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Resumo

A Dinâmica de Sistemas Multicorpos tem sido responsável por revolucio-
nar projetos de Engenharia Mecânica pela utilização de modelos matemáticos
para simulação e otimização do comportamento dinâmico de uma ampla gama
de sistemas mecânicos. Estes modelos matemáticos não somente podem for-
necer valiosas informações acerca de um sistema que caso contrário poderiam
ser obtidas somente através de experimentos com protótipos, como também
têm sido responsável pelo desenvolvimento de diversos sistemas de controle
baseados em modelo.

Este trabalho representa uma contribuição para a modelagem dinâmica de
sistemas mecânicos multicorpos por meio do desenvolvimento de uma nova
metodologia modular e recursiva que unifica as principais contribuições de di-
versos formalismos da Mecânica Clássica. A razão para propor tal metodolo-
gia é motivar a implementação de rotinas computacionais para a modelagem
de sistemas mecânicos multicorpos complexos sem depender de pacotes de
software de código fechado e, consequentemente, contribuir para o ensino de
Dinâmica de Sistemas Multicorpos nos níveis de graduação e pós-graduação.

Todos os desenvolvimentos teóricos são baseados em e motivados por
uma revisão crítica da literatura, conduzindo a uma forma matricial geral das
equações dinâmicas de movimento de um sistema mecânico multicorpos (que
podem ser expressas em termos de qualquer conjunto de variáveis adotado
para a descrição dos movimentos realizados pelo sistema, ainda que tal con-
junto inclua variáveis redundantes) e a uma metodologia recursiva geral para
a obtenção de modelos matemáticos de sistemas complexos, dado um con-
junto de equações descrevendo a dinâmica de cada um de seus subsistemas
desacoplados e outro descrevendo os vínculos entre estes subsistemas (no
sistema) quando acoplado. Este trabalho também inclui algumas discussões
acerca da descrição de movimentos (utilizando qualquer conjunto admissível
de variáveis de movimento e admitindo qualquer tipo de vínculo que seja pas-
sível de descrição por invariantes), e das condições para a solução dos proble-
mas de dinâmica direta e inversa dado um modelo matemático de um sistema
multicorpos. Finalmente, alguns exemplos de pacotes computationais basea-
dos na nova metodologia, juntamente com alguns estudos de caso, são apre-
sentados, ressaltando as contribuições que podem ser alcançadas por meio
do uso da metodologia proposta.

Palavras chave: Sistemas Multicorpos. Mecânica Analítica. Mecânica Com-
putacional. Dinâmica. Modelagem Matemática.



Abstract

Multibody System Dynamics has been responsible for revolutionizing Me-
chanical Engineering Design by using mathematical models to simulate and
optimize the dynamic behavior of a wide range of mechanical systems. These
mathematical models not only can provide valuable informations about a sys-
tem that could otherwise be obtained only by experiments with prototypes, but
also have been responsible for the development of many model-based control
systems.

This work represents a contribution for dynamic modeling of multibody me-
chanical systems by developing a novel recursive modular methodology that
unifies the main contributions of several Classical Mechanics formalisms. The
reason for proposing such a methodology is to motivate the implementation of
computational routines for modeling complex multibody mechanical systems
without being dependent on closed source software and, consequently, to con-
tribute for the teaching of Multibody System Dynamics in undergraduate and
graduate levels.

All the theoretical developments are based on and motivated by a critical
literature review, leading to a general matrix form of the dynamic equations of
motion of a multibody mechanical system (that can be expressed in terms of
any set of variables adopted for the description of motions performed by the
system, even if such a set includes redundant variables) and to a general re-
cursive methodology for obtaining mathematical models of complex systems
given a set of equations describing the dynamics of each of its uncoupled sub-
systems and another set describing the constraints among these subsystems
in the assembled system. This work also includes some discussions on the
description of motion (using any possible set of motion variables and admit-
ting any kind of constraint that can be expressed by an invariant), and on the
conditions for solving forward and inverse dynamics problems given a mathe-
matical model of a multibody system. Finally, some examples of computational
packages based on the novel methodology, along with some case studies, are
presented, highlighting the contributions that can be achieved by using the pro-
posed methodology.

Keywords: Multibody Systems. Analytical Mechanics. Computational Me-
chanics. Dynamics. Mathematical modeling.



Contents

List of Figures iv

Symbol conventions v

1 Introduction 1

1.1 Background and objetives . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research topics and publications . . . . . . . . . . . . . . . . . . 4

1.3 Outline of the main topics . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 On the description of motion of multibody systems 12

2.1 Sufficient conditions for describing themotion of a multibody sys-
tem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Generalized variables . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Generalized constraint invariants . . . . . . . . . . . . . . . . . . 23

2.4 Variations of motion variables . . . . . . . . . . . . . . . . . . . . 28

2.5 Descriptions of motion in modular multibody formulations . . . . 38

3 Multibody System Dynamics − a comparative literature review 50

3.1 Newton-Euler formalism . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.1 Newton’s laws of motion . . . . . . . . . . . . . . . . . . . 52

3.1.2 Newton-Euler equations . . . . . . . . . . . . . . . . . . . 54

3.1.3 Applications of the Screw Theory . . . . . . . . . . . . . . 58

3.1.4 Recursive algorithms based on Newton-Euler formalism . 62

3.2 Analytical Mechanics: fundamental principles and Lagrangian
formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



3.2.1 Principle of Virtual Work and D’Alembert’s Principle . . . 64

3.2.2 Differential Variational Principles . . . . . . . . . . . . . . 67

3.2.3 Modeling methodologies based on the Principle of Virtual
Work and its variants . . . . . . . . . . . . . . . . . . . . . 69

3.2.4 Extended Hamilton’s Principle . . . . . . . . . . . . . . . 69

3.2.5 Lagrangian equations of motion . . . . . . . . . . . . . . 71

3.2.6 Lagrangian multipliers and canonical equations of motion 73

3.2.7 Modeling methodologies based on Lagrangian-
Hamiltonian formalism . . . . . . . . . . . . . . . . . . . . 76

3.3 Gibbs-Appell, Maggi’s and Boltzmann-Hamel formalisms . . . . 78

3.3.1 Gibbs-Appell equations . . . . . . . . . . . . . . . . . . . 78

3.3.2 Maggi’s equations . . . . . . . . . . . . . . . . . . . . . . 83

3.3.3 Boltzmann-Hamel equations . . . . . . . . . . . . . . . . 85

3.4 Kane’s and Udwadia-Kalaba methodologies . . . . . . . . . . . . 86

3.4.1 Kane’s equations . . . . . . . . . . . . . . . . . . . . . . . 86

3.4.2 Udwadia-Kalaba methodology . . . . . . . . . . . . . . . 89

4 Modular modeling methodology for multibody systems 94

4.1 General form of equations of motion of a multibody system . . . 95

4.2 Recursive modular modeling algorithm . . . . . . . . . . . . . . . 101

4.3 Sufficient conditions for the forward dynamics . . . . . . . . . . . 111

4.4 Sufficient conditions for the inverse dynamics . . . . . . . . . . . 118

4.5 Linearization of equations of motion . . . . . . . . . . . . . . . . 133

4.6 Qualitative comparison between modeling methodologies . . . . 145

5 Computational implementations of modular modeling algorithms
for multibody systems 151

5.1 MoSsPack – recursive modular modeling package for Mathe-
matica 10.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.2 Case study: linearized tadpole tricycle model . . . . . . . . . . . 154



5.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.2.2 Rider’s body and frame assembly . . . . . . . . . . . . . 156

5.2.3 Wheels and suspension . . . . . . . . . . . . . . . . . . . 158

5.2.4 Linearized equations of motion . . . . . . . . . . . . . . . 164

5.2.5 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . 168

5.3 Mo2DPack – modeling and simulation of planar mechanisms . . 175

5.3.1 Modeling and inverse dynamics simulation of aWhitworth
quick-return mechanism . . . . . . . . . . . . . . . . . . . 181

5.3.2 Modeling and inverse dynamics simulation of a 3 RRR
mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6 Conclusion 193

References 195

Appendix A -- Use of energy-like functions in the modeling of multi-
body systems 203

A.1 Generalized inertia forces and energy-like functions . . . . . . . 203

A.2 Kinetic energy and Gibbs-Appell function of a rigid body . . . . . 208

A.3 Generalized forces in a multi-rigid-body system . . . . . . . . . . 211



List of Figures

1.1 Comparison between conventional modeling approaches and
the proposed modular modeling methodology. Reproduced
from Orsino e Hess-Coelho (2015). . . . . . . . . . . . . . . . . . 4

1.2 2 RSS+PPaP mechanism. Reproduced from Orsino and Hess-
Coelho (2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Modeling methodology for a parallel mechanism based
on Kane’s method. Reproduced from Orsino and Hess-
Coelho (2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Delta parallel mechanism. Reproduced from Orsino, Hess-
Coelho and Pesce (2015). . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Representation of a 4-bar mechanism. Adapted fromOrsino and
Hess-Coelho (2015). . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Representation of a knife-edge disc rolling in a plane. Adapted
from Orsino and Hess-Coelho (2015). . . . . . . . . . . . . . . . 17

2.3 Representation of system P. . . . . . . . . . . . . . . . . . . . . 25

2.4 Singular generalized configurations of the variant of P. . . . . . 27

2.5 Representation of a 2D rigid body element. . . . . . . . . . . . . 37

2.6 Representation of the model of a bicycle, W. Adapted from
Orsino and Hess-Coelho (2015). . . . . . . . . . . . . . . . . . . 39

2.7 Representation of the model of a 5-bar mechanism, P. . . . . . 39

2.8 Representation of the model of a 3RRR mechanism, Q. . . . . . 39

2.9 Extra generalized coordinates defined in the model of the 5-bar
mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 System S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2 Time history of the coordinate x of the contact point of the sphere
S with the surface U. . . . . . . . . . . . . . . . . . . . . . . . . . 116



4.3 Normalized time histories of the coordinate x of the contact point
of the sphere S with the surface U. . . . . . . . . . . . . . . . . . 117

4.4 Time history of the quaternion parameters defining the orienta-
tion of the sphere S. . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.5 Time history of the quaternion norm inspection. . . . . . . . . . . 118

4.6 Representation of a 3D slider-crank mechanism in its reference
configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.7 Numerical error evaluation in the inverse kinematics simulation
#1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.8 Numerical error evaluation in the inverse kinematics simulation
#2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.9 Numerical error evaluation in the inverse dynamics simulation. . 130

4.10 Time history of the position of the slider. . . . . . . . . . . . . . . 130

4.11 Time history of the angular position of the crank. . . . . . . . . . 131

4.12 Time history of the angular velocity of the crank. . . . . . . . . . 131

4.13 Time history of the torque applied by the actuator. . . . . . . . . 132

4.14 Time history of the normal components of the contact force act-
ing in the slider. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.15 Stable value of θ as a function of the inclination angle ξ̄ for sev-
eral values of the ratio m̄2/m̄1. . . . . . . . . . . . . . . . . . . . . 141

4.16 Natural frequency ω̄ as a function of the inclination angle ξ̄ for
several values of the ratio m̄2/m̄1. . . . . . . . . . . . . . . . . . . 141

4.17 Time histories of the angle θ obtained by the non-linear (NL) and
linearized (L) models compared with the reference value (R) of
the angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.18 Time histories of ω1 − Rω1 obtained by the non-linear (NL) and
linearized (L) models. . . . . . . . . . . . . . . . . . . . . . . . . 143

4.19 Time histories of ω2 − Rω2 obtained by the non-linear (NL) and
linearized (L) models. . . . . . . . . . . . . . . . . . . . . . . . . 143

4.20 Time histories of θ̇ − Rθ̇ obtained by the non-linear (NL) and lin-
earized (L) models. . . . . . . . . . . . . . . . . . . . . . . . . . . 144



4.21 Numerical error evaluation in the forward dynamics simulation of
the non-linear model. . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.1 Modelling of a spherical pendulum using MoSsPack. Adapted
from the documentation available at

. . . . 153

5.2 Representation of system T and its subsystems . . . . . . . . . 155

5.3 Feetz! tricycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.4 Eigenvalues versus speed chart for the linearized tadpole tricy-
cle model using reference parameters. . . . . . . . . . . . . . . . 170

5.5 Steer-to-lean ratio versus speed chart for the linearized tadpole
tricycle model using reference parameters. . . . . . . . . . . . . 170

5.6 Eigenvectors tables for different speeds of the tadpole tricycle
using reference parameters. . . . . . . . . . . . . . . . . . . . . . 171

5.7 Eigenvalues versus speed charts for variant scenarios . . . . . . 172

5.8 Steer-to-lean ratio versus speed charts for variant scenarios . . . 173

5.9 Algorithm for modeling and simulation of system S. . . . . . . . . 180

5.10 Representation of a Whitworth quick-return mechanism. . . . . . 182

5.11 Time history of the quasi-velocity q⟨1⟩P,0,1 in the simulation “SI”. . . 184

5.12 Time history of the quasi-velocity q⟨1⟩P,3,3 in the simulation “SI”. . . 184

5.13 Time history of the input torque u1 in the simulation “SI”. . . . . . 185

5.14 Inspection of the error in the numerical solution of the constraint
equations in the simulation “SI”. . . . . . . . . . . . . . . . . . . . 185

5.15 Representation of a 3 RRR parallel mechanism. . . . . . . . . . 187

5.16 Time history of the generalized coordinate q⟨0⟩N,1,3 in the simulation
“SI”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.17 Time history of the generalized coordinate q⟨0⟩N,1,4 in the simulation
“SI”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.18 Time history of the quasi-velocity q⟨1⟩R,0,7 in the simulation “SI”. . . 190

5.19 Time history of the input torque u1 in the simulation “SI”. . . . . . 190

5.20 Time history of the input torque u2 in the simulation “SI”. . . . . . 191



5.21 Time history of the input torque u3 in the simulation “SI”. . . . . . 191

5.22 Inspection of the error in the numerical solution of the constraint
equations in the simulation “SI”. . . . . . . . . . . . . . . . . . . . 192

5.23 Representation of the initial configuration of the mechanism in
the simulation “SI”. . . . . . . . . . . . . . . . . . . . . . . . . . . 192



Symbol conventions

a, b, . . . Scalars, elements of tuples/column-matrices or indexes

A,B, . . . Scalars or elements of matrices

a, b, . . . Tuples/column-matrices

A,B, . . . Matrices (two dimensional arrays)

a,b, . . . Vectors (first-order tensors)

A,B, . . . Dyadics and other second-or-higher-order tensors

a, b, . . . Points

A, B, . . . Coordinate systems

A,B, . . . Sets

A,B, . . . Rigid bodies or reference frames

A,B, . . . Multibody systems or classes

a,A, b,B, . . . Operators

a,A,b,B, . . . Labels



1

1 Introduction

1.1 Background and objetives

A brief analysis on the evolution of Engineering since the second half of the
twentieth century reveals that the increasing application of computational tools
in design and manufacturing is directly associated to almost every major ad-
vance observed. Computational modeling has been responsible for the over-
coming of several technological obstacles, expanding the frontiers of knowl-
edge, leading to increasingly complex projects and to the reconception of many
design paradigms.

One area of Mechanical Engineering in which the introduction of computa-
tional tools has been responsible for a major evolution is Multibody System Dy-
namics. Involving Rigid Body Dynamics, Structural Mechanics and Continuum
Mechanics, this area finds applications for machinery, mechanisms and robotic
systems, biomechanical systems, land, aerospace and water vehicles design,
including parametric identification and optimization, simulation and experimen-
tal validation, virtual reality design, control systems design, and studies of prob-
lems of impact, contact, flexibility and multi-physical interaction (SCHIEHLEN,
2007). For all these applications, several software packages have been devel-
oped, allowing the computational implementation of the methodologies already
developed for the study of Multibody System Dynamics.

However, it is noticeable that there is still a high dependence on proprietary
software for applications to Multibody System Dynamics which lead to “black-
box” or “gray-box” computational models in which the user can only control the
input data provided but not the modeling and simulation procedures. An evi-
dent disadvantage of this fact is that these packages do not allow the user to
clearly understand how the modeling and simulation algorithms actually work.
This makes it more difficult not only to interpret the obtained models, but also to
identify errors in the model. It is also often that some software packages have
some limitations that do not allow the choice of definition of some variables,
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parameters, constraints and constitutive equations that might be relevant for
obtaing a particular model. Nevertheless, the main disadvantage of this depen-
dence on proprietary software resides in the fact that it is a extremely difficult
task to integrate different software packages (from different developers) within
a given project. Once a family of software packages is chosen for the pre-
processing, modeling, simulation and post-processing, it is sometimes not fea-
sible to use input and output data from thesemodels in other software packages
(SCHIEHLEN, 1997). This represents a great obstacle to advances in Multibody
System Dynamics, not only to validating results but also to using them in collab-
orative researches in which different software packages are adopted. A third
obstacle, however, occurs in the modeling of complex multibody systems. In
general, these systems can be conceived as a set of constrained subsystems,
which can be quite different in terms of topology. At least in theory, various
software packages and modeling methodologies could be applied to obtain the
models of the subsystems, which could be used in the derivation of the equa-
tions of motion of the system. This scenario, in which the modeling of each
subsystem could be optimized by choosing the most appropriate methodology
for each case, seems not to be feasible due to this dependence on proprietary
software.

On the other hand, it can be noticed that these software packages are
based on implementations of modeling methodologies based either on Newton-
Euler or Analytical Mechanics formalisms. As will be discussed latter in this
text, each of these formalisms may be the optimal one for a particular appli-
cation. Thus, it might be possible to make a contribution to Multibody System
Dynamics that simultaneously reduce the dependence on proprietary software
and explore the modular modeling of multibody systems, bringing a new per-
spective to this area of knowledge.

The main objective of this work is to unify the contributions of the conven-
tional Classical Mechanics formalisms, developing a modeling methodology,
applicable to any multibody systems with a finite number of degrees of free-
dom, that must:

(1) Aid the systematization and algorithmization of the modeling procedures,
leading to accessible computational implementations (that can be per-
formed using general-purpose open source software and programming
languages, preferably).

(2) Work modularly, taking as input data the already known mathematical
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models of the subsystems and a description of the constraints among
these subsystems.

(3) Be recursive, allowing its application to systems that can be conceived as
a hierarchical structure of subsystems (in which the complexity increases
from one level to the following).

Basically, the recursive modular methodology presented in this thesis proposes
a more straightforward conception of the modeling approach as illustrated in
Figure 1.1. In order to reach this goal, it is necessary that the novel methodol-
ogy does not present any restriction concerning the choice of model variables
and the nature of forces and motion constraints involved. Therefore, before
proposing contributions to the formulation of equations of motion, it is first nec-
essary to generalize the procedures for describing motions and constraints of
multibody systems, independently of the number or type of variables chosen
and of the nature of the constraints involved1. After that, a critical literature
review on the main contributions of each Classical Mechanics formalism is
performed and from it a general matrix form for the equations of motion of a
multibody system is proposed and the novel modeling methodology is devel-
oped.

This text also intends to promote a discussion on the possibilities of us-
ing this novel methodology for the development of new modeling algorithm for
multibody systems, using general-purpose software, programming languages
and its libraries. The intention is that future applications of this thesis could be
developed as open-source packages. However, it is not in the scope of this
text the development of computational packages that explore the full potential
of the novel methodology. All the packages and algorithms introduced in this
text are merely illustrative.

Another important objective of this thesis is to ensure that the novel method-
ology can somehow be used for an improvement of teaching of Multibody Sys-
tem Dynamics at undergraduate and graduate levels. To achieve this goal, it
is necessary to systematize the methodology in such a way that it can be pre-
sented as a step by step procedure, without restricting its scope of application,
however. The wide range of areas of knowledge to which this novel method-
ology is applicable, along with the fact that it unifies the main contributions of

1 Actually it is assumed that any constraint in a given system must be describable in terms
of invariants expressed in terms of motion variables. This fact might impede the application of
the methodology proposed in this text, in its current state, to some problems involving impact
and contact.
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(a) Conventional modeling approaches.

(b) Novel modular modeling methodology.

Figure 1.1: Comparison between conventional modeling approaches and the
proposed modular modeling methodology. Reproduced from Orsino e

Hess-Coelho (2015).

the main Classical Mechanics formalisms, makes it possible to explore its use
in both theoretical and applied courses on Multibody System Dynamics.

1.2 Research topics and publications

The candidate’s research on Multibody System Dynamics focused on two
main areas of application: the study of parallel mechanisms and of wheeled
single-track vehicles.

The candidate’s studies on the former area started during his undergrad-
uate research, whose objective was the formulation of a mathematical model
for the study of the effects of friction and flexibility in the dynamics of a parallel
asymmetric mechanism with a novel architecture. The techniques developed
for the modeling and simulation of the 2 RSS+PPaP (see Figure 1.2) mecha-
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nism led to the development of some new algorithms that are applicable to the
study of generic parallel mechanism. A discussion on how these techniques
might be applied for deriving mathematical models of these systems led to the
publication of the paper “A contribution for developing more efficient dynamic
modeling algorithms of parallel robots” published in the International Journal
of Mechanisms and Robotic Systems (ORSINO; HESS-COELHO, 2013), in which
a modeling methodology for parallel mechanisms based on Kane’s method is
presented (see Figure 1.3) and applied to the 2 RSS+PPaP mechanism.

A

K1 K'1

K2 K'2

K'3K3

K4 K'4

B

K5 K'5

L2A L2B

L1

L3

R(q4) R(q5)

R(q14) R(q15)

P(q3)

P(q17)

R(q16)R(q16)

R(-q16)R(-q16)

R(q6) R(q7)

R(q12) R(q13)

R(q8)

R(q10) R(q11)

R(q9)

Figure 1.2: 2 RSS+PPaP mechanism. Reproduced from Orsino and
Hess-Coelho (2013).

Continuing this research on parallel mechanisms, alternative modeling and
simulation methodologies based on other conventional approaches (Newton-
Euler, Principle of Virtual Work, Lagrange’s and Maggi’s equations) were de-
veloped. Inevitably, the development of such a variety of methodologies led
to the necessity to draw a comparison among them. The paper entitled “Ana-
lytical mechanics approaches in the dynamic modeling of Delta mechanism”,
published in Robotica (ORSINO; HESS-COELHO; PESCE, 2015), takes the Delta
parallel mechanism (see Figure 1.4) as a benchmark for comparing four mod-
eling methodologies, based on the Principle Virtual Work, Lagrange’s, Maggi’s
and Kane’s equations.

After some implementations of these methodologies for different types of
mechanisms and for some similar mechanical systems, three conclusions could
be drawn:

(1) With minor modifications the methodologies could be adapted for appli-
cations to almost any type of multibody system.
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1 2 3 4

5

9

6

7 8

10

11

Computer aided stages

Step Description Group

1 Chains and links identification
2 Mobility analysis Topology
3 Coordinates and generalized speeds definition

4 Constraint equations
5 Velocities, angular velocities and its derivatives Kinematics
6 Partial velocities and partial angular velocities

7 Inertia forces and inertia torques
8 Generalized inertia forces
9 External forces/torques and additional effects Dynamics

(gravity, friction, elasticity)
10 Generalized active forces
11 Dynamic equations of motion

Figure 1.3: Modeling methodology for a parallel mechanism based on Kane’s
method. Reproduced from Orsino and Hess-Coelho (2013).

Figure 1.4: Delta parallel mechanism. Reproduced from Orsino,
Hess-Coelho and Pesce (2015).

(2) For different types of systems, different methodologies have better per-
formance for the derivations of the mathematical models.
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(3) Even in different multibody systems, some steps of modeling might be
identical once these systems might have similar subsystems.

Taking these facts in considerations, the following research stage was to de-
velop a unifying modular modeling methodology that could be applicable to
generic multibody systems. The first development of such a methodology was
presented in the paper entitled “A contribution on themodular modeling of multi-
body systems”, published in Proceedings of the Royal Society A (ORSINO; HESS-
COELHO, 2015). In this text an extended and recursive version of this method-
ology is developed.

Still on the area of parallel mechanisms, the candidate explored the use of
the novel modular modeling methodology for the problem of mechanism (adap-
tive) balancing. This led to the publication of a book chapter entitled “Dynamic
Modelling and Control of Balanced Parallel Mechanisms” (ORSINO; COUTINHO;
HESS-COELHO, 2016) in the book “Dynamic Balancing of Mechanisms and Syn-
thesizing of Parallel Robots”, published by Springer.

The research on the area of wheeled single-track vehicles was mainly de-
veloped during a Split Fellowship Program, was developed at the BioMechani-
cal Engineering Department of Delft University of Technology2, under the super-
vision of Professor Arend L. Schwab, Two case studies were explored during
this research. The main one, was the development of an extended linearized
Whipple bicycle models that can be applied to study the influence of design
parameters on the wobble modes of this vehicle. In these extended models
the effects of the flexibility of the bicycle frame and of the rider’s body were
considered along with linear side-slip-tyre models. The comparison of these
models with the conventional Whipple model led to several stability analysis
that could determine which of the main design parameters have more influ-
ence on the dynamic behavior of the wobble modes. This case study might
lead to the publication of another paper soon. The other one, was the devel-
opment of the linearized model of a tadpole tricycle in order to compare its
dynamic behavior with a conventional bicycle. In order to derive this model,
a package of functions for Wolfram Mathamatica 10.2, called MoSsPack, that
implements the recursive modular modeling methodology presented in this text
was developed. This case study along with a brief introduction to MoSsPack
are presented in Chapter 5.

2 Delft, South Holland, The Netherlands.
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1.3 Outline of the main topics

This thesis is organized in six chapters, the first being the introductory one
and the last reserved for the final conclusions and future work perspectives,
and one appendix. The content of this text can be divided in three main topics:
description of motion (Chapter 2), methodologies for deriving of equations of
motion (Chapters 3 and 4 and Appendix A) and implementation of computa-
tional packages for modeling (Chapter 5) of multibody systems.

Chapter 2 is devoted to kinematics of multibody systems. It starts with
a literature review in which a new unifying notation is introduced, in order to
comprise all possible alternatives for the description of motion of multibody
systems. Even unusual constraints whose order are higher than 1, like non-
material programmed constraints (JARZEBOWSKA, 2002; JARZEBOWSKA, 2008;
JARZEBOWSKA, 2012) and unconventional parametrizations of motion variables
in which quasi-accelerations, quasi-jerks, etc. are not trivially defined (i.e. they
can be other variables than merely time derivatives of the quasi-velocities) are
included. The only restriction that must be assumed for the statements and
results presented in Chapter 2 is that they only apply to systems with a finite
number of degrees of freedom. In the two last sections of this chapter, one
of the most important contributions of this thesis is presented: a modular and
recursive algorithm for obtaining an orthogonal complement of the Jacobian of
the invariants required to describe the constraints in a multibody system. This
algorithm is the basis for the novel recursive modular modeling methodology
presented in this thesis.

Chapter 3 is a brief but comprehensive literature review on the conventional
formalisms and techniques for deriving equations of motion for multibody sys-
tems. The notation in this chapter do not always coincide with the conventions
usually adopted for the formalisms described, once it is adapted to coincide
with the new notation adopted in Chapter 2.

In Chapter 4 the main contribution of this thesis is presented: the recursive
modular modeling methodology for multibody systems. The first two sections
of the chapter are devoted to the demonstration and description of the method-
ology (detailing all possible cases). Two other sections discuss sufficient con-
ditions for the solution of forward and inverse dynamics problems associated
to a system using models derived according to the procedures described in the
chapter. Another section discusses the modifications that must be performed
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in the recursive modular modeling methodology in order to be able to derive
linearized equations of motion (without performing the complete derivation of
the non-linear ones). Along this five sections some didactic examples are dis-
cussed in order to illustrate, in detail, for the reader the step by step application
of the proposed methodology. The last section of Chapter 4 is devoted to a
qualitative comparison among the conventional modeling methodologies and
the one proposed in this text. It aims to express an assessment of these meth-
ods based on the personal experience of the author in applying them to his
own research topics (briefly introduced in the previous section). The content of
Chapter 4 is complemented by Appendix A, in which some techniques for using
energy-like functions in the derivation of the equations of motion of a multibody
system are presented.

Finally, Chapter 5 is dedicated to illustrate the wide possibilities of using
the novel methodology for the development of both general-purpose and spe-
cialized computational algorithms for the modeling of multibody systems. Two
packages for Wolfram Mathematica 10.2 developed during the candidate’s re-
search are introduced and some case studies are used to illustrate the ap-
plications of these packages, including the tadpole tricycle mentioned in the
previous section.

1.4 Notation

In this text, several mathematical alphabets (font styles) are used. Each of
them has an specific application, as shown in the “Symbol conventions”. It is
worth noting that:

• In this text, it is assumed that tuples and column-matrices are equivalent
representations of a multidimensional real coordinate space element. De-
noting by Rn the real coordinate space of n dimensions, if x ∈ Rn, then it
can be represented as a tuple of n real entries or by a column-matrix with
n rows. Whenever matrix operations are involved in a particular context,
the column-matrix representation of these elements must be assumed.

• When meaningful, column-matrices might have its rows labeled as well
as matrices might have both rows and columns labeled. A label might
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refer to a sigle row (column) or to a set of them. For example:

⎡

⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎦
fM =

vx −m̄ v̇x

vy −m̄ v̇y

vz −m̄ v̇z

vx vy
⎡

⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎦
SM =

#

1 0

0 1

⋆ −x/z −y/z

The labels can also be used to define submatrices (subtuples) and to
denote specific elements of matrices (tuples). For instance:

(a) SM.# is the submatrix defined by the rows of SM labeled by the sym-
bol #, which is an identity matrix.

(b) SM..vx is the submatrix defined by the column of SM labeled by vx.

(c) SM.#.vx is the submatrix defined by the rows of SM labeled by the
symbol # and by the column of labeled by vx.

(d) SM.⋆.vy = −y/z .

(e) fM.vz = −m̄ v̇z.

• Tuples of tuples are equivalent to a single tuple constituted by
the respective elements in the same sequence. For instance,
(t, (p1, p2, p3), (q1, q2)) = (t, p1, p2, p3, q1, q2). Tuples of matrices must be
understood as block-matrices assembled according to its row and column
labels (see Definition 2.9).

• Overbar notation (e.g. q̄M, ā) is used to indicate that the corresponding
symbol represents a constant or an invariant.

• Underbar notation (e.g. r, q̇) is used to indicate that the corresponding
symbol denotes a function, not a variable.

• Overhat notation (e.g. γ̂K) is used to indicate that the corresponding sym-
bol is an nondimensional quantity. In the case of vector quantities, it also
indicates that the vector is a unity vector (e.g. n̂x).

• Superscripts used inside angle brackets ⟨·⟩ or double angle brackets ⟪·⟫.
refer the so-called order of the corresponding variables. Order 0 vari-
ables are related to the description of the configurations of a multibody
system, order 1 to the first time derivatives of these configuration quan-
tities, order 2 to the second time derivatives and so on. Basically, the
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angle brackets ⟨·⟩ notation is used to denote a set of variables of a par-
ticular order. For example, q⟨α⟩ denotes a set of α-th order variables.
The double angle brackets ⟪·⟫ corresponds to a shorthand notation that
refers to a tuple constituted by all variables of a certain kind from 0-
th order up to the order indicated inside these brackets. For example,
q⟪β⟫ = (q⟨0⟩, . . . , q⟨α⟩, . . . , q⟨β⟩), 0 ≤ α ≤ β. For further details, see Sec-
tion 2.2.

• rp|o denotes the position vector of point p with respect to point o (i.e. the
vector defined by the directed line segment from o to p).

• vp|E denotes the velocity vector of a point p measured with respect to the
reference frame E.

• ωB|E denotes the angular velocity vector of the rigid body (or reference
frame) B with respect to the reference frame E.

• [x]S denotes the column-matrix representing the coordinates of the vector
x with respect to the coordinate system S.

• [T]S|R denotes the matrix representing the dyadic T with respect to the
coordinate systems R and S (i.e. if y = T · x, then [y]S = [T]S|R [x]R).

• 1 denotes the unit dyadic, i.e. if x is an arbitrary vector, then 1 · x = x.
[1]S|R represents the transformation matrix describing the change of basis
between the coordinate systems R and S, i.e. if x is an arbitrary vector,
then [x]S = [1]S|R [x]R. Note that [1]R|R = [1]S|S = 1, with 1 denoting the
identity matrix.

• cθ and sθ are used as shorthand notations for cos(θ) a and sin(θ), respec-
tively.
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2 On the description of motion of
multibody systems

To pursue the objective of proposing a new unifying modeling methodology
that is able to use already known models of subsystems to derive the equations
of motion of multibody systems, not being relevant the formalisms that led to
these models, it is necessary to be able to describe the corresponding motions
as generally as possible. It must be stated, however, that the concept of motion
is underlain by even more fundamental notions:

... classical physics implies a certain basic descriptive order and
measure. This may be characterized as the use of certain Carte-
sian coordinates and by the notion of universal and absolute order of
time, independent of that of space. This further implies the absolute
character of what may be called Euclidean order and measure (i.e.,
that characteristic of Euclidean geometry). With this order and mea-
sure, certain structures are possible. In essence, these are based
on the quasi-rigid body, considered as a constituent element. The
general characteristic of classical structure is just the analysability
of everything into separate parts, which are either small, quasi-rigid
bodies, or their ultimate idealization as extensionless particles. As
pointed out earlier, these parts are considered to be working to-
gether in interaction (as in a machine). (BOHM, 2005, p. 153)

According to the Classical Physics point of view, any motion in a multibody
system can be ultimatelly described as the motion of interacting rigid bodies
and particles in an Euclidean space. The concept of rigid body plays a funda-
mental role in both Classical and Analytical Mechanics once it not only can be
conceived as the basic constituent element of a mechanical system, but also
because it can be used to define the concept of reference frame:

A reference frame will be defined here as a set of non-colinear
points, with distances from each other invariant with time. A rigid
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body can be taken as a reference frame, since it fully meets the
conditions that define the latter. In practice, the concepts of rigid
body and reference frame will be used alternatively. A plane can be
adopted as a reference frame, for the same reason. A line or point,
however, does not constitute a reference frame, since it does not ful-
fill the conditions established in the above definition. (TENENBAUM,
2004, p. 92)

The objective of this chapter is to propose a general approach for interpret-
ing all types of descriptions of motion normally used in the modeling of multi-
body systems and to discuss how to obtain, from those descriptions, relevant
information for the modular modeling of such systems. The results presented
in this chapter apply to any mechanical system for which the ability to track the
motions of a finite number of points is enough to provide all the information
needed about all possible motions it is able to perform. In other words, all the
statements in the following sections apply to any multibody system with a finite
number of degrees of freedom.

This chapter involves both a literature review on the main concepts of kine-
matics of multibody systems and some novel contributions, one of them being
a new notation introduced for the development of the proposed methodology.
Section 2.1 discusses the sufficient conditions for describing the motion of a
multibody system, including the concepts of generalized coordinates and con-
straints (along with their classifications). Section 2.2 introduces the concept of
generalized variables along with the corresponding notations to be used along
this text. Also, there is a brief discussion on the sufficient conditions for defin-
ing new sets of generalized variables, in replacement of the trivially defined
ones. Section 2.3 introduces the concepts of generalized constraint invariants
and of constraint order of a multibody system. Based on them the definitions of
generalized configurations, singular configurations and of number of degrees
of freedom of a multibody system are revisited and reformulated in order to be
compatible both with the conventional concepts and with the novel approach.
Section 2.4 establishes a fundamental theorem for the variations of motion vari-
ables concerning their compatility with the constraints of a multibody system.
Finally, Section 2.5 presents the central contribution of this chapter, which is
a modular and recursive algorithm for applying the result presented in the pre-
vious section for a multibody system that can be conceived as a hierarchical
structure of subsystems representable by a tree diagram. This algorithm is the
basis of the modular modelling methodology developed in this thesis.
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2.1 Sufficient conditions for describing the mo-
tion of a multibody system

Let M denote a multibody system for which tracking the motion of a finite
number of points is enough to describe any possible motion that it is able to
perform. Let E be a reference frame and E be a coordinate system rigidly at-
tached to E. Any motion of a point of M with respect to E can be analytically
described by time histories of its Cartesian, homogeneous, cylindrical, spher-
ical, etc. coordinates in the system E. Such kind of coordinates will generally
be referred in this text as spatial coordinates, in order to avoid nomenclature
conflicts.

Obtaining such time histories, however, normally correspond to the final
objective of a typical multibody system dynamics analysis. Much more relevant
for the modeling of such systems is the so called instantaneous kinematics
approach in which the values of the spatial coordinates and its time derivatives
up to ρ-th order (ρ ≥ 1) are known (or at least can be determined from the
available data) at a given time instant t∗. In this case, it is implicitly assumed
that the corresponding time histories are class Cρ at t∗. Moreover, it can be
stated that in the time interval [t∗, t∗ + ϵ[ the error of the approximation of the
actual time history by a ρ-th order Taylor polynomial is an infinitesimal1 with
respect to ϵρ.

Although a finite number of spatial coordinates might be enough for the de-
scription of the motion of a multibody system, such a choice of variables will
hardly ever be the most appropriate to derive the corresponding mathemati-
cal model. Indeed, it is always possible to define a finite number of variables
to parametrize the descriptions of the spatial coordinates. Such variables, if
sufficient to uniquely determine the positions of any point2 in a multibody sys-
tem, are called generalized coordinates. In this text, the tuple (which may be
interpreted as a column-matrix when convenient) representing the generalized
coordinates of the multibody system M will be denoted by q⟨0⟩M . A particular
generalized coordinate in this tuple will be represented by the symbol q⟨0⟩M.i , with
i being a generic index. Moreover, when there is no other multibody system

1 Let x(t) and y(t) be two real valued functions of a real variable t, both defined in a neigh-
borhood of t = 0: y(t) is an infinitesimal with respect to x(t) or, in symbolic notation, y = o(x),
if and only if limt→0(y(t)/x(t)) = 0. For example, t5/2 is an infinitesimal with respect to t2 at
t = 0 once t5/2/t2 = t1/2 and limt→0 t1/2 = 0.

2 Actually, local uniqueness is enough, that is, if there is more than one configuration
corresponding to the same values of generalized coordinates, there must be a finite (non-
infinitesimal) distance between such configurations.
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(thanM) in a particular context, the subscriptM can be omitted for the sake of
simplicity, i.e. the generalized coordinates tuple can simply be denoted by q⟨0⟩

and a particular coordinate in this tuple by q⟨0⟩.i .

Let x denote any spatial coordinate of some point in M. If q⟨0⟩ represents
a tuple of generalized coordinates for M, then there must be a function x
parametrizing x in terms of the time variable t and of the generalized variables
q⟨0⟩, i.e.:

x = x
(
t, q⟨0⟩

)
(2.1)

Thus, if the time history of the generalized variables of M is obtained for some
time interval, then, the corresponding time history of x can be given by the
expression: x(t) = x

(
t, q⟨0⟩(t)

)
. Moreover, applying the chain rule it can be

stated that, if x is a class Cρ function, than there must be a function x (ρ) such
that the ρ-th time derivative of x can be parametrized as a function of time, of
the generalized coordinates and its time derivatives up to ρ-th order, i.e.:

dρx

dtρ
= x (ρ)

(
t, q⟨0⟩, . . . ,

dαq⟨0⟩

dtα
, . . . ,

dρq⟨0⟩

dtρ

)
(2.2)

Typically, the criteria used for choosing the generalized coordinates of a
system take into consideration the existing motion constraints, which often lead
to the selection of a minimal set of variables for a parametric description of its
possible motions. For example, in a simple pendulum, which is a system con-
sisting of a single particle (extensionless body) constrained to move in a cir-
cumference, the specification of a single angular coordinate θ measured along
such circumference is sufficient to describe any possible configuration of this
system uniquely. Moreover, such a coordinate (as well as its time derivatives)
can assume any value without violating any constraint of the pendulum, corre-
sponding to a minimal parametric description for it. Consider now a spherical
pendulum, which is a system consisting of a single particle constrained to move
in a spherical surface. In this case, two angular coordinates, e.g. latitude and
longitude, are sufficient to describe any possible configuration of this system
uniquely, corresponding to a minimal parametric description for it.

However, it is not always practical to adopt a minimal description for the
configurations of a multibody system in terms of generalized coordinates. Con-
sider, for instance, the 4-bar mechanism shown in Figure 2.1. This system is
constituted by 4 rigid planar bars linked by ideal revolute joints at their edges.
Let E be a reference frame and suppose that the bar ab remains fixed with
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respect to E.

a b

cd

✓a ✓b

✓c

x̂

ŷ

Figure 2.1: Representation of a 4-bar mechanism. Adapted from Orsino and
Hess-Coelho (2015).

Noting that abcd is a quadrilateral in which the lengths of the sides remain
constant, in order to uniquely determine any configuration of this mechanism
with respect to the reference frame E, it is sufficient to specify a single internal
or external angle. Choosing only one angle among θa, θb and θc, for example
(see Figure 2.1), would be enough. Yet, if one tries to obtain the Cartesian co-
ordinates of c as a function of θa only, for instance, it will lead to cumbersome
expressions. Thus, although it is possible to obtain a mathematical model of
the 4-bar mechanism using a single generalized coordinate, this is not con-
venient. It would be much more practical to use θa, θb and θc simultaneously
(ORSINO; HESS-COELHO, 2015). Such a scenario, however, corresponds to the
use of redundant (generalized) coordinates, i.e. coordinates whose values can
not be set arbitrarily without leading to some configurations that are not com-
patible with the constraints of the system. In this particular example, once the
value of one of the angles is given, the values of the other two can be uniquely
determined. Thus, whenever redundant coordinates are used in the modeling
of a multibody system, its motion constraints will lead to invariants of the form:

h̄⟨0⟩.k
(
t, q⟨0⟩

)
= 0 (2.3)

Such invariants do not only apply only to a particular configuration of a system
but for all the possible configurations it might have. Any time history q⟨0⟩(t)
compatible with themotion constraints of a systemmust identically satisfy these
invariants. This result also extends to the instantaneous kinematics approach,
i.e. equations (2.3) does not only impose restrictions to the possible values of
the generalized coordinates but also to its time derivatives.

However, not all constraints in a multibody system will be satisfied if mini-
mal sets of generalized coordinates are chosen or if invariants of the form (2.3)
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Figure 2.2: Representation of a knife-edge disc rolling in a plane. Adapted
from Orsino and Hess-Coelho (2015).

are enforced. Consider, for example, the system represented in Figure 2.2,
consisting of an ideal knife-edge disc rolling in a plane. Suppose that this sys-
tem satisfies the no-slip constraint: points of two distinct bodies must have the
same velocity (zero relative velocity) when in contact. Let E be a reference
frame rigidly attached to the plane and E = (o, x̂, ŷ, ẑ) be a coordinate system
in E such that o is a point in the plane and x̂ and ŷ are parallel to this plane.
Once there always must be a point c of the disc in instantaneous contact with
the plane, the velocity of this point with respect to E must be zero at this cor-
reponding instant. Let the coordinates of c in E be [c]E = (xc, yc, zc). Due to
the contact between the disc and the plane, it can be stated that zc = 0. The
coordinates xc and yc can assume any value without violating any constraint
of the system. Their rates, however, must satisfy some conditions in order not
to violate the no-slip constraint. Thus, invariants expressing the no-slip con-
straint can not be expressed as functions of the generalized coordinates and
time only; they must involve some of the time derivatives of the generalized
constraints.

In general, enforcing kinematic constraints in a multibody system will in-
volve the satisfaction of equations or inequalities of the following forms:

h̄⟨ρ⟩.k

(
t, q⟨0⟩, . . . ,

dαq⟨0⟩

dtα
, . . . ,

dρq⟨0⟩

dtρ

)
= 0 (2.4)

ȟ⟨ρ⟩.k

(
t, q⟨0⟩, . . . ,

dαq⟨0⟩

dtα
, . . . ,

dρq⟨0⟩

dtρ

)
≥ 0 (2.5)

Constraints that can not be represented by equations, i.e. that do not corre-
spond to invariants, are out of the scope of this text.
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Definition 2.1. A constraint is classified as holonomic either when it is auto-
matically satisfied by an adequate choice of generalized coordinates or when it
corresponds to invariants that can be expressed in the form presented in equa-
tion (2.3). When a holonomic constraint does not involve time (t) as an explicit
variable, it is further classified as scleronomic; whenever it does, the constraint
is said to be rheonomic (GOLDSTEIN; POOLE JR.; SAFKO, 2002).

A holonomic system is a multibody system in which all the constraints are
holonomic being the denomination nonholonomic system reserved for any sys-
tem in which at least one constraint is not holonomic.

Among the nonholonomic constraints, the so called simple nonholonomic
constraints (KANE; LEVINSON, 1985) stand out: such constraints can be ex-
pressed by invariants which are affine functions with respect to the time deriva-
tives of the generalized coordinates. A simple nonholonomic system is any sys-
tem in which all the constraints are either holonomic or simple nonholonomic
(existing at least one simple nonholonomic constraint).

Proposition 2.2. An isolated tridimensional rigid body is a holonomic system.
The positions of three noncollinear points of this body or six generalized coor-
dinates are sufficient to describe any configuration of a rigid body with respect
to any reference frame.

Proof. Consider that, without any loss in generality, at a given time instant the
configuration of an isolated rigid body B with respect to an arbitrary reference
frame E is known. At any other time instant, the distance between two points in
this body must be exactly the same as it was in that reference configuration. Let
b0 be a point of B whose position is tracked. In general, three coordinates are
sufficient to describe the position of b0 with respect to its reference configura-
tion. In any configuration, any other point b1 of Bmust lie in a spherical surface
centered in b0 whose radius is equal to the already known distance between
b0 and b1. Thus, tracking the position of b1 too would require only two extra
coordinates (to uniquely specify the position of a point in a spherical surface).
Suppose that both b0 and b1 are tracked. Any point in the straight line b0b1 can
simply be located by the already known distances to b0 and b1 without requir-
ing any extra coordinate. Let b2 be noncollinear to b0 and b1: it must remain
in the intersection of two spherical surfaces, one centered in b0 and the other
centered in b1, whose radii are the already known distances between b2 and
each of these points. Such an intersection corresponds to a circumference.
Therefore, a single extra coordinate is sufficient to locate b2 in this intersection.
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When b0, b1 and b2 are tracked, a fourth point b will remain in the intersection
of three spherical surfaces with known radii centered at each of these three
points. Such an intersection corresponds to two points lying in different sub-
spaces between those defined by the plane b0b1b2, which means that once the
position of b in the reference configuration is known, it is possible to uniquely
determine which of these two points is b in a new configuration, without requir-
ing the definition of any extra coordinate. Finally, once all the constraints of
B can be automatically satisfied by an appropriate choice of a minimal set of
generalized coordinates, according to Definition 2.1, it can be classified as a
holonomic system.

2.2 Generalized variables

As discussed in the previous section, any variable used to describe a con-
figuration of a multibody system can be parametrically described in terms of
time and of a set of generalized coordinates adequately chosen to model such
system. Consequently, any variable related to the motion of a system (which
involves configurations and related rates) can be parametrized in terms of time,
generalized coordinates and its time derivatives up to some order. For some
systems, however, it might be convenient to adopt reparametrizations, in which
the α-th time derivatives of the generalized coordinates are replaced by a
set of α-th order generalized variables. In the literature, first order general-
ized variables are commonly called quasi-velocities (NEJMARK; FUFAEV, 1972;
CAMERON; BOOK, 1997; JARZEBOWSKA, 2009; PAPASTAVRIDIS, 1988), second
order generalized variables are called quasi-accelerations (MARUSKIN; BLOCH,
2007; PAPASTAVRIDIS, 1988; UDWADIA; PHOHOMSIRI, 2007a) and third order, are
called quasi-jerk (MARUSKIN; BLOCH, 2007). Higher order generalized variables
do not receive any special denomination. Note that generalized coordinates
can also be referred as 0-th order generalized variables.

In this text, the tuple (or column-matrix) representing the α-th order gener-
alized variables of a multibody system M will be denoted by q⟨α⟩M . A particular
generalized variable in this tuple will be represented by the symbol q⟨α⟩M.i , being
i a generic index. Again, when there is no other multibody system (than M) in
a particular context, the subscript M can be omitted, i.e. the α-th order gener-
alized variables tuple can simply be denoted by q⟨α⟩ and a particular variable
in this tuple by q⟨α⟩.i . Moreover, the following notations will be adopted:
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• q⟪β⟫ represents the tuple (or column-matrix) constituted by all generalized
variables up to β-th order, i.e.:

q⟪β⟫ = (q⟨0⟩, . . . , q⟨α⟩, . . . , q⟨β⟩)

• q⟨β |α⟩, β > α, represents an alternative set of β-th order generalized vari-
ables defined as the (β − α)-th time derivative of q⟨α⟩, i.e.3:

q⟨β |α⟩ =
dβ−αq⟨α⟩

dtβ−α

• q⟪β+κ|β⟫, κ > 0, represents the tuple (or column-matrix) constituted by
q⟪β⟫ and its time derivatives up to κ-th order, i.e.:

q⟪β+κ|β⟫ =
(
q⟪β⟫, . . . , d

κq⟪β⟫
dtκ

)

Let ν(q⟨α⟩M ) denote the number of α-th order generalized variables for mod-
eling amultibody systemM. Once the (β+1)-th order generalized variables are
defined to replace the time derivatives of the β-th order variables, such transfor-
mation of variables will be properly defined provided a tuple (or column-matrix)
c̄ ⟨β+1⟩
M constituted by ν(c̄ ⟨β+1⟩

M ) = max{ν(q⟨β+1⟩
M ), ν(q⟨β⟩M )} invariants as follows:

c̄ ⟨β+1⟩
M.k

(
t, q⟪β+1⟫

M , q̇⟨β⟩M

)
= 0 (2.6)

It must be noticed, however, that above some order, it is not convenient to de-
fine other generalized variables than the time derivatives of the previous order
ones. Indeed, if q⟨β⟩M = q⟨β

|α⟩
M for all β > α ≥ σ, it can be stated that the model

of system M has trivial generalized variables above σ-th order. Moreover, if
σ = 0, i.e., the generalized coordinates are given and all other generalized vari-
ables are defined as q⟨α⟩ = q⟨α|0⟩, then it can be said that the model of system
M has trivial generalized variables.

Example 2.1. Let B be a mechanical system constituted by a single free rigid
body B whose motion is described with respect to an arbitrary reference frame
E. Consider that E = (eo, êx, êy, êz) is a coordinate system fixed to E and that
B = (bo, b̂x, b̂y, b̂z) is a coordinate system that moves along with B. Let the
transformation between the coordinate systems B and E be defined by a unit
quaternion (qt, q). Define the following generalized coordinates for modeling

3 Whenever useful, it can also be adopted the following convention: q⟨α|α⟩ = q⟨α⟩.
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B:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

q⟨0⟩.1 = qx = q · êx q⟨0⟩.5 = x = rbo |eo · êx

q⟨0⟩.2 = qy = q · êy q⟨0⟩.6 = y = rbo |eo · êy

q⟨0⟩.3 = qx = q · êz q⟨0⟩.7 = z = rbo |eo · êz

q⟨0⟩.4 = qt

(a)

Note that once (qt, q) is a unit quaternion, the following relation must be satis-
fied:

q2t + q
2
x + q

2
y + q

2
z − 1 = 0 (b)

Moreover, the matrix defining the transformation of coordinates between E and
B is given by (BOTTEMA; ROTH, 1979, p. 11):

[1]E|B =

⎡

⎢⎢⎢⎢⎣

q2t + q
2
x − q2y − q2z 2(qxqy − qtqz) 2(qxqz + qtqy)

2(qxqy + qtqz) q2t − q2x + q2y − q2z 2(qyqz − qtqx)

2(qxqz − qtqy) 2(qyqz + qtqx) q2t − q2x − q2y + q2z

⎤

⎥⎥⎥⎥⎦
(c)

Let ωB|E denote the angular velocity of B with respect to E, vbo |E = ṙbo |eo be the
velocity of bo with respect to E and define the following quasi-velocities:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q⟨1⟩.1 = ωx = ωB|E · b̂x q⟨1⟩.4 = vx = vbo |E · êx

q⟨1⟩.2 = ωy = ωB|E · b̂y q⟨1⟩.5 = vy = vbo |E · êy

q⟨1⟩.3 = ωz = ωB|E · b̂z q⟨1⟩.6 = vz = vbo |E · êz

(d)

It can be proved that (BOTTEMA; ROTH, 1979, Secs. 2.3 and 2.4):

[1]TE|B
˙[1]E|B =

⎡

⎢⎢⎢⎢⎣

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤

⎥⎥⎥⎥⎦
(e)

which leads to the following identities:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ωx = 2 (qtq̇x + qzq̇y − qyq̇z − qxq̇t)

ωy = 2 (−qzq̇x + qtq̇y + qxq̇z − qyq̇t)

ωz = 2 (qyq̇x − qxq̇y + qtq̇z − qzq̇t)

(f)

In this model seven generalized coordinates and six quasi-velocities are de-
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fined, i.e., ν(q⟨0⟩B ) = 7 and ν(q⟨1⟩B ) = 6. Suppose that the generalized variables
are trivial above first order. There must be ν(c̄ ⟨1⟩B ) = 7 invariants defining the
transformation of variables between the time derivatives of the generalized co-
ordinates and the quasi-velocities. Taking the time derivative of equation (b)
along with the identities (f), it can be stated that the following invariants define
this transformation of variables:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c̄ ⟨1⟩.1 = qxq̇x + qyq̇y + qzq̇z + qtq̇t = 0

c̄ ⟨1⟩.2 = ωx − 2 (qtq̇x + qzq̇y − qyq̇z − qxq̇t) = 0

c̄ ⟨1⟩.3 = ωy − 2 (−qzq̇x + qtq̇y + qxq̇z − qyq̇t) = 0

c̄ ⟨1⟩.4 = ωz − 2 (qyq̇x − qxq̇y + qtq̇z − qzq̇t) = 0

c̄ ⟨1⟩.5 = vx − ẋ = 0

c̄ ⟨1⟩.6 = vy − ẏ = 0

c̄ ⟨1⟩.7 = vz − ż = 0

(g)

After some algebraic manipulations, such equations lead to the following iden-
tities:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇x =
1
2qtωx −

1
2qzωy +

1
2qyωz

q̇y =
1
2qzωx +

1
2qtωy −

1
2qxωz

q̇z = −1
2qyωx +

1
2qxωy +

1
2qtωz

q̇t = −1
2qxωx −

1
2qyωy −

1
2qzωz

ẋ = vx

ẏ = vy

ż = vz

(h)

Consider, for instance, the motion in which ωy = Ω̄ (constant) and all the other
quasi-velocities are zero. Adopting as initial conditions all generalized coordi-
nates being zero but qt = 1, it can be noticed that the solution of the system of
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ordinary differential equations (h) is:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = y = z = 0

qx = qz = 0

qy = sin
(
1
2Ωt

)

qt = cos
(
1
2Ωt

)

(i)

From the definition of quaternion parameters, it can be noticed that these ex-
pressions correspond to a pure rotation around the axis through bo defined by
the unit vector êy. The angle of rotation is given by θ = Ω̄t, i.e., as expected,
the corresponding motion is a rotation with constant angular velocity.

In this example, it could be noticed that it is possible to express q̇⟨0⟩ ex-
plicitly as a function of q⟨0⟩ and q⟨1⟩. Orsino and Hess-Coelho (2015) prove (in
Lemma 2.1) a generalization of this result. Let M be a multibody system and
let c̄ ⟨α+1⟩

M denote tuples (or column-matrices) constituted by invariants describ-
ing the transformations of variables between q̇⟨α⟩M and q⟨α+1⟩

M . Suppose that all
c̄ ⟨α+1⟩
M belong to class Cβ−α for all α such that 0 ≤ α ≤ β. If all the Jaco-
bians [∂c ⟨α+1⟩

M /∂q̇⟨α⟩M ], for 0 ≤ α ≤ β, are full rank matrices for the given values
of
(
t, q⟪α+1⟫

M , q̇⟨α⟩M

)
, then it is possible to express q⟨β |α⟩M (β ≥ α) as an explicit

function of time and generalized variables of M up to β-th order, i.e.:

q⟨β
|α⟩

M = q⟨β
|α⟩

M

(
t, q⟪β⟫M

)
(2.7)

2.3 Generalized constraint invariants

Let M be a mechanical system whose motion can be parametrically de-
scribed by a finite number of variables. Suppose that the motion constraints of
this system either are automatically satisfied by some proper selection of gen-
eralized coordinates or can be represented by a finite number of invariants that
can be expressed in the form of equation (2.4). Also, consider that non-trivial
(α+ 1)-th order generalized variables are related to the time derivatives of the
α-th order ones by a transformation of variables described by invariants that
can be expressed in the form of equation (2.6). For each σ ≥ 0 obtain the



24

following time derivatives, for all ρ such that 0 ≤ ρ ≤ σ:

dσ−ρ

dtσ−ρ

(
h̄⟨ρ⟩M.k

(
t, q⟪ρ|0⟫M

))
= 0 (2.8)

dσ−ρ

dtσ−ρ

(
c̄ ⟨ρ⟩M.k

(
t, q⟪ρ⟫M , q

⟨ρ|ρ−1⟩
M

))
= 0 (2.9)

Replace each q⟨β |α⟩M.i in equations (2.8, 2.9) by their corresponding expressions
in terms of t and q⟪β⟫M given by equations (2.7). After such replacements, all
the left-hand sides of the equations (2.8, 2.9) that remain non-degenerate, i.e
that are not identically zero by any values of t and q⟪σ⟫M , are denominated σ-th
order generalized constraint invariants of M and can be generically denoted
by a tuple (or column-matrix) as follows:

q̄⟨σ⟩M

(
t, q⟪σ⟫M

)
= 0 (2.10)

Definition 2.3. The constraint order of M, denoted by ν◦M, is defined as the
least integer σ for which the following conditions are simultaneously satisfied:

(1) All of the constraints of M either are automatically satisfied by some
proper selection of generalized coordinates or can be represented by a
finite number of generalized constraint invariants that can be expressed
in the form of equation (2.10).

(2) Themodel of systemM has trivial generalized variables above σ-th order.

(3) q̄⟨σ⟩M (when present) is an affine function with respect to q⟨σ⟩M .

For the sake of brevity, the subscripts M will be omitted in the remainder
of this section. For every σ ≥ ν◦, it can be stated that there is a matrix A =

A(t, q⟪ν◦−1⟫) and a column-matrix b⟨σ⟩ = b⟨σ⟩(t, q⟪σ−1⟫) such that the column-
matrix q̄⟨σ⟩ can be expressed as follows:

q̄⟨σ⟩ = A q⟨σ⟩ + b⟨σ−1⟩ = 0 (2.11)

Note that A is the Jacobian matrix of the σ-th order generalized constraint in-
variants with respect to the σ-th order generalized variables for every σ ≥ ν◦.
Whenever σ-th order generalized constraint invariants are not present in the
model for σ ≥ ν◦, q̄⟨σ⟩ can be supposed to be an empty tuple and A can be
supposed to be a 0× ν(q⟨ν◦⟩) empty matrix.

If A is not a full rank matrix for any values of t and q⟪ν◦−1⟫, then some of
the invariants in the column-matrix q̄⟨σ⟩ can be expressed as linear combina-
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tions of the remaining ones4. Thus, such invariants are redundant and can
be removed, being the remaining ones referred as independent generalized
constraint invariants. In this case, the new matrix A has full rank.

Definition 2.4. Let M be a multibody system whose constraint order is equal
to ν◦. A generalized configuration of M can be defined as being the tuple
(t, q⟪ν◦−1⟫). Denote by A the Jacobian matrix of the σ-th order independent
generalized constraint invariants with respect to the σ-th order generalized vari-
ables for σ ≥ ν◦. A singular (generalized) configuration of M is any eventual
tuple of values (t, q⟪ν◦−1⟫) for which A is not a full rank matrix.

Definition 2.5. The number of degrees of freedom of M, denoted by ν# (or
ν#

M), is defined as the nullity5 of the matrix A in any non-singular configuration
ofM. Also,M can be classified as a ν#-DOF system. It is worth noting that this
definition is also valid when A is an empty matrix: in these cases, ν# = ν(q⟨ν

◦⟩).

Example 2.2. Consider the system P, represented in Figure 2.3, and consti-
tuted by four rigid bodies: B0 (base), B1, B2 (rigid rods whose transverse sec-
tions have negligible dimensions) and B3 (slider). The kinematic pairs (B0,B1),
(B1,B2) e (B2,B3) are ideal spherical joints and the kinematic pair (B0,B3) is
a prismatic joint.

p0

p1

p2

✓

B0

B1
B2

B3
x̂

Figure 2.3: Representation of system P.

Define p0, p1 and p2 as the geometric centers of the spherical joints (B0,B1),
(B1,B2) and (B2,B3), respectively, and let ℓ1 and ℓ2 denote the lengths of the
rods B1 and B2, i.e., ℓ1 = ∥rp1 |p0∥ and ℓ2 = ∥rp2 |p1∥. Suppose that the axis of
the prismatic joint (B0,B3) is parallel to an unit vector x̂ and passes through
p0. Define the coordinate system E = (p0, x̂, ŷ, ẑ) which remains fixed with
respect to B0. To describe the motion of this system with respect to B0 define

4 Note that the coefficients of such linear combinations can be functions of t and q⟪ν◦−1⟫.
5 The nullity of a matrix is defined as the dimension of the kernel of the linear transformation

defined by this matrix.
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the following generalized coordinates:

q⟨0⟩P = (x1, y1, z1, x2, y2, z2, θ) (a)

with (x1, y1, z1) and (x2, y2, z2) being the Cartesian coordinates of p1 and p2 in
E and θ denoting the angle between the lines p0p1 and p1p2. Consider that
the model of P has trivial generalized variables. Due to the constraints of this
system, the following invariants must be established:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̄⟨0⟩P.1 = x
2
1 + y 21 + z21 − ℓ21 = 0

q̄⟨0⟩P.2 = (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 − ℓ22 = 0

q̄⟨0⟩P.3 = y2 = 0

q̄⟨0⟩P.4 = z2 = 0

q̄⟨0⟩P.5 = x
2
2 + y 22 + z22 − ℓ21 − ℓ22 − 2ℓ1ℓ2cθ = 0

(b)

All the constraints in P either are automatically satisfied by the selected
generalized coordinates or can be represented by some generalized constraint
invariants of order 0 or higher. Taking the first time derivative of equations (b),
it can be noticed that according to Definition 2.3, the constraint order of P is
ν◦P = 1 and the corresponding matrix AP is given by:

AP =

ẋ1 ẏ1 ż1 ẋ2 ẏ2 ż2 θ̇
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 2x1 2y1 2z1 0 0 0 0

2 2 (x1 − x2) 2 (y1 − y2) 2 (z1 − z2) 2 (x2 − x1) 2 (y2 − y1) 2 (z2 − z1) 0

3 0 0 0 0 1 0 0

4 0 0 0 0 0 1 0

5 0 0 0 2x2 2y2 2z2 2sθℓ1ℓ2

(c)

Whenever sθ = 0, the system of equations (b) has only four solutions:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = ℓ1 y1 = z1 = 0 x2 = ℓ1 + ℓ2 y2 = z2 = 0 θ = 0

x1 = −ℓ1 y1 = z1 = 0 x2 = −ℓ1 − ℓ2 y2 = z2 = 0 θ = 0

x1 = ℓ1 y1 = z1 = 0 x2 = ℓ1 − ℓ2 y2 = z2 = 0 θ = π

x1 = −ℓ1 y1 = z1 = 0 x2 = −ℓ1 + ℓ2 y2 = z2 = 0 θ = π

(d)

In any of these generalized configurations, the columns labeled by ẏ1, ż1 and θ̇
are identically zero and AP has rank 4; in any other generalized configurations
its rank is equal to 5. According to Definition 2.4, all of the generalized configu-
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rations (d) are singular. Moreover, following definition 2.5, it can be stated that
ν#

P = 2, i.e., P is a 2-DOF system.

Consider now that q⟨0⟩P = (x1, y1, z1, x2, y2, z2), i.e. θ is not used as a gener-
alized coordinate anymore. In this case the first 4 invariants of equation (b) are
sufficient to completely describe the constraints of P. In this case, matrix AP

is given by:

AP =

ẋ1 ẏ1 ż1 ẋ2 ẏ2 ż2
⎡

⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

1 2x1 2y1 2z1 0 0 0

2 2 (x1 − x2) 2 (y1 − y2) 2 (z1 − z2) 2 (x2 − x1) 2 (y2 − y1) 2 (z2 − z1)

3 0 0 0 0 1 0

4 0 0 0 0 0 1

(e)

Note that matrix AP has full rank (equal to 4) at every generalized configuration,
including the ones described by (d). Thus, there will be no singular generalized
configurations in this case.

This example illustrates that some singularities in the description of motion
of multibody systems are due to the kind of generalized variables chosen.

p0

p1

p2

B0

B1

B2

B3
x̂ p0

p1

p2

B0

B1

B2

B3
x̂

Figure 2.4: Singular generalized configurations of the variant of P.

Example 2.3. Consider now the following variant of system P, discussed in
the previous example: adopt ℓ1 = 1, ℓ2 = 2 and suppose that the axis of the
prismatic joint is defined by y2 = 1 and z2 = 0. Take q⟨0⟩P = (x1, y1, z1, x2, y2, z2, θ)

again: whenever sθ = 0, the corresponding system of generalized constraint
equations of order 0 leads to three different solutions:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1 = −2
√
2

3 y1 =
1
3 z1 = 0 x2 = −2

√
2 y2 = 1 z2 = 0 θ = 0

x1 = +2
√
2

3 y1 =
1
3 z1 = 0 x2 = +2

√
2 y2 = 1 z2 = 0 θ = 0

x1 = 0 y1 = −1 z1 = 0 x2 = 0 y2 = 1 z2 = 0 θ = π
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In the first two of these generalized configurations (which are symmetric with
respect to the yz plane of E), the rank of the corresponiding matrix AP is equal
to 4, and in the last one, it has rank 3. Thus, these are the generalized singular
configurations of this variant of P (outlined Figure 2.4).

2.4 Variations of motion variables

The application of Functional Analysis to the development of modeling
methodologies for multibody systems is useful to apply the descriptons of mo-
tions and constraints (kinematics) to the derivation of the equations of motion
(dynamics) of these systems.

LetCν(Ω) denote the linear space (overR) of classCν real-valued functions
defined in a closed interval Ω ⊂ R. The addition and scalar multiplication in this
linear space are defined respectively by: (w1 + w2)(t) = w1(t) + w2(t) and
(λw )(t) = λw (t) for all w,w1, w2 ∈ Cν(Ω), t ∈ Ω and λ ∈ R. In addition, define
a norm for Cν(Ω) as follows (GELFAND; FOMIN; SILVERMAN, 2000):

∥w∥ =
ν∑

κ=0

max
t∈Ω

∣∣∣∣
dκw

dtκ
(t)

∣∣∣∣ (2.12)

Also, if w is a tuple (or column-matrix) of class Cν(Ω) functions, define ∥w∥ =
max i ∥w.i∥, being the norms in the right-hand side of this equation obtained
by (2.12).

Let M be a ν#-DOF multibody system whose constraint order is equal to
ν◦. Take an integer σ ≥ ν◦, and suppose that a generic motion of M during
a time interval Ω is described by tuples q⟨α⟩(t) of class Cσ−α(Ω) functions, for
0 ≤ α ≤ σ, with q⟨α⟩ representing the α-th order generalized variables of the
model of M. Also, define for 0 ≤ α ≤ σ the functions δq⟨α⟩, which will be
called variations of the α-th order generalized variables, satisfying the condition
maxα ∥δq⟨α⟩∥ = ϵ for some ϵ > 0.

Let v ⟨ρ⟩ be a tuple constituted of arbitrary ρ-th order motion variables which
can be defined as any variables that can be expressed as explicit functions of
time and generalized variables up to ρ-th order, i.e., there must exist a function
v ⟨ρ⟩ such that v ⟨ρ⟩ = v ⟨ρ⟩(t, q⟪ρ⟫). Suppose that v ⟨ρ⟩ is a class C1 function and
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consider the following first order Taylor series expansion6:

v ⟨ρ⟩(t, q⟪ρ⟫(t) + δq⟪ρ⟫(t)) =
v ⟨ρ⟩(t, q⟪ρ⟫(t)) + δv ⟨ρ⟩(t, q⟪ρ⟫(t); δq⟪ρ⟫(t)) + o(ϵ) (2.13)

with δv ⟨ρ⟩(t, q⟪ρ⟫(t); δq⟪ρ⟫(t)) given by:

δv ⟨ρ⟩(t, q⟪ρ⟫(t); δq⟪ρ⟫(t)) = ∂v ⟨ρ⟩

∂q⟪ρ⟫ δq
⟪ρ⟫(t) =

ρ∑

κ=0

∂v ⟨ρ⟩

∂q⟨κ⟩
δq⟨κ⟩(t) (2.14)

The variation of v ⟨ρ⟩ is the function δv ⟨ρ⟩j (t) defined by:

δv ⟨ρ⟩(t) = δv ⟨ρ⟩(t, q⟪ρ⟫(t); δq⟪ρ⟫(t)) (2.15)

Let σ ≥ max{ρ, ν◦}, and suppose that in a given time instant t∗ all the values
of q⟪σ−1⟫(t∗) are known. Adopt δq⟪σ−1⟫(t∗) = 0 and consider that each δq⟨α⟩

is a tuple of class Cσ−α(Ω) functions, for 0 ≤ α ≤ σ, with Ω denoting a closed
interval, t∗ ∈ Ω and (t∗ + εt) ∈ Ω for some εt > 0. The following Taylor series
expansions are valid in this case7:

δq⟨ρ⟩(t∗ + εt) =
σ−ρ∑

κ=0

εκt
κ!

δq⟨ρ+κ|ρ⟩(t∗) + o(εσ−ρt ) (2.16)

Moreover, using equation (2.7), it can be stated that:

δq⟨ρ+κ|ρ⟩(t∗) =
ρ+κ∑

α=0

∂q⟨ρ+κ|ρ⟩

∂q⟨α⟩
δq⟨α⟩(t∗) (2.17)

However, by hypothesis, all δq⟨α⟩(t∗) = 0 for 0 ≤ α ≤ (σ−1); thus, if (ρ+κ) < σ,
i.e. κ < (σ − ρ), then, according to equation (2.17), δq⟨ρ+κ|ρ⟩(t∗) = 0. Also,
from this same equation, it can be stated that:

δq⟨σ |ρ⟩(t∗) =
∂q⟨σ |ρ⟩

∂q⟨σ⟩
δq⟨σ⟩(t∗) (2.18)

Therefore, equation (2.16) can be rewritten as follows:

δq⟨ρ⟩(t∗ + εt) =
εσ−ρt

(σ − ρ)!
∂q⟨σ |ρ⟩

∂q⟨σ⟩
δq⟨σ⟩(t∗) + o(εσ−ρt ) (2.19)

6 Denote by o(ϵ) any terms or sum of terms in a Taylor series expansion satisfying the
following property:

lim
ϵ→0

∥o(ϵ)∥
ϵ

= 0

7 In this expansion, the following property is assumed: “the derivative of the variation is
equal to the variation of the derivative” (LANCZOS, 1986, Sec. II-9).
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Furthermore, according to equations (2.14) and (2.19), it can be stated that:

δv ⟨ρ⟩(t∗ + εt) =
εσ−ρt

(σ − ρ)! V
⟨ρ,σ⟩ δq⟨σ⟩(t∗) + o(εσ−ρt ) (2.20)

with V ⟨ρ,σ⟩ defined as follows:

V ⟨ρ,σ⟩ =
∂v ⟨ρ⟩

∂q⟨ρ⟩
∂q⟨σ |ρ⟩

∂q⟨σ⟩
(2.21)

Definition 2.6. Let M be a multibody system whose constraint order is equal
to ν◦. Adopt σ ≥ ν◦, and consider that at a time instant t∗ the values of all
generalized variables q⟪σ⟫(t∗) are known and satisfy the constraints of the sys-
tem, i.e., if there are any independent generalized constraint invariants then
q̄⟨σ⟩(t∗, q⟪σ⟫(t∗)) = 0. In this case, the corresponding variations of the gener-
alized variables at t∗ are said to be compatible with the constraints of M if and
only if q̄⟨σ⟩(t∗, q⟪σ⟫(t∗) + δq⟪σ⟫(t∗)) = 0.

Proposition 2.7. Adopt the same hypothesis and conventions presented in
Definition 2.6. If q̄⟨σ⟩(t∗, q⟪σ⟫(t∗)) = 0 then the values of δq⟪σ⟫(t∗) are compat-
ible with the constraints of M if and only if:

δq̄⟨σ⟩(t∗, q⟪σ⟫(t∗); δq⟪σ⟫(t∗)) = 0 (2.22)

Proof. According to Definition 2.6, the values of δq⟪σ⟫(t∗) are compatible the
constraints of M if and only if:

q̄⟨σ⟩(t∗, q⟪σ⟫(t∗) + δq⟪σ⟫(t∗)) = 0 (a)

Using a Taylor series expansion similar to the one in equation (2.13), then:

q̄⟨σ⟩(t∗, q⟪σ⟫(t∗) + δq⟪σ⟫(t∗)) =
q̄⟨σ⟩(t∗, q⟪σ⟫(t∗)) + δq̄⟨σ⟩(t∗, q⟪σ⟫(t∗); δq⟪σ⟫(t∗)) + o(ϵ) = 0 (b)

However, by hypothesis, q̄⟨σ⟩(t∗, q⟪σ⟫(t∗)) = 0. Thus:

δq̄⟨σ⟩(t∗, q⟪σ⟫(t∗); δq⟪σ⟫(t∗)) = o(ϵ) (c)

Once δq̄⟨σ⟩ is a linear function of the δq⟨α⟩, with 0 ≤ α ≤ σ, and considering
that ϵ = maxα ∥δq⟨α⟩∥, equation (c) implies that δq̄⟨σ⟩ must be identically zero
(GELFAND; FOMIN; SILVERMAN, 2000, p. 12).

Theorem 2.8. LetM be a ν#-DOF multibody system whose constraint order is
equal to ν◦. Choose an integer σ ≥ ν◦ and consider that in a given time instant
t∗ the values of q⟪σ−1⟫(t∗) are known and do not violate any constraint of M.
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Adopt δq⟪σ−1⟫(t∗) = 0. It can be stated that, unless (t∗, q⟪σ−1⟫(t∗)) corresponds
to a singular generalized configuration, there is a rank ν# matrix S such that
AS = 0. Thus, for every variation δq⟨σ⟩ compatible with the constraints of M
there must be a column-matrix ∼

q⟨σ⟩ ∈ Rν# such that:

δq⟨σ⟩(t∗) = S
∼
q⟨σ⟩(t∗) (2.23)

Consequently, if v ⟨ρ⟩ denotes any column-matrix (or tuple) of ρ-th order motion
variables (ρ ≤ σ), considering the definition of V ⟨ρ,σ⟩ given in equation (2.21), it
can be stated that, for any variation δv ⟨ρ⟩(t∗+εt) compatible with the constraints
of M there is a column-matrix ∼

q⟨σ⟩ ∈ Rν# such that:

δv ⟨ρ⟩(t∗ + εt) =
εσ−ρt

(σ − ρ)! V
⟨ρ,σ⟩ S

∼
q⟨σ⟩(t∗) + o(εσ−ρt ) (2.24)

Proof. Assume that δq⟪σ−1⟫(t∗) = 0. Equation (2.22) can be written as follows:

A δq⟨σ⟩(t∗) = 0 (2.25)

From this equation, it can be stated that any variation δq⟨σ⟩(t∗) compatible with
the constraints of M must lie in the kernel of the linear transformation defined
by matrix A. According to Definition 2.5, the dimension of the kernel of this
linear transformation is equal to the number of degrees of freedom of M (ν#).
Thus, there must exist a full rank matrix S with ν# columns such that AS = 0.
Such a matrix is called an orthogonal complement of A. Moreover, it there is
any other matrix S′ such that AS′ = 0, it can be stated that the rank of S′ must
be less than or equal to ν#. Therefore, any variation δq⟨σ⟩(t∗) compatible with
the constraints of M can be expressed as a linear combination of the columns
of S. It means that, there must exist a column-matrix ∼

q⟨σ⟩(t∗) ∈ Rν# such
that δq⟨σ⟩(t∗) can be given by equation (2.23). Finally, equation (2.24) can be
obtained by applying equation (2.23) to (2.20).

From Theorem 2.8 it can be stated that any (compatible) variations of vari-
ables of motion in a ν#-DOF multibody systemM can be expressed as a linear
combination of ν# independent parameters. The coefficients of these linear
combinations can be expressed as functions of the generalized configuration
of M. The most intuitive choice for a matrix S satisfying the conditions of The-
orem 2.8 is trying to choose some independent variables among the elements
of the column-matrix δq⟨σ⟩(t∗) and, by some algebraic manipulations in the σ-th
order constraint invariants, express explicitly all the remaining elements of this
column-matrix as linear combinations of the independent ones.



32

Assume, without loss of generality8, that the column-matrix δq⟨σ⟩(t∗) and
the matrix A can be partitioned in the following form:

q⟨σ⟩.# q⟨σ⟩.⋆
[ ]

A = A.# A.⋆
δq⟨σ⟩(t∗) =

⎡

⎢⎣
δq⟨σ⟩.# (t∗)

δq⟨σ⟩.⋆ (t∗)

⎤

⎥⎦ (2.26)

In this case, equation (2.25) can be written as follows:

A.# δq⟨σ⟩.# (t∗) + A.⋆ δq
⟨σ⟩
.⋆ (t∗) = 0 (2.27)

It can be ensured that δq⟨σ⟩.# (t∗) represents an independent set of ν# variations
of generalized variables if A.⋆ is an invertible matrix9. Thus, denoting by 1ν# an
identity matrix of order ν#, it can be stated that:

δq⟨σ⟩(t∗) =

⎡

⎢⎣
δq⟨σ⟩.# (t∗)

δq⟨σ⟩.⋆ (t∗)

⎤

⎥⎦ =

⎡

⎢⎣
1ν#

−A−1.⋆ A.#

⎤

⎥⎦ δq⟨σ⟩.# (t∗) (2.28)

Finally, from this last equation, it can be identified that:

q⟨σ⟩.#
⎡

⎣

⎤

⎦S =
q⟨σ⟩.# 1ν#

q⟨σ⟩.⋆ −A−1.⋆ A.#

∼
q⟨σ⟩(t∗) = δq⟨σ⟩.# (t∗) (2.29)

Even though the method illustrated in equations (2.26 – 2.29) seems to be
the most intuitive one to obtain an orthogonal complement of A, it must be
highlighted that any algorithm that is able to derive an expression for a rank ν#

matrix S such that AS = 0 shall also apply.

Example 2.4. Back to system P presented in Example 2.2, it can be noticed
that unless ℓ1 = ℓ2, x2 will never be zero. Moreover, if ℓ1 = ℓ2, then x2 = 0 only
in a singular generalized configuration of this system. The same can be stated
about configurations in which sθ = 0 (see Figures 2.3 and 2.4). Furthermore,
y1 and z1 will only be simultaneously zero in singular configurations too.

Thus, whenever y1 ̸= 0, the variations of δż1 and δẋ2 can be adopted as
being independent, and the method presented in equations (2.26 – 2.29) leads

8 Once it is always possible to reorder the columns of A based on any ordering assumed
for q⟨σ⟩.

9 Note that, onceA is a full rankmatrix, there must be (ν(q̄⟨σ⟩M )−ν#) columns ofA constituting
an invertible square matrix.
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to:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δẋ1

δẏ1

δż1

δẋ2

δẏ2

δż2

δθ̇

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z2
x2

x1
x2
− 1

z1x2 − x1z2
y1x2

x1 (x2 − x1)
y1x2

1 0

0 1

0 0

0 0

0
x2

ℓ1ℓ2sθ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎣
δż1

δẋ2

⎤

⎥⎦ (a)

On the other hand, when z1 ̸= 0, the variations of δẏ1 and δẋ2 can be assumed
as independent, leading to:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δẋ1

δẏ1

δż1

δẋ2

δẏ2

δż2

δθ̇

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y2
x2

x1
x2
− 1

1 0

y1x2 − x1y2
z1x2

x1 (x2 − x1)
z1x2

0 1

0 0

0 0

0
x2

ℓ1ℓ2sθ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎣
δẏ1

δẋ2

⎤

⎥⎦ (b)

This example illustrates the statement of Theorem 2.8.

Example 2.5. Let S denote a mechanical system consisting of an ideal rigid
sphere S rolling without slipping in a rigid surface U. Suppose that the sphere
always touches the surface in a single point. Denote by U = (uo, ûx, ûy, ûz) a
coordinate system rigidly attached to U and consider that the Cartesian coordi-
nates of the instantaneous contact point between the sphere and the surface in
U are denoted by (x, y , z). Moreover, consider that S = (s, ŝx, ŝy, ŝz) is a coor-
dinate system rigidly attached to S, that s is the geometric center of the sphere
and that the transformation between S and U is defined by a unit quaternion
(qt,q) = (qt, qxûx + qyûy + qzûz). Finally, let (vx, vy, vz) denote the compo-
nents of vs|U in U and (ωx,ωy,ωz) denote the components ofωS|U in U too. Define
the following generalized variables to describe the motion of S with respect to
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U:

q⟨0⟩S = (qx, qy, qz, qt, x, y , z) (a)

q⟨1⟩S = (ωx,ωy,ωz, vx, vy, vz) (b)

LetU be defined by an equation of the form γ(x, y , z) = 0. and suppose, without
any loss in generality,∇γ(x, y , z) points to the half-space in which Smoves. For
the sake of brevity, define, with all the partial derivatives being evaluated at the
contact point coordinates (x, y , z):

γn =

√
(∂γ
∂x

)2
+
(∂γ
∂y

)2
+
(∂γ
∂z

)2

γx =
1

γn

∂γ

∂x
γy =

1

γn

∂γ

∂y
γz =

1

γn

∂γ

∂z

(c)

Denoting by r̄ the radius of this sphere, it can be stated that the coordinates
of s in U are given by [s]U = (x, y , z) + r̄ (γx, γy, γz). Considering that (qt,q) is
a unit quaternion, that (vx, vy, vz) = d

dt [s]U and that the skew-symmetric repre-
sentation of (ωx,ωy,ωz) is given by ˙[1]U|S [1]

T
U|S, the following invariants define

the transformations between the quasi-velocities and the time derivatives of the
generalized coordinates in this model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c̄ ⟨1⟩S.1 = qxq̇x + qyq̇y + qzq̇z + qtq̇t = 0

c̄ ⟨1⟩S.2 = ωx − 2 (qtq̇x − qzq̇y + qyq̇z − qxq̇t) = 0

c̄ ⟨1⟩S.3 = ωy − 2 (qzq̇x + qtq̇y − qxq̇z − qyq̇t) = 0

c̄ ⟨1⟩S.4 = ωz − 2 (−qyq̇x + qxq̇y + qtq̇z − qzq̇t) = 0

c̄ ⟨1⟩S.5 = vx − ẋ −
d

dt
(r̄ γx) = 0

c̄ ⟨1⟩S.6 = vy − ẏ −
d

dt
(r̄ γy) = 0

c̄ ⟨1⟩S.7 = vz − ż −
d

dt
(r̄ γz) = 0

(d)

Due to the no-slip constraints present in this system, the instantaneous contact
point between S and U must have zero velocity with respect to U. This fact
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leads to the following identity:
⎡

⎢⎢⎢⎢⎣

vx

vy

vz

⎤

⎥⎥⎥⎥⎦
= r̄

⎡

⎢⎢⎢⎢⎣

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

γx

γy

γz

⎤

⎥⎥⎥⎥⎦
(e)

Thus, the following invariants are obtained:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q̄⟨1⟩S.1 = vx − r̄ (ωy γz − ωz γy) = 0

q̄⟨1⟩S.2 = vy − r̄ (ωz γx − ωx γz) = 0

q̄⟨1⟩S.3 = vz − r̄ (ωx γy − ωy γx) = 0

(f)

A possible matrix SS for this system can be given by the following expression:

ωx ωy ωz
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

SS =

ωx 1 0 0

ωy 0 1 0

ωz 0 0 1

vx 0 r γz −r γy

vy −r γz 0 r γx

vz r γy −r γx 0

(g)

Consider, for instance, that U is defined by the equation γ(x, y , z) =

z − µ y 2 = 0. In this case, γx = 0, γy = −2µ y/
√

1 + 4µ2 y 2 and γz =

1/
√
1 + 4µ2 y 2. Let b be a point in the surface of S, whose local coordinates

are given by [b]S = (0, 0,−r̄ ). Define v ⟨0⟩ as follows:

v ⟨0⟩ = [b]U = [s]U + [1]U|S [b]S (h)

It can be stated that:

ωx ωy ωz vx vy vz
⎡

⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎦
V ⟨0,1⟩ =

v ⟨0⟩.x 0 −r̄
(
1− 2q2x − 2q2y

)
2r̄ (qyqz − qxqt) 1 0 0

v ⟨0⟩.y r̄
(
1− 2q2x − 2q2y

)
0 −2r̄ (qxqz + qyqt) 0 1 0

v ⟨0⟩.z −2r̄ (qyqz − qxqt) 2r̄ (qxqz + qyqt) 0 0 0 1

(i)
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Moreover:

ωx ωy ωz
⎡

⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎦
V ⟨0,1⟩ SS =

v ⟨0⟩.x 0 −r̄
(
1− 2q2x − 2q2y − γz

)
2r̄
(
qyqz − qxqt − 1

2 γy
)

v ⟨0⟩.y r̄
(
1− 2q2x − 2q2y − γz

)
0 −2r̄

(
qxqz + qyqt − 1

2 γx
)

v ⟨0⟩.z −2r̄
(
qyqz − qxqt − 1

2 γy
)

2r̄
(
qxqz + qyqt − 1

2 γx
)

0

(j)

Consider that, at a time instant t∗, y (t∗) = 0 (and, consequently, γx = 0, γy = 0,
γz = 1 and γn = 1), qx(t∗) = qy(t∗) = qz(t∗) = 0 and qt(t∗) = 1. In this config-
uration, b is instantaneously in contact with S, and, as expected, V ⟨0,1⟩ SS = 0.
Indeed, by Theorem 2.8, δv ⟨0⟩(t∗ + εt) = o(εt), i.e., the variation of the posi-
tion of b in a time interval [t∗, t∗ + εt [ is negligible comparatively to εt , for εt
sufficiently small.

Example 2.6 (2D rigid body element). Let B denote a system constituted by
a single rigid body B that is constrained to perform a plane motions only, i.e.,
given any two points of B their trajectories must be plane curves and the cor-
responding planes must be parallel. Such a system can be conceived as a 2D
rigid body element. Let N denote the reference frame with respect to the mo-
tion of B is described and define a coordinate system N = (o, x̂, ŷ, ẑ) such that
x̂ and ŷ are unit vectors which are parallel to the planes of motion and ẑ is a unit
vector orthogonal to these planes. Thus, if p is any point of B, then vp|N · ẑ = 0.
Due to this condition, it can also be stated that ωB|N · x̂ = ωB|N · ŷ = 0. Thus
choosing a particular point b⋆ of B and denoting vb⋆ |N = vB,xx̂ + vB,yŷ and
ωB|N = ωB,zẑ, the following quasi-velocities can be defined for the modeling of
B: q⟨1⟩B = (vB,x, vB,y,ωB,z).

Moreover, once B is a holonomic system, to describe its configurations, it
is enough to specify the position of a one point of B along with the orientation
of a line orthogonal to ẑ that moves along with this rigid body. For instance, if
pB,x and pB,y denote the x and y coordinates of b⋆ in N and θB represents the
angle between a line orthogonal to ẑ that moves along with B and the direction
of x̂, the following generalized coordinates can be defined for the modeling of
B: q⟨0⟩B = (pB,x, pB,y, θB). In this case, q⟨1⟩B = q̇⟨0⟩B .

Another alternative for describing a generic configuration of B is by select-
ing a finite number of points of B as shown in Figure 2.5. Once the position of
a point and the orientation of a line are enough for it, the positions of at least
two points of B are sufficient for specifying the position of any other point of
this body. Referring to these tracked points of B as nodes and denoting them
by bk and their corresponding Cartesian coordinates by (pB,k,x, pB,k,y), it can
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bi

bj
b?

B

x̂

ŷ

Figure 2.5: Representation of a 2D rigid body element.

be stated that a possible set of generalized coordinates for this system can be
defined as the collection of the Cartesian coordinates of all these nodes (with
the number of nodes begin equal to or greater than 2). Also, in this case, let
q⟨1⟩B = (vB,x, vB,y,ωB,z, q̇

⟨0⟩
B ). Thus, the 0-th order generalized constraint invari-

ants of this system can be given by equations of the form (with ℓ̄B,i ,j representing
the distance between bi and bj , i < j):

(pB,i ,x − pB,j,x)2 + (pB,i ,y − pB,j,y)2 − ℓ̄ 2B,i ,j = 0 (a)

Sometimes b⋆ will not not be one of the nodes of the model. In such cases,
suppose that its position is specified in terms of two nodes bi and bj . There
must exist two adimensional constants γ̂B and ρ̂B such that:

rb⋆ |bi = γ̂B rbj |bi + ρ̂B ẑ× rbj |bi (b)

The time derivative of this equation leads to the following identity:

vbi |N = vb⋆ |N + ωB,z

(
ρ̂B rbj |bi − γ̂B ẑ× rbj |bi

)
(b)

In general, for any node bk :

vbk |N = (vB,x x̂+ vB,y ŷ) + ωB,z

(
ρ̂B rbj |bi − γ̂B ẑ× rbj |bi + ẑ× rbk |bi

)
(c)

Using equation (c), any quasi-velocity of the model of B can be expressed as
a function of (vB,x, vB,y,ωB,z). Thus, SB can be expressed as follows:

vB,x vB,y ωB,z
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

SB =

vB,x 1 0 0

vB,x 0 1 0

ωB,z 0 0 1

ṗB,k,x 1 0 (1− γ̂B) pB,i ,y + γ̂BpB,j,y + ρ̂B (pB,j,x − pB,i ,x)− pB,k,y

ṗB,k,y 0 1 − (1− γ̂B) pB,i ,x − γ̂BpB,j,x + ρ̂B (pB,j,y − pB,i ,y) + pB,k,x

(d)
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The last 2 rows shown in matrix SB actually represent the general expression
of the rows that correspond to a generic node bk , i.e., there must be a pair of
rows like these for each node used in the model of B.

2.5 Descriptions of motion in modular multibody
formulations

The definitions and results presented along this chapter are valid for any
finite degree-of-freedom multibody system. However, in order to propose mod-
ular formulations which are able to use already known mathematical models of
subsystems to derive the equations of a multibody system, some extra state-
ments and techniques must be discussed.

First of all, it must be noticed that whenever the modular approach is used,
a multibody system can be conceived as a hierarchical structure of subsystems
that can be represented by a tree diagram. Consider for instance the models of
a bicycle (W), a 5-bar mechanism (P) and a 3RRR mechanism (Q) presented
in Figures 2.6, 2.7 and 2.8, respectively. The bicycle model is conceived as a
tree structure with 3 levels: the root (level 0) corresponds to the bicycle model
W itself; the first level consists of the subsystems of W which are the rear
wheel R, the front wheel F and the assembly A constituted by the body of
the rider and by the frame, handlebar and front fork of the bicycle; the second
level, in this example, consists of the subsystems of A, which are the system
B constituted by the body of the rider and the frame of the bicycle and the sys-
tem H constituted by the handlebar and front fork of it. The 5-bar mechanism
model P is conceived as a tree structure with 4 levels: the root corresponds
to the system itself, the first level consists of its subsystems, which are the left
and right actuators, AL and AR respectively, and the mechanism R; the sec-
ond level, is constituted by the subsystems of R, which are the left and right
kinematic chains, HL and HR and the payload L; finally, the third level is con-
stituted by the bars UL, BL, UR and BR which are subsystems of the chains
HL and HR. A similar hierarchical structure is presented to model the 3RRR
mechanism Q, with the diference that in this case the actuators are supposed
to be subsystems of the corresponding kinematic chains.

LetMn denote a generic system at the n-th level of a tree structure. For in-
stance, for the bicycle model,M0 = W,M1 ∈ {A,R,F} andM2 ∈ {B,H}; for
the 5-bar mechanism model, M0 = P, M1 ∈ {AL,AR,R}, M2 ∈ {HL,HR,L}
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Figure 2.6: Representation of the model of a bicycle, W. Adapted from
Orsino and Hess-Coelho (2015).
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Figure 2.7: Representation of the model of a 5-bar mechanism, P.
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Figure 2.8: Representation of the model of a 3RRR mechanism, Q.

and M3 ∈ {UL,BL,UR,BR}; finally, for the 3RRR mechanism model, M0 = Q,
M1 ∈ {HA,HB,HC,L} and M2 ∈ {AK,UK,BK | K ∈ {A,B,C}}. Also, denote
by S(Mn) the set of all subsystems of Mn, i.e. Mn+1 ∈ S(Mn) if and only if
Mn+1 is a subsystem of Mn. For example, in the 5-bar mechanism model,
S(R) = {HL,HR,L} and S(HR) = {UR,BR}, whereas in the 3RRR mechanism
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model, S(HK) = {AK,UK,BK} for all K ∈ {A,B,C}.

Let q⟨α⟩Mn
denote the tuple of α-th order generalized variables used in the

description of motion of Mn. Such variables either come from the model of a
subsystem of Mn or are extra variables, defined exclusively for modeling this
system. Denote by q⟨α⟩Mn.Mn+1

the subtuple of q⟨α⟩Mn
constituted by the α-th order

generalized variables of the model Mn that come from the subsystem Mn+1,
i.e. q⟨α⟩Mn.Mn+1

= q⟨α⟩Mn+1
for all Mn+1 ∈ S(Mn). Also, let q⟨α⟩Mn.⊕

denote the subtuple
corresponding to extra α-th order generalized variables. Moreover, consider
that q̄⟨α⟩Mn

denote the tuple constituted by α-th order generalized constraint in-
variants of Mn. These invariants describe either internal constraints of some
subsystem of Mn or constraints among these subsystems, which might be re-
ferred to as external constraints. Thus, analogously, the subtuples q̄⟨α⟩Mn.Mn+1

are
be defined by q̄⟨α⟩Mn.Mn+1

= q̄⟨α⟩Mn+1
for all Mn+1 ∈ S(Mn), whereas the subtuple

q̄⟨α⟩Mn.⊕
is constituted by the external constraints of Mn. Summing up, it can be

stated that:

q⟨α⟩Mn
=
(
q⟨α⟩Mn.⊕

,
(
. . . , q⟨α⟩Mn+1

, . . .
))

∀Mn+1 ∈ S(Mn) (2.30)

q̄⟨α⟩Mn
=
(
q̄⟨α⟩Mn.⊕

,
(
. . . , q̄⟨α⟩Mn+1

, . . .
))

∀Mn+1 ∈ S(Mn) (2.31)

Suppose that the constraint order of Mn is equal to ν◦Mn and choose any
integer σ ≥ ν◦Mn . It is worth noting that the Jacobian matrix of the σ-th or-
der generalized constraint invariants with respect to the σ-th order generalized
variables can be written, apart from the rows corresponding to the external con-
straints, as a block-diagonal matrix. Indeed, consider for instance the model
of the 5-bar mechanism presented in Figure 2.7; the Jacobian AR can be ex-
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pressed as follows10:

⊕ L HR HL
⎡

⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

AR =

⊕ AR.⊕.⊕ AR.⊕.L AR.⊕.HR AR.⊕.HL q̄⟨σ⟩R.⊕

L 0 AL 0 0 q̄⟨σ⟩R.L

HR 0 0 AHR 0 q̄⟨σ⟩R.HR

HL 0 0 0 AHL q̄⟨σ⟩R.HL

q⟨σ⟩R.⊕ q⟨σ⟩R.L q⟨σ⟩R.HR
q⟨σ⟩R.HL

(2.32)

Moreover, AHK for K ∈ {R,L} can be expressed as follows:

⊕ UK BK
⎡

⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎦
AHK =

⊕ AHK.⊕.⊕ AHK.⊕.UK AHK.⊕.BK q̄⟨σ⟩HK.⊕

UK 0 AUK 0 q̄⟨σ⟩HK.UK

BK 0 0 ABK q̄⟨σ⟩HK.BK

q⟨σ⟩HK.⊕
q⟨σ⟩HK.UK

q⟨σ⟩HK.BK

(2.33)

Definition 2.9. Let X, Y and Z denote arbitrary matrices for which it is mean-
ingful to label the rows and columns. Such matrices will be shortly referred as
labeled matrices. Define W = (X, Y ) as the labeled matrix defined according
to the following rules:

(1) The sets of labels identifying the rows and columns ofW are the union of
the respective sets of labels of X and Y .

(2) Let i denote a row label and j a column label of W . The entry of W
corresponding to these labels is denoted by W.i .j . Assume that if either i
is not a row label or j is not a column label of X, then X.i .j = 0. Do an
analogous assumption for Y .

(3) Define W.i .j = X.i .j + Y.i .j .

It can be noticed that the “tuples of labeled matrices” can be interpreted as an
operator with the following properties:

10 In this example the row labels are presented both in the left and right sides of the matrix:
the left ones corresponds to the “shorthand forms”, while the right ones are the “full forms”,
which shown in this example only to clarify what the labels stand for. A similar consideration
can be done about the column labels which are shown above in “shorthand form” and below in
“full form”.
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• (X, Y ) = (Y ,X)

• (X, Y ,Z) = ((X, Y ),Z) = (X, (Y ,Z))

Theorem 2.10. Let Mn be a ν#

Mn
-DOF system in the n-th level of a hierarchical

structure representing the model of a multibody system whose constraint order
is equal to ν◦. Choose an integer σ ≥ ν◦ and consider that in a given time
instant t∗ the values of q⟪σ−1⟫Mn

(t∗) are known, do not violate any constraint ofMn

and do not correspond to a singular configuration of Mn. Adopt δq⟪σ−1⟫Mn
(t∗) =

0. Suppose that, if Mn has any subsystem, for every Mn+1 ∈ S(Mn) both
the Jacobian matrix AMn+1 of the σ-th order generalized constraint invariants
of Mn+1 with respect to its σ-th order generalized variables and an orthogonal
complement SMn+1 of this Jacobian are known. Define matrix RMn as follows:

RMn =
(
RMk .⊕.⊕,

(
. . . ,SMk+1, . . .

))
with RMk .⊕.⊕ = 1, ∀Mn+1 ∈ S(Mn) (2.34)

Let CMn be an orthogonal complement of BMn = AMn.⊕ RMn with AMn.⊕ rep-
resenting the Jacobian matrix of the σ-th order external generalized constraint
invariants ofMn, q̄⟨σ⟩Mn.⊕

, with respect to its σ-th order generalized variables, q⟨σ⟩Mn
.

It can be stated that a matrix SMn satisfying the conditions of Theorem 2.8 can
be obtained by the following expression:

SMn = RMn CMn (2.35)

Proof. It must be proved that the nullity ofBMn is equal to ν
#

Mn
and consequently,

the ranks of both CMn and SMn will be equal to ν
#

Mn
too. Consider, without loss of

generality, thatMn has κ subsystems denoted byM[ι]
n+1, with ι being an integer

index and 1 ≤ ι ≤ κ. In this case, AMn and RMn can be expressed by:

⊕ M
[1]
n+1 . . . M

[ι]
n+1 . . . M

[κ]
n+1

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

AMn =

⊕ AMn.⊕.⊕ A
Mn.⊕.M

[1]
n+1

. . . A
Mn.⊕.M

[ι]
n+1

. . . A
Mn.⊕.M

[κ]
n+1

M
[1]
n+1 0 A

M
[1]
n+1

. . . 0 . . . 0

...
...

... . . . ... . . . ...

M
[ι]
n+1 0 0 . . . A

M
[ι]
n+1

. . . 0

...
...

... . . . ... . . . ...

M
[κ]
n+1 0 0 . . . 0 . . . A

M
[κ]
n+1

(a)
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⊕ M
[1]
n+1 . . . M

[ι]
n+1 . . . M

[κ]
n+1

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

RMn =

⊕ 1 0 . . . 0 . . . 0

M
[1]
n+1 0 S

M
[1]
n+1

. . . 0 . . . 0

...
...

... . . . ... . . . ...

M
[ι]
n+1 0 0 . . . S

M
[ι]
n+1

. . . 0

...
...

... . . . ... . . . ...

M
[κ]
n+1 0 0 . . . 0 . . . S

M
[κ]
n+1

(b)

Considering that, by hypothesis S
M

[ι]
n+1

is an orthogonal complement of A
M

[ι]
n+1
,

then A
M

[ι]
n+1
S
M

[ι]
n+1

= 0. Thus:

⊕ M
[1]
n+1 . . . M

[κ]
n+1

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

AMn RMn =

⊕ AMn.⊕.⊕ A
Mn.⊕.M

[1]
n+1
S
M

[1]
n+1

. . . A
Mn.⊕.M

[κ]
n+1
S
M

[κ]
n+1

M
[1]
n+1 0 0 . . . 0

...
...

... . . . ...

M
[κ]
n+1 0 0 . . . 0

(c)

Therefore it can be stated that:

i. Every variation δq⟨σ⟩Mn
lying in the image of the linear transformation de-

fined by the matrix RMn is compatible with all the internal constraints of
Mn (once all the rows corresponding to internal constraint invariants in
AMn RMn are identically zero).

ii. Moreover, considering that RMn is a block-diagonal matrix and analyzing
the statement of Theorem 2.8, it can be noticed that RMn is a maximal
rank matrix with such property. Thus, every variation δq⟨σ⟩Mn

compatible
with all the constraints of Mn (both internal and external) must lie in the
image of RMn .

iii. If x lies in the kernel of AMn RMn then y = RMnx will lie in the kernel of
AMn . By the previous statement, the converse is also true, i.e., if y lies
in the kernel of AMn then there must exist a column-matrix x such that
y = RMnx . Thus, the dimension of the kernel of AMn (which, according to
Definition 2.5, is ν#

Mn
) is equal to the dimension of the kernel of AMn RMn .
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iv. As it can be noticed in equation (c), apart from the rows corresponding
to the external constraint invariants, all the remaing rows of AMn RMn are
identically zero. Then, the kernel of AMn RMn is identical to the kernel of
BMn = AMn.⊕ RMn .

Finally, if CMn is an orthogonal complement of BMn , its rank is equal to ν
#

Mn
and,

according to statement iii, SMn = RMn CMn will be a rank ν#

Mn
matrix satisfying

the conditions of Theorem 2.8 for the multibody system Mn.

In order to be able to use the same notation for multibody systems Mn that
have no subsystems (which are the leaves in the tree structures), it is enough to
define RMn = 1. In this case CMn will be defined as an orthogonal complement
of BMn = AMn.⊕ RMn = AMn.⊕ = AMn , and SMn = RMn CMn = CMn . It will
be shown in Chapter 4 that matrices CMn have a key role in the derivation of
the equations of motion of a multibody system when the proposed modular
modeling methodology is used.

Example 2.7. Consider the 5-bar mechanism (P) presented in Figure 2.7. In
order to model it according to the hierarchical structure shown in the tree dia-
gram, it is first of all necessary to describe the motions of the subsystems AL,
AR,L, UL, UR,BL andBR, which are the leaves of the tree. For this system, a
left-right symmetry is supposed, i.e. subsystemsAL andAR, for instance, have
identical mathematical models, which will simply be denoted by AK, the same
happening to the pair of subsystems UL and UR (model UK), as well as to BL

and BR (model BK).

Actuators AL and AR. Let ωK denote the angular speed of the rotation motion
of the axis of the actuator AK and iK denote the electrical current in the
armature circuit of this actuator. Adopt q⟨1⟩AK

= (ωK, iK). No generalized
constraint invariants are needed for this selection of variables.

Bars UL and UR. Following the analysis shown in Example 2.6, the positions of
the centers of the two revolute joints defined byUK andAK and byUK and
BK are enough to fully specify any of its configurations. However, since
the former center remains fixed with respect to the mechanism base, only
the Cartesian coordinates of the latter are enough as generalized coor-
dinates of UK, i.e. q⟨0⟩UK

= (pUK,2,x, pUK,2,y). Also, following Example 2.6, it
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can be stated that if q⟨1⟩UK
= (vUK,x, vUK,y,ωUK,z, ṗUK,2,x, ṗUK,2,y), then:

q̄⟨1⟩UK
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vUK,x + ωUK,zγ̂UK(pUK,2,y − p̄UK,1,y)

vUK,y − ωUK,zγ̂UK(pUK,2,x − p̄UK,1,x)

vUK,x − ωUK,z(1− γ̂UK)(pUK,2,y − p̄UK,1,y)− ṗUK,2,x

vUK,y + ωUK,z(1− γ̂UK)(pUK,2,x − p̄UK,1,x)− ṗUK,2,y

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(a)

ωUK,z⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

SUK = CUK =

vUK,x −γ̂UK(pUK,2,y − p̄UK,1,y)

vUK,y +γ̂UK(pUK,2,x − p̄UK,1,x)

ωUK,z 1

ṗUK,2,x −(pUK,2,y − p̄UK,1,y)

ṗUK,2,y +(pUK,2,x − p̄UK,1,x)

(b)

Bars BL and BR. Again, the models for these subsystems are based on Ex-
ample 2.6. Two nodes, coinciding with the corresponding centres of the
revolute joints, are chosen. Thus, q⟨0⟩BK

= (pBK,1,x, pBK,1,y, pBK,2,x, pBK,2,y),
q⟨1⟩BK

= (vBK,x, vBK,y,ωBK,z, ṗBK,1,x, ṗBK,1,y, ṗBK,2,x, ṗBK,2,y) and:

q̄⟨1⟩BK
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vBK,x + ωBK,zγ̂BK(pBK,2,y − pBK,1,y)− ṗBK,1,x

vBK,y − ωBK,zγ̂BK(pBK,2,x − pBK,1,x)− ṗBK,1,y

vBK,x − ωBK,z (1− γ̂BK) (pBK,2,y − pBK,1,y)− ṗBK,2,x

vBK,y + ωBK,z (1− γ̂BK) (pBK,2,x − pBK,1,x)− ṗBK,2,y

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(c)

vBK,x vBK,y ωBK,z⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

SBK = CBK =

vBK,x 1 0 0

vBK,x 0 1 0

ωBK,z 0 0 1

ṗBK,1,x 1 0 +γ̂BK(pBK,2,y − pBK,1,y)

ṗBK,1,y 0 1 −γ̂BK(pBK,2,x − pBK,1,x)

ṗBK,2,x 1 0 − (1− γ̂BK) (pBK,2,y − pBK,1,y)

ṗBK,2,y 0 1 + (1− γ̂BK) (pBK,2,x − pBK,1,x)

(d)
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Payload L. The payload will be modelled as a single particle, being two Carte-
sian coordinates sufficient to describe its configuration. Thus, adopt:
q⟨0⟩L = (x, y ) and q⟨1⟩L = (ẋ , ẏ ). No generalized constraint invariants are
needed for this selection of variables.

Kinematic chainsHL andHR. A kinematic chainHK is constituted by two sub-
systems, UK and BK. In the modeling of this system, it is convenient to
define two extra generalized coordinates: θK representing the angle be-
tween the longitudinal direction of the bar UK and the horizontal line of
the base of the mechanism and φK representing the angle between the
longitudinal directions of the bars BK and this same horizontal, both mea-
sured in the counterclockwise direction (see Figure 2.9). Thus, adopt
q⟨0⟩HK.⊕

= (θK,φK) and q⟨1⟩HK.⊕
= (θ̇K, φ̇K). The invariants associated to the

external constraints in this system are given by:

q̄⟨1⟩HK.⊕
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ṗBK,1,x − ṗUK,2,x

ṗBK,1,y − ṗUK,2,y

θ̇K − ωUK,z

φ̇K − ωBK,z

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(e)

Denoting by āUK and āBK the lengths of bars UK and BK, it can be stated
that, using the new coordinates defined:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pBK,1,x = pUK,2,x = p̄UK,1,x + āUK cos(θK)

pBK,1,y = pUK,2,y = p̄UK,1,y + āUK sin(θK)

pBK,2,x = p̄UK,1,x + āUK cos(θK) + āBK cos(φK)

pBK,2,y = p̄UK,1,y + āUK sin(θK) + āBK sin(φK)

(f)
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Thus, expressions for AHK.⊕ RHK and and CHK are given by:

vBK,x vBK,y ωBK,z ωUK,z θ̇K φ̇K
⎡

⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

BHK =

1 0 0 0 −1 1 0

2 0 0 −1 0 0 1

3 1 0 sφK āBK γ̂BK sθK āUK 0 0

4 0 1 −cφK āBK γ̂BK −cθK āUK 0 0

(h)

θ̇K φ̇K
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

CHK =

vBK,x −sθK āUK −sφK āBK γ̂BK

vBK,y cθK āUK cφK āBK γ̂BK

ωBK,z 0 1

ωUK,z 1 0

θ̇K 1 0

φ̇K 0 1

(i)

✓L

�L

�

�R

✓R

Figure 2.9: Extra generalized coordinates defined in the model of the 5-bar
mechanism.

Unactuated 5-bar mechanism R. The unactuated 5-bar mechanism R is
constituted by the subsystemsHL,HR andL. It is convenient to define an
extra generalized coordinate χ representing the angle between the lon-
gitudinal directions of BL and BR, measured in the counterclockwise di-
rection (ORSINO; COUTINHO; HESS-COELHO, 2016). Thus, adopt q⟨0⟩R.⊕ = (χ)

and q⟨1⟩R.⊕ = (χ̇). The invariants associated to the external constraints in



48

this system are given by:

q̄⟨1⟩R.⊕ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ṗBL,2,x − ẋ

ṗBL,2,y − ẏ

ṗBR,2,x − ẋ

ṗBR,2,y − ẏ

χ̇− (ωBR,z − ωBL,z)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(j)

Noting that χ = φR − φL, it can be stated that:

ẋ ẏ χ̇ θ̇L θ̇R φ̇L φ̇R
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

BR =

1 0 0 1 0 0 1 −1

2 −1 0 0 −sθL āUL 0 −sφL āBL 0

3 0 −1 0 cθL āUL 0 cφL āBL 0

4 −1 0 0 0 −sθR āUR 0 −sφR āBR

5 0 −1 0 0 cθR āUR 0 cφR āBR

(k)

θ̇L θ̇R
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

CR =

ẋ − sθL−φL sφR āUL
sχ

sφL sθR−φR āUR
sχ

ẏ
cφR sθL−φL āUL

sχ
− cφL sθR−φR āUR

sχ

χ̇ −(sθL−φR āBR−sθL−φL āBL)āUL
sχāBL āBR

−(sθR−φL āBL−sθR−φR āBR)āUR
sχāBL āBR

θ̇L 1 0

θ̇R 0 1

φ̇L
sθL−φR āUL
sχāBL

− sθR−φR āUR
sχāBL

φ̇R
sθL−φL āUL
sχāBR

− sθR−φL āUR
sχāBR

(l)

Actuated 5-bar mechanism P. System P is constituted by the subsystems
AL, AR and R. No extra generalized variables are needed in this final
step. Moreover, the invariants associated to the external constraints in
this system are given by:

q̄⟨1⟩P.⊕ =

⎡

⎢⎢⎣
θ̇R − ωR/η̄R

θ̇L − ωL/η̄L

⎤

⎥⎥⎦ (m)
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Therefore, it can be stated that:

iL iR θ̇L θ̇R
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

CP =

iL 1 0 0 0

iR 0 1 0 0

ωL 0 0 η̄L 0

ωR 0 0 0 η̄R

θ̇L 0 0 1 0

θ̇R 0 0 0 1

(n)

In Chapter 4, it will be shown how the matrices C can be used in a recursive
algorithm for obtaining the equations of motion of this system.
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3 Multibody System Dynamics − a
comparative literature review

A general comparison among methodologies for obtaining the equations of
motion of multibody systems points out that they can differ in two fundamental
points:

• The approach for including constraint effects in the derivations.

• The techniques used to describe the action of external forces and inertial
effects.

The principles underlying such methodologies, however, are just two: they are
based either on the principles of Newtonian Mechanics (Newton’s laws of mo-
tion) or on the fundamental principles of Analytical Mechanics.

The essential difference between the Newtonian and Analytical Mechanics
approaches is the concept of force. In the former, forces have a key role on
describing the interaction between material bodies (even the constraint effects
are modeled as forces), while in the latter, the generalized forces are supposed
to be methodological intermediate in the relation between the motion of a body
and its interaction with the physical environment as a function of the instanta-
neous state of the system (JAMMER, 2012; MAUGIN, 2013). In Analytical Me-
chanics, concepts of work and energy are more important than the concept of
force, not being necessary (although sometimes convenient) to use forces for
describing the effects of constraints on the dynamics of a multibody system.

3.1 Newton-Euler formalism

Newton-Euler formalism is one of the most traditional approaches used in
the derivation of equations of motion of multi-rigid-body systems. The so called
Newton-Euler equations are based on Newton’s laws of motion and on the de-
scriptions of translation and rotations of a rigid body originally developed by
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Euler. The first fields of Multibody System Dynamics on which this formal-
ism was applied were on mechanism theory, gyroscopes and biomechanics
(SCHIEHLEN, 1997).

The main advantage of Newton-Euler equations is that, independently of
the geometry, inertia or constraints of motion of a rigid body, its equations of
motion will always have the same form. Even the choice of variables of motion
will hardly be influenced by any of these factors. Indeed, the configuration of a
rigid body is either described by the coordinates of a finite number of points of
the body1 or by the coordinates of a single point along with three Euler Angles or
four quaternion parameters. To complete the description of the state of a rigid
body it is enough to specify the components of the velocity of one of its points
along with the components of the angular velocity of the body2. Therefore,
in order to obtain the mathematical model of a rigid body, the following it is
necessary to derive:

• Kinematic equations expressing time derivatives of the generalized coor-
dinates in terms of the chosen quasi-velocities.

• Six dynamic equations of motion, three of them relating the resultant of
the force system applied to the body to its instantaneous translation and
the other three relating the resultant torque of this force system to the
instantaneous rotation of the body.

In order to describe motion constraints in Newton-Euler formalism, it is
necessary to introduce one, a priori unknown, force or torque component for
each independent first order generalized constraint invariant. Whenever the
described constraint is related to a pair of rigid bodies within the studied sys-
tem, these unknown constraint forces or torques must constitute pairs of action
and reaction between the involved bodies. No modifications on the form of
the dynamic equations of motion due to constraints are performed, however,
i.e. the topology of motion does not require further than including associated
constraint forces and torques when necessary.

Such features of Newton-Euler formalism explain its relative success in
the development of several algorithms for deriving the equations of motion of

1 At least two distinct points are required in the case of a plane motion and at least three
non-collinear points are needed in the case of a tridimensional motion.

2 In the case of a planemotion, two components of velocity (parallel to the plane) and a single
component of angular velocity (orthogonal to the plane) are enough; for a general tridimensional
motion, three components of velocity and three of angular velocity are required. Once the
Newton’s laws of motion are applied, velocities and angular velocities must be measured with
respect to an inertial reference frame.
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multi-rigid-body systems, including the ones used including many free and pro-
prietary software implementations (PAUL, 1975). Among the several applica-
tions of Newton-Euler methodology to modeling and simulation of multibody
systems, the recursive algorithms stand out.

This Section starts with a brief discussion on Newton’s laws of motion in
Subsection 3.1.1. Newton-Euler equations of motion for a rigid body are pre-
sented in Subsection 3.1.2. Applications of the Screw Theory to Newton-Euler
formalism are discussed in Subsection 3.1.3 and, finally, some comments on
the main recursive algorithms based on this formalism are presented in Sub-
section 3.1.4.

3.1.1 Newton’s laws of motion

Newton’s laws of motion can be understood as the first formalization of
Classical Mechanics providing general relations between the motion of a body
and the set of forces acting on it.

Before stating the three fundamental laws of motion it is important to men-
tion two definitions presented in “Philosophiae Naturalis Principia Mathematica”
(JAMMER, 2012, p. 119 - 121):

• The vis insita, or the innate force of matter is a power of resisting by which
every body, as much in it lies, continues in its present state, whether it be
of rest, or of moving uniformly forwards in a right line.

• The vis impressa, or the impressed force is an action exerted upon a body,
in order to change its state, either of rest, or of uniform motion in a right
line.

From these definitions, along with some others, Newton set out three pos-
tulates, known as Newton’s laws of motion, which were originally stated as
follows (JAMMER, 2012, p. 123):

Law I Every body continues in its state of rest, or of uniform motion in a right
line, unless it is compelled to change that state by force impressed upon
it.

Law II The change of motion is proportional to the motive force impressed; and
is made in the direction of the right line in which that force is impressed.
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Law III To every action there is always opposed an equal reaction; or, the mu-
tual actions of two bodies upon each other are always equal, and directed
to contrary parts.

In order to correctly interpret these laws of motion two notions are funda-
mental: the concept of particle and the concept of inertial reference frame. Fol-
lowing the remarks in the beginning of Chapter 2, a particle can be conceived
as an material body of infinitesimal volume and finite mass that can be repre-
sented by a single point in space. Whenever Newton mentions “body”, it should
be understood as a particle. It does mean any restriction to the application of
the laws of motion, on condition that Integral Calculus is applied to generalize
their application to extensive bodies. This, however, requires the adoption of
the concept of density, which is a continuous function defined within the do-
main of the material body and represents, in each point, the limit of the mass to
volume ratio in open neighborhoods of this point. In this case, it is possible to
consider that in infinitesimal portions of an extensive body, the mass is propor-
tional to the volume; moreover, if these portions are sufficiently small, they can
be conceived as particles, being possible to apply the Newton’s laws of motion
to them.

Concerning the reference frames adopted in descriptions of motion, an spe-
cial class named inertial reference frames is characterized by Law I: if in a given
reference frame a particle, without any force impressed upon it, remains in rest
or describes an uniform motion along a straight line, this reference frame is
inertial. Moreover, due to Galilean relativity, it can be stated that any reference
frame performing a rectilinear translation with rectilinear translation with respect
to an inertial reference frame is also a reference frame. Law II is only true when-
ever the “change of motion” (which should be understood as the time derivative
of linear momentum) of a “body” (particle with constant mass) is measured with
respect to an inertial reference frame.

The linear momentum of a particle with constant mass is defined by the
scalar multiplication of the velocity vector of a particle by its mass. Denoting
by f the impressed force acting in a particle, by m̄ its mass (constant) and by v

the velocity of this particle with respect to an inertial reference frame N, Law II
can be expressed by the following equation:

f =
d (m̄ v)

dt
= m̄ v̇ (3.1)

According to Law I, if there is no force impressed upon a particle it remain in
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a state of rest or move along a straight line with constant velocity with respect
to an inertial reference frame. Consider, however, a particle constrained to
move in a curvilinear trajectory (measured with respect to an inertial reference
frame). In order not to violate neither the laws of motion nor the constraints
imposed to the particle, the corresponding motion constraints must be asso-
ciated with forces, generally called constraint forces, that must be compatible
with the observed motion. In general, whenever the modeling methodology is
directly based on Newton’s laws of motion, constraint forces corresponding to
each motion constraint must be introduced, which does not necessarily happen
in Analytical Mechanics based approaches.

3.1.2 Newton-Euler equations

Newton-Euler equations represent the most classical formulation to derive
equations of motion of multibody systems constituted by ideal rigid bodies. The
derivation of such equations come from the application of Integral Calculus to
Newton’s laws of motion.

LetN denote an inertial reference frame andB an ideal rigid body with finite
extension and constant mass. Let v denote the velocity of an arbitrary point of
B with respect to N. It can be stated that the application of Newton’s laws
of motion to body B leads to the following equations, the first representing an
integral form of Law II and the second an integral of the moments (with respect
to the center of mass of B) of the respective physical quantities3:

∫

B

µv̇ dB =

∫

B

γ dB+

∫

ðB
σ dðB +

∑

k

fk (3.2)
∫

B

r× µv̇ dB =

∫

B

r× γ dB+

∫

ðB
r× σ dðB +

∑

k

rk × fk (3.3)

In these equations the following notation is used:

• µ represents the density function defined within the domain of body B;

• γ represents the field forces (forces per unity of volume) of B, which must
be an integrable function defined within the domain of B.

3 Actually, the first equation involves the use of both Law II and the weak form of Law III
(once internal forces within the rigid body form pairs of action and reaction that cancel when
added up), while in the second one, Law II is used along with the strong form of Law III which
additionally imposes that the pairs of action and reaction act along the straight line defined by
the points in which these forces act (GOLDSTEIN; POOLE JR.; SAFKO, 2002).
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• σ represents the surface forces (forces per unity of area) of B, which
must be an integral function defined within the the boundary of B, which
is denoted by ðB;

• fk represent a finite number of concentrated forces applied in some points
of B;

• r is a vector that represents the position of an arbitrary point of B with
respect to the center of mass of this body;

• rk is defined analogously for the special points where the respective
forces fk are applied.

Once r represents the position vector from the center of mass of B, and
considering that µ is independent of time (and consequently, µ̇ = 0) then, by
the definition of center of mass (TENENBAUM, 2004, p. 409):

∫

B

µr dB =

∫

B

µṙ dB =

∫

B

µr̈ dB = 0 (3.4)

Define also the mass of B as m̄ =
∫
B
µ dB and the inertia tensor of B with

respect to its own center of mass, denoted by Ī⋆, as the second order sym-
metric tensor satisfying the following identities for any vectors x and y (KANE;
LEVINSON, 1985; TENENBAUM, 2004):

Ī⋆ · x =

∫

B

r× (x× r)µ dB =

∫

B

((r · r)x− (x · r)r)µ dB (3.5)

x · (Ī⋆ · y) =
∫

B

((x · y)(r · r)− (x · r)(y · r))µ dB = y · (Ī⋆ · x) (3.6)

Moreover, let v⋆ denote the velocity of the center of mass of B with respect to
N. Then, clearly, v = v⋆ + ṙ. Furthermore, if ω denotes the angular velocity of
B with respect to N, then ṙ = ω× r and r̈ = ω̇× r + ω× (ω× r). Thus, it can
be stated that:

∫

B

µv̇ dB =

∫

B

µ(r̈+ v̇⋆) dB =

∫

B

µr̈ dB+ v̇⋆
∫

B

µ dB = m̄ v̇⋆ (3.7)
∫

B

r× µv̇ dB =

∫

B

r× µ(r̈+ v̇⋆) dB

=

∫

B

r× µr̈ dB− v̇⋆ ×
∫

B

µr dB

=

∫

B

r× (µω× (ω× r)) dB+

∫

B

r× (µ ω̇× r) dB

= ω×
(∫

B

r× (ω× r)µ dB

)
+

∫

B

r× (ω̇× r)µ dB

= ω× (Ī⋆ · ω) + Ī⋆ · ω̇ (3.8)
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Finally, define the resultant force f and the resultant torque t⋆ acting in B as
follows:

f =

∫

B

γ dB+

∫

ðB
σ dðB +

∑

k

fk (3.9)

t⋆ =

∫

B

r× γ dB+

∫

ðB
r× σ dðB +

∑

k

rk × fk (3.10)

In this case, equations (3.2, 3.3) can be rewritten as follows:

m̄ v̇⋆ = f (3.11)

Ī⋆ · ω̇ = t⋆ − ω× (Ī⋆ · ω) (3.12)

It is common to express equations (3.11, 3.12) in terms of the linear and
angular momenta of B. The (linear) momentum of B can be defined by:

p =

∫

B

µv dB = m̄ v⋆ (3.13)

Also, let r |p denote the position vector of an arbitrary point of B with respect
to a given point p. The angular momentum of B with respect to the point p is
given by (TENENBAUM, 2004):

h |p =

∫

B

r |p × µv dB = Ī⋆ · ω+ p× rp|b⋆ (3.14)

It can be stated that, equations (3.11, 3.12) are equivalent to the following ones,
with vp denoting the velocity of point p with respect to the inertial reference
frame N and with t |p denoting the resultant torque with respect to the point p:

ṗ = f (3.15)

ḣ |p = t |p + p× vp (3.16)

Actually, equations (3.15, 3.16) can be understood as generalizations
of (3.11, 3.12). Note also that p is a fixed point or if vp is parallel to p, equa-
tion (3.16) simplifies to the following form: ḣ |p = t |p. The latter condition in-
cludes the case in which p coincides with the center of mass of B; denoting the
corresponding angular momentum by h⋆, it can be stated that h⋆ = Ī⋆ · ω and
ḣ⋆ = t⋆.

In order to obtain the so called Newton-Euler equations, it is necessary to
choose coordinate systems to obtain components of the vectors involved in
equations (3.11, 3.12). Let E′ and E′′ denote the coordinate systems chosen
to decompose the vectors in these equations, respectively. The Newton-Euler
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equations of motion of B are given by:
⎡

⎢⎣
m̄ 1 0

0
[
Ī⋆
]
E′′ |E′′

⎤

⎥⎦

⎡

⎢⎣
[v̇⋆]E′

[ω̇]E′′

⎤

⎥⎦ =

⎡

⎢⎣
[f ]E′

[t⋆]E′′ − [ω]×E′′ |E′′
[
Ī⋆
]
E′′ |E′′

[ω]E′′

⎤

⎥⎦ (3.17)

In this equation, [ω]×E′′ |E′′ stands for the skew-symmetric matrix representation
of the matrix-column [ω]E′′ , i.e.:

[ω]×E′′ =

⎡

⎢⎢⎢⎢⎣

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤

⎥⎥⎥⎥⎦
⇔ [ω]E′′ |E′′ =

⎡

⎢⎢⎢⎢⎣

ωx

ωy

ωz

⎤

⎥⎥⎥⎥⎦
(3.18)

When an arbitrary coordinate system is adopted, the components of the time
derivative of a vector are generally not equal to the time derivatives of the com-
ponents of this vector. Let N and B denote a coordinate systems rigidly attached
to N and B, respectively, and consider that the origin of the latter one coincides
with the center of mass of B. It can be stated that [v̇⋆]N and [ω̇]N are equal to
the time derivatives of [v⋆]N and [ω]N, respectively4. Thus, it is useful to adopt
E′ = N. Moreover, [ω̇]B is equal to the time derivative of [ω]B. Once the compo-
nents of the inertia tensor of B with respect to a coordinate system fixed to the
body are invariants, it is usual do adopt E′′ = B. Therefore, the typical form of
Newton-Euler equations for an arbitrary rigid body B is the following:

⎡

⎢⎣
m̄ 1 0

0
[
Ī⋆
]
B|B

⎤

⎥⎦

⎡

⎢⎣
[v̇⋆]N

[ω̇]B

⎤

⎥⎦ =

⎡

⎢⎣
[f ]N

[t⋆]B − [ω]×B|B
[
Ī⋆
]
B|B

[ω]B

⎤

⎥⎦ (3.19)

A relevant particular case of equation (3.19) occurs when the axis of the coor-
dinate system B coincide with the so called principal axes of inertia of B, i.e.,
when

[
Ī⋆
]
B|B

corresponds to a diagonal matrix. In this case, the Newton-Euler

4 The following identity stand for other coordinate systems than N, when z = v or z = ω,
with E denoting the reference frame to which the coordinate system E is attached:

[
d z

dt

]

E

=
d

dt
[z]E + [ωE|N]×E|E [z]E
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equations can be expressed in the following form5:

v̇ ⋆x =
fx
m̄

ω̇x =
t⋆x + (Īy − Īz)ωyωz

Īx

v̇ ⋆y =
fy
m̄

ω̇y =
t⋆y + (Īz − Īx)ωzωx

Īy

v̇ ⋆z =
fz
m̄

ω̇z =
t⋆z + (Īx − Īy)ωxωy

Īz

(3.20)

3.1.3 Applications of the Screw Theory

Screw theory, initially formalized by Sir Robert Stawell Ball at the end of the
nineteenth century, comprises several mathematical tools for the description of
instantaneous kinematics of rigid bodies and force systems (in which the forces
can be conceived as sliding vectors) by geometrical entities called screws. A
screw is an axis associated to a (real) scalar called pitch (BALL, 1998). An
infinite pitch screw is an element that represents a direction in space and is not
bound to any particular line.

In order to describe the instantaneous kinematics of rigid body motion it is
sufficient a vector ω representing the angular velocity of the rigid body (with
respect to a reference frame E), a point p moving along with this body and the
velocity of this point v (with respect to E). Thus, a 3-tuple (ω,v, p) is sufficient
to describe the instantaneous kinematics of any rigid body motion. Another 3-
tuple (ω′,v′, p′) describes the same rigid body motion described by (ω,v, p) if
and only if:

⎧
⎪⎨

⎪⎩

ω′ = ω

v′ = v + ω× rp′ |p

(3.21)

The equivalence class of 3-tuples that describe the same rigid body motion is
called twist. The twist associated to the equivalence class defined by (ω,v, p)

is denoted by v = !(ω,v, p)". It can be proved that, unless ω is a zero vector,
there exists a point h (moving along with the rigid body) and a scalar η such that
!(ω,v, p)" = !(ω, ηω, h)". Moreover, if h′ is any point such that rh′ |h is parallel to
ω, then !(ω, ηω, h)" = !(ω, ηω, h′)". Therefore, any twist with non-zero ω can
be represented by a screw passing through h, parallel to ω and whose pitch is
equal to η. On the other hand, !(0,v, p)" = !(0,v, p′)" for any points p and p′.

5 The overbar notation is used just to reinforce that the corresponding parameters are con-
stants.
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Thus, any twist with ω = 0 can be represented by an infinite pitch screw whose
direction is defined by v.

Analogously, in order to fully describe a force system in which forces can
be represented by sliding vectors (i.e., forces are bounded to a line of action
but not to a specific point of this line), it is enough to specify the resultant force
f , to choose a point p and to obtain the resultant torque t with respect to the
point p. A 3-tuple (f , t, p) fully describes a force system. Moreover, the 3-tuples
(f , t, p) and (f ′, t′, p′) describe the same force system if and only if:

⎧
⎪⎨

⎪⎩

f ′ = f

t′ = t+ f × rp′ |p

(3.22)

The equivalence class of 3-tuples that describe the same force system is called
wrench. The wrench associated to the equivalence class defined by (f , t, p)

is denoted by f∗ = !(f , t, p)". Analogously to the cases presented above for
twists, any wrench with non-zero resultant force can be represented by a finite
pitch screw and any wrench with zero resultant force can be represented by an
infinite pitch screw whose direction is defined by t.

It can be stated that twists and wrenches constitute linear spaces denoted
respectively by M6 and F6 (FEATHERSTONE, 2008). Let E = (e, ê1, ê2, ê3) be a
coordinate system rigidly attached to a reference frame E and let B denote a
rigid body. Denote by ω the angular velocity of B with respect to E and by v the
velocity of a point that moves along with B and instantly coincides with e. The
instantaneous kinematics of B can be described by the twist v = !(ω,v, e)".
Also, denote by f the resultant of a force system acting in B and by t the re-
sultant torque of this system with respect to point e. This force system can be
described by the wrench f∗ = !(f , t, e)". Define the following unit screws:

ê1 = ê∗4 = !(ê1,0, e)" ê4 = ê∗1 = !(0, ê1, e)"

ê2 = ê∗5 = !(ê2,0, e)" ê5 = ê∗2 = !(0, ê2, e)"

ê3 = ê∗6 = !(ê3,0, e)" ê6 = ê∗3 = !(0, ê3, e)"

(3.23)

Considering that ω = ωx ê1 + ωy ê2 + ωz ê3, v = vx ê1 + vy ê2 + vz ê3, f = fx ê1 +
fy ê2 + fz ê3, t = tx ê1 + ty ê2 + tz ê3, it can be stated that:

v = ωx ê1 + ωy ê2 + ωz ê3 + vx ê4 + vy ê5 + vz ê6 (3.24)

f∗ = tx ê∗1 + ty ê∗2 + tz ê∗3 + fx ê∗4 + fy ê∗5 + fz ê∗6 (3.25)
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Thus, the so called Plücker coordinates of v and f∗ in E are given by:

[v]E = (ωx,ωy,ωz, vx, vy, vz) = ([ω]E , [v]E) (3.26)

[f∗]E = (tx, ty, tz, fx, fy, fz) = ([t]E , [f ]E) (3.27)

Moreover,M6 and F6 are can be conceived as dual spaces, with êi · ê∗j = ê∗j · êi =
δi j (δi j representing the Kronecker delta, i.e., its value is equal to 1 if and only if
i = j , otherwise its value is 0). Thus,

f∗ · v = t · ω+ f · v (3.28)

Note that f∗ · v represents the power delivered by the force system represented
by f∗ when it is applied to a rigid body whose instantaneous motion is given by
v.

Finally, let 1 denote the identity tensor ofM6×M6 and 1∗ denote the identity
tensor of F6 × F6.

Let E = (e, ê1, ê2, ê3) and E′ = (e′, ê′1, ê
′
2, ê

′
3) be two coordinate systems

rigidly attached to a reference frame E. It can be stated that (FEATHERSTONE,
2008; SELIG, 2005):

[1]E|E′ =

⎡

⎢⎣
[1]E|E′ 0

[re′ |e]
×
E [1]E|E′ [1]E|E′

⎤

⎥⎦ (3.29)

[1∗]E|E′ =

⎡

⎢⎣
[1]E|E′ [re′ |e]

×
E [1]E|E′

0 [1]E|E′

⎤

⎥⎦ (3.30)

It can also be noticed that [1∗]TE|E′ [1]E|E′ = 1.

Let N be an inertial reference frame and N = (o, n̂x, n̂y, n̂z) be a coordinate
system rigidly attached to it. Consider that B is a rigid body and that B and B⋆

are two coordinate systems moving along with B such that the former instantly
coincides with N and the latter has its origin in b⋆, the centre of mass of B.
Suppose that the instantaneous kinematics of B is described by the twist v =

!(ω,v⋆, b⋆)" and the force system acting on B is described by the wrench f =

!(f , t⋆, b⋆)". In this case, the Newton-Euler equations for B can be expressed
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as follows, see equation (3.19):
⎡

⎢⎣
[ω]×B⋆ [v⋆]×B⋆

0 [ω]×B⋆

⎤

⎥⎦

⎡

⎢⎣

[
Ī⋆
]
B⋆

0

0 m̄ 1

⎤

⎥⎦

⎡

⎢⎣
[ω]B⋆

[v⋆]B⋆

⎤

⎥⎦

+

⎡

⎢⎣

[
Ī⋆
]
B⋆ |B⋆

0

0 m̄ 1

⎤

⎥⎦

⎡

⎢⎣
[ω̇]B⋆

[v̇⋆]B⋆ − [ω]×B⋆ [v
⋆]B⋆

⎤

⎥⎦ =

⎡

⎢⎣
[t⋆]B⋆

[f ]B⋆

⎤

⎥⎦ (3.31)

Adopt the following notations:

[v]B⋆ =

⎡

⎢⎣
[ω]B⋆

[v⋆]B⋆

⎤

⎥⎦ (3.32)

˙[v]B⋆ =
d

dt
[v]B⋆ =

⎡

⎢⎣
[ω̇]B⋆

[v̇⋆]B⋆ − [ω]×B⋆ [v
⋆]B⋆

⎤

⎥⎦ (3.33)

[v]×∗B⋆ |B⋆ =

⎡

⎢⎣
[ω]×B⋆ [v⋆]×B⋆

0 [ω]×B⋆

⎤

⎥⎦ (3.34)

[f∗]B⋆ =

⎡

⎢⎣
[t⋆]B⋆

[f ]B⋆

⎤

⎥⎦ (3.35)

[
Ī
]
B⋆ |B⋆

=

⎡

⎢⎣

[
Ī⋆
]
B⋆ |B⋆

0

0 m̄ 1

⎤

⎥⎦ (3.36)

With this new notation, equation (3.31) can be rewritten in the following form:

[
Ī
]
B⋆ |B⋆

˙[v]B⋆ + [v]×∗B⋆ |B⋆
[
Ī
]
B⋆ |B⋆

[v]B⋆ = [f∗]B⋆ (3.37)

It can be proved that the following identities are valid (FEATHERSTONE, 2008):

[v]B⋆ = [1]B⋆ |B [v]B (3.38)
˙[v]B⋆ = [1]B⋆ |B

˙[v]B (3.39)

[v]×∗B⋆ |B⋆ = [1∗]B⋆ |B [v]×∗B|B [1]TB|B⋆ = [1∗]B⋆ |B [v]×∗B|B [1∗]B|B⋆ (3.40)

Applying these identities to equation (3.37), it can be stated that:

[
Ī
]
B⋆

[1]B⋆ |B
˙[v]B + [1∗]B⋆ |B [v]×∗B|B [1∗]B|B⋆

[
Ī
]
B⋆

[1]B⋆ |B [v]B = [1∗]B⋆ |B [f
∗]B (3.41)

(
[1∗]B|B⋆

[
Ī
]
B⋆

[1]B⋆ |B
) ˙[v]B + [v]×∗B|B

(
[1∗]B|B⋆

[
Ī
]
B⋆

[1]B⋆ |B
)
[v]B = [f∗]B (3.42)

Finally, taking [I]B = [1∗]B|B⋆
[
Ī
]
B⋆

[1]B⋆ |B, it can be stated that the Newton-Euler
equations of motion of B expressed in terms of twists and wrenches are given
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by the following expression:

[
Ī
]
B
˙[v]B + [v]×∗B|B

[
Ī
]
B
[v]B = [f∗]B (3.43)

By hypothesis, B coincides instantaneously with N; then, [ω]×B = [ω]×N = ˙[1]N|B.
Therefore, it can be stated that:

[v]B = [v]N = (ωx,ωy,ωz, vx, vy, vz) (3.44)
˙[v]B =

˙[v]N = (ω̇x, ω̇y, ω̇z, v̇x, v̇y, v̇z) (3.45)

[f∗]B = [f∗]N = (tx, ty, tz, fx, fy, fz) (3.46)

Taking these identities into consideration, equation (3.43) can be understood
as a system of first order ordinary differential equations whose variables are the
quasi-velocities defined as the Plücker coordinates of the twists that describe
the instantaneous kinematics of the motion of the rigid body B with respect to
an inertial reference frame N.

3.1.4 Recursive algorithms based on Newton-Euler formal-
ism

The main recursive algorithm for inverse dynamics problems (in which it is
desired to determine the forces and torques imposed by actuators for a multi-
body system to perform some specific motion), is the Recursive Newton-Euler
Algorithm, RNEA (FEATHERSTONE, 2008; FEATHERSTONE; ORIN, 2000; KHAN et

al., 2005a; CRAIG, 2005; TSAI, 1999). In this algorithm multi-rigid-body systems
are conceived as kinematic chains that can be represented by graphs in which
each node corresponds to a body and each edge stands for a joint. The nodes
are enumerated such that node 0 represents the inertial reference frame cho-
sen for the modeling and that each of the remaining nodes has an index num-
ber greater than its parents in the extension tree. For systems constituted by
open loop kinematic chains only, the velocities and accelerations of relevant
points and the angular velocities and angular accelerations can be obtained
recursively in ascending order of the nodal indexes. From Newton-Euler equa-
tions, these informations can be used to obtain the force systems that must be
applied to the leaves of the extension tree. Then, recursively, in descending or-
der of nodal indexes, the corresponding force systems can be obtained for the
corresponding parental bodies using the corresponding Newton-Euler equa-
tions. The projections of these force systems in the directions of the axes of
the actuators determine the corresponding torque and force components. The
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remaining unknown components calculated by this algorithm correspond to the
constraint forces and torques. On the other hand, whenever closed loop kine-
matic chains are involved, some of the edges of the graph can not be included
in an extension tree of it, being necessary to include a loop-closing algorithm
involving both the corresponding constraint invariants and the respective forces
and torques associated to these edges (FEATHERSTONE, 2008).

For the forward dynamics problems, in which the objective is to describe
the motion of a system when some external force systems are applied to it
(including forces and torques from actuators and due to disturbances), the main
algorithms based on Newton-Euler formalism are the following:

• Composite Rigid Body Algorithm (CRBA): follows an approach similar to
RNEA to obtain the forces and torques that are independent from the time
derivatives of components of velocity and angular velocity and derives,
recursively, an expression for the generalized inertia matrix associated to
the system (FEATHERSTONE, 2008; FEATHERSTONE; ORIN, 2000; KHAN et

al., 2005a).

• Articulated-body Algorithm (ABA): obtains recursively, for each rigid body
in the system, from the leaves to the root of the extension tree (propa-
gating external, constraint and inertia forces and torques), the associated
“articulated-body inertia matrix” and “bias force”, which describe an affine
transformation between the components of acceleration and angular ac-
celeration of a body and the force system acting on it (FEATHERSTONE,
2008; RODRIGUEZ, 1987; FEATHERSTONE; ORIN, 2000; KHAN et al., 2005a).

• Constraint Force Algorithm (CFA), Hybrid Direct/Iterative Algorithm
(HDIA), Divide-and-Conquer Algorithm (DCA) and Total Force Algorithm
(TFA): variants of Articulated-body Algorithm that use parallel computa-
tion to decrease the complexity of the necessary operations to perform the
numerical simulations of multi-rigid-body systems with several bodies in-
volved (FEATHERSTONE, 1999a; FEATHERSTONE, 1999b; MITIGUY; BANER-

JEE, 2002; FIJANY; FEATHERSTONE, 2012).

It is worth noting that, frequently, these algorithms are implemented us-
ing some form of Newton-Euler equations expressed in terms of twists and
wrenches, like the one presented in equation (3.43).
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3.2 Analytical Mechanics: fundamental princi-
ples and Lagrangian formalism

Analytical Mechanics is a collection of formalisms based on the same fun-
damental principles, which can ultimately be conceived as two (PAPASTAVRIDIS,
1998): the first relating the active forces (i.e., forces caused by physical ef-
fects not exclusively related to the motion of a system and described by con-
stitutive equations) and inertial effects (if relevant) to any possible motion of
a system and the second establishing analogous relations between the con-
straint forces (which are strictly to the enforcement of the motion constraints of
a system) to any possible motion of a system. The first fundamental principle
has several variants, the most well-known being the Principle of Virtual Work
and its counterpart that takes inertial effects in consideration, which is typically
called D’Alembert’s Principle or Lagrange’s Principle. Other commonly used
formulations of this first principle are: Principle of Virtual Power or Principle of
Jourdain, Gauss’ Principle of Least Restraint, Principle of Hamilton, etc. Under
some circumstances the statements of different versions of the first principle
are equivalent Papastavridis (1987). The second principle is normally referred
as Principle of Relaxation of Constraints.

In order to derive the equations of motion of a mechanical system, the use
of an appropriate form of the first principle must be sufficient. In some cases,
however, it might be preferable to use formulations that are based on both
principles, like the ones that use the method of Lagrange multipliers.

This section presents the statements of the Principle of Virtual Work and
D’Alembert’s Principle, along with the corresponding differential forms, and
discusses some of the modeling algorithms in the literature based on these
principles. Also, the extended version of Hamilton’s Principle is presented and
from it, the expressions for Lagrangian and canonical equations of motion of
a mechanical system are derived. Finally, the use of these formalisms in the
development of modeling algorithms for multibody systems is briefly discussed.

3.2.1 Principle of Virtual Work and D’Alembert’s Principle

Let S denote a mechanical system for whose motion can be described by
tracking a finite number of points, which will be generally denoted by pk . Let N
be an inertial reference frame, denote by N a coordinate system rigidly attached
to N, by rk the position vector of pk with respect to N and by δrk a variation of rk
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compatible with the constraints ofN, called virtual displacement of pk . Suppose
that the force system acting in S is equivalent to applying two forces Afk and Cfk

to each point pk , the former representing active forces and the latter, constraint
forces. The virtual work of the force system acting on S is defined by:

δW = δWA + δWC with

⎧
⎪⎪⎨

⎪⎪⎩

δWA =
∑
k
Afk · δrk

δWC =
∑
k
Cfk · δrk

(3.47)

If S is a system of particles in which each pk represents one particle, then,
according to Newton’s laws of motion, S is in a static equilibrium state if and
only if all of the fk = 0, which leads to δW = 0. In general, the Principle of
Virtual Work states that (LANCZOS, 1986, p. 75):

A mechanical system will be in equilibrium if, and only if, the total
virtual work of all the impressed forces vanishes, i.e. δW = 0.

It is more desirable to have an alternative statement of this fundamental
principle involving the active forces acting on a mechanical system only. To
this end, a single postulate is necessary (LEECH, 1971, p. 13):

Postulate A. For every virtual displacement δrk compatible with the
constraints of a mechanical system, it can be stated that:

Cfk · δrk ≥ 0 (3.48)

From this postulate, it is evident that δWC ≥ 0. Therefore, if δW = 0, then
δWA = −δWC ≤ 0. Moreover:

This postulate is not restricted to the realm of statics. It applies
equally to dynamics, when the principle of virtual work is suitably
generalized by means of d’Alembert’s principle. Since all the fun-
damental variational principles of mechanics, the principles of Eu-
ler, Lagrange, Jacobi, Hamilton, are but alternative formulations of
d’Alembert’s principle, Postulate A is actually the only postulate of
analytical mechanics, and thus of fundamental importance.

Those scientists who claim that analytical mechanics is nothing but
a mathematically different formulation of the laws of Newton must
assume that Postulate A is deducible from the Newtonian laws of
motion. The author is unable to see how this can be done. Certainly
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the third law of motion, “action equals reaction,” is not wide enough
to replace Postulate A (LANCZOS, 1986, p. 77).

Particularly, consider that S is in a configuration in which if δrk is a virtual
displacement compatible with the constraints of the system, so will be −δrk .
In this case, the virtual displacements of S are reversible and it can be stated
that:

∑

k

Afk · δrk ≤ 0 and
∑

k

Afk · (−δrk) ≤ 0 ⇒
∑

k

Afk · δrk = 0 (3.49)

Thus, the Principle of Virtual Work can be stated as follows:

A mechanical system will be in equilibrium if, and only if, the virtual
work of the impressed active forces is equal to zero for every re-
versible virtual displacements compatible with the constraints of the
system. If, in a particular configuration, some virtual displacement
is not reversible, then the system is in equilibrium if the virtual work
of the impressed active forces is equal to or less than zero.

In order to make a distinction between the conventional statement of the
Principle of Virtual Work for equilibrium states of mechanical systems and its
general version for arbitrary states, the latter one is called D’Alembert’s Princi-
ple (LANCZOS, 1986), Principle of D’Alembert in Lagrange’s form or Lagrange’s
Principle (PAPASTAVRIDIS, 1998). This nomenclature is due to the concept of
inertia force introduced by Jean le Rond d’Alembert, that enables a straightfor-
ward extension of the Principle of Virtual Work to non-equilibrium states. Under
the same hypothesis consider that the force system acting in S is equivalent to
applying not only the forces Afk and Cfk to each point pk but also an inertia force
Ifk . For example, if S is a system of particles and each pk represents a particle
whose mass is denoted by m̄k and whose velocity with respect to N is denoted
by vk , then Ifk = −m̄k v̇k . Thus, considering Postulate A, it can be stated that:

∑

k

(Afk +
Ifk) · δrk ≤ 0 (3.50)

The sum (Afk + Ifk) is sometimes called effective force and D’Alembert’s Prin-
ciple can be stated as follows (LANCZOS, 1986; LEECH, 1971):

The virtual work of the effective forces in a mechanical system is
zero for every reversible virtual displacements compatible with the
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constraints of the system. If any virtual displacement is not re-
versible, than the corresponding virtual work is equal to or less than
zero.

3.2.2 Differential Variational Principles

The first fundamental principle of Analytical Mechanics can also have alter-
native statements which are generally referred as Differential Variational Prin-
ciples (PAPASTAVRIDIS, 1998). The most well known forms of this category are
the Principle of Virtual Power or Jourdain’s Principle (PAPASTAVRIDIS, 1992) and
the Gauss’ Principle. The former is particularly useful in problems of impulsive
motion, while the latter is a genuine minimum principle, also known as Gauss’
Principle of Least Constraint (LANCZOS, 1986), which underlie the Udwadia-
Kalaba methodology (see Section 3.4) and can be extended to applications
in the study of singular configurations of mechanical systems (PAPASTAVRIDIS,
1998).

Let S be a mechanical system satisfying the same conditions listed in the
previous subsection. Define r(0)k = rk , r(β)k = dβrk/dtβ, and consider that in a
given time instant t∗, all δr(α)k (t∗) = 0 for every α such that 0 ≤ α ≤ ρ − 1.
Assuming that rk(t) is a class Cρ function in a neighborhood of t∗, it can be
stated that for an infinitesimal ε:

δrk(t
∗ + ε) =

ερ

ρ!
δr(ρ)k (t∗) + o(ερ) (3.51)

Thus, applying the Principle of Virtual Work for S in the time instant (t + ε), it
can be stated that, for ε > 0:

∑

k

(Afk(t
∗ + ε) + Ifk(t

∗ + ε)) · δrk(t∗ + ε) ≤ 0

∑

k

(Afk(t
∗) + Ifk(t

∗) + o(ε)) ·
(
ερ

ρ!
δr(ρ)k (t∗) + o(ερ)

)
≤ 0

ερ

ρ!

∑

k

(Afk(t
∗) + Ifk(t

∗)) · δr(ρ)k (t∗) + o(ερ) ≤ 0

∑

k

(Afk(t
∗) + Ifk(t

∗)) · δr(ρ)k (t∗) + ρ!
o(ερ)

ερ
≤ 0

Finally, taking the limit ε→ 0:

∑

k

(Afk(t
∗) + Ifk(t

∗)) · δr(ρ)k (t∗) ≤ 0 (3.52)
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Thus, if ρ > 0, whenever it is possible to consider that all δr(α)k = 0 for every α
such that 0 ≤ α ≤ ρ− 1, the corresponding ρ-th order variational principle can
be stated:

∑

k

(Afk +
Ifk) · δr(ρ)k ≤ 0 (3.53)

Moreover, if all the variations δr(ρ)k can be supposed reversible, this principle
can be stated as follows (JARZEBOWSKA, 2012; MANGERON; DELEANU, 1962;
PAPASTAVRIDIS, 1998):

∑

k

(Afk +
Ifk) · δr(ρ)k = 0 (3.54)

When ρ = 0, equations (3.53) and (3.54) correspond to D’Alembert’s Principle
and when ρ = 1 to Jourdain’s Principle.

For ρ = 2, equation (3.54) represents the statement of Gauss’ Principle of
Least Constraint. Indeed, consider without loss of generality, thatS is a system
of particles in which each pk represents a particle whose mass is denoted by
m̄k , and define Z, the Gaussian deviation (PAPASTAVRIDIS, 1998) or “constraint”
(LANCZOS, 1986) of system S as follows:

Z =
∑

k

m̄k
2

(
r̈k −

Afk
m̄k

)2

=
∑

k

1

2 m̄k
(Afk − m̄k r̈k)2 (3.55)

Assume that all δrk = 0 and all δṙk = 0. The variation of Z is given by:

δZ = −
∑

k

(Afk − m̄k r̈k) · δr̈k (3.56)

Thus, if all the variations δr̈k can be supposed reversible, then the expression
for Gauss’ Principle for S is:

δZ = 0 (3.57)

Once Z is a sum of non-negative terms, it must have a minimum. It can be
proved that the actual motion of a system not only corresponds to a stationary
Gaussian deviation (i.e., δZ = 0), but also to a minimum of Z (PAPASTAVRIDIS,
1998).
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3.2.3 Modelingmethodologies based on the Principle of Vir-
tual Work and its variants

Through the use of adequate formulations, applications of the Principle of
Virtual Work and of its variant forms can be found in almost every area of Multi-
body System Dynamics, including continuous systems (SCHWAB; MEIJAARD,
2003; MAUGIN, 2013). For instance, the “weak formulations” of the statics and
dynamics problems of continuous systems are based on the integral form of the
equation obtained by the application of the Principle of Virtual Work to them.
Due to the freedom to choose variables and to the lack of restrictions to the na-
ture of the motion constraints involved, it can be found in the literature several
modeling methodologies derived from this first fundamental principle of Ana-
lytical Mechanics. Some of these methodologies, however, are so specialized
to some kinds of problems that sometimes the modeling algorithms impose re-
strictions for the choice of variables and use of some mathematical tools. Such
peculiarities can become deterrent if someone wants to use more than one of
these methodologies in the same problem. Even though they derive from the
same principle, the integration between the corresponding modeling algorithms
might not be straightforward, requiring effort and skill from users.

One area in Multibody System Dynamics in which specialized methodolo-
gies have been successful is the modeling of closed-loop kinematic chains,
particularly parallel mechanisms (TSAI, 1999), for which were even developed
recursive matrix algorithms based on Principle of Virtual Work (STAICU; ZHANG,
2008; LI; STAICU, 2011; STAICU, 2013). Other relevant applications are related
to modeling methodologies based on Graph Theory. Shi and McPhee (2000),
McPhee, Schmitke and Redmond (2004) and Schmitke and McPhee (2005),
for instance, show that the integration between graphs and algorithms based
on the Principle of Virtual Work led to the development of a package for Maple
called DynaFlex, that can be used in the symbolic or numerical derivation of the
equations of motion of multibody systems composed of both rigid and flexible
bodies.

3.2.4 Extended Hamilton’s Principle

Hamilton’s Principle can be understood as a variant form of the fundamental
principle of Analytical Mechanics, being equivalent to D’Alembert’s Principle for
the study of generic mechanical systems. It must be highlighted, however, that
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the applications of Hamilton’s Principle are followed by several mathematical
tools fromCalculus of Variations (GELFAND; FOMIN; SILVERMAN, 2000), which are
helpful in deriving of equations of motion, in finding solutions for them and in
obtaining conservation laws for the modeled systems.

From this principle, Lagrangian equations of motion and Hamilton’s canon-
ical equations of motion can be derived from “energy functions” called La-
grangian and Hamiltonian, expressed in terms of the generalized coordinates,
of its time derivatives or equivalently, of the associated generalized momenta
and of some physical and geometrical parameters of the model. In case of non-
conservative force systems, techniques based on any variant of the Principle
of Virtual Work can be used to obtain the corresponding generalized forces.

Let S be a mechanical system, and suppose, for the sake of simplicity, that
it is constituted by a finite number of particles, each of them being represented
by a point pk . LetN be an inertial reference frame and N be a coordinate system
rigidly attached to N. Denote by mk the mass of the particle represented by pk ,
by rk the position vector of pk with respect to N and by vk = ṙk the velocity of
the corresponding particle with respect to N. The kinetic energy of S is defined
as follows:

T =
∑

k

1

2
mk vk · vk (3.58)

It can be stated that the virtual work of the inertia forces of S satisfies the fol-
lowing identity:

∑

k

Ifk · δrk = −
∑

k

mk r̈k · δrk

=
∑

k

mk ṙk · δṙk −
∑

k

mk
d

dt
(ṙk · δrk)

= δT −
∑

k

mk
d

dt
(ṙk · δrk) (3.59)

Consider that S is in a configuration in which all the virtual displacements are
reversible. Due to D’Alembert’s Principle, it can be stated that:

δT +
∑

k

Afk · δrk =
∑

k

mk
d

dt
(ṙk · δrk) (3.60)

Suppose additionally that there are two distinct time instants t0 and t1, t1 > t0,
for which the positions of all particles of the system are known. Thus, adopt
δrk(t0) = δrk(t1) = 0, ∀k . Taking the integral of equation (3.60) in the interval
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t0 < t < t1, it can be stated that:
∫ t1

t0

(
δT +

∑

k

Afk · δrk
)
dt

=
∑

k

mk
(
ṙk(t1) · δrk(t1)− ṙk(t0) · δrk(t0)

)
= 0 (3.61)

Assuming that “the variation of a definite integral is equal to the definite integral
of the variation” (LANCZOS, 1986, Sec. II-9), Extended Hamilton’s Principle can
be expressed as follows:

δ

∫ t1

t0

T dt +

∫ t1

t0

δWA dt = 0 (3.62)

The classical form of Hamilton’s Principle is valid whenever the force sys-
tem acting in S is conservative, i.e. if there is a single scalar differentiable
function V called potential energy of S such that for every pk :

Afk = −
∂V

∂rk
(3.63)

In this case, system S is classified as conservative and:
∫ t1

t0

δWA dt = −
∫ t1

t0

∑

k

∂V

∂rk
· δrk dt = −δ

∫ t1

t0

V dt (3.64)

Defining the Lagrangian of S as the function L = T − V , it can be stated that
equation (3.62) can be rewritten as follows:

δ

∫ t1

t0

L dt = 0 (3.65)

This is the classical form of Hamilton’s Principle, valid for conservative systems
only.

3.2.5 Lagrangian equations of motion

Let S be a conservative mechanical system whose Lagrangian function is
given by L = L(t, q, q̇), with q standing for the generalized coordinates of the
model. It can be stated that:

δL =

(
δqT

∂L

∂q
+ δq̇T

∂L

∂q̇

)
= δqT

(
∂L

∂q
−

d

dt

(
∂L

∂q̇

))
+

d

dt

(
δqT

∂L

∂q̇

)
(3.66)

δ

∫ t1

t0

L dt =

∫ t1

t0

δqT
(
∂L

∂q
−

d

dt

(
∂L

∂q̇

))
dt + δqT

∂L

∂q̇

∣∣∣∣
t1

t0

(3.67)
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Consider that there are two time instants t0 and t1 in which the configurations of
S are known. Thus, it is possible to adopt δq(t0) = δq(t1) = 0, which cancels
the second term in the right-hand side of equation (3.67). If the number of
generalized coordinates adopted in the modeling of S is equal to the number
of degrees of freedom of the system (which is only possible if S is a holonomic
system), it can be stated that all the components of δq are independent, and
to ensure that Hamilton’s principle, given by equation (3.65) is satisfied, it is
necessary that:

∂L

∂q
−

d

dt

(
∂L

∂q̇

)
= 0 (3.68)

The system of equations (3.68) are the Lagrangian equations of motion for a
holonomic conservative mechanical system for which a minimal set of gener-
alized coordinates is adopted.

For a non-conservative system, the extended form of Hamilton’s principle,
given by equation (3.62) must be used. Analogously to equation (3.67), it can
be stated that:

δ

∫ t1

t0

T dt =

∫ t1

t0

δqT
(
∂T

∂q
−

d

dt

(
∂T

∂q̇

))
dt (3.69)

Moreover, once any rk can be expressed in the form rk = rk(t, q), then:

δrk =
∂rk
∂q

δq (3.70)

Thus:

δWA =
∑

k

δrk · Afk = δqT
(∑

k

∂rk
∂q
· Afk

)
= δqT Af (3.71)

Finally:

δ

∫ t1

t0

T dt +

∫ t1

t0

δWA dt =

∫ t1

t0

δqT
(
∂T

∂q
−

d

dt

(
∂T

∂q̇

)
+ Af

)
dt = 0 (3.72)

Again, if S is a holonomic system and the number of generalized coordinates
of its model is equal to the number of degrees of freedom of the system, it can
be stated that the satisfaction of Extended Hamilton’s Principle requires that:

∂T

∂q
−

d

dt

(
∂T

∂q̇

)
+ Af = 0 (3.73)

This form of Lagrangian equations of motion is valid for any holonomic system
in which a minimal set of generalized coordinates is defined.

If some of the forces acting in S are conservative, then there must exist a
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single differentiable scalar function V such that the corresponding components
of these forces are given by the gradient of −V , i.e.:

Af = −
∂V

∂q
+ Af ′ (3.74)

with Af ′ denoting the generalized forces associated to the non-conservative
force systems acting in S. Therefore, equation (3.73) can be written in the
following forms:

∂T

∂q
−
∂V

∂q
−

d

dt

(
∂T

∂q̇

)
+ Af ′ = 0 (3.75)

∂L

∂q
−

d

dt

(
∂L

∂q̇

)
+ Af ′ = 0 (3.76)

Note that the V is supposed to be a function of time and of the generalized
coordinates of S only, i.e. V = V (t, q).

3.2.6 Lagrangian multipliers and canonical equations of
motion

Let S be a ν#-DOF holonomic or simple nonholonomic mechanical system
whose constraint order is equal to 1. Consider that are defined ν(q) gener-
alized coordinates and ν(q) quasi-velocities for the modeling of S, such that
q⟨0⟩ = q and q⟨1⟩ = q̇. The variations of the independent generalized constraint
invariants ofS (if any) can be expressed in the following form, with A = A(t, q):

A δq = 0 (3.77)

Thus, for any time history (t, q(t), q̇(t)) compatible with the constraints of S,
δL can be replaced by δL+ δqTATλ, with λ ∈ Rν(q)−ν# representing a column-
matrix of the so called Lagrangian multipliers. The corresponding expression
of Extended Hamilton’s Principle for S is:

∫ t1

t0

δqT
(
∂L

∂q
−

d

dt

(
∂L

∂q̇

)
+ Af ′ + ATλ

)
dt = 0 (3.78)

Once the ν(q)−ν# elements of λ are a priori undetermined, they can be chosen
to cancel ν(q)− ν# of the elements of the column-matrix left-multiplied by δqT.
There will still remain ν# non-zero elements in this column-matrix. However,
now these elements represent the coefficients of ν# variations of generalized
coordinates in equation (3.78). Considering that ν# variations of generalized
coordinates of S can be assumed as independent, then the only form of ensur-
ing the satisfaction of the Extended Hamilton’s Principle (3.78) is to impose that
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the corresponding coefficients of these variations must be zero too. Therefore,
the Lagrangian equations of motion of S are given by:

∂L

∂q
−

d

dt

(
∂L

∂q̇

)
+ Af ′ + ATλ = 0 (3.79)

The system of equations (3.79) represents the most general form of Lagrange’s
equation of motion for systems with constant mass, either holonomic or sim-
ple nonholonomic constraints and trivial generalized variables. Pesce (2003)
presentes an even more general version of Lagrange’s equations of motion,
applicable to variable-mass systems.

In order to obtain Hamilton’s canonical equations of motion of S, let L∗ be
defined as follows (LANCZOS, 1986):

L∗ = L∗(t, q, q̇, p, v ) = L(t, q, v ) + pT(q̇ − v ) (3.80)

It can be stated that:

δL∗ = δqT
∂L∗

∂q
+ δq̇T

∂L∗

∂q̇
+ δpT

∂L∗

∂p
+ δvT

∂L∗

∂v
(3.81)

with:

∂L∗

∂q
=
∂L

∂q

∂L∗

∂q̇
= p

∂L∗

∂p
= q̇ − v

∂L∗

∂v
=
∂L

∂v
− p

(3.82)

Applying Extended Hamilton’s Principle with L∗ replacing L, it can be stated
that:

∫ t1

t0

(
δqT

(
∂L∗

∂q
−

d

dt

(
∂L∗

∂q̇

)
+ Af ′

)
+ δpT

∂L∗

∂p
+ δvT

∂L∗

∂v

)
dt = 0 (3.83)

Assuming that δp and δv are column-matrices of independent variations, whose
values can be arbitrarily chosen, it can be stated that two necessary conditions
for the satisfaction of equation (3.83) are the following:

∂L∗

∂p
= 0 ⇒ v = q̇ (3.84)

∂L∗

∂v
= 0 ⇒ p =

∂L

∂v
(3.85)

From (3.80), it can be noted that if v = q̇, then L∗ = L, which proves that
equation (3.83) is indeed the expression of the Extended Hamilton’s Principle
for system S.

Suppose that there is a function H = H(t, q, p), called the Hamiltonian of S
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such that:

L∗ = pT q̇ −H (3.86)

Calculating the corresponding partial derivatives of L∗ by equation (3.86), it can
be stated that:

∂L∗

∂q
= −

∂H

∂q

∂L∗

∂q̇
= p

∂L∗

∂p
= q̇ −

∂H

∂p

∂L∗

∂v
= 0

(3.87)

The compatibility between (3.82) and (3.87) requires that:

∂L

∂q
= −

∂H

∂q
and q̇ =

∂H

∂p
(3.88)

Finally, from equations (3.87) and (3.88), it can be stated that (3.83) leads to:
∫ t1

t0

δqT
(
−
∂H

∂q
− ṗ + Af ′

)
dt = 0 (3.89)

Therefore, if S is a holonomic system with a minimal set of generalized coor-
dinates, (3.89) leads to the following Hamilton’s canonical equations of motion
of S:

q̇ =
∂H

∂p
(3.90)

ṗ = −
∂H

∂q
+ Af ′ (3.91)

Otherwise, if S is any holonomic or simple nonholonomic system whose con-
straints demand the satisfaction of an equation like (3.77), the strategy of us-
ing the Lagrange multipliers method can be applied, leading to the a system of
canonical equations of motion similar to (3.90, 3.91), with (3.91) being replaced
by:

ṗ = −
∂H

∂q
+ Af ′ + ATλ (3.92)

It is important to highlight that the column-matrix v is constituted of auxiliary
variables introduced only for the derivations. Taking the conventional expres-
sion of the Lagrangian of S, L = L(t, q, q̇), the generalized momenta p can be
defined as follows:

p =
∂L

∂q̇
(3.93)
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Moreover, the Hamiltonian of S can be obtained by following expression:

H = H(t, q, p) = pTq̇ − L(t, q, q̇(t, q, p)) (3.94)

with q̇ = q̇(t, q, p) representing a solution of the system of equations (3.93) in
terms of q̇.

3.2.7 Modeling methodologies based on Lagrangian-
Hamiltonian formalism

Lagrangian-Hamiltonian formalism has been responsible for the develop-
ment of some of the most used methodologies for modeling multibody sys-
tems, allying the fundamental principles of Analytical Mechanics to mathemati-
cal techniques from Calculus of Variations. Lagrangian or canonical equations
of motion combine the versatility of applications to a great variety of mechanical
systems6 with descriptions of configurations based on the use of generalized
coordinates and, eventually, with the use of the method of Lagrange multipli-
ers. Integrating all these techniques, Lagrangian-Hamiltonian formalism sys-
tematize typical modeling procedures, enabling the development of algorithms,
which explains the great variety of software packages for Multibody System Dy-
namics based on this formalism (PAUL, 1975).

The method of Lagrange multipliers also enable several extensions to the
application of Lagrangian-Hamiltonian formalism. For instance, Seliger and
Whitham (1968) use the undetermined multipliers to generalize the variational
principles of mechanics to problems of continuous mechanics that originally
adopt an Eulerian description of motion. In applications of Graph Theory to the
modeling of mechanical systems, Lagrangian multipliers are important to inter-
pret the internal conexions among the subsystems involved, which might lead
to some simplifications in the modeling procedure (KARNOPP, 1997; RICHARD;
BOUAZARA, 2012). Other relevant application of the multipliers is in the de-
velpent of algorithms for obtaining approximate solutions of equations of mo-
tion (HE, 1999).

On the other hand, the use of undetermined multipliers can lead to some
disadvantages in the use of mathematical models based on Lagrangian or
canonical equations. Particularly, whenever the elimination of the multipliers

6 An adequate rederivation can lead to versions of Lagrangian equations of motion that are
applicable to the modeling of continuous and general nonholonomic systems (BLOCH, 2003;
TEODORESCU, 2009).
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from the equations of motion is not trivial, they are held in the system of equa-
tions, which increase the number of variables in the model and may reduce the
efficiency of numerical simulation algorithms. In the case of inverse dynam-
ics simulations, a high number of multipliers might lead to sparse matrix that
must be inverted at some point of the algorithm, which may generate some
numerical instabilities (ORSINO; HESS-COELHO; PESCE, 2015). In the case of for-
ward dynamics simulations, the Lagrangian equations of motion are generally
represented as follows:

⎡

⎢⎣
M AT

A 0

⎤

⎥⎦

⎡

⎢⎣
q̈

λ

⎤

⎥⎦ =

⎡

⎢⎣
Af + Gf

−b

⎤

⎥⎦ (3.95)

withM representing the generalized inertia matrix, q the column-matrix of gen-
eralized coordinates of the model, A the Jacobian of the constraint invariants, λ
the column-matrix of Lagrangian multipliers Af the generalized active forces, Gf
the generalized gyroscopic inertia forces (i.e., components of inertia forces that
are independent of q̈) and b = b(t, q, q̇) = q̄⟨2⟩(t, q, q̇, q̈)−A q̈. Equation (3.95)
clearly shows that if ν(λ) undetermined multipliers are used, then a ν(λ)×ν(λ)
block of zeros must be included in the “extended generalized inertia matrix”.
Thus, for each undetermined multiplier in the model, up to two zero eigenval-
ues are included in the system of equations of motion, which might lead to
numerical instabilities unless some stabilization algorithm is used (SCHIEHLEN;
GUSE; SEIFRIED, 2006; BAUCHAU; BOTTASSO; TRAINELLI, 2003).

An alternative to the use of undetermined multipliers in Lagragian formu-
lation was proposed by Bayo, Jalón and Serna (1988). In this methodology,
fictitious terms are added to the expressions of kinetic energy, potential energy
and dissipation function in the expression of Extended Hamilton’s Principle, in
order to represent the motion constraints. These terms are multiplied by pre-
viously chosen penalty factors that enforce the constraints without the need of
using Lagrangian multipliers. In order to improve the numerical performance
of this methodology, an iterative procedure can be included to make it less
sensitive to the choice of the penalty factors (DOPICO et al., 2014).
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3.3 Gibbs-Appell, Maggi’s and Boltzmann-Hamel
formalisms

In this section, it is presented a brief discussion on the main advances in
Analytical Mechanics in the period between the end of 19th century and the
first decades of the 20th. The formalisms from this period were characterized
by remarkable developments in the study of nonholonomic systems (including
non-linear nonholonomic constraints) and by the introduction of the concept of
quasi-velocities (nonholonomic variables). These advances led to formulations
in which the use of undetermined multipliers was not required anymore, and
the number of equations of motion can be reduced to the number of degrees of
freedom of the system independently of the nature of the constraint involved.

3.3.1 Gibbs-Appell equations

Gibbs-Appell equations, also known as Appell’s equations, were indepen-
dently developed by the American scientist JosiahWillard Gibbs and the French
mathematician Paul Émile Appell.

Gibbs (1879) discusses the generalization of the concept of virtual displac-
ment along with its application in themodeling of systems in which the force sys-
tems are continuous or impulsive. For systems subject to generic constraints
(either holonomic or nonholonomic, either unilateral or bilateral) it is possible to
apply some form of Gauss’ Principle along with the concept of quasi-velocity to
obtain a minimal system of the equations of motion7. Gibbs also shows that the
expressions for the generalized inertia forces can be obtained from time deriva-
tives of the Gibbs-Appell function, also known as “energy of accelerations”.

Indeed, consider thatS is a mechanical system whose Gaussian constraint
is given by equation (3.55). Note that:

Z =
∑

k

1

2
m̄k r̈k · r̈k −

∑

k

r̈k · Afk +
∑

k

1

2 m̄k
Afk · Afk (3.96)

The Gibbs-Appell function of S, can be defined as follows:

S =
∑

k

1

2
m̄k r̈k · r̈k (3.97)

Note that the nomenclature “energy of accelerations” comes from the similarity
7 Altough developing a general formulation, Gibbs (1879) fails to highlight that it can also

be applicable to the modeling of nonholonomic systems (PAPASTAVRIDIS, 1988).
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between (3.97) and the equation (3.58) that defines the kinetic energy of S.
Assuming that all δrk = 0 and all δṙk = 0, it can be stated that all δAfk = 0. In-
deed, in Classical Mechanics it is assumed that force systems can be functions
of the state of the mechanical system to which they are applied. This means
that these force systems can depend on the positions and velocities of points
in a mechanical system; however, they can not depend on any acceleration or
higher order derivatives of the position vectors. Thus, the application of Gauss’
Principle to S leads to:

δZ = δS −
∑

k

δr̈k · Afk = 0 (3.98)

Appell (1900) not only reproduced independently the results already ob-
tained by Gibbs (1879), but also started a wide discussion on the use of this
new formalism for modeling nonholonomic system, which led to an extensive
monograph on this subject (APPELL, 1925). Due to the greater significance of
Appell’s constributions, some authors opt to refer to this formalism as Appell’s
equations (PAPASTAVRIDIS, 1988).

The following derivation of Gibbs-Appell equations is based in the one pre-
sented in Papastavridis (1988), which highlights that the same formulation is
valid for any bilateral constraints (holonomic, linear nonholonomic and non-
linear nonholonomic). Let S be a ν#-DOF mechanical system, subject to bi-
lateral constraints only. Let q⟨0⟩ denote the column-matrix of generalized coor-
dinates of the model of S. If the number of generalized coordinates ν(q⟨0⟩)
is greater than the number of degrees of freedom ν#, than there must be
ν(q⟨0⟩)− ν# independent invariants constituting a column-matrix h̄⟨1⟩ such that:

h̄⟨1⟩.⋆ (t, q⟨0⟩, q̇⟨0⟩) = 0 (3.99)

Define the quasi-velocities of S as follows:

q⟨1⟩ =

⎡

⎢⎣
q⟨1⟩.#

q⟨1⟩.⋆

⎤

⎥⎦ =

⎡

⎢⎣
h⟨1⟩.# (t, q⟨0⟩, q̇⟨0⟩)

h̄⟨1⟩.⋆ (t, q⟨0⟩, q̇⟨0⟩)

⎤

⎥⎦ = q⟨1⟩(t, q⟨0⟩, q̇⟨0⟩) (3.100)

with h⟨1⟩.# (t, q⟨0⟩, q̇⟨0⟩) representing a column-matrix constituted by ν# real-valued
functions defined such that the Jacobian ∂q⟨1⟩/∂q̇⟨0⟩ is an invertible square-
matrix in any non-singular configuration od S. Due the Implicit Function The-
orem (HAASER; SULLIVAN, 1991), it can be stated that there is a column-matrix
q̇⟨0⟩
(
t, q⟨0⟩, q⟨1⟩

)
constituted by ν(q⟨0⟩) real-valued functions such that if q̇⟨0⟩ =
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q̇⟨0⟩
(
t, q⟨0⟩, q⟨1⟩

)
, then:

⎧
⎪⎨

⎪⎩

h⟨1⟩.#
(
t, q⟨0⟩, q̇⟨0⟩

(
t, q⟨0⟩, q⟨1⟩

))
= q⟨1⟩.#

h̄⟨1⟩.⋆
(
t, q⟨0⟩, q̇⟨0⟩

(
t, q⟨0⟩, q⟨1⟩

))
= 0

(3.101)

Moreover, for any values of (t, q⟨0⟩, q̇⟨0⟩) compatible with the constraints of the
system:

q̇⟨0⟩
(
t, q⟨0⟩, q⟨1⟩(t, q⟨0⟩, q̇⟨0⟩)

)
= q̇⟨0⟩ (3.102)

Thus, it can be stated that:

∂q̇⟨0⟩

∂q⟨1⟩
∂q⟨1⟩

∂q̇⟨0⟩
= 1 and

∂q⟨1⟩

∂q̇⟨0⟩
∂q̇⟨0⟩

∂q⟨1⟩
= 1 (3.103)

Using equation (3.103) and noting that, by the definition given by equa-
tion (3.100), δq⟨1⟩.⋆ = 0, it can also be stated that:

δq⟨1⟩ =
∂q⟨1⟩

∂q̇⟨0⟩
δq̇⟨0⟩ ⇒ δq̇⟨0⟩ =

∂q̇⟨0⟩

∂q⟨1⟩
δq⟨1⟩ =

∂q̇⟨0⟩

∂q⟨1⟩.#
δq⟨1⟩.# (3.104)

Moreover, for any integer α ≥ 1:

δq⟨α|0⟩ =
∂q̇⟨0⟩

∂q⟨1⟩.#
δq⟨α|1⟩.# (3.105)

Furthermore, it is convenient to define:

δq⟨0⟩ =
∂q̇⟨0⟩

∂q⟨1⟩.#
δq⟨0|1⟩.# (3.106)

with δq⟨0
|1⟩

.# representing variations of independent quasi-coordinates8.

Therefore, considering that S is in a non-singular configuration in which all
the variations are reversible, adopting an integer ρ ≥ 0 and applying the ρ-th
order variational principle for S, given by equation (3.54), it can be stated that:

∑

k

δr(ρ)k · (
Afk +

Ifk) =
(
δq⟨ρ|1⟩.#

)T ∑

k

Vk.# · (Afk + Ifk) = 0 (3.107)

8 It is important to highlight that, in general, it is not possible to interpret quasi-coordinates
as an alternative set of generalized coordinates, once some of the time integrals of quasi-
velocities might not be related to the description of configurations of the system (for instance,
the time integrals of components of angular velocity of a rigid body do not have any relation
with its orientation); thus, only the variations of quasi-coordinates, but not quasi-coordinates
themselves, are defined.
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with the second order tensor Vk.# defined as follows:

Vk.# =
∂r(ρ)k
∂q⟨ρ|0⟩

∂q̇⟨0⟩

∂q⟨1⟩.#
(3.108)

Once the components of δq⟨ρ|1⟩.# are independent, it can be stated that to ensure
the condition imposed by equation (3.107), it is necessary that:

If.# + Af.# = 0 (3.109)

with If.# and Af.# defined by:

If.# =
∑

k

Vk.# · Ifk (3.110)

Af.# =
∑

k

Vk.# · Afk (3.111)

The components of If.# and are called generalized inertia forces and general-
ized active forces, respectively. Finally, consider that the Gibbs-Appell function
is expressed as a function of the generalized variables of the model of S up to
second order, i.e. S = S(t, q⟨0⟩, q⟨1⟩, q̇⟨1⟩). Let, for instance, S be given by
equation (3.97) and assume that it is possible to express each acceleration as
a function of the generalized coordinates and its time derivatives up to second
order, i.e. r̈k = r̈k(t, q⟨0⟩, q̇⟨0⟩, q̈⟨0⟩). It can be stated that:

∂S

∂q̇⟨1⟩.#
=
∑

k

m̄k r̈k ·
∂r̈k
∂q̈⟨0⟩

∂q̈⟨0⟩

∂q̇⟨1⟩.#
=
∑

k

m̄k r̈k ·
∂r̈k
∂q̈⟨0⟩

∂q̇⟨0⟩

∂q⟨1⟩.#
= −If.# (3.112)

Therefore, equation (3.109) can be rewritten as follows:

∂S

∂q̇⟨1⟩.#
= Af.# (3.113)

This is the matrix form of the Gibbs-Appell equations for systemS (GIBBS, 1879;
APPELL, 1925; PAPASTAVRIDIS, 1988; BARUH, 1999).

Papastavridis (1988) also presents a method for obtaining the expressions
of the generalized constraint forces based on Gibbs-Appell formulation and on
the Principle of Relaxation of Constraints:

(1) Obtain a description of the motion of S in terms of all the generalized
variables considering, a priori, that the variables q⟨1⟩.⋆ are independent,
i.e. without setting q⟨1⟩.⋆ = 0.

(2) Compute the expressions of tensors Vk.# and Vk.⋆: the former ones are
given by equation (3.108), while the latter ones are given by analogous
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expressions in which the partial derivatives with respect to q⟨1⟩.# are re-
placed by partial derivatives with respect to q⟨1⟩.⋆ .

(3) Obtain the expressions of If.# and Af.# using equations (3.110) and (3.111).
Compute If.⋆ and Af.⋆ by analogous expressions (replace Vk.# by Vk.⋆).

(4) Set q⟨1⟩.⋆ = 0 in the expressions derived in the previous step.

The equations of motion of S are given by (3.109) and the generalized con-
straint forces of S (components of Cf.⋆) are obtained as follows:

Cf.⋆ = −If.⋆ − Af.⋆ (3.114)

It is worth noting that:

• The equations of motion of a system (3.109) are totally decoupled from
the equations to compute the generalized constraint forces (3.114). This
is a significant advantage with respect to the Lagrangian-Hamiltonian for-
mulation, particularly in the case of nonholonomic systems or models in
which redundant generalized coordinates are defined, once no undeter-
mined multipliers are required in these cases.

• To derive the equations of motion only, variables q⟨1⟩.⋆ are not necessary
apart from their use to choose the independent quasi-velocities q⟨1⟩.# and
to obtain the expressions q̇⟨0⟩(t, q⟨0⟩, q⟨1⟩). The number of equations of
motion is equal to the number of degrees of freedom of the system.

• Inverse dynamics problems can be interpreted as mechanical system to
which extra constraints, representing the desired motion of the system,
are imposed. Thus, in Gibbs-Appell formulation, these problems can be
reduced to computing the values of Cf.⋆ that correspond to these extra
constraints.

Gibbs-Appell equations are still widely studied, being found in several textbooks
on Multibody System Dynamics (TEODORESCU, 2009; BARUH, 1999; BARUH,
2000). This formalism also finds applications in non-linear control (KIRGETOV,
1964) and in the formulation of recursive modeling algorithms for mechanisms
(MATA et al., 2002a; MATA et al., 2002b; KORAYEM; SHAFEI, 2009).



83

3.3.2 Maggi’s equations

Maggi’s equations, introduced by the Italian mathematician and physicist
Gian Antonio Maggi in 1896 (LAULUSA; BAUCHAU, 2008), can be understood
as an extension of Lagrangian-Hamiltonian formalism for simple nonholonomic
systems (and holonomic systems with redundant generalized coordinates) that
allows the elimination of the undetermined multipliers from the equations of
motion of a mechanical system by a matrix algorithm.

Basically, consider that the constraint invariants of equations (3.99) are
affine functions with respect to q̇⟨0⟩, i.e.:

h̄⟨1⟩.⋆ (t, q⟨0⟩, q̇⟨0⟩) = A.⋆(t, q
⟨0⟩) q̇⟨0⟩ + b.⋆(t, q

⟨0⟩) = 0 (3.115)

Assume also that the function h⟨1⟩.# (t, q⟨0⟩, q̇⟨0⟩) is affine with respect to q̇⟨0⟩ so
that, equation (3.100) can be rewritten as follows:

q⟨1⟩ =

⎡

⎢⎣
q⟨1⟩.#

q⟨1⟩.⋆

⎤

⎥⎦ =

⎡

⎢⎣
A.#(t, q

⟨0⟩) q̇⟨0⟩ + b⟨0⟩.# (t, q⟨0⟩)

A.⋆(t, q
⟨0⟩) q̇⟨0⟩ + b⟨0⟩.⋆ (t, q

⟨0⟩)

⎤

⎥⎦ = q⟨1⟩(t, q⟨0⟩, q̇⟨0⟩)

(3.116)

Define A = ∂q⟨1⟩/∂q̇⟨0⟩, and adopt the following notation:

A =

⎡

⎢⎣
A.#

A.⋆

⎤

⎥⎦ A−1 =

[
C.⋆ C.#

]
(3.117)

Considering that AA−1 = A−1A = 1, the following identities can be verified:

A.# C.⋆ = 1 A.⋆ C.# = 1 C.⋆A.# + C.#A.⋆ = 1

A.⋆ C.⋆ = 0 A.# C.# = 0
(3.118)

It can be noticed that C.⋆ is an orthogonal complement of A.⋆ and that C.# is an
orthogonal complement of A.#. Pre-multiplying equation (3.116) by A−1, it can
be stated that:

q̇ = C.⋆ q
⟨1⟩
.# −

(
C.# b

⟨0⟩
.⋆ + C.⋆ b

⟨0⟩
.#

)
(3.119)

By equation (3.106), δq⟨0⟩ satisfies the following expression:

δq⟨0⟩ = C.⋆ δq
⟨0|1⟩
.# (3.120)

Let the kinetic energy of S be expressed as a function of time, generalized
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coordinates and its time derivatives, i.e. T = T (t, q, q̇), with q = q⟨0⟩. Applying
the Extended Hamilton’s Principle, equation (3.72), it can be stated that:

∫ t1

t0

(
δq⟨0|1⟩.#

)T
CT
.⋆

(
∂T

∂qi
−

d

dt

(
∂T

∂q̇

)
+ Af

)
dt = 0 (3.121)

OnceS is a ν#-DOF system, then the ν# components of δq⟨0|1⟩.# are independent
variables. Thus, to ensure the satisfaction of equation (3.121) for values of
(t, q⟨0⟩, q⟨1⟩) compatible with the constraints of the system, it is necessary and
sufficient that:

CT
.⋆

(
∂T

∂qi
−

d

dt

(
∂T

∂q̇

)
+ Af

)
= 0 (3.122)

These are the Maggi’s equations for system S (BYACHKOV; SUSLONOV, 2002;
BARUH, 2000).

Moreover, suppose that the Lagrangian equations of motion with undeter-
mined multipliers for this same system are expressed as follows:

⎡

⎢⎣
M AT

.⋆

A.⋆ 0

⎤

⎥⎦

⎡

⎢⎣
q̈

λ

⎤

⎥⎦ =

⎡

⎢⎣
Af + Gf

−b⟨1⟩

⎤

⎥⎦ (3.123)

Considering that CT
.⋆A

T
.⋆ = 0, it is possible to reduce the system of equa-

tions (3.123) to the following form:
⎡

⎢⎣
CT
.⋆M

A.⋆

⎤

⎥⎦ q̈ =

⎡

⎢⎣
CT
.⋆ (

Af + Gf )

−b⟨1⟩

⎤

⎥⎦ (3.124)

The system of equations (3.124) correspond to the matrix form of Maggi’s
equations of motion of S. Futhermore, once CT

.#A
T
.⋆ = 1, pre-multiplying equa-

tion (3.123) by CT
.# is can be stated that (LAULUSA; BAUCHAU, 2008):

λ = CT
.# (

Af + Gf −M q̈) (3.125)

As well as in Gibbs-Appell formalism, in Maggi’s approach the equations of mo-
tion are decoupled from the equations for computing the generalized constraint
forces, represented, in this case by the undetermined multipliers.

A brief analysis in the literature shows that several modeling methodologies
are based on Maggi’s formalism, applying orthogonal complement techniques
for the formulation of equations of motion without need of including general-
ized constraint forced or undetermined multipliers. Once the matrix C.⋆ satis-
fies the condition A.⋆ C.⋆ = 0 and the effect of the constraints over the sys-



85

tem can be expressed as a linear combination of the columns of AT
.⋆ (rows of

A.⋆), pre-multiplying the equations of motion by CT
.⋆, automatically cancels the

terms related to constraint forces and torques (BLOCH;MARSDEN; ZENKOV, 2009;
LAULUSA; BAUCHAU, 2008; KHAN et al., 2005a). This fact enables the extension
of orthogonal complement based techniques for every classical modeling for-
malism, not only the ones based on the fundamental principles of Analytical
Mechanics, but also the ones based on Newton’s laws of motion.

One of these applications is the Natural Orthogonal Complement Method
(NOC) and its variant, called Decoupled Natural Orthogonal Complement
Method (DeNOC), which use an approach based on Screw Theory for obtain-
ing orthogonal complement matrices to cancel the constraint forces and torques
from Newton-Euler equations expressed in terms of twists and wrenches (KHAN
et al., 2005b; SAHA; ANGELES, 1991). Shah, Saha and Dutt (2012) propose re-
cursive modular algorithms based on DeNOC, which under an adequate in-
terpretation, correspond to particular forms of the modeling methodology pro-
posed in this thesis. Due to specific criteria for defining the generalized vari-
ables (which are essentially joint variables and twists components), the NOC
matrices in the intra-modular level (considering that the modules are always
serial kinematic chains) and the so called module-DeNOC matrices, for the
inter-modular level, always have the same block-matrix structure.

Another similar application is associated to Graph Theory based modeling
algorithms, in which the derivation of equations of motion can be interpreted
analogously to the application fo Kirchhoff laws for electrical circuits. In these
cases, the generalized constraint force terms are also cancelled by the projec-
tion of the equations of motion by orthogonal complement matrices (MCPHEE;

SCHMITKE; REDMOND, 2004; MCPHEE; REDMOND, 2006). It is important to high-
light that these methodologies are applicable both to holonomic and nonholo-
nomic systems.

3.3.3 Boltzmann-Hamel equations

Boltzmann-Hamel equations can be understood as a further generaliza-
tion of Lagrangian-Hamiltonian formalism, applicable to any mechanical sys-
tem with bilateral constraints (including non-linear nonholonomic constraints),
and using a description of motion completely based on generalized coordinates
and quasi-velocities, defined according to the convention presented in equa-
tion (3.100). Instead of expressing the kinetic energy of S as a function of
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time, generalized coordinates and its time derivatives, the latter variables are
replaced by the quasi-velocities, i.e. T = T

(
t, q⟨0⟩, q⟨1⟩

)
. In this case, the Ex-

tended Hamilton’s principle forS can be expressed as follows (see Section A.1,
Appendix A):
∫ t1

t0

(
δq⟨1⟩

)T
((

∂q̇⟨0⟩

∂q⟨1⟩

)T ∂T

∂q⟨0⟩
−

d

dt

(
∂T

∂q⟨1⟩

)

−
(
∂q̇⟨0⟩

∂q⟨1⟩

)T( d

dt

∂q⟨1⟩

∂q̇⟨0⟩
−
∂q⟨1⟩

∂q⟨0⟩

)T ∂T

∂q⟨1⟩
+

(
∂q̇⟨0⟩

∂q⟨1⟩

)T
Af ′
)
dt = 0 (3.126)

Once all the ν# components of δq⟨1⟩.# are independent, and the values of q⟨1⟩.⋆ and
δq⟨1⟩.⋆ must be identically zero to satisfy the conditions imposed by the motion
constraints. Thus, to ensure the condition imposed by equation (3.126) it is
necessary and sufficient that:

d

dt

(
∂T

∂q⟨1⟩.#

)
+

(
∂q̇⟨0⟩

∂q⟨1⟩.#

)T( d

dt

∂q⟨1⟩.#

∂q̇⟨0⟩
−
∂q⟨1⟩.#
∂q⟨0⟩

)T ∂T

∂q⟨1⟩.#

−
(
∂q̇⟨0⟩

∂q⟨1⟩.#

)T ∂T

∂q⟨0⟩
=

(
∂q̇⟨0⟩

∂q⟨1⟩.#

)T
Af ′ (3.127)

These are the Boltzmann-Hamel equations of system S (JARZEBOWSKA, 2009;
MARUSKIN; BLOCH, 2007). It is important to highlight that the derivations of these
equations were also presented by Poincare (1901), at the same time of the first
publications of Hamel (BREMER, 2014)9.

Boltzmann-Hamel equations are successfully applied in the study of non-
holonomic systems, including the analysis of some mechanisms (CAMERON;

BOOK, 1997) and applications for the development of non-linear optimal control
this kind of system, including strategies that involve the enforcement of ex-
tra constraints of higher order than first (JARZEBOWSKA, 2012; JARZEBOWSKA,
2009; MARUSKIN; BLOCH, 2007).

3.4 Kane’s and Udwadia-Kalaba methodologies

3.4.1 Kane’s equations

Kane’s equations, originally presented in Kane (1961) and Kane and Wang
(1965), represent one of the most popular methodologies for modeling hon-
olomic and simples nonholonomic multibody systems. Originally developed

9 Poincaré, however, did not not do further discussions on the use of these equations for
modeling nonholonomic systems.
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at the same time of the first computational implementations of Multibody Sys-
tem Dynamics packages, Kane’s methodology is already an algorithm that de-
scribes, step by step, a procedure for obtaining expressions for generalized
active and inertia forces of a system, considering the effects of the motion con-
straints. This possibility of interpreting Kane’s method as an algorithm is ex-
plored by several authors (SANDINO; BEJAR; OLLERO, 2011; BUFFINTON, 2005;
GILLESPIE; ARBOR, 2003). Moreover, being a contemporaneous of the first re-
searchers to apply computational tools to the modeling and simulation of multi-
body systems, gave Kane the opportunity to identify some of the major dif-
ficulties found by them in these implementations, allowing to make his own
methodology adequate to their needs (KANE; LEVINSON, 1983a).

In order to do introduce the use of this methodology to derive the equa-
tions of motion of a mechanical system, the procedure described in Kane and
Levinson (1985) is presented below with some adaptations in the notation. As-
sume that the constraint invariants of S are given by equation (3.115). Define
as much quasi-velocities as the number of generalized coordinates used, such
that there will exist an invertible square matrix A• and a column-matrix b• such
that:

q̇⟨0⟩ = A•(t, q⟨0⟩) q⟨1⟩ + b•(t, q⟨0⟩) (3.128)

Thus, equation (3.115) can be rewritten as follows:

A.⋆A
• q⟨1⟩ + (A.⋆ b

• + b.⋆) = 0 (3.129)

Therefore, ν# variables can be chosen among the quasi-velocities of the model
to constitute a column-matrix q⟨1⟩.# and there will be a rank ν# matrix C• and a
column-matrix d • such that:

q⟨1⟩ = C•(t, q⟨0⟩) q⟨1⟩.# + d •(t, q⟨0⟩) (3.130)

In order to satisfy the constraint equations (3.129) the following relations must
be valid:

⎧
⎪⎨

⎪⎩

A.⋆A• C• = 0

A.⋆ (A• d • + b•) + b.⋆ = 0
(3.131)

Consider that the expressions of positions and velocities of relevant points pk

of S, measured with respect to an inertial reference frame N, are expressed
as follows: rk = rk(t, q

⟨0⟩) and vk = vk
(
t, q⟨0⟩, q⟨1⟩

)
. Denote by c•j the j-th
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column of matrix C•. Kane e Levinson (1985) defines the j-th nonholonomic
partial velocity of pk in N as follows:

v•k.j =
∂rk
∂q⟨0⟩

A• c•j =
∂ vk
∂q⟨1⟩

c•j (3.132)

From this, Kane e Levinson (1985) defines the j-th nonholonomic generalized
inertia force for S in N, Ifj•, and the j-th nonholonomic generalized active force
for S in N, Afj•, as follows:

Ifj
• =

∑

k

v•k.j · Ifk (3.133)

Afj
• =

∑

k

v•k.j · Afk (3.134)

Finally, Kane’s equations for S are:

Ifj
• + Afj

• = 0 for all j ∈ {1, . . . , ν#} (3.135)

Kane’s methodology is widely applied in different areas of Mechanical En-
gineering including, for example, the modeling of terrestrial and aerial vehi-
cles (SANDINO; BEJAR; OLLERO, 2011; BOLENDER, 2009), robotic mechanisms
(BUFFINTON, 2005; KANE; LEVINSON, 1983b) and systems with flexible bodies
(HU; JIA; XU, 2012; BUFFINTON, 2005).

Besides its huge success in several applications to Multibody System Dy-
namics problems, Kane’s approach can not be considered a new theoretical
formalism once this methodology, developed in the 1960s, is based on the for-
malisms of Gibbs-Appell, Maggi and others which date back to the early twenti-
eth century. It is evident, for instance, the similarity between Kane’s (3.135) and
Gibbs-Appell equations (3.109). Some authors claim their equivalence (BARUH,
1999), while others state that Kane’s equations are a particular form of Gibbs-
Appell equations applicable to holonomic or simple nonholonomic systems, be-
ing less general than the latter ones which are applicable to any nonholonomic
system whose constraint order is equal to 1 (DESLOGE, 1987; PAPASTAVRIDIS,
1988). Desloge’s paper (1987) was harshly criticized by some supporters of
Kane’s methodology, like his co-author Levinson (1987), who claims that in
Gibbs-Appell formalism it is necessary to explicitly obtain the expression of the
function S to derive the equations of motion, which is a cumbersome proce-
dure not required in Kane’s method. This argument is invalid, once it is possi-
ble to obtain Gibbs-Appell equations from expressions (3.109 – 3.111), without
needing to compute the expression of Gibbs-Appell function S. Papastavridis
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(1988) not only invalidates this argumentation, but also points out some incom-
patible terminologies adopted by Kane and Levinson (1985). According to him,
referring to the v•k.j as “partial velocities” prevents the user from a correct inter-
pretation of the meaning of these vectors, not enabling further generalizations
to systems with non-linear nonholonomic constraints, for example. Borri, Bot-
tasso and Mantegazza (1990) adopt a slightly different interpretation to show
that Kane’s equations are equivalent to Maggi’s. Piedboeuf (1993), in turn,
discusses the equivalence between Kane’s equations and Jourdain’s principle
(whose statement dates from 1909).

3.4.2 Udwadia-Kalaba methodology

Among the conventional methodologies in Analytical Mechanics, two tech-
niques for the inclusion of the effect of constraints in the equations of motion
of a mechanical system stand out (LAULUSA; BAUCHAU, 2008): the inclusion of
generalized constraint forces (using the method of Lagrange multipliers and its
variants) or the use of orthogonal complement methods (which are used to find
the projections of active and inertial forces and torques in directions which are
orthogonal to the ones defined by the action of the constraints).

Udwadia-Kalaba methodology brings back the generalized constraint
forces to the equations of motion of a mechanical system, providing explicit
expressions for their computation in terms of inertial and active forces along
with terms coming from the differential form of the constraint invariants. The
method for obtaining these explicit expressions involve the use of Moore-
Penrose pseudo-inverse matrices and was derived for the first time in Udwadia
and Kalaba (1992) from Gauss’ Principle. The solution to the minimization
problem associated to this principle leads to a condition in which, in any state,
the difference between the real accelerations of a constrained mechanical sys-
tem and the accelerations it would have in the absence of these constraints is
proportional to the extent to which these latter accelerations violate the corre-
sponding constraints.

The following derivation of Udwadia-Kalaba methodology is adapted from
Udwadia and Kalaba (2002) and Udwadia and Phohomsiri (2007a). Let S be
a mechanical system for which are defined ν0 generalized coordinates, repre-
sented by the column-matrix q⟨0⟩, and ν1 quasi-velocities, represented by the
column-matrix q⟨1⟩. Assume that in the absence of some constraints the equa-
tions of motion of S can be expressed by Af + If = 0, with Af and If being



90

column-matrices representing, respectively, the generalized active forces and
the generalized active forces associated to the quasi-velocities q⟨1⟩. Consider
that If = −M(t, q⟨0⟩, q⟨1⟩) q̇⟨1⟩ + Gf (t, q⟨0⟩, q⟨1⟩) and suppose that there exists a
column-matrix Cf constituted by generalized constraint forces, such that when
no constraints are neglected, the equations of motion of S are given by:

M q̇⟨1⟩ = Af + Gf + Cf (3.136)

Assume that all δrk = 0 and all δṙk = 0. In this case, Postulate A, see equa-
tion (3.48), can be stated as follows: for every variation δrk compatible with
the constraints of S, it can be stated that δr̈k · Cfk ≥ 0, with rk representing
the position vector of a point pk of S with respect to an inertial reference frame
and Cfk representing the constraint force acting in this point. Analogously to
equations (3.110, 3.111), define:

Cf =
∑

k

Vk · Cfk with Vk =
∂rk
∂q⟨0⟩

∂q̇⟨0⟩

∂q⟨1⟩
(3.137)

Once, δr̈k = Vk δq̇⟨1⟩, then, using equation (3.137), it can be stated that Postu-
late A for system S can be stated as follows:

(
δq̇⟨1⟩

)T (Cf
)
≥ 0 (3.138)

Unlike usual formulations, Udwadia-Kalaba methodology enables a straight-
forward derivation for the equations of motion of mechanical systems in which
the total work done by all the constraint forces may not be zero. For this, it is
assumed that there exists a function Cf ∗, empirically determined, such that for
every variation δq̇⟨1⟩ compatible with the constraints of S:

(
δq̇⟨1⟩

)T (Cf
)
=
(
δq̇⟨1⟩

)T (Cf ∗
)

(3.139)

Thus, even if Cf is a priori unknown (note that it is not necessary that Cf = Cf ∗),
it is possible to obtain the virtual power associated with the constraint forces of
S. When the total work of the constraint forces is equal to zero, it can be simply
assumed that Cf ∗ = 0.

Consider that the independent generalized constraint invariants of S can
be expressed as follows:

A q̇⟨1⟩ + b⟨1⟩ = 0 (3.140)

Assume that M is an invertible matrix and define Ǎ = AM−1/2. The general
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solution of equation (3.140) is given by (UDWADIA; PHOHOMSIRI, 2007a):

M1/2 q̇⟨1⟩ = −ǍP b⟨1⟩ +
(
1− ǍP Ǎ

)
w (3.141)

with w ∈ Rν1 representing an arbitrary column-matrix and ǍP denoting the
Moore-Penrose pseudo-inverse of matriz Ǎ. It can also be stated that:

ǍM1/2 δq̇⟨1⟩ = 0 ⇒ M1/2 δq̇⟨1⟩ =
(
1− ǍP Ǎ

)
z (3.142)

with z ∈ Rν1 representing an arbitrary column-matrix. From equations (3.136),
(3.141) and (3.142), it can be stated that:

(
δq̇⟨1⟩

)T (Cf
)
=
(
M1/2 δq̇⟨1⟩

)T
M−1/2

(
Cf
)

= zT
(
1− ǍP Ǎ

)T(
M1/2 q̇⟨1⟩ −M−1/2

(
Gf + Af

))

= zT
(
1− ǍP Ǎ

)T(− ǍP b⟨1⟩ +
(
1− ǍP Ǎ

)
w −M−1/2

(
Gf + Af

)
) (3.143)

For further simplifications of this expression, the following identities must be
considered (UDWADIA; PHOHOMSIRI, 2007a):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
1− ǍP Ǎ

)T
=
(
1− ǍP Ǎ

)

(
1− ǍP Ǎ

)(
1− ǍP Ǎ

)
=
(
1− ǍP Ǎ

)

(
1− ǍP Ǎ

)
ǍP = 0

(3.144)

Applying these identities to equation (3.143), it can be stated that:

(δq̇⟨1⟩)T
(
Cf
)
= zT

((
1− ǍP Ǎ

)
w −

(
1− ǍP Ǎ

)
M−1/2

(
Gf + Af

))
(3.145)

On the other hand:

(δq̇⟨1⟩)T
(
Cf
)
= (δq̇⟨1⟩)T

(
Cf ∗
)
= (M1/2 δq̇⟨1⟩)TM−1/2

(
Cf ∗
)
=

zT
(
1− ǍP Ǎ

)
M−1/2

(
Cf ∗
)

(3.146)

Combining expressions (3.145) and (3.146), it can be stated that:

zT
((
1− ǍP Ǎ

)
w −

(
1− ǍP Ǎ

)
M−1/2(Gf + Af + Cf ∗)

)
= 0 (3.147)

Once this identity must be true for any values chosen for the components of z ,
then it is necessary and sufficient that:

(
1− ǍP Ǎ

)
w =

(
1− ǍP Ǎ

)
M−1/2

(
Gf + Af

)
+
(
1− ǍP Ǎ

)
M−1/2

(
Cf ∗
)

(3.148)

Noting that, in the absence of the constraints represented by equation (3.140),
the generalized accelerations are given by q̇⟨1⟩• =M−1(Gf + f ), it can be stated
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that, replacing equation (3.148) in (3.141), leads, after factorization, to the fol-
lowing equation (UDWADIA; PHOHOMSIRI, 2007a):

q̇⟨1⟩ − q̇⟨1⟩• =−M−1/2 ǍP(A q̇⟨1⟩• + b⟨1⟩)

+M−1/2
(
1− ǍP Ǎ

)
M−1/2 Cf ∗ (3.149)

Pre-multiplying this last equation by M and using equation (3.136), it can be
stated that:

Cf = −M1/2 ǍP(A q̇⟨1⟩• + b⟨1⟩) +M1/2
(
1− ǍP Ǎ

)
M−1/2

(
Cf ∗
)

(3.150)

An alternative approach presented by Udwadia and Phohomsiri (2006) al-
lows the derivation of similar equations of motion even when M is a singular
matrix. First of all, consider that:

A δq̇⟨1⟩ = 0 ⇒ δq̇⟨1⟩ =
(
1− APA

)
ž (3.151)

with z ∈ Rν1 representing an arbitrary column-matrix. Replacing this identity in
equation (3.139), leads to:

žT
(
1− APA

)T (Cf
)
= žT

(
1− APA

)T (Cf ∗
)

(3.152)

Using equation (3.136) along with the identities (3.144) and, considering that ž
is arbitrary, it can be stated that:

(
1− APA

)
M q̇⟨1⟩ =

(
1− APA

)
(Gf + Af + Cf ∗) (3.153)

Equations (3.140) and (3.153) can be represented in the following matrix form:
⎡

⎢⎣

(
1− APA

)
M

A

⎤

⎥⎦ q̇⟨1⟩ =

⎡

⎢⎣

(
1− APA

)
(Gf + Af + Cf ∗)

−b⟨1⟩

⎤

⎥⎦ (3.154)

If [ MT AT ]T is a full rank matrix10, it can be stated that (UDWADIA; PHOHOM-

SIRI, 2006):

q̇⟨1⟩ =

⎡

⎢⎣

(
1− APA

)
M

A

⎤

⎥⎦

P ⎡

⎢⎣
(Gf + Af + Cf ∗)

−b⟨1⟩

⎤

⎥⎦ (3.155)

Udwadia and Schutte (2010) present a third variant of this methodology,
10 This condition might be satisfied even in cases in which M is a singular matrix, being a

less restrictive condition than the one necessary to be able to use equation (3.149).
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that uses inertia matrices of the form M + α2APA, which are positive-definite
matrices (and, therefore, non-singular) for every α ̸= 0, whenever M is at
least semi-positive-definite. Udwadia and Wanichanon (2010) do an exten-
sive discussion on the modeling of nonholonomic systems and on the so-called
Hamel’s paradox: unlike in the modeling of holonomic systems, in which some
coordinate transformations might lead to identically satisfied constraint equa-
tions, for nonholonomic systems, similar variable eliminations might lead to
wrong equations of motion.

Falco, Pennestrì and Vita (2005) and Pennestrì and Valentini (2004) com-
pare the efficiency of different strategies for implementing numerical simulation
algorithms based in Udwadia-Kalaba methodology, discussing their use in ed-
ucation and other applications in Multibody System Dynamics in comparison to
conventional methodologies. Pennestrì, Valentini and Falco (2010) discuss the
use of Udwadia-Kalada methodology in the formulation of equations of motion
of flexible multibody systems.

Finally, it is worth mentioning that non-linear tracking control, particularly
inverse dynamics problems can be conceived as determining the generalized
constraint forces related to a set of extra constraints that represent a desired
trajectory. Thus, Udwadia-Kalaba methodology becomes an alternative to
solve such problems, once explicit expressions as the one presented in equa-
tion (3.150) can be used to find the expressions of these extra generalized
constraint forces that represent the effect to the actuators in the motion of the
system (UDWADIA; PHOHOMSIRI, 2007b; UDWADIA, 2006; UDWADIA, 2003).
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4 Modular modeling methodology for
multibody systems

In his extensive literature review “Multibody System Dynamics: Roots and
Perspectives”, Schiehlen (1997) points out the necessity of introducing a stan-
dardized, formalism-independent description format that “would permit the al-
ternate use of validated multibody system models with different simulation sys-
tems”:

The goal of such a standardization process is the unification and
standardization of the neutral data format, independent of any for-
malism. Only by means of such a standardization it will be possible
in future to achieve a situation in which a single, unique model de-
scription is sufficient for describing a mechanical system with preci-
sion to make it accessible for analysis using any program package
or formalism. The standardized model description is then used as
the basis for the input. In a first step the input format required by
the relevant formalism is generated from the standardized model
description and evaluated using a preprocessor or converter. In a
subsequent step, the formalism generates the mathematical model
equations. (SCHIEHLEN, 1997, p. 15)

This chapter presents a novel modeling methodology to accomplish this
goal by deriving the equations of motion of a multibody system from already
known models of its subsystems. This novel methodology is not only modu-
lar and recursive, allowing to express the mathematical model of a multibody
system in a standardized format, but also formalism-independent, once the for-
malisms used in the derivations of the models of the subsystems, ultimately,
do not have any influence in the overall modeling procedure.

In the first section, a general and standardized form of the equations of
motion of a multibody system is presented along with an illustrative and di-
dactic example in which a spherical pendulum is modeled using different sets
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of generalized coordinates. Section 4.2 presents the novel recursive modular
modeling algorithm, which is the central contribution of this thesis. Two didactic
examples are discussed to illustrate the generality of this modeling procedure,
one of them being the continuation of the modeling of a planar 5-bar mecha-
nism (started in Section 2.5). Sections 4.3 and 4.4 present sufficient conditions
for the existence of solutions for the forward and inverse dynamics problems,
respectively, whenever a standard mathematical model derived according to
the novel methodology presented in this text is provided. The examples dis-
cussed in these sections come with numerical simulations performed in Wol-
fram Mathematica 10.2. Section 4.5 extends the modeling methodology for the
derivation of linearized equations of motion, providing a procedure that does
not require the full derivation of a non-linear model prior to the linearization.
Finally, Section 4.6 is devoted to a qualitative comparison between modeling
methodologies, in which the conventional ones, discussed in Chapter 3, are
assessed along with the novel methodology presented in this text.

Complementing the content of this chapter, Appendix A discusses the use
of energy-like functions in the modeling of multibody systems. It is divided in
three sections: Section A.1 presents some results that allow the derivation of
the generalized inertia forces associated to a system from the corresponding
expressions of kinetic energy or Gibbs-Appell function; Section A.2 shows the
derivations of the expressions for the kinetic energy and Gibbs-Appell function
of a rigid body, and Section A.3 uses these results to derive a general expres-
sion for the generalized inertia forces associated to a multi-rigid-body system.

4.1 General form of equations of motion of a
multibody system

Let M denote a ν#-DOF system whose constraint order is equal to ν◦. As-
sume that ν# is a finite integer such that the motion of M can be described by
tracking the trajectories of a finite number of points pk ofM. Consider also that
the force system representing both active and inertia forces acting acting in M

is represented by an effective force fk applied to each point pk . Let N denote
an inertial reference frame and rk denote the position vector of pk with respect
to a point fixed to N. Adopt the following shorthand notation r(ρ)k = dρrk/dtρ.

The ρ-th order variational principle1 for M can be stated as follows (see

1 If ρ > 0 it is assumed that all the δr(α)k = 0 for all α such that 0 ≤ α ≤ ρ− 1.
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Section 3.2.2):

∑

k

δr(ρ)k · fk ≤ 0 (4.1)

In order to obtain a more general version of principle (4.1), let v ⟨ρ⟩ denote a
tuple (or column-vector) of ρ-th order motion variables and f ′ denote a tuple (or
column-vector) of generalized effective forces associated to these motion vari-
ables. Assume that the set of motion variables constituting v ⟨ρ⟩ is sufficient to
describe the instantaneous kinematics of M up to ρ-th order whenever the de-
scription up to (ρ−1)-th order is already known. Moreover, if x and y represent
two tuples (or column-matrices) of the same vector space Rν , define:

x · y = xT y = yT x = y · x (4.2)

Adopting this notation and assuming that, if ρ > 0 then the variation of any
motion variable of a lower order than ρ-th is equal to zero (in shorthand notation,
δv⟪ρ−1⟫ = 0), it can be stated that the ρ-th order variational principle for system
M, can be expressed as follows:

δv ⟨ρ⟩ · f ′ ≤ 0 (4.3)

Note that if both equations (4.1) and (4.3) represent two versions of the ρ-th
order variational principle for the same system M, then it is necessary that
δv ⟨ρ⟩ · f ′ =

∑
k δr

(ρ)
k · fk .

Particularly, consider that v ⟨ρ⟩ can be expressed as a function of time and
generalized variables of the model ofM up to ρ-th order, i.e. v ⟨ρ⟩ = v ⟨ρ⟩

(
t, q⟪ρ⟫).

Choose an integer σ such that σ ≥ ρ and σ ≥ ν◦ and assume that at a time
instant t∗ the values of q⟪σ−1⟫(t∗) are known and do not correspond to any
singular configuration ofM. Adopt δq⟪σ−1⟫(t∗) = 0. Also, suppose that there is
a time interval Ω in the neighborhood of t∗ such that f ′ is a classC0(Ω) function
(i.e. a continuous function in Ω). According to Theorem 2.8, it can be stated
that, in a time instant (t∗ + εt) ∈ Ω, with εt ≥ 0:

(
εσ−ρt

(σ − ρ)! V S
∼
q⟨σ⟩(t∗) + o(εσ−ρt )

)
· (f ′(t∗) + o(1)) ≤ 0

(
V S

∼
q⟨σ⟩(t∗)

)
· f ′(t∗) +

(σ − ρ)! o(εσ−ρt )

εσ−ρt

≤ 0

∼
q⟨σ⟩(t∗) ·

(
ST V T f ′(t∗)

)
+

(σ − ρ)! o(εσ−ρt )

εσ−ρt

≤ 0 (4.4)
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Taking the limit εt → 0, it can be stated that:

∼
q⟨σ⟩(t∗) ·

(
ST V T f ′(t∗)

)
≤ 0 (4.5)

Values of ∼
q⟨σ⟩(t∗) are infinitesimals that can be freely chosen, being the satis-

faction of the motion constraints ensured, unless the generalized configuration
q⟨σ−1⟩(t∗) is singular. Thus, the inequality (4.5) must remain the same if ∼

q⟨σ⟩(t∗)

is replaced by − ∼
q⟨σ⟩(t∗), which means that:

ST V T f ′ = 0 (4.6)

Thus, if q⟨σ−1⟩(t∗) is known, equation (4.6) can be used to determine the evo-
lution of the motion of this system, leading ultimately, along with the constraint
invariants of M, to values of q̇⟨σ−1⟩(t∗). Thus, interpreting this as an initial con-
ditions problem, shows that is not just an expression for an invariant valid at
some time instant t∗ but a general matrix form of the dynamic equations of
motion of M.

Example 4.1 (Modeling of a spherical pendulum). Denote by N an inertial ref-
erence frame and let N = (o, x̂, ŷ, ẑ) be a coordinate system rigidly attached
to N. Assume that the unit vector x̂ points in the same direction as the local
acceleration of gravity. Let P denote a material particle whose mass is equal
to m constrained to move in a spherical surface of radius r̄ and centered at o.
The system constituted by N and P will be referred as a spherical pendulum
P. Two mathematical models are derived for P:

Model in spherical coordinates Once P is constrained to move in a spherical
surface, a description by spherical coordinates is an immediate choice.
Once the radial coordinate is constant and equal to r̄ , only the zenith angle
(θ) and azimuth angle (φ) are sufficient as generalized coordinates of P.
Assume that this model has trivial generalized variables. Denoting by r

the position vector of the center of P with respect to N, it can be stated
that:

r = r̄ (cθ x̂+ cφ sθ ŷ + sφ sθ ẑ) (a)
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Let v ⟨0⟩ = [r]N = (x, y , z). Once f = −m r̈+mg x̂, then:

f ′ =

⎡

⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎦

x mg +mr̄
(
cθ θ̇2 + sθ θ̈

)

y −mr̄
(
cθ
(
cφ θ̈ − 2 sφ φ̇ θ̇

)
− sθ

(
cφ
(
φ̇2 + θ̇2

)
+ sφ φ̈

))

z −mr̄
(
sθ
(
cφ φ̈− sφ

(
φ̇2 + θ̇2

))
+ cθ

(
2 cφ φ̇ θ̇ + sφ θ̈

))
(b)

Also, from equation (a):

φ θ
⎡

⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎦
V =

x 0 −r̄ sθ

y −r̄ sφsθ r̄ cφsθ

z r̄ cφsθ r̄ sφcθ

(c)

Finally, once no generalized constraint invariants are needed to describe
the constraints of M, it can be assumed that S = 1. The dynamic equa-
tions of motion of P are given by:

⎡

⎣

⎤

⎦φ −mr̄ 2sθ
(
2 cθ φ̇ θ̇ + sθ φ̈

)

= 0
θ −mgr̄ sθ +mr̄ 2

(
sθ cθ φ̇2 − θ̈

) (d)

After some algebraic simplification, these equations of motion can be writ-
ten as follows:

⎧
⎪⎪⎨

⎪⎪⎩

φ̈ = −
2 cθ φ̇ θ̇

sθ

θ̈ = sθ
(
cθ φ̇

2 −
g

r̄

) (e)

The singularity sθ = 0 in equation (e) is inherent from a description by
spherical coordinates. Indeed, when sθ = 0, any variation in the coor-
dinate φ will not correspond to any variation in the configuration of the
system, as can be noticed in equation (a).

Model in Cartesian coordinates (first version) Consider, on the other hand,
that the Cartesian coordinates of the center of P are adopted as gener-
alized coordinates, i.e. q⟨0⟩ = (x, y , z). Assume again that the model
has trivial generalized variables. In this case the position vector r can be
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written as follows:

r = x x̂+ y ŷ + z ẑ (f)

with the coordinates x , y e z satisfying the following invariant:

q̄⟨0⟩ = x2 + y 2 + z2 − r̄ 2 = 0 (g)

Note that, in this case the constraint order of P is ν◦ = 1 Adopting, for
instance σ = 2 and v ⟨2⟩ = q̈⟨0⟩, it can be stated that:

⎡

⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎦
f ′ =

ẍ m g −m ẍ

ÿ −m ÿ

z̈ −m z̈

(h)

Note also that V = 1. Moreover,

ẍ ÿ z̈
[ ]

A = 2x 2y 2z
(i)

A possible orthogonal complement for A, in this case, is:

∼
q1

∼
q2

⎡

⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎦
S =

ẍ −y −z

ÿ x 0

z̈ 0 x

(j)

The equations of motion ofP can be given by the second time derivative
of equation (g) along with the dynamic equations of the form (4.6). These
equations of motion can be reorganized in matrix form as follows:

⎡

⎢⎢⎢⎢⎣

2 x 2 y 2 z

−y 0 y

−z x 0

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

ẍ

ÿ

z̈

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

−2(ẋ2 + ẏ 2 + ż2)

−g y

−g z

⎤

⎥⎥⎥⎥⎦
(k)

After some algebraic manipulation, these equations can be written in an
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explicit form:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẍ =
g

r̄ 2
(
y 2 + z2

)
−

1

r̄ 2
x
(
ẋ2 + ẏ 2 + ż2

)

ÿ = −
g

r̄ 2
x y −

1

r̄ 2
y
(
ẋ2 + ẏ 2 + ż2

)

z̈ = −
g

r̄ 2
x z −

1

r̄ 2
z
(
ẋ2 + ẏ 2 + ż2

)

(l)

The description in Cartesian coordinates does not have any intrinsic sin-
gularity and no trigonometric functions are involved in the equations of
motion, which are polinomial (this might be an advantage in terms of nu-
merical simulations).

Model in Cartesian coordinates (second version) A brief analysis at equa-
tions (l) shows that it might be useful to define a new quasi-velocity in or-
der to simplify the mathematical model of P. From now on assume that
q⟨0⟩ = (x, y , z) and q⟨1⟩ = (ẋ , ẏ , ż ,υ), with trivial generalized variables
above first order. Two generalized constraint invariants are required in
this case, for instance:

q̄⟨1⟩ =

⎡

⎢⎣
2xẋ + 2y ẏ + 2zż

ẋ2 + ẏ 2 + ż2 − υ

⎤

⎥⎦ = 0 (m)

Now the constraint order of the model is ν◦ = 2 and:

ẍ ÿ z̈ υ̇
⎡

⎣

⎤

⎦A =
2x 2y 2z 0

2ẋ 2ẏ 2ż −1

(n)

Noting that the generalized effective forces associated to υ̇ are zero, it
can be stated that following the same procedure which led to the previous
models ofP, the following explicit equations of motion are obtained in this
case:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẍ = g −
x (υ + g x)

r̄ 2

ÿ = −
y (υ + g x)

r̄ 2

z̈ = −
z (υ + g x)

r̄ 2

υ̇ = 2 g ẋ

(o)
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It is evident that the last equation of the system (o) comes from the time
derivative of the mechanical energy ofP. Indeed, the mechanical energy
of the spherical pendulum can be expressed as follows:

E =
m

2
(υ − 2 g x) (p)

Once P is a conservative system, then Ė = 0, which leads to the last
equation of system (o).

4.2 Recursive modular modeling algorithm

In the previous section it was shown that the following three steps are suf-
ficient for obtaining the dynamic equations of motion of a multibody system:

(1) Obtain expressions of generalized effective forces (i.e. the sum of gener-
alized active and inertia forces) associated to a generic set of ρ-th order
motion variables.

(2) Determine a transformation matrix associated to the conversion between
variations of these generic ρ-th order motion variables and variations of
σ-th order generalized variables for some σ ≥ max{ρ, ν◦}.

(3) Compute an orthogonal complement of the Jacobian of the σ-th order
independent generalized constraint invariants.

Consider that a multibody system is divided in subsystems. The first and sec-
ond steps can be performed within the scope of each subsystem2, being only
necessary to consider the motion constraints between the subsystems in the fi-
nal step. Thus, the techniques presented in Section 2.5 can be used to develop
a recursive modular modeling algorithm for multibody systems.

Consider a generic multibody system which can be conceived as a hier-
archical structure of subsystems representable by a tree diagram. Following
the convention presented in Section 2.5, letMn denote a generic system at the
n-th level of a tree structure (with M0 denoting the whole system itself). and
denote by S(Mn) the set of all subsystems of Mn. Moreover, let q⟨α⟩Mn

denote
the tuple (or column-matrix) of α-th order generalized variables used in the de-
scription of motion of Mn. If S(Mn) is not an empty set, then it can be stated

2 Even though some constitutive equations might lead to expressions of generalized effec-
tive forces that involve variables associated to more than one subsystem, each generalized
force is associated to a single subsystem.
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that q⟨α⟩Mn
is constituted both by variables coming from the models of the subsys-

tems of Mn, and by extra variables specially chosen for modeling Mn, if any,
i.e. q⟨α⟩Mn

=
(
q⟨α⟩Mn.⊕

,
(
. . . , q⟨α⟩Mn+1

, . . .
))

for all Mn+1 ∈ S(Mn). Analogously, let q̄⟨α⟩Mn

denote the tuple (or column-matrix) constituted by the α-th order generalized
constraint invariants of Mn. If S(Mn) is not an empty set, then it can be stated
that q̄⟨α⟩Mn

is constituted both by invariants describing the internal constraints of
the subsystem ofMn, if any, and by the invariants describing the (external) con-
straints among these subsystems, if any, i.e. q̄⟨α⟩Mn

=
(
q̄⟨α⟩Mn.⊕

,
(
. . . , q̄⟨α⟩Mn+1

, . . .
))

for all Mn+1 ∈ S(Mn).

Focus the attention to the cases in which S(Mn) = ∅, i.e. Mn has no
subsystems, being a leaf in the tree structure representing system M0. Define
the unconstrained generalized effective forces of Mn, fMn , and the constrained
generalized effective forces of Mn f̄Mn , as follows:

fMn = VMn · f ′Mn = V
T
Mn
f ′Mn (4.7)

f̄Mn = CMn · fMn = CT
Mn
fMn (4.8)

Noting that if S(Mn) = ∅ then CMn = SMn (see Section 2.5), it can be stated
that, according to equation (4.6), the dynamic equations of motion of Mn when
it is not constrained to any other system are given by f̄Mn = 0.

Consider now that S(Mn) is not empty, i.e. Mn has its own subsys-
tems. Once q⟨α⟩Mn

=
(
q⟨α⟩Mn.⊕

,
(
. . . , q⟨α⟩Mn+1

, . . .
))

for all Mn+1 ∈ S(Mn), let δv ⟨ρ⟩Mn
=

(
δq⟨ρ

|σ⟩
Mn.⊕
,
(
. . . , δv ⟨ρ⟩Mn+1

, . . .
))

for all Mn+1 ∈ S(Mn). Thus,

VMn =
(
VMn.⊕.⊕,

(
. . . , VMn+1, . . .

))
with VMn.⊕.⊕ = 1, ∀Mn+1 ∈ S(Mn) (4.9)

f ′Mn =
(
fMn.⊕,

(
. . . , f ′Mn+1

, . . .
))
, ∀Mn+1 ∈ S(Mn) (4.10)

with fMn.⊕ denoting the generalized effective forces associated with the extra
generalized variables of Mn.

From Theorem 2.10, it can be stated that equation (4.6) for Mn can be
written as follows:

f̄Mn = S
T
Mn
V T
Mn
f ′Mn = 0

f̄Mn = C
T
Mn
RT

Mn
V T
Mn
f ′Mn = 0

f̄Mn = C
T
Mn

(
fMn.⊕,

(
. . . ,ST

Mn+1
V T
Mn+1
f ′Mn+1

, . . .
))

= 0, ∀Mn+1 ∈ S(Mn)

f̄Mn = C
T
Mn

(
fMn.⊕,

(
. . . , f̄Mn+1, . . .

))
= 0, ∀Mn+1 ∈ S(Mn) (4.11)
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Defining the unconstrained generalized effective forces of Mn, fMn , by:

fMn =
(
fMn.⊕,

(
. . . , f̄Mn+1, . . .

))
(4.12)

it can be stated that, according to equation (4.11), the constrained generalized
effective forces of Mn, f̄Mn , are given by equation (4.8), i.e.:

f̄Mn = CMn · fMn = CT
Mn
fMn

Therefore, a recursive algorithm can be proposed for the modeling of multi-
body systems which can be represented by a hierarchy of subsystems. All the
computations must begin at the deepest levels of the tree structure, followed by
the corresponding parents, representing a “leaves-to-root” algorithm (i.e. the
algorithm can only be applied to a node in the tree if it was already applied to
all its descendants). The algorithm must be defined for two cases based on
whether or not Mn has subsystems.

Case 1A: Mn has no subsystems, S(Mn) = ∅, and its model is already known

(1) Identify the constraint order ν◦Mn and the α-th order generalized vari-
ables of Mn, q⟨α⟩Mn

, for all α such that 0 ≤ α ≤ ν◦Mn .

(2) Identify the expressions, if any, of the α-th generalized constraint
invariants of Mn, q⟨α⟩Mn

, for all α such that 0 ≤ α ≤ ν◦Mn .

(3) If there are any non-degenerate ν◦Mn-th order generalized constraint
invariants of Mn, identify the expression of AMn , let BMn = AMn and
obtain an expression (if not already known) for an orthogonal com-
plement CMn ; else, adopt CMn = 1.

(4) If the already known dynamic equations of motion of Mn involve un-
determined multipliers, pre-multiply them by CT

Mn
in order to eliminate

these auxiliary variables. Obtain the expressions for f̄Mn .

(5) Adopt SMn = CMn .

Case 1: Mn has no subsystems, S(Mn) = ∅

(1) Choose a set of generalized variables for Mn and identify its con-
straint order ν◦Mn .

(2) Write down the non-trivial expressions of the invariants
c̄ ⟨α+1⟩
Mn

(t, q⟪α+1⟫
Mn

, q̇⟨α⟩Mn
) = 0 defining the transformations of vari-

ables between the q̇⟨α⟩Mn
and the q⟨α+1⟩

Mn
.
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(3) Obtain, if necessary, expressions for the α-th generalized constraint
invariants of Mn, q̄⟨α⟩Mn

(t, q⟪α⟫Mn
) = 0, for all α such that 0 ≤ α ≤ ν◦Mn .

(4) If there are any non-degenerate ν◦Mn-th order generalized constraint
invariants of Mn, identify the expression of AMn , let BMn = AMn and
obtain an expression for an orthogonal complement CMn ; else, adopt
CMn = 1.

(5) Consider that it is possible to completely describe the effective force
system acting in Mn by a tuple (or column-matrix) f ′Mn of general-
ized effective forces associated to a set of generic ρ-th order motion
variables v ⟨ρ⟩Mn

. Obtain the expressions for these motion variables in
terms of time and of the generalized variables of the model of Mn,
i.e., v ⟨ρ⟩Mn

= v ⟨ρ⟩Mn
(t, q⟪ρ⟫Mn

). Choose some σ ≥ max{ν◦Mn , ρ} and compute
VMn by equation (2.21):

VMn =
∂v ⟨ρ⟩Mn

∂q⟨ρ⟩Mn

∂q⟨σ
|ρ⟩

Mn

∂q⟨σ⟩Mn

(6) Obtain fMn = V T
Mn
f ′Mn .

(7) Obtain f̄Mn = CT
Mn
fMn .

(8) Adopt SMn = CMn .

Case 2: Mn has subsystems, S(Mn) ̸= ∅

(1) Define extra generalized variables if convenient, and let q⟨α⟩Mn
=

(
q⟨α⟩Mn.⊕

,
(
. . . , q⟨α⟩Mn+1

, . . .
))

for all Mn+1 ∈ S(Mn). Identify the constrain
order ν◦Mn of the system noting that ν◦Mn ≥ ν

◦
Mn+1

for allMn+1 ∈ S(Mn).

(2) Obtain, if necessary, expressions for the external generalized con-
straint invariants of Mn, q̄⟨α⟩Mn

for all α such that 0 ≤ α ≤ ν◦Mn .

(3) Choose an integer σ ≥ ν◦Mn and write down all the σ-th order gener-
alized constraints of Mn as follows: q̄⟨σ⟩Mn

= AMn q
⟨σ⟩
Mn

+ b⟨σ−1⟩Mn
.

(4) Following the statement of Theorem 2.10 define RMn by equa-
tion (2.34):

RMn =
(
RMn.⊕.⊕,

(
. . . ,SMn+1, . . .

))
with RMn.⊕.⊕ = 1, ∀Mn+1 ∈ S(Mn)

(5) If AMn.⊕ is an empty matrix, adopt CMn = 1, else obtain CMn as an
orthogonal complement of BMn = AMn.⊕ RMn .

(6) If necessary, include extra generalized effective force associated
to the extra ρ-th order generalized variables of Mn, and let fMn =
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(
fMn.⊕,

(
. . . , f̄Mn+1, . . .

))
for all Mn+1 ∈ S(Mn).

(7) Obtain f̄Mn = CT
Mn
fMn .

(8) Compute, by equation (2.35), SMn = RMn CMn (this last step is op-
tional for the root level, i.e. for M0).

A simplified comparison between “Case 1” and “Case 2” algorithms is
shown in Table 4.1. The first three rows in this table are constituted by steps
of the algorithm which can not be completely automated, requiring some input
from the user. The following rows, however, represent steps of the algorithms
that can be fully automated in both cases.

Table 4.1: Comparison between “Case 1” and “Case 2” algorithms

Case 1: S(Mn) = ∅ Case 2: S(Mn) ̸= ∅

q⟨α⟩Mn
Input (q⟨α⟩Mn.⊕

, (. . . , q⟨α⟩Mn+1
, . . .))

q̄⟨σ⟩Mn
AMn q

⟨σ⟩
Mn

+ b⟨σ−1⟩Mn
AMn q

⟨σ⟩
Mn

+ b⟨σ−1⟩Mn

fMn V T
Mn
f ′Mn , with VMn =

∂v ⟨ρ⟩Mn

∂q⟨ρ⟩Mn

∂q⟨σ|ρ⟩
Mn

∂q⟨σ⟩Mn

(fMn.⊕, (. . . , f̄Mn+1, . . .))

RMn 1
(RMn.⊕.⊕, (. . . ,SMn+1, . . .))

withRMn.⊕.⊕ = 1

BMn AMn AMn.⊕ RMn

CMn An orthogonal compl. of BMn An orthogonal compl. of BMn

SMn CMn RMn CMn

f̄Mn CT
Mn
fMn CT

Mn
fMn

Example 4.2. Consider the system S shown in Figure 4.1 and suppose that
it is composed by two subsystems, R and D, the former constituted only by
a rigid thin homogeneous ring B1 whose center is b⋆1 and the latter constituted
only by a rigid massive homogeneous disc B2 whose center is b⋆2. Assume
that B1 and B2 can only perform plane motions in a vertical plane. Let N =

(o, x̂, ŷ, ẑ) be a coordinate system rigidly attached to an inertial reference frame
N. Assume that there is an inclined plane which makes an angle ξ̄ with respect
to the horizontal and remains fixed with respect toN. Let ŷ be orthogonal to this
inclined plane and ẑ be orthogonal to the planes defined by the trajectories of
the points of B1 and B2. Define q⟨1⟩R = (u1, v1,ω1) and q⟨1⟩D = (u2, v2,ω2) with uk
and vk denoting the x and y components in N of the velocity of b⋆k with respect



106

p1 p2

b?1

b?2

⇠̄

✓

x̂

ŷ

Figure 4.1: System S.

to N and ωk denoting the z component in N of the angular velocity of Bk with
respect to N, k ∈ {1, 2}. Denote by m̄k the mass of Bk , by Īk its moment of
inertia with respect to b⋆k and by r̄k its corresponding radius, k ∈ {1, 2}. Due
to the homogeneous mass distribution of the rigid bodies, it can be stated that
Ī1 = m̄1 r̄ 21 and Ī2 = m̄2 r̄ 22 /2. Also, let ḡ = ḡ(sin ξ̄ x̂ − cos ξ̄ ŷ), be the local
acceleration of gravity. It can be stated that:

⎡

⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎦
f̄R =

u1 −m̄1(u̇1 − ḡ sin ξ̄)

v1 −m̄1(v̇1 + ḡ cos ξ̄)

ω1 −Ī1 ω̇1

⎡

⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎦
f̄D =

u2 −m̄2(u̇2 − ḡ sin ξ̄)

v2 −m̄2(v̇2 + ḡ cos ξ̄)

ω2 −Ī2 ω̇2

(a)

It can also be assumed that SR = CR = 1 and SD = CD = 1.

Assume that in S, the ring B1 rolls without slipping down the inclined plane
and the disc B2 rolls without slipping on the internal surface of the ring. Sup-
pose that in a particular motion the angle between the line b⋆1b

⋆
2 and the vertical

is constant and equal to θ̄. Holics(2011) proposes to find a relation between
the ratio m̄2/m̄1 and the angles θ̄ and ξ̄. For this, adopt an extra generalized
coordinate for S, θ, denoting the clockwise angle between the line b⋆1b

⋆
2 and the

vertical, let q⟨0⟩S = (θ) and q⟨1⟩S = (θ̇, u1, v1,ω1, u2, v2,ω2), and assume that the
generalized variables of S are trivial above first order.

Let p1 and p2 denote the contact points between B1 and the inclined plane
and between B2 and B1, respectively. Denote by p1(N) and p1(B1) points that
instantaneously coincide with p1 and move along with N and B1, respectively.
Analogously, define p2(B1) and p2(B2). Due to the “roll without slipping” con-
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straint, it is necessary that:

vp1(N)|N = vp1(B1)|N ⇒ 0 = vb⋆1 |N
+ ωB1 |N × rp1 |b⋆1 (b)

vp2(B1)|N = vp2(B2)|N ⇒ vb⋆1 |N
+ ωB1 |N × rp2 |b⋆1 = vb⋆2 |N

+ ωB2 |N × rp2 |b⋆2 (c)

It can also be stated that:

u2 − u1 =
d

dt

(
(r̄1 − r̄2) sin(ξ̄ − θ)

)
(d)

Thus, due to equations (b–d), it can be stated that the external constraint in-
variants of S are the following:

q̄⟨1⟩S =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1 + ω1r̄1

v1

u1 − u2 + cos
(
ξ̄ − θ

)
ω1r̄1 − cos

(
ξ̄ − θ

)
ω2r̄2

v1 − v2 + sin
(
ξ̄ − θ

)
ω1r̄1 − sin

(
ξ̄ − θ

)
ω2r̄2

−u1 + u2 + cos
(
ξ̄ − θ

)
θ̇ (r̄1 − r̄2)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(e)

Adopting the notation c•θ = cos(ξ̄ − θ) and s•θ = sin(ξ̄ − θ), it can be stated that:

θ̇ u1 v1 ω1 u2 v2 ω2
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

AS =

0 1 0 r̄1 0 0 0

0 0 1 0 0 0 0

0 1 0 c•θ r̄1 −1 0 −c•θ r̄2

0 0 1 s•θ r̄1 0 −1 −s•θ r̄2

c•θ (r̄1 − r̄2) −1 0 0 1 0 0

(f)
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A possible expression for matrix CS is the following:

θ̇ ω2
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

CS =

θ̇ 1 0

u1 r̄1 − r̄2 −r̄2

v1 0 0

ω1
r̄2
r̄1
− 1

r̄2
r̄1

u2 − (c•θ − 1) (r̄1 − r̄2) −r̄2

v2 −s•θ (r̄1 − r̄2) 0

ω2 0 1

(g)

Using the modular modeling algorithm, the equations of motion of S can be
obtained. Solving these equations for the motion in which θ = θ̄, θ̇ = 0 and
θ̈ = 0 leads to the following identities:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇1 = u̇2 =
2 ḡ sin(θ̄)

2 cos(θ̄ − ξ̄) + 1

v̇1 = v̇2 = 0

ω̇1 = −
u̇1
r̄1

ω̇2 = −
u̇2
r̄2

m̄2

m̄1
=

sin(θ̄)

2 sin(ξ̄) cos(θ̄ − ξ̄)− 3 sin(θ̄) + sin(ξ̄)
− 1

(h)

Thus, it can be noted that the stable value θ̄ of the angle θ between the line
joining the centers of the ring and the disc and the vertical depends on the
slope of the inclined plane, ξ̄, and on the ratio between the masses of the disc
and the ring, m̄2/m̄1.

Example 4.3. Consider the 5-bar mechanism (system P) discussed in Exam-
ple 2.7. Assume that the models of the subsystems which are the leaves in the
tree structure are already known. The derivation of a model for the actuators
AL and AR, for instance, can be found in Craig (2005), corresponding to the
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following dynamic invariants:

f̄AK =

⎡

⎣

⎤

⎦ωK k̄K iK − ĪK ω̇K − b̄K ωK

iK υK − λ̄K diK/dt − ρ̄K iK − κ̄K ωK
(a)

In these invariants the following constants show up:

• k̄K and κ̄K are respectively the motor torque constant and the back emf
constant of the actuator AK.

• ĪK and b̄K are the inertia and the viscous damping coefficient for the rotor
of the actuator AK.

• λ̄K and ρ̄K are the inductance of armature windings and the associated
resistance of the actuator AK.

Also, υK denotes the voltage source of the actuator AK, which is an input vari-
able. Analogously, for the models of UL, UR, BL, BR and L it can be stated
that:

fUK =

⎡

⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎦

vUK,x −m̄UK v̇UK,x

vUK,y −m̄UK v̇UK,y − m̄UK ḡ

ωUK,z −ĪUK ω̇UK,z − b̄UK ωUK,z

(b)

f̄BK =

⎡

⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎦

vBK,x −m̄BK v̇BK,x

vBK,y −m̄BK v̇BK,y − m̄BK ḡ

ωBK,z −ĪBK ω̇BK,z

(c)

f̄L =

⎡

⎣

⎤

⎦ẋ −m̄L ẍ

ẏ −m̄L ÿ − m̄L ḡ
(d)

with the m̄ symbols denoting the masses of the respective rigid bodies, the Ī
symbols their moment of inertia with respect to their own centres of mass and
with ḡ denoting the magnitude of the local acceleration of gravity.

From the application of the modular modeling algorithm, it can be stated
that the dynamic equations of motion for subsystems HL and HR are given by
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the following invariants:

f̄HK =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

θ̇K

−γ̂BK āUK āBKm̄BK

(
φ̇2
KsθK−φK + φ̈KcθK−φK

)
− b̄UK θ̇K

−θ̈K
(
ā2UK

(
γ̂2
UK
m̄UK + m̄BK

)
+ ĪUK

)

−ḡāUKcθK (γ̂UKm̄UK + m̄BK)

φ̇K
−γ̂BK āBKm̄BK

(
āUK

(
θ̈KcθK−φK − θ̇2KsθK−φK

)

+γ̂BK āBKφ̈K + ḡcφK
)
− ĪBKφ̈K

(d)

Applying the recursive algorithm two other times, the models of R and P are
obtained. Particularly, for the latter one, it can be stated that:

f̄P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

iL f̄P.iL

iR f̄P.iR

θ̇L f̄P.θ̇L

θ̇R f̄P.θ̇R

= 0 (e)

with the expressions for the f̄P.iX and the f̄P.θ̇X given by (consider that when
X = L then Y = R and vice versa):

f̄P.iX = υX − λ̄X diX/dt − ρ̄X iX − κ̄X η̄X θ̇X (f)

f̄P.θ̇X =
γ̂BY āUY āUXm̄BY θ̇

2
YsθY−φYsθX−φX

sφY−φX
+
γ̂BX ā

2
UX
m̄BX θ̇

2
XsθX−φXsθX−φY

sφY−φX

− γ̂BX āUX āBXm̄BXφ̇
2
XsθX−φX − θ̇X

(
b̄Xη̄

2
X + b̄UX

)
−
āUXm̄LÿcφYsθX−φX

sφY−φX

−
γ̂BY āUY āUXm̄BY θ̈YcθY−φYsθX−φX

sφY−φX
+
āUXm̄LẍsφYsθX−φX

sφY−φX

−
āUXφ̈X
āBX

(
γ̂BX ā

2
BX
m̄BXcθX−φX +

(
γ̂2
BX
ā2BX
m̄BX + ĪBX

)
sθX−φY

sφY−φX

)

+
1

2
θ̈X

(
ā2UX

(
m̄BX

(
γ̂BX

(
1−

s−φY+2θX−φX
sφY−φX

)
− 2

)
− 2γ̂2

UX
m̄UX

)

− 2
(
ĪXη̄

2
X + ĪUX

))
−
āUXφ̈YsθX−φX

(
γ̂2
BY
ā2BY
m̄BY + ĪBY

)

āBYsφY−φX
+ k̄Xη̄XiX

− ḡāUX

(
γ̂BYm̄BYcφYsθX−φX

sφY−φX
+ m̄BX

(
γ̂BXcφXsθX−φY

sφY−φX
+ cθX

)
+ γ̂UXm̄UXcθX

)
(g)

This example illustrates the use of the recursive modular modeling algorithm
to derive the equations of motion of a closed loop kinematic chain system by
exploring the existing symmetries, taking as a starting point the models of its
basal subsystems, which are much less complex.
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4.3 Sufficient conditions for the forward dynam-
ics

This section establishes a theorem providing sufficient conditions for ex-
istence and uniqueness of solutions for a system of equations of motion of a
multibody system derived according to the modular modeling algorithm pre-
sented in the previous section. Basically, the sufficient conditions listed must
guarantee the application of Picard’s Existence Theorem to the associated sys-
tem of ordinary differential equations (ODEs).

Let Mn be a ν#

Mn
-DOF multibody system whose constraint order is equal to

ν◦Mn . Adopt an integer σ such that σ ≥ ν◦Mn and that no equation of motion of
M depend on any generalized variable above σ-th order. It can be stated that
the system of differential-algebraic equations (DAEs) of motion of Mn can be
written as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q̇⟨β⟩Mn
= q̇⟨β⟩Mn

(t, q⟪β+1⟫
Mn

) for 0 ≤ β ≤ (σ − 1)

q̄⟨σ⟩Mn
= AMn q

⟨σ⟩
Mn

+ b⟨σ−1⟩Mn
= 0

f̄Mn = C
T
Mn
fMn = 0

(4.13)

The necessary initial conditions at a time instant t∗ to find a solution for
the system of equations of motion (4.13) are the values of q⟪σ−1⟫Mn

(t∗). These
values, however, must be compatible with all the the constraints of the sys-
tem, i.e. if some constraints of Mn are associated to invariants that can be
expressed as functions of generalized variables up to (σ − 1)-th order, the val-
ues q⟪σ−1⟫Mn

(t∗) must identically satisfy these invariants at instant t∗. Moreover,
the values q⟪σ−1⟫Mn

(t∗)must not lead to any algebraic singularity in the equations
of motion (like, for instance, a zero denominator).

Theorem 4.1 (Existence and uniqueness of solutions of equations of motion of
a multibody system). LetMn be a ν#

Mn
-DOF multibody system whose constraint

order is equal to ν◦Mn . Adopt an integer σ ≥ 2 according to the criteria listed
above. Assume that the corresponding initial conditions satisfy the conditions
previously mentioned. Suppose also that:

• The invariants c̄ ⟨β+1⟩
Mn

(t, q⟪β+1⟫
Mn

, q̇⟨β⟩Mn
) = 0 that define the transformations of

variables between q̇⟨β⟩Mn
and q⟨β+1⟩

Mn
, 0 ≤ β ≤ (σ−1), are classC2 functions.

• AMn , b
⟨σ−1⟩
Mn

can be expressed as functions of (t, q⟪σ−1⟫Mn
) that are contin-

uous with respect to time t in some interval in the neighborhood of t∗
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and satisfy Lipschitz condition for every q⟪σ−1⟫Mn
in some neighborhood of

q⟪σ−1⟫Mn
(t∗).

• AMn is a full rank matrix for the given values of q⟪σ−1⟫Mn
(t∗).

• Any unconstrained generalized effective force associated toMn, fMn , can
be expressed as functions of (t, q⟪σ⟫Mn

) which must be affine with respect
to q⟨σ⟩Mn

, continuous with respect to time t in some interval in the neighbor-
hood of t∗ and must satisfy Lipschitz condition for every q⟪σ−1⟫Mn

in some
neighborhood of q⟪σ−1⟫Mn

(t∗).

In this case, it can be stated that the system of differential-algebraic equa-
tions (4.13) has a unique solution in some open interval around t∗ that satisfy
simultaneously all the constraint invariants and dynamic invariants of Mn.

Proof. First of all, due to the hypotheses of this theorem, it can be stated that:

• According to Lemma 2.1 of Orsino and Hess-Coelho (2015), all the
q̇⟨β⟩Mn

(t, q⟪β+1⟫
Mn

) are class C1 functions, for 0 ≤ β ≤ (σ − 1).

• According to Theorems 2.8 and 2.10, it can be stated that CMn must be a
continuous function with respect to time t in some open interval around
t∗ and must satisfy the Lipschitz condition for every q⟪σ⟫Mn

in some neigh-
borhood of q⟪σ⟫Mn

(t∗).

Thus, suppose that it is possible to isolate algebraically q⟨σ⟩Mn
in the system of

equations (4.13), obtaining for such variables explicit and non-singular expres-
sions in some neighborhood of the initial conditions

(
t∗, q⟪σ−1⟫Mn

(t∗)
)
. Due to

the previous two remarks it is possible to apply Picard’s Existence Theorem
(SOTOMAYOR-TELLO, 2011) to the ordinary differential equations in (4.13) and
it can be stated that there is a unique solution defined in some open interval
around t∗ that satisfy all constraint and dynamic invariants of Mn.

Thus, the remainder of this proof will show that, if a system is in
a non-singular generalized configuration, then there is a neighborhood of
(
t∗, q⟪σ−1⟫Mn

(t∗)
)
for which it is possible to obtain explicit and non-singular ex-

pressions for the q⟨σ⟩Mn
in the system of equations (4.13).

Consider that the general solution of AMn q
⟨σ⟩
Mn

+ b⟨σ−1⟩Mn
= 0 must have the

following form:

q⟨σ⟩Mn
= SMn z

⟨σ⟩
Mn

+ e⟨σ−1⟩Mn
= RMn CMn z

⟨σ⟩
Mn

+ e⟨σ−1⟩Mn
(a)
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Also, once it is possible to derive an expression for fMn from the algorithm pre-
sented in Section 4.2, it can be assumed that there is a positive-definite matrix
MMn a matrix VMn and a column-matrix g⟨σ−1⟩Mn

such that:

fMn = −RT
Mn
V T
Mn
MMn VMn q

⟨σ⟩
Mn

+ g⟨σ−1⟩Mn
(b)

Indeed, consider for instance a multi-rigid-body system for which it can be
adopted σ = 2. Once the expression for the effective forces in this system
can be obtained using the expressions (A.40 – A.45), from Section A.3 of Ap-
pendix A, it can be stated that:

∂fMn

∂q̇⟨2⟩Mn

= −
∑

r

(V⋆
r · (mr V⋆

r ) + Ωr · (I⋆r · Ωr )) (c)

In this case VMn is a block diagonal matrix in which each block correspond
to the matrix representation of a second order tensor among the V⋆

r and Ω⋆
r .

Moreover,MMn is also block diagonal, being each block given by:
⎡

⎢⎣
mr1 0

0 [I⋆r ]Er |Er

⎤

⎥⎦

with [I⋆r ]Er |Er being the matrix representation of the inertia tensor I⋆r in a partic-
ular coordinate system Er . Once each inertia tensor must be symmetric and
positive-definite, so it must be MMn . Finally, once this multi-rigid-body system
does not have any subsystem, then RMn = 1. Thus, the expression for the
column-matrix of unconstrained generalized effective forces associated to this
system can be expressed by equation (b).

AdoptingWMn = VMn SMn = VMn RMn CMn and using equations (a) and (b), it
can be stated that:

f̄Mn = −W T
Mn
MMnWMn z

⟨σ⟩
Mn

+ h⟨σ−1⟩Mn
(d)

Theorem 2.8 proves thatWMn is a rank ν
#

Mn
matrix. Indeed, if the rank of this

matrix was less than ν#

Mn
, it would be possible to express arbitrary variations of

a sufficient set of motion variables3 in a time instant immediately after t∗ as a
function of less than ν#

Mn
independent parameters, which contradicts either the

initial assumption that Mn is a ν#

Mn
-DOF system or the fact that the system is

not in a singular generalized configuration at t∗.
3 That is, a set of variables that is sufficient to describe the instantaneous kinematics of any

possible motion of the system up to some order, provided that information up to the previous
order is already known, as discussed in Section 4.1.
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OnceMMn is symmetric and positive-definite andWMn is a full rank matrix, it
can be shown thatW T

Mn
MMnWMn is invertible. Indeed, let z ∈ Rν

#
Mn and assume

that z ̸= 0. Once WMn is full rank, then it can be stated that WMn z ̸= 0 and:

zTW T
Mn
MMnWMn z =

(
WMn z

)T
MMn

(
WMn z

)
> 0 (e)

This proves that W T
Mn
MMnWMn is also positive-definite and, therefore, invert-

ible. Finally, it can be stated that:

z ⟨σ⟩Mn
=
(
W T

Mn
MMnWMn

)−1
h⟨σ−1⟩Mn

(f)

The replacement of this last equation in (a) concludes the proof.

It is worth doing the following remarks about the result presented in Theo-
rem 4.1:

• The numerical simulation of the system of equations (4.13) given compat-
ible initial conditions and providing explicit expressions for the constitutive
equations, allowing to express all effective forces acting in a system as
functions of time and of the generalized variables of themodel, constitutes
the solution of a forward dynamics problem associated to this system.

• The maximal solutions of the system of equations (4.13) will not be de-
fined for an infinite time interval whenever the generalized configuration
of the system indefinitely approaches a singularity.

• Throughout the proof of the theorem, it is shown that it is possible to obtain
from (4.13) a system of explicit ordinary differential equations whenever
the system is not in a singular configuration. These transformations are
done exclusively to be able to apply the conventional statement of Picard’s
Existence Theorem and might not necessarily relate to the integration
algorithms applied in an actual numerical simulation.

• The assumption that MMn is a positive-definite matrix will only be as-
suredly true when conventional non-degenerate mechanical systems are
modeled (hypothesis concerning some negligible inertia parameter might
lead to degenerate models, for instance). There are cases in which the
statement of this theorem is applicable even whenMMn is not a positive-
definite matrix. The proof for these cases, however, is out of the scope
of this text.
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Example 4.4. Back to the system S of Example 2.5 (Section 2.4), consider
that the equation of surface U is defined by γ(x, y , z) = 0. Let b be a point
in the surface of S, whose local coordinates are given by [b]S = (0, 0,−r̄ ) and
consider that there is a point electric charge of magnitude κ̄ that remains fixed
with respect to the sphere and has negligible inertia. Consider that the local
acceleration of gravity is given by ḡ = −ḡ ẑ and that there is a local electric
field e = e x̂. Denote by m̄ the mass of the sphere S and assume that it has an
homogeneous mass distribution such that the moment of inertia about any axis
passing through its center is equal to J̄. For this system it can be stated that:

fS = f ′S + (V ⟨0,1⟩)T f ′′S (a)

with V ⟨0,1⟩ denoting the matrix given by equation (i) of Example 2.5 and with f ′S
and f ′′S defined as follows:

f ′S =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ωx −J̄ ω̇x

ωy −J̄ ω̇y

ωz −J̄ ω̇z

vx −m̄ v̇x

vy −m̄ v̇y

vz −m̄ v̇z − m̄ ḡ

f ′′S =

⎡

⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎦

v ⟨0⟩.x κ̄ e

v ⟨0⟩.y 0

v ⟨0⟩.z 0

(b)

Once S has no subsystems it can be stated that CS = SS, with SS given by
equation equation (g) of Example 2.5, for example. Thus, f̄S = CT

S fS = 0, i.e.:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r̄γy (−m̄v̇z − m̄ḡ)− J̄ω̇x + m̄r̄γzv̇y = 0

r̄γz (eκ̄− m̄v̇x) + r̄γx (m̄v̇z + m̄ḡ)− J̄ω̇y + eκ̄r̄
(
2q2x + 2q2y − 1

)
= 0

−r̄γy (eκ̄− m̄v̇x)− J̄ω̇z − m̄r̄γxv̇y + eκ̄r̄ (2qyqz − 2qtqx) = 0

(c)

Equations (c) along with equations (d, f) from example 2.5, constitute the sys-
tem of differential-algebraic equations of motion for system S.

In order to illustrate the dynamic behavior of this system, consider the fol-
lowing values for the physical parameters of S:

r̄ = 0.01m ḡ = 9.8m/s2 m̄ = 0.05kg

J̄ = 2
5 m̄ r̄

2 e = (1× 104 N/C) sin
(
1
2 π t

)
κ̄ = 5× 10−6 C
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Also, let γ(x, y , z) = z − 1
2 y

2 = 0 and assume that the initial conditions are
given by:

x(0) = 0 y (0) = 0.1m z(0) = 0.005m

q1(0) = q2(0) = q3(0) = 0 q4(0) = 1

vx(0) = vy(0) = vz(0) = 0 ωx(0) = ωy(0) = ωz(0) = 0

Some of the results of the numerical simulation performed in Wolfram Mathe-
matica 10.2 for the first 50s of motion are shown in Figures 4.2 – 4.5.

The most interesting result to be noticed is due to the effect of the no-slip
constraint in the time history of coordinate x . The electric force is the only active
force acting in the direction x̂ and, even though the electric field is oscillating
harmonically with a period of 4s, the translation motion in this direction is not.
Another remarkable result is that, due to the geometry of surface U (parabolic
trough) the coordinate z oscillates at twice the frequency of coordinate y .

Finally, it is worth mentioning that, in this example, one way to control the
quality of the results obtained in the numerical simulation is by inspecting the
norm of the quaternion (that must be unitary) as shown in Figure 4.5.

Figure 4.2: Time history of the coordinate x of the contact point of the sphere
S with the surface U.
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Figure 4.3: Normalized time histories of the coordinate x of the contact point
of the sphere S with the surface U.

Figure 4.4: Time history of the quaternion parameters defining the orientation
of the sphere S.
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Figure 4.5: Time history of the quaternion norm inspection.

4.4 Sufficient conditions for the inverse dynam-
ics

In an inverse dynamics problem, it is considered that some of the forces
acting in a multibody system M can be expressed as functions of time, of the
generalized variables of the model of M and of a finite number of input param-
eters. In this text, the tuple (or column-matrix) constituted by the the inputs of
system M is denoted by uM.

The inputs of M constitute a set of variables that can somehow be manip-
ulated in order to try to modify its “natural” response. Let ν◦ denote the con-
straint order of M, choose an integer σ ≥ ν◦ such that in a given time instant
t∗, q⟪σ−1⟫(t∗) is known and assume that δq⟪σ−1⟫(t∗) = 0. Denote by q⟨σ⟩M.u a
subtuple (or the corresponding column-matrix) constituted by some of the σ-th
order generalized variables of the model of M. These generalized variables
are said to be associated with the inputs uM if and only if the virtual work asso-
ciated to these inputs at a time instant (t∗+ ε), with ε denoting an infinitesimal,
is proportional to (δq⟨σ⟩M.u · uM).

For instance, consider a multi-rigid-body system whose constraint order is
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equal to ν◦ = 1. Adopting σ = 1 it can be stated that:

• If uM.k represents a component of force, the associated quasi-velocity
q⟨1⟩M.k must represent the corresponding component (i.e. the component
about the same axis) of the velocity of the point of application of this force
(measured with respect to an inertial reference frame).

• If uM.k represents a component of torque, the associated quasi-velocity
q⟨1⟩M.k must represent the corresponding component (i.e. the component
about the same axis) of the angular velocity of the rigid body to which this
torque is applied (measured with respect to an inertial reference frame).

Proposition 4.2. Let q⟨σ⟩M.u be a σ-th order generalized variable from the model
of M associated to the input uM. It can be stated that the unconstrained gen-
eralized effective forces associated to q⟨σ⟩M.u can be expressed as follows:

fM.u = uM + f ∗M.u
(
t, q⟪σ⟫M

)
(4.14)

Proof. Considering that the variables q⟨σ⟩M.u are associated to the inputs uM, it
can be stated that the σ-th order variational principle for system M, can be
expressed as follows:

δv ⟨σ⟩M · f ′M
(
t, q⟪σ⟫M

)
+ δq⟨σ⟩M.u · uM ≤ 0 (a)

Note that it is possible to rewrite the previous inequality as follows:

(
δv ⟨σ⟩M , δq

⟨σ⟩
M.u

)
·
(
f ′M
(
t, q⟪σ⟫M

)
, uM

)
≤ 0 (b)

Thus, the same derivation applied in Section 4.1 can also be used for the pre-
vious inequality leading to the following expression for fM:

⎡

⎣

⎤

⎦fM = V T
M f

′
M

(
t, q⟪σ⟫M

)
+
u 1

uM
⋆ 0

(c)

This completes the proof.

Theorem 4.3 (Sufficient conditions for a solution of an inverse dynamics prob-
lem). LetM be a ν#-DOF multibody system as described earlier in this section.
Assume that the number of inputs in M is equal to the number of degrees of
freedom of it, ν#. Suppose also that for each input there is an associated σ-th
order generalized variable, with σ ≥ ν◦. If, in a given generalized configuration
of the system δq⟨σ⟩M.u is an independent set of variations (i.e. none of them can
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be expressed as a linear combination of the others), it can be stated that the
dynamic equations of motion of M can be expressed as follows:

uM = −CT
M f

∗
M (4.15)

with uM representing the column-matrix constituted by the inputs and f ∗M corre-
sponding to the effective forces associated to M when uM = 0.

Equation (4.15) can be interpreted as an open-loop control law forM, lead-
ing to the general solution for the inverse dynamics problem associated to this
system.

Proof. If the variations δq⟨σ⟩M.u are independent, then according to the results
of Theorems 2.8 and 2.10, using the procedure described by equations (2.26
– 2.29), it is possible to obtain a matrix CM for M such that the rows of this
matrix that correspond to the σ-th order variables associated to the inputs of
M constitute an identity matrix, i.e. CM.u = 1. This fact, along with the result
presented in Proposition 4.2 leads to:

f̄M = CT
M fM = uM + CT

M f
∗
M (a)

This leads to equation (4.15).

Note also that, being explicit, equation (4.15) can be used to determine for
each (t, q⟪σ⟫(t)) that corresponds to a non-singular configuration of M and is
compatible with the constraints of thus system, a unique set of values for the
inputs uM. On the other hand, from the result of Theorem 4.1, it can be stated
that each set of values for the inputs of the system will correspond to a unique
set of values for q̇⟪σ−1⟫, which concludes the proof that equation (4.15) indeed
represents a solution for the inverse dynamics problem associated to M.

The application of Theorem 4.3 is not restricted to the solution of the in-
verse dynamics problem associated to a given multibody system. Some active
forces in a mechanical system might be described as functions of components
of constraint forces. This is the case of Coulomb friction, in which the tangential
component of the contact force between two surfaces in relative motion (which
corresponds to the effect of the friction) is modeled as being proportional to the
normal component of this same force (which is a constraint force). This tan-
gential component is parallel and opposite to the relative velocity between the
contact points, corresponding to an active force. As discussed in Chapter 3,
constraint forces do not normally appear in equations of motion derived by An-
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alytical Mechanics approaches. The same happens when the methodology de-
scribed in Sections 4.1 and 4.2 is applied. In these cases, adopting a correct
interpretation of the Principle of Relaxation of Constraints, active forces due to
control inputs can be interpreted as constraint forces and vice versa, once their
primary function is to enforce the system to follow an specific trajectory in the
state space, constraining the the system to it (UDWADIA, 2006). Such an anal-
ogy allows the development of an approach, based on Theorem 4.3, that leads
to expressions to compute some of the constraint forces acting in a multibody
system when convenient.

The technique proposed here is adapted from Kane e Levinson (1985) and
consists on the following steps:

1. Define σ-th order generalized variabels associated to the required con-
straint forces or torques. Such variables will describe motions that either
are not allowed or prescribed according to the existing motion constraints.

2. Derive the equations of motion of the system supposing that all these
extra generalized variables are independent.

3. Replace the values of these extra variables in the equations of motion
by zero, if the corresponding motion is not allowed in the real system or
by their expressions as functions of time if the motion is prescribed. Do
any other replacement of variables that might be associated with these
fictitious or imposed motions.

4. Use the result of Theorem 4.3 to obtain explicit expressions for these con-
straint forces or torques. If some active force depends on these constraint
forces, it might be necessary to implement an iterative procedure for their
computations.

Example 4.5 (Modeling of 3D slider-crankmechanism). Consider the 3D slider-
crank mechanism M represented in Figure 4.6. Suppose that is is constituted
by three subsystems B1, B2 and B3 each constituted by a single rigid body:
B1 corresponds to the crank (body B1),B2 to the connecting rod (body B2) and
B3 to the slider (body B3). By hypothesis, all the rigid bodies are supposed to
be rigid and all the existing joints are ideal, not allowing any kind of clearance
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during motion.

`1

`2

x̂

ŷ

s

B1

B2 B3

�

p0 p2

p1

Figure 4.6: Representation of a 3D slider-crank mechanism in its reference
configuration

In this system, the crank is constrained to a fixed basis (which is rigidly
attached to an inertial reference frame N) by a revolute joint, which allows a
relative rotation motion around an axis passing through p0 which has the di-
rection of the unit vector x̂. The slider is constrained to the same fixed basis
by a prismatic joint, which allows it to translate in the direction defined by the
unit vector x̂. The connecting rod is constrained to both the slider and the
crank by spherical joints. Once all the constraints in this system are due to
restrictions imposed by joints, it can be stated that this mechanism is a holo-
nomic system. Considering that this system has two 1-DOF joints (one revolute
and one prismatic) and two 3-DOF joints (both spherical), the application of the
Chebychev-Grübler-Kutzbach criterion4 (GOGU, 2005; ANGELES, 1988) leads to
νM = 6 · (4 − 1) − (5 · 2 + 3 · 2) = 2. However, once the revolution of the con-
necting rod around its own longitudinal axis is irrelevant for the model, a 1-DOF
model can be conceived for this mechanism.

Moreover, it will be supposed that any effect due to friction is negligible in
the revolute and spherical joints. In the prismatic joint, however, dry friction will

4 Chebychev-Grübler-Kutzbach criterion provides an equation to compute the mobility νM of
a mechanism based on whether it is a 2D or 3D mechanism and on the number and type of
joints it has. The mobility of a holonomic mechanism corresponds to the number of degrees of
freedom it has. Consider that ν# stands for the number of degrees of freedom of a rigid body
in a given multidimensional space. For a 2D mechanism adopt ν# = 3 and for a 3D one adopt
ν# = 6. Denote by νB the number of rigid bodies composing the mechanism (base included)
and by νJ(k) the number of joints that allow a k-DOF relative motion between a pair of rigid
bodies. It can be stated that:

νM = ν# (νB − 1)−
∑

k

(ν# − k) νJ(k)
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be considered according to Coulomb’s model (i.e., the tangential component
is proportional to the normal component of the contact force between the sur-
faces). Furthermore, the motion of the crank will be supposed to be controlled
by an input torque u1x̂ applied to it.

In order to develop a mathematical model for this system, it is convenient
to defined the following parameters:

• ℓ̄1 represents the distance between the centres of the spherical joint
(B1,B2) and the axis of the revolute joint (N,B1), i.e. the distance be-
tween p1 and p0;

• ℓ̄2 represents the distance between the centres of the spherical joints
(B1,B2), p1, and (B2,B3), p2;

• m̄r represents the mass of Br (r = 1, 2, 3);

• Ī1 represents the moment of inertia of the body crank B1 with respect to
an axis parallel to x̂ passing through p0.

• Ī2 represents the moment of inertia of the connecting rod B2 measured
with respect to any transversal axis passing through its center of mass b⋆2;

• γ̂2 represents the ratio between the distance from p1 to b⋆2 and ℓ2;

• µ̂ is the coefficient of friction in the prismatic joint (N,B3).

Adopt the shorthand notation q⟨σ⟩n = q⟨σ⟩Bn
and q⟨σ⟩ = q⟨σ⟩M ; adopt analogous

conventions for subscripts of other variables. Define q⟨0⟩1 = (χ), q⟨0⟩2 = (ψ,φ, θ),
q⟨0⟩3 = (s) and q⟨1⟩1 = (ω1x), q⟨1⟩2 = (v2x, v2y, v2z,ω2y,ω2z), q⟨1⟩3 = (v3x, v3y, v3z),
considering that:

• s represents the displacement, from the reference configuration shown in
Figure 4.6 of the slider oriented by the unit vector x̂.

• χ represents the angle measuring the angle revolution of the crank from
the reference configuration shown in Figure 4.6 (oriented according to the
unit vector x̂).

• ψ, φ and θ are the zyx Euler angles describing the transformation be-
tween the coordinate system N =

(
p0, x̂, ŷ, ẑ

)
and a coordinate system

B2 =
(
b⋆2, x̂2, ŷ2, ẑ2

)
rigidly attached to B2, with x̂2 being parallel to the line

p1p2.
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• ω1x, ω2y and ω2z are the components, in the local bases of the angular
velocities of B1 and B2 (with respect to N), respectively. Consider that
these local bases coincide with the one of N in the reference configuration
shown in Figure 4.6.

• v2x, v2y, v2z and v3x represent the components in the basis of N of the
centres of mass of B2 and B3 (with respect to N), respectively.

• v3y and v3z are fictitious components of the velocity of the center of mass
of the slider in the directions defined by the unit vectors ŷ and ẑ, which will
be used to include the constraint forces y ∗3 and z∗3 in the model (to obtain
expressions to compute them).

It can be stated that:

f̄1 =

[ ]
ω1x u1 − Ī1 ω̇1x

f̄3 =

⎡

⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎦

v3x x∗3 − m̄3 v̇3x

v3y y ∗3

v3z z∗3

f̄2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

v2x −m̄2 v̇2x

v2y −m̄2 v̇2y

v2z −m̄2 v̇2z

ω2y −Ī2 ω̇2y

ω2z −Ī2 ω̇2z

(a)

Coulomb’s model for the friction force x∗3 , considering that y ∗3 and z∗3 represent
normal components of the contact force in the directions of ŷ and ẑ, leads to
the following equation:

x∗3 = −µ̂ sign(v3x)
√
(y ∗3 )

2 + (z∗3 )
2 (b)

Also, matrix [1]N|B2 is given by:

[1]N|B2 =

⎡

⎢⎢⎢⎢⎣

cψcφ cψsφsθ − cθsψ cψcθsφ + sψsθ

cφsψ cψcθ + sψsφsθ cθsψsφ − cψsθ

−sφ cφsθ cφcθ

⎤

⎥⎥⎥⎥⎦
(c)

Due to the configuration constraints imposed by the spherical joints, it can be
stated that:

q̄⟨0⟩ =

⎡

⎢⎢⎢⎢⎣

ℓ̄2(1− cψcφ) + s

ℓ̄1(1− cχ) + ℓ̄2cφsψ

ℓ̄1sχ + ℓ̄2sφ

⎤

⎥⎥⎥⎥⎦
= 0 (d)
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Moreover, neglecting the revolution of the connecting rod around its own lon-
gitudinal axis, [ωB2 |N]B2 =

(
0,ω2y,ω2z

)
, and considering that [ωB2 |N]

×
B2 |B2

=

[1]TN|B2
˙[1]N|B2 , the following identities can be stated:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṡ − v3x = 0

χ̇− ω1x = 0

θ̇ − ψ̇ sφ = 0

cφ ψ̇ sθ + cθ φ̇− ω2y = 0

cφ cθ ψ̇ − ω2z − φ̇ sθ = 0

(e)

Moreover, once:

vp2 |N = vp1 |N + ωB2 |N × rp2 |p1

(vb⋆2 |N
− vp1 |N) = γ̂2(vp2 |N − vp1 |N)

the first order constraint invariants of this system are given by:

q̄⟨1⟩ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℓ̄2 (sψ (sθω2y + cθω2z) + cψsφ (cθω2y − sθω2z)) + v3x

−sχℓ̄1ω1x + ℓ̄2 (sψsφ (cθω2y − sθω2z)− cψ (sθω2y + cθω2z)) + v3y

cχℓ̄1ω1x + cφℓ̄2 (cθω2y − sθω2z) + v3z

v2x − v3xγ̂2

v2y + sχℓ̄1ω1x (γ̂2 − 1)− v3yγ̂2

v2z − cχℓ̄1ω1x (γ̂2 − 1)− v3zγ̂2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(f)

Noting that for this system ν◦ = 1, the expression for matrix A can be obtained
from the Jacobian of (f) with respect to q⟨1⟩. Also, for this system B = A. The
matrix C (orthogonal complement of B) obtained according to Theorem 4.3 for
the solution of the invers dynamics problem associated to this system is given
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by (with Ei ,j denoting the i -th row, j-th column element of matrix E = [1]N|B2):

C =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

ℓ̄1γ̂2 (sχE2,1 − cχE3,1)

E1,1
−
γ̂2E2,1

E1,1
−
γ̂2E3,1

E1,1

−sχℓ̄1 (γ̂2 − 1) γ̂2 0

cχℓ̄1 (γ̂2 − 1) 0 γ̂2

−
ℓ̄1 (cχE2,2 + sχE3,2)

ℓ̄2E1,1

E3,2

ℓ̄2E1,1
−
E2,2

ℓ̄2E1,1

−
ℓ̄1 (cχE2,3 + sχE3,3)

ℓ̄2E1,1

E3,3

ℓ̄2E1,1
−
E2,3

ℓ̄2E1,1

ℓ̄1 (sχE2,1 − cχE3,1)

E1,1
−
E2,1

E1,1
−
E3,1

E1,1

0 1 0

0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(g)

Note that this expression for C is not defined only when E1,1 = 0, i.e. when the
longitudinal direction of B2 is orthogonal to the direction of x̂. In this situation,
it is impossible to do any work to move the slider for any torque u1 applied to
the crank, regardless of its magnitude.

Thus, the dynamic equations of motion of this system can be written as
follows:

u = CM q̇⟨1⟩ + x∗3 x3 (h)

with u =
(
u1, y ∗3 , z

∗
3

)
, q⟨1⟩ =

(
q⟨1⟩1 , q

⟨1⟩
2 , q

⟨1⟩
3

)
and:

M =

[
I1 m2 m2 m2 I2 I2 m3 m3 m3

]D
(i)

x3 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

ℓ̄1 (cχE3,1 − sχE2,1)

E1,1

E2,1

E1,1

E3,1

E1,1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(j)

In order to perform a numerical inverse dynamics simulation for this system,
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consider the following values for the parameters:

ℓ̄1 =
1
2 m ℓ̄2 =

√
2m

γ̂2 =
√
2
2 µ̂ = 0.50

Ī1 = 0.20 kg ·m2 Ī2 = 0.10 kg ·m2

m̄2 = 0.50 kg m̄3 = 2.0 kg

Consider that the objective of this analysis is to determine the time history of
the torque u1 which, according to the model, must be applied to the crank to
ensure a given motion of the slider. For this particular simulation, consider that
the position of the slider is described as follows:

s(t) = − (1− γ̂2) ℓ̄2
(
1 + 8 sin2(2πt)

)

10
(k)

Note that v3x = ṡ and that v3y and v3z must be identically zero in order not to
violate the constraints of the system. Thus, it is necessary, from the constraint
equations of the model, to obtain time histories for the remaining generalized
variables that are compatible with the motion prescribed for the slider. Then,
it is enough to replace the values of these motion variables in the system of
equations (h), to be able to obtain the time histories of u1, y ∗3 and z∗3 .

The simulations presented in this example were performed by an algorithm
written in Wolfram Language and running in Wolfram Mathematica 10.2. Ba-
sically, the built-in function was used both for numerically solving the
constraint equations (inverse kinematics simulation) and of the dynamic equa-
tions of motion in the variables u1, y ∗3 and z∗3 (inverse dynamics simulation). This
function automatically chooses among a variety of built-in procedures for nu-
merical integration, the best one for a particular system of differential-algebraic
equations (DAEs).

For the inverse kinematics simulation, two algorithms were developed us-
ing the function . In the first one, equations (d, e, f) were used, and the
values of s(t), v3x(t) = ṡ(t), v3y(t) = 0 and v3z(t) = 0 were prescribed. Once

can not solve systems with redundant equations, the first three equa-
tions of (f) were deleted5. The results given by these algorithms are interpola-
tion functions that give an approximation of the time history of the involved vari-
ables. In order to inspect how satisfactory are these results, the time histories
of the norms ∥q̄⟨0⟩∥ and ∥q̄⟨1⟩∥ are computed. The closer to zero these norms

5 Note that these deleted equations correspond to the differential forms of equations (d)
when the replacement q̇⟨0⟩ = q̇⟨0⟩

(
t, q⟪1⟫) is performed.
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are, the better the results are. At the initial time instant, ∥q̄⟨0⟩∥(0) = 6.245 ·10−17

e ∥q̄⟨1⟩∥(0) = 0, what can be considered satisfactory. However, as shown in
Figure 4.7, the values of ∥q̄⟨0⟩∥(t) and ∥q̄⟨1⟩∥(t) in the remaining of the time
interval in this first simulation (denoted by #1) are not so satisfactory (although
the algorithm is quite stable and the magnitude of the norms tend to return to
zero right after some growth). In the second algorithm for inverse kinemat-
ics simulation (simulation #2), the time derivative of the algebraic equations
are taken, converting them into differential equations. Equations q̄⟨0⟩ = 0 e
q̄⟨1⟩ = 0 are replaced, respectively, by the following ODEs:

⎧
⎪⎪⎨

⎪⎪⎩

d2q̄⟨0⟩

dt2
+ 2b̄1b̄2

dq̄⟨0⟩

dt
+ b̄22 q̄

⟨0⟩ = 0

dq̄⟨1⟩

dt
+ b̄3 q̄

⟨1⟩ = 0

(l)

The values of the constants b̄k can be tunned to increase the numerical stability
of the integration procedure (BAUMGARTE, 1972). Taking as initial conditions for
these ODEs the results obtained in simulation #1 and setting b̄1 = b̄2 = b̄3 = 1,
much more precise results were obtained as it can be noticed in the charts in
Figure 4.8.

Replacing the interpolation functions obtained in simulation #2 in the sys-
tem of equations (h), the function is used to write an algorithm to find
the corresponding time histories of u1, y ∗3 and z∗3 . Moreover, the numerical error
in this inverse dynamics simulation can be controlled by calculating the norm
∥f̄ ∥(t) = ∥u−CM q̇⟨1⟩−x∗3 x3∥(t), whose time history is presented in Figure 4.9.

The results of the numerical simulation are presented in the charts of Fig-
ures 4.10 – 4.14. It is relevant to note that the constitutive equation used for
modeling the friction force (Coulomb’s model) is responsible for a discontinuity
in the results when the direction of the motion of the slider is reversed. These
discontinuities will not be observed in the real system, regardless of how fast
the actuator can vary the magnitude of the torque applied. Thus, in order to be
able to use this model for the project of a control system for this mechanism
it would be fundamental to consider the dynamics of the actuator too, which
could be done by finding a model for the actuator and applying the recursive
modular modeling algorithm presented in Section 4.2. Otherwise, significative
errors would be observed in the real system whenever the motion of the slider
is reversed.
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Figure 4.7: Numerical error evaluation in the inverse kinematics simulation
#1.

Figure 4.8: Numerical error evaluation in the inverse kinematics simulation
#2.
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Figure 4.9: Numerical error evaluation in the inverse dynamics simulation.

Figure 4.10: Time history of the position of the slider.
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Figure 4.11: Time history of the angular position of the crank.

Figure 4.12: Time history of the angular velocity of the crank.



132

Figure 4.13: Time history of the torque applied by the actuator.

Figure 4.14: Time history of the normal components of the contact force
acting in the slider.
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4.5 Linearization of equations of motion

Linearized mathematical models are particularly important to study the dy-
namic behavior of a multibody system in the neighborhood of a motion that
it actually performs, particularly when stability analyses or the design of some
types of control and measurement systems are involved. An evident advantage
of working with linearized equations of motion is that most of the techniques for
linear systems are universal (i.e., not dependent on what kind of system is being
modeled) and can easily lead to precise results.

This section aims to discuss the modifications that must be performed in the
recursive modular modeling methodology presented in Sections 4.1 and 4.2 in
order to obtain linearized models of multibody systems, without needing to pre-
viously derive the non-linear equations of motion. Provided a reference state
or a reference trajectory (which must be an a priori known solution of the origi-
nal of equations of motion), a system of linearized equations of motion can be
obtained for each subsystem corresponding to a leaf in the hierarchical tree
structure representing a multibody system. Moreover, linearized expressions
for the constraint invariants among the subsystem and for the Jacobians of the
constraint invariants with respect to the highest order generalized variables in
their expressions can be obtained. Therefore, the recursive modular modeling
methodology proposed in this text can also be applied for the direct derivation
of the linearized equations of motion. Such a procedure will result in a system of
equations which is equivalent to the one obtained by a conventional approach
in which the linearization is performed after the non-linear equations are de-
rived, i.e., a system of linear ordinary differential equations whose solutions
are approximations to the actual solutions of the original (non-linear) equations
of motion, in which the error is an infinitesimal with respect to the first order
terms.

Let Mn be a ν#

Mn
-DOF multibody system whose constraint order is equal

to ν◦Mn . Adopt an integer σ such that σ ≥ ν◦Mn and that no equation of motion
of M depend on any generalized variable above σ-th order. The equations of
motion for Mn can be expressed by the system of differential-algebraic equa-
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tions (4.13).
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q̇⟨β⟩Mn
= q̇⟨β⟩Mn

(t, q⟪β+1⟫
Mn

) for 0 ≤ β ≤ (σ − 1)

q̄⟨σ⟩Mn
= AMn q

⟨σ⟩
Mn

+ b⟨σ−1⟩Mn
= 0

f̄Mn = C
T
Mn
fMn = 0

(4.13)

Let q⟪σ⟫Mn
= Rq⟪σ⟫Mn

(t) be a solution of (4.13), associated to a set of inputs
uMn =

RuMn(t). Assume that this solution is taken as reference for the derivation
of the linearized model, i.e. it is desired to obtain a system of linear ordinary
differential equations that is able to estimate solutions of the original system
that are in a neighborhood of the reference solution, q⟪σ⟫Mn

= Rq⟪σ⟫Mn
(t), and as-

sociated to inputs in a neighborhood of the reference ones, uMn = RuMn(t).
Formally, defining Lq⟪σ⟫Mn

= q⟪σ⟫Mn
− Rq⟪σ⟫Mn

and LuMn = uMn − RuMn , it can be stated
that it is desired a system of linear ordinary differential equations that provides
an estimation of a solution whose error is an infinitesimal with respect to ϵwhen-
ever ∥(Lq⟪σ⟫Mn

, LuMn)∥ < ϵ, for an adequately defined norm.

In order to linearize the functions q̇⟨β⟩Mn
and q̄⟨σ⟩Mn

, it is enough to use the con-
ventional Taylor series expansion suppressing all the terms above first order,
that can be generically denoted by o(ϵ). If the non-linear expressions for the
functions q̇⟨β⟩Mn

are not explicitly known, then it is possible to apply this same
linearization procedure to the invariants c̄ ⟨β+1⟩

Mn
(t, q⟪β+1⟫

Mn
, q̇⟨β⟩Mn

) = 0, that define
the transformations of variables between q̇⟨β⟩Mn

and q⟨β+1⟩
Mn

, 0 ≤ β ≤ (σ− 1), and,
after that, use some symbolic linear solving method to express the Lq̇⟨β⟩Mn

as an
explicit linear function of the remaining variables, which will correspond to the
linearized form of q̇⟨β⟩Mn

.

Adopt the notation LvMn for the linearized form of vMn . Concerning the dy-
namic equations of motion, it is relevant to note that the linearized expressions
of the unconstrained generalized effective forces are given by:

LfMn =

⎧
⎪⎪⎨

⎪⎪⎩

L
(
LVMn · Lf ′Mn

)
, if S(Mn) = ∅

(LfMn.⊕, (. . . ,
Lf̄ Mn+1, . . .)), otherwise

(4.16)

In the case of matrix CMn , however, not always a non-linear expression will
be available. Thus, it is necessary to develop an algorithm for obtaining a lin-
earized matrix LCMn without the need of previously obtaining a non-linear matrix



135

CMn . Define:

LRMn =

⎧
⎪⎪⎨

⎪⎪⎩

1, if S(Mn) = ∅

(LRMn.⊕.⊕, (. . . ,
LSMn+1, . . .)) with LRMn.⊕.⊕ = 1, otherwise

(4.17)

LBMn =

⎧
⎪⎪⎨

⎪⎪⎩

LAMn , if S(Mn) = ∅

L
(
LAMn.⊕

LRMn

)
, otherwise

(4.18)

The least squares algorithm for obtaining a linearized orthogonal complement
for BMn is presented in the following proposition.

Proposition 4.4. Let B = B(x) denote a matrix which can be expressed as
an explicit function of x = (x1, . . . , xν). Denote by LB the linearized form of B,
which can be expressed as follows:

LB = B̄0 +
ν∑

j=1

B̄j xj (4.19)

Let LC be a matrix that can be expressed as follows:

LC = C̄0 +
ν∑

j=1

C̄j xj (4.20)

Consider that the coefficient matrices C̄j are obtained by the following algorithm:

(1) Obtain C̄0 as an orthogonal complement of B̄0 using a least squares
solver.

(2) Choose some constant γj and define Γ̄+
j as the orthogonal complement

of (B̄0 + γj B̄j) obtained by the same method as in the previous step, i.e.
the orthogonal complement that should satisfy limγj→0 Γ̄

+
j = C̄0.

(3) Analogously, obtain Γ̄−j as the orthogonal complement of (B̄0−γj B̄j), that
should satisfy limγj→0 Γ̄

−
j = C̄0.

(4) Obtain C̄j , j ∈ {1, 2, . . . , ν}, by the expression:

C̄j =
1

γj
(Γ̄+
j − Γ̄

−
j ) (4.21)

It can be stated that LC is a linear approximation for an orthogonal complement
of B.
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Proof. First of all, note that:

B LC = LB LC +O(∥x∥2) = B̄0 C̄0 +
ν∑

i=1

xi(B̄0 C̄i + B̄i C̄0) +O(∥x∥2) (a)

If LC is a linear approximation for an orthogonal complement ofB, it is necessary
that B LC = O(∥x∥2). Thus, it is necessary that B̄0 C̄0 = 0, i.e. C̄0 must be an
orthogonal complement of B̄0. Moreover, let xi = δi j γj , with δi j representing the
Kronecker delta. In this case:

B LC = B̄0 C̄0 + γj(B̄0 C̄j + B̄j C̄0) +O(∥x∥2)

= (B̄0 + γj B̄j)(C̄0 + γj C̄j) +O(∥x∥2) (b)

Thus, obtaining Γ̄+
j = (C̄0 + γj C̄j) as an orthogonal complement of (B̄0 + γj B̄j)

for sufficiently small values of γj is enough to ensure that the linear part of
equation (a) will also be identically zero, which justifies the steps 2, 3 and 4 of
the algorithm and completes the proof.

Obtaining a linear matrix LCMn from the expression of LBMn using the algo-
rithm described in Proposition 4.4, it can be stated that:

LSMn =
L(LRMn

LCMn) (4.22)
Lf̄ Mn =

L(LCMn · LfMn) (4.23)

Finally, the linear algebraic equations Lq̄⟨σ⟩Mn
= 0 and Lf̄ Mn = 0 can be solved in

order to express Lq⟨σ⟩Mn
as an explicit function of LxMn = Lq⟪σ−1⟫Mn

and LuMn . This
allows to replace the σ-th order generalized variables Lq⟨σ⟩Mn

in the explicit differ-
ential equations for obtaining LẋMn = Lq̇⟪σ−1⟫Mn

, which will lead to the following
linearized equations of motion for Mn:

LẋMn = ḠMn
LxMn + H̄Mn

LuMn (4.24)

Example 4.6 (Modeling of a spherical pendulum). Back to Example 4.1, con-
sider the second version of the model in Cartesian coordinates. It is already
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known that:

q̄⟨2⟩ =

⎡

⎢⎣
2xẍ + 2y ÿ + 2zz̈ + 2υ

2ẋ ẍ + 2ẏ ÿ + 2ż z̈ − υ̇

⎤

⎥⎦ = 0 (a)

ẍ ÿ z̈ υ̇
⎡

⎣

⎤

⎦A =
2x 2y 2z 0

2ẋ 2ẏ 2ż −1

(b)

f =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

ẍ m̄ḡ − m̄ ẍ

ÿ −m̄ ÿ

z̈ −m̄ z̈

υ̇ 0

(c)

Adopting as reference state for linearization q⟨0⟩ = (ā, 0, 0) and q⟨1⟩ = (0, 0, 0, 0),
for which q⟨2⟩ = q̇⟨1⟩ = (0, 0, 0, 0), it can be stated that:

Lq̄⟨2⟩ =

⎡

⎢⎣
2a Lẍ + 2Lυ

Lυ̇

⎤

⎥⎦ = 0 (d)

ẍ ÿ z̈ υ̇
⎡

⎣

⎤

⎦LA =
2(ā + Lx) 2Ly 2Lz 0

2Lẋ 2Lẏ 2Lż −1

(e)

ÿ z̈
⎡

⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

LC =

ẍ −1
ā
Ly −1

ā
Lz

ÿ 1 0

z̈ 0 1

υ̇ 2 Lẏ 2 Lż

(f)

Noting that the expression of f of this model is already linear, the following
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linearized equations of motion are obtained:

Lf̄ =

⎡

⎢⎢⎢⎣

−m̄
(
ḡ

ā
Ly + Lÿ

)

−m̄
(
ḡ

ā
Lz + Lz̈

)

⎤

⎥⎥⎥⎦ = 0 (g)

Omitting the pre-superscripts L for the sake of simplicity:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẍ = −
υ

ā

ÿ = −
ḡ

ā
y

z̈ = −
ḡ

ā
z

υ̇ = 0

(h)

Note that the linearized equations correspond to a uniformly acceleratedmotion
for coordinate x (whose acceleration is proportional to the magnitude of the
initial velocity of the pendulum) and to simple harmonic motions, whose angular
frequencies are ω̄ =

√
ḡ/ā for the coordinates y and z .

Consider now the reference state q⟨0⟩ = (45 ā,
3
5 ā, 0) and q

⟨1⟩ = (0, 0, 0, 0),
for which q̇⟨1⟩ = ( 9

25 ḡ,−
12
25 ḡ, 0, 0). Taking this state as reference for linearizing

the model, it can be stated that (omitting the pre-superscripts L for the sake of
simplicity):

ẍ ÿ z̈ υ̇
⎡

⎣

⎤

⎦LA =

8ā
5 + 2x 6ā

5 + 2y 2z 0

2ẋ 2ẏ 2ż −1

(i)

ÿ z̈
⎡

⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

LC =

ẍ −3
4 +

15
16ā x −

5
4ā y − 5

4ā z

ÿ 1 0

z̈ 0 1

υ̇ 2ẏ − 3
2 ẋ 2ż

(j)
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Thus, the dynamic equations of motion of the spherical pendulum are given by:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẍ = −
72ḡ

125ā
x +

96ḡ

125ā
y −

4

5ā
υ

ÿ = +
21ḡ

125ā
x −

28ḡ

125ā
y −

3

5ā
υ

z̈ = −
4ḡ

5ā
z

υ̇ =
18ḡ

25
ẋ −

24ḡ

25
ẏ

(k)

The eigenvalues of this system of linear ODEs are λ̄1 = 0 with algebraic mul-
tiplicity equal to 3 and λ̄2 = −i ω̄ e λ̄3 = +i ω̄, both with algebraic multiplicity
equal to 2 and with ω̄ =

√
4ḡ/5ā.

Example 4.7. In this example the linearized equations of motion of the model
studied in Example 4.2 are derived. Adopting the notation c•θ = cos(ξ̄ − θ),
s•θ = sin(ξ̄ − θ), cξ̄ = cos(ξ̄) and sξ̄ = sin(ξ̄), it can be stated that:

q̄⟨2⟩ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v̇1

u̇1 + r̄1ω̇1

s•θω1θ̇r̄1 − s•θω2θ̇r̄2 + u̇1 − u̇2 + c•θ (r̄1ω̇1 − r̄2z̈2)

−c•θω1θ̇r̄1 + c•θω2θ̇r̄2 + v̇1 − v̇2 + s•θ (r̄1ω̇1 − r̄2z̈2)

−u̇1 + u̇2 + (r̄1 − r̄2)
(
s•θ θ̇

2 + c•θ θ̈
)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(a)

f̄ =

⎡

⎢⎣
m̄2

(
−ḡs1 + ḡsξ̄ + v̇2s•θ + u̇2 (c•θ − 1)

)
+ m̄1

(
ḡsξ̄ + ω̇1r̄1 − u̇1

)

2m̄1

(
ḡsξ̄ + ω̇1r̄1 − u̇1

)
+ m̄2

(
2ḡsξ̄ + z̈2r̄2 − 2u̇2

)

⎤

⎥⎦ (b)

The objective is to obtain the linearized equations of motion for this system in
the neighborhood of a state in which the value of θ is constant and equal to θ̄,
which is given by the equation:

m̄2

m̄1
=

sin(θ̄)

2 sin(ξ̄) cos(θ̄ − ξ̄)− 3 sin(θ̄) + sin(ξ̄)
− 1 (c)

Thus, assume that the reference state is given by q⟨0⟩ = (θ̄) and q⟨1⟩ = 0, with
θ̄ = θ(ξ̄, m̄2/m̄1). In this state:

u̇1 = u̇2 = −r̄1ω̇1 = −r̄2ω̇2 =
2ḡ sin(θ̄)

2 cos(θ̄ − ξ̄) + 1
v̇1 = v̇2 = θ̈ = 0 (d)

Assuming these conditions, the linearizedmodel of the system is given by (omit-
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ting the pre-superscripts L for the sake of simplicity):
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ̇

u̇1

v̇1

ω̇1

u̇2

v̇2

ω̇2

θ̈

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 1

Ḡu1,θ 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Ḡω1,θ 0 0 0 0 0 0 0

Ḡu2,θ 0 0 0 0 0 0 0

Ḡv2,θ 0 0 0 0 0 0 0

Ḡω2,θ 0 0 0 0 0 0 0

Ḡθ̇,θ 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ

u1

v1

ω1

u2

v2

ω2

θ̇

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(e)

with:

Ḡu1,θ =
2ḡ(cos(θ̄)+2 cos(ξ̄))(3 sin(θ̄)−sin(ξ̄)+sin(θ̄−2ξ̄))

3 sin(θ̄)+5 sin(2θ̄−ξ̄)−2 sin(ξ̄)+5 sin(θ̄−2ξ̄)+3 sin(3θ̄−2ξ̄)+3 sin(2θ̄−3ξ̄)+sin(3θ̄−4ξ̄)

Ḡω1,θ = −
2ḡ(cos(θ̄)+2 cos(ξ̄))(3 sin(θ̄)−sin(ξ̄)+sin(θ̄−2ξ̄))

(3 sin(θ̄)+5 sin(2θ̄−ξ̄)−2 sin(ξ̄)+5 sin(θ̄−2ξ̄)+3 sin(3θ̄−2ξ̄)+3 sin(2θ̄−3ξ̄)+sin(3θ̄−4ξ̄))r̄1

Ḡu2,θ =
ḡ(cos(θ̄)+2 cos(ξ̄))(3 sin(θ̄)+5(sin(2θ̄−ξ̄)+sin(θ̄−2ξ̄))+3 sin(2θ̄−3ξ̄))

(2 cos(θ̄−ξ̄)+1)2(2 sin(θ̄)+3 sin(2θ̄−ξ̄)−2 sin(ξ̄)+2 sin(θ̄−2ξ̄)+sin(2θ̄−3ξ̄))

Ḡv2,θ =
ḡ(cos(θ̄)+2 cos(ξ̄)) sin(ξ̄)

(2 cos(θ̄−ξ̄)+1)(3 cos(θ̄)+2 cos(ξ̄)+cos(θ̄−2ξ̄))

Ḡω2,θ = −
2ḡ(cos(θ̄)+2 cos(ξ̄))(sin(θ̄)+3(sin(2θ̄−ξ̄)+sin(θ̄−2ξ̄))+sin(2θ̄−3ξ̄))

(2 cos(θ̄−ξ̄)+1)2(2 sin(θ̄)+3 sin(2θ̄−ξ̄)−2 sin(ξ̄)+2 sin(θ̄−2ξ̄)+sin(2θ̄−3ξ̄))r̄2

Ḡθ̇,θ =
2ḡ(cos(θ̄)+2 cos(ξ̄)) sin(ξ̄)

(2 cos(θ̄−ξ̄)+1)(2 sin(θ̄)+3 sin(2θ̄−ξ̄)−2 sin(ξ̄)+2 sin(θ̄−2ξ̄)+sin(2θ̄−3ξ̄))(r̄1−r̄2)

When r̄1 > r̄2 (i.e. the radius of the ring is greater that the radius of the disc), the
eigenvalues of the system of linear ODEs are λ1 = 0 with algebraic multiplicity
equal to 6, λ̄2 = −i ω̄ and λ̄3 = +i ω̄ both with algebraic multiplicity equal to 1
and with ω̄ =

√
−Ḡθ̇,θ.

Adopt for this system the parameters proposed by Holics (2011), i.e. r̄1 =

1m, r̄2 = 0.3m, m̄1 = 0.670 kg. The charts in Figures 4.15 and 4.16 show
respectively the values of the reference angular coordinate θ̄ and of the angular
frequency ω̄ of the system as functions of ξ̄ for the following values of the ratio
m̄2/m̄1: 0, 8/67, 1/2, 1, 5.
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Figure 4.15: Stable value of θ as a function of the inclination angle ξ̄ for
several values of the ratio m̄2/m̄1.

Figure 4.16: Natural frequency ω̄ as a function of the inclination angle ξ̄ for
several values of the ratio m̄2/m̄1.

In order to perform forward dynamics simulations of both non-linear and
linearized models of the system, assume that the ratio m̄2/m̄1 = 8/67 and that
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the inclination angle ξ̄ = arcsin(4/5) ≈ 53◦08′, such that θ̄ = arcsin(3/5) ≈ 36◦52′.
Adopt as initial conditions q⟨0⟩(0) = (θ̄ + π/6) and q⟨1⟩(0) = 0. Denote with the
pre-superscript R the reference solution obtained when the initial conditions
are Rq⟨0⟩(0) = (θ̄) and Rq⟨1⟩(0) = 0. Figures 4.17 – 4.20 show the time histories
of some of the generalized of the models (subtracting the reference solution
values), obtained from the numerical simulations of both non-linear (NL) and
linearized (L) models.

Note that, in these simulations, the linearized model can adequately repro-
duce the period and the amplitude of oscillations in the neighborhood of the
reference solution. The assessment on how satisfactory these approximated
solutions are, depend on the desired applications for the results of the numeri-
cal simulations.

Finally, in order to evaluate the numerical error of the simulation of the non-
linear model (as in Example 4.5, the function of Mathematica 10.2
was applied), Figure 4.21 shows the time history of the numerical error com-
puted by the expression

√
∥q̄⟨2⟩∥2 + ∥f̄ ∥2. Note that the algorithms used in this

simulation keep the numerical error under control.

Figure 4.17: Time histories of the angle θ obtained by the non-linear (NL) and
linearized (L) models compared with the reference value (R) of the angle.
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Figure 4.18: Time histories of ω1 − Rω1 obtained by the non-linear (NL) and
linearized (L) models.

Figure 4.19: Time histories of ω2 − Rω2 obtained by the non-linear (NL) and
linearized (L) models.
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Figure 4.20: Time histories of θ̇ − Rθ̇ obtained by the non-linear (NL) and
linearized (L) models.

Figure 4.21: Numerical error evaluation in the forward dynamics simulation of
the non-linear model.
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4.6 Qualitative comparison between modeling
methodologies

This last section of Chapter 4 is dedicated to a qualitative comparison
among the conventional modeling methodologies applied for the modeling of
multibody system and the novel methodology discussed in this chapter. Based
on the literature review presented in Chapter 3 and on the author’s personal ex-
perience, assessments for each set of methodologies are performed, attributing
a score from 0 to 5 points to each of the following eight features it might have:

• Modularity: ability to derive mathematical models of complex multibody
systems from already known models of its subsystems, using a particular
methodology.

• Recursivity: ability to produce recursive algorithms for the procedures of
modeling and simulation of a multibody system.

• Variables: versatility for the selection of generalized variables.

• Number of EOM: how easy is to derive a minimal set of equations of
motion applying a particular methodology.

• Algorithmization: how easy is to implement generic algorithms (applicable
for a wide range ofmultibody systems) based on a particular methodology.

• Interpretability: how easy is to physically interpret the meaning of each
term in the system of equations of motion derived from a particular
methodology.

• Constraints: how easy is to elimine the undesired constraint forces and to
find expressions for the ones that might be of interest, using a particular
methodology.

• Energy: ability to use energy-like functions in the derivation of the equa-
tions of motion of a multibody system, using a particular methodology.

The score 5/5 is assigned to the set of methodologies that has the best per-
formance in a given feature; the score 1/5 represents a poor performance and
the score 0/5 means that the particular set of methodologies does not have the
corresponding feature. Table 4.2 presents the assessment performed for the
following sets of modeling methodologies:
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• Newton-Euler (Section 3.1): modeling methodologies for multi-rigid-body
systems based on the use of Newton-Euler equations.

• PVW (Subsections 3.2.1 – 3.2.3): modeling methodologies based on the
standard statements of the Principle of Virtual Work and its differential
variants (Principle of Virtual Power, Gauss’ Principle, etc.)

• Lagrange (Subsections 3.2.4 – 3.2.7): modeling methodologies based on
the use of Lagrangian and Hamiltonian canonical equations along with the
method of Lagrangian multipliers, if necessary (see Section 3.1).

• Gibbs-Appell (Subsection 3.3.1): modeling methodologies based on the
Gibbs-Appell equations.

• Maggi (Subsection 3.3.2): modeling methodologies based on Maggi’s
equations and the standard forms of orthogonal complement methods.

• Boltzmann-Hamel (Subsection 3.3.3): modeling methodologies based on
the Boltzmann-Hamel equations.

• Kane (Subsection 3.4.1): Kane’s methodology.

• Udwadia-Kalaba (Subsection 3.4.2): Udwadia-Kalaba methodology.

• Orsino (Sections 4.1 and 4.2): novel recursive modular modeling method-
ology presented in this chapter.

Regarding “modularity”, the greatest score is assigned to the novel method-
ology presented in this text, once the procedure described in Section 4.2 is the
most general one among the evaluated ones, being applicable for any multi-
body system, regardless the particular form of the models of the subsystems in-
volved. The runner-up, scoring 4/5 on “modularity” is Udwadia-Kalaba method-
ology, whose algorithm requires all the constraints among all the subsystems
involved to be considered simultaneously. Scoring 3/5, Newton-Euler based
methodologies still perform better than the other formalisms, which score 2/5,
once the corresponding modular modeling procedure only involves the inclu-
sion, in the equations of motion of the subsystems, of constraint forces and
torques corresponding to each motion constraint among them. For the reman-
ing formalisms no general modular modeling procedure exists, although it is
still possible to use several informations of the models of the subsystems in the
corresponding derivations.
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Newton-Euler based methodologies have the best performance regarding
“recursivity”, once they lead to some of the simpler, most generic and most
widely used recursive modeling and simulation algorithms for multi-rigid-body
systems. Both the novel methodology presented in this text and PVW based
ones score 4/5 on “recursivity” due to the great versatility of the corresponding
recursive algorithms. With less versatile recursive algorithms associated, the
remaining methodologies score 3/5 on “Recursivity”.

In terms of “selection of variables” both Udwadia-Kalaba methodology and
the one developed in this chapter can be considered the best ones, once there
are no restrictions on the choice of generalized variables in these methodolo-
gies. Scoring 4/5, the PVW based methodologies also have no restrictions on
the choice of modeling variables. These methodologies, however, lack a gen-
eral procedure for expressing generic variations in these systems in terms of
an independent set of variables that ensure the satisfaction of the constraints
involved. Gibbs-Appell, Maggi, Boltzmann-Hamel and Kane’s methodologies
score 3/5 on “selection of variables”, because, although they allow the use both
of generalized coordinates and quasi-velocities, they require the user to find a
minimal set of quasi-velocities for each system (as much quasi-velocities as
the number of degrees of freedom). Lagrange’s formalism, that only allows the
choice of generalized coordinates (being the higher order generalized variables
simply time derivatives of them), scores 2/5, while Newton-Euler formalism, be-
ing the less flexible in terms of choice of variables, scores 1/5.

Regarding “number of EOM”, all the methodologies that lead to the deriva-
tion of minimal systems of equations of motion, with as much dynamic equa-
tions as the number of degrees of freedom, score 5/5. Scoring 3/5 are the
methods in which the number of equations of motion depends on the number
of generalized variables selected. Finally, once Newton-Euler formalism does
not allow to limit the number of dynamic equations of motion (which only de-
pends on the number of rigid bodies in the system), its score is 0/5 on “number
of EOM”.

Regarding “algorithmization”, the Newton-Euler based methodologies
along with Udwadia-Kalaba and the novel one presented in this text score 5/5:
the former ones due to the fact that Newton-Euler equations always preserve
their general form independently of the topology of the systems involved, which
makes it easier to develop algorithms; the other two methodologies, due to the
possibility of fully exploring the modularity of multibody systems, which even
allows the use of libraries of subsystems to in the algorithms. Kane and Gibbs-
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Appell methodologies score 4/5, once they are widely used in the formulation of
algorithms available in the literature. Lagrange, Maggi and Boltzmann-Hamel
score 3/5 due to the complexity involved in formulating efficient algorithm for
obtaining generalized effective forces from the expressions of energy-like func-
tions. In the last position, scoring 1/5 comes the PVW based methodologies in
which some kind of specialization must be performed (using other procedures
than simply the ones based on the fundamental principles of Analytical Mechan-
ics) to be able to implement algorithms, once these methodologies themselves
can lead to a wide variety of forms for the EOMs of multibody systems.

Regarding “interpretability”, again there is an evident advantage in the ap-
plication of Newton-Euler based methodologies, once the identification of the
physical meaning of each term in each equation is almost immediate. Scoring
4/5 are the methodologies in which the terms in the dynamic equations can be
interpreted as projections of forces and torques. The score 3/5 is attributed to
methodologies in which energy-like functions are used to derive the equations
of motion, making it less simple to identify the meaning of each term. Finally,
Udwadia-Kalaba methodology scores 2/5 once the methodology for including
external constraints is a purely mathematical algorithm (without physical mean-
ing).

Regarding “constraints”, both Udwadia-Kalaba methodology and the novel
one presented in this text score 5/5, once both of them enable the inclusion of
any constraint that can be expressed by invariants written in terms of gener-
alized variables, without the need of including any undesired constraint force
and providing explicit expressions for the desired ones. The same happen
with Gibbs-Appell and Maggi’s formalisms, with the disadvantage that it is nec-
essary to find a minimal set of quasi-velocities, which make they score 4/5 on
“constraints”. Scoring 3/5, Boltzmann-Hamel formalism is very similar to Gibbs-
Appell and Maggi’s but does not enable, by itself, the derivation of expressions
for constraint forces. Kane’s and PVW based methodologies score 2/5: the
former for not allowing the inclusion of non-linear nonholonomic constraints in
its original procedure, and the latter for the lack of a general method for in-
cluding the effects of constraints in the equations of motion and for obtaining
explicit expressões for the eventually desired constraint forces. Scoring 1/5,
Lagrangian formalism requires the use of undetermined multipliers whenever
there are any nonholonomic constraints or redundant generalized coordinates.
Finally, Newton-Euler methodologies score 0/5, once for each constraint there
must be included a corresponding constraint force or torque; moreover, there
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is no general method for eliminating the undesired ones from the equations of
motion.

In terms of “energy”, Hamel-Boltzmann, Udwadia-Kalaba and the novel
methodology presented in this text score 5/5 once they enable the use of kinetic
energy and other energy-like functions, expressed in terms of generalized vari-
ables, in the derivation of the equations of motion of a multibody system. Scor-
ing 4/5, Gibbs-Appell formalism only allows the use of Gibbs-Appell function,
which has a more complex expression than the kinetic energy, in the derivation
of generalized inertia forces. Maggi’s and Lagrangian formalisms also score
4/5, because they require that the kinetic energy to be expressed in terms of
the generalized coordinates and its time derivatives, instead of allowing the
use of quasi-velocities. With almost no advantage in the use of energy-like
functions to the derivations of equations of motion, Kane’s and PVW based
methodologies score 2/5. Newton-Euler formalism scores 0/5 once it does not
involve the use of energy-like functions on any modeling procedure.
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5 Computational implementations of
modular modeling algorithms for
multibody systems

This chapter illustrates the application of the novel modular modeling
methodology presented in Chapter 4 to the development of computational al-
gorithms, by showing two actual implementations of packages of functions
for Wolfram Mathematica 10.2. The first one, MoSsPack, consists of a set
of generic functions that implement all the modeling procedures shown in Ta-
ble 4.1, requesting the user to provide minimal information about the models of
the leaf subsystems and about the external constraints. It also implements the
linearization procedures presented in Section 4.5. The second implementation
presented, Mo2DPack, is a package for the symbolic derivations and numerical
simulations (forward and inverse dynamics) of models of planar mechanisms,
that illustrates the potential of the novel modular modeling methodology for the
development of specialized computational packages.

The choice of WolframMathematica, which is a proprietary software, for the
development of these packages does not mean that some particular closed-
source feature is necessary for the implementation of any algorithm presented
here. Once the objective of the packages presented in this chapter is merely to
illustrate the potential applications of the novel methodology, the use of Math-
ematica is justified due to the practicality of drafting functions for both sym-
bolic and numerical computations using Wolfram Language along with func-
tional programming. This does not mean, however, that the final version of
these packages must be developed in Wolfram Mathematica. Ideally, the final
version of any package based on the modular methodology can be developed
in an open source programming language which is adequate for both symbolic
and numerical computations. PyDy (Multibody Dynamics with Python) project1,
for instance, is a successful example of the use of Python in the development
of packages similar to the ones shown in this chapter.

1 Visit .
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Section 5.1 presents a brief introduction to MoSsPack. Section 5.2 shows
a case study in which a linearized model of a tadpole tricycle is developed
aided by MoSsPack; a brief stability analysis based on the linearized model is
also presented. Finally, Section 5.3 presents a brief introduction to Mo2DPack
along with some examples of application to the modeling and simulation of
planar mechanisms.

5.1 MoSsPack – recursive modular modeling
package for Mathematica 10.2

The recursive form of the modular modeling methodology presented in Sec-
tion 4.2 can be implemented as a package of functions that are able to repro-
duce each procedure listed in Table 4.1 once the required inputs are provided by
the user. The first implementation of such an algorithm resulted in MoSsPack
package for Wolfram Mathematica 10.2, which can be downloaded, along with
its complete documentation, at .
For this package to work properly, it is required another package of general-
purpose and matrix algebra functions package for Mathematica 10 developed
by the autor, called MathMatrixPack (also with complete documentation) which
can be downloaded at .

Figure 5.1 illustrates the use of MoSsPack package for the modular mod-
eling of a spherical pendulum. In this example, B denotes a system con-
stituted by a single free rigid body B in a gravitational field. Its mathemat-
ical model is given by the corresponding Newton-Euler equations, so that
q⟨0⟩B = (pB,x, pB,y, pB,z) and q⟨1⟩B = (vB,x, vB,y, vB,z,ωB,x,ωB,y,ωB,z) with pB,x, pB,y
and pB,z representing the Cartesian coordinates of the center of mass of B in
a coordinate system rigidly attached to an inertial reference frame N, vB,x, vB,y
and vB,z being the corresponding velocity components of this center of mass
of B and ωB,x, ωB,y and ωB,z being the local basis components of the angular
velocity of B, both measured with respect to N. System S is obtained by con-
straining the center of mass of B to move in a spherical surface of radius ā,
parametrically described by the invariants:

q̄⟨0⟩S.⊕ =

⎡

⎢⎢⎢⎢⎣

pB,x − ā sin(θ) cos(φ)

pB,y − ā sin(θ) sin(φ)

pB,z + ā cos(θ)

⎤

⎥⎥⎥⎥⎦
= 0 (5.1)
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(a) Piece of a Mathematica notebook showing the derivation of the spherical
pendulum model

....S. ..B

(b) Tree structure diagram of the spherical pendulum model

Figure 5.1: Modelling of a spherical pendulum using MoSsPack. Adapted
from the documentation available at

.
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Thus, it is convenient to define the following extra generalized variables for
modeling S: q⟨0⟩S.⊕ = (φ, θ) and q⟨1⟩S.⊕ = (φ̇, θ̇). Moreover, it can be stated that,
for every state of S, the following subset of quasi-velocities is constituted of
independent variables: q⟨1⟩S.# = (φ̇, θ̇,ωB,x,ωB,y,ωB,z). The outputs presented in
Figure 5.1a are the explicit form os the equations of motion of system S and
the expression of the matrix SS, respectively.

MoSsPack (used along withMathMatrixPack) not only implements themod-
ular modeling methodology presented in Section 4.2 but also provides the pro-
cedures discussed in Section 4.5 for obtaining linearized equations of motion
of multibody system based on either non-linear or linearized models of its sub-
systems. A remarkable attribute of this latter implementation, it that it allows
to obtain linearized equations of motion for systems in which the number of
constraint invariants exceed the difference between the number of ν◦-th order
generalized variables and the number of degrees of freedom. In these cases,
the corresponding orthogonal complements are obtained by a least squares
solver instead of a conventional linear solver. When the redundant invariants
are compatible, i.e., whenever apart from singularities it is always possible to
find in the neighborhood of a given state other states that satisfy all the invari-
ants simultaneously, the calculated orthogonal complement will correspond to
an exact solution (even when the least squares solver is used). However, when
these invariants are not compatible, i.e., whenever, apart from special cases it
is never possible to find in the neighborhood of a given state other states that
satisfy all the invariants simultaneously, no exact orthogonal complement will
exist and the obtained solution will correspond to a least squares approxima-
tion compatible with the norm adopted (in this case, the norm can be used to
tune the results according to the physical interpretation of the invariants). This
latter case is explored in the case study presented in the next section.

5.2 Case study: linearized tadpole tricycle model

5.2.1 Overview

In this section a linearized model of a tadpole tricycle is obtained and a brief
stability analysis of this system is performed. All the procedures presented here
were aided by a Wolfram Mathematica 10.2 script that uses functions from the
MoSsPack package (see Section 5.1).

A tadpole tricycleT will be conceived as an assembly of 8 subsystems (see
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Figure 5.2):

• W, FR and FL, representing the rear, front right and front left wheels re-
spectively,

• A, representing the rider’s body and frame assembly,

• SR and SL, representing the left and right steering bars,

• KR and KL, representing the left and right knuckles.
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(b) Tree structure diagram of the tadpole tricycle model

Figure 5.2: Representation of system T and its subsystems

Subsystems W, FR and FL are modeled as rigid knife-edge discs rolling
in a plane; both geometry and mass distribution of these discs respect a cylin-
drical symmetry. Moreover, all the wheels are supposed to respect the no-slip
constraint, i.e. neither longitudinal nor lateral slipping are allowed in the contact
between the disc and the plane.
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Subsystem A is supposed to be an assembly of 4 other subsystems, each
one composed of a single ideal rigid body symmetric (both in terms of geome-
try and mass distribution) with respect to a local plane that coincides with the
(vertical) y-plane when the system is in the reference configuration shown in
Figure 5.2a:

• B, representing rider’s body and the rear frame of the tricycle,

• H, representing the handlebar,

• P, representing the upper transverse rod of the suspension and

• Q, representing the lower transverse rod of the suspension

In this model, the rider’s body will be considered to be rigidly attached to the
rear frame. Moreover, the frame is linked to the handlebar and transverse sus-
pension rods by ideal revolute joints, being negligible any clearance, as well
as, any flexibility or damping effects.

Both subsystems SR and SL are constituted by identical rigid bodies with
cylindrical symmetry and negligible axial inertia, i.e. they represent thin cylin-
drical bars. These subsystems are considered to be constrained both to the
handlebar and to the respective knuckle by ideal spherical joints. No clear-
ances nor flexibility and damping effects are considered.

Both subsystems KR and KL are constituted by identical rigid bodies with
no special symmetry. They are constrained to the respective front wheels by
ideal revolute joints and to the transverse rods of the suspension and steering
bars by ideal spherical joints. Again, no clearances nor flexibility and damping
effects are considered.

5.2.2 Rider’s body and frame assembly

Consider that B, H, P and Q denote the rigid bodies of subsystems B, H,
P and Q, respectively. Define local coordinate systems, B = (bo, b̂x, b̂y, b̂z),
H = (ho, ĥx, ĥy, ĥz), P = (po, p̂x, p̂y, p̂z) and Q = (qo, q̂x, q̂y, q̂z), respectively,
rigidly attached to of each of these rigid bodies. Let N be an inertial reference
frame and denote by N = (no, n̂x, n̂y, n̂z) a coordinate system rigidly attached
to N.

Consider that the origin of B coincides, in the reference configuration, with
the rear wheel contact point, i.e. no = w, the origin ho of H coincides with the
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intersection of the local x-axis of B and the steering axis and the origin of P (Q)
is defined such that:

• po (qo) remains in the corresponding revolute joint axis and

• the plane popRpL (qoqRqL) is orthogonal to this axis.

Adopt the following notations (see Figure 5.2a):

[w]N = (x, y , 0) [w⋆]B = (0, 0,−r̄W) [b⋆]B = (x̄b⋆ |B, 0, z̄b⋆ |B)

[ho]B = (w̄ + c̄ , 0, 0) [po]B = (x̄po |B, 0, z̄po |B) [qo]B = (x̄qo |B, 0, z̄qo |B)

[h⋆]H = (x̄h⋆ |H, 0, z̄h⋆ |H) [p⋆]P = (x̄p⋆ |P, 0, z̄p⋆ |P) [q⋆]Q = (x̄q⋆ |Q, 0, z̄q⋆ |Q)

[hR]H = (x̄h|H, ȳh|H, z̄h|H) [pR]P = (0, ȳp|P, z̄p|P) [qR]Q = (0, ȳq|Q, z̄q|Q)

[hL]H = (x̄h|H,−ȳh|H, z̄h|H) [pL]P = (0,−ȳp|P, z̄p|P) [qL]Q = (0,−ȳq|Q, z̄q|Q)

(5.2)

Moreover, adopt for subsystemsB,H,P and Q the generic Newton-Euler
model, for a single rigid body symmetric with respect to the local y-plane (both
in terms of geometry and mass distribution) subjected to a gravitational field
ḡ = ḡ(sin ξ̄ n̂x + cos ξ̄ n̂z), and to an eventual torque applied in the direction of
its local y-axis. In order to modelA the following extra generalized coordinates
are defined (see Figure 5.2a):

• x and y , the x and y Cartesian coordinates of w in N (note that the z

coordinate of this point is always zero).

• ψ, φ and θ, representing a sequence of zxy Euler angles (heading, lean
and pitch angles) that are used to describe the orientation of Bwith respect
to N.

• δ, the steering angle, representing the relative revolute motion between
handlebar and frame along the steering axis.

• χp (and χq) representing the relative revolute motion between the upper
(lower) transverse rod of the suspension and the frame along the corre-
sponding revolute joint axis.

Define also as extra quasi-velocities the time derivatives of these extra coor-
dinates. Denote by uδ the steering torque (assumed as a control input), by
uφ the lean torque (assumed as a generic disturbance). The following extra
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generalized forces must be included in the model:

fA.⊕ =

⎡

⎣

⎤

⎦δ̇ uδ

φ̇ uφ
(5.3)

Suppose that, when the system is in the reference configuration shown in
Figure 5.2a, all the unit vectors b̂x, b̂y and b̂z coincide with n̂x, n̂y and n̂z. Let
also ĥz have the direction of the steering axis, and p̂x and q̂x have the same
direction as the respective revolute joint axes. It can be stated that:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[1]N|L = Rz(ψ) Rx(φ) Ry(θ)

[1]N|H = Rz(ψ) Rx(φ) Ry(θ) Ry(λ̄) Rz(δ)

[1]N|P = Rz(ψ) Rx(φ) Ry(θ) Ry(λ̄p) Rx(χp)

[1]N|Q = Rz(ψ) Rx(φ) Ry(θ) Ry(λ̄q) Rx(χq)

(5.4)

Thus, coordinates of the relevant points with respect to N can be obtained by:

[j]N = [jo]N + [1]N|J[j]J (5.5)

For j ∈ {w⋆, b⋆, ho, po, qo}, adopt jo = w and J = B; for j ∈ {h⋆, hR, hL}, adopt
jo = ho and J = H; for j ∈ {p⋆, pR, pL}, adopt jo = po and J = P and for j ∈
{q⋆, qR, qL}, adopt jo = qo and J = Q. The invariants necessary for describing
the “internal” constraints of A can be obtained from the following equations:

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
[j⋆]N = [vj⋆ |N]N = (vJ,x, vJ,y, vJ,z)

[1]TN|J ·
d

dt
[1]N|J = [ωJ|N]

S
J|J = (ωJ,x,ωJ,y,ωJ,z)

S
(5.6)

for j⋆ ∈ {b⋆, h⋆, p⋆, q⋆} and, correspondingly, J ∈ {B, H, P, Q} and J ∈
{B,H,P,Q}.

5.2.3 Wheels and suspension

As previously mentioned, the wheels of the tricycle (W, FR and FL) will be
modeled as rigid no-slip knife-edge discs. Define a mechanical systemE con-
stituted by a single rigid body E rolling in the plane ground N, representing a
bicycle wheel. Consider that E is a flat disc with knife edge whose mass distri-
bution respects the corresponding cylindrical symmetry. Let E = (eo, êx, êy, êz)

be a coordinate system fixed to the rigid body E: the origin eo corresponds to
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the geometrical center of the cylinder and the unit vectors êx, êy and êz consti-
tute an orthonormal basis such that êy has the direction of the axis the cylinder.
Define also ê′x = (êy×n̂z)/∥êy×n̂z∥ as an unit vector representing the direction
in the plane which is instantaneously tangent to the edge of the cylinder and
ê′y = n̂z × ê′x as an unit vector representing the direction in the plane which is
perpendicular to this tangent one. Let ec be the instantaneous contact point
of the knife edge of the cylinder with the plane ground and let vec |N denote the
velocity of this point with respect to the reference frame of N. In the modeling
ofE, due to the no-slip constraint, it is supposed that vec |N = 0.

Define the following generalized coordinates for describing the instanta-
neous configurations of E (with respect to a reference frame in N):

• pE,x, pE,y and pE,z, the coordinates of eo in the coordinate system N.

• ψE, φE and θE representing a sequence of zxy Euler angles (i.e. rotations
about n̂z, ê′x and êy, respectively), that are used to describe the orientation
of E with respect to N:

– ψE is the heading (yaw) angle of E, i.e. the angle between the direc-
tions of ê′x and n̂x.

– φE is the lean angle of E, i.e. the angle between the directions of êy
and ê′y.

– θE is the angle that describes the intrinsic rotation (spin) of E, i.e. the
angle between the directions of êx and ê′x.

Define also the following quasi-velocities for describing the motion of E with
respect to N:

• vE,x, vE,y and vE,z, the components of the center of mass e⋆ = eo of E (with
respect to N) in the coordinate system N, i.e. ve⋆ |N = vE,x n̂x + vE,y n̂y +

vE,z n̂z.

• ωE,x, ωE,y and ωE,z, the components of the angular velocity of E (with re-
spect to N) in the coordinate system E, i.e. ωe⋆ |N = ωE,x êx + ωE,y êy +

ωE,z êz.

• ψ̇E, φ̇E and θ̇E.

Consider that the mass distribution of E respects its cylindrical symmetry.
Denote by m̄E the mass of E, by ĪE,a its axial moment of inertia and by ĪE,r its
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in-plane moment of inertia. Adopting, without loss of generality, that the local
acceleration of gravity is given by ḡ = ḡ(sin ξ̄ n̂x+ cos ξ̄ n̂z), and supposing that
there is a torque −uE êy applied to E, it can be stated that:

fE =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

vE,x ḡsξ̄m̄E − m̄Ev̇E,x

vE,y −m̄Ev̇E,y

vE,z cξ̄ḡm̄E − m̄Ev̇E,z

ωE,x ĪE,aωE,yωE,z − ĪE,rωE,yωE,z − ĪE,rω̇E,x

ωE,y −uE − ĪE,aω̇E,y

ωE,z −ĪE,aωE,xωE,y + ĪE,rωE,xωE,y − ĪE,rω̇E,z

θ̇E 0

φ̇E 0

ψ̇E 0

(5.7)

Moreover, considering that theremust be three invariants expressing the re-
lations between the three components of angular velocity (ωE,x,ωE,y,ωE,z) and
the three time derivatives of the Euler Angles (ψ̇E, φ̇E, θ̇E), as well as three in-
variants expressing the constraints rec |no · n̂z = 0 (i.e. there must be a contact
point between the wheel and the plane), vec |N · ê′x = 0 and vec |N · ê′y = υE

(i.e. there is no longitudinal slip in this contact). All these constraints can be
expressed by an invariant q̄⟨1⟩E = AE q

⟨1⟩
E , with:

AE =

vE,x vE,y vE,z ωE,x ωE,y ωE,z θ̇E φ̇E ψ̇E

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 0 0 0 1 0 0 0 −cθE cφEsθE

2 0 0 0 0 1 0 −1 0 −sφE

3 0 0 0 0 0 1 0 −sθE −cθEcφE

4 0 0 1 0 0 0 0 −sφE r̄E 0

5 1 0 0 0 0 0 cψE
r̄E cφEsψE

r̄E cψE
sφE r̄E

6 0 1 0 0 0 0 sψE
r̄E −cφEcψE

r̄E sφEsψE
r̄E

(5.8)
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ForE, BE = AE and a possible expression for SE = CE is given by:

SE = CE =

θ̇E φ̇E ψ̇E
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

vE,x −cψE
r̄E −cφEsψE

r̄E −cψE
sφE r̄E

vE,y −sψE
r̄E cφEcψE

r̄E −sφEsψE
r̄E

vE,z 0 sφE r̄E 0

ωE,x 0 cθE −cφEsθE

ωE,y 1 0 sφE

ωE,z 0 sθE cθEcφE

θ̇E 1 0 0

φ̇E 0 1 0

ψ̇E 0 0 1

(5.9)

The steering bars SR and SL are modeled as thin rigid cylinders SR and SL

with negligible radius. The mass distribution of these bodies respects the cylin-
drical symmetry, thus their axial moments of inertia are also negligible. Adopt
for each of these bodies local coordinate systems SR and SL with origins in
their centers of mass (s⋆R and s⋆L, respectively) and with local x-axes aligned
to the cylinder axes. Define as generalized coordinates for these subsystems
the Cartesian coordinates of their centers of mass with respect to a coordi-
nate system N rigidly attached to an inertial reference frame N and zyx Euler
angles representing a sequence of canonical rotations around local axes that
describes the orientation of the body-attached coordinate systems with respect
to N. Define as quasi-velocities for each of these systems, the components of
the velocity of the center of mass with respect to N in the coordinate system
N, the components of the angular velocity of the body with respect to N in the
body-attached coordinate system and the time derivatives of the Euler angles.
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In this case, it can be stated that, for J ∈ {R,L}:

SSJ = CSJ =

vSJ,x vSJ,y vSJ,z θ̇SJ φ̇SJ ψ̇SJ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

vSJ,x 1 0 0 0 0 0

vSJ,y 0 1 0 0 0 0

vSJ,z 0 0 1 0 0 0

ωSJ,x 0 0 0 1 0 −sφSJ

ωSJ,y 0 0 0 0 cθSJ cφSJ sθSJ

ωSJ,z 0 0 0 0 −sθSJ cθSJcφSJ

θ̇SJ 0 0 0 1 0 0

φ̇SJ 0 0 0 0 1 0

ψ̇SJ 0 0 0 0 0 1

(5.10)

Morevover, considering that each bar is subjected to a gravitational field ḡ =

ḡ(sin ξ̄ n̂x + cos ξ̄ n̂z), for J ∈ {R,L}:

f̄SJ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

vSJ,x ḡsξ̄m̄W − m̄Wv̇W,x

vSJ,y −m̄Wv̇W,y

vSJ,z cξ̄ḡm̄W − m̄Wv̇W,z

θ̇SJ 0

φ̇SJ ĪSJ,r
(
− cθSJ ω̇SJ,y + sθSJ ω̇SJ,z + ωSJ,x

(
cθSJωSJ,z + sθSJωSJ,y

))

ψ̇SJ −cφSJ ĪSJ,r
(
cθSJ ω̇SJ,z + sθSJ ω̇SJ,y + ωSJ,x

(
cθSJωSJ,y − sθSJωSJ,z

))

(5.11)

Finally, it is convenient to express the Cartesian coordinates of hR, sR, hL and
sL (which are geometric centers of spherical joints, see Figure 5.2a) in the co-
ordinate system N as functions of the generalized coordinates of SR and SL.
For this, define ℓ̄SR = ∥rsR |hR∥ and ℓ̄SL = ∥rsL |hL∥ and let γ̂SR and γ̂SL be adi-
mensional quantities that satisfy the following identities: rs⋆R |hR = γ̂SR rsR |hR and
rs⋆L |hL = γ̂SL rsL |hL . It can be stated that, for J ∈ {R,L}:

⎧
⎪⎨

⎪⎩

[hJ]N = (pSJ,x, pSJ,y, pSJ,z) + [1]N|SJ · (−γ̂SJ ℓ̄SJ, 0, 0)

[sJ]N = (pSJ,x, pSJ,y, pSJ,z) + [1]N|SJ · ((1− γ̂SJ)ℓ̄SJ, 0, 0)
(5.12)

The knuckles KR and KL are modeled as rigid bodies KR and KL with no
special symmetry property. Define body-attached coordinate systems, KR and
KL, with origins in the corresponding centers of mass of these bodies and axes
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that coincide with the global axes (of N) whenever the tricycle is in the refer-
ence configuration shown in Figure 5.2a. Consider also that this model uses
the same kind of generalized coordinates and quasi-velocities defined for the
modeling of the steering bars, except from the angular coordinates which are
now set as zxy Euler angles. It can be stated that, for J ∈ {R,L}:

SKJ = CKJ =

vKJ,x vKJ,y vKJ,z θ̇KJ φ̇KJ ψ̇KJ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

vKJ,x 1 0 0 0 0 0

vKJ,y 0 1 0 0 0 0

vKJ,z 0 0 1 0 0 0

ωKJ,x 0 0 0 0 cθKJ
−cφKJ

sθKJ

ωKJ,y 0 0 0 1 0 sφKJ

ωKJ,z 0 0 0 0 sθKJ
cθKJ

cφKJ

θ̇KJ 0 0 0 1 0 0

φ̇KJ 0 0 0 0 1 0

ψ̇KJ 0 0 0 0 0 1

(5.13)

Moreover, considering that each knuckle is subjected to a gravitational field
ḡ = ḡ(sin ξ̄ n̂x + cos ξ̄ n̂z), for J ∈ {R,L}:

fKJ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

vKJ,x ḡsξ̄m̄KJ − m̄KJ v̇KJ,x

vKJ,y −m̄KJ v̇KJ,y

vKJ,z cξ̄ḡm̄KJ − m̄KJ v̇KJ,z

ωKJ,x
IfKJ.ωKJ,x

ωKJ,y uFJ +
IfKJ.ωKJ,y

ωKJ,z
IfKJ.ωKJ,z

θ̇KJ 0

φ̇KJ 0

ψ̇KJ 0

(5.14)

with:

IfKJ.ωKJ,a
= −ĪKJ,bcω

2
KJ,b − ĪKJ,acωKJ,aωKJ,b + ĪKJ,bbωKJ,cωKJ,b

− ĪKJ,ccωKJ,cωKJ,b + ĪKJ,bcω
2
KJ,c + ĪKJ,abωKJ,aωKJ,c

− ĪKJ,aaω̇KJ,a − ĪKJ,abω̇KJ,b − ĪKJ,acω̇KJ,c (5.15)
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for all (a,b,c) ∈ {(x,y,z), (y,z,x), (z,x,y)}.

Then, f̄KR = CT
KR
fKR and f̄KL = CT

KL
fKL . Finally, for J ∈ {R,L}, it is con-

venient to express the Cartesian coordinates of pJ, qJ, sJ and f⋆J (which are
geometric centers of spherical joints, see Figure 5.2a) in the coordinate sys-
tem N as functions of the generalized coordinates of KJ. These expressions
can be given by (with the local coordinates, denoted with overbar, treated as
known physical parameters):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[pJ]N = (pKJ,x, pKJ,y, pKJ,z) + [1]N|KJ · (x̄p|KJ, ȳp|KJ, z̄p|KJ)

[qJ]N = (pKJ,x, pKJ,y, pKJ,z) + [1]N|KJ · (x̄q|KJ, ȳq|KJ, z̄q|KJ)

[sJ]N = (pKJ,x, pKJ,y, pKJ,z) + [1]N|KJ · (x̄s|KJ, ȳs|KJ, z̄s|KJ)

[f⋆J]N = (pKJ,x, pKJ,y, pKJ,z) + [1]N|KJ · (x̄f⋆ |KJ, ȳf⋆ |KJ, z̄f⋆ |KJ)

(5.16)

5.2.4 Linearized equations of motion

As discussed in Section 5.2.1, the tadpole tricycle T is constituted
by 8 subsystems, whose models have already been derived (see Sec-
tions 5.2.2 and 5.2.3). No extra generalized variables or extra generalized
forces are needed. Thus, it is necessary to obtain invariants describing the
“external” constraints among these subsystems to be able to apply the modu-
lar modeling algorithm. The constraints among these subsystems are due to
ideal spherical and revolute joints:

• The constraint between the rear wheel and frame can be modeled as an
ideal revolute joint. The parametric descriptions of the position of w⋆ using
coordinates of A and W must be the same, as well as, the local y axes
must be parallel, i.e.:

⎧
⎪⎨

⎪⎩

[w⋆]N(t, q
⟨0⟩
A ) = [w⋆]N(t, q

⟨0⟩
W ) = (pW,x, pW,y, pW,z)

[1]N|B · êy = [1]N|W · êy
(5.17)

with êy = (0, 1, 0) and [w⋆]N(t, q
⟨0⟩
A ) being given by equation (5.5).

• The constraints between the handlebar and the steering arms can be
modeled as ideal spherical joints. In this case the parametric descrip-
tion of hR (hL) in terms of coordinates of A, given by equation (5.5), and
of coordinates of SR (SL), given by equation (5.12), must be the same.
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• The constraints between the upper and lower transverse rods of the sus-
pension and the left and right knuckles can also be modeled as ideal
spherical joints. In this case the parametric descriptions of the positions
of pR, pL, qR and qL must be the same when described in terms of the
generalized coordinates of A, equation (5.5), and of the generalized co-
ordinates of the respective knuckle, equation (5.16).

• The constraints between the knuckles and the steering arms can be mod-
eled as ideal spherical joints too. Thus, it is enough to guarantee that the
parametric descriptions of the positions of sR and sL coincide when ex-
pressed in terms of the generalized coordinates of the respective steering
arm, equation (5.12), and of the generalized coordinates of the respective
knuckle, equation (5.16).

• The constraints between the front wheels and the corresponding knuck-
les can be modeled as ideal revolute joints. Thus, analogously to equa-
tion (5.17), the following conditions must be satisfied, for J ∈ {R,L}:

⎧
⎪⎨

⎪⎩

[f⋆J]N(t, q
⟨0⟩
KJ

) = [f⋆J]N(t, q
⟨0⟩
W ) = (pFJ,x, pFJ,y, pFJ,z)

[1]N|KJ · êy = [1]N|FJ · êy
(5.18)

with [f⋆J]N(t, q
⟨0⟩
KJ

) being given by equation (5.16).

• Finally, by the symmetry hypotheses considered, rotations of the steering
arms around their own axes do not have any effect, nor are affected by
any other motion in the system. Thus, without any loss of generality, it
can be adopted that θSR = 0 and θSL = 0.

By these conditions, the corresponding invariants q̄⟨0⟩T.⊕ and, consequently,
q̄⟨1⟩T.⊕ = AT.⊕ q

⟨1⟩
T can be obtained.

However, it can be noticed that if all the corresponding invariants are con-
sidered, the model will be overconstrained, i.e., apart from the reference con-
figuration there will be no other configuration in which all the equations can be
satisfied simultaneously. Indeed, it can be noticed that this tricycle has clear-
ances in its spherical joints (Figure 5.3) that allow the operation of the steering
mechanism.

Altough the elimination of a constraint or an addition of a new joint repre-
senting an “equivalent” clearance would solve this problem, it can be noticed
that such hypotheses would, in some configurations, lead to unrealistic and bi-
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Figure 5.3: Feetz! tricycle

ased clearances. Indeed, in every configuration, the mechanism “distributes”
the clearances among the joints such that no joint presents an excessive clear-
ance and the violation of the corresponding constraint invariants is somehow
minimized. Considering that the objective of this analysis is to obtain a lin-
earized model of the tadpole tricycle, then the use of the least squares pro-
cedure described in Section 4.5 for obtaining a linearized expression for CT
based on a linearized expression of BT, would lead to a CT matrix that effec-
tively minimizes the violation of the constraint invariants without requiring any
other additional hypothesis.

The linearizations will be performed around a reference state in which the
tricycle remains in the reference configuration shown in Figure 5.2a and trans-
lates longitudinally with a constant velocity v n̂x with respect to N, which corre-
sponds to the following reference values for the state variables: pW,x− x = x̄W,
pW,y− y = ȳW, pW,z = −r̄W, pFR,x− x = pFL,x− x = x̄F, pFR,y− y = y − pFL,y = ȳF,
pFR,z = pFL,z = −r̄F, pSR,x − x = pSL,x − x = x̄S, pSR,y − y = y − pSL,y = ȳS,
pSR,z = pSL,z = z̄S, ψSR = −ψSL = ψ̄S, φSR = φSL = φ̄S, pKR,x − x = pKL,x − x = x̄K,
pKR,y − y = y − pKL,y = ȳK, pKR,z = pKL,z = z̄K, ẋ = ṗW,x = vW,x =

ṗFR,x = vFR,x = ṗFL,x = vFL,x = vB,x = vH,x = vP,x = vQ,x = ṗSR,x = vSR,x =

ṗSL,x = vSL,x = ṗKR,x = vKR,x = ṗKL,x = vKL,x = v , θ̇W = ωW,y = −v/r̄W and
θ̇FR = ωFR,y = θ̇FL = ωFL,y = −v/r̄F. Incremental generalized variables can
be defined as the difference between the generalized variables and their refer-
ence values. From this point on, unless explicitly mentioned, all the generalized
variables involved in mathematical expressions are incremental.
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Using the procedure described in Section 4.5 for obtaining a linearized form
for CT based on a linearized expression of BT, the following matrix is obtained:

CT =

ẋ δ̇ φ̇
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

vKL,x −∆̄δ,vK,x,ẋδ − ∆̄φ,vK,x,ẋφ− ∆̄ψ,vK,x,ẋψ + 1 −∆̄1,vK,x,δ̇
+ ∆̄δ,vK,x,δ̇δ + ∆̄φ,vK,x,δ̇φ+ ∆̄ψ,vK,x,δ̇ψ −∆̄1,vK,x,φ̇

+ ∆̄δ,vK,x,φ̇δ + ∆̄φ,vK,x,φ̇φ+ ∆̄ψ,vK,x,φ̇ψ

vKL,y ∆̄δ,vK,y,ẋδ + ∆̄φ,vK,y,ẋφ+ ∆̄ψ,vK,y,ẋψ ∆̄1,vK,y,δ̇
− ∆̄δ,vK,y,δ̇δ − ∆̄φ,vK,y,δ̇φ− ∆̄ψ,vK,y,δ̇ψ ∆̄1,vK,y,φ̇

− ∆̄δ,vK,y,φ̇δ − ∆̄φ,vK,y,φ̇φ− ∆̄ψ,vK,y,φ̇ψ

vKL,z −∆̄δ,vK,z,ẋδ − ∆̄φ,vK,z,ẋφ− ∆̄ψ,vK,z,ẋψ −∆̄1,vK,z,δ̇
+ ∆̄δ,vK,z,δ̇δ + ∆̄φ,vK,z,δ̇φ+ ∆̄ψ,vK,z,δ̇ψ −∆̄1,vK,z,φ̇

+ ∆̄δ,vK,z,φ̇δ + ∆̄φ,vK,z,φ̇φ+ ∆̄ψ,vK,z,φ̇ψ

vKR,x ∆̄δ,vK,x,ẋδ + ∆̄φ,vK,x,ẋφ+ ∆̄ψ,vK,x,ẋψ + 1 ∆̄1,vK,x,δ̇
+ ∆̄δ,vK,x,δ̇δ + ∆̄φ,vK,x,δ̇φ+ ∆̄ψ,vK,x,δ̇ψ ∆̄1,vK,x,φ̇

+ ∆̄δ,vK,x,φ̇δ + ∆̄φ,vK,x,φ̇φ+ ∆̄ψ,vK,x,φ̇ψ

vKR,y ∆̄δ,vK,y,ẋδ + ∆̄φ,vK,y,ẋφ+ ∆̄ψ,vK,y,ẋψ ∆̄1,vK,y,δ̇
+ ∆̄δ,vK,y,δ̇δ + ∆̄φ,vK,y,δ̇φ+ ∆̄ψ,vK,y,δ̇ψ ∆̄1,vK,y,φ̇

+ ∆̄δ,vK,y,φ̇δ + ∆̄φ,vK,y,φ̇φ+ ∆̄ψ,vK,y,φ̇ψ

vKR,z ∆̄δ,vK,z,ẋδ + ∆̄φ,vK,z,ẋφ+ ∆̄ψ,vK,z,ẋψ ∆̄1,vK,z,δ̇
+ ∆̄δ,vK,z,δ̇δ + ∆̄φ,vK,z,δ̇φ+ ∆̄ψ,vK,z,δ̇ψ ∆̄1,vK,z,φ̇

+ ∆̄δ,vK,z,φ̇δ + ∆̄φ,vK,z,φ̇φ+ ∆̄ψ,vK,z,φ̇ψ

vSL,x −∆̄δ,vS,x,ẋδ − ∆̄φ,vS,x,ẋφ− ∆̄ψ,vS,x,ẋψ + 1 −∆̄1,vS,x,δ̇
+ ∆̄δ,vS,x,δ̇δ + ∆̄φ,vS,x,δ̇φ+ ∆̄ψ,vS,x,δ̇ψ −∆̄1,vS,x,φ̇

+ ∆̄δ,vS,x,φ̇δ + ∆̄φ,vS,x,φ̇φ+ ∆̄ψ,vS,x,φ̇ψ

vSL,y ∆̄δ,vS,y,ẋδ + ∆̄φ,vS,y,ẋφ+ ∆̄ψ,vS,y,ẋψ ∆̄1,vS,y,δ̇
− ∆̄δ,vS,y,δ̇δ − ∆̄φ,vS,y,δ̇φ− ∆̄ψ,vS,y,δ̇ψ ∆̄1,vS,y,φ̇

− ∆̄δ,vS,y,φ̇δ − ∆̄φ,vS,y,φ̇φ− ∆̄ψ,vS,y,φ̇ψ

vSL,z −∆̄δ,vS,z,ẋδ − ∆̄φ,vS,z,ẋφ− ∆̄ψ,vS,z,ẋψ −∆̄1,vS,z,δ̇
+ ∆̄δ,vS,z,δ̇δ + ∆̄φ,vS,z,δ̇φ+ ∆̄ψ,vS,z,δ̇ψ −∆̄1,vS,z,φ̇

+ ∆̄δ,vS,z,φ̇δ + ∆̄φ,vS,z,φ̇φ+ ∆̄ψ,vS,z,φ̇ψ

vSR,x ∆̄δ,vS,x,ẋδ + ∆̄φ,vS,x,ẋφ+ ∆̄ψ,vS,x,ẋψ + 1 ∆̄1,vS,x,δ̇
+ ∆̄δ,vS,x,δ̇δ + ∆̄φ,vS,x,δ̇φ+ ∆̄ψ,vS,x,δ̇ψ ∆̄1,vS,x,φ̇

+ ∆̄δ,vS,x,φ̇δ + ∆̄φ,vS,x,φ̇φ+ ∆̄ψ,vS,x,φ̇ψ

vSR,y ∆̄δ,vS,y,ẋδ + ∆̄φ,vS,y,ẋφ+ ∆̄ψ,vS,y,ẋψ ∆̄1,vS,y,δ̇
+ ∆̄δ,vS,y,δ̇δ + ∆̄φ,vS,y,δ̇φ+ ∆̄ψ,vS,y,δ̇ψ ∆̄1,vS,y,φ̇

+ ∆̄δ,vS,y,φ̇δ + ∆̄φ,vS,y,φ̇φ+ ∆̄ψ,vS,y,φ̇ψ

vSR,z ∆̄δ,vS,z,ẋδ + ∆̄φ,vS,z,ẋφ+ ∆̄ψ,vS,z,ẋψ ∆̄1,vS,z,δ̇
+ ∆̄δ,vS,z,δ̇δ + ∆̄φ,vS,z,δ̇φ+ ∆̄ψ,vS,z,δ̇ψ ∆̄1,vS,z,φ̇

+ ∆̄δ,vS,z,φ̇δ + ∆̄φ,vS,z,φ̇φ+ ∆̄ψ,vS,z,φ̇ψ

ẋ 1 0 0

ẏ ∆̄φ,ẏ ,ẋφ+ ∆̄ψ,ẏ ,ẋψ 0 0

δ̇ 0 1 0

θ̇ 0 ∆̄δ,θ̇,δ̇δ + ∆̄φ,θ̇,δ̇φ+ ∆̄ψ,θ̇,δ̇ψ ∆̄δ,θ̇,φ̇δ + ∆̄φ,θ̇,φ̇φ+ ∆̄ψ,θ̇,φ̇ψ

φ̇ 0 0 1

ψ̇ ∆̄δ,ψ̇,ẋδ + ∆̄φ,ψ̇,ẋφ+ ∆̄ψ,ψ̇,ẋψ ∆̄1,ψ̇,δ̇ ∆̄1,ψ̇,φ̇

θ̇FL ∆̄1,θ̇F,ẋ
− ∆̄δ,θ̇F,ẋδ − ∆̄φ,θ̇F,ẋφ− ∆̄ψ,θ̇F,ẋψ −∆̄1,θ̇F,δ̇

+ ∆̄δ,θ̇F,δ̇δ + ∆̄φ,θ̇F,δ̇φ+ ∆̄ψ,θ̇F,δ̇ψ −∆̄1,θ̇F,φ̇
+ ∆̄δ,θ̇F,φ̇δ + ∆̄φ,θ̇F,φ̇φ+ ∆̄ψ,θ̇F,φ̇ψ

θ̇FR ∆̄1,θ̇F,ẋ
+ ∆̄δ,θ̇F,ẋδ + ∆̄φ,θ̇F,ẋφ+ ∆̄ψ,θ̇F,ẋψ ∆̄1,θ̇F,δ̇

+ ∆̄δ,θ̇F,δ̇δ + ∆̄φ,θ̇F,δ̇φ+ ∆̄ψ,θ̇F,δ̇ψ ∆̄1,θ̇F,φ̇
+ ∆̄δ,θ̇F,φ̇δ + ∆̄φ,θ̇F,φ̇φ+ ∆̄ψ,θ̇F,φ̇ψ

θ̇KL −∆̄δ,θ̇K,ẋδ − ∆̄φ,θ̇K,ẋφ− ∆̄ψ,θ̇K,ẋψ −∆̄1,θ̇K,δ̇
+ ∆̄δ,θ̇K,δ̇δ + ∆̄φ,θ̇K,δ̇φ+ ∆̄ψ,θ̇K,δ̇ψ −∆̄1,θ̇K,φ̇

+ ∆̄δ,θ̇K,φ̇δ + ∆̄φ,θ̇K,φ̇φ+ ∆̄ψ,θ̇K,φ̇ψ

θ̇KR ∆̄δ,θ̇K,ẋδ + ∆̄φ,θ̇K,ẋφ+ ∆̄ψ,θ̇K,ẋψ ∆̄1,θ̇K,δ̇
+ ∆̄δ,θ̇K,δ̇δ + ∆̄φ,θ̇K,δ̇φ+ ∆̄ψ,θ̇K,δ̇ψ ∆̄1,θ̇K,φ̇

+ ∆̄δ,θ̇K,φ̇δ + ∆̄φ,θ̇K,φ̇φ+ ∆̄ψ,θ̇K,φ̇ψ

θ̇SL 0 0 0

θ̇SR 0 0 0

θ̇W ∆̄1,θ̇W,ẋ
∆̄δ,θ̇,δ̇δ + ∆̄φ,θ̇,δ̇φ+ ∆̄ψ,θ̇W,δ̇ψ ∆̄δ,θ̇,φ̇δ + ∆̄φ,θ̇,φ̇φ+ ∆̄ψ,θ̇W,φ̇ψ

φ̇FL ∆̄δ,φ̇F,ẋδ + ∆̄φ,φ̇F,ẋφ+ ∆̄ψ,φ̇F,ẋψ ∆̄1,φ̇F,δ̇
− ∆̄δ,φ̇F,δ̇δ − ∆̄φ,φ̇F,δ̇φ− ∆̄ψ,φ̇F,δ̇ψ ∆̄1,φ̇F,φ̇

− ∆̄δ,φ̇F,φ̇δ − ∆̄φ,φ̇F,φ̇φ− ∆̄ψ,φ̇F,φ̇ψ

φ̇FR ∆̄δ,φ̇F,ẋδ + ∆̄φ,φ̇F,ẋφ+ ∆̄ψ,φ̇F,ẋψ ∆̄1,φ̇F,δ̇
+ ∆̄δ,φ̇F,δ̇δ + ∆̄φ,φ̇F,δ̇φ+ ∆̄ψ,φ̇F,δ̇ψ ∆̄1,φ̇F,φ̇

+ ∆̄δ,φ̇F,φ̇δ + ∆̄φ,φ̇F,φ̇φ+ ∆̄ψ,φ̇F,φ̇ψ

φ̇KL ∆̄δ,φ̇F,ẋδ + ∆̄φ,φ̇K,ẋφ+ ∆̄ψ,φ̇K,ẋψ ∆̄1,φ̇F,δ̇
− ∆̄δ,φ̇K,δ̇δ − ∆̄φ,φ̇K,δ̇φ− ∆̄ψ,φ̇K,δ̇ψ ∆̄1,φ̇F,φ̇

− ∆̄δ,φ̇K,φ̇δ − ∆̄φ,φ̇K,φ̇φ− ∆̄ψ,φ̇K,φ̇ψ

φ̇KR ∆̄δ,φ̇F,ẋδ + ∆̄φ,φ̇K,ẋφ+ ∆̄ψ,φ̇K,ẋψ ∆̄1,φ̇F,δ̇
+ ∆̄δ,φ̇K,δ̇δ + ∆̄φ,φ̇K,δ̇φ+ ∆̄ψ,φ̇K,δ̇ψ ∆̄1,φ̇F,φ̇

+ ∆̄δ,φ̇K,φ̇δ + ∆̄φ,φ̇K,φ̇φ+ ∆̄ψ,φ̇K,φ̇ψ

φ̇SL −∆̄δ,φ̇S,ẋδ − ∆̄φ,φ̇S,ẋφ− ∆̄ψ,φ̇S,ẋψ −∆̄1,φ̇S,δ̇
+ ∆̄δ,φ̇S,δ̇δ + ∆̄φ,φ̇S,δ̇φ+ ∆̄ψ,φ̇S,δ̇ψ −∆̄1,φ̇S,φ̇

+ ∆̄δ,φ̇S,φ̇δ + ∆̄φ,φ̇S,φ̇φ+ ∆̄ψ,φ̇S,φ̇ψ

φ̇SR ∆̄δ,φ̇S,ẋδ + ∆̄φ,φ̇S,ẋφ+ ∆̄ψ,φ̇S,ẋψ ∆̄1,φ̇S,δ̇
+ ∆̄δ,φ̇S,δ̇δ + ∆̄φ,φ̇S,δ̇φ+ ∆̄ψ,φ̇S,δ̇ψ ∆̄1,φ̇S,φ̇

+ ∆̄δ,φ̇S,φ̇δ + ∆̄φ,φ̇S,φ̇φ+ ∆̄ψ,φ̇S,φ̇ψ

φ̇W ∆̄φ,φ̇W,ẋφ+ ∆̄ψ,φ̇W,ẋψ 0 1

χ̇P ∆̄δ,χ̇P,ẋδ + ∆̄φ,χ̇P,ẋφ+ ∆̄ψ,χ̇P,ẋψ ∆̄1,χ̇P,δ̇
∆̄1,χ̇P,φ̇

χ̇Q ∆̄δ,χ̇Q,ẋδ + ∆̄φ,χ̇Q,ẋφ+ ∆̄ψ,χ̇Q,ẋψ ∆̄1,χ̇Q,δ̇
∆̄1,χ̇Q,φ̇

ψ̇FL ∆̄δ,ψ̇F,ẋ
δ + ∆̄φ,ψ̇F,ẋ

φ+ ∆̄ψ,ψ̇F,ẋ
ψ ∆̄1,ψ̇F,δ̇

− ∆̄δ,ψ̇F,δ̇
δ − ∆̄φ,ψ̇F,δ̇

φ− ∆̄ψ,ψ̇F,δ̇
ψ ∆̄1,ψ̇F,φ̇

− ∆̄δ,ψ̇F,φ̇
δ − ∆̄φ,ψ̇F,φ̇

φ− ∆̄ψ,ψ̇F,φ̇
ψ

ψ̇FR ∆̄δ,ψ̇F,ẋ
δ + ∆̄φ,ψ̇F,ẋ

φ+ ∆̄ψ,ψ̇F,ẋ
ψ ∆̄1,ψ̇F,δ̇

+ ∆̄δ,ψ̇F,δ̇
δ + ∆̄φ,ψ̇F,δ̇

φ+ ∆̄ψ,ψ̇F,δ̇
ψ ∆̄1,ψ̇F,φ̇

+ ∆̄δ,ψ̇F,φ̇
δ + ∆̄φ,ψ̇F,φ̇

φ+ ∆̄ψ,ψ̇F,φ̇
ψ

ψ̇KL ∆̄δ,ψ̇F,ẋ
δ + ∆̄φ,ψ̇F,ẋ

φ+ ∆̄ψ,ψ̇F,ẋ
ψ ∆̄1,ψ̇F,δ̇

− ∆̄δ,ψ̇F,δ̇
δ − ∆̄φ,ψ̇F,δ̇

φ− ∆̄ψ,ψ̇F,δ̇
ψ ∆̄1,ψ̇F,φ̇

− ∆̄δ,ψ̇F,φ̇
δ − ∆̄φ,ψ̇F,φ̇

φ− ∆̄ψ,ψ̇F,φ̇
ψ

ψ̇KR ∆̄δ,ψ̇F,ẋ
δ + ∆̄φ,ψ̇F,ẋ

φ+ ∆̄ψ,ψ̇F,ẋ
ψ ∆̄1,ψ̇F,δ̇

+ ∆̄δ,ψ̇F,δ̇
δ + ∆̄φ,ψ̇F,δ̇

φ+ ∆̄ψ,ψ̇F,δ̇
ψ ∆̄1,ψ̇F,φ̇

+ ∆̄δ,ψ̇F,φ̇
δ + ∆̄φ,ψ̇F,φ̇

φ+ ∆̄ψ,ψ̇F,φ̇
ψ

ψ̇SL ∆̄δ,ψ̇S,ẋ
δ + ∆̄φ,ψ̇S,ẋ

φ+ ∆̄ψ,ψ̇S,ẋ
ψ ∆̄1,ψ̇S,δ̇

− ∆̄δ,ψ̇S,δ̇
δ − ∆̄φ,ψ̇S,δ̇

φ− ∆̄ψ,ψ̇S,δ̇
ψ ∆̄1,ψ̇S,φ̇

− ∆̄δ,ψ̇S,φ̇
δ − ∆̄φ,ψ̇S,φ̇

φ− ∆̄ψ,ψ̇S,φ̇
ψ

ψ̇SR ∆̄δ,ψ̇S,ẋ
δ + ∆̄φ,ψ̇S,ẋ

φ+ ∆̄ψ,ψ̇S,ẋ
ψ ∆̄1,ψ̇S,δ̇

+ ∆̄δ,ψ̇S,δ̇
δ + ∆̄φ,ψ̇S,δ̇

φ+ ∆̄ψ,ψ̇S,δ̇
ψ ∆̄1,ψ̇S,φ̇

+ ∆̄δ,ψ̇S,φ̇
δ + ∆̄φ,ψ̇S,φ̇

φ+ ∆̄ψ,ψ̇S,φ̇
ψ

ψ̇W ∆̄δ,ψ̇,ẋδ + ∆̄φ,ψ̇,ẋφ+ ∆̄ψ,ψ̇,ẋψ ∆̄1,ψ̇,δ̇ ∆̄1,ψ̇,φ̇

(5.19)

In this case, the ∆̄ coefficients are obtained by a least squares algorithm in
which the left-right symmetry of the tricycle is enforced. That is why, in equa-
tion (5.19) rows corresponding to R and L variables have similar expressions
in which only the signs of some terms are different.

Applying similar least squares solvers (in which left-right symmetry are en-
forced) to the linearized expressions of q̄⟨0⟩T and q̄⟨1⟩T , all the incremental gener-
alized coordinates q⟨0⟩T can be expressed as a linear combination of a subset
of “independent” incremental coordinates q⟨0⟩T.# as well as all the incremental
quasi-velocities q⟨1⟩T can be expressed as a linear combination of q⟨0⟩T.# and a
subset of “independent” incremental quasi-velocities q⟨1⟩T.#. A selection of vari-
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ables which is adequate for the desired stability analysis is:
⎧
⎪⎨

⎪⎩

q⟨0⟩T.# = (x, y , δ,φ,ψ, θW, θFR, θFL)

q⟨1⟩T.# =
(
ẋ , δ̇, φ̇

) (5.20)

Finally, after linearizing fT and applying the corresponding transformations
of variables to express them in terms of q⟨0⟩T.#, q

⟨1⟩
T.# and q̇

⟨1⟩
T.#, the linearized equa-

tions of motion ofT can be obtained by premultiplying the linearized expression
of CT

T with the linearized expression of fT, neglecting all second order terms.
After collecting the terms, the equations of motion of T can be expressed in
the following form, with uT = (uW, uFR, uFL, uδ, uφ):

M̄ q̇⟨1⟩T.# + v C̄1 q
⟨1⟩
T.# +

(
ḡ K̄0 + v

2 K̄2

)
q⟨0⟩T.# = Ē uT (5.21)

The matrices M̄, C̄1, K̄0, K̄2 and Ē are invariants and can be expressed as
functions of the physical parameters of the subsystems of T.

It is worth noting that ẋ , x , y , θW, θFR and θFL never appear in any dynamic
equation and that ψ will not appear if sin ξ̄ = 0, i.e. in case of a horizontal
ground. Moreover these equations show that, in the linearized model, the lon-
gitudinal dynamics is decoupled for the lateral one, once ẍ only appear in a
single equation of motion in which no other variable among q⟨0⟩T.#, q

⟨1⟩
T.# and (δ̈, φ̈)

does. Supposing that sin ξ̄ = 0, the following state vector can be adopted for
describing the lateral dynamics of T:

xT.L = (δ,φ, δ̇, φ̇) (5.22)

Defining uT.L = (uδ, uφ, uFR, uFL), it can be stated that the dynamic equations
that describe the lateral motion of T can be expressed in the following matrix
form:

ẋT.L =
(
Ā0 + v Ā1 + v

2Ā2

)
xT.L + B̄ uT.L (5.23)

The matrices Ā0, Ā1, Ā2 and B̄ are invariants and can also be expressed as
functions of the physical parameters of the subsystems of T only.

5.2.5 Stability analysis

Aiming to a better understanding of the dynamics of the tadpole tricycle
and to compare it to the behavior of a typical bicycle, a stability analysis is
performed using some reference parameters. The corresponding geometrical
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parameters were measured in the Feetz! tricycle (Figure 5.3) available in the
bicycle laboratory of TU Delft. The main inertial parameters were scaled from
the benchmark Whipple model (MEIJAARD et al., 2007) using the ratios among
some of the most relevant dimensions in both models while the remaining ones
were simply estimated. The reference parameters used for the presented sta-
bility analysis are listed in Table 5.1. Using these reference parameters three
charts are presented:

• Eigenvalues versus speed chart (Figure 5.4): shows the real and imagi-
nary parts (both divided by 2π, i.e., given in 1/s and Hz instead of rad/s)
of the eigenvalues of the tadpole tricycle model as functions of the corre-
sponding translation speed.

• Steer-to-lean ratio versus speed chart (Figure 5.5): shows, for each
eigenvector, the ratio between the components corresponding to the steer
angle and the lean angle as functions of the translation speed; these ra-
tios are represented in the polar form (absolute value and phase angle);
in the background there is a gray scale version of the eigenvalues versus
speed chart (without dividing the eigenvalues components by 2π).

• Eigenvectors tables (Figure 5.6): for some selected speeds, the normal-
ized eigenvectors are plotted in tables; each column is labeled by the
real and imaginary parts, in 1/s and Hz, respectively, of the correspond-
ing eigenvalue and each component is represented by a colored circle
with an arrow inside; the color represents the absolute value of the com-
ponent, with 0 corresponding to blue and 1 to red; the directions of the
arrows represent the phase angles.

In order to inspect the sensitivity of the linearized tadpole tricycle model
with respect to its geometrical parameters, eight new scenarios are proposed
in which these parameters suffer random increases or decreases up to 4% of the
reference values (except from the trail, which is multiplied by a random number
between −2 and 11). For all these scenarios, eigenvalues versus speed and
steer-to-lean ratio versus speed plots are presented in Figures 5.7 and 5.8,
respectively.

It can be observed that, although being very sensitive to the parameters,
the modes of the linearized tadpole tricycle model resemble the modes of the
benchmark Whipple bicycle model proposed by Meijaard et al. (2007). Particu-
larly, the so called “castering” and “weave” modes are totally analogous to the
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Figure 5.4: Eigenvalues versus speed chart for the linearized tadpole tricycle
model using reference parameters.
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Figure 5.5: Steer-to-lean ratio versus speed chart for the linearized tadpole
tricycle model using reference parameters.
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Figure 5.6: Eigenvectors tables for different speeds of the tadpole tricycle
using reference parameters.
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Figure 5.7: Eigenvalues versus speed charts for variant scenarios
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Figure 5.8: Steer-to-lean ratio versus speed charts for variant scenarios
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Table 5.1: Physical parameters for the tadpole tricycle model

General Wheels Steering bars Knuckles

w̄ = 1.075 m r̄W = 0.253 m l̄S = 0.220 m m̄K = 0.50 kg

c̄ = 0.08 m r̄F = 0.255 m γ̂S = 0.50 ĪK,xx = 0.002 kg ·m2

λ̄ = 15.25 deg m̄W = 2.50 m φ̄S = 0 deg ĪK,yy = 0.001 kg ·m2

ḡ = 9.81 m/s2 ĪW,a = 0.180 kg ·m2 ψ̄S = 70 deg ĪK,zz = 0.003 kg ·m2

ξ̄ = 0 rad ĪW,r = 0.094 kg ·m2 m̄S = 0.30 kg ĪK,xy = 0.0003 kg ·m2

m̄F = 2.00 m ĪS,r = 0.001 kg ·m2 ĪK,xz = −0.0005 kg ·m2

ĪF,a = 0.140 kg ·m2 x̄s|K = −0.080 m ĪK,yz = 0 kg ·m2

ĪF,r = 0.075 kg ·m2 ȳs|K = −0.015 m x̄f⋆ |K = 0.040 m

z̄s|K = 0.012 m ȳf⋆ |K = 0.060 m

z̄f⋆ |K = −0.020 m

B H P Q

m̄B = 85 kg m̄H = 3.0 kg m̄P = 0.75 kg m̄Q = 0.75 kg

ĪB,xx = 9.70 kg ·m2 ĪH,xx = 0.097 kg ·m2 ĪP,x = 0.010 kg ·m2 ĪQ,x = 0.012 kg ·m2

ĪB,zz = 3.10 kg ·m2 ĪH,zz = 0.015 kg ·m2 ĪP,z = 0.009 kg ·m2 ĪQ,z = 0.011 kg ·m2

ĪB,xz = 2.70 kg ·m2 ĪH,xz = −0.009 kg ·m2 λ̄P = −2.5 deg λ̄Q = −2.5 deg
x̄b⋆ |B = 0.375 m x̄h⋆ |H = 0.020 m x̄po |B = 1.040 m x̄qo |B = 1.070 m

z̄b⋆ |B = −0.950 m z̄h⋆ |H = −0.820 m z̄po |B = −0.310 m z̄qo |B = −0.209 m
x̄h|H = −0.120 m ȳp|P = 0.195 m ȳq|Q = 0.220 m

ȳh|H = 0.015 m z̄p|P = −0.040 m z̄q|Q = −0.040 m
z̄h|H = −0.165 m x̄p|K = 0.030 m x̄q|K = 0.050 m

ȳp|K = 0.025 m ȳq|K = 0 m

z̄p|K = −0.060 m z̄q|K = 0.041 m

x̄p⋆ |K = 0 m x̄q⋆ |K = 0 m

z̄p⋆ |P = −0.015 m z̄q⋆ |Q = −0.015 m

ones observed in the bicycle model. In the former, the eigenvalues are always
negative and decrease with any increase in the translation speed; moreover,
the steer-to-lean ratio is always high (the greatest among the all the modes,
generally above 5 in magnitude), approaching a local maximum when v → 0

and approaching infinity at the speed corresponding to a phase shift transition
from 0 to π (i.e. steer and lean are in-phase at low speeds and are completely
out-of-phase after the transition). In the latter, a pair of positive real eigenval-
ues at very low speeds become a pair of conjugate complex eigenvalues whose
real parts keep decreasing with the increase of speed so that, apart from some
scenarios, they become negative at some transition speed; the absolute value
of the imaginary parts (corresponding to the natural frequencies of “weave”),
however, keep increasing with the increase of the speed; the steer-to-lean ra-
tio, which approaches infinity at a speed close to, but slightly greater than v = 0
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(about 0.02m/s) decreases both in magnitude and phase shift with the increase
of the speed, stabilizing at some non-zero value.

The only mode that shows major differences when compared to the bicycle
model is the “capsize”. As in the bicycle model, the corresponding eigenval-
ues are negative real numbers at low speeds, almost not varying at these low
speeds, then increasing with the increase of the translation speed, becoming
positive at some transition speed, reaching a peak at some higher speed and
finally decreasing asymptotically to zero. The steer-to-lean ratio, however, be-
haves in quite a different way. It approaches a local maximum as v → 0, as in
the bicycle model, but it has two phase shifts, instead of just one: the first from π

(opposite phase) to 0 (in-phase) and the second, from 0 to π. This means that,
in some scenarios (including the reference one), within the self-stable speed
range, the “capsize” mode, which is (in general) the dominant one, is char-
acterized by steering towards the fall at lower self-stable speeds and steering
oppositely to the fall at higher self-stable speeds. Furthermore, instead of go-
ing asymptotically to zero as in the bicycle model, the steer-to-lean ratio also
stabilizes at a constant value, typically lower in magnitude than the the value
of the corresponding ratio for the “weave” mode. Thus, it can be stated that
apart from the “capsize” mode behavior, the tadpole tricycle dynamics is quite
similar to the typical dynamics of a conventional bicycle.

Finally, it is worth noting that although the range of the self-stable speeds
is extremely sensitive to the parameters, in some scenarios it can be a really
long range. Some ceteris paribus analyses (i.e. comparisons between the
reference scenario alternative scenarios in which a single physical parameter
is varied) can be performed in order to figure out which parameters can be
varied to increase the range of self-stable speeds. This is out of the scope of
this text, however.

5.3 Mo2DPack – modeling and simulation of pla-
nar mechanisms

Let S be a planar mechanism, i.e. a multi-rigid-body system in which all
the bodies perform plane motions in parallel planes. Denote by Bn a generic
rigid body in S and let B0 be the base body whose motion with respect to an
inertial reference frameN is already known. Let N = (no, x̂, ŷ, ẑ) be a coordinate
system rigidly attached to N in which (x̂, ŷ, ẑ) is an orthonormal basis and the
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unit vector ẑ is orthogonal to the planes of motion.

As described in Example 2.5, tracking the motion of at least two points
of each rigid body, which are called nodes, is enough to fully describe any
possible configuration of S. Actually, once the bodies perform planar motions,
descriptions based on the x and y coordinates of the nodes only are enough to
derive the corresponding mathematical models. Let bn,k denote the k-th node
of body Bn and (pBn,k,x, pBn,k,y) denote its x and y coordinates in N. Define the
nodal generalized coordinates and the nodal quasi-velocities of S according to
the following conventions:

q⟨0⟩N,n,2k−1 = pBn,k,x q
⟨1⟩
N,n,2k−1 = ṗBn,k,x

q⟨0⟩N,n,2k = pBn,k,y q⟨1⟩N,n,2k = ṗBn,k,y

(5.24)

Note that all the identities presented in Example 2.5 for a 2D rigid body el-
ement, also apply for the nodal generalized coordinates and quasi-velocities
introduced.

Assume that the active force system applied to Bn can be reduced to a
resultant force Af ′n,x x̂ + Af ′n,y ŷ and to a torque with respect to its own center
of mass Af ′n,z ẑ. Consider also that the position of the center of mass of Bn is
specified in terms of the positions of the nodes bn,i and bn,j by the adimensional
parameters ân,1 = γ̂Bn and ân,2 = ρ̂Bn (see Example 2.5). Denoting by Af {n}− the
parcel of Af− due to the active force system applied to Bn, it can be stated that:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Af {n}N,n,2i−1

Af {n}N,n,2i

Af {n}N,n,2j−1

Af {n}N,n,2j

Af {n}B,n,3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− ân,1 −ân,2 0

ân,2 1− ân,1 0

ân,1 ân,2 0

−ân,2 ân,1 0

0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

Af ′n,x

Af ′n,y

Af ′n,z

⎤

⎥⎥⎥⎥⎦
(5.25)

Moreover, defining ân,3 = (ân,1 − 1)2 + â2n,2, ân,4 = â2n,1 + â
2
n,2 and ân,5 = â2n,2 +

(ân,1 − 1) ân,1, and denoting by m̄n the mass of Bn, by Īn the moment of inertia
of Bn with respect to an axis parallel to ẑ passing through the its center of mass
and by If {n}− the parcel of If− due to the inertia forces of Bn, it can be stated
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that:
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

If {n}N,n,2i−1

If {n}N,n,2i

If {n}N,n,2j−1

If {n}N,n,2j

If {n}B,n,3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−m̄nân,3 0 m̄nân,5 m̄nân,2 0

0 −m̄nân,3 −m̄nân,2 m̄nân,5 0

m̄nân,5 −m̄nân,2 −m̄nân,4 0 0

m̄nân,2 m̄nân,5 0 −m̄nân,4 0

0 0 0 0 −Īn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q⟨1⟩N,n,2i−1

q⟨1⟩N,n,2i

q⟨1⟩N,n,2j−1

q⟨1⟩N,n,2j

q⟨1⟩B,n,3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.26)

with q⟨1⟩B,n,3 = ωBn,z .

Suppose that two bodies Bn1 and Bn2 , n1 < n2, constitute a revolute joint.
Once S is a planar mechanism, the revolute joint axis must be parallel to
ẑ. Thus, assuming that there is a node bn1,i1 in B1 and bn2,i2 in B2 such that
the revolute joint axis is defined by the line bn1,i1bn2,i2, it can be stated that:
q⟨0⟩N,n2,2i2−1 = q⟨0⟩N,n1,2i1−1, q

⟨0⟩
N,n2,2i2

= q⟨0⟩N,n1,2i1
, q⟨1⟩N,n2,2i2−1 = q⟨1⟩N,n1,2i1−1 and q⟨1⟩N,n2,2i2

=

q⟨1⟩N,n1,2i1
. Considering that n1 < n2, the generalized variables associated to the

point bn2,i2 can be deleted from the model using these trivial identities. More-
over, defining Af {n2}N,n1,2i1−1 = Af {n2}N,n2,2i2−1,

Af {n2}N,n1,2i1
= Af {n2}N,n2,2i2

, If {n2}N,n1,2i1−1 = If {n2}N,n2,2i2−1

and If {n2}N,n1,2i1
= If {n2}N,n2,2i2

, after all variable eliminations due to revolute joint con-
straints, it can be stated that:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

AfN,n,r =
∑

k≥n

Af {k}N,n,r

IfN,n,r =
∑

k≥n

If {k}N,n,r

(5.27)

Moreover, if the revolute joint constituted by Bn1 and Bn2 is active, i.e., if there
is an actuator providing a torque uR,n1,n2 to control the relative revolute motion
between them, it is convenient to define a new quasi-velocity q⟨1⟩R,n1,n2 satisfying
the following constraint equation:

q⟨1⟩R,n1,n2 −
(
q⟨1⟩B,n2,3 − q

⟨1⟩
B,n1,3

)
= 0 (5.28)

The corresponding generalized forces are the following:
⎧
⎪⎨

⎪⎩

AfR,n1,n2 = uR,n1,n2

IfR,n1,n2 = 0
(5.29)

Suppose now that the a prismatic joint constituted by Bn1 and Bn2 (n1 < n2).
In this case no relative revolute motion is allowed between these bodies, being
possible to delete from the model the quasi-velocity q⟨1⟩B,n2,3 once q

⟨1⟩
B,n2,3 = q

⟨1⟩
B,n1,3.
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In this case define Af {n2}B,n1,3 =
Af {n2}B,n2,3 and

If {n2}B,n1,3 =
If {n2}B,n2,3. After all the eliminations

of generalized variables due to prismatic joint constraints, it can be stated that:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

AfB,n,3 =
∑

k≥n

Af {k}B,n,3

IfB,n,3 =
∑

k≥n

If {k}B,n,3

(5.30)

Moreover, it can be stated that two nodes bn1,i1 and bn1,j1 (i1 < j1) of Bn1 and one
node bn2,i2 of Bn2, will always be aligned2. In order to describe the constraint
imposed by this joint, it is convenient to define an extra generalized coordinate
q⟨0⟩P,n1,n2 and an associated quasi-velocity q

⟨1⟩
P,n1,n2 = q̇

⟨0⟩
P,n1,n2 , such that the following

invariants can be stated:
⎧
⎪⎨

⎪⎩

ℓ̄n1,i1,j1 q
⟨0⟩
N,n2,2i2−1 −

(
ℓ̄n1,i1,j1 − q

⟨0⟩
P,n1,n2

)
q⟨0⟩N,n1,2i1−1 − q

⟨0⟩
P,n1,n2 q

⟨0⟩
N,n1,2j1−1 = 0

ℓ̄n1,i1,j1 q
⟨0⟩
N,n2,2i2

−
(
ℓ̄n1,i1,j1 − q

⟨0⟩
P,n1,n2

)
q⟨0⟩N,n1,2i1

− q⟨0⟩P,n1,n2 q
⟨0⟩
N,n1,2j1

= 0
(5.31)

with ℓ̄n1,i1,j1 representing the distance between the nodes bn1,i1 and bn1,j1. Finally,
if there is an actuator in this prismatic joint, providing an input force uP,n1,n2 , it
can be stated3:

⎧
⎪⎨

⎪⎩

AfP,n1,n2 = uP,n1,n2

IfP,n1,n2 = 0
(5.32)

The application of these specific techniques for selecting variables and
computing the corresponding generalized forces, along with the modular mod-
eling methodology presented in Sections 4.1 and 4.2, leads to a specialized
algorithm for modeling planar mechanisms. This algorithm was implemented
as a package of functions for Wolfram Mathematica 10.2 called Mo2DPack,
which can be downloaded, along with its complete documentation, at

. Mo2DPack not only implements the
modeling algorithm described above, but also presents functions for obtaining
numerical solutions for the forward and inverse dynamics problems associated
to the model of a particular planar mechanism.

Example 5.1. This example shows the application of Mo2DPack in the model-
ing and simulation of the system S, discussed in Examples 4.2 and 4.7. Basi-
cally two rigid bodies are defined,B1 representing an homogeneous ring whose
center is b⋆1 ≡ b1,1 and B2 representing an homogeneous disc whose center is

2 Without loss in generality, the description of the prismatic joint can also be done by choos-
ing one node in Bn1 and two nodes in Bn2 .

3 In case of a passive prismatic joint, consider uP,n1,n2 identically zero.
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b⋆2 ≡ b2,1. The constraints among these systems are imposed according to the
no-slip conditions, given by the invariants e of Example 4.2.

The piece of code for obtaining the mathematical model of S using
Mo2DPack is shown in Figure 5.9a. To show the expression of matrix CS
used in the modeling and to obtain the explicit form of the equations of mo-
tion of S along with the relation m̄1/m̄2 in terms of θ̄ and φ̄ for a motion in which
q⟨0⟩1 (t) = θ, q̇⟨0⟩1 (t) = 0 and q̈⟨0⟩1 (t) = 0, the piece of code shown in Figure 5.9b
can be applied. Finally, the piece of code shown in Figure 5.9c can be used to
perform the simulations of the (non-linear) model shown in Example 4.7.

The following subsections present the application of Mo2DPack to the mod-
eling and inverse dynamics simulations of a Whitworth quick-return mechanism
and a 3 RRR parallel mechanism.
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(a) Derivation of the model

(b) Finding the explicit form of the equations of motion (see Example 4.2)

(c) Forward simulation of the non-linear model (see Example 4.7)

Figure 5.9: Algorithm for modeling and simulation of system S.
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5.3.1 Modeling and inverse dynamics simulation of a Whit-
worth quick-return mechanism

Consider the planarmechanism represented in Figure 5.10, which is aWhit-
worth quick-return mechanism. The following piece of code can be used to
model this system using Mo2DPack:

1
2
3
4

5

6

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
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In this code, B0 is defined as being the base body of this mechanism (rigidly
attached to an inertial reference frame N). Four nodes are chosen to describe
B0, b0,1, b0,2, b0,3 and b0,4, whose coordinates are, respectvely, (0, 0), (0, 0.3m),
(0, 0.8m) and (0.001m, 0.3m). Also, it is supposed that the centers of mass of B2

andB3 are in themidpoints of the line segments defined by their extreme nodes,
and that the center of mass of B4 is the node b4,1. Revolute joints are defined
by the kinematic pairs (B0,B3), (B0,B4), (B1,B2) and (B2,B3), a prismatic joint
is defined by the pair (B0,B1) and a superposition between a prismatic and a
revolute joint is defined by (B3,B4). The only active joint is the revolute one
defined by the pair (B0,B4). in which there is an input torque u1. Moreover, it is
supposed that the mechanism is assembled in the horizontal, so that the grav-
itational effects are not considered. By convenience, define the generalized
coordinate q⟨0⟩1 such that q̇⟨0⟩1 = q⟨1⟩B,4,3

B1

B2

B3

B4

b0,3 b0,4
b1,1 ⌘ b2,1

b2,2 ⌘ b3,2

b0,1 ⌘ b3,1

b4,2

b0,2 ⌘ b4,1

Figure 5.10: Representation of a Whitworth quick-return mechanism.

The following piece of code can be used to set and run an inverse dynamics
simulation, labeled as “SI”, in which q⟨1⟩B,4,3 is constant and equal to π/2 rad/s:

1
2
3
4
5
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6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Some of the results of this simulation are shown in Figures 5.11 – 5.14.
Particularly, it is relevant to mention that the quick-return behavior (noticed, for
instance, in the time history associated to the quasi-velocity q⟨1⟩P,0,1) is associated
to peaks of torque provided by the actuator.
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Figure 5.11: Time history of the quasi-velocity q⟨1⟩P,0,1 in the simulation “SI”.

Figure 5.12: Time history of the quasi-velocity q⟨1⟩P,3,3 in the simulation “SI”.
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Figure 5.13: Time history of the input torque u1 in the simulation “SI”.

Figure 5.14: Inspection of the error in the numerical solution of the constraint
equations in the simulation “SI”.
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5.3.2 Modeling and inverse dynamics simulation of a 3 RRR
mechanism

Consider the 3 RRR parallel mechanism represented in Figure 5.15. The
following piece of code can be used for the modeling of this system4:

1
2
3

4

5

6

7

8

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

4 It is worth noting that Mo2DPack automatically derives the mathematical model of a planar
mechanism using a particular version of the modular modeling algorithm that does not allow,
for example, to conceive the model of this mechanism as shown in the tree structure presented
in Figure 2.8.
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24
25
26
27
28
29
30
31
32

All the kinematic pairs in this mechanism constitute revolute joints, being
(B0,B5), (B0,B6) and (B0,B7) the active ones. The torques provided by the
actuators in these joints are denoted respectively by u1, u2 and u3. It is sup-
posed that the mechanism is assembled in the horizontal, so that the gravita-
tional effects are not considered. Moreover, by convenience define the angular
generalized coordinate q⟨0⟩1 such that q̇⟨0⟩1 = q̇⟨1⟩B,1,3.

B7

B4

B2 B5

B1

B3

B6

b0,1 ⌘ b5,1

b2,2 ⌘ b5,2

b1,2 ⌘ b2,1

b1,3 ⌘ b3,1

b1,4 ⌘ b4,1

b4,2 ⌘ b7,2
b0,3 ⌘ b7,1

b3,2 ⌘ b6,2

b0,2 ⌘ b6,1

b1,1

Figure 5.15: Representation of a 3 RRR parallel mechanism.

The following piece of code can be used to set and run an inverse dynamics
simulation “SI” in which the following generalized coordinates are prescribed:
q⟨0⟩N,1,1(t) = − sin(π t/2), q⟨0⟩N,1,1(t) = sin(π t/4) and q⟨0⟩1 (t) = (π/6) sin(π t/4):

1
2
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3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
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Some of the results obtained in this simulation are shown in Figures 5.16 –
5.22. Moreover, Figure 5.23 shows a representation of the initial configuration
of the mechanism generated by the command .

Figure 5.16: Time history of the generalized coordinate q⟨0⟩N,1,3 in the simulation
“SI”.

Figure 5.17: Time history of the generalized coordinate q⟨0⟩N,1,4 in the simulation
“SI”.
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Figure 5.18: Time history of the quasi-velocity q⟨1⟩R,0,7 in the simulation “SI”.

Figure 5.19: Time history of the input torque u1 in the simulation “SI”.
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Figure 5.20: Time history of the input torque u2 in the simulation “SI”.

Figure 5.21: Time history of the input torque u3 in the simulation “SI”.
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Figure 5.22: Inspection of the error in the numerical solution of the constraint
equations in the simulation “SI”.

Figure 5.23: Representation of the initial configuration of the mechanism in
the simulation “SI”.
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6 Conclusion

This thesis accomplishes its mission of developing a novel recursive modu-
lar modeling methodology, based on a new theorem, Theorem 2.10, that unifies
the main advantages of the conventional formalisms of Multibody System Dy-
namics. In this new perspective, it is enough to conceive a multibody system
as a hierarchical structure of subsystems that can be represented by a tree di-
agram, in which the root represents the system itself and the leaves are indivis-
ible subsystems whose models can be derived by any conventional approach,
not being necessary to use the same methodology for all the leaves.

The novel methodology presented in this work does not restrict the para-
metric description of the motion of a system to the use of coordinates, quasi-
velocities and its time derivatives only as generalized variables. Nor there is
other restriction than the need of being representable by an invariant, to the
admissible motion constraints of a system. These properties, not only ensure
a great versatility and generality to the methodology, but also enable to extend
its scope of application to other areas within the Engineering (e.g. applications
to the design of control systems based on the use of non-material programmed
constraints, cited in Section 1.3) and eventually to other types of dynamical sys-
tems from other areas of knowledge that somehow preserve some similarity to
multibody systems.

This work also illustrates with case studies and two examples of computa-
tional packages, the potential for using the novel methodology in the develop-
ment of both generic and specialized algorithms for the modeling of multibody
systems. It is evident that apart from the advantages brought by the use of
Wolfram Mathematica 10.2 (due to its wide range of built in functions and its
suitability for both symbolic and numerical computations), there is no real need
of using any proprietary software to implement packages based on the novel
methodology. Considering that one of the motivations of the development of
the novel methodology was to reduce the dependency on proprietary software
for applications to Multibody System Dynamics, it can be stated that this goal
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has also been accomplished. The effective implementation of generic and spe-
cialized open source packages based on the novel methodology, however, is
still an open issue. The candidate intends to implement an open source version
of MoSsPack in Python soon.

It is also worth mentioning the discussions on linearization of equations of
motion performed in Section 4.5, which led to a new algorithm for obtaining
linearized least squares approximations for orthogonal complement matrices
(Proposition 4.4).

As future perspectives, some of the following topics can be explored, based
on the contribution presented in this work:

• Development of several specialized algorithms based on the novel modu-
lar modeling methodology, for different areas in Mechanical Engineering.

• Design of new model-based control strategies inspired by the hierarchical
modular conception of multibody systems.

• Extension of the methodology for problems involving contact and impact
in which there are impulsive forces and constraints expressed by inequal-
ities.

• Extension of the methodology to Continuum Mechanics, i.e. to infinite
DOF systems, for applications in problems of Fluid Mechanics, Fluid–
Structure Interaction, Elasticity, Plasticity, etc.

• Improved and optimized algorithms based on the novel modular modeling
methodology for applications in Finite Elements Analysis (the candidate
has already started some studies in this area).
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Appendix A -- Use of energy-like functions
in the modeling of multibody systems

A.1 Generalized inertia forces and energy-like
functions

Let M de a ν#-DOF multibody system whose constraint order is equal to
ν◦. Assume that the generalized variables ofM are trivial above first order and
that it is possible to express the corresponding Gibbs-Appell function (see Sec-
tion 3.3.1) as follows: S = S(t, q⟨0⟩, q⟨1⟩, q̇⟨1⟩). Following a derivation similar to
the one that led to equation (3.112), it can be stated that the unconstrained gen-
eralized inertia forces associated to M are given by the following expression:

If = −
∂S

∂q̇⟨1⟩
(A.1)

Now consider that expression of the kinetic energy of M is known. The follow-
ing proposition can be established.

Proposition A.1. Assume that the expression of the kinetic energy of M is
expressed as a function of time t and of the generalized coordinates of the
model of M along with its time derivatives, i.e. T = T •(t, q⟨0⟩, q̇⟨0⟩). The un-
constrained generalized inertia forces associated to M are given the following
expression:

If = −
(
∂q̇⟨0⟩

∂q⟨1⟩

)T( d

dt

∂T •

∂q̇⟨0⟩
−
∂T •

∂q⟨0⟩

)
(A.2)

Proof.Assume, without any loss in generality that the kinetic energy of M is
given by equation (3.58). Suppose that rk represents the position vector of a
point pk ofM with respect to a coordinate system N rigidly attached to an inertial
reference frame N. It can be stated that:

vk =
drk
dt

=
d

dt

(
rk(t, q

⟨0⟩)
)
=

∂rk
∂q⟨0⟩

q̇⟨0⟩ +
∂rk
∂t

= v•k(t, q
⟨0⟩, q̇⟨0⟩) (a)
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Thus:

d

dt

(
∂vk
∂q̇⟨0⟩

)
=

d

dt

(
∂rk
∂q⟨0⟩

)
=

∂

∂q⟨0⟩

(
∂rk
∂q⟨0⟩

q̇⟨0⟩ +
∂rk
∂t

)
=
∂vk
∂q⟨0⟩

(b)

Moreover:

d

dt

∂T •

∂q̇⟨0⟩
−
∂T •

∂q⟨0⟩
=
∑

k

(
d

dt

(
mk

∂v•k
∂q̇⟨0⟩

· vk
)
−mk

∂v•k
∂q⟨0⟩

· vk
)

=
∑

k

mk
∂v•k
∂q̇⟨0⟩

· v̇k =
∑

k

mk
∂rk
∂q⟨0⟩

· v̇k (c)

Finally:
(
∂q̇⟨0⟩

∂q⟨1⟩

)T( d

dt

∂T •

∂q̇⟨0⟩
−
∂T •

∂q⟨0⟩

)
=
∑

k

mk v̇k ·
(
∂rk
∂q⟨0⟩

∂q̇⟨0⟩

∂q⟨1⟩

)

=
∑

k

mk v̇k ·Vk = −If (d)

This completes the proof.

Assume now that the kinetic energy is expressed as a function of time t, of
the generalized coordinates q⟨0⟩ and of the quasi-velocities q⟨1⟩ of the model of
M, i.e. T = T

(
t, q⟨0⟩, q⟨1⟩

)
. It can be stated that:

T •(t, q⟨0⟩, q̇⟨0⟩) = T
(
t, q⟨0⟩, q⟨1⟩(t, q⟨0⟩, q̇⟨0⟩)

)
(A.3)

Thus:

∂T •

∂q̇⟨0⟩
=

(
∂q⟨1⟩

∂q̇⟨0⟩

)T ∂T

∂q⟨1⟩
(A.4)

∂T •

∂q⟨0⟩
=

∂T

∂q⟨0⟩
+

(
∂q⟨1⟩

∂q⟨0⟩

)T ∂T

∂q⟨1⟩
(A.5)

Define:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N0,0 =

(
∂q̇⟨0⟩

∂q⟨1⟩

)T

N0,1 =

((
∂q⟨1⟩

∂q⟨0⟩
−

d

dt

∂q⟨1⟩

∂q̇⟨0⟩

)
∂q̇⟨0⟩

∂q⟨1⟩

)T

N1,1 = −
(
∂q⟨1⟩

∂q̇⟨0⟩
∂q̇⟨0⟩

∂q⟨1⟩

)T

(A.6)

Replacing equations (A.4, A.5) in the expression (A.2), it can be stated that:

If = N0,0
∂T

∂q⟨0⟩
+N0,1

∂T

∂q⟨1⟩
+N1,1

d

dt

∂T

∂q⟨1⟩
(A.7)

Example A.1 (Modeling of a spherical pendulum). Back to Example 4.1, con-
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sider the second version of the model in Cartesian coordinates, in which
q⟨0⟩ = (x, y , z) and q⟨1⟩ = (ẋ , ẏ , ż ,υ) with υ = ẋ2 + ẏ 2 + ż2. The kinetic en-
ergy of this system can be expressed as follows:

T =
m υ

2
(a)

It can be stated that:

∂T

∂q
= 0

∂T

∂q⟨1⟩
=

1

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

m

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

d

dt

∂T

∂q⟨1⟩
= 0 (b)

Moreover, from equation (A.6):

N0,1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
d

dt

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

2ẋ 2ẏ 2ż

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

⎤

⎥⎥⎥⎥⎦

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −2 ẍ

0 0 0 −2 ÿ

0 0 0 −2 z̈

0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(c)

Finally, using equation (A.7):

If =
1

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −2 ẍ

0 0 0 −2 ÿ

0 0 0 −2 z̈

0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

m

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−m ẍ

−m ÿ

−m z̈

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(d)

Comparing to Example 4.1, it can be noticed that this last expression corre-
sponds to the unconstrained generalized inertia forces associated to the model
of M.

Proposition A.2. Let F be a motion variable defined by a class Cρ function
F = F

(
t, q⟨0⟩, q⟨1⟩

)
, with ρ ≥ 1. Let:

F (ρ) = F (ρ)
(
t, q⟪ρ|1⟫) = dρ

dtρ

(
F
(
t, q⟪1⟫)

)
(A.8)

It can be stated that (JARZEBOWSKA, 2009):

d

dt

(
∂F

∂q⟨1⟩

)
=

1

ρ

(
∂F (ρ)

∂q⟨ρ|1⟩
−
(
∂q̇⟨0⟩

∂q⟨1⟩

)T ∂F

∂q⟨0⟩

)

(A.9)
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Proof.First of all, note that:

d

dt

(
∂F

∂q⟨1⟩.j

)
=

∂2F

∂t ∂q⟨1⟩.j
+
∑

i

∂2F

∂q⟨0⟩.i ∂q
⟨1⟩
.j

q̇⟨0⟩.i +
∑

k

∂2F

∂q⟨1⟩.k ∂q
⟨1⟩
.j

q̇⟨1⟩.k (a)

Assuming that q̇⟨0⟩ = q̇⟨0⟩
(
t, q⟪1⟫), this expression can be rewritten as a function

of (t, q⟪1⟫). Moreover, for ρ = 1:

F (1) =
∂F

∂t
+
∑

i

∂F

∂q⟨0⟩.i
q̇⟨0⟩.i +

∑

k

∂F

∂q⟨1⟩.k
q̇⟨1⟩.k (b)

∂F (1)

∂q⟨1⟩.j
=

∂2F

∂t ∂q⟨1⟩.j
+
∑

i

∂2F

∂q⟨0⟩.i ∂q
⟨1⟩
.j

q̇⟨0⟩.i +
∑

k

∂2F

∂q⟨1⟩.k ∂q
⟨1⟩
.j

q̇⟨1⟩.k

+
∑

i

∂F

∂q⟨0⟩.i

∂q̇⟨0⟩.i

∂q⟨1⟩.j
(c)

Thus:

d

dt

(
∂F

∂q⟨1⟩.j

)
=

(
∂F (1)

∂q⟨1⟩.j
−
∑

i

∂F

∂q⟨0⟩.i

∂q̇⟨0⟩.i

∂q⟨1⟩.j

)
(d)

Also, for ρ = 2, it can be stated that:

F (2) =
∑

j

q̇⟨1⟩.j

(
2

∂2F

∂t ∂q⟨1⟩.j
+
∑

i

2
∂2F

∂q⟨0⟩.i ∂q
⟨1⟩
.j

q̇⟨0⟩.i +
∑

k ̸=j

2
∂2F

∂q⟨1⟩.k ∂q
⟨1⟩
.j

q̇⟨1⟩.k

+
∂2F

∂q⟨1⟩.j ∂q
⟨1⟩
.j

q̇⟨1⟩.j

)
+
∑

j

q̇⟨1⟩.j

(∑

i

∂F

∂q⟨0⟩.i

∂q̇⟨0⟩.i

∂q⟨1⟩.j

)
+

∼
F (2) (e)

with
∼
F (2) representing all the terms of F (2) that are independent of q̇⟨1⟩.j . Thus:

∂F (2)

∂q⟨2
|1⟩

.j

= 2

(
∂2F

∂t ∂q⟨1⟩.j
+
∑

i

∂2F

∂q⟨0⟩.i ∂q
⟨1⟩
.j

q̇⟨0⟩
.i

+
∑

k

∂2F

∂q⟨1⟩.k ∂q
⟨1⟩
.j

q̇⟨1⟩.k

)

+
∑

i

∂F

∂q⟨0⟩.i

∂q̇⟨0⟩.i

∂q⟨1⟩.j
(f)

Therefore:

d

dt

(
∂F

∂q⟨1⟩.j

)
=

1

2

(
∂F (2)

∂q⟨2
|1⟩

.j

−
∑

i

∂F

∂q⟨0⟩.i

∂q̇⟨0⟩.i

∂q⟨1⟩.j

)
(g)
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For ρ > 2, it can be stated that:

F (ρ) =
∑

j

ρ q⟨ρ
|1⟩

.j

(
∂2F

∂t∂q⟨1⟩.j
+
∑

i

∂2F

∂q⟨0⟩.i ∂q
⟨1⟩
.j

q̇⟨0⟩.i +
∑

k

∂2F

∂q⟨1⟩.k ∂q
⟨1⟩
.j

q̇⟨1⟩.k

)

+
∑

j

q⟨ρ
|1⟩

.j

(∑

i

∂F

∂q⟨0⟩.i

∂q̇⟨0⟩.i

∂q⟨1⟩.j

)
+

∼
F (ρ) (h)

∂F (ρ)

∂q⟨ρ
|1⟩

.j

= ρ

(
∂2F

∂t∂q⟨1⟩.j
+
∑

i

∂2F

∂q⟨0⟩.i ∂q
⟨1⟩
.j

q̇⟨0⟩
.i

+
∑

k

∂2F

∂q⟨1⟩.k ∂q
⟨1⟩
.j

q̇⟨1⟩.k

)

+
∑

i

∂F

∂q⟨0⟩.i

∂q̇⟨0⟩.i

∂q⟨1⟩.j
(i)

Finally:

d

dt

(
∂F

∂q⟨1⟩.j

)
=

1

ρ

(
∂F (ρ)

∂q⟨ρ
|1⟩

.j

−
∑

i

∂F

∂q⟨0⟩.i

∂q̇⟨0⟩.i

∂q⟨1⟩.j

)
(j)

This completes the proof.

Define:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∗0,0 =

(
∂q̇

∂q⟨1⟩
+

1

ρ

∂q̇

∂q⟨1⟩
∂q⟨1⟩

∂q̇

∂q̇

∂q⟨1⟩

)T

N∗0,1 =

((
∂q⟨1⟩

∂q
−

d

dt

∂q⟨1⟩

∂q̇

)
∂q̇

∂q⟨1⟩

)T

N∗ρ,ρ = −
1

ρ

(
∂q⟨1⟩

∂q̇

∂q̇

∂q⟨1⟩

)T

(A.10)

According to the result presented in Proposition A.2 equation (A.7) can be
rewritten as follows:

If = N∗0,0
∂T

∂q
+N∗0,1

∂T

∂q⟨1⟩
+N∗ρ,ρ

∂T (ρ)

∂q⟨ρ|1⟩
(A.11)

Particularly, for ρ = 1, it can be stated that:

If = N∗0,0
∂T

∂q
+N∗0,1

∂T

∂q⟨1⟩
+N∗1,1

∂T (1)

∂q⟨1⟩
(A.12)

Proposition A.3. There is a square matrix M, called unconstrained general-
ized inertia matrix, and a column-matrix Gf , whose elements are called uncon-
strained generalized gyroscopic inertia forces, such that:

If = −M
(
t, q, q⟨1⟩

)
q̇⟨1⟩ + Gf

(
t, q, q⟨1⟩

)
(A.13)

Moreover it can be stated that matrix M is symmetric and its elements can be
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obtained as follows:

M.i .j = −
∂ If.i

∂q̇⟨1⟩.j
=

∂S

∂q̇⟨1⟩.i ∂q̇
⟨1⟩
.j

(A.14)

Proof.Noting that (∂T/∂q⟨1⟩) and (∂q⟨1⟩/∂q̇) can be expressed as functions of
(
t, q, q⟨1⟩

)
, it can be stated that, in equation (A.7), there can only be terms

dependent of q̇⟨1⟩ when the following time derivatives are obtained:

d

dt

(
∂T

∂q⟨1⟩

)
e

d

dt

(
∂q⟨1⟩

∂q̇

)

Once the terms in which the variables q̇⟨1⟩ appear are associated with time
derivatives of terms expressed as functions of

(
t, q, q⟨1⟩

)
, it can be stated that

If is an affine function of q̇⟨1⟩. Particularly,M can be obtained as follows:

M =

(
∂q̇

∂q⟨1⟩

)T ∂

∂q̇⟨1⟩

(
d

dt

((
∂q⟨1⟩

∂q̇

)T ∂T

∂q⟨1⟩

))
(a)

Moreover, from equation (A.7), it can be noted that the column-matrix:

Gf = If +M q̇⟨1⟩ (b)

can be expressed as a function of t, of the generalized coordinates q and of
the quasi-velocities q⟨1⟩, only. Finally, once If is an affine function with respect
to q̇⟨1⟩ it can be stated that:

M.i .j = −
∂ If.i

∂q̇⟨1⟩.j
=

∂S

∂q̇⟨1⟩.j ∂q̇
⟨1⟩
.i

=
∂S

∂q̇⟨1⟩.i ∂q̇
⟨1⟩
.j

= −
∂ If.j

∂q̇⟨1⟩.i
= M.j.i (c)

This completes the proof.

A.2 Kinetic energy and Gibbs-Appell function of
a rigid body

In order to develop algorithms to derive the equations of motion of a multi-
rigid-body system, it is convenient to be able to obtain directly the expressions
of the kinetic energy andGibbs-Appell function of a rigid body from a description
of its instantaneousmotion, given by the velocity of its center of mass and by the
angular velocity of the body with respect to an inertial reference frame, along
with its inertia properties, given by its mass and inertia tensor with respect to
its own center of mass.

Let B denote a tridimensional rigid body which will be modeled as a contin-



209

uous system of finite mass m. Denote by v the velocity of an arbitrary point p
of B with respect to an inertial reference frame N and let v⋆ denote the velocity
of its center of mass b⋆ with respect to N, ω denote the angular velocity of B
with respect to N and r denote the position vector of p with respect to b⋆. It can
be stated that (TENENBAUM, 2004):

v = v⋆ + ω× r (A.15)

v̇ = v̇⋆ + ω̇× r+ ω× (ω× r) (A.16)

Denote by µ the density function of B which will be supposed to be an
integrable function defined for each point ofB. Assume, by hypothesis, that µ is
not dependent of time t. Once B is a rigid body, its volume is also independent
of t, and the identities in equation (3.4) are valid. The kinetic energy of B can
be computed as follows:

T =

∫

B

1

2
(v · v)µ dB (A.17)

Replacing the expression of v given by equation (A.15), it can be stated that:

T =

∫

B

1

2
(v⋆ · v⋆ + 2v⋆ · (ω× r) + (ω× r) · (ω× r))µ dB (A.18)

Using the properties of dot and cross product, this expression can be simplified
as follows:

T =
1

2
(v⋆ · v⋆)

∫

B

µ dB+ (v⋆ × ω) ·
∫

B

rµ dB

−
1

2

∫

B

r · ω× (ω× r)µ dB (A.19)

And, applying the identities in equation (3.4):

T =
1

2
m(v⋆ · v⋆)−

1

2

∫

B

r · ω× (ω× r)µ dB (A.20)

For further simplification, it must be considered that for any pair of vectors x

and y:

x× (x× y) = (x · y)x− (x · x)y (A.21)

Thus, the expression of the kinetic energy of B can be rewritten as follows:

T =
1

2
m(v⋆ · v⋆) +

1

2

∫

B

(
(ω · ω)(r · r)− (ω · r)2

)
µ dB (A.22)

Once the vector ω does not vary within the domain of B, the inertia tensor
I of B with respect with its center of mass can be defined as being the second
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order tensor for which given any pair of vectors1 x and y:

I · x =

∫

B

r× (x× r)µ dB =

∫

B

((r · r)x− (x · r)r)µ dB (A.23)

x · (I · y) =
∫

B

((x · y)(r · r)− (x · r)(y · r))µ dB = y · (I · x) (A.24)

Due to the commutative property of the dot product, it can e stated that I ten-
sor is a symmetric second order tensor, being possible to compute the kinetic
energy of B as follows:

T =
1

2
m v⋆ · v⋆ +

1

2
ω · I · ω (A.25)

Analogously, the Gibbs-Appell function associated to the generic rigid body
B is given by:

S =

∫

B

1

2
(v̇ · v̇)µ dB (A.26)

Considering that v̇ = v̇⋆ + r̈, with r̈ = ω̇× r+ ω× (ω× r):

S =
1

2
(v̇⋆ · v̇⋆)

∫

B

µ dB+ v̇⋆ ·
∫

B

r̈µ dB+
1

2

∫

B

(r̈ · r̈)µ dB (A.27)

Applying the identities in equation (3.4):

S =
1

2
m(v̇⋆ · v̇⋆) +

1

2

∫

B

(r̈ · r̈)µ dB (A.28)

Note that:

r̈ · r̈ = (ω̇× r)2 + 2 (ω̇× r) · (ω× (ω× r)) + (ω× (ω× r))2 (A.29)

Thus, it can be stated that:
∫

B

(ω̇× r) · (ω̇× r)µ dB = −
∫

B

r · ω̇× (ω̇× r)µ dB = ω̇ · (I · ω̇) (A.30)

Also using equation (A.21):
∫

B

(ω̇× r) · (ω× (ω× r))µ dB

=

∫

B

(ω̇× r) · ((ω · r)ω− (ω · ω)r)µ dB

= ω̇ ·
∫

B

(r× ω) (ω · r)µ dB (A.31)

1 It is important to highlight that r is a function defined for each point of B that gives the
position of the point with respect to b⋆, while x and y are treated as arbitrary vectors that do
not vary within the domain of B.
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It can be proved that (KANE; LEVINSON, 1985):
∫

B

(r× ω) (ω · r)µ dB = ω× (I · ω) (A.32)

For the last term, the identity of equation (A.21) can be applied leading to:
∫

B

(ω× (ω× r)) · (ω× (ω× r))µ dB

=

∫

B

(
(ω · ω)2(r · r)− (ω · r)2(ω · ω)

)
µ dB

= (ω · ω)
∫

B

(
(ω · ω)(r · r)− (ω · r)2

)
µ dB = (ω · ω) (ω · I · ω) (A.33)

Therefore, the Gibbs-Appell function for a generic rigid body B can be com-
puted by the following expression:

S =
1

2
m v̇⋆ · v̇⋆ +

1

2
(ω̇ · I · ω̇+ 2 ω̇ · (ω× I · ω) + (ω · ω) (ω · I · ω)) (A.34)

A.3 Generalized forces in a multi-rigid-body sys-
tem

Let B be a rigid body, which is conceived as a continuous system of finite
and constant mass. Let N denote an inertial reference frame and consider that
N is a coordinate system rigidly attached to N. Denote by v the velocity of a
generic point p of B and by v̇ its acceleration, both measured with respect to N.
Define B as a mechanical system constituted by B only. Eventually, B might
have other constraints than the ones imposed by the rigid body condition, being
a ν#-DOF system whose constraint order is equal to ν◦.

Using a notation similar to the one adopted in Section 3.1, it can be stated
that the Principle of Virtual Power for B can be written as follows:

A
∼
P + I

∼
P ≤ 0 (A.35)

with the virtual power associated to the active and inertia forces defined re-
spectively by:

A
∼
P =

∫

B

δv · Aγ dB+

∫

ðB
δv · Aσ dðB +

∑

k

δvk · Afk (A.36)

I
∼
P = −

∫

B

δv · v̇µ dB (A.37)

Note that in these equations Aγ, Aσ and Afk refer to the active force system acting
on B only, i.e. there are no parcels in these terms associated to constraint
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forces.

Denoting by v⋆ the velocity of the center of mass b⋆ of B and by ω the
angular velocity of B with respect to N, it can be stated that whenever it can be
assumed that δr = 0, then:

δv = δv⋆ + δω× r (A.38)

Take an integer σ ≥ max{1, ν◦}, assume that it is possible to express v⋆

and ω as explicit functions of the generalized variables defined forB up to first
order, i.e. v⋆ = v⋆(t, q⟨0⟩, q⟨1⟩) and ω = ω(t, q⟨0⟩, q⟨1⟩), and define, in analogy
to equations (3.108) and (3.137):

V⋆ =
∂v⋆

∂q⟨1⟩
∂q⟨σ |1⟩

∂q⟨σ⟩
Ω =

∂ω
∂q⟨1⟩

∂q⟨σ |1⟩

∂q⟨σ⟩
(A.39)

Thus, the unconstrained generalized active forces of B are defined as follows:

Af = V⋆ · Af + Ω · At⋆ (A.40)

Af =

∫

B

Aγ dB+

∫

ðB

Aσ dðB +
∑

k

Afk (A.41)

At⋆ =

∫

B

r× Aγ dB+

∫

ðB
r× Aσ dðB +

∑

k

rk × Afk (A.42)

Analogously, the unconstrained generalized inertia forces of B are computed
by the following expressions, see equations (3.7) and (3.8):

If = V⋆ · If + Ω · It⋆ (A.43)

If = −
∫

B

µ v̇ dB = −m v̇⋆ (A.44)

It⋆ = −
∫

B

µ(r× v̇) dB = − (I⋆ · ω̇+ ω× (I⋆ · ω)) (A.45)

with m denoting the mass of B, and I⋆ representing the inertia tensor of B with
respect to its center of mass b⋆. Equation (A.43) can alternatively be obtained
from (A.1) using the expression of S in (A.34) or from (A.7) or (A.11) using the
expression of T in (A.25).

LetM be a multibody system constituted by a finite number of rigid bodies,
generically denoted byBr . Use the subscript r to denote the physical quantities
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associated to Br . It can be stated that for M:

Af =
∑

r

(
V⋆
r · Afr + Ωr · At⋆r

)
(A.46)

If = −
∑

r

(
V⋆
r · (mr v̇⋆r ) + Ωr · (I⋆r · ω̇r + ωr × (I⋆r · ωr ))

)
(A.47)

Therefore, the modeling a multi-rigid-body system involves the following steps:

(1) Define a set of generalized variables which must be sufficient and ade-
quate for describing the motions performed by this system.

(2) Obtain invariants associated to constraints which are not automatically
imposed by the chosen variables, if any.

(3) Describe positions, velocities, angular velocities, accelerations and an-
gular accelerations in terms of the defined variables and geometric pa-
rameters of the model.

(4) Provide, for each rigid body, the mass and the inertia tensor with respect
to its own center of mass (which is typically represented in matrix form,
in terms of its components associated to a coordinate system rigidly at-
tached to the body).

(5) Describe, in terms of the generalized variables and physical parameters
of the model, the active force systems acting in the system.

After these steps, the unconstrained active and inertia forces of M can be ob-
tained from equations (A.46) and (A.47), begin possible to complete the deriva-
tion of the equations of motion of M applying the modular modeling algorithm
presented in Section 4.2.

Finally, it is important to highlight that all the results presented in Section A.1
are applicable forM once the corresponding Gibbs-Appell function and kinetic
enery are computed as follows2:

S =
∑

r

∫

Br

1

2
(v̇ · v̇)µ dBr =

∑

r

(
1

2
mr (v̇

⋆
r · v̇⋆r ) +

1

2
ω̇r · (I⋆r · ω̇)

+ ω̇r · (ωr × (I⋆r · ωr )) +
1

2
(ωr · ωr ) (ωr · (I⋆r · ωr ))

)
(A.48)

T =
∑

r

∫

Br

1

2
(v · v)µ dBr =

∑

r

(
1

2
mr (v

⋆
r · v⋆r ) +

1

2
ωr · (I⋆r · ωr )

)
(A.49)

2 The corresponding demonstrations are totally analogous to the ones presented in Sec-
tion A.1 and will be omitted from this text.
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