞), measuring a distance composed

by the states of end-effector and the states of the virtual system, when under the effect of

some action fm(t), during the time interval [t0,∞). When that distance is minimized, the

end-effector will be as close as possible to the desired behavior. Without loss of generality,

the squared L2-norm will be utilized as the metric function.

The jacobians of (55) and their derivatives with respect to time must be obtained.

The Jacobian of p becomes

Jp(x) =
∂p

∂(S(n)x)
, (68)

and the Jacobian of r becomes

Jr(z) =
∂r

∂(S(m)z)
. (69)

Noticing that

S(n)ẋ = S⊥(n)x, (70)

and

S(m)ż = S⊥(m)z, (71)

the derivative of Jacobians (68) and (69) with respect to time are given by

J̇p(x) =
∂Jp(x)

∂(S(n)x)
S⊥(n)x, (72)

J̇r(z) =
∂Jr(z)

∂(S(m)z)
S⊥(m)z, (73)

The position error vector is defined as the function

ε0(x, z) = p(S(n)x)− r(S(n)z). (74)

33

The first derivative of expression (74) with respect to time is the velocity error vector,

given by

ε1(x, z) = J(x)S⊥(n)x− Jr(z)S⊥(m)z, (75)

and the second derivative with respect to time is the acceleration error vector, given by

ε2(x, z, t) = J̇(x)S⊥(n)x+ J(x)fp(x, u, fm(t))− Jr(z)fv(z, fm(t), κ(t))− J̇r(z)S⊥(m)z.

(76)

If either ε0, ε1 or ε2 equals ~0 for every t ≥ t0, the task space behavior of the physical

system (i. e. end-effector) becomes identical to the task space behavior of the virtual

system. The distance metric σ is defined as

σ(x, z) = λ0ε0(x, z)
T ε0(x, z) + λ1ε1(x, z)

T ε1(x, z) + λ2ε2(x, z, t)
T ε2(x, z, t) (77)

where [λ0, λ1, λ2] ∈ R3
+, leading to the optimal control problem

Minimize

V =

∫ tf

t0

β L(x, u, t) + σ(x, z, t)dt (78)

subject to

ẋ = f(x, u, t),

ż = fv(z, t),

x(t0) = x0,

z(t0) = z0,

β > 0 | β ∈ R

h(x, u) ≤ 0.

where β is the weight given for a secondary optimization criteria, e.g. control effort

minimization, joint compliance, etc.. As long as ‖[λ0, λ1, λ2]‖ � β, the behavior of the

end-effector will be similar to the desired behavior. Notice that the initial condition

z(t0) can be selected freely, as the end-effector is no longer constrained. If multiple tasks,

with hierarchical relevance, are to be executed, it is possible to dismember L(x, u, t) into

34

successive sub-functions, each representing a sub-task, where the weights are selected

according to task priority.

An optimal controller has the feature of taking advantage of known external actions

to optimize the objective function, for the whole time interval considered. Therefore, the

optimal solution is not only a function of the instantaneous value of fm(tk) (at time tk),

but also of its future values. Evidently, the future time-history of fm is not known, so in

principle it is not possible to obtain an actual optimal solution. Luckily, the future history

of fm does not necessarily intervene with the minimization of σ(x, z, t). Since fm has an

algebraic relationship with u, there always exists some uc that can nullify the effect of fm

on the system. Under the assumption that the transmission matrix P (x) is non-singular,

the expression of this counter-action is given by

uc = −P (x)+JTp (x)fm(t). (79)

That, of course, is only true if u does not saturate (HÄRKEGÅRD; GLAD, 2005).

Even if the minimization of σ(x, z, t) is not influenced by the values of fm(t) for

t > tk, the same is not true for the minimization of L(x, u, t). Indeed, the internal motions

of the redundant degrees of freedom at time tk will depend on what it is assumed about

the future of fm(t). An optimally controlled system (56) is not causal: the present values of

x will depend on the future values of fm. Therefore, in practice it is impossible to develop

truly optimal impedance controller that can minimize some arbitrary function L(x, u, t),

even when satisfying σ(x, z, t) = 0. Even so, an impedance controller can still be obtained

by assuming that the future expectation of fm(t) is a constant equal to fm(tk), at the

present instant tk, since the optimality of σ(x, z, t) does not depend on the future values

of fm(t).

So far, the formulation of impedance control as an optimal control problem presented

here yields an open-loop solution for u. An open-loop controller cannot be used for

applications that use impedance control, as the system is always under the effect of

non-negligible external actions. A proper closed-loop optimal controller can be realized as

a recursive open-loop optimal controller (ROSS et al., 2015), extending the time horizon

towards infinity (i.e. tf → ∞). The initial conditions x(tk) and z(tk) are set as current

end-effector and virtual states, respectively, while initial time tk is set as the current time.

The problem is solved from tk towards infinity, and the computed values of u(tk) are

35

applied on the system at time tk. At time tk+1 = tk + ∆t, the current physical states

x(tk+1) and virtual states z(tk+1) are set as the initial condition; tk+1 is set as the initial

time; once again, the problem is solved, from tk+1 towards infinity.

If the physical system is autonomous, the controller can still achieve the task

successfully. In this case, initial time can be forgone and the optimal control problem

can be solved at every step from tk = 0 towards infinity. In practice, a large value for

the terminal time is sufficient to compute an accurate infinite-time horizon solution. If

solving the optimal control problem in real-time is unfeasible, as it is often the case, offline

computation can be carried out and stored; u may be approximated by a pre-computed

look-up table (BEELER; TRAN; BANKS, 2000), a task that may require very long

computations for a system with multiple degrees of freedom. In this work, the problem

will be solved with the state-dependent Ricatti equation (SDRE) approach, presented in

the next chapter, as it is a method that retains local asymptotic stability of an optimal

control policy and asymptotically optimizes the objective function. It has the necessary

characteristics to overcome the issues associated with the QP control formulation.

36

6 State-Dependent Ricatti Equations

The SDRE strategy, first proposed by Pearson (1962), provides an algorithm

for solving nonlinear optimal control problems. The method entails the factorization of

equations (56), (59) and (42) into the product of a matrix with state-dependent coefficients

(SDC) and the state vector. This factorization brings the system to a (non-unique) linear

structure having state-dependent coefficient (SDC) matrices, with the objective function

described by a quadratic-like structure. An algebraic Riccati equation (ARE) using the

SDC matrices is then solved on-line to give a sub-optimal control law. Cloutier (1997)

shows that the SDRE feedback scheme for the infinite-time nonlinear optimal control

problem, with control terms that appear affine in the dynamics and quadratic in the cost,

is locally asymptotically stable. It is also shown that the Pontryagin necessary conditions

for optimality are satisfied asymptotically by the algorithm. So, if the system starts at a

position where σ(x, z, t) is sufficiently close to zero, it can be expected that the SDRE

approach will be able to solve the optimal control problem satisfactorily. The application

of the SDRE strategy requires the system to be described with the following structure:

ẋRi = F (xRi, uRi), (80)

F (xRi, uRi) = A(xRi)xRi +B(xRi)U, (81)

v(xRi, uRi) = xTRiQ(xRi)xRi + UTR(xRi)U + 2xTRiN(xRi)U, (82)

where xRi denotes the state vector; uRi denotes the control vector; A(xRi) and B(xRi)

are SDC matrices associated with the system equations; v(xRi, uRi) is the instantaneous

cost-function, Q(xRi) is a positive definite weighting matrix and R(xRi) is a positive

definite weighting matrix.

Additionally, the equations of the system must be factorized in a way that no

singularities are generated in either A(xRi), B(xRi), Q(xRi) or R(xRi) (e.g. if, for a single

state system, fk(xk, uk) = cosxk+uk, then Ak(xk) = cos(xk)/xk is not a valid factorization

when xk = 0). Cimen (2012) provides some techniques to help design the SDC matrices,

so that it is compatible with the SDRE framework. The SDC matrices are non-unique,

and the performance of the controller will depend on the choice of parametrization. The

37

selection of the parametrization for a general system, and the analysis of how it affects

the performance of the system, is outside the scope of this work.

If bias terms are present (i.e. F (0, 0) 6= 0), they are factorized with the help of a

newly-created state γ ∈ R satisfying

γ̇ = −αγ, (83)

and

γ(t0) > 0 (84)

where α ∈ R+.

As an example, if there is a function such as

f(xa) = cos(xa) + sin(xa) + xaua, (85)

it can be factorized as

f(xa) = a1xa + a2γ + baua, (86)

where

a1 = sin (xa)/xa, (87)

a2 = cos(xa)/γ, (88)

and

ba = xa. (89)

The SDC matrices will be, in this trivial example,

Aa(xRia) =

a1 a2

0 −α

 , (90)

and

Ba(xRia) =

ba
0

 , (91)

with the state vector

xRia =

xa
γ

 . (92)

In order to define the appropriate weight matrices for the objective function, first

an additional ”error” state vector is defined, expressed as

e0 = p(S(n)x)− r(S(m)z), (93)

38

Then, an extended state vector is defined as

xRi =


x

z

e0

γ

 . (94)

Differentiating expression (93) with respect to time, the following equation is obtained:

ė0 = J(x)S⊥(n)x− Jr(z)S⊥(m)z. (95)

Since, in order to solve ARE, the system must be stabilizable at every point, sham

controls are created acting on the error state (ue ∈ Rm) and virtual system equations

(uv ∈ Rm).

Defining:

E0 =
[
0m,n J(x) 0m,m −Jr(z) 0m,m 0m,1

]
, (96)

the equations of the error-states will be given by

ė0(x, u) = E0


x

z

e0

γ

 + εue, (97)

where ε is a very small number that aids the numerical computation of the SDRE solution.

With the appropriate value of ε and appropriate weight r(x), the effect of the controls on

the virtual system and error functions should be negligible. The extended control vector

becomes:

uRi =


u

uv

ue

 . (98)

The extended system equation is given by:

F (xRi, uRi) =


fp(xRi, uRi)

fv(xRi) + εuv

ė0(x, u)

−γ

 . (99)

39

An SDC matrix A(xRi), specific to the system, is composed by the submatrices:

A(xRi) =


Ax(xRi) 02n,2m 0n,m Axγ (xRi)

02m,2n Az(xRi) 0m,m Azγ (xRi)

E0

01,2n 01,2m 01,m −α

 , (100)

where Ax(xRi) is a SDC matrix including exclusively the physical system equations; Az(xRi)

is a SDC matrix including exclusively the virtual system equations; Axγ (xRi) and Azγ (xRi)

contain all bias terms multiplied by 1/γ. None of the sub-matrices contain ill-defined

coefficient for xRi = 0.

Since the system is control-affine, the SDC matrix B(xRi) is a straightforward

factorization with respect to U:

B(xRi) =


D−1(xRi)P (x) 0n,m 0n,m

0m,n εIm 0m,m

0m,n 0m,m εIm

 . (101)

The cost function σ(x, u), responsible for imposing the desired behavior, is defined

as

σ(xRi, uRi) = xTRiQimp(xRi)xRi + uTRiRimp(xRi)uRi + 2xTRiNimp(xRi)uRi, (102)

where

Qimp(xRi) = λ0Qe0(xRi) + λ1Qe1(xRi) + λ2Qe2(xRi), (103)

Nimp(xRi) = λ2Ne2 , (104)

Rimp(xRi) = λ2Re2 . (105)

Since the position error, e0, is a system state, Qe0 is defined as

Qe0 =


02n+2m,2n+2m 02n+2m,m 02n+2m,1

0m,2n+2m Im 0m,1

01,2n+2m 01,m 0

 . (106)

Now, consider that

e1 = J(x)S⊥(n)x− Jr(z)S⊥(m)z = E0xRi. (107)

40

Therefore

eT1 e1 = xTRiE
T
0 E0xRi. (108)

Thus, Qe1 is given by

Qe1 = ET
0 E0. (109)

For e2, consider that

e2 = Ė0xRi + E0F. (110)

After some manipulation, the following expression is obtained:

eT2 e2 = xTRiQe2xRi + 2xTRiNe2uRi + uTRiRe2uRi, (111)

where

Qe2 = ĖT
0 Ė0 + ĖT

0 E0A+ ATET
0 Ė0 + ATET

0 E0A, (112)

Re2 = BTET
0 E0B, (113)

Ne2 = ĖT
0 E0B. (114)

In the simulation provided in section 7, the following control-effort cost, to be

optimized over the course of time, is considered:

L(uRi) = uTRi

 βIn 0n,2m

02m,n ηI2m

uRi, (115)

where β is a small, positive real number and η is a large, positive real number. As η

becomes larger, optimizing the above expression becomes equivalent to optimize expression

(36). In this work, it is set: η = 1/ε. The instantaneous cost function is expressed as:

v(xRi, uRi) = σ(xRi, uRi) + L(uRi). (116)

The SDRE is expressed as

A(xRi)
TZ(xRi) + Z(xRi)A(xRi)− (Z(xRi)B(xRi)+

N(xRi))R
−1(xRi)(B

T (xRi)Z(xRi) +NT (xRi)) +Q(xRi) = 0
(117)

The feedback gain that minimizes the expression

V (xRi, uRi) =

∫ ∞
0

v(xRi, uRi)dt (118)

41

is

uRi = −K(xRi)xRi, (119)

where

K(xRi) = R−1(xRi)(B
T (xRi)Z(xRi) +NT (xRi)), (120)

and Z(xRi) is a stabilizing solution of equation (117), for a given xRi.

42

7 Implementation of QP and SDRE in a Redundant Manipulator

In order to compare the performance of both approach with a practical application, a

redundant manipulator behaving as a simplified human arm model (BURDET; FRANKLIN;

MILNER, 2013) was modelled and simulated under different conditions. The robot consisted

of a planar 4-DOF serial link manipulator, as depicted on fig. 3b. The desired behavior of

the robot end-effector is inspired on human arm motion. It consists of a virtual 2-DOF serial

manipulator representing the shoulder-elbow joints (depicted on fig. 3a), with asymmetrical

joint stiffness and damping, that varies according to external disturbances applied on the

limbs. The wrist and hand are rigidly attached to the forearm, and which will be referred

as the virtual end-effector. The virtual elbow and shoulder equilibrium positions, denoted

as θet and θst, respectively, move in a cyclic fashion. The position profile of each virtual

joint equilibrium position is depicted in fig. 1. The generation of the position profile of each

joint angle is based on the experiments and numerical simulations presented in Appendix

A. A sinusoidal force is applied on the robot end-effector, with a profile according to fig. 2.

The robot end-effector translates the forces to the virtual end-effector, interfering with

the arm motion. The resulting nonlinear impedance of the virtual human arm resists the

interference. The robot end-effector task is to behave exactly like the virtual human arm,

as it moves under the external forces (fig. 3c). The optimization criteria is to minimize the

sum of squared joint torques and the sum of the squared error between the desired and the

actual behavior. Additionally, an inertia-weighted torque optimization is also considered

for the QP approach, as it is known to yield better than pure torque optimization.

The task space for both the robot end-effector and virtual end-effector is an

horizontal Cartesian plane. The task-coordinates are the horizontal position and end-

effector orientation, defined by
[
xq yq φq

]T
for the robot end-effector and

[
xθ yθ φθ

]T
for the virtual end-effector.

The mapping p(q) : q 7→
[
xq yq φq

]T
, between the joint coordinates and the

task-space coordinates of the robot end-effector, is expressed as

p(q) =


L1 cos(q1) + L2 cos(q2) + L3 cos(q3) + L4 cos(q4)

L1 sin(q1) + L2 sin(q2) + L3 sin(q3) + L4 sin(q4)

q4

 (121)

43

Figure 1 – The equilibrium positions of the virtual shoulder and virtual elbow, over time.

Source: Guilherme Phillips Furtado and Arturo Forner-Cordero, 2018

Figure 2 – The external force applied at the robot end-effector, fm, which is ”transmitted” to
the virtual end-effector. Fx and Fy correspond, respectively, to the horizontal and
vertical force directions.

Source: Guilherme Phillips Furtado and Arturo Forner-Cordero, 2018

44

(a) Illustration of the adopted
2-DOF human arm model.

(b) Illustration of a 4-
DOF manipulator.

(c) Illustration indicating
how the 2-DOF hu-
man arm model is con-
strained to the 4-DOF
manipulator.

Figure 3 – An external force, fm, is applied at the robot end-effector. This force is transferred
to the virtual model that reacts according to its defined dynamics. This response
is translated into motion of the robot end-effector. Since the robot end-effector is
constrained to the virtual end-effector, both will present the same apparent impedance
(or admittance) to the environment.

Source: Guilherme Phillips Furtado and Arturo Forner-Cordero, 2018

45

where Lk and qk denote, respectively, link lengths and joint coordinates for k = 1, 2, 3, 4

(fig. 3b)

The mapping r(θ) : θ 7→
[
xθ yθ φθ

]T
, between the virtual joint coordinates and

virtual task-space coordinates of the virtual end-effector, is expressed as

r(θ) =


Ls cos(θs) + Le cos(θe)

Ls sin(θs) + Le sin(θe)

θe

 , (122)

where Ls and Le represent, respectively, upper and lower arm lengths, with θs and θe

denoting, respectively, shoulder and elbow angles (fig. 3a).

Note that in the ideal case, both equations (121) and (122) map their arguments

to the same point. In state-space representation, the virtual joint angles and velocities are

denoted as 
θs

θe

θ̇s

θ̇e

 =


z1

z2

z3

z4

 (123)

The dynamical equation of the virtual system is

ż =


z3

z4

M−1
v (−Kv

z1 − θst
z2 − θet

− Cv
z3 − θ̇st
z4 − θ̇et

−Gv + JTr fm +

θ̈st
θ̈et

)

 , (124)

where

Mv =

 0.263 0.120 cos(z2 − z1)

0.120 cos(z2 − z1) 0.134

 (125)

Kv =

10.8 + 3.18|τs| 2.83 + 2.15|τe|

2.51 + 2.34|τe| 8.67 + 6.18|τe|

 (126)

Cv =

c11 c12

c21 c22

 (127)

c11 = 0.52
√

2.84 + 0.836|τs|, (128)

c12 = 0.52
√

cos (z2 − z1)(0.334 + 0.258|τe|), (129)

46

c21 = 0.52
√

cos (z2 − z1)(0.301 + 0.281|τe|), (130)

c22 = 0.52
√

1.162 + 0.828|τe|. (131)

τs
τe

 = JTr fm (132)

and

Gv =

 0.1328 sin (θs − θe)θ̇2e
−0.1328 sin (θs − θe)θ̇2s

 . (133)

The physical system is a 4-DOF ideal serial manipulator with diagonal moment

of inertia tensor and negligible joint stiffness. All parameters used in the simulations are

presented on table 1.

Table 1 – Parameter Values of the Human Arm Model and 4-DoF Serial Manipulator

Parameter Value unit
[λ0 λ1λ2] [500 1 0]
ε 0.001
α 0.001
β 0.05
[L1 L2 L3 L4] [0.25 0.25 0.34 0.08] m
[Ls Le] [0.31 0.42] m
Linear friction at robot joints 0.4 Ns/m
Mass of L1 0.2 kg
Mass of L2 0.2 kg
Mass of L3 0.272 kg
Mass of L4 0.064 kg
Moment of inertia of L1 0.0031 kgm2

Moment of inertia of L2 0.0031 kgm2

Moment of inertia of L3 0.0079 kgm2

Moment of inertia of L4 1.0240e-04 kgm2

7.1 Results: Comparison Between QP and SDRE approaches

Four simulations were carried out in order to compare the performance between

QP formulation and SDRE formulation. They used MATLAB (The Mathworks, Inc.,

47

Natwick, MA, USA) running in a computer with an Intel i7-6700HQ processor at 2.60GHz

clock rate. A fixed step 4th-order Runge-Kutta algorithm was used to find the numerical

solutions of equations (17) and (124), with a stepsize of 10−4. The solution of equation

(117) is found with the MATLAB function care(). The gain matrix K(xRi) was updated

every 10−2 s. The solution of equation (117) is found with the MATLAB function care().

Simulation I (fig. 8 and 5) compares the performance between the QP formulation and the

SDRE formulation. Simulation II (fig. 6) shows the performance the QP formulation with

an inertia-weighted torque optimization. Simulation III (fig. 7) presents the performance

of the SDRE formulation when the system starts outside the desired behavior, under

random uniformly distributed torque disturbance of 0.1Nm. Simulation IV (fig. 8) aims to

investigate the repeatability of joint motions, when the motion in the task space is cyclic.

48

Simulation I-Task Space

(a) Position of the robot end-effector and virtual
end-effector. Control inputs obtained via QP.

(b) Position of the robot end-effector and vir-
tual end-effector. Control inputs obtained via
SDRE.

(c) Orientation of the robot end-effector and virtual
end-effector. Control inputs obtained via QP.

(d) Orientation of the robot end-effector and vir-
tual end-effector. Control inputs obtained via
SDRE.

Figure 4 – Simulation I: Comparison between performances of the system with the QP (a and c)
and SDRE (b and d) strategies. The robot starts at q(0) = [−2.65 −4.42 0.68 2.60]T ,
and the virtual system starts at θ(0) = [0.52 2.62]T . Under QP formulation, the
system demonstrates instability, which is not observed when the controls are obtained
via the SDRE approach.

Source: Guilherme Phillips Furtado and Arturo Forner-Cordero, 2018

49

Simulation I-Joint Space

(a) Joint angles of the robot with control inputs
obtained via QP.

(b) Joint angles of the robot with control inputs
obtained via SDRE.

(c) Control inputs computed via QP formula-
tion.

(d) Control inputs computed via SDRE formu-
lation.

Figure 5 – Simulation I: Comparison between performances of the system with the QP (a and c)
and SDRE (b and d) strategies. The robot starts at q(0) = [−2.65 −4.42 0.68 2.60]T ,
and the virtual system starts at θ(0) = [0.52 2.62]T . When the controls are obtained
via QP formulation, the joint angles drift away, and very high torque norms are
observed. On the other hand, when the system is controlled via SDRE formulation,
the joint angles and torque norms remain bounded.

Source: Guilherme Phillips Furtado and Arturo Forner-Cordero, 2018

50

Simulation II

(a) Position of the robot end-effector and vir-
tual end-effector. QP, with inertia-weighted
torque optimization.

(b) Orientation of the robot end-effector and vir-
tual end-effector. QP, with inertia-weighted
torque optimization.

(c) Joint angles of the robot with control in-
puts obtained via QP, with inertia-weighted
torque optimization.

(d) Control inputs computed via QP formula-
tion, with inertia-weighted torque optimiza-
tion.

Figure 6 – Simulation II: Behavior of the system with QP formulation, with inertia-weighted
torque optimization criterium. Initial conditions are identical to Simulation I.

Source: Guilherme Phillips Furtado and Arturo Forner-Cordero, 2018

51

Simulation III

(a) Position of the robot end-effector and virtual
end-effector, when the robot starts far from
an optimal initial condition and its joints
are disturbed, under SDRE formulation.

(b) Orientation of the robot end-effector and
virtual end-effector, when the robot starts
far from an optimal initial condition and
its joints are disturbed, under SDRE formu-
lation.

(c) Joint angles of the robot end-effector, when
it starts far from an optimal initial condition
and its joints are disturbed, under SDRE
formulation.

(d) Computed control inputs via SDRE formu-
lation, when the robot is disturbed and far
from an optimal initial condition.

Figure 7 – Simulation III: Behavior of the system under perturbations, with initial conditions
away from the optimal (q(0) = [π π 0 π]T and θ(0) = [0.52 2.62]T). The joints are
disturbed with a random uniformly distributed torque of amplitude 0.1Nm and zero
mean.

Source: Guilherme Phillips Furtado and Arturo Forner-Cordero, 2018

52

Simulation IV

(a) Position of the robot end-effector and vir-
tual end-effector, when no external forces
or disturbances are applied, under SDRE
formulation.

(b) Orientation of the robot end-effector and
virtual end-effector, when no external forces
or disturbances are applied, under SDRE
formulation.

(c) Joint angles of the robot end-effector, when
no external forces or disturbances are ap-
plied, under SDRE formulation.

(d) Computed control inputs when no external
forces or disturbances are applied, under
SDRE formulation.

Figure 8 – Simulation IV: Behavior of the system when when no external forces or disturbances
are applied with initial conditions: q(0) = [−2.65 − 4.42 0.68 2.60]T and θ(0) =
[0.52 2.62]T . The robot executes repeatable motions on the joint space, even without
considering a repeatability criterion in the objective function.

Source: Guilherme Phillips Furtado and Arturo Forner-Cordero, 2018

53

7.2 Discussions

The first simulation compared the method proposed in this work, based on the

SDRE, with the more frequently used quadratic programming (QP) approach. In figures 4

and 5, the comparison between system performance with the QP (a and c) and SDRE (b and

d) formulation strategies is presented. The robot starts at q(0) = [−2.65 −4.42 0.68 2.60]T ,

and the virtual system starts at θ(0) = [0.52 2.62]T . Under QP formulation, the system

demonstrates instability, which is not observed when the controls are obtained via the

SDRE approach. While in the SDRE approach the virtual and robot end-effector positions

follow the same paths, in the QP approach they diverge. Moreover, the SDRE joint angles

and torques (control inputs) are bounded while in the QP approach the joint angles drift

and the torques have very large peaks (fig. 5).

The instability of joint torque optimization with QP control formulation is a well-

known problem. In order to alleviate it, a dynamically consistent pseudo-inverse can be

used instead of the Moore-Penrose pseudo-inverse. It is equivalent to a inertia-weighted

Moore-Penrose pseudoinverse, where W = D−1(q). The second simulation (fig. 6) aimed

to provide the results of the inertia-weighted torque optimization. Despite not being the

original optimization criterium, it offers better performance than pure torque optimization,

in the context of QP. However, it still presented very high peak torques, and slowly diverged

from the desired behavior. It also did not display repeatability, as it can be seen in figure

6.

The third simulation was performed to illustrate the behavior of the SDRE approach

when it starts far from the optimal initial condition (q(0) = [π π 0 π]T and θ(0) =

[0.52 2.62]T). In addition, the joints are disturbed by a random uniformly distributed

torque of amplitude 0.1Nm and zero mean. The robot remained stable during the entire

duration of the simulation, and no drifting was observed, as shown in figure 7. These

results shows a starking contrast with the QP formulation. Stability was assured, even in

the presence of significant disturbances, without requiring any specific nullspace control.

It can be said that nullspace control, a major control problem of redundant robots, is

completely unnecessary with the SDRE formulation. Note that these results were obtained

with nonlinear inertia-shaping of the robot. In essence, the SDRE formulation trivializes

redundancy resolution.

54

The fourth simulation is aimed at validating the behavior of the SDRE during the

execution of repetitive motions. In this simulation, no external forces or disturbances were

applied (Initial conditions: q(0) = [−2.65 − 4.42 0.68 2.60]T and θ(0) = [0.52 2.62]T).

The robot executes repeatable motions in the joint space, even without considering a

repeatability criterion in the objective function. This is equivalent to an infinite-horizon

state-tracking problem, as the desired trajectory of the end-effector is predefined, with

no external forces acting on the virtual system. Numerous works have emerged over

the years developing methods capable of imposing repeatable joint motions with the

QP formulation (MUSSA-IVALDI; HOGAN, 1991; ROBERTS; MACIEJEWSKI, 1993;

ROBERTS; MACIEJEWSKI, 1994; KLEIN; AHMED, 1995; BOWLING; HARMEYER,

2010; ORIOLO; CEFALO; VENDITTELLI, 2017). Unlike with the SDRE formulation,

repeatability in QP formulation can only be achieved by exploiting the structure of

the dynamic equations of the system or imposing additional optimization criteria. Here,

once again, it can be seen that the SDRE formulation completely overshadows the QP

formulation.

Due to the high computational costs of obtaining an optimal control policy in

real time, obtaining an approximate optimal control policy via SDRE formulation was

opted. In comparison with the QP formulation, the SDRE approach requires the additional

computation of four weighting matrices and appropriate factorization of the system

dynamics. During the simulations, the evaluation of the gain matrix K(xRi) took, on

average, 5× 10−3s. However, the gain matrix can be updated at a slower rate than the

input computations (u = −K(xRi)xRi). In the simulations, the gain matrix was updated

every 10−2 s, while input computation was done at every time step (10−4). This setup

can immediately benefit from a parallel computation scheme, as K(xRi) is computed

independently, and at a slower rate, than u = −K(xRi)xRi.

The main advantages of the SDRE over QP formulation are local asymptotic

stability of the algorithm and the asymptotic convergence to an optimal solution. Even

though the SDRE control is not truly optimal, it still takes into consideration the future

costs of the instantaneous choice of action. In contrast, the QP approach, being a point-wise

optimization with respect to time, chooses the instantaneous actions without regarding

to where the system is heading. As a consequence, in the simulations, when the control

inputs were computed via QP formulation, the system became unstable, failing to fulfill

the task (fig. 5). On the other hand, when the control inputs were computed via the SDRE

55

formulation, the system retained stability in every scenario tested, even when the it was

under external disturbances and started relatively far from an optimal initial condition

(fig. 7). The required torques were also bounded in every scenario, remaining below 12Nm

most of the time (fig. 5d, fig. 7d and fig. 8d). However, in fig. 7d, when the system started

far away from an optimal position, an initial peak of 60Nm was observed, decaying to

0Nm in less than 0.2s. This would require a torque rate of change above 300Nm/s, which

might be difficult to realize in practice. This rate of change is due the large number of

relation ‖[λ0,λ1,λ2]‖
β

, which greatly penalizes the system when it is outside the optimal

position. This issue could be alleviated by adopting a time-varying value of β, starting

close to ‖[λ0, λ1, λ2]‖ and then decaying to the desired value. By comparing fig. 5b and

fig. 7c, it can be noted that the configuration of the robot is also a function of the initial

position. In practice, if there is some preferred configuration, then it is recommended to

start close to that configuration. In simulation III (fig. 8), all external measured forces

and disturbances were removed, in order to demonstrate that the SDRE formulation also

achieves repeatable, bounded joint motion if the task is also cyclic.

There are, however, some drawbacks intrinsic to the SDRE formulation. They are:

1. r(xRi) must be always positive semi-definite. It means that optimizing some quantity

related to the control inputs is compulsory. For instance, if the optimization criteria

were solely the minimization of the L2-norm of the joint velocities (together with

error minimization), then the SDRE approach could not be used.

2. Because r(xRi) must be positive semi-definite, the optimization weights were chosen

such as ‖[λ0, λ1, λ2]‖ � β, in order to better satisfy equation (21). However, this

relation tends to leave the problem ill-posed. Thus, the maximal tracking accuracy

of the desired behavior is limited to the smallest relationship β
‖[λ0,λ1,λ2]‖ achievable

with numerical computation of the solution of (117).

3. The pair A(xRi) and B(xRi) must be point-wise stabilizable. In the application

provided, the non-linear virtual system and error state equations did not originally

satisfy this condition. In order to address this issue, an extended control vector

(98) that made them stabilizable everywhere was created. It was necessary assure,

however, that their effect on the overall system was virtually negligible.

If any of the aforementioned issues cannot be addressed satisfactorily, the SDRE

approach cannot be used. In the overwhelming majority of cases, however, it should be

56

possible to circumvent them by adopting strategies similar to the ones presented in this

work.

57

8 Conclusions and Future Works

The first part of this dissertation deals with the formulation of an impedance control

problem as an optimal control problem. In this case, the impedance control of a redundant

manipulator is transformed into an optimal control problem, where the main objective is

to minimize a distance between the actual states of the robot end-effector and its desired

states, the latter characterized by a virtual system. In essence, the controller forces the

physical system to track some desired time-varying set of states, which are generated by

simulating a virtual system.

The second part of this dissertation presents a procedure to convert the resulting

optimal control problem into a structure compatible with the SDRE control approach. It

consists of: 1- creating additional states and control inputs that facilitates the factorization

and solution of the SDRE; and 2- presenting the SDC matrices that translate the optimal

control problem into an impedance controller. The proposed formulation can also address

redundancy resolution in infinite-horizon state-tracking problems, simply by prescribing a

predefined trajectory to the virtual system.

The comparison between the QP formulation and SDRE formulation was illustrated

with the numerical example of a 4-DOF redundant serial manipulator. The task was

defined to be a nonlinear impedance that was also a function of the external forces applied

to the system. The optimization criterion, sum of the squared joint torque, was chosen

because of its importance, both from theoretical and practical points of view. From a

theoretical perspective, the the sum of squared joint torques represents a measure of the

energy consumption, whose minimization is a principle often found in biological motion.

It is also associated with the size, power and cost of actuators required to control the

system. This choice of criterium is also motivated to illustrate the shortcomings of the QP

approach, which presented joint and task space instability. This result is compatible with

the observations of Suh and Hollerbach (1987) and the interpretations of the theoretical

results from O’Neil (2002).

Unfortunately, the performance of an optimal controller is strongly tied to the quality

of parameter estimation. The application of SDRE in a system where the parameters

governing the dynamical system are unaccounted, unknown or change over time (e.g.

dry friction), will not assure the desired characteristics of an optimal controller. Under

58

these circumstances, it will be necessary to combine different types of controller together.

Future work should focus on how to improve and combine different methods to assure

the robustness of the manipulators. Depending on the system, one attractive solution

would be the adoption of a cascated control approach. For example, in a conventional

manipulator actuated with direct drive motors, the ideal states could be generated by the

optimal or sub-optimal controller, and then be tracked by a conventional PID controller

with adjustable gains. In more complex situations, where redundant actuation is present,

such as with variable stiffness actuators, a combination of an optimal controller with a

robust nonlinear controller could be more appropriate. One attempt to do so is presented

in (PUKDEBOON; KUMAM, 2015), where the authors combined sliding-mode control

with an optimal controller for spacecraft position control and attitude tracking, and could

be readily adapted to the case presented on this dissertation.

In summary, a new formulation of impedance control of redundant manipulators

was presented as a particular case of an optimal control problem. This formulation takes

advantage of the benefits of an optimal controller to plan and design efficient impedance

controllers. It is a systematic approach that yields a control law encompassing all the

following characteristics:

• Repeatability of motion in joint space for cyclic tasks;

• Stability;

• Efficiency.

Essentially, it trivializes the problem of redundancy resolution of manipulators,

when compared to quadratic optimization. The high computational costs of finding a

solution to an optimal control problem are circumvented through the SDRE approach.

Although departing from an optimal solution, it allows reaching sub-optimal solutions that

converge asymptotically to it. This approach maintains the desirable properties of optimal

controllers, which was verified through numerical simulations of a redundant 4-DOF

serial link manipulator. The simulations presented promising results and demonstrated

the advantages of the SDRE approach over QP approach, in terms of stability, required

control effort and the quality of task execution. Future work should focus on how to assure

robustness of the method in circumstances where parameters changes and unmodelled

dynamics cannot be disregarded.

59

Bibliography

ADAMS, R. J.; HANNAFORD, B. Stable haptic interaction with virtual environments.
IEEE Transactions on robotics and Automation, IEEE, v. 15, n. 3, p. 465–474, 1999.
Cited on page 12.

AGUIRRE-OLLINGER, G. Active impedance control of a lower-limb assistive exoskeleton.
Tese (Doutorado) — NORTHWESTERN UNIVERSITY, 2009. Cited on page 79.

AGUIRRE-OLLINGER, G.; COLGATE, J. E.; PESHKIN, M. A.; GOSWAMI, A.
Active-impedance control of a lower-limb assistive exoskeleton. In: IEEE. Rehabilitation
Robotics, 2007. ICORR 2007. IEEE 10th International Conference on. [S.l.], 2007. p.
188–195. Cited on page 12.

ANDERSON, F. C.; PANDY, M. G. Dynamic optimization of human walking. Journal of
biomechanical engineering, American Society of Mechanical Engineers, v. 123, n. 5, p.
381–390, 2001. Cited on page 16.

ANDERSON, R. J.; SPONG, M. W. Hybrid impedance control of robotic manipulators.
IEEE Journal on Robotics and Automation, IEEE, v. 4, n. 5, p. 549–556, 1988. Cited on
page 13.

AREVALO, J. C.; GARCIA, E. Impedance control for legged robots: An insight into
the concepts involved. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), IEEE, v. 42, n. 6, p. 1400–1411, 2012. Cited on page 13.

BEELER, S.; TRAN, H.; BANKS, H. Feedback control methodologies for nonlinear
systems. Journal of optimization theory and applications, Springer, v. 107, n. 1, p. 1–33,
2000. Cited 2 times on pages 21 and 35.

BELLMAN, R. Dynamic programming and the numerical solution of variational problems.
Operations Research, JSTOR, p. 277–288, 1957. Cited 2 times on pages 15 and 28.

BERRET, B.; DARLOT, C.; JEAN, F.; POZZO, T.; PAPAXANTHIS, C.; GAUTHIER,
J. P. The inactivation principle: mathematical solutions minimizing the absolute work and
biological implications for the planning of arm movements. PLoS computational biology,
Public Library of Science, v. 4, n. 10, p. e1000194, 2008. Cited on page 66.

BERRET, B.; JEAN, F. Why don’t we move slower? the value of time in the neural
control of action. Journal of neuroscience, Soc Neuroscience, v. 36, n. 4, p. 1056–1070,
2016. Cited on page 66.

BOWLING, A.; HARMEYER, S. Repeatable redundant manipulator control using
nullspace quasivelocities. Journal of dynamic systems, measurement, and control,
American Society of Mechanical Engineers, v. 132, n. 3, p. 031007, 2010. Cited on page
54.

BROCK, W. A.; SCHEINKMAN, J. Global asymptotic stability of optimal control
systems with applications to the theory of economic growth. Journal of Economic Theory,
Elsevier, v. 12, n. 1, p. 164–190, 1976. Cited on page 19.

BURDET, E.; FRANKLIN, D. W.; MILNER, T. E. Human robotics: neuromechanics and
motor control. [S.l.]: MIT press, 2013. Cited 2 times on pages 42 and 66.

60

BURTON, A.; MILLER, G. The application of integral equation methods to the
numerical solution of some exterior boundary-value problems. In: THE ROYAL SOCIETY.
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences. [S.l.], 1971. v. 323, n. 1553, p. 201–210. Cited on page 20.

CARELLI, R.; KELLY, R. An adaptive impedance/force controller for robot manipulators.
IEEE Transactions on Automatic Control, IEEE, v. 36, n. 8, p. 967–971, 1991. Cited on
page 13.

CHANG, K.-S.; KHATIB, O. Manipulator control at kinematic singularities: A
dynamically consistent strategy. In: IEEE. Intelligent Robots and Systems 95.’Human
Robot Interaction and Cooperative Robots’, Proceedings. 1995 IEEE/RSJ International
Conference on. [S.l.], 1995. v. 3, p. 84–88. Cited on page 14.

CIMEN, T. State-dependent riccati equation (sdre) control: A survey. IFAC Proceedings
Volumes, Elsevier, v. 41, n. 2, p. 3761–3775, 2008. Cited 2 times on pages 16 and 21.

CIMEN, T. Survey of state-dependent riccati equation in nonlinear optimal feedback
control synthesis. Journal of Guidance, Control, and Dynamics, v. 35, n. 4, p. 1025–1047,
2012. Cited 2 times on pages 17 and 36.

CLOUTIER, J. R. State-dependent riccati equation techniques: An overview. In: IEEE.
American Control Conference, 1997. Proceedings of the 1997. [S.l.], 1997. v. 2, p. 932–936.
Cited on page 36.

COLBAUGH, R.; SERAJI, H.; GLASS, K. Adaptive impedance control of redundant
manipulators. In: IEEE. Decision and Control, 1990., Proceedings of the 29th IEEE
Conference on. [S.l.], 1990. p. 2661–2666. Cited on page 84.

ENRIGHT, P. J.; CONWAY, B. A. Optimal finite-thrust spacecraft trajectories using
collocation and nonlinear programming. Journal of Guidance, Control, and Dynamics,
v. 14, n. 5, p. 981–985, 1991. Cited on page 16.

ERDEM, E. B.; ALLEYNE, A. G. Experimental real-time sdre control of an underactuated
robot. In: IEEE. Decision and Control, 2001. Proceedings of the 40th IEEE Conference on.
[S.l.], 2001. v. 3, p. 2986–2991. Cited on page 17.

FAHROO, F.; ROSS, I. Trajectory optimization by indirect spectral collocation methods.
In: Astrodynamics Specialist Conference. [S.l.: s.n.], 2000. p. 4028. Cited on page 16.

FERRAGUTI, F.; PREDA, N.; MANURUNG, A.; BONFE, M.; LAMBERCY, O.;
GASSERT, R.; MURADORE, R.; FIORINI, P.; SECCHI, C. An energy tank-based
interactive control architecture for autonomous and teleoperated robotic surgery. IEEE
Transactions on Robotics, IEEE, v. 31, n. 5, p. 1073–1088, 2015. Cited on page 12.

FLASH, T.; HOGAN, N. The coordination of arm movements: an experimentally
confirmed mathematical model. Journal of neuroscience, Soc Neuroscience, v. 5, n. 7, p.
1688–1703, 1985. Cited on page 66.

FURTADO, G. P.; FORNER-CORDERO, A. Impedance control as an optimal control
problem. 2018. Cited on page 12.

61

GARCÍA-HERAS, J.; SOLER, M.; SÁEZ, F. J. A comparison of optimal control methods
for minimum fuel cruise at constant altitude and course with fixed arrival time. Procedia
Engineering, Elsevier, v. 80, p. 231–244, 2014. Cited on page 20.

HÄRKEGÅRD, O.; GLAD, S. T. Resolving actuator redundancy—optimal control vs.
control allocation. Automatica, Elsevier, v. 41, n. 1, p. 137–144, 2005. Cited on page 34.

HE, W.; DONG, Y.; SUN, C. Adaptive neural impedance control of a robotic manipulator
with input saturation. IEEE Transactions on Systems, Man, and Cybernetics: Systems,
IEEE, v. 46, n. 3, p. 334–344, 2016. Cited on page 13.

HOGAN, N. Impedance control: An approach to manipulation. In: IEEE. American
Control Conference, 1984. [S.l.], 1984. p. 304–313. Cited 2 times on pages 12 and 13.

HOLLERBACH, J.; SUH, K. Redundancy resolution of manipulators through torque
optimization. IEEE Journal on Robotics and Automation, IEEE, v. 3, n. 4, p. 308–316,
1987. Cited 2 times on pages 14 and 27.

HU, Y.-R.; GOLDENBERG, A. A. Dynamic control of coordinated redundant robots
with torque optimization. Automatica, Elsevier, v. 29, n. 6, p. 1411–1424, 1993. Cited on
page 15.

HUNTINGTON, G.; BENSON, D.; RAO, A. A comparison of accuracy and computational
efficiency of three pseudospectral methods. In: AIAA guidance, navigation and control
conference and exhibit. [S.l.: s.n.], 2007. p. 6405. Cited on page 20.

ITO, K.; SCHROETER, J. D. Reduced order feedback synthesis for viscous incompressible
flows. Mathematical and computer modelling, Elsevier, v. 33, n. 1-3, p. 173–192, 2001.
Cited on page 21.

JOSHI, H. R. Optimal control of an hiv immunology model. Optimal control applications
and methods, Wiley Online Library, v. 23, n. 4, p. 199–213, 2002. Cited on page 19.

KALMAN, R. The theory of optimal control and the calculus of variations. Mathematical
optimization techniques, University of California Press Berkeley and Los Angels, p.
309–331, 1963. Cited on page 15.

KHATIB, O. A unified approach for motion and force control of robot manipulators: The
operational space formulation. IEEE Journal on Robotics and Automation, IEEE, v. 3,
n. 1, p. 43–53, 1987. Cited on page 14.

KLEIN, C. A.; AHMED, S. Repeatable pseudoinverse control for planar kinematically
redundant manipulators. IEEE Transactions on Systems, Man, and Cybernetics, IEEE,
v. 25, n. 12, p. 1657–1662, 1995. Cited on page 54.

KORAYEM, M.; ZEHFROOSH, A.; TOURAJIZADEH, H.; MANTEGHI, S. Optimal
motion planning of non-linear dynamic systems in the presence of obstacles and moving
boundaries using sdre: application on cable-suspended robot. Nonlinear Dynamics,
Springer, v. 76, n. 2, p. 1423–1441, 2014. Cited on page 17.

KORAYEM, M. H.; NEKOO, S. R. Finite-time state-dependent riccati equation for
time-varying nonaffine systems: Rigid and flexible joint manipulator control. ISA
transactions, Elsevier, v. 54, p. 125–144, 2015. Cited on page 17.

62

KORAYEM, M. H.; NEKOO, S. R. Suboptimal tracking control of nonlinear systems via
state-dependent differential riccati equation for robotic manipulators. In: IEEE. Robotics
and Mechatronics (ICROM), 2015 3rd RSI International Conference on. [S.l.], 2015. p.
025–030. Cited on page 17.

LIU, D.; TODOROV, E. Evidence for the flexible sensorimotor strategies predicted by
optimal feedback control. Journal of Neuroscience, Soc Neuroscience, v. 27, n. 35, p.
9354–9368, 2007. Cited on page 66.

LU, Z.; GOLDENBERG, A. A. Robust impedance control and force regulation: Theory
and experiments. The International journal of robotics research, Sage Publications Sage
CA: Thousand Oaks, CA, v. 14, n. 3, p. 225–254, 1995. Cited on page 13.

MARKMAN, J.; KATZ, I. Convergence of an iterative algorithm for solving
hamilton-jacobi type equations. Mathematics of computation, v. 71, n. 237, p. 77–103,
2002. Cited on page 21.

MARKMAN, J.; KATZ, I. N. An iterative algorithm for solving hamilton–jacobi type
equations. SIAM Journal on Scientific Computing, SIAM, v. 22, n. 1, p. 312–329, 2000.
Cited on page 21.

MASON, M. T. Compliance and force control for computer controlled manipulators.
IEEE Transactions on Systems, Man, and Cybernetics, v. 11, n. 6, p. 418–432, June 1981.
ISSN 0018-9472. Cited on page 12.

MORASSO, P. Spatial control of arm movements. Experimental brain research, Springer,
v. 42, n. 2, p. 223–227, 1981. Cited on page 66.

MUSSA-IVALDI, F. A.; HOGAN, N. Integrable solutions of kinematic redundancy via
impedance control. The International Journal of Robotics Research, Sage Publications
Sage CA: Thousand Oaks, CA, v. 10, n. 5, p. 481–491, 1991. Cited 3 times on pages 14,
15, and 54.

NAKAMURA, Y.; HANAFUSA, H.; YOSHIKAWA, T. Task-priority based redundancy
control of robot manipulators. The International Journal of Robotics Research, Sage
Publications Sage UK: London, England, v. 6, n. 2, p. 3–15, 1987. Cited on page 14.

NEMEC, B.; ZLAJPAH, L. Null space velocity control with dynamically consistent
pseudo-inverse. Robotica, Cambridge University Press, v. 18, n. 5, p. 513–518, 2000. Cited
on page 14.

NENCHEV, D. N. Redundancy resolution through local optimization: A review. Journal
of Field Robotics, Wiley Online Library, v. 6, n. 6, p. 769–798, 1989. Cited on page 14.

OKAMURA, A. M. Methods for haptic feedback in teleoperated robot-assisted surgery.
Industrial Robot: An International Journal, Emerald Group Publishing Limited, v. 31,
n. 6, p. 499–508, 2004. Cited on page 12.

O’NEIL, K. A. Divergence of linear acceleration-based redundancy resolution schemes.
IEEE Transactions on Robotics and Automation, IEEE, v. 18, n. 4, p. 625–631, 2002.
Cited 2 times on pages 14 and 57.

63

ORIOLO, G. Stabilization of self-motions in redundant robots. In: IEEE. Robotics and
Automation, 1994. Proceedings., 1994 IEEE International Conference on. [S.l.], 1994. p.
704–709. Cited on page 15.

ORIOLO, G.; CEFALO, M.; VENDITTELLI, M. Repeatable motion planning for
redundant robots over cyclic tasks. IEEE Transactions on Robotics, IEEE, v. 33, n. 5, p.
1170–1183, 2017. Cited on page 54.

OTT, C.; DIETRICH, A.; ALBU-SCHÄFFER, A. Prioritized multi-task compliance
control of redundant manipulators. Automatica, Elsevier, v. 53, p. 416–423, 2015. Cited
on page 15.

PACHLER, C.; YABUKI, D. K. Implementação de um controle de impedâncias modular
para exoesqueleto robótico de membro superior. 2014. Cited on page 79.

PARK, J. H. Impedance control for biped robot locomotion. IEEE Transactions on
Robotics and Automation, IEEE, v. 17, n. 6, p. 870–882, 2001. Cited on page 13.

PEARSON, J. Approximation methods in optimal control i. sub-optimal control.
International Journal of Electronics, Taylor & Francis, v. 13, n. 5, p. 453–469, 1962.
Cited on page 36.

PESCH, H. J. Real-time computation of feedback controls for constrained optimal control
problems. part 1: Neighbouring extremals. Optimal Control Applications and Methods,
Wiley Online Library, v. 10, n. 2, p. 129–145, 1989. Cited on page 16.

PESCH, H. J. Real-time computation of feedback controls for constrained optimal control
problems. part 1: Neighbouring extremals. Optimal Control Applications and Methods,
Wiley Online Library, v. 10, n. 2, p. 129–145, 1989. Cited 2 times on pages 19 and 68.

PESCH, H. J. Real-time computation of feedback controls for constrained optimal control
problems. part 2: A correction method based on multiple shooting. Optimal Control
Applications and Methods, Wiley Online Library, v. 10, n. 2, p. 147–171, 1989. Cited on
page 16.

PETERS, J.; MISTRY, M.; UDWADIA, F.; NAKANISHI, J.; SCHAAL, S. A unifying
framework for robot control with redundant dofs. Autonomous Robots, Springer, v. 24,
n. 1, p. 1–12, 2008. Cited 2 times on pages 14 and 15.

PFIFFNER, R.; GUZZELLA, L.; ONDER, C. Fuel-optimal control of cvt powertrains.
Control engineering practice, Elsevier, v. 11, n. 3, p. 329–336, 2003. Cited on page 19.

PONTRYAGIN, L. S. Mathematical theory of optimal processes. [S.l.]: CRC Press, 1987.
Cited 4 times on pages 15, 19, 28, and 68.

PORSA, S.; LIN, Y.-C.; PANDY, M. G. Direct methods for predicting movement
biomechanics based upon optimal control theory with implementation in opensim. Annals
of biomedical engineering, Springer, v. 44, n. 8, p. 2542–2557, 2016. Cited on page 20.

PUKDEBOON, C.; KUMAM, P. Robust optimal sliding mode control for spacecraft
position and attitude maneuvers. Aerospace Science and Technology, Elsevier, v. 43, p.
329–342, 2015. Cited on page 58.

64

ROBERTS, R. G.; MACIEJEWSKI, A. A. Repeatable generalized inverse control
strategies for kinematically redundant manipulators. IEEE Transactions on Automatic
Control, IEEE, v. 38, n. 5, p. 689–699, 1993. Cited on page 54.

ROBERTS, R. G.; MACIEJEWSKI, A. A. Singularities, stable surfaces, and the
repeatable behavior of kinematically redundant manipulators. The International journal
of robotics research, Sage Publications Sage CA: Thousand Oaks, CA, v. 13, n. 1, p. 70–81,
1994. Cited on page 54.

ROSS, S. M.; COBB, R. G.; BAKER, W. P.; HARMON, F. G. Implementation lessons
and pitfalls for real-time optimal control with stochastic systems. Optimal Control
Applications and Methods, Wiley Online Library, v. 36, n. 2, p. 198–217, 2015. Cited 2
times on pages 21 and 34.

SADEGHIAN, H.; VILLANI, L.; KESHMIRI, M.; SICILIANO, B. Task-space control of
robot manipulators with null-space compliance. IEEE Transactions on Robotics, IEEE,
v. 30, n. 2, p. 493–506, 2014. Cited on page 15.

SALLE, J. L.; LEFSCHETZ, S. Stability by Liapunov’s Direct Method with Applications
by Joseph L Salle and Solomon Lefschetz. [S.l.]: Elsevier, 2012. v. 4. Cited on page 16.

SCHLEGL, T.; BUSS, M.; OMATA, T.; SCHMIDT, G. Fast dextrous re-grasping with
optimal contact forces and contact sensor-based impedance control. In: IEEE. Robotics
and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on. [S.l.],
2001. v. 1, p. 103–108. Cited on page 13.

SEMINI, C.; BARASUOL, V.; BOAVENTURA, T.; FRIGERIO, M.; FOCCHI, M.;
CALDWELL, D. G.; BUCHLI, J. Towards versatile legged robots through active
impedance control. The International Journal of Robotics Research, SAGE Publications
Sage UK: London, England, v. 34, n. 7, p. 1003–1020, 2015. Cited on page 13.

SINGH, S. K.; POPA, D. O. An analysis of some fundamental problems in adaptive
control of force and impedance behavior: Theory and experiments. IEEE Transactions on
Robotics and Automation, IEEE, v. 11, n. 6, p. 912–921, 1995. Cited on page 13.

SLOTINE, J.-J. E.; LI, W. et al. Applied nonlinear control. [S.l.]: prentice-Hall Englewood
Cliffs, NJ, 1991. v. 199. Cited 2 times on pages 76 and 77.

SOUZA, R. S.; MARTINS, T. d. C.; FURTADO, G. P.; FORNER-CORDERO, A.
Model-reference adaptive impedance controller design for modular exoskeleton. In:
ELSEVIER SCIENCE. IFAC Symposium on Biological and Medical Systems. [S.l.], 2018.
Cited on page 13.

SUH, K.; HOLLERBACH, J. Local versus global torque optimization of redundant
manipulators. In: IEEE. Robotics and Automation. Proceedings. 1987 IEEE International
Conference on. [S.l.], 1987. v. 4, p. 619–624. Cited 4 times on pages 14, 16, 27, and 57.

TAFAZOLI, S.; SALCUDEAN, S. E.; HASHTRUDI-ZAAD, K.; LAWRENCE, P. D.
Impedance control of a teleoperated excavator. IEEE Transactions on Control Systems
Technology, IEEE, v. 10, n. 3, p. 355–367, 2002. Cited on page 12.

TODOROV, E.; LI, W. Optimal control methods suitable for biomechanical systems. In:
IEEE. Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual
International Conference of the IEEE. [S.l.], 2003. v. 2, p. 1758–1761. Cited on page 66.

65

TODOROV, E.; LI, W. A generalized iterative lqg method for locally-optimal feedback
control of constrained nonlinear stochastic systems. In: IEEE. American Control
Conference, 2005. Proceedings of the 2005. [S.l.], 2005. p. 300–306. Cited on page 21.

TSAGARAKIS, N. G.; CALDWELL, D. G. Development and control of a ‘soft-
actuated’exoskeleton for use in physiotherapy and training. Autonomous Robots, Springer,
v. 15, n. 1, p. 21–33, 2003. Cited on page 12.

UNO, Y.; KAWATO, M.; SUZUKI, R. Formation and control of optimal trajectory in
human multijoint arm movement. Biological cybernetics, Springer, v. 61, n. 2, p. 89–101,
1989. Cited on page 20.

WATANABE, K.; IWASE, M.; HATAKEYAMA, S.; MARUYAMA, T. Control strategy
for a snake-like robot based on constraint force and verification by experiment. Advanced
Robotics, Taylor & Francis, v. 23, n. 7-8, p. 907–937, 2009. Cited on page 17.

WINTER, D. A. Biomechanics and motor control of human movement. [S.l.]: John Wiley
& Sons, 2009. Cited on page 67.

XU, Q. Adaptive discrete-time sliding mode impedance control of a piezoelectric
microgripper. IEEE Transactions on Robotics, IEEE, v. 29, n. 3, p. 663–673, 2013. Cited
on page 13.

ZHANG, L.-Q.; RYMER, W. Z. Simultaneous and nonlinear identification of mechanical
and reflex properties of human elbow joint muscles. IEEE Transactions on Biomedical
Engineering, IEEE, v. 44, n. 12, p. 1192–1209, 1997. Cited on page 67.

ZHANG, Z.; LIN, Y.; LI, S.; LI, Y.; YU, Z.; LUO, Y. Tricriteria optimization-coordination
motion of dual-redundant-robot manipulators for complex path planning. IEEE
Transactions on Control Systems Technology, IEEE, 2017. Cited 2 times on pages 14
and 15.

66

APPENDIX A – Generating Human-like Motion with optimal control

When designing controllers for robotic devices that should interact closely with

the human movement it is crucial to have a criterion to determine which movements are

desirable or not (BURDET; FRANKLIN; MILNER, 2013). The first aspect to consider

would be related to safety and this is usually solved, from a controller perspective, with

the use of controller techniques that avoid the application too large torques for certain

angles or angular velocities. The second aspect to be regarded is the actual execution of

the movement. Despite of the redundancy of possible solutions for arm reaching (the arm

has 7 DOF), the trajectory of the hand is straight and smooth with a typical bell-shaped

velocity profile (MORASSO, 1981; FLASH; HOGAN, 1985). Therefore, despite of the

availability of infinite solutions to perform a certain task, humans tend to perform the

same strategy, following some kind of “invariance principles”. One of the most successful

control theories that have been used to generate human-like motion patterns is based on

optimal control theory (TODOROV; LI, 2003; LIU; TODOROV, 2007). More recent work

considered a cost function based not only in energy consumption but also on accuracy,

endpoint stability and movement duration. However, the definition of the optimal time is

not completely solved and it has been subject of research in the recent years (BERRET et

al., 2008; BERRET; JEAN, 2016). In this respect, it would be very interesting to determine

the optimal time to perform the task. Here, the movement of an arm is simulated, using

optimal control to find the optimal time. The idea is to find an underlying objective

function which minimization yields a solution that resembles the motion that a human

arm executes. In order to do so, a simple 1-dof model of the human arm is derived. Based

on experimental data, an objective function is generated. The behavior displayed by the

human arm motion is used as a basis to define the shape of fig. 1. The motion in question

is the upper limb flexion against gravity, while different weights are held. It allows the

evaluation motion changes according to an external force.

A.1 Upper Limb flexion extension against gravity

The upper limb movement is considered with one degree of freedom (1-DoF),

modeled as an articulated segment mechanism moving in a gravity field and controlled

67

Figure 9 – 1-DOF Upper Limb free-body diagram

Source: Guilherme Phillips Furtado et al, 2018

by a torque produced by the muscles. The free-body diagram of the model considered is

shown in fig. 9.

In this brief study, the aim of the subject is to lift a mass by flexing the elbow,

maintaining the arm fixed in the vertical position while rotating the forearm in sagittal

plane. The equations of the system are:

ẋ(t) = f(x(t)) +B u(t), f : R3 → R2, B ∈ R2, (134)

with:

x(t) =:

x1(t)
x2(t)

 =

θ(t)
θ̇(t)

 : [0, T]→ R2, (135)

f(x(t)) =

 x2
2(−gLmMsin(x1)−gLbmbsin(x1)−cbx2(t))

(2Ib+L2
mM+2Lbm

2
b)

 , (136)

B =

B1

B2

 =

 0

1/(2Ib + L2
mM + 2Lbm

2
b)

 . (137)

Table 2 describes what each parameter stands for. The friction coefficient for the

elbow is based on (ZHANG; RYMER, 1997), while the moment of inertia, mass and center

of mass of the forearm are based on (WINTER, 2009). No frictions other than viscous

friction are considered in the model.

68

Table 2 – List of Parameters of the 1-DoF Human Arm

Parameter Description
g Gravity acceleration
Lm Distance between elbow and mass to be lifted
M Mass to be lifted
Lb Center of mass of the forearm
mb Mass of the forearm
cb Elbow flexion friction coefficient
Ib Moment of inertia of the forearm
θ(t) Forearm angular displacement
u(t) Torque applied at the elbow

A.2 Objective Function

The method consists of finding an objective function assuming that the behavior

of the system is optimal. The optimal solution is the motion of a human subject flexing

the elbow along the sagittal plane, from an initial angle to a final angle. The optimal

control problem is formulated using the Euler-Lagrange equation of the system supplied

by Pontryagin’s minimum principle (PONTRYAGIN, 1987; PESCH, 1989b).

For the optimal control problem, let us consider the following functional:

L(x(t), u(t)) = α + βu(t)2 + γ u(t)2x2(t)
2, α, β, γ ∈ R . (138)

The main idea is to find parameters α, β and γ. The parameter α can be interpreted

as the weight for time interval T, β weights the squared control effort term, associated

with energy expenditure, and γ is the weight for a quadratic pseudo-power term.

The objective function to be minimized is

J [u, x] =

∫ T

0

L(x(t), u(t))dt. (139)

The terminal state constraint is given by:

ψ(x(T), T) = x(T)− xf = 0. (140)

The Hamiltonian H and an auxiliary function Φ are defined as:

H(x(t), u(t), λ(t)) = L(x(t), u(t)) + λ(t)Tf(x(t), u(t)), (141)

Φ(x(t), t, v) = vψ(x(t), t), (142)

69

For the problem stated by equations (138)-(142), the following conditions can be

obtained, considering the final time is unspecified:

x(t) = ∂H/∂λT , (143)

λ(t) = −∂H/∂xT , (144)

−∂H/∂u = 0, (145)

λ(T) = −∂Φ/∂x|T , (146)

x(T) = xf , (147)

H(x(t), u(t), λ(t)) = 0, (148)

where λ : [0, T] 7→ U ⊂ R2 and v ∈ R2 denote Lagrange multipliers. Since the final

time is unknown, the equations (143)-(148) will be non-dimensionalized in respect to time.

Defining

t = τT, τ ∈ R, 0 ≤ τ ≤ 1, (149)

and replacing it on the system equations,

ẋ(τ) = Tf(x(τ)) + g(x(τ))u(τ), (150)

λ(τ) = Tf(−λ(τ)T)(∂f/∂x− ∂ L /∂x), (151)

u(τ) = (−λTB2)/(2β + 2γx2), (152)

λ(1) = v, (153)

x(1) = xf , (154)

70

x(0) = x0, (155)

H(x(τ), u(τ), λ(τ)) = 0. (156)

The solution to the two-point boundary value problem (TPBVP) enumerated by

equations (150)-(156) yields an optimal trajectory, along with the terminal time T, which

will be compared with the movement of a human subject.

A.3 Description of the experiment

In order to compare the results of the optimal controller with experimental data, a

series of tests were carried out. One male healthy volunteer participated in the tests, that

were approved by the Local Ethical Committee. The volunteer height was 1.74m a body

mass of 91kg. The distance from elbow joint center to the fingertips Lb = 45cm, and the

distance from the elbow joint center to the center of the hand Lm = 35cm. The experiment

consisted of lifting different weights with a flexion-extension of the elbow. The instruction

to the volunteer was to lift the weight with only a flexion of the elbow. The experiment

lasted 20s, during the first 10 s the task was performed with clear pauses with the elbow

was flexed and extended and for the following 10s the same task was repeated without

pausing. The elbow flexion was performed with the subject standing comfortably with the

arms hanging at both sides in the standard anatomical position. The task was performed

without weight and with weights of 2kg and 3kg. The movement was recorded with an

inertial measurement unit (VN-100, VectorNav Technologies, TX, USA) placed at the

dorsum of the hand with a sampling frequency of 200Hz. The data analyzed corresponded

to the elbow flexion (lifting he load) as it agrees with the simulation objectives.

71

Table 3 – List of Parameter Values for the Optimal Time Experiment

Parameter Value
g 9.78m/s2

Lm 0.35cm
M 0, 2kgor3kg
Lb 0.1935m
mb 2.29kg
cb 0.025Nms
Ib 0.0099kgm2

α 13.4
β 1
γ 0.15

A.4 Results and Discussion

The TPBVP was solved in MATLAB, using the parameters from table 2.

Table 4 – Comparison Between Experimental and Simulation Results

Mass (kg) Mean experimental time (s) Simulation time (s)
0 0.7 0.7
2 0.89 0.9
3 0.97 0.95

Mass (kg) Mean initial angle (rad) Mean final angle (rad)
0 0.41 2.48203
2 0.833275 2.63815
3 0.864375 2.79575

The initial and final position for the simulation were taken from the valleys and

peaks of the measured angular position. The values of the parameters α, β and γ were

adjusted based on the elbow flexion when no mass was being lifted. In Table 4, the average

time intervals for three different masses are confronted with the simulation results. Figures

10, 11 and 12 compare the simulation results and the experimental data for selected initial

and final states.

72

Figure 10 – Comparison between experimental and simulated angular velocity profile when M=
0kg.

Source: Guilherme Phillips Furtado et al, 2018

73

Figure 11 – Comparison between experimental and simulated angular velocity profile when M=
2kg.

Source: Guilherme Phillips Furtado et al, 2018

74

Figure 12 – Comparison between experimental and simulated angular velocity profile when M=
3kg.

Source: Guilherme Phillips Furtado et al, 2018

75

From the results, it can be concluded that the optimal controller adjusted for the

arm motion without any load was still valid with increasing mass (figs 2 and 3). The

angular velocities found in the simulations resemble the experimental ones and they have

the same trend with increasing weight. In addition, the movement time emerged as a part

of the optimal solution.

76

APPENDIX B – Implementation of Impedance Control via Adaptive
Control

In this appendix, it is illustrated how impedance control can be used to control

wearable assistive devices (ie. exoskeletons). One of the major challenges in exoskeleton

design is to implement a desired type of human-robot cooperation. The relation between

robotic and human joints can be defined by the robot controller, depending on the nature

of the task and the user needs. An exoskeleton is an active robotic orthosis acting in

parallel with the body segments. It could, for example, be used to assist a patient either in

daily life activities, or to assist a therapist when applying a physical therapy to a patient.

Impedance control is commonly implemented in exoskeletons because it allows the designer

to predefine the dynamic relationship that comprises the human-robot cooperation.

However, obtaining a precise model of the human body is often not possible. The

muscle dynamics have non-linear, time-varying behavior, with parameters which are

difficult to measure. Given such complexity, it is often impractical to design a model-based

controller that fits a large range of human motions and tasks. It can be considered that

the controller should not rely on a precise knowledge of system parameters. Under these

circumstances, simply finding a solution of 21 based on approximate parameter values

may not be enough to obtain an effective impedance controller.

Adaptive Control has been used to handle parameter uncertainty (SLOTINE; LI

et al., 1991) and has the advantage of parameter estimation, which is very useful for motor

control research and performance assessment in rehabilitation. The adaptation mechanism

compares the expected input/output relation in order to minimize the tracking error by

adjusting the parameters estimation.

Here, an implementation of Model Reference Adaptive Control (MRAC) that aims

to imposes a desired behavior to both human limb and exoskeleton as a whole system will

be presented as an example of an impedance controller implementation. The exoskeleton

controller should guarantee that, for given a torque input, the coupled system follows the

motion determined by the desired behavior. This approach has the aim to simultaneously

control the system and provide parameter identification.

For simplicity, human and exoskeleton are assumed to be perfectly coupled, with

no displacement between them. Therefore, the position, velocity and acceleration are the

77

same while inertial parameters are simply summed; e.g. the equivalent inertia becomes

J = JH + Je, to finally obtain the system dynamics represented by figure 14.

The equation of the coupled system is given by

τh + τe = (Jh + Je) θ̈ + (bh + be) θ̇ + (kh + ke) θ (157)

where JH denotes the human limb inertia, JE denotes the exoskeleton inertia, θ

denotes the angular displacement, bH denotes the viscous friction of the human limb, bE

denotes the viscous friction of the exoskeleton, kH denotes the linear stiffness of the human

limb, kE denotes the linear stiffness of the exoskeleton kE and τH denotes the torque acting

on the system.

The coupled system behavior must be controlled in such way that when the user

applies some effort, the system must perform a certain movement. However, the coupled

plant parameters are not precisely known, due to two reasons: 1- a precise model to

represent its dynamics is not available; 2- the plant parameters change due to muscle

contraction according to the user’s intention. In addition, the controller must also satisfy

user safety and comfort requirements (SLOTINE; LI et al., 1991).

B.1 Model-Reference Adaptive Control (MRAC)

The MRAC offers the possibility of defining a reference model to specify the desired

system impedance and has the structure shown in figure 13.

The system with the simplified coupled dynamics is given by Eq.(157), repre-

senting the displacement resulting from an applied torque to the human joint. There are

uncertainties with respect to the parameters JH , bH and kH .

The reference model consists the desired system behavior 16, and depends on the

nature of the exoskeleton task. For a rehabilitation exoskeleton, for example, the desired

system could have smaller impedance parameters, resulting in larger displacement with

same applied torque, or the same displacement with less torque.

The controller is responsible to maintain the system tracking the desired dynamics.

For instance, in the case of a rehabilitation exoskeleton, it might be possible to apply this

controller in such a way that the result will be to assist the limb movement of a disabled

patient.

78

Figure 13 – Model Reference Adaptive Control.

Source: Rafael Sanchez Souza et al, 2018

The design approach considers the simplest problem: the system full state is

measurable with a linear mode. The second-order linear system is represented by:

a2θ̈ + a1θ̇ + a0θ = u, (158)

where a = [J b K]T is the unknown coefficient vector and α = [Jv bv kv]T

the desired (virtual) coefficients for the reference-model to be tracked by the controller:

α2θ̈m + α1θ̇m + α0θm = τh (159)

with τh being the torque applied to the joints by the patient muscles. The control law is

chosen as

u = â2θ̈ + â1θ̇ + â0θ = vT (t)â(t), (160)

where

z(t) = θ̈m − β1ė− β0e

v(t) =
[
z(t) θ̇m θm

]T
â(t) = [â2 â1 â0]T

79

with the tracking error given by e = θ − θm.

The adaptation law is given by

˙̂a = −ΓvBtPe, (161)

and

B =

 0

1

 .

B.2 Simulations and Results

In order to verify the control design, simulations were made using MATLAB

for the coupled plant represented by the diagram in figure 14. The vector of the plant

parameters is defined a sum of the two coupled inertias J , the equivalent damping b

and equivalent stiffness K. The values were taken from (PACHLER; YABUKI, 2014;

AGUIRRE-OLLINGER, 2009):

a =


0.115 + 0.199 Kgm2

2.52 + 1.32 Nms/rad

8.6 + 5.12 Nm/rad

 .

The tracking error parameters are:

β = [10 40] . (162)

And the adaptation law parameters Γ and P :

Γ =


0.01 0 0

0 5 0

0.6 0 40

 ,

80

Figure 14 – Diagram representing workspace and coupled coupled plant.

Source: Rafael Sanchez Souza et al, 2018

P =

0 0

3 1

 .
For a preliminary verification of the controller performance, it is necessary to check

whether the controller is able to compensate the presence of the exoskeleton. In order to do

that, the Model-Reference vector (or desired behavior) is set as α = [0.112 2.52 8.6]:

that corresponds to the aforementioned modeled human arm parameters. Also, the initial

parameter estimation is set to a value 20% smaller than the defined system parameters.

Figure 15 shows the simulation for a step entrance tauh, the plant angular displacement θ

and the reference model response θm.

The final goal of the control design is to assist the arm movement of the user.

In order to achieve an effective assistance, all the model reference parameters must be

changed according to the desired behavior. Figure 16 shows the controller performance for

α = [0.115 0.95 2.58]T in opposition to the previously set behavior.

81

Figure 15 – Tracking performance and parameter estimation for a step input of 3 Nm and
parameter uncertainty of 20% and reference model set for transparent behavior.

Source: Rafael Sanchez Souza et al, 2018

Figure 16 – Tracking performance and parameter estimation for a step input of 3 Nm with
zero prior knowledge of the plant and assistive control.

Source: Rafael Sanchez Souza et al, 2018

82

Parameter Uncertainty and Estimation

As previously mentioned, the adaptive control has the advantage of dealing with

unknown parameters and provide an estimation of them. Figure 16 shows the system

response to a step function for an initial estimative vector â = [0 0 0]. Figure 17

shows the system response to a sinusoidal function for the same initial estimative vector.

It is possible to observe the performance improving as the parameter estimation converge.

A more complex reference signal - sin in contrast to a step - provides a better performance

for the estimation.

The controller was also tested with a smoothed square signal. Plant response and

parameters estimation can be seen in figure 18.

Controller robustness is verified in the simulations shown with respect to dealing

with uncertainties. The parameters J , b and K are varied up to 30% to simulate unpredicted

behaviors. The result can be seen in figure 19.

Figure 17 – Tracking performance and parameter estimation for a sinusoidal input of amplitude
3 Nm with zero prior knowledge of the plant and assistive control.

Source: Rafael Sanchez Souza et al, 2018

83

Figure 18 – Tracking performance and parameter estimation for a smoothed square input of
amplitude 3 Nm with zero prior knowledge of the plant and assistive control

Source: Rafael Sanchez Souza et al, 2018

Figure 19 – Tracking performance and parameter estimation for a smoothed square entrance of
amplitude 3 Nm with zero prior knowledge of the plant, assistive control and plant
parameters variation.

Source: Rafael Sanchez Souza et al, 2018

84

B.3 Discussions

The adaptive control is a well-known technique that is suitable for the control of

systems with large changes in the parameters, like the human limbs. Therefore, adaptive

control of a robot in close interaction with the human (such as an exoskeleton) seems to

be an ideal candidate for this application. It can be observed that it allows proper tracking

of the reference signal with accurate identification of the parameters, even in the case of

variation of these parameters.

The adaptive controller (MRAC) presented here was able impose the desired

dynamics and simultaneously estimate the plant parameters. It was found that the

response was bounded as in the robustness test for parameters variation up to 30%.

An important aspect was to show that the MRAC controller would be able to

identify the parameters and adapt with time. Figure 17 shows the variation of the tracking

error for a sinusoidal input and it can be seen the improvement with time. This estimation

behaves properly even in the case of an smoothed square wave input (see figure 18) and

time-varying parameters, as in figure 19.

However, in the case of a system with multiple degrees of freedom, the implementa-

tion of an MRAC controller, as presented here, would require the inversion of Jp(q) (or

Jp(q)D(q)−1), from equation (24) (COLBAUGH; SERAJI; GLASS, 1990). If the system is

redundant (and Jp(q) is rectangular), a method to resolve redundancy must be provided.

The usual strategy to resolve redundancy is to find a generalized inverse of Jp(q) based on

quadratic optimization procedure.

85

APPENDIX C – Symbolic Manipulation Code

The following code has been written in Wolfram Mathematica, meant to generate

symbolic expressions of the ODEs that govern system motion, the A, B Q, R and N

matrices to be used in Matlab.

(*Symbolicmanipulationcode.ExportstheexpressionsusedtocreatethefunctionsRicattiA.m,RicattiB.m,RiccatiQ.mandRicattiR.m*)(*Symbolicmanipulationcode.ExportstheexpressionsusedtocreatethefunctionsRicattiA.m,RicattiB.m,RiccatiQ.mandRicattiR.m*)(*Symbolicmanipulationcode.ExportstheexpressionsusedtocreatethefunctionsRicattiA.m,RicattiB.m,RiccatiQ.mandRicattiR.m*)

Clear["Global̀*"]Clear["Global̀*"]Clear["Global̀*"]

(*Rotation*)(*Rotation*)(*Rotation*)

T01 = {{Cos[theta1[t]],−Sin[theta1[t]], 0, 0}, {Sin[theta1[t]],Cos[theta1[t]], 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};T01 = {{Cos[theta1[t]],−Sin[theta1[t]], 0, 0}, {Sin[theta1[t]],Cos[theta1[t]], 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};T01 = {{Cos[theta1[t]],−Sin[theta1[t]], 0, 0}, {Sin[theta1[t]],Cos[theta1[t]], 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};

T12 = {{Cos[theta2[t]],−Sin[theta2[t]], 0,L1}, {Sin[theta2[t]],Cos[theta2[t]], 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};T12 = {{Cos[theta2[t]],−Sin[theta2[t]], 0,L1}, {Sin[theta2[t]],Cos[theta2[t]], 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};T12 = {{Cos[theta2[t]],−Sin[theta2[t]], 0,L1}, {Sin[theta2[t]],Cos[theta2[t]], 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};

T23 = {{Cos[theta3[t]],−Sin[theta3[t]], 0,L2}, {Sin[theta3[t]],Cos[theta3[t]], 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};T23 = {{Cos[theta3[t]],−Sin[theta3[t]], 0,L2}, {Sin[theta3[t]],Cos[theta3[t]], 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};T23 = {{Cos[theta3[t]],−Sin[theta3[t]], 0,L2}, {Sin[theta3[t]],Cos[theta3[t]], 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};

T34 = {{Cos[theta4[t]],−Sin[theta4[t]], 0,L3}, {Sin[theta4[t]],Cos[theta4[t]], 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};T34 = {{Cos[theta4[t]],−Sin[theta4[t]], 0,L3}, {Sin[theta4[t]],Cos[theta4[t]], 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};T34 = {{Cos[theta4[t]],−Sin[theta4[t]], 0,L3}, {Sin[theta4[t]],Cos[theta4[t]], 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};

q = {theta1[t], theta2[t], theta3[t], theta4[t]};q = {theta1[t], theta2[t], theta3[t], theta4[t]};q = {theta1[t], theta2[t], theta3[t], theta4[t]};

qp = D[q, t];qp = D[q, t];qp = D[q, t];

(*centrer of mass*)(*centrer of mass*)(*centrer of mass*)

G10 = {l1 ∗ Cos[theta1[t]], l1 ∗ Sin[theta1[t]], 0};G10 = {l1 ∗ Cos[theta1[t]], l1 ∗ Sin[theta1[t]], 0};G10 = {l1 ∗ Cos[theta1[t]], l1 ∗ Sin[theta1[t]], 0};

G20 = {L1 ∗ Cos[theta1[t]] + l2 ∗ Cos[theta2[t]],L1 ∗ Sin[theta1[t]] + l2 ∗ Sin[theta2[t]], 0};G20 = {L1 ∗ Cos[theta1[t]] + l2 ∗ Cos[theta2[t]],L1 ∗ Sin[theta1[t]] + l2 ∗ Sin[theta2[t]], 0};G20 = {L1 ∗ Cos[theta1[t]] + l2 ∗ Cos[theta2[t]],L1 ∗ Sin[theta1[t]] + l2 ∗ Sin[theta2[t]], 0};

G30 = {L1 ∗ Cos[theta1[t]] + L2 ∗ Cos[theta2[t]] + l3 ∗ Cos[theta3[t]],L1 ∗ Sin[theta1[t]] + L2 ∗ Sin[theta2[t]] + l3 ∗ Sin[theta3[t]], 0};G30 = {L1 ∗ Cos[theta1[t]] + L2 ∗ Cos[theta2[t]] + l3 ∗ Cos[theta3[t]],L1 ∗ Sin[theta1[t]] + L2 ∗ Sin[theta2[t]] + l3 ∗ Sin[theta3[t]], 0};G30 = {L1 ∗ Cos[theta1[t]] + L2 ∗ Cos[theta2[t]] + l3 ∗ Cos[theta3[t]],L1 ∗ Sin[theta1[t]] + L2 ∗ Sin[theta2[t]] + l3 ∗ Sin[theta3[t]], 0};

G40 = {L1 ∗ Cos[theta1[t]] + L2 ∗ Cos[theta2[t]] + L3 ∗ Cos[theta3[t]] + l4 ∗ Cos[theta4[t]],L1 ∗ Sin[theta1[t]] + L2 ∗ Sin[theta2[t]] + L3 ∗ Sin[theta3[t]] + l4 ∗ Sin[theta4[t]], 0};G40 = {L1 ∗ Cos[theta1[t]] + L2 ∗ Cos[theta2[t]] + L3 ∗ Cos[theta3[t]] + l4 ∗ Cos[theta4[t]],L1 ∗ Sin[theta1[t]] + L2 ∗ Sin[theta2[t]] + L3 ∗ Sin[theta3[t]] + l4 ∗ Sin[theta4[t]], 0};G40 = {L1 ∗ Cos[theta1[t]] + L2 ∗ Cos[theta2[t]] + L3 ∗ Cos[theta3[t]] + l4 ∗ Cos[theta4[t]],L1 ∗ Sin[theta1[t]] + L2 ∗ Sin[theta2[t]] + L3 ∗ Sin[theta3[t]] + l4 ∗ Sin[theta4[t]], 0};

(*end-effector*)(*end-effector*)(*end-effector*)

Ge0 = {L1 ∗ Cos[theta1[t]] + L2 ∗ Cos[theta2[t]] + L3 ∗ Cos[theta3[t]] + L4 ∗ Cos[theta4[t]],L1 ∗ Sin[theta1[t]] + L2 ∗ Sin[theta2[t]] + L3 ∗ Sin[theta3[t]] + L4 ∗ Sin[theta4[t]], theta4[t]};Ge0 = {L1 ∗ Cos[theta1[t]] + L2 ∗ Cos[theta2[t]] + L3 ∗ Cos[theta3[t]] + L4 ∗ Cos[theta4[t]],L1 ∗ Sin[theta1[t]] + L2 ∗ Sin[theta2[t]] + L3 ∗ Sin[theta3[t]] + L4 ∗ Sin[theta4[t]], theta4[t]};Ge0 = {L1 ∗ Cos[theta1[t]] + L2 ∗ Cos[theta2[t]] + L3 ∗ Cos[theta3[t]] + L4 ∗ Cos[theta4[t]],L1 ∗ Sin[theta1[t]] + L2 ∗ Sin[theta2[t]] + L3 ∗ Sin[theta3[t]] + L4 ∗ Sin[theta4[t]], theta4[t]};

(*Jacobian end effector*)(*Jacobian end effector*)(*Jacobian end effector*)

Jacob = D[Ge0, {{theta1[t], theta2[t], theta3[t], theta4[t]}}];Jacob = D[Ge0, {{theta1[t], theta2[t], theta3[t], theta4[t]}}];Jacob = D[Ge0, {{theta1[t], theta2[t], theta3[t], theta4[t]}}];

Jacobtranspose = Transpose[Jacob];Jacobtranspose = Transpose[Jacob];Jacobtranspose = Transpose[Jacob];

(*forces at end effector*)(*forces at end effector*)(*forces at end effector*)

Force = {Fx,Fy, 0};Force = {Fx,Fy, 0};Force = {Fx,Fy, 0};

Fphi = 0;Fphi = 0;Fphi = 0;

(*velocidades*)(*velocidades*)(*velocidades*)

Vg10 = Simplify[D[G10, t]];Vg10 = Simplify[D[G10, t]];Vg10 = Simplify[D[G10, t]];

Vg20 = Simplify[D[G20, t]];Vg20 = Simplify[D[G20, t]];Vg20 = Simplify[D[G20, t]];

Vg30 = Simplify[D[G30, t]];Vg30 = Simplify[D[G30, t]];Vg30 = Simplify[D[G30, t]];

Vg40 = Simplify[D[G40, t]];Vg40 = Simplify[D[G40, t]];Vg40 = Simplify[D[G40, t]];

86

(*Velocidades angulares*)(*Velocidades angulares*)(*Velocidades angulares*)

w1 = {0, 0, D[theta1[t], t]};w1 = {0, 0, D[theta1[t], t]};w1 = {0, 0, D[theta1[t], t]};

w2 = {0, 0, D[theta2[t] + theta1[t], t]};w2 = {0, 0, D[theta2[t] + theta1[t], t]};w2 = {0, 0, D[theta2[t] + theta1[t], t]};

w3 = {0, 0, D[theta3[t] + theta1[t] + theta2[t], t]};w3 = {0, 0, D[theta3[t] + theta1[t] + theta2[t], t]};w3 = {0, 0, D[theta3[t] + theta1[t] + theta2[t], t]};

w4 = {0, 0, D[theta4[t] + theta3[t] + theta1[t] + theta2[t], t]};w4 = {0, 0, D[theta4[t] + theta3[t] + theta1[t] + theta2[t], t]};w4 = {0, 0, D[theta4[t] + theta3[t] + theta1[t] + theta2[t], t]};

J1 = DiagonalMatrix[{Jx1, Jy1, Jz1}];J1 = DiagonalMatrix[{Jx1, Jy1, Jz1}];J1 = DiagonalMatrix[{Jx1, Jy1, Jz1}];

J2 = DiagonalMatrix[{Jx2, Jy2, Jz2}];J2 = DiagonalMatrix[{Jx2, Jy2, Jz2}];J2 = DiagonalMatrix[{Jx2, Jy2, Jz2}];

J3 = DiagonalMatrix[{Jx3, Jy3, Jz3}];J3 = DiagonalMatrix[{Jx3, Jy3, Jz3}];J3 = DiagonalMatrix[{Jx3, Jy3, Jz3}];

J4 = DiagonalMatrix[{Jx4, Jy4, Jz4}];J4 = DiagonalMatrix[{Jx4, Jy4, Jz4}];J4 = DiagonalMatrix[{Jx4, Jy4, Jz4}];

dq1 = D[theta1[t], t];dq1 = D[theta1[t], t];dq1 = D[theta1[t], t];

dq2 = D[theta2[t], t];dq2 = D[theta2[t], t];dq2 = D[theta2[t], t];

dq3 = D[theta3[t], t];dq3 = D[theta3[t], t];dq3 = D[theta3[t], t];

dq4 = D[theta4[t], t];dq4 = D[theta4[t], t];dq4 = D[theta4[t], t];

T = Simplify[(m1 ∗ Vg10.Vg10 + w1.J1.w1 + m2 ∗ Vg20.Vg20 + w2.J2.w2 + m3 ∗ Vg30.Vg30 + w3.J3.w3 + m4 ∗ Vg40.Vg40 + w4.J4.w4)/2];T = Simplify[(m1 ∗ Vg10.Vg10 + w1.J1.w1 + m2 ∗ Vg20.Vg20 + w2.J2.w2 + m3 ∗ Vg30.Vg30 + w3.J3.w3 + m4 ∗ Vg40.Vg40 + w4.J4.w4)/2];T = Simplify[(m1 ∗ Vg10.Vg10 + w1.J1.w1 + m2 ∗ Vg20.Vg20 + w2.J2.w2 + m3 ∗ Vg30.Vg30 + w3.J3.w3 + m4 ∗ Vg40.Vg40 + w4.J4.w4)/2];

V = Simplify[−m1 ∗ gravity.G10−m2 ∗ gravity.G20−m3 ∗ gravity.G30−m4 ∗ gravity.G40];V = Simplify[−m1 ∗ gravity.G10−m2 ∗ gravity.G20−m3 ∗ gravity.G30−m4 ∗ gravity.G40];V = Simplify[−m1 ∗ gravity.G10−m2 ∗ gravity.G20−m3 ∗ gravity.G30−m4 ∗ gravity.G40];

R = c1 ∗ dq1∧2/2 + c2 ∗ (dq2− dq1)∧2/2 + c3 ∗ (dq3− dq2)∧2/2 + c4 ∗ (dq4− dq3)∧2/2;R = c1 ∗ dq1∧2/2 + c2 ∗ (dq2− dq1)∧2/2 + c3 ∗ (dq3− dq2)∧2/2 + c4 ∗ (dq4− dq3)∧2/2;R = c1 ∗ dq1∧2/2 + c2 ∗ (dq2− dq1)∧2/2 + c3 ∗ (dq3− dq2)∧2/2 + c4 ∗ (dq4− dq3)∧2/2;

DTDq1p = Simplify[D[D[T,D[theta1[t], t]], t]];DTDq1p = Simplify[D[D[T,D[theta1[t], t]], t]];DTDq1p = Simplify[D[D[T,D[theta1[t], t]], t]];

DTDq2p = Simplify[D[D[T,D[theta2[t], t]], t]];DTDq2p = Simplify[D[D[T,D[theta2[t], t]], t]];DTDq2p = Simplify[D[D[T,D[theta2[t], t]], t]];

DTDq3p = Simplify[D[D[T,D[theta3[t], t]], t]];DTDq3p = Simplify[D[D[T,D[theta3[t], t]], t]];DTDq3p = Simplify[D[D[T,D[theta3[t], t]], t]];

DTDq4p = Simplify[D[D[T,D[theta4[t], t]], t]];DTDq4p = Simplify[D[D[T,D[theta4[t], t]], t]];DTDq4p = Simplify[D[D[T,D[theta4[t], t]], t]];

DVDq1 = Simplify[D[V, theta1[t]]];DVDq1 = Simplify[D[V, theta1[t]]];DVDq1 = Simplify[D[V, theta1[t]]];

DVDq2 = Simplify[D[V, theta2[t]]];DVDq2 = Simplify[D[V, theta2[t]]];DVDq2 = Simplify[D[V, theta2[t]]];

DVDq3 = Simplify[D[V, theta3[t]]];DVDq3 = Simplify[D[V, theta3[t]]];DVDq3 = Simplify[D[V, theta3[t]]];

DVDq4 = Simplify[D[V, theta4[t]]];DVDq4 = Simplify[D[V, theta4[t]]];DVDq4 = Simplify[D[V, theta4[t]]];

DTDq1 = Simplify[D[T, theta1[t]]];DTDq1 = Simplify[D[T, theta1[t]]];DTDq1 = Simplify[D[T, theta1[t]]];

DTDq2 = Simplify[D[T, theta2[t]]];DTDq2 = Simplify[D[T, theta2[t]]];DTDq2 = Simplify[D[T, theta2[t]]];

DTDq3 = Simplify[D[T, theta3[t]]];DTDq3 = Simplify[D[T, theta3[t]]];DTDq3 = Simplify[D[T, theta3[t]]];

DTDq4 = Simplify[D[T, theta4[t]]];DTDq4 = Simplify[D[T, theta4[t]]];DTDq4 = Simplify[D[T, theta4[t]]];

DRDq1p = Simplify[D[R,D[theta1[t], t]]];DRDq1p = Simplify[D[R,D[theta1[t], t]]];DRDq1p = Simplify[D[R,D[theta1[t], t]]];

DRDq2p = Simplify[D[R,D[theta2[t], t]]];DRDq2p = Simplify[D[R,D[theta2[t], t]]];DRDq2p = Simplify[D[R,D[theta2[t], t]]];

DRDq3p = Simplify[D[R,D[theta3[t], t]]];DRDq3p = Simplify[D[R,D[theta3[t], t]]];DRDq3p = Simplify[D[R,D[theta3[t], t]]];

DRDq4p = Simplify[D[R,D[theta4[t], t]]];DRDq4p = Simplify[D[R,D[theta4[t], t]]];DRDq4p = Simplify[D[R,D[theta4[t], t]]];

87

Eq1 = Simplify[DTDq1p−DTDq1 + DVDq1 + DRDq1p]− T1 + T2− (Jacobtranspose.Force)[[1]];Eq1 = Simplify[DTDq1p−DTDq1 + DVDq1 + DRDq1p]− T1 + T2− (Jacobtranspose.Force)[[1]];Eq1 = Simplify[DTDq1p−DTDq1 + DVDq1 + DRDq1p]− T1 + T2− (Jacobtranspose.Force)[[1]];

Eq2 = Simplify[DTDq2p−DTDq2 + DVDq2 + DRDq2p]− T2 + T3− (Jacobtranspose.Force)[[2]];Eq2 = Simplify[DTDq2p−DTDq2 + DVDq2 + DRDq2p]− T2 + T3− (Jacobtranspose.Force)[[2]];Eq2 = Simplify[DTDq2p−DTDq2 + DVDq2 + DRDq2p]− T2 + T3− (Jacobtranspose.Force)[[2]];

Eq3 = Simplify[DTDq3p−DTDq3 + DVDq3 + DRDq3p]− T3 + T4− (Jacobtranspose.Force)[[3]];Eq3 = Simplify[DTDq3p−DTDq3 + DVDq3 + DRDq3p]− T3 + T4− (Jacobtranspose.Force)[[3]];Eq3 = Simplify[DTDq3p−DTDq3 + DVDq3 + DRDq3p]− T3 + T4− (Jacobtranspose.Force)[[3]];

Eq4 = Simplify[DTDq4p−DTDq4 + DVDq4 + DRDq4p]− T4− (Jacobtranspose.Force)[[4]];Eq4 = Simplify[DTDq4p−DTDq4 + DVDq4 + DRDq4p]− T4− (Jacobtranspose.Force)[[4]];Eq4 = Simplify[DTDq4p−DTDq4 + DVDq4 + DRDq4p]− T4− (Jacobtranspose.Force)[[4]];

ddq1 = D[D[theta1[t], t], t];ddq1 = D[D[theta1[t], t], t];ddq1 = D[D[theta1[t], t], t];

ddq2 = D[D[theta2[t], t], t];ddq2 = D[D[theta2[t], t], t];ddq2 = D[D[theta2[t], t], t];

ddq3 = D[D[theta3[t], t], t];ddq3 = D[D[theta3[t], t], t];ddq3 = D[D[theta3[t], t], t];

ddq4 = D[D[theta4[t], t], t];ddq4 = D[D[theta4[t], t], t];ddq4 = D[D[theta4[t], t], t];

(*theta1*)(*theta1*)(*theta1*)

a11 = Simplify[Coefficient[Eq1, ddq1]];a11 = Simplify[Coefficient[Eq1, ddq1]];a11 = Simplify[Coefficient[Eq1, ddq1]];

a12 = Simplify[Coefficient[Eq2, ddq1]];a12 = Simplify[Coefficient[Eq2, ddq1]];a12 = Simplify[Coefficient[Eq2, ddq1]];

a13 = Simplify[Coefficient[Eq3, ddq1]];a13 = Simplify[Coefficient[Eq3, ddq1]];a13 = Simplify[Coefficient[Eq3, ddq1]];

a14 = Simplify[Coefficient[Eq4, ddq1]];a14 = Simplify[Coefficient[Eq4, ddq1]];a14 = Simplify[Coefficient[Eq4, ddq1]];

(*theta2*)(*theta2*)(*theta2*)

a21 = Simplify[Coefficient[Eq1, ddq2]];a21 = Simplify[Coefficient[Eq1, ddq2]];a21 = Simplify[Coefficient[Eq1, ddq2]];

a22 = Simplify[Coefficient[Eq2, ddq2]];a22 = Simplify[Coefficient[Eq2, ddq2]];a22 = Simplify[Coefficient[Eq2, ddq2]];

a23 = Simplify[Coefficient[Eq3, ddq2]];a23 = Simplify[Coefficient[Eq3, ddq2]];a23 = Simplify[Coefficient[Eq3, ddq2]];

a24 = Simplify[Coefficient[Eq4, ddq2]];a24 = Simplify[Coefficient[Eq4, ddq2]];a24 = Simplify[Coefficient[Eq4, ddq2]];

(*theta3*)(*theta3*)(*theta3*)

a31 = Simplify[Coefficient[Eq1, ddq3]];a31 = Simplify[Coefficient[Eq1, ddq3]];a31 = Simplify[Coefficient[Eq1, ddq3]];

a32 = Simplify[Coefficient[Eq2, ddq3]];a32 = Simplify[Coefficient[Eq2, ddq3]];a32 = Simplify[Coefficient[Eq2, ddq3]];

a33 = Simplify[Coefficient[Eq3, ddq3]];a33 = Simplify[Coefficient[Eq3, ddq3]];a33 = Simplify[Coefficient[Eq3, ddq3]];

a34 = Simplify[Coefficient[Eq4, ddq3]];a34 = Simplify[Coefficient[Eq4, ddq3]];a34 = Simplify[Coefficient[Eq4, ddq3]];

(*y4*)(*y4*)(*y4*)

a41 = Simplify[Coefficient[Eq1, ddq4]];a41 = Simplify[Coefficient[Eq1, ddq4]];a41 = Simplify[Coefficient[Eq1, ddq4]];

a42 = Simplify[Coefficient[Eq2, ddq4]];a42 = Simplify[Coefficient[Eq2, ddq4]];a42 = Simplify[Coefficient[Eq2, ddq4]];

a43 = Simplify[Coefficient[Eq3, ddq4]];a43 = Simplify[Coefficient[Eq3, ddq4]];a43 = Simplify[Coefficient[Eq3, ddq4]];

a44 = Simplify[Coefficient[Eq4, ddq4]];a44 = Simplify[Coefficient[Eq4, ddq4]];a44 = Simplify[Coefficient[Eq4, ddq4]];

(*resto*)(*resto*)(*resto*)

b1 = −Simplify[Eq1/.{ddq1→ 0, ddq2→ 0, ddq3→ 0, ddq4→ 0}];b1 = −Simplify[Eq1/.{ddq1→ 0, ddq2→ 0, ddq3→ 0, ddq4→ 0}];b1 = −Simplify[Eq1/.{ddq1→ 0, ddq2→ 0, ddq3→ 0, ddq4→ 0}];

b2 = −Simplify[Eq2/.{ddq1→ 0, ddq2→ 0, ddq3→ 0, ddq4→ 0}];b2 = −Simplify[Eq2/.{ddq1→ 0, ddq2→ 0, ddq3→ 0, ddq4→ 0}];b2 = −Simplify[Eq2/.{ddq1→ 0, ddq2→ 0, ddq3→ 0, ddq4→ 0}];

88

b3 = −Simplify[Eq3/.{ddq1→ 0, ddq2→ 0, ddq3→ 0, ddq4→ 0}];b3 = −Simplify[Eq3/.{ddq1→ 0, ddq2→ 0, ddq3→ 0, ddq4→ 0}];b3 = −Simplify[Eq3/.{ddq1→ 0, ddq2→ 0, ddq3→ 0, ddq4→ 0}];

b4 = −Simplify[Eq4/.{ddq1→ 0, ddq2→ 0, ddq3→ 0, ddq4→ 0}];b4 = −Simplify[Eq4/.{ddq1→ 0, ddq2→ 0, ddq3→ 0, ddq4→ 0}];b4 = −Simplify[Eq4/.{ddq1→ 0, ddq2→ 0, ddq3→ 0, ddq4→ 0}];

MatrixA = {{a11, a12, a13, a14}, {a21, a22, a23, a24}, {a31, a32, a33, a34}, {a41, a42, a43, a44}};MatrixA = {{a11, a12, a13, a14}, {a21, a22, a23, a24}, {a31, a32, a33, a34}, {a41, a42, a43, a44}};MatrixA = {{a11, a12, a13, a14}, {a21, a22, a23, a24}, {a31, a32, a33, a34}, {a41, a42, a43, a44}};

MatrixB = {b1, b2, b3, b4};MatrixB = {b1, b2, b3, b4};MatrixB = {b1, b2, b3, b4};

fx1 = {dq1, dq2, dq3, dq4};fx1 = {dq1, dq2, dq3, dq4};fx1 = {dq1, dq2, dq3, dq4};

fx2 = Inverse[MatrixA].MatrixB;fx2 = Inverse[MatrixA].MatrixB;fx2 = Inverse[MatrixA].MatrixB;

(*SDRE*)(*SDRE*)(*SDRE*)

(*SDRE*)(*SDRE*)(*SDRE*)

BnI = {Coefficient[MatrixB[[1]], {T1,T2,T3,T4}, 1],Coefficient[MatrixB[[2]], {T1,T2,T3,T4}, 1],Coefficient[MatrixB[[3]], {T1,T2,T3,T4}, 1],Coefficient[MatrixB[[4]], {T1,T2,T3,T4}, 1]};BnI = {Coefficient[MatrixB[[1]], {T1,T2,T3,T4}, 1],Coefficient[MatrixB[[2]], {T1,T2,T3,T4}, 1],Coefficient[MatrixB[[3]], {T1,T2,T3,T4}, 1],Coefficient[MatrixB[[4]], {T1,T2,T3,T4}, 1]};BnI = {Coefficient[MatrixB[[1]], {T1,T2,T3,T4}, 1],Coefficient[MatrixB[[2]], {T1,T2,T3,T4}, 1],Coefficient[MatrixB[[3]], {T1,T2,T3,T4}, 1],Coefficient[MatrixB[[4]], {T1,T2,T3,T4}, 1]};

AnI = Simplify[MatrixB− BnI.{T1,T2,T3,T4}];AnI = Simplify[MatrixB− BnI.{T1,T2,T3,T4}];AnI = Simplify[MatrixB− BnI.{T1,T2,T3,T4}];

(*InMatlab, atan2isy, x; notx, y; likemathematica*)(*InMatlab, atan2isy, x; notx, y; likemathematica*)(*InMatlab, atan2isy, x; notx, y; likemathematica*)

theta1eq = ArcTan[Fy,Fx];theta1eq = ArcTan[Fy,Fx];theta1eq = ArcTan[Fy,Fx];

theta2eq = ArcTan[Fy,Fx];theta2eq = ArcTan[Fy,Fx];theta2eq = ArcTan[Fy,Fx];

theta3eq = ArcTan[Fy,Fx];theta3eq = ArcTan[Fy,Fx];theta3eq = ArcTan[Fy,Fx];

theta4eq = ArcTan[Fy,Fx];theta4eq = ArcTan[Fy,Fx];theta4eq = ArcTan[Fy,Fx];

(*ATTENTION, SINCFUNCTIONINMATLABISNORMALIZED, SOWEHAVETODIVIDEHEREBYPI*)(*ATTENTION, SINCFUNCTIONINMATLABISNORMALIZED, SOWEHAVETODIVIDEHEREBYPI*)(*ATTENTION, SINCFUNCTIONINMATLABISNORMALIZED, SOWEHAVETODIVIDEHEREBYPI*)

sinctheta1 = Coefficient[AnI[[1]], Sin[theta1[t]]] ∗ Sinc[theta1[t]/Pi];sinctheta1 = Coefficient[AnI[[1]], Sin[theta1[t]]] ∗ Sinc[theta1[t]/Pi];sinctheta1 = Coefficient[AnI[[1]], Sin[theta1[t]]] ∗ Sinc[theta1[t]/Pi];

sinctheta2 = Coefficient[AnI[[2]], Sin[theta2[t]]] ∗ Sinc[theta2[t]/Pi];sinctheta2 = Coefficient[AnI[[2]], Sin[theta2[t]]] ∗ Sinc[theta2[t]/Pi];sinctheta2 = Coefficient[AnI[[2]], Sin[theta2[t]]] ∗ Sinc[theta2[t]/Pi];

sinctheta3 = Coefficient[AnI[[3]], Sin[theta3[t]]] ∗ Sinc[theta3[t]/Pi];sinctheta3 = Coefficient[AnI[[3]], Sin[theta3[t]]] ∗ Sinc[theta3[t]/Pi];sinctheta3 = Coefficient[AnI[[3]], Sin[theta3[t]]] ∗ Sinc[theta3[t]/Pi];

sinctheta4 = Coefficient[AnI[[4]], Sin[theta4[t]]] ∗ Sinc[theta4[t]/Pi];sinctheta4 = Coefficient[AnI[[4]], Sin[theta4[t]]] ∗ Sinc[theta4[t]/Pi];sinctheta4 = Coefficient[AnI[[4]], Sin[theta4[t]]] ∗ Sinc[theta4[t]/Pi];

(*biasterms, tobeaddedlateron*)(*biasterms, tobeaddedlateron*)(*biasterms, tobeaddedlateron*)

beta1 = Coefficient[AnI[[1]],Cos[theta1[t]]] ∗ Cos[theta1[t]]/beta[t];beta1 = Coefficient[AnI[[1]],Cos[theta1[t]]] ∗ Cos[theta1[t]]/beta[t];beta1 = Coefficient[AnI[[1]],Cos[theta1[t]]] ∗ Cos[theta1[t]]/beta[t];

beta2 = Coefficient[AnI[[2]],Cos[theta2[t]]] ∗ Cos[theta2[t]]/beta[t];beta2 = Coefficient[AnI[[2]],Cos[theta2[t]]] ∗ Cos[theta2[t]]/beta[t];beta2 = Coefficient[AnI[[2]],Cos[theta2[t]]] ∗ Cos[theta2[t]]/beta[t];

beta3 = Coefficient[AnI[[3]],Cos[theta3[t]]] ∗ Cos[theta3[t]]/beta[t];beta3 = Coefficient[AnI[[3]],Cos[theta3[t]]] ∗ Cos[theta3[t]]/beta[t];beta3 = Coefficient[AnI[[3]],Cos[theta3[t]]] ∗ Cos[theta3[t]]/beta[t];

beta4 = Coefficient[AnI[[4]],Cos[theta4[t]]] ∗ Cos[theta4[t]]/beta[t];beta4 = Coefficient[AnI[[4]],Cos[theta4[t]]] ∗ Cos[theta4[t]]/beta[t];beta4 = Coefficient[AnI[[4]],Cos[theta4[t]]] ∗ Cos[theta4[t]]/beta[t];

betacolumn = Inverse[MatrixA].{{beta1}, {beta2}, {beta3}, {beta4}};betacolumn = Inverse[MatrixA].{{beta1}, {beta2}, {beta3}, {beta4}};betacolumn = Inverse[MatrixA].{{beta1}, {beta2}, {beta3}, {beta4}};

AnI55 = Coefficient[AnI[[1]], dq1, 2] ∗ dq1 + Coefficient[AnI[[1]], dq1, 1];AnI55 = Coefficient[AnI[[1]], dq1, 2] ∗ dq1 + Coefficient[AnI[[1]], dq1, 1];AnI55 = Coefficient[AnI[[1]], dq1, 2] ∗ dq1 + Coefficient[AnI[[1]], dq1, 1];

AnI56 = Coefficient[AnI[[1]], dq2, 2] ∗ dq2 + Coefficient[AnI[[1]], dq2, 1];AnI56 = Coefficient[AnI[[1]], dq2, 2] ∗ dq2 + Coefficient[AnI[[1]], dq2, 1];AnI56 = Coefficient[AnI[[1]], dq2, 2] ∗ dq2 + Coefficient[AnI[[1]], dq2, 1];

AnI57 = Coefficient[AnI[[1]], dq3, 2] ∗ dq3 + Coefficient[AnI[[1]], dq3, 1];AnI57 = Coefficient[AnI[[1]], dq3, 2] ∗ dq3 + Coefficient[AnI[[1]], dq3, 1];AnI57 = Coefficient[AnI[[1]], dq3, 2] ∗ dq3 + Coefficient[AnI[[1]], dq3, 1];

AnI58 = Coefficient[AnI[[1]], dq4, 2] ∗ dq4 + Coefficient[AnI[[1]], dq4, 1];AnI58 = Coefficient[AnI[[1]], dq4, 2] ∗ dq4 + Coefficient[AnI[[1]], dq4, 1];AnI58 = Coefficient[AnI[[1]], dq4, 2] ∗ dq4 + Coefficient[AnI[[1]], dq4, 1];

AnI65 = Coefficient[AnI[[2]], dq1, 2] ∗ dq1 + Coefficient[AnI[[2]], dq1, 1];AnI65 = Coefficient[AnI[[2]], dq1, 2] ∗ dq1 + Coefficient[AnI[[2]], dq1, 1];AnI65 = Coefficient[AnI[[2]], dq1, 2] ∗ dq1 + Coefficient[AnI[[2]], dq1, 1];

AnI66 = Coefficient[AnI[[2]], dq2, 2] ∗ dq2 + Coefficient[AnI[[2]], dq2, 1];AnI66 = Coefficient[AnI[[2]], dq2, 2] ∗ dq2 + Coefficient[AnI[[2]], dq2, 1];AnI66 = Coefficient[AnI[[2]], dq2, 2] ∗ dq2 + Coefficient[AnI[[2]], dq2, 1];

89

AnI67 = Coefficient[AnI[[2]], dq3, 2] ∗ dq3 + Coefficient[AnI[[2]], dq3, 1];AnI67 = Coefficient[AnI[[2]], dq3, 2] ∗ dq3 + Coefficient[AnI[[2]], dq3, 1];AnI67 = Coefficient[AnI[[2]], dq3, 2] ∗ dq3 + Coefficient[AnI[[2]], dq3, 1];

AnI68 = Coefficient[AnI[[2]], dq4, 2] ∗ dq4 + Coefficient[AnI[[2]], dq4, 1];AnI68 = Coefficient[AnI[[2]], dq4, 2] ∗ dq4 + Coefficient[AnI[[2]], dq4, 1];AnI68 = Coefficient[AnI[[2]], dq4, 2] ∗ dq4 + Coefficient[AnI[[2]], dq4, 1];

AnI75 = Coefficient[AnI[[3]], dq1, 2] ∗ dq1 + Coefficient[AnI[[3]], dq1, 1];AnI75 = Coefficient[AnI[[3]], dq1, 2] ∗ dq1 + Coefficient[AnI[[3]], dq1, 1];AnI75 = Coefficient[AnI[[3]], dq1, 2] ∗ dq1 + Coefficient[AnI[[3]], dq1, 1];

AnI76 = Coefficient[AnI[[3]], dq2, 2] ∗ dq2 + Coefficient[AnI[[3]], dq2, 1];AnI76 = Coefficient[AnI[[3]], dq2, 2] ∗ dq2 + Coefficient[AnI[[3]], dq2, 1];AnI76 = Coefficient[AnI[[3]], dq2, 2] ∗ dq2 + Coefficient[AnI[[3]], dq2, 1];

AnI77 = Coefficient[AnI[[3]], dq3, 2] ∗ dq3 + Coefficient[AnI[[3]], dq3, 1];AnI77 = Coefficient[AnI[[3]], dq3, 2] ∗ dq3 + Coefficient[AnI[[3]], dq3, 1];AnI77 = Coefficient[AnI[[3]], dq3, 2] ∗ dq3 + Coefficient[AnI[[3]], dq3, 1];

AnI78 = Coefficient[AnI[[3]], dq4, 2] ∗ dq4 + Coefficient[AnI[[3]], dq4, 1];AnI78 = Coefficient[AnI[[3]], dq4, 2] ∗ dq4 + Coefficient[AnI[[3]], dq4, 1];AnI78 = Coefficient[AnI[[3]], dq4, 2] ∗ dq4 + Coefficient[AnI[[3]], dq4, 1];

AnI85 = Coefficient[AnI[[4]], dq1, 2] ∗ dq1 + Coefficient[AnI[[4]], dq1, 1];AnI85 = Coefficient[AnI[[4]], dq1, 2] ∗ dq1 + Coefficient[AnI[[4]], dq1, 1];AnI85 = Coefficient[AnI[[4]], dq1, 2] ∗ dq1 + Coefficient[AnI[[4]], dq1, 1];

AnI86 = Coefficient[AnI[[4]], dq2, 2] ∗ dq2 + Coefficient[AnI[[4]], dq2, 1];AnI86 = Coefficient[AnI[[4]], dq2, 2] ∗ dq2 + Coefficient[AnI[[4]], dq2, 1];AnI86 = Coefficient[AnI[[4]], dq2, 2] ∗ dq2 + Coefficient[AnI[[4]], dq2, 1];

AnI87 = Coefficient[AnI[[4]], dq3, 2] ∗ dq3 + Coefficient[AnI[[4]], dq3, 1];AnI87 = Coefficient[AnI[[4]], dq3, 2] ∗ dq3 + Coefficient[AnI[[4]], dq3, 1];AnI87 = Coefficient[AnI[[4]], dq3, 2] ∗ dq3 + Coefficient[AnI[[4]], dq3, 1];

AnI88 = Coefficient[AnI[[4]], dq4, 2] ∗ dq4 + Coefficient[AnI[[4]], dq4, 1];AnI88 = Coefficient[AnI[[4]], dq4, 2] ∗ dq4 + Coefficient[AnI[[4]], dq4, 1];AnI88 = Coefficient[AnI[[4]], dq4, 2] ∗ dq4 + Coefficient[AnI[[4]], dq4, 1];

AnIspeed = {{AnI55,AnI56,AnI57,AnI58}, {AnI65,AnI66,AnI67,AnI68}, {AnI75,AnI76,AnI77,AnI78}, {AnI85,AnI86,AnI87,AnI88}};AnIspeed = {{AnI55,AnI56,AnI57,AnI58}, {AnI65,AnI66,AnI67,AnI68}, {AnI75,AnI76,AnI77,AnI78}, {AnI85,AnI86,AnI87,AnI88}};AnIspeed = {{AnI55,AnI56,AnI57,AnI58}, {AnI65,AnI66,AnI67,AnI68}, {AnI75,AnI76,AnI77,AnI78}, {AnI85,AnI86,AnI87,AnI88}};

AnIrectangular = Join[DiagonalMatrix[{sinctheta1, sinctheta2, sinctheta3, sinctheta4}],AnIspeed, 2];AnIrectangular = Join[DiagonalMatrix[{sinctheta1, sinctheta2, sinctheta3, sinctheta4}],AnIspeed, 2];AnIrectangular = Join[DiagonalMatrix[{sinctheta1, sinctheta2, sinctheta3, sinctheta4}],AnIspeed, 2];

RicattiArectangular = Inverse[MatrixA].AnIrectangular;RicattiArectangular = Inverse[MatrixA].AnIrectangular;RicattiArectangular = Inverse[MatrixA].AnIrectangular;

RicattiArectangularId = Join[DiagonalMatrix[{0, 0, 0, 0}],DiagonalMatrix[{1, 1, 1, 1}], 2];RicattiArectangularId = Join[DiagonalMatrix[{0, 0, 0, 0}],DiagonalMatrix[{1, 1, 1, 1}], 2];RicattiArectangularId = Join[DiagonalMatrix[{0, 0, 0, 0}],DiagonalMatrix[{1, 1, 1, 1}], 2];

UberRicattiA = Join[RicattiArectangularId,RicattiArectangular];UberRicattiA = Join[RicattiArectangularId,RicattiArectangular];UberRicattiA = Join[RicattiArectangularId,RicattiArectangular];

UberRicattiB = Join[DiagonalMatrix[{0, 0, 0, 0}], Inverse[MatrixA].BnI];UberRicattiB = Join[DiagonalMatrix[{0, 0, 0, 0}], Inverse[MatrixA].BnI];UberRicattiB = Join[DiagonalMatrix[{0, 0, 0, 0}], Inverse[MatrixA].BnI];

RicattiVectorx = {theta1[t], theta2[t], theta3[t], theta4[t], dq1, dq2, dq3, dq4};RicattiVectorx = {theta1[t], theta2[t], theta3[t], theta4[t], dq1, dq2, dq3, dq4};RicattiVectorx = {theta1[t], theta2[t], theta3[t], theta4[t], dq1, dq2, dq3, dq4};

RicattiVectoru = {T1,T2,T3,T4};RicattiVectoru = {T1,T2,T3,T4};RicattiVectoru = {T1,T2,T3,T4};

finalfx = Join[fx1, fx2];finalfx = Join[fx1, fx2];finalfx = Join[fx1, fx2];

Ricattieq = UberRicattiA.RicattiVectorx + UberRicattiB.RicattiVectoru;Ricattieq = UberRicattiA.RicattiVectorx + UberRicattiB.RicattiVectoru;Ricattieq = UberRicattiA.RicattiVectorx + UberRicattiB.RicattiVectoru;

(*Virtual System*)(*Virtual System*)(*Virtual System*)

qv1 = thetav1[t];qv1 = thetav1[t];qv1 = thetav1[t];

qv2 = thetav2[t];qv2 = thetav2[t];qv2 = thetav2[t];

Gv10 = {lv1 ∗ Cos[thetav1[t]], lv1 ∗ Sin[thetav1[t]], 0};Gv10 = {lv1 ∗ Cos[thetav1[t]], lv1 ∗ Sin[thetav1[t]], 0};Gv10 = {lv1 ∗ Cos[thetav1[t]], lv1 ∗ Sin[thetav1[t]], 0};

Gv20 = {Lv1 ∗ Cos[thetav1[t]] + lv2 ∗ Cos[thetav2[t]],Lv1 ∗ Sin[thetav1[t]] + lv2 ∗ Sin[thetav2[t]], 0};Gv20 = {Lv1 ∗ Cos[thetav1[t]] + lv2 ∗ Cos[thetav2[t]],Lv1 ∗ Sin[thetav1[t]] + lv2 ∗ Sin[thetav2[t]], 0};Gv20 = {Lv1 ∗ Cos[thetav1[t]] + lv2 ∗ Cos[thetav2[t]],Lv1 ∗ Sin[thetav1[t]] + lv2 ∗ Sin[thetav2[t]], 0};

Gve0 = {Lv1 ∗ Cos[thetav1[t]] + Lv2 ∗ Cos[thetav2[t]],Lv1 ∗ Sin[thetav1[t]] + Lv2 ∗ Sin[thetav2[t]], thetav2[t]};Gve0 = {Lv1 ∗ Cos[thetav1[t]] + Lv2 ∗ Cos[thetav2[t]],Lv1 ∗ Sin[thetav1[t]] + Lv2 ∗ Sin[thetav2[t]], thetav2[t]};Gve0 = {Lv1 ∗ Cos[thetav1[t]] + Lv2 ∗ Cos[thetav2[t]],Lv1 ∗ Sin[thetav1[t]] + Lv2 ∗ Sin[thetav2[t]], thetav2[t]};

Vgv10 = D[Gv10, t];Vgv10 = D[Gv10, t];Vgv10 = D[Gv10, t];

Vgv20 = D[Gv20, t];Vgv20 = D[Gv20, t];Vgv20 = D[Gv20, t];

VgvE0 = D[Gve0, t];VgvE0 = D[Gve0, t];VgvE0 = D[Gve0, t];

wv1 = {0, 0, D[thetav1[t], t]};wv1 = {0, 0, D[thetav1[t], t]};wv1 = {0, 0, D[thetav1[t], t]};

wv2 = {0, 0, D[thetav2[t] + thetav1[t], t]};wv2 = {0, 0, D[thetav2[t] + thetav1[t], t]};wv2 = {0, 0, D[thetav2[t] + thetav1[t], t]};

Jv1 = DiagonalMatrix[{Jxv1, Jyv1, Jzv1}];Jv1 = DiagonalMatrix[{Jxv1, Jyv1, Jzv1}];Jv1 = DiagonalMatrix[{Jxv1, Jyv1, Jzv1}];

Jv2 = DiagonalMatrix[{Jxv2, Jyv2, Jzv2}];Jv2 = DiagonalMatrix[{Jxv2, Jyv2, Jzv2}];Jv2 = DiagonalMatrix[{Jxv2, Jyv2, Jzv2}];

90

dqv1 = D[thetav1[t], t];dqv1 = D[thetav1[t], t];dqv1 = D[thetav1[t], t];

dqv2 = D[thetav2[t], t];dqv2 = D[thetav2[t], t];dqv2 = D[thetav2[t], t];

Tv = Simplify[(mv1 ∗ Vgv10.Vgv10 + wv1.Jv1.wv1 + mv2 ∗ Vgv20.Vgv20 + wv2.Jv2.wv2)/2];Tv = Simplify[(mv1 ∗ Vgv10.Vgv10 + wv1.Jv1.wv1 + mv2 ∗ Vgv20.Vgv20 + wv2.Jv2.wv2)/2];Tv = Simplify[(mv1 ∗ Vgv10.Vgv10 + wv1.Jv1.wv1 + mv2 ∗ Vgv20.Vgv20 + wv2.Jv2.wv2)/2];

Vv = 0;Vv = 0;Vv = 0;

Rv = 0;Rv = 0;Rv = 0;

Jacobv = D[Gve0, {{thetav1[t], thetav2[t]}}];Jacobv = D[Gve0, {{thetav1[t], thetav2[t]}}];Jacobv = D[Gve0, {{thetav1[t], thetav2[t]}}];

Jacobtransposev = Transpose[Jacobv];Jacobtransposev = Transpose[Jacobv];Jacobtransposev = Transpose[Jacobv];

Kv = {{k11v, k12v}, {k21v, k22v}};Kv = {{k11v, k12v}, {k21v, k22v}};Kv = {{k11v, k12v}, {k21v, k22v}};

Dv = {{d11v, d12v}, {d21v, d22v}};Dv = {{d11v, d12v}, {d21v, d22v}};Dv = {{d11v, d12v}, {d21v, d22v}};

DTDqv1p = Simplify[D[D[Tv, D[thetav1[t], t]], t]];DTDqv1p = Simplify[D[D[Tv, D[thetav1[t], t]], t]];DTDqv1p = Simplify[D[D[Tv, D[thetav1[t], t]], t]];

DTDqv2p = Simplify[D[D[Tv, D[thetav2[t], t]], t]];DTDqv2p = Simplify[D[D[Tv, D[thetav2[t], t]], t]];DTDqv2p = Simplify[D[D[Tv, D[thetav2[t], t]], t]];

DVDqv1 = Simplify[D[Vv, thetav1[t]]];DVDqv1 = Simplify[D[Vv, thetav1[t]]];DVDqv1 = Simplify[D[Vv, thetav1[t]]];

DVDqv2 = Simplify[D[Vv, thetav2[t]]];DVDqv2 = Simplify[D[Vv, thetav2[t]]];DVDqv2 = Simplify[D[Vv, thetav2[t]]];

DTDqv1 = Simplify[D[Tv, thetav1[t]]];DTDqv1 = Simplify[D[Tv, thetav1[t]]];DTDqv1 = Simplify[D[Tv, thetav1[t]]];

DTDqv2 = Simplify[D[Tv, thetav2[t]]];DTDqv2 = Simplify[D[Tv, thetav2[t]]];DTDqv2 = Simplify[D[Tv, thetav2[t]]];

DRDqv1p = Simplify[D[Rv, D[thetav1[t], t]]];DRDqv1p = Simplify[D[Rv, D[thetav1[t], t]]];DRDqv1p = Simplify[D[Rv, D[thetav1[t], t]]];

DRDqv2p = Simplify[D[Rv, D[thetav2[t], t]]];DRDqv2p = Simplify[D[Rv, D[thetav2[t], t]]];DRDqv2p = Simplify[D[Rv, D[thetav2[t], t]]];

Eqv1 = Simplify[DTDqv1p−DTDqv1 + DVDqv1 + DRDqv1p]− (Jacobtransposev.Force)[[1]] + Kv[[1]].{qv1− thetav1i, qv2− thetav2i}+ Dv[[1]].{dqv1− dthetav1i, dqv2− dthetav2i};Eqv1 = Simplify[DTDqv1p−DTDqv1 + DVDqv1 + DRDqv1p]− (Jacobtransposev.Force)[[1]] + Kv[[1]].{qv1− thetav1i, qv2− thetav2i}+ Dv[[1]].{dqv1− dthetav1i, dqv2− dthetav2i};Eqv1 = Simplify[DTDqv1p−DTDqv1 + DVDqv1 + DRDqv1p]− (Jacobtransposev.Force)[[1]] + Kv[[1]].{qv1− thetav1i, qv2− thetav2i}+ Dv[[1]].{dqv1− dthetav1i, dqv2− dthetav2i};

Eqv2 = Simplify[DTDqv2p−DTDqv2 + DVDqv2 + DRDqv2p]− (Jacobtransposev.Force)[[2]] + Kv[[2]].{qv1− thetav1i, qv2− thetav2i}+ Dv[[2]].{dqv1− dthetav1i, dqv2− dthetav2i};Eqv2 = Simplify[DTDqv2p−DTDqv2 + DVDqv2 + DRDqv2p]− (Jacobtransposev.Force)[[2]] + Kv[[2]].{qv1− thetav1i, qv2− thetav2i}+ Dv[[2]].{dqv1− dthetav1i, dqv2− dthetav2i};Eqv2 = Simplify[DTDqv2p−DTDqv2 + DVDqv2 + DRDqv2p]− (Jacobtransposev.Force)[[2]] + Kv[[2]].{qv1− thetav1i, qv2− thetav2i}+ Dv[[2]].{dqv1− dthetav1i, dqv2− dthetav2i};

ddqv1 = D[D[thetav1[t], t], t];ddqv1 = D[D[thetav1[t], t], t];ddqv1 = D[D[thetav1[t], t], t];

ddqv2 = D[D[thetav2[t], t], t];ddqv2 = D[D[thetav2[t], t], t];ddqv2 = D[D[thetav2[t], t], t];

av11 = Simplify[Coefficient[Eqv1, ddqv1, 1]];av11 = Simplify[Coefficient[Eqv1, ddqv1, 1]];av11 = Simplify[Coefficient[Eqv1, ddqv1, 1]];

av12 = Simplify[Coefficient[Eqv2, ddqv1, 1]];av12 = Simplify[Coefficient[Eqv2, ddqv1, 1]];av12 = Simplify[Coefficient[Eqv2, ddqv1, 1]];

av21 = Simplify[Coefficient[Eqv1, ddqv2, 1]];av21 = Simplify[Coefficient[Eqv1, ddqv2, 1]];av21 = Simplify[Coefficient[Eqv1, ddqv2, 1]];

av22 = Simplify[Coefficient[Eqv2, ddqv2, 1]];av22 = Simplify[Coefficient[Eqv2, ddqv2, 1]];av22 = Simplify[Coefficient[Eqv2, ddqv2, 1]];

bv1 = −Simplify[Eqv1/.{ddqv1→ 0, ddqv2→ 0}];bv1 = −Simplify[Eqv1/.{ddqv1→ 0, ddqv2→ 0}];bv1 = −Simplify[Eqv1/.{ddqv1→ 0, ddqv2→ 0}];

bv2 = −Simplify[Eqv2/.{ddqv1→ 0, ddqv2→ 0}];bv2 = −Simplify[Eqv2/.{ddqv1→ 0, ddqv2→ 0}];bv2 = −Simplify[Eqv2/.{ddqv1→ 0, ddqv2→ 0}];

MatrixAv = {{av11, av12}, {av21, av22}};MatrixAv = {{av11, av12}, {av21, av22}};MatrixAv = {{av11, av12}, {av21, av22}};

MatrixBv = {bv1, bv2};MatrixBv = {bv1, bv2};MatrixBv = {bv1, bv2};

fxv1 = {dqv1, dqv2};fxv1 = {dqv1, dqv2};fxv1 = {dqv1, dqv2};

fxv2 = Inverse[MatrixAv].MatrixBv + {ddthetav1i,+ddthetav2i};fxv2 = Inverse[MatrixAv].MatrixBv + {ddthetav1i,+ddthetav2i};fxv2 = Inverse[MatrixAv].MatrixBv + {ddthetav1i,+ddthetav2i};

91

AvnI = Simplify[MatrixBv];AvnI = Simplify[MatrixBv];AvnI = Simplify[MatrixBv];

AvnI33 = Coefficient[AvnI[[1]], dqv1, 2] ∗ dqv1 + Coefficient[AvnI[[1]], dqv1, 1];AvnI33 = Coefficient[AvnI[[1]], dqv1, 2] ∗ dqv1 + Coefficient[AvnI[[1]], dqv1, 1];AvnI33 = Coefficient[AvnI[[1]], dqv1, 2] ∗ dqv1 + Coefficient[AvnI[[1]], dqv1, 1];

AvnI34 = Coefficient[AvnI[[1]], dqv2, 2] ∗ dqv2 + Coefficient[AvnI[[1]], dqv2, 1];AvnI34 = Coefficient[AvnI[[1]], dqv2, 2] ∗ dqv2 + Coefficient[AvnI[[1]], dqv2, 1];AvnI34 = Coefficient[AvnI[[1]], dqv2, 2] ∗ dqv2 + Coefficient[AvnI[[1]], dqv2, 1];

AvnI43 = Coefficient[AvnI[[2]], dqv1, 2] ∗ dqv1 + Coefficient[AvnI[[2]], dqv1, 1];AvnI43 = Coefficient[AvnI[[2]], dqv1, 2] ∗ dqv1 + Coefficient[AvnI[[2]], dqv1, 1];AvnI43 = Coefficient[AvnI[[2]], dqv1, 2] ∗ dqv1 + Coefficient[AvnI[[2]], dqv1, 1];

AvnI44 = Coefficient[AvnI[[2]], dqv2, 2] ∗ dqv2 + Coefficient[AvnI[[2]], dqv2, 1];AvnI44 = Coefficient[AvnI[[2]], dqv2, 2] ∗ dqv2 + Coefficient[AvnI[[2]], dqv2, 1];AvnI44 = Coefficient[AvnI[[2]], dqv2, 2] ∗ dqv2 + Coefficient[AvnI[[2]], dqv2, 1];

AvnI31 = Coefficient[AvnI[[1]], qv1, 1];AvnI31 = Coefficient[AvnI[[1]], qv1, 1];AvnI31 = Coefficient[AvnI[[1]], qv1, 1];

AvnI32 = Coefficient[AvnI[[1]], qv2, 1];AvnI32 = Coefficient[AvnI[[1]], qv2, 1];AvnI32 = Coefficient[AvnI[[1]], qv2, 1];

AvnI41 = Coefficient[AvnI[[2]], qv1, 1];AvnI41 = Coefficient[AvnI[[2]], qv1, 1];AvnI41 = Coefficient[AvnI[[2]], qv1, 1];

AvnI42 = Coefficient[AvnI[[2]], qv2, 1];AvnI42 = Coefficient[AvnI[[2]], qv2, 1];AvnI42 = Coefficient[AvnI[[2]], qv2, 1];

sincthetav1 = Coefficient[AvnI[[1]], Sin[qv1], 1] ∗ Sinc[qv1/Pi];sincthetav1 = Coefficient[AvnI[[1]], Sin[qv1], 1] ∗ Sinc[qv1/Pi];sincthetav1 = Coefficient[AvnI[[1]], Sin[qv1], 1] ∗ Sinc[qv1/Pi];

sincthetav2 = Coefficient[AvnI[[2]], Sin[qv2], 1] ∗ Sinc[qv2/Pi];sincthetav2 = Coefficient[AvnI[[2]], Sin[qv2], 1] ∗ Sinc[qv2/Pi];sincthetav2 = Coefficient[AvnI[[2]], Sin[qv2], 1] ∗ Sinc[qv2/Pi];

betav1 = (Coefficient[AvnI[[1]],Cos[qv1], 1]Cos[qv1] + Coefficient[AvnI[[1]], thetav1i, 1] ∗ thetav1i + Coefficient[AvnI[[1]], thetav2i, 1] ∗ thetav2i + Coefficient[AvnI[[1]], dthetav1i, 1] ∗ dthetav1i + Coefficient[AvnI[[1]], dthetav2i, 1] ∗ dthetav2i)/beta[t];betav1 = (Coefficient[AvnI[[1]],Cos[qv1], 1]Cos[qv1] + Coefficient[AvnI[[1]], thetav1i, 1] ∗ thetav1i + Coefficient[AvnI[[1]], thetav2i, 1] ∗ thetav2i + Coefficient[AvnI[[1]], dthetav1i, 1] ∗ dthetav1i + Coefficient[AvnI[[1]], dthetav2i, 1] ∗ dthetav2i)/beta[t];betav1 = (Coefficient[AvnI[[1]],Cos[qv1], 1]Cos[qv1] + Coefficient[AvnI[[1]], thetav1i, 1] ∗ thetav1i + Coefficient[AvnI[[1]], thetav2i, 1] ∗ thetav2i + Coefficient[AvnI[[1]], dthetav1i, 1] ∗ dthetav1i + Coefficient[AvnI[[1]], dthetav2i, 1] ∗ dthetav2i)/beta[t];

betav2 = (Coefficient[AvnI[[2]],Cos[qv2], 1]Cos[qv2] + Coefficient[AvnI[[2]], thetav1i, 1] ∗ thetav1i + Coefficient[AvnI[[2]], thetav2i, 1] ∗ thetav2i + Coefficient[AvnI[[2]], dthetav1i, 1] ∗ dthetav1i + Coefficient[AvnI[[2]], dthetav2i, 1] ∗ dthetav2i)/beta[t];betav2 = (Coefficient[AvnI[[2]],Cos[qv2], 1]Cos[qv2] + Coefficient[AvnI[[2]], thetav1i, 1] ∗ thetav1i + Coefficient[AvnI[[2]], thetav2i, 1] ∗ thetav2i + Coefficient[AvnI[[2]], dthetav1i, 1] ∗ dthetav1i + Coefficient[AvnI[[2]], dthetav2i, 1] ∗ dthetav2i)/beta[t];betav2 = (Coefficient[AvnI[[2]],Cos[qv2], 1]Cos[qv2] + Coefficient[AvnI[[2]], thetav1i, 1] ∗ thetav1i + Coefficient[AvnI[[2]], thetav2i, 1] ∗ thetav2i + Coefficient[AvnI[[2]], dthetav1i, 1] ∗ dthetav1i + Coefficient[AvnI[[2]], dthetav2i, 1] ∗ dthetav2i)/beta[t];

betavmatrix = {{betav1}, {betav2}};betavmatrix = {{betav1}, {betav2}};betavmatrix = {{betav1}, {betav2}};

AvnIposition = {{AvnI31 + sincthetav1,AvnI32}, {AvnI41,AvnI42 + sincthetav2}};AvnIposition = {{AvnI31 + sincthetav1,AvnI32}, {AvnI41,AvnI42 + sincthetav2}};AvnIposition = {{AvnI31 + sincthetav1,AvnI32}, {AvnI41,AvnI42 + sincthetav2}};

AvnIspeed = {{AvnI33,AvnI34}, {AvnI43,AvnI44}};AvnIspeed = {{AvnI33,AvnI34}, {AvnI43,AvnI44}};AvnIspeed = {{AvnI33,AvnI34}, {AvnI43,AvnI44}};

AvnIrectangular = Join[Join[AvnIposition,AvnIspeed, 2], betavmatrix, 2];AvnIrectangular = Join[Join[AvnIposition,AvnIspeed, 2], betavmatrix, 2];AvnIrectangular = Join[Join[AvnIposition,AvnIspeed, 2], betavmatrix, 2];

TrueAvrectangular = Inverse[MatrixAv].AvnIrectangular + {{0, 0, 0, 0, ddthetav1i/beta[t]}, {0, 0, 0, 0, ddthetav2i/beta[t]}};TrueAvrectangular = Inverse[MatrixAv].AvnIrectangular + {{0, 0, 0, 0, ddthetav1i/beta[t]}, {0, 0, 0, 0, ddthetav2i/beta[t]}};TrueAvrectangular = Inverse[MatrixAv].AvnIrectangular + {{0, 0, 0, 0, ddthetav1i/beta[t]}, {0, 0, 0, 0, ddthetav2i/beta[t]}};

TrueAvrectangularId = Join[DiagonalMatrix[{0, 0}],DiagonalMatrix[{1, 1}], {{0}, {0}}, 2];TrueAvrectangularId = Join[DiagonalMatrix[{0, 0}],DiagonalMatrix[{1, 1}], {{0}, {0}}, 2];TrueAvrectangularId = Join[DiagonalMatrix[{0, 0}],DiagonalMatrix[{1, 1}], {{0}, {0}}, 2];

RicattiAv = Join[TrueAvrectangularId,TrueAvrectangular];RicattiAv = Join[TrueAvrectangularId,TrueAvrectangular];RicattiAv = Join[TrueAvrectangularId,TrueAvrectangular];

z = {qv1, qv2};z = {qv1, qv2};z = {qv1, qv2};

(*Errorfunction = (Jacob.fx1− fz1)∧2*)(*Errorfunction = (Jacob.fx1− fz1)∧2*)(*Errorfunction = (Jacob.fx1− fz1)∧2*)

Errorfunction = FullSimplify[(Jacob.fx1− Jacobv.fz1).(Jacob.fx1− Jacobv.fz1)];Errorfunction = FullSimplify[(Jacob.fx1− Jacobv.fz1).(Jacob.fx1− Jacobv.fz1)];Errorfunction = FullSimplify[(Jacob.fx1− Jacobv.fz1).(Jacob.fx1− Jacobv.fz1)];

(*simplecalculusspeedweightmatrixidentity[xz] ∗ [J∧TJ,−J∧T ;−J, I][x; z]; halfweight = [03x4J03x3− I3x3]*)(*simplecalculusspeedweightmatrixidentity[xz] ∗ [J∧TJ,−J∧T ;−J, I][x; z]; halfweight = [03x4J03x3− I3x3]*)(*simplecalculusspeedweightmatrixidentity[xz] ∗ [J∧TJ,−J∧T ;−J, I][x; z]; halfweight = [03x4J03x3− I3x3]*)

zm4x4 = ConstantArray[0, {4, 4}];zm4x4 = ConstantArray[0, {4, 4}];zm4x4 = ConstantArray[0, {4, 4}];

zm3x3 = ConstantArray[0, {3, 3}];zm3x3 = ConstantArray[0, {3, 3}];zm3x3 = ConstantArray[0, {3, 3}];

zm3x2 = ConstantArray[0, {3, 2}];zm3x2 = ConstantArray[0, {3, 2}];zm3x2 = ConstantArray[0, {3, 2}];

92

zm4x3 = ConstantArray[0, {4, 3}];zm4x3 = ConstantArray[0, {4, 3}];zm4x3 = ConstantArray[0, {4, 3}];

zm6x4 = ConstantArray[0, {6, 4}];zm6x4 = ConstantArray[0, {6, 4}];zm6x4 = ConstantArray[0, {6, 4}];

zm3x1 = ConstantArray[0, {3, 1}];zm3x1 = ConstantArray[0, {3, 1}];zm3x1 = ConstantArray[0, {3, 1}];

zm3x4 = ConstantArray[0, {3, 4}];zm3x4 = ConstantArray[0, {3, 4}];zm3x4 = ConstantArray[0, {3, 4}];

I3x3 = IdentityMatrix[3];I3x3 = IdentityMatrix[3];I3x3 = IdentityMatrix[3];

halfweight = Join[zm3x4, Jacob, zm3x2,−Jacobv, zm3x1, 2];halfweight = Join[zm3x4, Jacob, zm3x2,−Jacobv, zm3x1, 2];halfweight = Join[zm3x4, Jacob, zm3x2,−Jacobv, zm3x1, 2];

fullweight = alpha1 ∗ Transpose[halfweight].halfweight;fullweight = alpha1 ∗ Transpose[halfweight].halfweight;fullweight = alpha1 ∗ Transpose[halfweight].halfweight;

errorstatederivative = D[Ge0−Gve0, t];errorstatederivative = D[Ge0−Gve0, t];errorstatederivative = D[Ge0−Gve0, t];

ep1 = errorstatederivative[[1]];ep1 = errorstatederivative[[1]];ep1 = errorstatederivative[[1]];

ep2 = errorstatederivative[[2]];ep2 = errorstatederivative[[2]];ep2 = errorstatederivative[[2]];

ep3 = errorstatederivative[[3]];ep3 = errorstatederivative[[3]];ep3 = errorstatederivative[[3]];

ep1v = Coefficient[ep1, {Join[q, qp, z, zp, {beta[t]}]}];ep1v = Coefficient[ep1, {Join[q, qp, z, zp, {beta[t]}]}];ep1v = Coefficient[ep1, {Join[q, qp, z, zp, {beta[t]}]}];

ep2v = Coefficient[ep2, {Join[q, qp, z, zp, {beta[t]}]}];ep2v = Coefficient[ep2, {Join[q, qp, z, zp, {beta[t]}]}];ep2v = Coefficient[ep2, {Join[q, qp, z, zp, {beta[t]}]}];

ep3v = Coefficient[ep3, {Join[q, qp, z, zp, {beta[t]}]}];ep3v = Coefficient[ep3, {Join[q, qp, z, zp, {beta[t]}]}];ep3v = Coefficient[ep3, {Join[q, qp, z, zp, {beta[t]}]}];

Aerror = Join[ep1v, ep2v, ep3v, 1];Aerror = Join[ep1v, ep2v, ep3v, 1];Aerror = Join[ep1v, ep2v, ep3v, 1];

Berror = ConstantArray[0, {3, 4}];Berror = ConstantArray[0, {3, 4}];Berror = ConstantArray[0, {3, 4}];

Qerror = DiagonalMatrix[{alpha0, alpha0, alpha0}];Qerror = DiagonalMatrix[{alpha0, alpha0, alpha0}];Qerror = DiagonalMatrix[{alpha0, alpha0, alpha0}];

zm3x16 = ConstantArray[0, {3, 16}];zm3x16 = ConstantArray[0, {3, 16}];zm3x16 = ConstantArray[0, {3, 16}];

zm16x3 = ConstantArray[0, {16, 3}];zm16x3 = ConstantArray[0, {16, 3}];zm16x3 = ConstantArray[0, {16, 3}];

(*Ricatti Join*)(*Ricatti Join*)(*Ricatti Join*)

zm8x6 = ConstantArray[0, {8, 6}];zm8x6 = ConstantArray[0, {8, 6}];zm8x6 = ConstantArray[0, {8, 6}];

zm8x4 = ConstantArray[0, {8, 4}];zm8x4 = ConstantArray[0, {8, 4}];zm8x4 = ConstantArray[0, {8, 4}];

zm5x8 = ConstantArray[0, {5, 8}];zm5x8 = ConstantArray[0, {5, 8}];zm5x8 = ConstantArray[0, {5, 8}];

zm2x1 = ConstantArray[0, {2, 1}];zm2x1 = ConstantArray[0, {2, 1}];zm2x1 = ConstantArray[0, {2, 1}];

zm2x2 = ConstantArray[0, {2, 2}];zm2x2 = ConstantArray[0, {2, 2}];zm2x2 = ConstantArray[0, {2, 2}];

zm6x8 = ConstantArray[0, {6, 8}];zm6x8 = ConstantArray[0, {6, 8}];zm6x8 = ConstantArray[0, {6, 8}];

zm8x3 = ConstantArray[0, {8, 3}];zm8x3 = ConstantArray[0, {8, 3}];zm8x3 = ConstantArray[0, {8, 3}];

zm3x7 = ConstantArray[0, {3, 7}];zm3x7 = ConstantArray[0, {3, 7}];zm3x7 = ConstantArray[0, {3, 7}];

zm5x4 = ConstantArray[0, {5, 4}];zm5x4 = ConstantArray[0, {5, 4}];zm5x4 = ConstantArray[0, {5, 4}];

zm4x1 = ConstantArray[0, {4, 1}];zm4x1 = ConstantArray[0, {4, 1}];zm4x1 = ConstantArray[0, {4, 1}];

betacolumnphysys = Join[zm4x1, betacolumn, 1];betacolumnphysys = Join[zm4x1, betacolumn, 1];betacolumnphysys = Join[zm4x1, betacolumn, 1];

I2x2 = IdentityMatrix[2];I2x2 = IdentityMatrix[2];I2x2 = IdentityMatrix[2];

fz12x5 = Join[zm2x2, I2x2, zm2x1, 2];fz12x5 = Join[zm2x2, I2x2, zm2x1, 2];fz12x5 = Join[zm2x2, I2x2, zm2x1, 2];

93

fz23x5 = fzend3x5;fz23x5 = fzend3x5;fz23x5 = fzend3x5;

fz5x5 = Join[fz12x5, fz23x5, 1];fz5x5 = Join[fz12x5, fz23x5, 1];fz5x5 = Join[fz12x5, fz23x5, 1];

HalfRicattiAx = Join[Join[UberRicattiA, zm8x4, 2], betacolumnphysys, 2];HalfRicattiAx = Join[Join[UberRicattiA, zm8x4, 2], betacolumnphysys, 2];HalfRicattiAx = Join[Join[UberRicattiA, zm8x4, 2], betacolumnphysys, 2];

HalfRicattiAz = Join[zm5x8, fz5x5, 2];HalfRicattiAz = Join[zm5x8, fz5x5, 2];HalfRicattiAz = Join[zm5x8, fz5x5, 2];

FullRicattiA = Join[HalfRicattiAx,HalfRicattiAz, 1];FullRicattiA = Join[HalfRicattiAx,HalfRicattiAz, 1];FullRicattiA = Join[HalfRicattiAx,HalfRicattiAz, 1];

HalfRicattiBx = UberRicattiB;HalfRicattiBx = UberRicattiB;HalfRicattiBx = UberRicattiB;

HalfRicattiBz = zm5x4;HalfRicattiBz = zm5x4;HalfRicattiBz = zm5x4;

FullRicattiB = Join[HalfRicattiBx,HalfRicattiBz, 1];FullRicattiB = Join[HalfRicattiBx,HalfRicattiBz, 1];FullRicattiB = Join[HalfRicattiBx,HalfRicattiBz, 1];

(*Error Join*)(*Error Join*)(*Error Join*)

zm16x3 = ConstantArray[0, {16, 3}];zm16x3 = ConstantArray[0, {16, 3}];zm16x3 = ConstantArray[0, {16, 3}];

EndRicattiA = Join[Join[FullRicattiA,Aerror, 1], zm16x3, 2];EndRicattiA = Join[Join[FullRicattiA,Aerror, 1], zm16x3, 2];EndRicattiA = Join[Join[FullRicattiA,Aerror, 1], zm16x3, 2];

EndRicattiB = Join[FullRicattiB,Berror, 1];EndRicattiB = Join[FullRicattiB,Berror, 1];EndRicattiB = Join[FullRicattiB,Berror, 1];

(*Join*)(*Join*)(*Join*)

zm13x3 = ConstantArray[0, {13, 3}];zm13x3 = ConstantArray[0, {13, 3}];zm13x3 = ConstantArray[0, {13, 3}];

zm3x13 = ConstantArray[0, {3, 13}];zm3x13 = ConstantArray[0, {3, 13}];zm3x13 = ConstantArray[0, {3, 13}];

QRicatti = Join[Join[fullweight, zm3x13, 1], Join[zm13x3,Qerror, 1], 2];QRicatti = Join[Join[fullweight, zm3x13, 1], Join[zm13x3,Qerror, 1], 2];QRicatti = Join[Join[fullweight, zm3x13, 1], Join[zm13x3,Qerror, 1], 2];

FinalEquilibrium = {theta1eq, theta2eq, theta3eq, theta4eq, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};FinalEquilibrium = {theta1eq, theta2eq, theta3eq, theta4eq, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};FinalEquilibrium = {theta1eq, theta2eq, theta3eq, theta4eq, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

(*Impedance weight matrices*)(*Impedance weight matrices*)(*Impedance weight matrices*)

E0 = Join[halfweight, zm3x3, 2];E0 = Join[halfweight, zm3x3, 2];E0 = Join[halfweight, zm3x3, 2];

dE0dt = D[E0, t];dE0dt = D[E0, t];dE0dt = D[E0, t];

Re2 = alpha2 ∗ Transpose[EndRicattiB].Transpose[E0].E0.EndRicattiB;Re2 = alpha2 ∗ Transpose[EndRicattiB].Transpose[E0].E0.EndRicattiB;Re2 = alpha2 ∗ Transpose[EndRicattiB].Transpose[E0].E0.EndRicattiB;

Ne2 = Transpose[dE0dt].E0.EndRicattiB;Ne2 = Transpose[dE0dt].E0.EndRicattiB;Ne2 = Transpose[dE0dt].E0.EndRicattiB;

Ru = DiagonalMatrix[{alphau, alphau, alphau, alphau}];Ru = DiagonalMatrix[{alphau, alphau, alphau, alphau}];Ru = DiagonalMatrix[{alphau, alphau, alphau, alphau}];

Rend = Ru + Re2;Rend = Ru + Re2;Rend = Ru + Re2;

EndRicattiN = Ne2;EndRicattiN = Ne2;EndRicattiN = Ne2;

(*Final differential equation*)(*Final differential equation*)(*Final differential equation*)

FinalDiff = Join[finalfx, finalfz, {ep1, ep2, ep3}];FinalDiff = Join[finalfx, finalfz, {ep1, ep2, ep3}];FinalDiff = Join[finalfx, finalfz, {ep1, ep2, ep3}];

(*Parameters*)(*Parameters*)(*Parameters*)

L1 = 0.25;L1 = 0.25;L1 = 0.25;

L2 = 0.25;L2 = 0.25;L2 = 0.25;

L3 = 0.34;L3 = 0.34;L3 = 0.34;

L4 = 0.08;L4 = 0.08;L4 = 0.08;

Lv1 = 0.31;Lv1 = 0.31;Lv1 = 0.31;

94

Lv2 = 0.42;Lv2 = 0.42;Lv2 = 0.42;

c1 = 0.4;c1 = 0.4;c1 = 0.4;

c2 = 0.4;c2 = 0.4;c2 = 0.4;

c3 = 0.4;c3 = 0.4;c3 = 0.4;

c4 = 0.4;c4 = 0.4;c4 = 0.4;

m1 = 0.8 ∗ L1;m1 = 0.8 ∗ L1;m1 = 0.8 ∗ L1;

m2 = 0.8 ∗ L2;m2 = 0.8 ∗ L2;m2 = 0.8 ∗ L2;

m3 = 0.8 ∗ L3;m3 = 0.8 ∗ L3;m3 = 0.8 ∗ L3;

m4 = 0.8 ∗ L4;m4 = 0.8 ∗ L4;m4 = 0.8 ∗ L4;

mv1 = 1.93;mv1 = 1.93;mv1 = 1.93;

mv2 = 1.52 + 0.52;mv2 = 1.52 + 0.52;mv2 = 1.52 + 0.52;

Jz1 = m1 ∗ L1∧2/4;Jz1 = m1 ∗ L1∧2/4;Jz1 = m1 ∗ L1∧2/4;

Jz2 = m2 ∗ L2∧2/4;Jz2 = m2 ∗ L2∧2/4;Jz2 = m2 ∗ L2∧2/4;

Jz3 = m3 ∗ L3∧2/4;Jz3 = m3 ∗ L3∧2/4;Jz3 = m3 ∗ L3∧2/4;

Jz4 = m4 ∗ L4∧2/4;Jz4 = m4 ∗ L4∧2/4;Jz4 = m4 ∗ L4∧2/4;

Jzv1 = 0.0141;Jzv1 = 0.0141;Jzv1 = 0.0141;

Jzv2 = 0.0210;Jzv2 = 0.0210;Jzv2 = 0.0210;

lv1 = 0.165;lv1 = 0.165;lv1 = 0.165;

lv2 = 0.21;lv2 = 0.21;lv2 = 0.21;

l1 = L1/2;l1 = L1/2;l1 = L1/2;

l2 = L2/2;l2 = L2/2;l2 = L2/2;

l3 = L3/2;l3 = L3/2;l3 = L3/2;

l4 = L4/2;l4 = L4/2;l4 = L4/2;

(*Error matrices replacement*)(*Error matrices replacement*)(*Error matrices replacement*)

CosSinreplacer = {Cos[theta1[t]− theta2[t]]→ cs12, (Cos[theta1[t]− theta3[t]])→ cs13, (Cos[theta1[t]− theta4[t]])→ cs14, (Cos[theta2[t]− theta3[t]])→ cs23, (Cos[theta2[t]− theta4[t]])→ cs24, (Cos[theta3[t]− theta4[t]])→ cs34};CosSinreplacer = {Cos[theta1[t]− theta2[t]]→ cs12, (Cos[theta1[t]− theta3[t]])→ cs13, (Cos[theta1[t]− theta4[t]])→ cs14, (Cos[theta2[t]− theta3[t]])→ cs23, (Cos[theta2[t]− theta4[t]])→ cs24, (Cos[theta3[t]− theta4[t]])→ cs34};CosSinreplacer = {Cos[theta1[t]− theta2[t]]→ cs12, (Cos[theta1[t]− theta3[t]])→ cs13, (Cos[theta1[t]− theta4[t]])→ cs14, (Cos[theta2[t]− theta3[t]])→ cs23, (Cos[theta2[t]− theta4[t]])→ cs24, (Cos[theta3[t]− theta4[t]])→ cs34};

replacer = {theta1[t]→ u[1], theta2[t]→ u[2], theta3[t]→ u[3], theta4[t]→ u[4], dq1→ u[5], dq2→ u[6], dq3→ u[7], dq4→ u[8], qv1→ u[9], qv2→ u[10], dqv1→ u[11], dqv2→ u[12], beta[t]→ u[13]};replacer = {theta1[t]→ u[1], theta2[t]→ u[2], theta3[t]→ u[3], theta4[t]→ u[4], dq1→ u[5], dq2→ u[6], dq3→ u[7], dq4→ u[8], qv1→ u[9], qv2→ u[10], dqv1→ u[11], dqv2→ u[12], beta[t]→ u[13]};replacer = {theta1[t]→ u[1], theta2[t]→ u[2], theta3[t]→ u[3], theta4[t]→ u[4], dq1→ u[5], dq2→ u[6], dq3→ u[7], dq4→ u[8], qv1→ u[9], qv2→ u[10], dqv1→ u[11], dqv2→ u[12], beta[t]→ u[13]};

replacerpurefz = {qv1→ u[1], qv2→ u[2], dqv1→ u[3], dqv2→ u[4]};replacerpurefz = {qv1→ u[1], qv2→ u[2], dqv1→ u[3], dqv2→ u[4]};replacerpurefz = {qv1→ u[1], qv2→ u[2], dqv1→ u[3], dqv2→ u[4]};

de0dt = dE0dt/.CosSinreplacer/.replacer;de0dt = dE0dt/.CosSinreplacer/.replacer;de0dt = dE0dt/.CosSinreplacer/.replacer;

e0 = E0/.CosSinreplacer/.replacer;e0 = E0/.CosSinreplacer/.replacer;e0 = E0/.CosSinreplacer/.replacer;

EndRicattiQ = QRicatti;EndRicattiQ = QRicatti;EndRicattiQ = QRicatti;

(*Export Equations to Matlab*)(*Export Equations to Matlab*)(*Export Equations to Matlab*)

MatlabFx = FinalDiff/.CosSinreplacer/.replacer;MatlabFx = FinalDiff/.CosSinreplacer/.replacer;MatlabFx = FinalDiff/.CosSinreplacer/.replacer;

95

MatlabFzvirtual = Join[finalfznobeta]/.CosSinreplacer/.replacer;MatlabFzvirtual = Join[finalfznobeta]/.CosSinreplacer/.replacer;MatlabFzvirtual = Join[finalfznobeta]/.CosSinreplacer/.replacer;

MatlabRicattiA = EndRicattiA/.CosSinreplacer/.replacer;MatlabRicattiA = EndRicattiA/.CosSinreplacer/.replacer;MatlabRicattiA = EndRicattiA/.CosSinreplacer/.replacer;

MatlabRicattiB = EndRicattiB/.CosSinreplacer/.replacer;MatlabRicattiB = EndRicattiB/.CosSinreplacer/.replacer;MatlabRicattiB = EndRicattiB/.CosSinreplacer/.replacer;

MatlabEquilibrium = FinalEquilibrium/.replacer;MatlabEquilibrium = FinalEquilibrium/.replacer;MatlabEquilibrium = FinalEquilibrium/.replacer;

MatlabQ = EndRicattiQ/.CosSinreplacer/.replacer;MatlabQ = EndRicattiQ/.CosSinreplacer/.replacer;MatlabQ = EndRicattiQ/.CosSinreplacer/.replacer;

MatlabRicattiR = Rend/.CosSinreplacer/.replacer;MatlabRicattiR = Rend/.CosSinreplacer/.replacer;MatlabRicattiR = Rend/.CosSinreplacer/.replacer;

MatlabRicattiN = EndRicattiN/.CosSinreplacer/.replacer;MatlabRicattiN = EndRicattiN/.CosSinreplacer/.replacer;MatlabRicattiN = EndRicattiN/.CosSinreplacer/.replacer;

write1 = OpenWrite["MatlabRicattiA.txt"];write1 = OpenWrite["MatlabRicattiA.txt"];write1 = OpenWrite["MatlabRicattiA.txt"];

WriteMatlab[MatlabRicattiA,write1];WriteMatlab[MatlabRicattiA,write1];WriteMatlab[MatlabRicattiA,write1];

Close[write1];Close[write1];Close[write1];

write2 = OpenWrite["MatlabRicattiB.txt"];write2 = OpenWrite["MatlabRicattiB.txt"];write2 = OpenWrite["MatlabRicattiB.txt"];

WriteMatlab[MatlabRicattiB,write2];WriteMatlab[MatlabRicattiB,write2];WriteMatlab[MatlabRicattiB,write2];

Close[write2];Close[write2];Close[write2];

write5 = OpenWrite["fx.txt"];write5 = OpenWrite["fx.txt"];write5 = OpenWrite["fx.txt"];

WriteMatlab[MatlabFx,write5];WriteMatlab[MatlabFx,write5];WriteMatlab[MatlabFx,write5];

Close[write5];Close[write5];Close[write5];

write6 = OpenWrite["fzonly.txt"];write6 = OpenWrite["fzonly.txt"];write6 = OpenWrite["fzonly.txt"];

WriteMatlab[MatlabFzvirtual,write5];WriteMatlab[MatlabFzvirtual,write5];WriteMatlab[MatlabFzvirtual,write5];

Close[write6];Close[write6];Close[write6];

writee0 = OpenWrite["e0.txt"];writee0 = OpenWrite["e0.txt"];writee0 = OpenWrite["e0.txt"];

WriteMatlab[e0,writee0];WriteMatlab[e0,writee0];WriteMatlab[e0,writee0];

Close[writee0];Close[writee0];Close[writee0];

writede0dt = OpenWrite["de0dt.txt"];writede0dt = OpenWrite["de0dt.txt"];writede0dt = OpenWrite["de0dt.txt"];

WriteMatlab[de0dt,writede0dt];WriteMatlab[de0dt,writede0dt];WriteMatlab[de0dt,writede0dt];

Close[writede0dt];Close[writede0dt];Close[writede0dt];

writeQe1 = OpenWrite["Qe1.txt"];writeQe1 = OpenWrite["Qe1.txt"];writeQe1 = OpenWrite["Qe1.txt"];

WriteMatlab[MatlabQ,writeQe1];WriteMatlab[MatlabQ,writeQe1];WriteMatlab[MatlabQ,writeQe1];

Close[writeQe1];Close[writeQe1];Close[writeQe1];

96

APPENDIX D – Numerical Simulation Codes

D.1 Ordinary Differential Equation and Input Computation Code

The following code, written in Matlab, represents the ordinary differential equation

of the system, and computes the control inputs.

1 % ODE and SDRE func t i on

2

3 f unc t i on dydt = Ffunct ion (t , y)

4

5

6 g l o b a l zx0 zy0 zphi0 l 1 l 2 l 3 l 4 m1 m2 m3 m4 L1 L2 L3 L4 . . .

7 Kx Ky Kphi cx cy cphi mx my mphi Jx1 Jx2 Jx3 Jx4 Jy1 Jy2 Jy3

Jy4 . . .

8 Jz1 Jz2 Jz3 Jz4 g c1 c2 c3 c4 alpha Fx Fy k11v k22v k12v

k21v . . .

9 Jzv1 Jzv2 mv1 mv2 lv1 lv2 Lv1 Lv2 the tav1 i the tav2 i

dthetav1 i dthetav2 i ddthetav1 i ddthetav2 i d11v d22v d12v

d21v ddtheta1v i ddtheta2v i n uh i s to ry tant . . .

10 u l o c a l ube fo re K k utime g loba l t ime T1 T2 T3 T4 alpha2 A

dis turbon fo r c eon

11

12

13 alpha2=0∗exp(−100∗ t) ;

14 e x t e r n a l f o r c e s=fo r c eon ∗ f o r c e e x t (t) ;

15 Fx=e x t e r n a l f o r c e s (1) ;

16 Fy=e x t e r n a l f o r c e s (2) ;

17

18

19 r e f e r=c t j (0 , 0 , t) ;

20

21

22 the tav1 i=r e f e r (1) ;

97

23 the tav2 i=r e f e r (2) ;

24

25 dthetav1 i=r e f e r (3) ;

26 dthetav2 i=r e f e r (4) ;

27

28 ddthetav1 i=r e f e r (5) ;

29 ddthetav2 i=r e f e r (6) ;

30

31 tautot =[Fy∗Lv1∗ cos (y (9)) − Fx∗Lv1∗ s i n (y (9)) ;

32 Fy∗Lv2∗ cos (y (10)) − Fx∗Lv2∗ s i n (y (10))] ;

33

34 taue=tautot (2) ;

35 taus=tautot (1) ;

36

37 k11v =10.8 + 3.18∗ abs (taus) ;

38 k12v =2.83 + 2.15∗ abs (taue) ;

39 k21v = 2.51 + 2.34∗ abs (taue) ;

40 k22v = 8.67 + 6.18∗ abs (taue) ;

41 cv1v2=cos (y (9)−y (10)) ;

42

43

44

45 MK=[104.812+13.584∗ cv1v2 +0.86∗ abs (taue) + 10.32∗ cv1v2∗abs (taue)

+ 30.528∗ abs (taus) , 13.6024+ 51.84∗ cv1v2 + 7.052∗ abs (taue) +

1.272∗ abs (taus) + 15.264∗ cv1v2∗abs (taus) ;

46 27.564+ 41.616∗ cv1v2 + 24.936∗ abs (taue) + 29.664∗ cv1v2∗abs (

taue) , 29.4416+ 12.048∗ cv1v2 + 21.2064∗ abs (taue) +

11.232∗ cv1v2∗abs (taue)] ;

47 Dv=0.26∗MKˆ(1/2) ;

48

49 d11v=Dv(1 , 1) ;

50 d12v=Dv(1 , 2) ;

98

51 d21v=Dv(2 , 1) ;

52 d22v=Dv(2 , 2) ;

53

54

55

56 % dthetav1 i=0∗ the ta s (3) ;

57 % dthetav2 i=0∗ the ta s (4) ;

58 %

59 % ddthetav1 i=0∗ the ta s (5) ;

60 % ddthetav2 i=0∗ the ta s (6) ;

61 % % ddthetav1 i=ddtheta (1) ;

62 % ddthetav2 i=ddtheta (2) ;

63 t

64

65

66 A=Ricatt iA (y) ;

67 B=Ricatt iB (y) ;

68

69

70

71

72 f r e q =0.01; %update f requency

73

74

75 i f t>=k∗ f r e q ;

76

77

78 Q=Ricatt iQ (y) ;

79 N=Ricatt iN (y) ;

80 R=Ricatt iR (y) ;

81 % Q=diag ([0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; alpha ; 0 . 0 0 1 ; alpha]) ;

82

99

83

84 K=l q r (A,B,Q,R,N) ;

85

86 u=−K∗(y) ;

87 u (5 : end) =0; %n u l l i f y i n g fake c o n t r o l s

88 k=k+1;

89 e l s e

90

91 u=−K∗(y) ;

92 u (5 : end) =0; %n u l l i f y i n g fake c o n t r o l s

93

94 end

95

96

97

98

99 % i f t>5 && t<10

100 % di s tu rb=distubon ∗ d i s tu rbance s (t) ;

101 % end

102

103 T1=u (1)+d i s tu rb (1) ;

104 T2=u (2)+d i s tu rb (2) ;

105 T3=u (3)+d i s tu rb (3) ;

106 T4=u (4)+d i s tu rb (4) ;

107

108 u (1 : 4) =[T1 ; T2 ; T3 ; T4] ;

109

110

111 utime (: , n)=u ;

112 g loba l t ime (n)=t ;

113 dydt=A∗(y)+B∗u ;

114

100

115

116 n=n+1;

117 end

D.2 Numerical Integrator Code

The following code, written in Matlab, numerically integrates the system equations

and plot the relevant variables as a function of time.

1 % Ca l l s func t i on to s o l v e the problem

2

3 c l e a r a l l

4 c l c

5 c l o s e a l l

6 g l o b a l zx0 zy0 zphi0 l 1 l 2 l 3 l 4 m1 m2 m3 m4 L1 L2 L3 L4 . . .

7 Kx Ky Kphi cx cy cphi mx my mphi Jx1 Jx2 Jx3 Jx4 Jy1 Jy2 Jy3

Jy4 . . .

8 Jz1 Jz2 Jz3 Jz4 g c1 c2 c3 c4 alpha Fx Fy k11v k22v k12v

k21v . . .

9 Jzv1 Jzv2 mv1 mv2 lv1 lv2 Lv1 Lv2 the tav1 i the tav2 i

dthetav1 i dthetav2 i ddthetav1 i ddthetav2 i d11v d22v d12v

d21v ddtheta1v i ddtheta2v i n uh i s to ry tant k ube fore

u l o c a l K utime g loba l t ime d i s turbon fo r c eon

10 parameters

11 ube fore = [0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0] ;

12 u l o c a l = [0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0] ;

13 tant=−1;

14 k=0;

15

16

17

18

19 n=1;

101

20 uh i s t o ry (n , :)=ze ro s (1 , 7) ;

21

22

23

24 dummy=c t j (0 , 0 , 0) ;

25

26

27 vang1i=dummy(1) ;

28 vang2i=dummy(2) ;

29

30

31

32 %% simula t i on I− c o r r e c t i n i t i a l p o s i t i o n

33

34 % ang1i =−2.6469;

35 % ang2i =−4.4218;

36 % ang3i =0.6796;

37 % ang4i =2.5962;

38 %

39 % disturbon =0;

40 % forceon =1;

41

42

43 %% simula t i on I I− wrong i n i t i a l p o s i t i o n d i s tu rb on

44

45 % ang1i =−2.6469;

46 % ang2i =−4.4218;

47 % ang3i =0.6796;

48 % ang4i =2.5962;

49

50 % disturbon =1;

51 % forceon =1;

102

52 % ang1i=−pi ;

53 % ang2i=−pi ;

54 % ang3i =0;

55 % ang4i=pi ;

56 %% simula t i on I I I− wrong i n i t i a l p o s i t i o n d i s tu rb on

57

58 % ang1i =−2.6469;

59 % ang2i =−4.4218;

60 % ang3i =0.6796;

61 % ang4i =2.5962;

62

63 % disturbon =1;

64 % forceon =1;

65 % ang1i=pi ;% pi /4 ;

66 % ang2i=pi ;% pi /4 ;

67 % ang3i=0;%pi−pi /4 ;

68 % ang4i=pi ;%pi−pi /4 ;

69

70 %%

71 %

72 %% simula t i on IV− r i g h t i n i t i a l p o s i t i o n d i s tu rb o f f

r e p e a t a b i l i t y

73

74 ang1i =−2.6469;

75 ang2i =−4.4218;

76 ang3i =0.6796;

77 ang4i =2.5962;

78

79 di s turbon =0;

80 f o r c eon =0;

81

82 %% Cal l the func t i on

103

83 dvang1i =0;

84 dvang2i =0;

85

86

87 angi (1 , :) =[ang1i ; ang2i ; ang3i ; ang4i] ;

88 vangi (1 , :) =[vang1i ; vang2i] ;

89

90 e r r o i n i t=rq (angi)−rv (vangi) ;

91

92 y0=[ang1i ; ang2i ; ang3i ; ang4i ; 0 ; 0 ; 0 ; 0 ; vang1i ; vang2i ; dvang1i ;

dvang2i ; 5 ; e r r o i n i t (1) ; e r r o i n i t (2) ; e r r o i n i t (3)] ;

93

94

95

96 cont =1;

97 y (1 , :)=y0 ;

98 d e l t a t =0.0001;

99 t =0;

100 tn =0;

101 endtime =11;

102

103 %% ruge kutta 4 th

104

105 whi le t (cont)<endtime

106

107

108 h=de l ta t−d e l t a t /2∗ exp(−tn) ;

109 tn=t (cont) ;

110 yn=y (cont , :) ;

111

112 dy=Ffunct ionschedu le (t (cont) , y (cont , :) ’) ;

113 k1=dy ’ ;

104

114 k2=Ffunct ionschedu le (tn+h /2 , (yn+h∗k1 /2) ’) ’ ;

115 k3=Ffunct ionschedu le (tn+h /2 , (yn+h∗k2 /2) ’) ’ ;

116 k4=Ffunct ionschedu le (tn+h , (yn+h∗k3) ’) ’ ;

117 dydt (cont , :)=dy ’ ;

118

119 y (cont +1 , :)=yn+h/6∗(k1+2∗k2+2∗k3+k4) ;

120 t (cont+1)=tn+h ;

121 cont=cont +1;

122

123 end

124

125

126 %%

127

128

129

130 armmotion=rv (y (: , 9 : 1 0)) ;

131 robotmotion=rq (y (: , 1 : 4)) ;

132

133 z i d e a l=y (: , 9 : 1 0) ;

134

135 z p i d e a l=y (: , 1 1 : 1 2) ;

136

137 save (’ s imu la t i on . mat ’)

138

139 f i g u r e (1)

140 p lo t (t , z i d e a l)

141 t i t l e (’ ang le arm ’)

142 l egend (’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’ , ’ 6 ’)

143

144 f i g u r e (2)

145 p lo t (t , z p i d e a l)

105

146 t i t l e (’ v e l o c i t y arm ’)

147 l egend (’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’ , ’ 6 ’)

148

149 f i g u r e (3)

150 p lo t (t , y (: , 1 : 4))

151 t i t l e (’ Jo int Coordinates o f 4DOF manipulator : SDRE Case ’)

152 l egend (’ Jo int 1 ’ , ’ Jo in t 2 ’ , ’ Jo in t 3 ’ , ’ Jo in t 4 ’ , ’ 5 ’ , ’ 6 ’)

153 x l a b e l (’ t (s) ’)

154 y l a b e l (’ Jo int coo rd ina t e s (rad) ’)

155

156 f i g u r e (4)

157 p lo t (t , y (: , 5 : 8))

158 t i t l e (’ angular speed robot ’)

159 l egend (’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’ , ’ 6 ’)

160

161

162 f i g u r e (5)

163 p lo t (t , y (: , 1 3))

164 t i t l e (’ beta ’)

165 l egend (’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’ , ’ 6 ’)

166

167 f i g u r e (7)

168 p lo t (t , y (: , 1 4 : 1 6))

169 t i t l e (’ e r r o r p o s i t i o n ’)

170 l egend (’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’ , ’ 6 ’)

171

172 f i g u r e (8)

173 p lo t (t , robotmotion)

174 hold on

175 p lo t (t , armmotion)

176 t i t l e (’ Po s i t i on on plane : 4DOF Manipulator End−e f f e c t o r X ”Human

Wrist /Hand” − SDRE Case ’)

106

177 l egend (’x−4DOF Manipulator (m) ’ , ’ y−4DOF Manipulator (m) ’ , ’

Or ientat ion−4DOF Manipulator (rad) ’ , ’ x−2DOF Human Arm (m) ’ , ’ y

−2DOF Human Arm (m) ’ , ’ Or ientat ion−2DOF Human Wrist /Hand (rad)

’)

178 x l a b e l (’ t (s) ’)

179

180

181 f i g u r e (9)

182 p lo t (g loba l t ime , utime (1 : 4 , :) ’)

183 t i t l e (’ Torques app l i ed at j o i n t s− SDRE Case ’)

184 l egend (’ Jo int 1 ’ , ’ Jo in t 2 ’ , ’ Jo in t 3 ’ , ’ Jo in t 4 ’)

185 x l a b e l (’ t (s) ’)

186 y l a b e l (’ Control Input (Nm) ’)

187

188

189 f i g u r e (10)

190 p lo t (t , robotmotion−armmotion)

191 t i t l e (’ t rue e r r o r ’)

