ANDRÉ GARNIER COUTINHO

## CONTRIBUIÇÕES À MODELAGEM DINÂMICA E AO CONTROLE DE MANIPULADORES PARALELOS

São Paulo 2020

## ANDRÉ GARNIER COUTINHO

## CONTRIBUIÇÕES À MODELAGEM DINÂMICA E AO CONTROLE DE MANIPULADORES PARALELOS

Tese apresentada à Escola Politécnica da Universidade de São Paulo para obtenção do Título de Doutor em Ciências.

São Paulo 2020

#### ANDRÉ GARNIER COUTINHO

## CONTRIBUIÇÕES À MODELAGEM DINÂMICA E AO CONTROLE DE MANIPULADORES PARALELOS

Versão corrigida

Tese apresentada à Escola Politécnica da Universidade de São Paulo para obtenção do Título de Doutor em Ciências.

Área de Concentração:

Engenharia Mecânica de Projeto e Fabricação

Orientador: Prof. Dr. Tarcisio A. H. Coelho

São Paulo 2020

| Este exemplar foi revisado responsabilidade única do | o e corrigido em relação à versão original, sob<br>o autor e com a anuência de seu orientador. |
|------------------------------------------------------|------------------------------------------------------------------------------------------------|
| São Paulo, de                                        | de                                                                                             |
| Assinatura do autor:                                 |                                                                                                |
| Assinatura do orientador:                            |                                                                                                |
|                                                      |                                                                                                |

Catalogação-na-publicação

Coutinho, André Garnier Contribuições à modelagem dinâmica e ao controle de manipuladores paralelos / A. G. Coutinho -- versão corr. -- São Paulo, 2020. 190 p.

Tese (Doutorado) - Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia Mecatrônica e de Sistemas Mecânicos.

1.Arquitetura paralela 2.Robótica 3.Dinâmica (Modelagem) 4.Teoria de sistemas de controle I.Universidade de São Paulo. Escola Politécnica. Departamento de Engenharia Mecatrônica e de Sistemas Mecânicos II.t.

#### AGRADECIMENTOS

Gostaria de agradecer a todos que sempre me apoiaram e ajudaram a perseguir o meu sonho de me tornar Doutor em Engenharia Mecânica pela Escola Politécnia da USP. Não tenho palavras para descrever o que significa para mim poder estar contribuindo ativamente na exploração das fronteiras do conhecimento.

Dentre as várias pessoas que sempre estiveram ao meu lado nesta jornada, gostaria de destacar o meu orientador e amigo Prof. Dr. Tarcisio Antonio Hess Coelho, o qual sempre esteve ao meu lado desde o início da jornada no meio acadêmico, sempre sendo super solícito, me apoiando, e me orientando da melhor maneira possível; meu grande amigo Prof. Dr. Renato Maia Matarazzo Orsino, o qual me introduziu e ensinou o que há de mais sofisticado e eficiente na parte de modelagem de sistemas multicorpos, um conhecimento fundamental para o desenvolvimento desta Tese, também sempre sendo extremamente solícito e me ajudando sempre que podia; aos grandes amigos Eng<sup>a</sup>. Juliana Martins de Oliveira Fuess e Eng. Victor Pacheco Bartholomeu, os quais participaram ativamente e possibilitaram o desenvolvimento do protótipo de manipulador paralelo que possibilitou adicionar um caráter experimental na Tese desenvolvida; à minha namorada Adriana Marques Cavalcanti, a qual está há mais de 12 anos ao meu lado, sempre me apoiando em todos os momentos e me inspirando a ser cada vez mais uma pessoa melhor; e aos meus pais Antonio Valdec Martins Coutinho e Taïs Borges Garnier, e avó Maria Luiza Borges Garnier, os quais sempre se preocuparam muito comigo, sempre me apoiando e ajudando de todas as maneiras.

Por último, mas não menos importante, além dessas pessoas incríveis que tive a oportunidade de conhecer em minha vida, gostaria de destacar meu agradecimento a outras três pessoas maravilhosas que conheci há pouco tempo, que mudaram minha vida, e que tornaram possível a conclusão desta Tese de Doutorado: minha psicóloga Dra. Ana Maria Canzonieri, minha psiquiatra Dra. Letícia Pacheco Lessa, e minha professora de yoga Alessandra Dotto.

Muito obrigado a todos, sem vocês nada disso seria possível.

" 'Nesta direção', disse o Gato, girando a pata direita, 'mora um Chapeleiro. E nesta direção', apontando com a pata esquerda, 'mora uma Lebre de Março. Visite quem você quiser, são ambos loucos.'

'Mas eu não ando com loucos', observou Alice.

'Oh, você não tem como evitar', disse o Gato, 'somos todos loucos por aqui. Eu sou louco. Você é louca'.

'Como é que você sabe que eu sou louca?', disse Alice.

'Você deve ser', disse o Gato, 'Senão não teria vindo para cá.' "

-- Lewis Carroll

#### RESUMO

Os mecanismos paralelos são conhecidos por suas características promissoras, como alta rigidez estrutural, alta precisão de posicionamento, baixa inércia, e alta capacidade de carga. Estas características os tornam muito atraentes para realizar tarefas em que são necessárias grandes velocidades e acelerações, como *pick-and-place*, ou grande rigidez e precisão, como usinagem e posicionamente de telescópios.

No entanto, dada a sua maior complexidade mecânica, os modelos dinâmicos se tornam muito mais complexos e de difícil obtenção, o que pode dificultar muito a tarefa do controle, e consequentemente levar a uma não exploração de todo o potencial que estes mecanismos tem a oferecer.

Dado o alto grau de acoplamento e de não linearidades deste tipo de sistema, a utilização de técnicas de controle não baseadas em modelo pode deixar muito a desejar. Por outro lado, dada a grande complexidade dos modelos, a utilização de técnicas de controles baseadas em modelo pode ser de difícil implementação e de alto custo computacional.

Com o intuito de explorar ao máximo o potencial deste tipo de arquitetura, nesta Tese é desenvolvido um algoritmo de modelagem cinemática e dinâmica para mecanismos paralelos translacionais, o qual facilita muito o processo de modelagem e de implementação em tempo real. Além disso, é sintetizada uma nova lei de controle não linear robusto baseada no Controle por Modos Deslizantes, a qual diminui a sensibilidade do sistema a incertezas do modelo sem apresentar *chattering*. Por fim, em uma bancada experimental constituída de um manipulador paralelo plano de dois graus de liberdade, do tipo pentágono articulado, são feitas a validação da lei de controle proposta e a comparação de desempenho com as tradicionais leis de Controle por Torque Computado e Controle Proporcional Derivativo. Os resultados experimentais confirmam o caráter promissor da lei de controle proposta.

**Palavras-Chave** – Mecanismos paralelos, Robótica, Modelagem dinâmica, Controle, Controle não linear.

## ABSTRACT

Parallel mechanisms are known for their promising features, such as high structural stiffness, high precision in positioning, low inertia, and high load carrying capacity. These features make them very attractive to perform tasks in which high speeds and accelerations, such as pick-and-place, or high stiffness and precision, such as milling and telescope positioning, are needed.

However, given their greater mechanical complexity, the dynamic models become much more complex and hard to obtain, making the control task more difficult, and consequently leading to a non-exploration of all the potential these mechanisms have to offer.

Given the high degree of dynamic coupling and non-linearities of this kind of system, the use of control techniques that are not model-based may not be the best solution. On the other hand, due to the great complexity of the dynamic models, the use of model-based control techniques may be difficult to implement and may have a high computational cost.

Aiming to fully explore the potential of this kind of architecture, in this thesis, a kinematic and dynamic modelling algorithm for translational parallel mechanisms, which greatly facilitate the modelling and real-time implementation process, is developed. Furthermore, a new non-linear robust control law based on the Sliding Mode Control technique is designed, which reduces the sensitivity to model uncertainties without presenting the chattering phenomenon. Last but not least, in an experimental bed composed of a 2-dof planar parallel manipulator, an articulated pentagon type mechanism, the validation of the proposed control law and the comparison of performance with the traditional Computed Torque Control and Proportional Derivative Control laws are done.

**Keywords** – Parallel mechanisms, Robotics, Dynamic modelling, Control, Non-linear control

# LISTA DE FIGURAS

| 1  | Robô industrial Adept Quattro - Retirada de PhysOrg.com                           |
|----|-----------------------------------------------------------------------------------|
| 2  | Malha de Controle Proporcional-Integral-Derivativo                                |
| 3  | Malha de Controle por Torque Computado (Adaptado de [29]) 41                      |
| 4  | Malha de Controle por Torque Computado com pré-alimentação (Adaptado de [29])     |
| 5  | Malha de Controle Preditivo Baseado em Modelo                                     |
| 6  | Malha de Controle Adaptativo (Adaptado de [29])                                   |
| 7  | Malha Controle por Modos Deslizantes                                              |
| 8  | Bancada experimental - Protótipo do mecanismo 5R: Robô Clara 49                   |
| 9  | Modelagem de mecanismo serial a partir do modelo de seus ligamentos 51            |
| 10 | Diagrama de acoplamento de subsistemas                                            |
| 11 | Diagrama de acoplamento de subsistemas                                            |
| 12 | Modelagem de mecanismo paralelo a partir do modelo de suas cadeias me-<br>cânicas |
| 13 | Diagrama de acoplamento de subsistemas                                            |
| 14 | Vínculos de posição                                                               |
| 15 | Pentágono articulado (5R)                                                         |
| 16 | Mecanismo <u>RR</u>                                                               |
| 17 | Espaço de trabalho do mecanismo 5R                                                |
| 18 | $\tau_1$ : sem incerteza                                                          |
| 19 | $\tau_2$ : sem incerteza                                                          |
| 20 | $\tau_1$ : 20% de incerteza                                                       |
| 21 | $\tau_2$ : 20% de incerteza                                                       |
| 22 | $\tau_1$ : 40% de incerteza                                                       |

| 23 | $\tau_2$ : 40% de incerteza                                                                                        |
|----|--------------------------------------------------------------------------------------------------------------------|
| 24 | $e_x$ : sem incerteza                                                                                              |
| 25 | $e_y$ : sem incerteza                                                                                              |
| 26 | $e_x$ : 20% de incerteza                                                                                           |
| 27 | $e_y$ : 20% de incerteza $\ldots$ |
| 28 | $e_x$ : 40% de incerteza                                                                                           |
| 29 | $e_y$ : 40% de incerteza                                                                                           |
| 30 | Bancada experimental                                                                                               |
| 31 | Arquitetura de controle: espaço das juntas                                                                         |
| 32 | Arquitetura de controle: espaço da tarefa                                                                          |
| 33 | Malha de TCMD                                                                                                      |
| 34 | Modelo CAD do robô Clara                                                                                           |
| 35 | Trajetória realizada                                                                                               |
| 36 | Erro de controle $e_x$                                                                                             |
| 37 | Erro de controle $e_y$                                                                                             |
| 38 | Esforço de controle $\tau_1$                                                                                       |
| 39 | Esforço de controle $\tau_2$                                                                                       |
| 40 | Trajetória realizada                                                                                               |
| 41 | Erro de controle $e_x$                                                                                             |
| 42 | Erro de controle $e_y$                                                                                             |
| 43 | Esforço de controle $\tau_1$                                                                                       |
| 44 | Esforço de controle $\tau_2$                                                                                       |
| 45 | Trajetória realizada                                                                                               |
| 46 | Erro de controle $e_x$                                                                                             |
| 47 | Erro de controle $e_y$                                                                                             |
| 48 | Esforço de controle $\tau_1$                                                                                       |

| 49 | Esforço de controle $\tau_2$ |
|----|------------------------------|
| 50 | Trajetória realizada         |
| 51 | Erro de controle $e_x$       |
| 52 | Erro de controle $e_y$       |
| 53 | Esforço de controle $\tau_1$ |
| 54 | Esforço de controle $\tau_2$ |
| 55 | Trajetória realizada         |
| 56 | Erro de controle $e_x$       |
| 57 | Erro de controle $e_y$       |
| 58 | Esforço de controle $\tau_1$ |
| 59 | Esforço de controle $\tau_2$ |
| 60 | Trajetória realizada         |
| 61 | Erro de controle $e_x$       |
| 62 | Erro de controle $e_y$       |
| 63 | Esforço de controle $\tau_1$ |
| 64 | Esforço de controle $\tau_2$ |
| 65 | Trajetória realizada         |
| 66 | Erro de controle $e_x$       |
| 67 | Erro de controle $e_y$       |
| 68 | Esforço de controle $\tau_1$ |
| 69 | Esforço de controle $\tau_2$ |
| 70 | Trajetória realizada         |
| 71 | Erro de controle $e_x$       |
| 72 | Erro de controle $e_y$       |
| 73 | Esforço de controle $\tau_1$ |
| 74 | Esforço de controle $\tau_2$ |

| 75  | Trajetória realizada         |
|-----|------------------------------|
| 76  | Erro de controle $e_x$       |
| 77  | Erro de controle $e_y$       |
| 78  | Esforço de controle $\tau_1$ |
| 79  | Esforço de controle $\tau_2$ |
| 80  | Trajetória realizada         |
| 81  | Erro de controle $e_x$       |
| 82  | Erro de controle $e_y$       |
| 83  | Esforço de controle $\tau_1$ |
| 84  | Esforço de controle $\tau_2$ |
| 85  | Trajetória realizada         |
| 86  | Erro de controle $e_x$       |
| 87  | Erro de controle $e_y$       |
| 88  | Esforço de controle $\tau_1$ |
| 89  | Esforço de controle $\tau_2$ |
| 90  | Trajetória realizada         |
| 91  | Erro de controle $e_x$       |
| 92  | Erro de controle $e_y$       |
| 93  | Esforço de controle $\tau_1$ |
| 94  | Esforço de controle $\tau_2$ |
| 95  | Trajetória realizada         |
| 96  | Erro de controle $e_x$       |
| 97  | Erro de controle $e_y$       |
| 98  | Esforço de controle $\tau_1$ |
| 99  | Esforço de controle $\tau_2$ |
| 100 | Trajetória realizada         |

| 101 | Erro de controle $e_x$                                   |
|-----|----------------------------------------------------------|
| 102 | Erro de controle $e_y$                                   |
| 103 | Esforço de controle $\tau_1$                             |
| 104 | Esforço de controle $\tau_2$                             |
| 105 | Trajetória realizada                                     |
| 106 | Erro de controle $e_x$                                   |
| 107 | Erro de controle $e_y$                                   |
| 108 | Esforço de controle $\tau_1$                             |
| 109 | Esforço de controle $\tau_2$                             |
| 110 | Trajetória realizada                                     |
| 111 | Erro de controle $e_x$                                   |
| 112 | Erro de controle $e_y$                                   |
| 113 | Esforço de controle $\tau_1$                             |
| 114 | Esforço de controle $\tau_2$                             |
| 115 | Circuito elétrico equivalente e modelo mecânico do motor |
| 116 | Curva de velocidade do motor 1                           |
| 117 | Curva de velocidade do motor 2                           |

# LISTA DE TABELAS

| 1  | Parâmetros de Denavit-Hartemberg de $\mathcal{S}_1$ e $\mathcal{S}_2$ e centros de massa de seus elos                               | 113 |
|----|-------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2  | Parâmetros da arquitetura de $\mathscr{P}$                                                                                          | 113 |
| 3  | Parâmetros nominais: cadeia $\mathcal{S}_1$                                                                                         | 115 |
| 4  | Parâmetros nominais: cadeia $\mathcal{S}_2$                                                                                         | 115 |
| 5  | Parâmetros c/ incerteza de 20%: cadei<br>a $\mathcal{S}_1$                                                                          | 115 |
| 6  | Parâmetros c/ incerteza de 20%: cadei<br>a $\mathcal{S}_{2}$                                                                        | 115 |
| 7  | Parâmetros c/ incerteza de 40%: cadei<br>a $\mathcal{S}_1$                                                                          | 116 |
| 8  | Parâmetros c/ incerteza de 40%: cadei<br>a $\mathcal{S}_{2}$                                                                        | 116 |
| 9  | Parâmetros dos controladores: espaço das juntas - trajetória circular                                                               | 129 |
| 10 | Parâmetros dos controladores: espaço das juntas - trajetória triangular $\ .$ .                                                     | 129 |
| 11 | Parâmetros dos controladores: espaço da tarefa                                                                                      | 129 |
| 12 | Valores eficazes de erro e esforço de controle (em regime permanente) -<br>Trajetória circular                                      | 147 |
| 13 | Valores eficazes de erro e esforço de controle - Trajetória triangular $\ldots$                                                     | 147 |
| 14 | Aumento/diminuição dos valores eficazes de erro e esforço de controle uti-<br>lizando a associação com o MD - Trajetória circular   | 148 |
| 15 | Aumento/diminuição dos valores eficazes de erro e esforço de controle uti-<br>lizando a associação com o MD - Trajetória triangular | 148 |
| 16 | Erro estacionário de posição - Trajetória circular                                                                                  | 148 |
| 17 | Erro estacionário de posição - Trajetória triangular                                                                                | 149 |
| 18 | Medições para obtenção de $k_e$ do motor 1                                                                                          | 187 |
| 19 | Parâmetros do Motor 1                                                                                                               | 189 |
| 20 | Medições para obtenção de $k_e$ do motor 2                                                                                          | 190 |
| 21 | Parâmetros do Motor 2                                                                                                               | 190 |

# LISTA DE SÍMBOLOS E CONVENÇÕES

#### Alfabetos matemáticos

- $a, b, \ldots$  Escalares, componentes de matrizes-coluna, componentes de matrizes ou índices
- $A, B, \ldots$  Escalares, componentes de matrizes-coluna ou componentes de matrizes
- $\underline{a}, \underline{b}, \ldots$  Matrizes diagonais
- $\underline{A}, \underline{B}, \ldots$  Matrizes diagonais
- $\texttt{o},\texttt{b},\ldots \qquad \text{Matrizes-columa}$
- $\breve{o},\breve{b},\ldots \qquad {\rm Quaternions}$
- $\mathbb{A}, \mathbb{B}, \dots \qquad \text{Matrizes}$
- $a, b, \ldots$  Vetores físicos
- $\hat{a}, \hat{b}, \ldots$  Versores físicos
- $\boldsymbol{A}, \boldsymbol{B}, \ldots$  Tensores físicos de segunda ordem ou transformações lineares
- $\mathcal{A}, \mathcal{B}, \ldots$  Corpos rígidos ou referenciais
- a, b, ... Pontos no espaço
- A, B, ... Sistemas de coordenadas
- $\mathscr{A}, \mathscr{B}, \ldots$  Sistema ou subsistema mecânico

#### Representações matriciais de Pontos e Vetores

 $\left[ p 
ight]_B$  Matriz-coluna formada pelas coordenadas do ponto p<br/> no sistema de coordenadas B

$$\begin{split} \left[ p \right]_B^H & \text{Matriz-coluna formada pelas coordenadas do ponto p} \\ & \text{no sistema de coordenadas B em coordenadas homogêneas, ou seja: } \left[ p \right]_B^H = \begin{bmatrix} p \\ 1 \end{bmatrix} \end{split}$$

 $[u]_{B}$  Matriz-coluna formada pelas componentes do vetor una base do sistema de coordenadas B

#### Representação de Matrizes de Rotação e Transformação Homogênea

- $[\mathbf{1}]_{A \mid B} \quad \text{Matriz de mudança de base, i.e. } [\boldsymbol{u}]_A = [\mathbf{1}]_{A \mid B} \cdot [\boldsymbol{u}]_B$
- $\left[ {\bf 1} \right]_{A \mid B}^{H} ~{\rm Matriz}$  de transformação homogênea, i.e.  $\left[ p \right]_{A}^{H} = \left[ {\bf 1} \right]_{A \mid B}^{H} \cdot \left[ p \right]_{B}^{H}$

#### Convenções de Matrizes

- $\mathbb{C}[\![i]\!]$  i-ésimo elemento da matriz-coluna  $\mathbb{C}$
- $\mathbb{A}[\![i,j]\!]$ elemento da i-ésima linha e j-ésima coluna da matriz $\mathbb{A}$
- $\mathbb{A}[\![i,:]\!]$ i-ésima linha da matriz $\mathbb{A}$
- $\mathbb{A}[\![:,j]\!]$  j-ésima coluna da matriz  $\mathbb{A}$

## Convenções de Vetores e Tensores

| <b>r</b> alb                                                                                                                                      | Vetor que liga o ponto a ao ponto b, orientado no                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
|                                                                                                                                                   | sentido de a até b                                                |
| $oldsymbol{ u}_{ m p}^{\mathcal{A}}$                                                                                                              | Vetor velocidade do ponto $p$ em relação ao ref. ${\mathcal A}$   |
| $oldsymbol{a}_{	extsf{p}}^{\scriptscriptstyle{\mathcal{A}}}$                                                                                      | Vetor velocidade do ponto $p$ em relação ao ref. ${\mathcal A}$   |
| $oldsymbol{\omega}_{\scriptscriptstyle{\mathcal{B}}}^{\scriptscriptstyle{\mathcal{A}}}$                                                           | Vetor velocidade angular do corpo rígido (ou referen-             |
|                                                                                                                                                   | cial) ${\mathcal B}$ em relação ao referencial ${\mathcal A}$     |
| $oldsymbol{lpha}_{\scriptscriptstyle{B}}^{\scriptscriptstyle{\mathcal{A}}}$                                                                       | Vetor aceleração angular do corpo rígido (ou referen-             |
|                                                                                                                                                   | cial) ${\mathcal B}$ em relação ao referencial ${\mathcal A}$     |
| <b>f</b> _B                                                                                                                                       | Vetor força não reativa aplicada no centro de massa               |
|                                                                                                                                                   | do corpo rígido B                                                 |
| $oldsymbol{	au}_{	extsf{B}}$                                                                                                                      | Vetor torque não reativo aplicada no corpo rígido ${\mathcal B}$  |
| $oldsymbol{I}_{{}^{\mathcal{B}}}$                                                                                                                 | Tensor de inércia do corpo rígido ${\mathcal B}$ em relação a seu |
|                                                                                                                                                   | centro de massa                                                   |
| $\{\hat{\textit{\textbf{\textit{i}}}}_{\text{B}}, \hat{\textit{\textbf{\textit{j}}}}_{\text{B}}, \hat{\textit{\textbf{\textit{k}}}}_{\text{B}}\}$ | Base ortonormal do sistema de coordenadas B                       |
|                                                                                                                                                   |                                                                   |

## Convenções de Pontos

- $c_{\scriptscriptstyle \mathcal{B}}$  Centro de massa do corpo rígido  $\mathcal B$
- $o_B \quad {\rm Origem} \ {\rm do} \ {\rm sistema} \ {\rm de} \ {\rm coordenadas} \ B$

#### Outros Vetores e Tensores

- $\boldsymbol{\gamma}$  Vetor aceleração gravitacional
- **0** Vetor nulo
- **1** Tensor identidade

#### **Outros Pontos**

 $\mathbf{x}$  Ponto fixo a um efetuador

#### Corpos rígidos e Referenciais

- B Ligamento ou referencial fixo a ligamento
- $\mathcal{N}$  Referencial inercial
- ${\mathcal R}$  Rotor ou referencial fixo a rotor
- ${\mathfrak X}$  Efetuador ou referencial fixo a efetuador

#### Sistemas de referência

- B Sistema de referência fixo a ligamento
- N Sistema de referência fixo a referencial inercial
- R Sistema de referência fixo a rotor
- X Sistema de referência fixo a efetuador

#### Sistemas ou subsistemas mecânicos

- *B* Subsistema ligamento (corpo rígido livre no espaço)
- Subsistema efetuador de mecanismo paralelo translacional (corpo rígido que translada livremente no espaço)
- ${\mathcal F}$  Subsistema de esforços ativos
- ${\mathscr P}$  Sistema mecanismo paralelo
- ${\mathcal S}$  Sistema ou subsistema mecanismo serial
- $\mathscr{R}$  Subsistema rotor (corpo rígido com inércia puramente rotacional)
- $\mathcal{T}$  Subsistema de esforços ativos

#### Matrizes

- c Componentes de aceleração
- A Jacobiano de equações vinculares
- $\mathbb{c}_{\scriptscriptstyle\mathsf{M}}$  Coordenadas do centro de massa de corpo rígido
- C Matriz cujas colunas formam a base de um complemento ortogonal ao subespaço formado pelas linhas de um jacobiano de equações vinculares
- e Erro de controle
- f Componentes de esforços não reativos generalizados
- g Esforços gravitacionais generalizados
- h Esforços gravitacionais, inérciais giroscópicos e de atrito generalizados
- $\mathbb H$  Matriz de inércia generalizada
- i Correntes elétricas que fluem pelas armaduras dos atuadores
- I Representação matricial de tensor de inércia
- J Jacobiano
- $\mathbb{J}_v$  Jacobiano de velocidades
- $\mathbb{J}_\omega$  Jacobiano de velocidades angulares
- $\Bbbk$  Componentes do versor  $\hat{\pmb{k}}$  de um sistema de coordenadas
- $\mathbb M$  Matriz de inércia generalizada
- Coodenadas da origem de um sistema de coordenadas
- p Quasi-velocidades
- $\mathbb{p}^{\#}$  Quasi-velocidades independentes
- $\mathbb{p}^{\circ}$  Quasi-velocidades redundantes
- **p** Matriz-coluna de vínculos entre quasi-velocidades
- q Coordenadas generalizadas
- $q^{\#}$  Coordenadas generalizadas independentes
- q° Coordenadas generalizadas redundantes
- Matriz-coluna de vínculos entre coordenadas generalizadas
- $\mathbb R$  Matriz de rotação de um ligamento
- s Variáveis de escorregamento

- u Esforços ativos generalizados provenientes de atuadores
- u<sup>‡</sup> Tensões elétricas aplicadas nos terminais dos atuadores
- v Componentes de velocidade
- × Coordenadas de um efetuador
- α Componentes de aceleração angular
- The Componentes de aceleração gravitacional
- $\zeta$  Esforços de atrito generalizados
- $\lambda$  Multiplicadores de Lagrange
- Esforços inérciais giroscópicos e de atrito generalizados
- ξ Variáveis controladas
- $\xi_d$  Referência de controle
- $\pi^{\#}$  Quasi-coordenadas independentes
- $\pi^{\circ}$  Quasi-coordenadas redundantes
- u Entrada de controle
- $\omega$  Componentes de velocidade angular
- $\mathbb O$  Matriz-coluna nula ou matriz nula
- 1 Matriz identidade

#### Escalares

- *b* Coeficiente de atrito viscoso
- $f_a$  Frequência de amostragem
- *i* Corrente elétrica ou índice genérico
- jÍndice genérico
- J Momento de inércia
- k Ganho de controle ou índice relativo a tempo discreto
- $k_e$  Constante de força contra-eletromotriz
- $k_t$  Constante de torque
- $k_p$  Ganho proporcional
- $k_v$  Ganho derivativo
- *l* Comprimento de um ligamento

- $l_g$  Distância entre o começo de um ligamento e seu centro de massa
- L Indutância
- $\mathfrak{L}$  Função Lagrangeana
- m Massa
- n Número de cadeiais mecânicas de um mecanismo paralelo
- p Pólo de função de transferência
- r Relação de transmissão
- s Variável de escorregamento ou variável da Transformada de Laplace
- R Resistência elétrica
- t Tempo
- T Torque
- *u* Tensão elétrica
- *V* Função de Lyapunov
- z Variável da Transformada Z
- $\delta W$  Trabalho virtual
- $\theta$  Ângulo
- $\lambda$  Multiplicador de Lagrange, ganho de controle ou cons
  - tante de estabilização de Baumgarte
- $\nu$  Número de ligamentos de um mecanismo serial
- $\mu$  Coeficiente de atrito seco
- $\sigma$  Módulo da parte real de um pólo
- au Torque
- $\phi$  Comprimento da camada limite
- $\omega \qquad \text{Velocidade angular}$

#### Funções

- c(.) Notação compacta para cos(.)
- diag(.) Matriz-coluna cujos elementos são a diagonal de uma matriz quadrada
- s(.) Notação compacta para sin(.)
- sat(.) Função saturação
- sn(.) Função sinal

$$\begin{split} \mathbb{S}(.) & \text{Matriz de produto vetorial entre matrizes-colunas de} \\ & \text{ordem 3, ou seja, } [\pmb{a} \wedge \pmb{b}]_{\mathbb{A}} = \mathbb{S}(\texttt{o}) \cdot \mathbb{b} = -\mathbb{S}(\mathbb{b}) \cdot \texttt{o}, \text{ sendo} \\ & \texttt{o} = [\pmb{a}]_{\mathbb{A}} \in \mathbb{b} = [\pmb{b}]_{\mathbb{A}} \end{split}$$

# Operadores

| d                                                                       | Operador diferencial                                        |
|-------------------------------------------------------------------------|-------------------------------------------------------------|
| δ                                                                       | Operador variação                                           |
| $\frac{\partial(.)}{\partial x} = \partial_x(.)$                        | Derivada parcial em relação ao escalar $\boldsymbol{x}$     |
| $rac{\partial(.)}{\partial \varkappa} = \partial_{\varkappa}(.)$       | Gradiente ou jacobiano em relação à matriz-coluna ${\tt x}$ |
| $\frac{d(\boxdot)}{dt} = (\dot{\boxdot})$                               | Operador derivada temporal                                  |
| $\frac{d^{[\mathtt{A}]}(\boxdot)}{dt} = (\dot{\boxdot}^{[\mathtt{A}]})$ | Operador derivada temporal em relação ao referencial        |
|                                                                         | ${\mathcal A}$ (se aplica apenas a vetores físicos)         |
| $\wedge$                                                                | Operador produto vetorial                                   |
| $\otimes$                                                               | Operador produto de quaternions                             |
| $[\cdot]^{T}$                                                           | Matriz transposta                                           |
| $[\cdot]^{-1}$                                                          | Matriz inversa                                              |
| $[\cdot]^{\dagger}$                                                     | Matriz pseudo-inversa                                       |
| [·]                                                                     | Módulo aplicado em cada componente de uma matriz            |
|                                                                         | ou matriz-coluna                                            |

# SUMÁRIO

| Pa       | Parte I: INTRODUÇÃO 27 |         |                                                                 |    |
|----------|------------------------|---------|-----------------------------------------------------------------|----|
| 1        | Intr                   | oduçã   | 0                                                               | 28 |
|          | 1.1                    | Objeti  | VOS                                                             | 30 |
|          | 1.2                    | Sobre   | a organização do texto                                          | 30 |
| <b>2</b> | Rev                    | visão d | a literatura                                                    | 31 |
|          | 2.1                    | Model   | agem dinâmica                                                   | 31 |
|          |                        | 2.1.1   | Formalismo de Newton-Euler                                      | 34 |
|          |                        | 2.1.2   | Formalismo de Lagrange                                          | 35 |
|          |                        | 2.1.3   | Princípio dos Trabalhos Virtuais e das Potências Virtuais       | 36 |
|          |                        | 2.1.4   | Método de Kane                                                  | 37 |
|          |                        | 2.1.5   | Formalismo de Boltzmann-Hamel                                   | 38 |
|          |                        | 2.1.6   | Formulação do Complemento Ortogonal Natural                     | 38 |
|          | 2.2                    | Contro  | ole                                                             | 39 |
|          |                        | 2.2.1   | Controle Proporcional-Integral-Derivativo (PID)                 | 39 |
|          |                        | 2.2.2   | Controle por Torque Computado (TC)                              | 40 |
|          |                        | 2.2.3   | Controle por Torque Computado com pré-alimentação $({\rm TCp})$ | 40 |
|          |                        | 2.2.4   | Controle por Torque Computado Estendido (TCe)                   | 41 |
|          |                        | 2.2.5   | Controle Preditivo Baseado em Modelo (PM)                       | 42 |
|          |                        | 2.2.6   | Controle Adaptativo                                             | 43 |
|          |                        | 2.2.7   | Controle por Modos Deslizantes (MD)                             | 44 |
|          | 2.3                    | Conclu  | usões                                                           | 45 |

|    | 3.1    | Desen  | volvimento do algoritmo                     | 47 |
|----|--------|--------|---------------------------------------------|----|
|    | 3.2    | Model  | agem do mecanismo                           | 47 |
|    | 3.3    | Avalia | ção e síntese de controladores              | 47 |
|    | 3.4    | Contro | oladores específicos para o mecanismo       | 48 |
|    | 3.5    | Simula | ıção                                        | 48 |
|    | 3.6    | Exper  | imento                                      | 48 |
| Pa | arte 1 | II: MO | DELAGEM E CONTROLE                          | 50 |
| 4  | Mo     | delage | m de manipuladores seriais                  | 51 |
|    | 4.1    | Cinem  | ática                                       | 54 |
|    |        | 4.1.1  | Cinemática de posição                       | 54 |
|    |        | 4.1.2  | Cinemática de velocidades angulares         | 57 |
|    |        | 4.1.3  | Cinemática de velocidades lineares          | 59 |
|    |        | 4.1.4  | Cinemática de acelerações angulares         | 61 |
|    |        | 4.1.5  | Cinemática de acelerações lineares          | 63 |
|    | 4.2    | Dinâm  | ica dos elos e juntas                       | 65 |
|    |        | 4.2.1  | Modelo dos subsistemas                      | 65 |
|    |        | 4.2.2  | Sistemas de esforços ativos generalizados   | 66 |
|    |        | 4.2.3  | Vínculos cinemáticos entre subsistemas      | 67 |
|    |        | 4.2.4  | Acoplamento de subsistemas                  | 68 |
|    | 4.3    | Dinâm  | iica dos atuadores                          | 70 |
|    |        | 4.3.1  | Cinemática                                  | 71 |
|    |        |        | 4.3.1.1 Cinemática de velocidades angulares | 71 |
|    |        |        | 4.3.1.2 Cinemática de acelerações angulares | 73 |
|    |        | 4.3.2  | Dinâmica Mecânica                           | 74 |
|    |        |        | 4.3.2.1 Modelo dos subsistemas rotores      | 74 |
|    |        |        | 4.3.2.2 Modelo do subsistema serial         | 76 |

|          |     | 4.3.2.3 Sistemas de forças ativas generalizadas    |
|----------|-----|----------------------------------------------------|
|          |     | 4.3.2.4 Vínculos entre subsistemas                 |
|          |     | 4.3.2.5 Acoplamento de subsistemas                 |
|          | 4.4 | Modelo completo                                    |
| <b>5</b> | Mo  | elagem de manipuladores paralelos 80               |
|          | 5.1 | Modelo dos subsistemas                             |
|          | 5.2 | Vínculos cinemáticos entre subsistemas             |
|          |     | 5.2.1 Vínculos de posição $\ldots$ 84              |
|          |     | 5.2.2 Vínculos de orientação $\ldots$ 86           |
|          |     | 5.2.3 Vínculos entre coordenadas generalizadas     |
|          |     | 5.2.4 Derivada temporal dos vínculos de posição    |
|          |     | 5.2.5 Derivada temporal dos vínculos de orientação |
|          |     | 5.2.6 Vínculos entre quasi-velocidades             |
|          |     | 5.2.7 Vínculos entre quasi-acelerações             |
|          | 5.3 | Acoplamento de subsistemas                         |
|          | 5.4 | Simulação dinâmica direta                          |
|          | 5.5 | Simulação dinâmica inversa                         |
| 6        | Pro | eto dos controladores 99                           |
|          | 6.1 | Linearização por Realimentação (LR)                |
|          | 6.2 | Controle por Torque Computado (TC)                 |
|          | 6.3 | Controle por Modos Deslizantes (MD)                |
|          |     | 6.3.1 Dedução das leis de controle                 |
|          |     | 6.3.2 Camada Limite                                |
|          |     | 6.3.3 Ganho adaptativo                             |
|          |     |                                                    |

#### 7 Resultados e Discussão

| 7.1 | Model  | agem e Simulação                                 |
|-----|--------|--------------------------------------------------|
|     | 7.1.1  | Modelo do efetuador $\mathcal E$                 |
|     | 7.1.2  | Arquitetura das cadeias seriais $\mathcal{S}_i$  |
|     | 7.1.3  | Arquitetura do mecanismo paralelo ${\mathscr P}$ |
|     | 7.1.4  | Coordenadas dependentes e independentes          |
|     | 7.1.5  | Simulação dinâmica direta                        |
|     |        | 7.1.5.1 Parâmetros do modelo                     |
|     |        | 7.1.5.2 Espaço de trabalho                       |
|     |        | 7.1.5.3 Trajetória de referência                 |
|     |        | 7.1.5.4 Condições iniciais                       |
|     |        | 7.1.5.5 Parâmetros do controlador                |
|     |        | 7.1.5.6 Simulações                               |
| 7.2 | Ensaio | s Experimentais                                  |
|     | 7.2.1  | Bancada experimental                             |
|     | 7.2.2  | Sistema de controle                              |
|     | 7.2.3  | Derivadores numéricos                            |
|     | 7.2.4  | Observador de corrente                           |
|     | 7.2.5  | Compensadores de não-linearidades                |
|     | 7.2.6  | Estratégias de controle                          |
|     | 7.2.7  | Parâmetros do sistema                            |
|     | 7.2.8  | Trajetórias de referência                        |
|     | 7.2.9  | Condições iniciais                               |
|     | 7.2.10 | Parâmetros dos controladores                     |
|     | 7.2.11 | Resultados experimentais                         |
|     |        | 7.2.11.1 PDq - Trajetória circular               |
|     |        |                                                  |

|   |     | 7.2.11.2 PDMDq - Trajetória circular                                                                                        |
|---|-----|-----------------------------------------------------------------------------------------------------------------------------|
|   |     | 7.2.11.3 TCq - Trajetória circular                                                                                          |
|   |     | 7.2.11.4 TCMDq - Trajetória circular                                                                                        |
|   |     | 7.2.11.5 PDx - Trajetória circular                                                                                          |
|   |     | 7.2.11.6 PDMDx - Trajetória circular                                                                                        |
|   |     | 7.2.11.7 TCx - Trajetória circular                                                                                          |
|   |     | 7.2.11.8 TCMDx - Trajetória circular                                                                                        |
|   |     | 7.2.11.9 PDq - Trajetória triangular                                                                                        |
|   |     | 7.2.11.10 PDMDq - Trajetória triangular                                                                                     |
|   |     | 7.2.11.11 TCq - Trajetória triangular                                                                                       |
|   |     | 7.2.11.12 TCMDq - Trajetória triangular $\dots \dots 142$       |
|   |     | 7.2.11.13 PDx - Trajetória triangular                                                                                       |
|   |     | 7.2.11.14 PDMDx - Trajetória triangular                                                                                     |
|   |     | 7.2.11.15 TCx - Trajetória triangular                                                                                       |
|   |     | 7.2.11.16 TCMDx - Trajetória triangular                                                                                     |
|   |     | 7.2.11.17 Tabelas comparativas $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 147$                                |
|   |     | 7.2.12 Discussão dos resultados                                                                                             |
|   |     | 7.2.13 Observações relativas à implementação                                                                                |
|   |     | 7.2.13.1 Custo computacional $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ 153                             |
|   |     | 7.2.13.2 Algoritmo de modelagem na implementação do controle $% \left( {\left[ {{{\rm{A}}} \right]_{\rm{A}}} \right)$ . 154 |
|   |     | 7.2.13.3 Chattering $\ldots \ldots 154$ |
| 8 | Con | clusões e temas para pesquisa futura 155                                                                                    |
|   | 8.1 | Conclusões                                                                                                                  |
|   | 8.2 | Principais contribuições                                                                                                    |
|   | 8.3 | Sugestão de temas para pesquisa futura                                                                                      |

| Apênd | ice A - | – Cinemática de corpos rígidos                                                                       | 167   |
|-------|---------|------------------------------------------------------------------------------------------------------|-------|
| A.1   | Conce   | itos básicos                                                                                         | . 167 |
|       | A.1.1   | Produto vetorial                                                                                     | . 167 |
|       | A.1.2   | Derivada temporal de versores                                                                        | . 168 |
|       | A.1.3   | Derivada temporal de vetores                                                                         | . 168 |
|       | A.1.4   | Derivada temporal de matrizes de rotação                                                             | . 169 |
|       | A.1.5   | Definição de vetor velocidade                                                                        | . 169 |
|       | A.1.6   | Definição de vetor aceleração                                                                        | . 169 |
|       | A.1.7   | Definição de vetor aceleração angular                                                                | . 170 |
| A.2   | Equaç   | ões de campos de velocidades e acelerações                                                           | . 170 |
|       | A.2.1   | Equação do campo de velocidades                                                                      | . 170 |
|       | A.2.2   | Equação do campo de acelerações                                                                      | . 170 |
| A.3   | Comp    | osição de movimentos                                                                                 | . 170 |
|       | A.3.1   | Composição de velocidades lineares                                                                   | . 171 |
|       | A.3.2   | Composição de acelerações lineares                                                                   | . 172 |
|       | A.3.3   | Composição de velocidades angulares                                                                  | . 172 |
|       | A.3.4   | Composição de acelerações angulares                                                                  | . 173 |
| Apênd | ice B - | - Cinemática de Orientação via Quaternions                                                           | 175   |
| B.1   | Motiva  | ação                                                                                                 | . 175 |
| B.2   | Defini  | ções, propriedades e fórmulas de conversão                                                           | . 176 |
|       | B.2.1   | Quaternion unitário                                                                                  | . 176 |
|       | B.2.2   | Produto de quaternions                                                                               | . 176 |
|       | B.2.3   | Quaternion inverso/conjugado $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | . 177 |
|       | B.2.4   | Rotações elementares                                                                                 | . 177 |
|       | B.2.5   | Conversão Matriz de Rotação $\rightarrow$ Quaternion                                                 | . 177 |
|       | B.2.6   | Conversão Quaternion $\rightarrow$ Matriz de Rotação                                                 | . 179 |

|                                                                | B.2.7 Conversão Derivada de Quaternion $\leftrightarrow$ Velocidade Angular $\ . \ . \ .$ | . 179 |  |  |  |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------|--|--|--|
| Apêndice C – Funções de transferência de motores DC 180        |                                                                                           |       |  |  |  |
| C.1                                                            | Funções de tranferência de corrente                                                       | 181   |  |  |  |
| C.2                                                            | Funções de transferência de velocidade                                                    | 182   |  |  |  |
| C.3                                                            | Funções de transferência de posição                                                       | 182   |  |  |  |
| Apêndice D – Controlador de Corrente                           |                                                                                           |       |  |  |  |
| Apêndice E – Curvas e identificação dos parâmetros dos motores |                                                                                           |       |  |  |  |

# PARTE I

INTRODUÇÃO

# 1 INTRODUÇÃO

"A única forma de chegar ao impossível é acreditar que é possível"

-- Lewis Carroll

Os mecanismos de arquitetura paralela são amplamente utilizados em simuladores de voo, simuladores automobilísticos, e tarefas de *pick-and-place*. Além disso, também são empregados em sistemas de posicionamento, sistemas de medição, máquinas de usinagem, entre outras tarefas.

Este tipo de arquitetura há mais de duas décadas já atrai pesquisadores e instituições com o intuito de investigar seu grande potencial em vários quesitos, como capacidade de carga, precisão de posicionamento, rigidez estrutural, baixo consumo energético, baixa inércia, e capacidade de atingir altas velocidades e acelerações [23,50,63,71,100]. Grande parte deste potencial se deve à possibilidade de instalação de todos os motores na base imóvel do mecanismo, o que diminui significativamente a sua inércia.

Atualmente, este grande potencial já é muito bem explorado em tarefas de *pick-and-place* [19] e usinagem [71], entre outras. Porém, essas características promissoras muitas vezes vem ao custo de algumas inconveniências associadas a este tipo de arquitetura, como o grande número de componentes mecânicos, um espaço de trabalho mais limitado, e um modelo dinâmico muito mais complexo e de difícil obtenção [6,63]. Boa parte destas desvantagens, porém, podem ser contornadas através da escolha cuidadosa das juntas utilizadas, dos parâmetros cinemáticos, da topologia e do design mecânico [13,16,47,111], como é feito no robô Adept Quattro (figura 1).



Figura 1: Robô industrial Adept Quattro - Retirada de PhysOrg.com

Levando-se em conta esta dificuldade de obtenção e a complexidade inerente do mo-

delo dinâmico, o controle de mecanismos de arquitetura paralela é uma tarefa desafiadora. A utilização de estratégias de controle não baseadas em modelo pode deixar muito a desejar na exploração do potencial que estes mecanismos oferecem, principalmente em tarefas de seguimento de trajetória [24], e a utilização de modelos dinâmicos simplificados pode limitar significativamente o desempenho do projeto de controladores baseados em modelo, principalmente quando se trabalha com altas velocidades e acelerações. Além disso, mesmo na hipótese do modelo dinâmico completo estar disponível, o emprego de técnicas de controle não linear pode acarretar um custo computacional muito elevado [29,85,116,118]. Este paradigma, aliado à escassez de trabalhos publicados com comprovação experimental de técnicas de controle aplicáveis a mecanismos paralelos [6], resulta na exploração insatisfatória dos potenciais promissores de tais máquinas, como resposta dinâmica rápida e alta precisão [2].

Com o intuito de atacar os problemas da dificuldade de obter modelos dinâmicos completos e diminuir o custo computacional de suas implementações em leis de controle baseadas em modelos, esta Tese propõe um algoritmo genérico de modelagem dinâmica de mecanismos paralelos translacionais, o qual pode ser utilizado para calcular previamente termos do modelo dinâmico em um número finito de pontos do espaço de trabalho, sendo necessário apenas o cálculo de interpolações em tempo real. Além disso, em virtude de existirem poucos trabalhos publicados apresentando comprovação experimental de técnicas de controle aplicáveis a mecanismos paralelos, nesta Tese, são obtidos e apresentados resultados experimentais da implementação de 8 diferentes estratégias de controle, tanto baseadas como não baseadas em modelo, incluindo estratégias de controle não linear robusto, em um mecanismo paralelo plano do tipo pentágono articulado. Desta maneira, o trabalho desenvolvido nesta Tese visa contribuir para uma melhor exploração do grandes potenciais dos mecanismos com este tipo de arquitetura.

#### 1.1 Objetivos

O objetivo geral desta Tese é contribuir para a melhora do desempenho de manipuladores paralelos. Quanto aos objetivos específicos, podemos citar:

- a) O desenvolvimento de um algoritmo genérico para modelagem cinemática e dinâmica de manipuladores paralelos translacionais, com o intuito de facilitar o processo de modelagem e implementação em tempo real.
- b) A síntese de uma nova lei de controle de posição para mecanismos paralelos, de alto desempenho e com baixa sensibilidade a incertezas do modelo.
- c) A validação experimental da lei de controle proposta e a comparação do desempenho de 8 diferentes estratégias de controle, baseadas na lei proposta e em outras leis de controle muito utilizadas na literatura de mecanismos paralelos (Controle por Toque Computado e Controle Proporcional Derivativo), tanto no espaço das juntas quanto no espaço da tarefa, em uma bancada experimental desenvolvida.

#### 1.2 Sobre a organização do texto

O capítulo 2 apresenta a revisão da Literatura sobre a modelagem e o controle de mecanismos paralelos, sendo que a metodologia da pesquisa é descrita no capítulo 3. A seguir, os capítulos 4 e 5 abordam a modelagem dinâmica de manipuladores seriais e paralelos, respectivamente. Com relação ao projeto dos controladores por Linearização pela Realimentação e Modos Deslizantes, este assunto é elaborado no capítulo 6. No capítulo 7 são apresentados os resultados mais relevantes desta Tese, como a comparação do desempenho entre 8 estratégias de controle através de ensaios experimentais, além da pertinente discussão. Por fim, no capítulo 8, apresentam-se as principais conclusões da Tese e os temas sugeridos para pesquisa futura.

# 2 REVISÃO DA LITERATURA

Considerando o tema de pesquisa desta Tese, esta revisão se concentrará em tópicos relacionados à modelagem dinâmica e ao controle.

#### 2.1 Modelagem dinâmica

Quando se trata de modelagem dinâmica, os mecanismos seriais possuem características topológicas e cinemáticas que podem ser exploradas para facilitar a geração dos modelos cinemáticos e dinâmicos. Suas estruturas mecânicas correspondem a mecanismos de cadeio aumentoa aberta, apenas com juntas ativas de um grau de liberdade, rotativas ou prismáticas. Além disso, o número de coordenadas generalizadas tipicamente coincide com o número de atuadores e com a mobilidade do mecanismo [29].

De fato, o modelo cinemático pode ser obtido, recursivamente ao longo da cadeia cinemática, pelo emprego de métodos vetoriais ou matriciais, partindo-se da base e se dirigindo ao efetuador [81]. Tradicionalmente, empregam-se os vetores q e x para descrever as coordenadas associadas aos atuadores e ao efetuador, respectivamente [14, 18]. Enquanto o problema direto é de resolução relativamente simples, o problema inverso demanda a realização de um processo mais elaborado. Matematicamente, este corresponde à resolução de um sistema não-linear de equações algébricas. Para algumas topologias que utilizam mecanismos esféricos nos punhos, é possível alcançar o desacoplamento das equações de posição e orientação do efetuador [104].

Com relação à dinâmica, a geração das equações também pode ser realizada de modo recursivo, partindo-se do efetuador e se dirigindo à base, sendo que a solução do problema inverso é obtida mediante a resolução de um sistema linear de equações algébricas. Por outro lado, a solução do problema dinâmico direto é alcançada pela integração de um sistema de equações diferenciais ordinárias (EDOs) não lineares [37].

Já quando se trata de mecanismos paralelos, dependendo da complexidade da estru-

tura, podem existir juntas de 1, 2 ou até 3 graus de liberdade, ativas ou passivas. Além disso, o número de elos geralmente é muito superior. Ao se elaborar o modelo cinemático, é possível notar que haverá um grande número de variáveis, dentre as quais algumas serão consideradas independentes e outras, dependentes [64].

No início do processo de modelagem, é comum se realizar um corte nas juntas que conectam o efetuador às cadeias cinemáticas. Deste modo, ocorrerá a decomposição do mecanismo original de cadeia fechada no elo do efetuador e nas demais cadeias. Assim, admite-se que estas cadeias possam ser tratadas como abertas. Consequentemente, as equações cinemáticas, geradas em cada cadeia, expressarão o acoplamento entre as variáveis dependentes e independentes do mecanismo. Além disso, para os manipuladores paralelos, a literatura destaca que o problema inverso da cinemática de posição é menos complexo que o direto [64].

Com relação à dinâmica, Pekal e Fraczek [73] esclarecem que a solução do problema direto pode ser obtida mediante a resolução de um sistema de equações algébrico-diferenciais (EADs), representado por pelo sistema de equações (2.1).

$$\begin{cases} \mathbb{M}(t, \mathbf{q}) \ddot{\mathbf{q}} + \mathbb{A}(t, \mathbf{q})^{\mathsf{T}} \, \mathbb{I} = \mathfrak{n}(t, \mathbf{u}, \mathbf{q}, \dot{\mathbf{q}}) \\ \bar{\mathbf{q}}(t, \mathbf{q}) = 0 \end{cases}$$
(2.1)

Sendo

$$\mathfrak{n}(t,\mathfrak{u},\mathfrak{q},\dot{\mathfrak{q}}) = \mathfrak{u} - \nu(t,\mathfrak{q},\dot{\mathfrak{q}}) - \mathfrak{g}(t,\mathfrak{q})$$
(2.2)

$$\mathbb{A}(t,\mathbf{q}) = \frac{\partial \bar{\mathbf{q}}}{\partial \mathbf{q}} \tag{2.3}$$

Uma alternativa é resolver o sistema representado pela equação (2.4),

$$\begin{bmatrix} \mathbb{M} & \mathbb{A}^{\mathsf{T}} \\ \mathbb{A} & \mathbb{0} \end{bmatrix} \begin{bmatrix} \ddot{\mathsf{q}} \\ \lambda \end{bmatrix} = \begin{bmatrix} \mathfrak{n} \\ -\mathbb{b} \end{bmatrix}$$
(2.4)

sendo

$$\mathbb{b}(t,\mathbf{q},\dot{\mathbf{q}}) = \frac{\partial(\mathbb{A}\dot{\mathbf{q}})}{\partial\mathbf{q}}\dot{\mathbf{q}} + 2\frac{\partial\mathbb{A}}{\partial t}\dot{\mathbf{q}} + \frac{\partial^{2}\bar{\mathbf{q}}}{\partial t^{2}}$$
(2.5)

cuja solução é equivalente à solução de (2.1) desde que as condições iniciais respeitem as equações vinculares  $\bar{q}(t, q) = 0$ .

Para melhorar a precisão numérica associada às restrições de posição e velocidade, recomenda-se substituir  $\mathbb{b}$  por  $\mathbb{b}'$ , expresso na equação (2.6), que é conhecido como mé-

todo de Baumgarte para a estabilização das restrições [9, 37, 66], sendo  $\lambda = 1/t_c$ , com  $0.01s \leq t_c \leq 0.1s$  [37].

$$\mathbb{b}'(t,\mathbf{q},\dot{\mathbf{q}}) = \mathbb{b} + 2\lambda\dot{\bar{\mathbf{q}}} + \lambda^2\bar{\mathbf{q}}$$
(2.6)

Um outro modo de aprimorar a precisão é alcançado pela separação das coordenadas q em dois grupos: independentes  $q^{\#}$  e dependentes  $q^{\circ}$ . Assim, multiplica-se a primeira equação de (2.1) pelo complemento ortogonal [53] de  $\mathbb{A}^{\mathsf{T}}$ . Pekal e Fraczek [72] discutem várias alternativas de obtenção do complemento ortogonal, dentre elas, destacam-se a decomposição QR, a decomposição em matrizes de autovalores e autovetores e a decomposição em valores singulares (DVS). Com esta ação, eliminam-se os multiplicadores de Lagrange e o número de equações se reduz à mobilidade do mecanismo. Em seguida, utiliza-se de relações cinemáticas para escrever as acelerações  $\ddot{\mathsf{q}}$  em função de  $\ddot{\mathsf{q}}^{\#}$ . Por consequência, somente as acelerações e velocidades independentes serão integradas no sistema de equações diferenciais. Além disso, em cada passo de integração, as variáveis dependentes  $q^{\circ}$ e  $\dot{\mathsf{q}}^{\circ}$  serão calculadas a partir das independentes, estabilizando as restrições de posição e velocidade.

Segundo Mariti *et al.* [62], expressar o modelo dinâmico por meio de coordenadas redundantes, independentemente do formalismo escolhido, possui como propósito a realização de simulações de sistemas multicorpos, sendo que um exemplo é o software comercial MSC-Adams. No entanto, se a finalidade for o controle de manipuladores, significando que o modelo é parte integrante de implementações que demandem cálculos em tempo real, a expressão das equações dinâmicas nas coordenadas independentes é altamente desejável.

Além disso, é largamente difundido que a escolha das coordenadas generalizadas independentes recaia sobre os deslocamentos impostos pelos atuadores. No entanto, alguns autores [51,58] mencionam as vantagens de se escolher as coordenadas do efetuador, afirmando que a expressão do modelo dinâmico nestas variáveis é menos complexa.

Na literatura, são conhecidas várias formulações para realizar a modelagem dinâmica de sistemas multicorpos, como os formalismos de Newton-Euler, Lagrange, Gibbs-Appel, Maggi, Boltzmann-Hamel, os métodos de Kane e Udwadia-Kalaba, e os Princípios dos Trabalhos Virtuais e Potências Virtuais [70]. Porém, na literatura de modelagem de mecanismos paralelos, podemos destacar as seguintes formulações como as mais comumente utilizadas:

- Formalismo de Newton-Euler
- Formalismo de Lagrange

- Princípio dos Trabalhos Virtuais e das Potências Virtuais
- Formalismo de Boltzmann-Hamel
- Método de Kane
- Formulação do Complemento Ortogonal Natural

#### 2.1.1 Formalismo de Newton-Euler

A utilização do formalismo de Newton-Euler é bastante popular para a realização de simulações dinâmicas de mecanismos seriais, tendo em vista que foram desenvolvidos algoritmos recursivos bastante eficientes para a aplicação deste formalismo neste tipo de arquitetura, como pode ser visto no trabalho de Featherstone *et al.* [37]. Porém, para se beneficiar deste tipo de estratégia em mecanismos paralelos, é necessária a utilização de algoritmos de fechamento de malha, os quais aumentam consideravelmente o custo computacional das simulações. Provavelmente por esta razão, aliada à questão da complexidade de implementação dos algoritmos, não foram encontrados na literatura artigos aplicando estes algoritmos recursivos na modelagem de mecanismos paralelos.

Apesar da desvantagem de ter que trabalhar com forças reativas no equacionamento, não é raro encontrar na literatura trabalhos que o utilizem. Dentre estes, podemos citar os trabalhos de Arian *et al.* [4], Dasgupta *et al.* [30], Li *et al.* [56], Shiau *et al.* [79] e Zhang *et al.* [112].

Em [4], [56] e [30], são feitas as simulações dinâmicas inversas de mecanismos paralelos, de 3 graus de liberdade, nos dois primeiros trabalhos, e de 6 graus de liberdade, no último, utilizando o formalismo de Newton-Euler. Em [4] e [56] as simulações são comparadas com *softwares* comerciais. Em [4], também é feita a modelagem utilizando o princípio dos trabalhos virtuais, e são comparados o número de operações e o tempo médio gasto por operação em cada formulação. Como era de se esperar, a formulação do Princípio dos Trabalhos Virtuais se mostrou muito mais eficiente em ambos os quesitos, tendo em vista que não são realizados os cálculos dos esforços reativos. Em [30] foi feita uma eliminação de boa parte dos esforços vinculares utilizando manipulações algébricas, o que possibilitou reduzir bastante o custo computacional da simulação.

Em [79] e [112], os mecanismos paralelos 3-PRS e 3-RRR, respectivamente, são modelados também utilizando o formalismo de Newton-Euler. Em ambos os trabalhos é considerado o efeito de folgas, e em [79] também o de atritos. A partir dos modelos obtidos, em ambos são feitas simulações dinâmicas diretas. Em [112] é utilizado o método
de estabilização de Baumgarte [9] na integração numérica. Em [79], além das simulações, é feita a linearização do modelo dinâmico para determinar as frequências naturais do mecanismo em função da posição do efetuador.

#### 2.1.2 Formalismo de Lagrange

Formulações baseadas na mecânica analítica em geral são muito mais atrativas para realizar a modelagem de mecanismos paralelos, tendo em vista que os esforços vinculares associados a vínculos holônomos não mais aparecem no equacionamento. Isso justifica a popularidade das escolhas pelo formalismo de Lagrange e pelos Princípios dos Trabalhos Virtuais e das Potências Virtuais para realizar esta tarefa.

Dentre os trabalhos que utilizam o formalismo de Lagrange, podemos citar os trabalhos de Li *et al.* [59], Singh *et al.* [82–84] e Yao *et al.* [108].

Em [82], [83] e [84], são modelados 3 mecanismos paralelos planos de 3 graus de liberdade utilizando o formalismo de Lagrange. Em todos, são realizadas simulações dinâmicas diretas comparando o desempenho de diversas leis de controle. Apenas em [83] é realizada uma dedução completa do modelo dinâmico mostrando a expressão deduzida do modelo. Curiosamente, são adotadas as coordenadas do efetuador como coordenadas generalizadas, e a dedução se mostra relativamente simples para a arquitetura escolhida (3-PPR em formato de U), com essa escolha de variáveis.

Já em [59], um mecanismo paralelo espacial de 3 graus de liberdade é modelado, utilizando o formalismo de Lagrange com multiplicadores e o Princípio dos Trabalhos Virtuais, sendo que no último são utilizadas hipóteses simplificadoras. São realizadas simulações dinâmicas inversas e são comparados os resultados utilizando o modelo completo com os resultados utilizando o modelo simplificado.

Em [108], é feita a simulação dinâmica inversa de um mecanismo ainda mais complexo, de 5 graus de liberdade com atuação redundante, também utilizando o formalismo de Lagrange e métodos de otimização para determinar os esforços. Este trabalho, porém, também mostra muito pouco da dedução. Assim, dados a complexidade do mecanismo e o fato de que não é comentado em lugar nenhum o uso de coordenadas redundantes, imagina-se que possivelmente o modelo utilizado seja um modelo simplificado.

#### 2.1.3 Princípio dos Trabalhos Virtuais e das Potências Virtuais

Levando-se em conta a revisão feita, não foi percebida uma grande diferença de popularidade entre a utilização dos formalismos de Newton-Euler e Lagrange nos artigos que tratam da modelagem dinâmica de mecanismos paralelos. Porém, uma abordagem que se mostrou extremamente popular foi a utilização das formulações do Princípio dos Trabalhos Virtuais ou do Princípio das Potências Virtuais. Dentre os trabalhos que utilizam estes princípios, podemos citar os trabalhos de Arian *et al.* [4] (já comentado), Codourey *et al.* [25,26], Gallardo-Alvarado *et al.* [40], Geike *et al.* [41], Li *et al.* [55,58], Staicu *et al.* [90–96], Wu et. al [106], Zhao *et al.* [113,114] e Zhu *et al.* [115].

No trabalhos de Codourey *et al.* [25,26] e no de Li *et al.* [58], são modelados mecanismos paralelos de 3 graus de liberdade, do tipo DELTA nos dois primeiros, e do tipo 3-PRS no terceiro, utilizando o Princípio dos Trabalhos Virtuais. São desprezadas as inércias distribuídas dos elos ligados à plataforma, e suas massas são distribuídas entre as duas pontas em que cada elo é ligado, de modo a simplificar o processo de modelagem.

Já em [40], é modelado um robô paralelo de 4 graus de liberdade utilizando a teoria das helicóides e o Princípio dos Trabalhos Virtuais.

Em [41], é proposta uma metodologia de modelagem, na qual já se dividem as coordenadas generalizadas em um conjunto de variáveis dependentes e outro de variáveis independentes, utilizando a relação entre seus deslocamentos virtuais para obter as equações de movimento. A metodologia é utilizada para realizar a simulação dinâmica inversa de dois mecanismos paralelos, um de 3 graus de liberdade e outro de 6. Além disso, é discutida qual é a forma mais eficiente de implementação da metodologia desenvolvida.

Nos trabalhos de Staicu *et al.* [90–96] e no de Li *et al.* [55] são modelados mecanismos paralelos de 3 graus de liberdade utilizando uma metodologia de modelagem recursiva matricial baseada no Princípio dos Trabalhos Virtuais ou no Princípio das Potências Virtuais, e são realizadas simulações dinâmicas inversas. Esses trabalhos apresentam longos equacionamentos para não precisar recorrer a simplificações; porém, em todos os trabalhos, perto do final da dedução do modelo dinâmico, cita-se que será usada a *equação fundamental da dinâmica de robôs paralelos*, a qual está publicada em [89]. Este artigo, porém, está escrito em francês e é muito difícil de ser encontrado.

Por fim, nos trabalhos de Zhao *et al.* [113,114] e de Zhu *et al.* [115], são modelados, utilizando o Princípio dos Trabalhos Virtuais e o conceito de jacobianos dos elos, mecanismos paralelos de 6 graus de liberdade nos dois primeiros, e de 3 graus de liberdade no terceiro, sendo que em [114] o mecanismo possui atuação redundante. Em todos são realizadas simulações dinâmicas inversas.

Além disso, foram encontrados trabalhos que utilizam o Princípio dos Trabalhos Virtuais aliado às equações de Lagrange, os quais entitulam essa combinação de "formulação de Lagrange-D'Alembert", dentre os quais podemos citar o de Cheng *et al.* [22] e Yen *et al.* [109].

No trabalho de Cheng *et al.* [22] a "formulação de Lagrange-D'Alembert" é utilizada para deduzir uma formulação de acoplamento de subsistemas. A formulação é utilizada para obter o modelo dinâmico de um mecanismo paralelo de 2 graus de liberdade com atuação redundante. São utilizados os modelos já conhecidos para as cadeias seriais, e é feito o acoplamento dos subsistemas a partir de jacobianos dos vínculos cinemáticos.

Em [109], também é utilizada uma estratégia de acoplamento de subsistemas, também deduzida a partir da "formulação de Lagrange-D'Alembert", para obter o modelo dinâmico de um mecanismo paralelo de 3 graus de liberdade. No entanto, neste trabalho, a estratégia não é apresentada de uma maneira mais geral, podendo dar a impressão ao leitor de que isso só foi possível devido à topologia particular do mecanismo em questão. São realizadas simulações dinâmicas diretas do controle de posição do mecanismo, utilizando as técnicas de controle PID e Controle por Torque Computado, as quais são comparadas com resultados experimentais utilizando as mesmas estratégias de controle.

#### 2.1.4 Método de Kane

Uma formulação que é bastante popular na literatura de mecanismos seriais, porém não muito popular na literatura de mecanismos paralelos, é o Método de Kane [49]. Dentre os poucos trabalhos que utilizam esta formulação para realizar a modelagem dinâmica de mecanismos paralelos, podemos citar os trabalhos de Ben-Horina *et al.* [11] e Shukla *et al.* [80].

Em [11], é realizada a modelagem dinâmica, utilizando o método de Kane, de um robô paralelo de 6 graus de liberdade, cuja atuação é feita por 3 atuadores planos, os quais apresentam 2 graus de liberdade cada. A modelagem é feita com o auxílio do *software* AUTOLEV. São realizadas simulações dinâmicas inversas do mecanismo proposto, e de mais dois mecanismos de 6 graus de liberdade, para efeito de comparação.

Em [80], também é realizada a modelagem dinâmica de um mecanismo paralelo de 6 graus de liberdade, uma plataforma de Gough–Stewart, utilizando o método de Kane.

São realizadas simulações dinâmicas diretas do controle do mecanismo, considerando a dinâmica dos atuadores, utilizando malhas de controle do tipo PID em cascata e compensadores de atraso.

#### 2.1.5 Formalismo de Boltzmann-Hamel

O Formalismo de Boltzmann-Hamel [46] também não se mostrou muito popular na literatura de modelagem dinâmica de mecanismos paralelos. Dentre os trabalhos encontrados, podemos citar os trabalhos de Abdellatif *et al.* [1] e o de Altuzarra *et al.* [7].

Tanto em [1] quanto em [7], são utilizadas as equações de Boltzmann-Hamel para a deduzir formulações que permitem a obtenção do modelo dinâmico explícito de mecanismos paralelos através dos modelos das cadeias seriais, do efetuador, e jacobianos dos vínculos cinemáticos. Em [7], é utilizada a formulação proposta para obter o modelo dinâmico do mecanismo 3-PRS. Em [1] são apresentadas simulações dinâmicas inversa e direta, sendo esta última com leis de controle baseadas no modelo, de um mecanismo paralelo de 6 graus de liberdade.

#### 2.1.6 Formulação do Complemento Ortogonal Natural

A formulação do Complemento Ortogonal Natural foi proposta por Angeles *et al.* em [3], inspirada nas equações de Maggi. Sua principal ideia é projetar as equações dinâmicas de cada corpo rígido do sistema em um espaço ortogonal às reações vinculares. Este procedimento é realizado através da obtenção de um complemento ortogonal ao jacobiano das equações de vínculo obtido através de relações cinemáticas dos *twists* de cada corpo com um conjunto de quasi-velocidades independentes. Formulações similares são bastante exploradas por Orsino *et al.* em [69], e generalizadas em [70] (Metodologia Modular de Modelagem). Dentre os trabalhos que utilizam esta formulação, podemos citar os trabalhos de Akbarzadeh *et al.* [5], Khan *et al.* [52] e Xi *et al.* [107].

Em [5], é descrita uma metodologia genérica de modelagem dinâmica multi-corpos utilizando a formulação do Complemento Ortogonal Natural. Basicamente são obtidos os modelos dinâmicos desacoplados de cada corpo rígido, utilizando a formulação de Newton-Euler, e é feito o acoplamento das equações dinâmicas através do uso do Complemento Ortogonal Natural. A metodologia proposta é aplicada em um mecanismo paralelo esférico do tipo SST e são realizadas simulações dinâmicas inversa e direta do mecanismo.

Em [107], é realizada a modelagem dinâmica de um mecanismo paralelo de 6 graus de

liberdade, do tipo hexapod, utilizando a formulação do Complemento Ortogonal Natural. São realizadas simulações dinâmicas inversas do mecanismo em altas e baixas velocidades.

Por fim, em [52], é proposta uma metodologia recursiva de modelagem baseada na formulação do Complemento Ortogonal Natural. A metodologia proposta é utilizada para a obtenção do modelo dinâmico de um mecanismo paralelo plano do tipo 3-RRR, realizando primeiro a modelagem dinâmica das cadeias seriais, e acoplando-as utilizando o Complemento Ortogonal Natural. Também é realizada a simulação dinâmica inversa do mecanismo, utilizando o modelo obtido.

## 2.2 Controle

Existem diversas técnicas propostas na literatura para realizar o controle de mecanismos paralelos. Dentre elas, pode-se destacar:

- Controle Proporcional-Integral-Derivativo (PID)
- Controle por Torque Computado (TC)
- Controle por Torque Computado com pré-alimentação (TCp)
- Controle por Torque Computado Estendido (TCe)
- Controle Preditivo Baseado em Modelo (PM)
- Controle Adaptativo
- Controle por Modos Deslizantes (MD)

## 2.2.1 Controle Proporcional-Integral-Derivativo (PID)

A técnica mais simples consiste na utilização de malhas do tipo PID, controlando cada junta ativa de maneira independente, considerando a dinâmica do mecanismo como distúrbios de controle. Essa técnica é caracterizada por sua facilidade de projeto e implementação, tanto em hardware quanto em software, além de exibir um desempenho satisfatório para movimento lento. Porém, essa técnica não se mostra adequada para a realização de trajetórias em altas velocidades e/ou acelerações [43,116]. Uma malha típica de PID pode ser vista na figura 2.



Figura 2: Malha de Controle Proporcional-Integral-Derivativo

## 2.2.2 Controle por Torque Computado (TC)

Uma das técnicas de controle mais exploradas na literatura é o Controle por Torque Computado (TC). Basicamente, é um caso particular da técnica de controle não linear conhecida como Linearização pela Realimentação [85], aplicada a sistemas mecânicos. A técnica consiste na utilização de duas malhas de controle, uma malha que realiza o desacoplamento do sistema e a compensação das não linearidades, e outra malha composta por PIDs independentes [29], como pode ser visto na figura 3. Como resultado, alcança-se um desempenho superior àquele obtido utilizando simples PIDs, permitindo inclusive a realização de trajetórias precisas em altas velocidades e/ou acelerações. No entanto, seu desempenho poderá ser limitado pela qualidade/fidelidade do modelo dinâmico utilizado para a compensação das não linearidades [86]. Sua implementação também é mais complexa, visto que é necessário calcular o modelo dinâmico inverso em tempo real, o que também aumenta consideravelmente seu custo computacional. Além disso, a técnica é sensível a incertezas estruturadas (paramétricas) e não estruturadas (dinâmicas não modeladas). Como exemplos de utilização do TC, podem ser citados os trabalhos de Cheng at al. [23], Li e Wu [58], Li e Fu [57], Shang at al. [78] e Yen at al. [109].

#### 2.2.3 Controle por Torque Computado com pré-alimentação (TCp)

Visando a redução do custo computacional associado ao cálculo do modelo dinâmico em tempo real, alguns autores propõem a utilização do TC com pré-alimentação (TCp) [50,81,88]. Essa técnica é similar ao TC, com a diferença de que a compensação das não linearidades é feita por pré-alimentação e não mais por realimentação, como pode ser visto na figura 4. Consequentemente, realiza-se o cálculo do modelo dinâmico previamente, diminuindo-se o custo computacional.



Figura 3: Malha de Controle por Torque Computado (Adaptado de [29])

De fato, Codourey [25] obteve uma redução de 600% no erro de posição utilizando o TCp em um ensaio experimental com o robô DELTA, ao substituir os PDs originais. Na simulação do controle de um mecanismo 6-UPS, Wang *et al.* [105] utilizaram em cascata controladores lineares de posição, velocidade e corrente em cada junta ativa, além de uma compensação dinâmica por pré-alimentação dos distúrbios de torque.



Figura 4: Malha de Controle por Torque Computado com pré-alimentação (Adaptado de [29])

#### 2.2.4 Controle por Torque Computado Estendido (TCe)

Com o intuito de melhorar a robustez do TC associada a incertezas paramétricas, Zubizarreta *et al.* [116–119] propuseram o Controle por Torque Computado Estendido (TCe), que utiliza informação redundante obtida pelo sensoriamento de juntas passivas. Em [116], os controladores propostos demonstraram maior robustez, principalmente em relação a parâmetros cinemáticos, durante as simulações realizadas com o mecanismo 3-RRR.

#### 2.2.5 Controle Preditivo Baseado em Modelo (PM)

Outra técnica alternativa, aplicada a mecanismos paralelos, é o Controle Preditivo Baseado em Modelo (PM). Para a sua implementação, o PM necessita minimizar uma função objetivo, dependente das saídas e do esforço de controle, ambos calculados em tempo futuro [15], como pode ser visto na figura 5. Assim, dependendo do modelo utilizado, o processo de otimização pode agregar um custo computacional que inviabilize o controle, comprometendo a motivação inicial de aprimorar o desempenho do sistema. Como exemplos de utilização do PM, podem ser citados os trabalhos de Vivas *et al.* [103] e Duchaine *et al.* [34].

Com o propósito de controlar o mecanismo H4, Vivas *et al.* [103] utilizaram uma malha de PM linear e outra malha para compensação das não linearidades. Após a comparação do desempenho do controlador proposto com o TC, os autores observaram maior robustez do PM a incertezas paramétricas.

Duchaine *et al.* [34], por sua vez, propuseram um controlador preditivo baseado no modelo não linear de um mecanismo paralelo de 6 graus de liberdade. Visando a obtenção de uma solução analítica para o problema de otimização, foram adotadas diversas hipóteses simplificadoras no modelo dinâmico do mecanismo. Com o intuito de comparar o controlador proposto com um PID, foram feitos alguns experimentos, onde se observou que o PM apresentou erro nulo de posição no final da trajetória, enquanto que o PID demorou um tempo considerável para alcançar erro nulo. Foi verificada a equivalência entre o custo computacional dos 2 controladores.



Figura 5: Malha de Controle Preditivo Baseado em Modelo

#### 2.2.6 Controle Adaptativo

O controle adaptativo, também encontrado na literatura, caracteriza-se pela utilização de leis de adaptação para realizar a estimação em tempo real de parâmetros do sistema ou de termos de compensação dinâmica, como pode ser visto na figura 6. Sendo assim, as técnicas de controle adaptativo possibilitam que o sistema se torne praticamente insensível a incertezas paramétricas. Para o caso em que se realiza a estimação em tempo real dos parâmetros do sistema, pode-se dizer que o custo computacional é superior ao do TC, visto que é necessário integrar as leis de adaptação em tempo real. Além disso, é necessário obter o modelo dinâmico linear em relação aos parâmetros do sistema [87], o que pode ser uma tarefa difícil, inviabilizando, em alguns casos, a aplicação da técnica. Em [26] é proposto um algoritmo de obtenção do modelo dinâmico simplificado de mecanismos paralelos nesse formato.

Em [87] é proposta uma lei de controle que combina o controle adaptativo com a técnica de controle robusto conhecida por Controle por Modos Deslizantes. Chemori *et al.* [20] utilizaram essa técnica com o intuito de diminuir os erros de posição em regime permanente no controle de um mecanismo paralelo do tipo PAR2. Por outro lado, Honegger at al. [43] empregaram o controle adaptativo com estimação em tempo real dos parâmetros do sistema, realizando a compensação dinâmica por pré-alimentação, em um mecanismo paralelo do tipo Hexaglide.



Figura 6: Malha de Controle Adaptativo (Adaptado de [29])

#### 2.2.7 Controle por Modos Deslizantes (MD)

Outra técnica promissora para aplicação em mecanismos paralelos é o Controle por Modos Deslizantes (MD). A técnica consiste no projeto de leis de controle que levem o sistema para superfícies de escorregamento no espaço de fase, de modo que assim que o sistema atinje e é mantido nas superfícies de escorregamento, o erro de controle decai exponencialmente para zero [85]. Para garantir que o sistema atinja em tempo finito e se mantenha nas superfícies de escorregamento, são utilizados termos descontínuos na lei de controle, o que pode causar problemas de oscilações bruscas em alta frequência nos esforços de controle (*chattering*). Em [42] e [102] são propostas técnicas para evitar esse tipo de problema. A grande vantagem da utilização deste tipo de lei de controle é sua grande robustez a incertezas estruturadas e não estruturadas, sendo possível realizar o projeto do controlador de modo a suprimir um dado nível de incertezas paramétricas. Em [86] é proposta uma metodologia de projeto de Controle por Modos Deslizantes para manipuladores robóticos seriais. A figura 7 mostra um diagrama de blocos típico de MD aplicado a sistemas mecânicos.

Na literatura são encontrados diversos artigos utilizando a técnica de MD aliada à lógica *fuzzy* e/ou redes neurais para o controle de manipuladores robóticos [10, 36, 44, 76]. Begon *et al.* [10] propuseram uma lei de controle baseada na teoria de MD e na utilização de lógica *fuzzy* para controlar de maneira independente os atuadores de um mecanismo paralelo do tipo Hexa. A técnica proposta teve o intuito de obter a robustez característica do MD sem necessitar de uma lei de controle com termos descontínuos, evitando o *chattering*.

Em [110], Zeinali *et al.* desenvolveram uma lei de controle baseada nas teorias de MD e Controle Adaptativo. O controlador desenvolvido realiza a compensação dinâmica em tempo real do erro de modelagem através de uma lei de adaptação. Além disso, substitui o termo descontínuo da lei de controle por um termo do tipo PID, com o intuito de evitar o *chattering.* A estabilidade e robustez da lei de controle proposta foram provadas utilizando a teoria de estabilidade de Lyapunov [85]. A robustez da lei de controle foi verificada através de simulações do controlador proposto aplicado a um mecanismo serial do tipo <u>RR</u>, nas quais o controlador conseguiu manter erros de posição muito pequenos em regime permanente, mesmo sendo baseado em um modelo muito pobre e na presença de distúrbios de torque. A técnica apresentada se mostra promissora, porém, como no artigo foi feita apenas a simulação da lei de controle em um mecanismo serial bidimensional, ainda não se pode afirmar nada sobre seu desempenho em mecanismos paralelos tridimensionais.



Figura 7: Malha Controle por Modos Deslizantes

## 2.3 Conclusões

Após a realização das revisões da literatura relativas à modelagem dinâmica e ao controle de mecanismos paralelos, é possível perceber alguns fatos que valem a pena ser comentados.

Primeiramente, em relação à modelagem dinâmica, em boa parte dos trabalhos, a modelagem é realizada de uma maneira um tanto quanto ineficiente, tanto no sentido do trabalho necessário para realizar a dedução, quanto na parte da implementação, como é o caso dos artigos citados que utilizam o formalismo de Newton-Euler.

Por outro lado, há artigos que propõem formulações que se mostram muito eficientes no processo de modelagem, as quais se utilizam de artifícios de modularidade e/ou recursividade, como os trabalhos citados baseados na formulação do Complemento Ortogonal Natural. No entanto, praticamente todas essas formulações necessitam do cálculo de derivadas de jacobianos de maneira simbólica, o que dificulta muito o processo de automatização desses métodos. Além disso, conforme a complexidade dos mecanismos aumenta, essas derivadas tendem a gerar expressões maiores e mais complexas.

Também não foram encontrados trabalhos que propõem um conjunto de parâmetros

que definam a arquitetura de pelo menos uma classe de mecanismos paralelos, análogos aos parâmetros de Denavit-Hartemberg para os mecanismos seriais [31].

Com relação à revisão das técnicas de controle aplicadas a mecanismos paralelos, foi possível notar que, apesar de uma boa parte apresentar resultados experimentais [10, 20, 23, 25, 34, 43, 78, 103, 109], são poucos os que realmente apresentam uma análise um pouco mais elaborada. Além disso, há menos trabalhos experimentais que mostram a eficácia de técnicas que podem superar ou obter desempenho similar ao Controle por Torque Computado. Também não foram encontrados trabalhos que tratam da implementação de técnicas de controle baseado em modelo e de como reduzir seu custo computacional sem comprometer seu desempenho e/ou robustez.

Sendo assim, com relação à modelagem dinâmica, esta Tese visa contribuir através do desenvolvimento de um algoritmo genérico para a modelagem dinâmica de mecanismos paralelos translacionais que: (1) utiliza estratégias modulares; (2) não necessita do cálculo simbólico de derivadas; e (3) propõe uma maneira de descrever a topologia deste tipo de mecanismo utilizando um conjunto de parâmetros.

Em relação ao controle, esta Tese visa contribuir através da proposição de novas leis de controle híbridas, as quais adicionam termos de controle robusto a técnicas de controle já bastante populares na literatura, e da comprovação experimental da eficácia das técnicas propostas no controle de mecanismos paralelos.

## 3 METODOLOGIA DA PESQUISA

Fundamentalmente, a metodologia desta pesquisa compreende a execução de seis fases, abrangendo desde o desenvolvimento de algoritmos para as modelagens cinemática e dinâmica ao projeto de controladores e sua validação experimental.

## 3.1 Desenvolvimento do algoritmo

Desenvolvimento de um algoritmo genérico, capaz de gerar os modelos dinâmicos completos de mecanismos paralelos translacionais que operam em espaço plano ou tridimensional. Esta geração parte da definição da topologia do mecanismo paralelo, suas cadeias cinemáticas, descrevendo a localização relativa de seus elos e juntas.

Dentre os efeitos de modelagem considerados, destacam-se os decorrentes da inércia efetiva e acoplada, das forças de Coriolis e centrífugas, da força gravitacional, bem como dos esforços dos atuadores. O algoritmo permite que a geração dos modelos seja realizada de forma implícita. Para tanto, foi desenvolvida uma metodologia baseada na Metodologia Modular de Modelagem (MMM) proposta por Orsino [70] que, por meio da definição de níveis hierárquicos da estrutura de um sistema mecânico e a descrição da dependência das variáveis cinemáticas envolvidas, permite o acoplamento de subsistemas multicorpos.

## 3.2 Modelagem do mecanismo

Realização da modelagem cinemática e dinâmica do mecanismo articulado plano 5R [69], utilizando o algoritmo desenvolvido na fase anterior.

## 3.3 Avaliação e síntese de controladores

Nesta fase, diferentes técnicas de controle foram avaliadas sob a perspectiva de sua utilização em manipuladores paralelos. Assim, em princípio, esta pesquisa se focou na síntese de um controlador não-linear robusto e de alto desempenho. Para tanto, foram levadas em conta as incertezas paramétricas e a possibilidade de atuação redundante [23], além de estratégias para a determinação de leis de controle com custo computacional consideralvemente menor do que as tradicionais, como a lei de Controle por Torque Computado [29, 116].

## 3.4 Controladores específicos para o mecanismo

Avaliação do emprego de diferentes técnicas de controle de trajetória aplicadas especificamente para o manipulador 5R, empregando a metodologia da terceira fase.

## 3.5 Simulação

Realização de diversas simulações que permiram observar a consistência dos resultados, no tocante às análises cinemáticas direta e inversa, bem como das análises dinâmicas direta e inversa. Além disso, foram determinadas as respostas dinâmicas do manipulador sujeito às distintas leis de controle sintetizadas.

## 3.6 Experimento

De modo a avaliar o desempenho previsto pelo uso de diferentes controladores para o manipulador paralelo 5R, foi desenvolvida uma bancada de ensaios no LaMMaR (figura 8) na qual foi realizada a validação experimental. Para tanto, foram escolhidas duas trajetórias: uma que considera o comportamento em regime permanente e outra em regime transitório.

Neste sentido, almejava-se também observar se haveria alguma diferença de desempenho se o controle fosse executado no espaço das juntas ou no da tarefa. Para auxiliar na comparação entre as técnicas de controle, foram definidas duas métricas: uma que considera o erro de posicionamento do efetuador e outra a magnitude dos torques dos atuadores.



Figura 8: Bancada experimental - Protótipo do mecanismo 5R: Robô Clara

# PARTE II

MODELAGEM E CONTROLE

# 4 MODELAGEM DE MANIPULADORES SERIAIS

"Não é que eu goste de complicar as coisas, elas é que gostam de ser complicadas comigo"

-- Lewis Carroll

Este capítulo tem o intuito de apresentar um algoritmo genérico para a obtenção do modelo cinemático e dinâmico de mecanismos seriais a partir do modelo de seus ligamentos, como está representado na figura 9.



Figura 9: Modelagem de mecanismo serial a partir do modelo de seus ligamentos

O algoritmo apresentado é implementável em linguagens de programação comumente utilizadas atualmente, como C++, Java e Python, sem necessitar de recursos de manipulação simbólica. Para a obtenção do modelo, são necessários apenas os parametros de Denavit-Hartemberg [14, 29, 31, 61] do mecanismo, as posições dos centros de massa dos ligamentos em relação aos sistemas de coordenadas fixos aos ligamentos, e as massas e momentos de inércia dos ligamentos supostos rígidos. Uma implementação do algoritmo pode ser encontrada em <htps://github.com/mrcouts/robotics>.

Sejam  $\mathscr{B}_1, \ldots, \mathscr{B}_{\nu} \nu$  subsistemas ligamentos,  $\mathscr{F}$  um subsistema de esforços ativos generalizados, e  $\mathscr{S}$  um sistema mecânico serial de  $\nu$  graus de liberdade. Um diagrama de acoplamento dos subsistemas é representado pela figura 10.



Figura 10: Diagrama de acoplamento de subsistemas

Na modelagem realizada, não serão considerados movimentos impostos nos sistemas e subsistemas mecânicos, podendo assim todos serem considerados sistemas esclerônomos.

Primeiramente, fazemos as seguintes definições:

- $\mathcal{N}$  ou  $\mathcal{B}_0$ : referencial inercial.
- N ou  $B_0$ : sistema de coordenadas da base do mecanismo, fixo a  $\mathcal{N}$ .
- $\mathcal{B}_i, i = 1, ..., \nu$ : i-ésimo ligamento.
- $B_i$ ,  $i = 1, ..., \nu$ : sistema de coordenadas solidário a  $\mathcal{B}_i$ .
- x: ponto no espaço fixo ao efetuador.
- X: sistema de coordenadas fixo ao efetuador, com origem em x e a mesma base de  $B_{\nu}$ .
- $m_i$ : massa do ligamento  $\mathcal{B}_i$ .
- $\mathbb{I}_i$ : tensor de inércia  $I_{\mathbb{B}_i}$  escrito na base N, ou seja,  $[I_{\mathbb{B}_i}]_{\mathbb{N}^{|\mathbb{N}|}}$
- $\mathbb{I}'_i$ : tensor de inércia  $I_{\mathbb{B}_i}$  escrito na base  $B_i$ , ou seja,  $[I_{\mathbb{B}_i}]_{B_i|B_i}$ .
- $q_i, i = 1, ..., \nu$ : deslocamento relativo (angular ou linear) da i-ésima junta.
- q: matriz-coluna de  $\nu$  coordenadas generalizadas independentes. É dada por q =  $\begin{bmatrix} q_1 & \dots & q_\nu \end{bmatrix}^{\mathsf{T}}$ .
- $\mathfrak{T}$ : vetor aceleração gravitacional escrito na base N, ou seja,  $[\boldsymbol{\gamma}]_{N}$ .
- $\overline{\mathbb{f}}_{\mathscr{B}_i}, i = 1, ..., \nu$ : matriz-coluna de esforços não-reativos generalizados aplicados ao subsistema  $\mathscr{B}_i$ . É dada por  $\overline{\mathbb{f}}_{\mathscr{B}_i} = \left[ [\mathbf{f}_{\mathscr{B}_i}]_{\mathbb{N}}^{\mathsf{T}} \ [\mathbf{\tau}_{\mathscr{B}_i}]_{\mathbb{N}}^{\mathsf{T}} \right]^{\mathsf{T}}$ .
- $\mathbb{R}_i, i = 1, ..., \nu$ : matriz de rotação  $[\mathbf{1}]_{\mathbb{N}|\mathbb{B}_i}$ .

- $\mathbb{R}'_i$ ,  $i = 1, ..., \nu$ : matriz de rotação  $[\mathbf{1}]_{\mathbf{B}_{i-1}|\mathbf{B}_i}$ .
- $\check{\mathbf{r}}_i, i = 1, ..., \nu$ : representação via quaternion unitário da matriz de rotação  $[\mathbf{1}]_{\mathbb{N}|\mathbb{B}_i}$ .
- $\breve{r}'_i$ ,  $i = 1, ..., \nu$ : representação via quaternion unitário da matriz de rotação  $[\mathbf{1}]_{\mathbf{B}_{i-1}|\mathbf{B}_i}$ .
- $\check{\mathbf{x}}, i = 1, ..., \nu$ : representação via quaternion unitário da matriz de rotação  $[\mathbf{1}]_{\mathbb{N} \mid \mathbf{x}}$ .
- $\mathbf{o}_i, i = \mathbf{0}, ..., \nu$ : origem  $\mathbf{o}_{\mathbf{B}_i}$  no sistema de coordenadas N, ou seja  $[\mathbf{o}_{\mathbf{B}_i}]_{\mathbf{N}}$ .
- $o'_i$ ,  $i = 1, ..., \nu$ : origem  $o_{B_i}$  no sistema de coordenadas  $B_{i-1}$ , ou seja  $[o_{B_i}]_{B_{i-1}}$ .
- $x, i = 1, ..., \nu$ : ponto x no sistema de coordenadas N, ou seja  $[x]_{N}$ .
- $\mathbb{c}_{Mi}$ ,  $i = 1, ..., \nu$ : centro de massa  $\mathsf{c}_{\mathbb{B}_i}$  no sistema de coordenadas N, ou seja  $[\mathsf{c}_{\mathbb{B}_i}]_{\mathbb{N}}$ .
- $c'_{Mi}$ ,  $i = 1, ..., \nu$ : centro de massa  $c_{B_i}$  no sistema de coordenadas  $B_i$ , ou seja  $[c_{B_i}]_{B_i}$ .
- $\mathbb{k}_i, i = 0, ..., \nu$ : componentes do versor  $\hat{\mathbf{k}}_{B_i}$  no sistema de coordenadas N, ou seja  $[\hat{\mathbf{k}}_{B_i}]_{\mathbb{N}}$ .
- $\omega_i, i = 1, ..., \nu$ : componentes de velocidade angular do ligamento  $\mathcal{B}_i$  em relação ao referencial  $\mathcal{N}$  no sistema  $\mathbb{N}$ , ou seja  $\left[\boldsymbol{u}_{\mathcal{B}_i}^{\mathcal{N}}\right]_{\mathbb{N}}$ .
- $\omega'_i$ ,  $i = 1, ..., \nu$ : componentes de velocidade angular do ligamento  $\mathcal{B}_i$  em relação ao referencial  $\mathcal{B}_{i-1}$  no sistema N, ou seja  $\left[\boldsymbol{\omega}_{\mathcal{B}_i}^{\mathcal{B}_{i-1}}\right]_{\mathbb{N}}$ .
- $\omega$ : componentes de velocidade angular do efetuador em relação ao referencial  $\mathcal{N}$  no sistema  $\mathbb{N}$ , ou seja  $\left[\boldsymbol{\omega}_{\mathbb{B}_{\nu}}^{\mathbb{N}}\right]_{\mathbb{N}}$ .
- v<sub>i</sub>, i = 1, ..., ν: componentes de velocidade do centro de massa do ligamento B<sub>i</sub> em relação ao referencial N no sistema N, ou seja [**ν**<sub>c<sub>2i</sub></sub>]<sub>ν</sub>.
- $\mathbf{v}'_i, i = 1, ..., \nu$ : componentes de velocidade do centro de massa do ligamento  $\mathcal{B}_i$  em relação ao referencial  $\mathcal{B}_{i-1}$  no sistema N, ou seja  $\left[\mathbf{v}_{\mathbf{c}_{\mathcal{B}_i}}^{\mathcal{B}_{i-1}}\right]_{\mathbb{N}}$ .
- v: componentes de velocidade do efetuador em relação ao referencial  $\mathcal{N}$  no sistema  $\mathbb{N}$ , ou seja  $[\boldsymbol{v}_x^{\scriptscriptstyle \mathcal{N}}]_{\mathbb{N}}$ .
- α<sub>i</sub>, i = 1, ..., ν: componentes de aceleração angular do ligamento B<sub>i</sub> em relação ao referencial N no sistema N, ou seja [α<sup>N</sup><sub>B<sub>i</sub></sub>]<sub>N</sub>.
- α<sub>i</sub>', i = 1, ..., ν: componentes de aceleração angular do ligamento B<sub>i</sub> em relação ao referencial B<sub>i-1</sub> no sistema N, ou seja [α<sup>B<sub>i-1</sub></sup><sub>B<sub>i</sub></sub>]<sub>N</sub>.

- $\alpha$ : componentes de aceleração angular do efetuador em relação ao referencial  $\mathcal{N}$  no sistema  $\mathbb{N}$ , ou seja  $[\boldsymbol{\alpha}_{\mathcal{B}_{\nu}}^{\mathbb{N}}]_{\mathbb{N}}$ .
- $\mathbb{O}_i, i = 1, ..., \nu$ : componentes de aceleração do centro de massa do ligamento  $\mathcal{B}_i$  em relação ao referencial  $\mathcal{N}$  no sistema  $\mathbb{N}$ , ou seja  $\begin{bmatrix} \mathbf{a}_{\mathbf{c}_{\mathcal{B}_i}}^{\mathcal{N}} \end{bmatrix}_{\mathbb{N}}$ .
- $\mathfrak{O}'_i$ ,  $i = 1, ..., \nu$ : componentes de aceleração do centro de massa do ligamento  $\mathcal{B}_i$  em relação ao referencial  $\mathcal{B}_{i-1}$  no sistema N, ou seja  $\left[\mathbf{a}^{\mathcal{B}_{i-1}}_{\mathbf{c}_{\mathcal{B}_i}}\right]_{\mathbb{N}}$ .
- c: componentes de aceleração do efetuador em relação ao referencial  $\mathcal{N}$  no sistema  $\mathbb{N}$ , ou seja  $[a_x^{\mathbb{N}}]_{\mathbb{N}}$ .
- $u_{\delta}$ : matriz-coluna dos esforços ativos generalizados aplicados pelos atuadores.

Para facilitar a leitura das equações, nas expressões que envolvem o indice i, estará subentendido que i varia de 1 a  $\nu$ , ou seja,  $i = 1, ..., \nu$ , a menos que seja explicitado de forma diferente. A dependência das variáveis, indicada por parênteses, também será omitida em algumas equações para facilitar a leitura.

Algumas equações serão destacadas através de cores. A cor amarela indica equações que devem ser implementadas no algoritmo. A cor roxa indica equações de destaque no desenvolvimento. A cor azul clara indica equações de destaque secundário no desenvolvimento.

## 4.1 Cinemática

#### 4.1.1 Cinemática de posição

Dados os parâmetros de Denavit-Hartemberg  $a_i$ ,  $\alpha_i$ ,  $d_i \in \theta_i$ , com  $i = 1, ..., \nu$ , é possível obter as matrizes de transformação homogênea  $[\mathbf{1}]_{\mathbf{B}_{i-1}|\mathbf{B}_i}^{\mathsf{H}}$  a partir da seguinte expressão [14]:

$$\begin{bmatrix} \mathbf{1} \end{bmatrix}_{\mathbf{B}_{i-1} \mid \mathbf{B}_{i}}^{\mathsf{H}} = \begin{bmatrix} \mathsf{c}\theta_{i} & -\mathsf{s}\theta_{i}\mathsf{c}\alpha_{i} & \mathsf{s}\theta_{i}\mathsf{s}\alpha_{i} & a_{i}\mathsf{c}\theta_{i} \\ \mathsf{s}\theta_{i} & \mathsf{c}\theta_{i}\mathsf{c}\alpha_{i} & -\mathsf{c}\theta_{i}\mathsf{s}\alpha_{i} & a_{i}\mathsf{s}\theta_{i} \\ 0 & \mathsf{s}\alpha_{i} & \mathsf{c}\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(4.1)

Logo:

$$\mathbb{R}'_{i}(q_{i}) = [\mathbf{1}]_{\mathbf{B}_{i-1}|\mathbf{B}_{i}} = \begin{bmatrix} \mathsf{c}\theta_{i} & -\mathsf{s}\theta_{i}\mathsf{c}\alpha_{i} & \mathsf{s}\theta_{i}\mathsf{s}\alpha_{i} \\ \mathsf{s}\theta_{i} & \mathsf{c}\theta_{i}\mathsf{c}\alpha_{i} & -\mathsf{c}\theta_{i}\mathsf{s}\alpha_{i} \\ \mathbf{0} & \mathsf{s}\alpha_{i} & \mathsf{c}\alpha_{i} \end{bmatrix}$$
(4.2)

$$\mathbf{O}'_{i}(q_{i}) = [\mathbf{O}_{\mathsf{B}_{i}}]_{\mathsf{B}_{i-1}} = \begin{bmatrix} a_{i}\mathsf{c}\theta_{i} & a_{i}\mathsf{s}\theta_{i} & d_{i} \end{bmatrix}^{\mathsf{T}}$$
(4.3)

A cinemática de posição do efetuador poderia ser feita a partir da composição (produtos) de matrizes de transformação homogênea. Este tipo de estratégia é bastante conveniente quando se trata da realização de cálculos simbólicos. Entretanto, não é muito adequada para implementações numéricas, devido ao acúmulo de erros numéricos gerado pela multiplicação de matrizes de rotação.

Uma representação de rotação por quaternion unitário equivalente à matriz  $\mathbb{R}'_i(q_i)$  é dada por:

$$\breve{r}'_{i}(q_{i}) = \left[ \mathsf{c}(\frac{\theta_{i}}{2}) \,\mathsf{s}(\frac{\alpha_{i}}{2}) \,\,\mathsf{s}(\frac{\theta_{i}}{2}) \,\,\mathsf{s}(\frac{\alpha_{i}}{2}) \,\,\mathsf{s}(\frac{\theta_{i}}{2}) \,\,\mathsf{c}(\frac{\alpha_{i}}{2}) \,\,\mathsf{c}(\frac{\theta_{i}}{2}) \,\,\mathsf{c}(\frac{\alpha_{i}}{2}) \right]^{\mathsf{T}} \tag{4.4}$$

Para solucionar este paradigma, as composições de rotações e translações serão feitas separadamente, sendo que a composição de rotações será feita atravez da multiplicação de quaternions unitários.

Tendo obtido  $[\mathbf{1}]_{B_{i-1}|B_i}$ , seria possível obter as matrizes de rotação que relacionam os sistemas de coordenadas solidários aos ligamentos  $(B_i)$  ao sistema de coordenadas da base  $(\mathbb{N})$  pela seguinte expressão recursiva:

$$[\mathbf{1}]_{\mathbb{N}|\mathbb{B}_{i}} = \begin{cases} [\mathbf{1}]_{\mathbb{B}_{0}|\mathbb{B}_{1}}, & \text{se } i = 1\\ \\ [\mathbf{1}]_{\mathbb{N}|\mathbb{B}_{i-1}} \cdot [\mathbf{1}]_{\mathbb{B}_{i-1}|\mathbb{B}_{i}}, & \text{se } i > 1 \end{cases}$$
(4.5)

Ou seja

$$\mathbb{R}_{i}(\mathbf{q}) = \begin{cases} \mathbb{R}'_{1}(q_{1}), & \text{se } i = 1\\ \mathbb{R}_{i-1}(\mathbf{q}) \cdot \mathbb{R}'_{i}(q_{i}), & \text{se } i > 1 \end{cases}$$
(4.6)

A composição de rotações utilizando quaternions unitários é obtida através de uma expressão análoga:

$$\breve{\mathbf{r}}_{i}(\mathbf{q}) = \begin{cases} \breve{\mathbf{r}}_{1}'(q_{1}), & \text{se } i = 1\\ \\ \breve{\mathbf{r}}_{i-1}(\mathbf{q}) \otimes \breve{\mathbf{r}}_{i}'(q_{i}), & \text{se } i > 1 \end{cases}$$
(4.7)

Para evitar o acúmulo de erros numéricos, basta renormalizar cada quaternion obtido através do produto de dois outros.

As expressões das matrizes de rotação  $\mathbb{R}_i(q)$  podem ser obtidas através da fórmula de

conversão de quaternions unitários para matrizes de rotação apresentada no apêndice B.

$$\mathbb{R} = \mathbb{R}(\breve{q}) = \begin{bmatrix} 1 - 2q_j^2 - 2q_k^2 & 2(q_iq_j - q_kq_r) & 2(q_iq_k + q_jq_r) \\ 2(q_iq_j + q_kq_r) & 1 - 2q_i^2 - 2q_k^2 & 2(q_jq_k - q_iq_r) \\ 2(q_iq_k - q_jq_r) & 2(q_iq_r + q_jq_k) & 1 - 2q_i^2 - 2q_j^2 \end{bmatrix}$$
(B.17)

$$\mathbb{R}_{i}(\mathbf{q}) = \underline{\mathbb{R}}(\check{\mathbf{r}}_{i}(\mathbf{q})) \tag{4.8}$$

A composição de translações pode ser feita da seguinte maneira:

$$\left[\mathsf{o}_{\mathsf{B}_{i}}\right]_{\mathsf{N}} = \begin{cases} \left[\mathsf{o}_{\mathsf{B}_{1}}\right]_{\mathsf{B}_{0}}, & \text{se } i = 1\\ \left[\mathsf{o}_{\mathsf{B}_{i-1}}\right]_{\mathsf{N}} + \left[\mathbf{1}\right]_{\mathsf{N}|\mathsf{B}_{i-1}} \cdot \left[\mathsf{o}_{\mathsf{B}_{i}}\right]_{\mathsf{B}_{i-1}}, & \text{se } i > 1 \end{cases}$$
(4.9)

Tendo em vista que  ${\tt o}_0=\left[{\tt o}_{B_0}\right]_{B_0}=0,$  temos que:

$$\mathfrak{O}_{i}(\mathfrak{q}) = \begin{cases}
\mathfrak{O}, & \text{se } i = 0 \\
\mathfrak{O}'_{1}(q_{1}), & \text{se } i = 1 \quad i = 0, \dots, \nu \\
\mathfrak{O}_{i-1}(\mathfrak{q}) + \mathbb{R}_{i-1}(\mathfrak{q}) \cdot \mathfrak{O}'_{i}(q_{i}), & \text{se } i > 1
\end{cases}$$
(4.10)

Sendo assim, a posição do efetuador no sistema  ${\tt N}$ e a representação por quaternion da orientação do efetuador são dadas por:

$$\mathbf{x}(\mathbf{q}) = \mathbf{o}_{\nu}(\mathbf{q}) \tag{4.11}$$

$$\check{\mathbf{x}}(\mathbf{q}) = \check{\mathbf{r}}_{\nu}(\mathbf{q}) \tag{4.12}$$

Tendo obtidos as matrizes de rotação  $[\mathbf{1}]_{\mathbb{N}|B_i}$  e as coordenadas das origens  $o_{B_i}$  no sistema  $\mathbb{N}$ , temos que as coordenadas dos centros de massa dos ligamentos são dadas por:

$$[\mathbf{c}_{\mathcal{B}_i}]_{\mathbb{N}} = [\mathbf{o}_{\mathsf{B}_i}]_{\mathbb{N}} + [\mathbf{1}]_{\mathbb{N}|\mathsf{B}_i} \cdot [\mathbf{c}_{\mathcal{B}_i}]_{\mathsf{B}_i}$$
(4.13)

Ou seja

$$\mathbf{c}_{\mathsf{M}\,i}(\mathsf{q}) = \mathbf{o}_i(\mathsf{q}) + \mathbb{R}_i(\mathsf{q}) \cdot \mathbf{c}'_{\mathsf{M}\,i}(\mathsf{q}) \tag{4.14}$$

Além disso, sabe-se que as matrizes de rotação  $[\mathbf{1}]_{\mathbb{N}|B_i}$  apresentam o seguinte formato:

$$\begin{bmatrix} \mathbf{1} \end{bmatrix}_{\mathbb{N} \mid \mathbb{B}_i} = \begin{bmatrix} [\hat{\boldsymbol{\imath}}_{\mathbb{B}_i}]_{\mathbb{N}} & [\hat{\boldsymbol{\jmath}}_{\mathbb{B}_i}]_{\mathbb{N}} & [\hat{\boldsymbol{k}}_{\mathbb{B}_i}]_{\mathbb{N}} \end{bmatrix}$$
(4.15)

Tendo em vista que as coordenadas dos versores  $\hat{k}_{B_i}$  no sistema N serão utilizadas no cálculo dos jacobianos de velocidades e velocidades angulares, e que  $\begin{bmatrix} \hat{k}_{B_0} \end{bmatrix}_N = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$ , estas podem ser obtidas simplesmente por:

$$\mathbb{k}_{i}(\mathbf{q}) = \begin{cases} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{\mathsf{T}}, & \text{se } i = 0 \\ \mathbb{R}_{i}[:, 3], & \text{se } i > 0 \end{cases}$$
(4.16)

As matrizes de rotação obtidas também podem ser utilizadas para passar o tensor de inércia do centro de massa de cada ligamento para o sistema N:

$$\left[\boldsymbol{I}_{\mathcal{B}_{i}}\right]_{\mathbb{N}|\mathbb{N}} = \left[\boldsymbol{1}\right]_{\mathbb{N}|\mathbb{B}_{i}} \cdot \left[\boldsymbol{I}_{\mathcal{B}_{i}}\right]_{\mathbb{B}_{i}|\mathbb{B}_{i}} \cdot \left[\boldsymbol{1}\right]_{\mathbb{B}_{i}|\mathbb{N}}$$
(4.17)

Ou seja:

$$\mathbf{I}_{i}(\mathbf{q}) = \mathbf{R}_{i}(\mathbf{q}) \cdot \mathbf{I}_{i}' \cdot \mathbf{R}_{i}(\mathbf{q})^{\mathsf{T}}$$

$$(4.18)$$

## 4.1.2 Cinemática de velocidades angulares

Sabe-se que a velocidade angular de cada ligamento  $\mathcal{B}_i$  em relação ao referencial anterior  $\mathcal{B}_{i-1}$  é dada por:

$$\boldsymbol{\omega}_{\boldsymbol{B}_{i}}^{\boldsymbol{B}_{i-1}} = \begin{cases} \mathbf{0}, & \text{i-ésima junta prismática} \\ \dot{q}_{i} \hat{\boldsymbol{k}}_{\mathbf{B}_{i-1}}, & \text{i-ésima junta rotativa} \end{cases}$$
(4.19)

Sendo assim, definindo:

$$\mathbf{j}_{\omega i}(\mathbf{q}) = \begin{cases} 0, & \text{i-ésima junta prismática} \\ \mathbf{k}_{i-1}, & \text{i-ésima junta rotativa} \end{cases}$$
(4.20)

Aplicando (4.19) no sistema N e utilizando a definição (4.20), temos que:

$$\boldsymbol{\omega}_{i}^{\prime}(\mathbf{q}, \dot{q}_{i}) = \mathbf{j}_{\omega i}(\mathbf{q}) \, \dot{q}_{i} \tag{4.21}$$

Para obter a velocidade angular de cada ligamento em relação ao referencial  $\mathcal{N}$ , partese do ligamento  $\mathcal{B}_1$ . Tendo em vista que  $\mathcal{B}_0$  e  $\mathcal{N}$  são o mesmo referencial, temos que:

$$\begin{bmatrix} \boldsymbol{\omega}_{\mathcal{B}_1}^{N} \end{bmatrix}_{\mathbb{N}} = \begin{bmatrix} \boldsymbol{\omega}_{\mathcal{B}_1}^{\mathcal{B}_0} \end{bmatrix}_{\mathbb{N}}$$
(4.22)

Ou seja

$$\omega_1(\mathbf{q}, \dot{\mathbf{q}}) = \omega_1'(\mathbf{q}, \dot{q}_1) = \mathbf{j}_{\omega 1}(\mathbf{q}) \, \dot{q}_1 \tag{4.23}$$

Além disso, tendo em vista que  $\dot{q}_i$  pode ser escrito como

$$\dot{q}_i = \partial_{q_i} \mathbf{q}^\mathsf{T} \dot{\mathbf{q}} \tag{4.24}$$

 $\operatorname{Sendo}$ 

$$\partial_{q_j} \mathbf{q}[\![i]\!] = \begin{cases} \mathbf{0}, & \text{se } i \neq j \\ \mathbf{1}, & \text{se } i = j \end{cases}$$
(4.25)

 $\omega_1$  pode ser escrito como:

$$\omega_1(\mathbf{q}, \dot{\mathbf{q}}) = \mathbb{J}_{\omega 1}(\mathbf{q}) \dot{\mathbf{q}} \tag{4.26}$$

Sendo

$$\mathbb{J}_{\omega 1}(\mathbf{q}) = \mathbf{j}_{\omega 1} \partial_{q_1} \mathbf{q}^{\mathsf{T}}$$

$$(4.27)$$

Para obter a velocidade angular dos outros ligamentos, utiliza-se o princípio de composição de movimento para velocidades angulares (equação (A.44)):

$$\boldsymbol{\omega}_{\boldsymbol{B}_{i}}^{\boldsymbol{N}} = \boldsymbol{\omega}_{\boldsymbol{B}_{i-1}}^{\boldsymbol{N}} + \boldsymbol{\omega}_{\boldsymbol{B}_{i}}^{\boldsymbol{B}_{i-1}}$$
(4.28)

Aplicando (4.28) no sistema N, temos que:

$$\omega_i(\mathbf{q}, \dot{\mathbf{q}}) = \omega_{i-1} + \omega'_i \tag{4.29}$$

Portanto:

$$\omega_i(\mathbf{q}, \dot{\mathbf{q}}) = \begin{cases} \omega'_1 & \text{se } i = 1\\ \omega_{i-1} + \omega'_i & \text{se } i > 1 \end{cases}$$
(4.30)

Além disso, supondo que

$$\omega_i(\mathbf{q}, \dot{\mathbf{q}}) = \mathbb{J}_{\omega i}(\mathbf{q}) \dot{\mathbf{q}} \tag{4.31}$$

Substituindo (4.31) e (4.21) em (4.29), temos que:

$$\omega_{i}(\mathbf{q},\dot{\mathbf{q}}) = \mathbb{J}_{\omega i-1} \dot{\mathbf{q}} + \mathbf{j}_{\omega i} \partial_{q_{i}} \mathbf{q}^{\mathsf{T}} \dot{\mathbf{q}} = \left( \mathbb{J}_{\omega i-1} + \mathbf{j}_{\omega i} \partial_{q_{i}} \mathbf{q}^{\mathsf{T}} \right) \dot{\mathbf{q}}$$
(4.32)

Portanto, pelo princípio da indução finita

$$\omega_i(\mathbf{q}, \dot{\mathbf{q}}) = \mathbf{J}_{\omega i}(\mathbf{q}) \dot{\mathbf{q}} \tag{4.33}$$

Sendo:

$$\mathbf{J}_{\omega i}(\mathbf{q}) = \begin{cases} \mathbf{j}_{\omega 1} \partial_{q_1} \mathbf{q}^{\mathsf{T}} & \text{se } i = 1 \\ \mathbf{J}_{\omega i-1} + \mathbf{j}_{\omega i} \partial_{q_i} \mathbf{q}^{\mathsf{T}} & \text{se } i > 1 \end{cases}$$
(4.34)

Com relação à velocidade angular do efetuador, tendo em vista que o efetuador é solidário a  $\mathcal{B}_{\nu}$ , temos que:

$$\omega(\mathbf{q}, \dot{\mathbf{q}}) = \omega_{\nu}(\mathbf{q}, \dot{\mathbf{q}}) = \mathcal{J}_{\omega}(\mathbf{q}) \dot{\mathbf{q}}$$

$$(4.35)$$

Sendo:

$$J_{\omega}(\mathbf{q}) = J_{\omega\nu}(\mathbf{q}) \tag{4.36}$$

## 4.1.3 Cinemática de velocidades lineares

Sabe-se que a velocidade do centro de massa de cada ligamento  $c_{\mathcal{B}_i}$  em relação ao referencial anterior  $\mathcal{B}_{i-1}$  é dada por:

$$\boldsymbol{v}_{\mathbf{c}_{B_{i}}}^{\mathcal{B}_{i-1}} = \begin{cases} \dot{q}_{i} \hat{\boldsymbol{k}}_{\mathbf{B}_{i-1}}, & \text{i-ésima junta prismática} \\ \dot{q}_{i} \hat{\boldsymbol{k}}_{\mathbf{B}_{i-1}} \wedge \boldsymbol{r}_{\mathbf{o}_{i-1} \mid \mathbf{c}_{B_{i}}}, & \text{i-ésima junta rotativa} \end{cases}$$
(4.37)

Sendo assim, definindo:

$$\mathbf{j}_{v\,i}(\mathbf{q}) = \begin{cases} \mathbf{k}_{i-1}, & \text{i-ésima junta prismática} \\ \mathbb{S}(\mathbf{k}_{i-1}) \cdot (\mathbf{c}_{\mathsf{M}\,i} - \mathbf{o}_{i-1}), & \text{i-ésima junta rotativa} \end{cases}$$
(4.38)

Aplicando (4.37) no sistema N e utilizando a definição (4.38), temos que:

$$\mathbf{v}_{i}'(\mathbf{q}, \dot{q}_{i}) = \mathbf{j}_{v\,i}(\mathbf{q})\,\dot{q}_{i} \tag{4.39}$$

Para obter a velocidade do centro de massa de cada ligamento em relação ao referencial  $\mathcal{N}$ , parte-se do ligamento  $\mathcal{B}_1$ . Tendo em vista que  $\mathcal{B}_0$  e  $\mathcal{N}$  são o mesmo referencial, temos que:

$$\left[\boldsymbol{v}_{\mathsf{c}_{\mathcal{B}_{1}}}^{\mathcal{N}}\right]_{\mathsf{N}} = \left[\boldsymbol{v}_{\mathsf{c}_{\mathcal{B}_{1}}}^{\mathcal{B}_{0}}\right]_{\mathsf{N}} \tag{4.40}$$

Ou seja

$$\mathbb{v}_1(\mathfrak{q},\dot{\mathfrak{q}}) = \mathbb{v}_1'(\mathfrak{q},\dot{q}_1) = \mathbb{j}_{v\,1}(\mathfrak{q})\,\dot{q}_1 \tag{4.41}$$

 $v_1$  pode ser escrito como:

$$\mathbf{v}_1(\mathbf{q}, \dot{\mathbf{q}}) = \mathbb{J}_{v1}(\mathbf{q}) \dot{\mathbf{q}} \tag{4.42}$$

Sendo

$$\mathbb{J}_{v1}(\mathbf{q}) = \mathbf{j}_{v1}(\mathbf{q}) \,\partial_{q_1} \mathbf{q}^\mathsf{T} \tag{4.43}$$

Para obter a velocidade dos centros de massa dos outros ligamentos, utiliza-se o princípio de composição de movimento para velocidades lineares (equação (A.29)):

$$\mathbf{v}_{\mathbf{c}_{\mathfrak{B}_{i}}}^{\mathbb{N}} = \mathbf{v}_{\mathbf{c}_{\mathfrak{B}_{i}}|\mathfrak{B}_{i-1}}^{\mathbb{N}} + \mathbf{v}_{\mathbf{c}_{\mathfrak{B}_{i}}}^{\mathfrak{B}_{i-1}}$$
(4.44)

 $V_{c_{\mathcal{B}_i}|\mathcal{B}_{i-1}}^{\mathbb{N}}$  pode ser relacionado com a velocidade do centro de massa do ligamento anterior através da equação do campo de velocidades (A.20):

$$\boldsymbol{v}_{\mathbf{c}_{\mathfrak{B}_{i}}|\mathfrak{B}_{i-1}}^{\mathfrak{N}} = \boldsymbol{v}_{\mathbf{c}_{\mathfrak{B}_{i-1}}}^{\mathfrak{N}} + \boldsymbol{\omega}_{\mathfrak{B}_{i-1}}^{\mathfrak{N}} \wedge \boldsymbol{r}_{\mathbf{c}_{\mathfrak{B}_{i-1}}|\mathbf{c}_{\mathfrak{B}_{i}}}$$
(4.45)

Substituindo (4.45) em (4.44) e aplicando no sistema N, temos que:

$$\mathbf{v}_{i}(\mathbf{q},\dot{\mathbf{q}}) = \mathbf{v}_{i-1} + \mathbf{v}_{i}' + \mathbb{S}(\mathbf{\omega}_{i-1}) \cdot (\mathbf{c}_{\mathsf{M}\,i} - \mathbf{c}_{\mathsf{M}\,i-1}) \tag{4.46}$$

Portanto:

$$\mathbf{v}_{i}(\mathbf{q}, \dot{\mathbf{q}}) = \begin{cases} \mathbf{v}_{1}' & \text{se } i = 1\\ \mathbf{v}_{i-1} + \mathbf{v}_{i}' + \mathbb{S}(\mathbf{\omega}_{i-1}) \cdot (\mathbf{c}_{\mathsf{M}\,i} - \mathbf{c}_{\mathsf{M}\,i-1}) & \text{se } i > 1 \end{cases}$$
(4.47)

Além disso, supondo que

$$\mathbf{v}_i(\mathbf{q}, \dot{\mathbf{q}}) = \mathbf{J}_{v\,i}(\mathbf{q})\,\dot{\mathbf{q}} \tag{4.48}$$

Substituindo (4.48) e (4.39) em (4.46), temos que:

$$\begin{aligned} \mathbf{v}_{i}(\mathbf{q}, \dot{\mathbf{q}}) &= \mathbf{J}_{v\,i-1} \,\dot{\mathbf{q}} + \mathbf{\mathring{y}}_{v\,i} \,\partial_{q_{i}} \mathbf{q}^{\mathsf{T}} \dot{\mathbf{q}} + \mathbb{S}(\mathbf{J}_{\omega\,i-1} \,\dot{\mathbf{q}}) \cdot (\mathbf{\mathfrak{c}}_{\mathsf{M}\,i} - \mathbf{\mathfrak{c}}_{\mathsf{M}\,i-1}) \\ &= \left(\mathbf{J}_{v\,i-1} + \mathbf{\mathring{y}}_{v\,i} \,\partial_{q_{i}} \mathbf{q}^{\mathsf{T}} - \mathbb{S}(\mathbf{\mathfrak{c}}_{\mathsf{M}\,i} - \mathbf{\mathfrak{c}}_{\mathsf{M}\,i-1}) \cdot \mathbf{J}_{\omega\,i-1}\right) \dot{\mathbf{q}} \end{aligned} \tag{4.49}$$

Portanto, pelo princípio da indução finita

$$\mathbf{v}_i(\mathbf{q}, \dot{\mathbf{q}}) = \mathbb{J}_{v\,i}(\mathbf{q})\,\dot{\mathbf{q}} \tag{4.50}$$

Sendo:

$$\mathbf{J}_{vi}(\mathbf{q}) = \begin{cases} \mathbf{j}_{v1} \partial_{q_1} \mathbf{q}^{\mathsf{T}} & \text{se } i = 1\\ \mathbf{J}_{vi-1} - \mathbb{S}(\mathbf{c}_{\mathsf{M}i} - \mathbf{c}_{\mathsf{M}i-1}) \cdot \mathbf{J}_{\omega i-1} + \mathbf{j}_{vi} \partial_{q_i} \mathbf{q}^{\mathsf{T}} & \text{se } i > 1 \end{cases}$$
(4.51)

Com relação à velocidade do efetuador, tendo em vista que o efetuador é solidário a  $\mathcal{B}_{\nu}$ , aplicando a equação do campo de velocidades (A.20), temos que:

$$\mathbf{v}(\mathbf{q},\dot{\mathbf{q}}) = \mathbf{v}_{\nu} + \mathbb{S}(\mathbf{\omega}_{\nu}) \cdot (\mathbf{z} - \mathbf{c}_{\mathsf{M}\,\nu}) = \mathbb{J}_{v}(\mathbf{q})\,\dot{\mathbf{q}}$$

$$\tag{4.52}$$

Sendo:

$$\mathbf{J}_{v}(\mathbf{q}) = \mathbf{J}_{v\nu} - \mathbf{S}(\mathbf{x} - \mathbf{c}_{\mathsf{M}\nu}) \cdot \mathbf{J}_{\omega\nu}$$

$$\tag{4.53}$$

## 4.1.4 Cinemática de acelerações angulares

Sabe-se que a aceleração angular de cada ligamento  $\mathcal{B}_i$  em relação ao referencial anterior  $\mathcal{B}_{i-1}$  é dada por:

$$\boldsymbol{\alpha}_{\mathcal{B}_{i}}^{\mathcal{B}_{i-1}} = \begin{cases} \boldsymbol{0}, & \text{i-ésima junta prismática} \\ \\ \ddot{q}_{i} \hat{\boldsymbol{k}}_{\mathbf{B}_{i-1}}, & \text{i-ésima junta rotativa} \end{cases}$$
(4.54)

Sendo assim, aplicando (4.54) no sistema  $\mathbb{N}$  e utilizando a definição (4.20), temos que:

$$\mathfrak{Q}_{i}'(\mathfrak{q},\ddot{q}_{i}) = \mathfrak{j}_{\omega i}(\mathfrak{q})\,\ddot{q}_{i} \tag{4.55}$$

Para obter a aceleração angular de cada ligamento em relação ao referencial  $\mathcal{N}$ , partese do ligamento  $\mathcal{B}_1$ . Tendo em vista que  $\mathcal{B}_0$  e  $\mathcal{N}$  são o mesmo referencial, temos que:

$$\left[\boldsymbol{\alpha}_{\mathcal{B}_{1}}^{\scriptscriptstyle N}\right]_{\scriptscriptstyle N} = \left[\boldsymbol{\alpha}_{\mathcal{B}_{1}}^{\scriptscriptstyle \mathcal{B}_{0}}\right]_{\scriptscriptstyle N} \tag{4.56}$$

Ou seja

$$\boldsymbol{\omega}_{1}(\boldsymbol{q}, \dot{\boldsymbol{q}}, \ddot{\boldsymbol{q}}) = \boldsymbol{\omega}_{1}'(\boldsymbol{q}, \ddot{q}_{1}) = \boldsymbol{j}_{\omega 1} \,\partial_{q_{1}} \boldsymbol{q}^{\mathsf{T}} \ddot{\boldsymbol{q}}$$

$$\tag{4.57}$$

Sendo assim,  $\alpha_1$  pode ser escrito de forma genérica como:

$$\mathbb{Q}_{1}(\mathbf{q},\dot{\mathbf{q}},\ddot{\mathbf{q}}) = \mathbb{J}_{\omega 1}(\mathbf{q})\ddot{\mathbf{q}} + \mathbb{Q}_{1}(\mathbf{q},\dot{\mathbf{q}})$$

$$\tag{4.58}$$

Sendo

$$\underline{\mathfrak{Q}}_1(\mathbf{q}, \dot{\mathbf{q}}) = \mathbf{0} \tag{4.59}$$

Para obter a aceleração angular dos outros ligamentos, utiliza-se o princípio de composição de movimento para acelerações angulares (equação (A.44)):

$$\boldsymbol{\alpha}_{\mathcal{B}_{i}}^{\mathcal{N}} = \boldsymbol{\alpha}_{\mathcal{B}_{i-1}}^{\mathcal{N}} + \boldsymbol{\alpha}_{\mathcal{B}_{i}}^{\mathcal{B}_{i-1}} + \boldsymbol{\omega}_{\mathcal{B}_{i-1}}^{\mathcal{N}} \wedge \boldsymbol{\omega}_{\mathcal{B}_{i}}^{\mathcal{B}_{i-1}}$$
(4.60)

Aplicando (4.60) no sistema N, temos que:

$$\omega_i(\mathbf{q}, \dot{\mathbf{q}}) = \omega_{i-1} + \omega'_i + \mathbb{S}(\omega_{i-1}) \cdot \omega'_i$$
(4.61)

Portanto:

$$\mathfrak{Q}_{i}(\mathfrak{q},\dot{\mathfrak{q}}) = \begin{cases} \mathfrak{Q}_{1}' & \text{se } i = 1\\ \mathfrak{Q}_{i-1} + \mathfrak{Q}_{i}' + \mathbb{S}(\omega_{i-1}) \cdot \omega_{i}' & \text{se } i > 1 \end{cases}$$
(4.62)

Além disso, supondo que

$$\alpha_i(\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}}) = \mathbb{J}_{\omega i}(\mathbf{q}) \ddot{\mathbf{q}} + \underline{\alpha}_i(\mathbf{q}, \dot{\mathbf{q}})$$

$$(4.63)$$

Substituindo (4.63) e (4.55) em (4.61), temos que:

$$\begin{aligned}
\boldsymbol{\omega}_{i}(\boldsymbol{q}, \dot{\boldsymbol{q}}) &= \mathbb{J}_{\omega \, i-1} \, \ddot{\boldsymbol{q}} + \underline{\boldsymbol{\omega}}_{i-1} + \underline{\boldsymbol{j}}_{\omega \, i} \, \partial_{q_{i}} \boldsymbol{q}^{\mathsf{T}} \ddot{\boldsymbol{q}} + \mathbb{S}(\boldsymbol{\omega}_{i-1}) \cdot \boldsymbol{\omega}_{i}' \\
&= \left( \mathbb{J}_{\omega \, i-1} + \underline{\boldsymbol{j}}_{\omega \, i} \, \partial_{q_{i}} \boldsymbol{q}^{\mathsf{T}} \right) \, \ddot{\boldsymbol{q}} + \underline{\boldsymbol{\omega}}_{i-1} + \mathbb{S}(\boldsymbol{\omega}_{i-1}) \cdot \boldsymbol{\omega}_{i}' \\
&= \mathbb{J}_{\omega \, i} \, \ddot{\boldsymbol{q}} + \underline{\boldsymbol{\omega}}_{i-1} + \mathbb{S}(\boldsymbol{\omega}_{i-1}) \cdot \boldsymbol{\omega}_{i}'
\end{aligned} \tag{4.64}$$

Portanto, pelo princípio da indução finita

$$\alpha_i(\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}}) = \mathbb{J}_{\omega i}(\mathbf{q}) \, \ddot{\mathbf{q}} + \underline{\alpha}_i(\mathbf{q}, \dot{\mathbf{q}}) \tag{4.65}$$

Sendo:

$$\mathfrak{Q}_{i}(\mathfrak{q},\dot{\mathfrak{q}}) = \begin{cases} \mathfrak{O} & \text{se } i = 1 \\ \mathfrak{Q}_{i-1} + \mathbb{S}(\mathfrak{W}_{i-1}) \cdot \mathfrak{W}_{i}' & \text{se } i > 1 \end{cases} \tag{4.66}$$

Com relação à aceleração angular do efetuador, tendo em vista que o efetuador é solidário a  $\mathcal{B}_{\nu}$ , temos que:

$$\boldsymbol{\omega}(\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}}) = \boldsymbol{\omega}_{\nu}(\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}}) = \mathbb{J}_{\omega}(\mathbf{q}) \, \ddot{\mathbf{q}} + \underline{\boldsymbol{\omega}}(\mathbf{q}, \dot{\mathbf{q}}) \tag{4.67}$$

Sendo:

$$\underline{\boldsymbol{\varphi}}(\mathbf{q}, \dot{\mathbf{q}}) = \underline{\boldsymbol{\varphi}}_{\nu}(\mathbf{q}, \dot{\mathbf{q}}) \tag{4.68}$$

## 4.1.5 Cinemática de acelerações lineares

Sabe-se que a aceleração do centro de massa de cada ligamento  $c_{\mathcal{B}_i}$  em relação ao referencial anterior  $\mathcal{B}_{i-1}$  é dada por:

$$\boldsymbol{a}_{\mathbf{c}_{\mathcal{B}_{i}}}^{\mathcal{B}_{i-1}} = \begin{cases} \ddot{q}_{i}\hat{\boldsymbol{k}}_{\mathsf{B}_{i-1}}, & \text{i-ésima junta prismática} \\ \ddot{q}_{i}\hat{\boldsymbol{k}}_{\mathsf{B}_{i-1}} \wedge \boldsymbol{r}_{\mathsf{o}_{i-1}|\mathsf{c}_{\mathcal{B}_{i}}} + \dot{q}_{i}^{2}\hat{\boldsymbol{k}}_{\mathsf{B}_{i-1}} \wedge \hat{\boldsymbol{k}}_{\mathsf{B}_{i-1}} \wedge \boldsymbol{r}_{\mathsf{o}_{i-1}|\mathsf{c}_{\mathcal{B}_{i}}}, & \text{i-ésima junta rotativa} \end{cases}$$
(4.69)

Aplicando (4.69) no sistema N e utilizando as definições (4.20), (4.21), (4.38) e (4.39), temos que:

$$\mathfrak{O}'_{i}(\mathfrak{q},\dot{q}_{i},\ddot{q}_{i}) = \mathfrak{j}_{v\,i}\,\ddot{q}_{i} + \mathbb{S}(\mathfrak{\omega}'_{i})\cdot\mathfrak{v}'_{i} \tag{4.70}$$

Para obter a aceleração do centro de massa de cada ligamento em relação ao referencial  $\mathcal{N}$ , parte-se do ligamento  $\mathcal{B}_1$ . Tendo em vista que  $\mathcal{B}_0$  e  $\mathcal{N}$  são o mesmo referencial, temos que:

$$\left[\boldsymbol{a}_{\boldsymbol{c}_{\mathcal{B}_{1}}}^{N}\right]_{N} = \left[\boldsymbol{a}_{\boldsymbol{c}_{\mathcal{B}_{1}}}^{\mathcal{B}_{0}}\right]_{N}$$
(4.71)

Ou seja

$$\mathfrak{o}_{1}(\mathfrak{q},\dot{\mathfrak{q}},\ddot{\mathfrak{q}}) = \mathfrak{o}_{1}'(\mathfrak{q},\dot{q}_{1},\ddot{q}_{1}) = \mathfrak{j}_{v\,1}\,\partial_{q_{1}}\mathfrak{q}^{\mathsf{T}}\,\ddot{\mathfrak{q}} + \mathbb{S}(\omega_{1}')\cdot\mathfrak{v}_{1}' \tag{4.72}$$

Sendo assim,  $o_1$  pode ser escrito de forma genérica como:

$$\mathfrak{a}_{1}(\mathfrak{q},\dot{\mathfrak{q}},\ddot{\mathfrak{q}}) = \mathbb{J}_{v1}(\mathfrak{q})\ddot{\mathfrak{q}} + \mathfrak{g}_{1}(\mathfrak{q},\dot{\mathfrak{q}})$$

$$\tag{4.73}$$

Sendo

$$\mathfrak{g}_{1}(\mathfrak{q},\dot{\mathfrak{q}}) = \mathbb{S}(\omega_{i}') \cdot \mathfrak{v}_{i}' \tag{4.74}$$

Para obter a aceleração do centro de massa dos outros ligamentos, utiliza-se o princípio

de composição de movimento para acelerações lineares (equação (A.33)):

$$\boldsymbol{a}_{\boldsymbol{c}_{\mathcal{B}_{i}}}^{N} = \boldsymbol{a}_{\boldsymbol{c}_{\mathcal{B}_{i}}|\boldsymbol{B}_{i-1}}^{N} + \boldsymbol{a}_{\boldsymbol{c}_{\mathcal{B}_{i}}}^{\boldsymbol{B}_{i-1}} + 2\boldsymbol{\omega}_{\boldsymbol{B}_{i-1}}^{N} \wedge \boldsymbol{v}_{\boldsymbol{c}_{\mathcal{B}_{i}}}^{\boldsymbol{B}_{i-1}}$$
(4.75)

 $\boldsymbol{a}_{\mathbf{c}_{\mathcal{B}_i}|\mathcal{B}_{i-1}}^{\mathbb{N}}$  pode ser relacionado com a aceleração do centro de massa do ligamento anterior através da equação do campo de acelerações (A.22):

$$\boldsymbol{a}_{\mathbf{c}_{\mathcal{B}_{i}}\mid\mathcal{B}_{i-1}}^{\mathcal{N}} = \boldsymbol{a}_{\mathbf{c}_{\mathcal{B}_{i-1}}}^{\mathcal{N}} + \boldsymbol{\alpha}_{\mathcal{B}_{i-1}}^{\mathcal{N}} \wedge \boldsymbol{r}_{\mathbf{c}_{\mathcal{B}_{i-1}}\mid\mathbf{c}_{\mathcal{B}_{i}}} + \boldsymbol{\omega}_{\mathcal{B}_{i-1}}^{\mathcal{N}} \wedge \boldsymbol{\omega}_{\mathcal{B}_{i-1}}^{\mathcal{N}} \wedge \boldsymbol{r}_{\mathbf{c}_{\mathcal{B}_{i-1}}\mid\mathbf{c}_{\mathcal{B}_{i}}}$$
(4.76)

Substituindo (4.76) em (4.75) e aplicando no sistema N, temos que:

$$\mathbb{O}_{i}(\mathbb{Q},\dot{\mathbb{Q}},\ddot{\mathbb{Q}}) = \mathbb{O}_{i-1} + \mathbb{O}'_{i} + 2\mathbb{S}(\omega'_{i-1}) \cdot \mathbb{V}'_{i} + \left(\mathbb{S}(\mathbb{Q}_{i-1}) + \mathbb{S}^{2}(\omega_{i-1})\right) \cdot (\mathbb{C}_{Mi} - \mathbb{C}_{Mi-1})$$
(4.77)

Portanto:

$$\mathbf{c}_{i} = \begin{cases} \mathbf{c}_{1}' & \text{se } i = 1\\ \mathbf{c}_{i-1} + \mathbf{c}_{i}' + 2\mathbb{S}(\mathbf{\omega}_{i-1}') \cdot \mathbf{v}_{i}' + \left(\mathbb{S}(\mathbf{c}_{i-1}) + \mathbb{S}^{2}(\mathbf{\omega}_{i-1})\right) \cdot \left(\mathbf{c}_{\mathsf{M}\,i} - \mathbf{c}_{\mathsf{M}\,i-1}\right) & \text{se } i > 1 \end{cases}$$

(4.78)

Além disso, supondo que

$$\mathfrak{a}_{i}(\mathfrak{q},\dot{\mathfrak{q}},\ddot{\mathfrak{q}}) = \mathbb{J}_{v\,i}(\mathfrak{q})\,\ddot{\mathfrak{q}} + \mathfrak{g}_{i}(\mathfrak{q},\dot{\mathfrak{q}}) \tag{4.79}$$

Substituindo (4.65), (4.79) e (4.70) em (4.77), temos que:

Portanto, pelo princípio da indução finita

$$\mathbb{Q}_{i}(\mathbf{q},\dot{\mathbf{q}},\ddot{\mathbf{q}}) = \mathbb{J}_{v\,i}(\mathbf{q})\,\ddot{\mathbf{q}} + \mathbb{Q}_{i}(\mathbf{q},\dot{\mathbf{q}}) \tag{4.81}$$

Sendo:

$$\mathfrak{g}_{i} = \begin{cases}
\mathfrak{S}(\omega_{i}') \cdot \mathfrak{v}_{i}' & \text{se } i = 1 \\
\mathfrak{g}_{i-1} + \left(\mathfrak{S}(\omega_{i}') + 2\mathfrak{S}(\omega_{i-1}')\right) \cdot \mathfrak{v}_{i}' + \left(\mathfrak{S}(\mathfrak{g}_{i-1}) + \mathfrak{S}^{2}(\omega_{i-1})\right) \cdot \left(\mathfrak{c}_{\mathsf{M}\,i} - \mathfrak{c}_{\mathsf{M}\,i-1}\right) & \text{se } i > 1
\end{cases}$$

$$(4.82)$$

Com relação à aceleração do efetuador, tendo em vista que o efetuador é solidário a $\mathcal{B}_{\nu},$ temos que:

$$\mathbb{Q}(\mathbb{q},\dot{\mathbb{q}},\ddot{\mathbb{q}}) = \mathbb{Q}_{\nu} + \left(\mathbb{S}(\mathbb{Q}_{\nu}) + \mathbb{S}^{2}(\mathbb{Q}_{\nu})\right) \cdot \left(\mathbb{X} - \mathbb{C}_{\mathsf{M}\,\nu}\right) = \mathbb{J}_{v}(\mathbb{q})\,\ddot{\mathbb{q}} + \mathbb{Q}(\mathbb{q},\dot{\mathbb{q}}) \tag{4.83}$$

Sendo:

$$\underline{\mathfrak{g}}(\mathfrak{q},\dot{\mathfrak{q}}) = \underline{\mathfrak{g}}_{\nu} + \left(\underline{\mathbb{S}}(\underline{\mathfrak{g}}_{\nu}) + \underline{\mathbb{S}}^{2}(\omega_{\nu})\right) \cdot \left(\underline{\mathbb{x}} - \underline{\mathbb{c}}_{\mathsf{M}\,\nu}\right)$$
(4.84)

# 4.2 Dinâmica dos elos e juntas

O modelo dinâmico de S é obtido utilizando um procedimento de acoplamento de subsistemas baseado na Metodologia Modular de Modelagem (MMM) [70], e é dado por:

$$\mathbb{M}_{\mathscr{S}}(\mathbf{q})\,\ddot{\mathbf{q}} + \mathbb{V}_{\mathscr{S}}(\mathbf{q},\dot{\mathbf{q}}) + \mathbb{g}_{\mathscr{S}}(\mathbf{q}) = \mathbb{u}_{\mathscr{S}} \tag{4.85}$$

Sendo:

$$\mathbb{M}_{\mathscr{S}}(\mathbf{q}) = \sum_{i=1}^{\nu} m_i \mathbb{J}_{vi}^{\mathsf{T}} \mathbb{J}_{vi} + \mathbb{J}_{\omega i}^{\mathsf{T}} \mathbb{I}_i \mathbb{J}_{\omega i}$$
(4.86)

$$\nu_{\mathscr{S}}(\mathbf{q}, \dot{\mathbf{q}}) = \sum_{i=1}^{\nu} m_i \mathbb{J}_{\nu i}^{\mathsf{T}} \mathbb{g}_i + \mathbb{J}_{\omega i}^{\mathsf{T}} (\mathbb{I}_i \mathbb{g}_i + \mathbb{S}(\omega_i) \cdot \mathbb{I}_i \omega_i)$$
(4.87)

$$g_{\mathscr{S}}(\mathbf{q}) = -\sum_{i=1}^{\nu} m_i \mathbb{J}_{v\,i}^{\mathsf{T}} \overline{\mathbf{g}}$$

$$\tag{4.88}$$

Segue abaixo, a dedução.

## 4.2.1 Modelo dos subsistemas

O modelo dinâmico de cada ligamento pode ser obtido pelo formalismo de Newton-Euler, pois são considerados como corpos rígidos livres no espaço sujeitos apenas à força peso. Sendo assim, através das equações de Newton-Euler, obtemos os esforços nãoreativos (ativos e inerciais) aplicados a cada ligamento:

$$\begin{cases} \boldsymbol{f}_{\boldsymbol{B}_{i}} = -m_{i}\boldsymbol{a}_{\boldsymbol{c}_{\boldsymbol{B}_{i}}}^{N} + m_{i}\boldsymbol{\gamma} \\ \boldsymbol{\tau}_{\boldsymbol{B}_{i}} = -\boldsymbol{I}_{\boldsymbol{B}_{i}} \cdot \boldsymbol{\alpha}_{\boldsymbol{B}_{i}}^{N} - \boldsymbol{\omega}_{\boldsymbol{B}_{i}}^{N} \wedge (\boldsymbol{I}_{\boldsymbol{B}_{i}} \cdot \boldsymbol{\omega}_{\boldsymbol{B}_{i}}^{N}) \end{cases}$$
(4.89)

Aplicando as equações vetoriais no sistema N, temos:

$$\begin{bmatrix} [\boldsymbol{f}_{\mathcal{B}_{i}}]_{N} \\ [\boldsymbol{\tau}_{\mathcal{B}_{i}}]_{N} \end{bmatrix} = -\begin{bmatrix} m_{i}\mathbb{1} & \mathbb{O} \\ \mathbb{O} & [\boldsymbol{I}_{\mathcal{B}_{i}}]_{N+N} \end{bmatrix} \cdot \begin{bmatrix} [\boldsymbol{a}_{\boldsymbol{c}_{\mathcal{B}_{i}}}^{N}]_{N} \\ [\boldsymbol{\alpha}_{\mathcal{B}_{i}}^{N}]_{N} \end{bmatrix} - \begin{bmatrix} \mathbb{O} \\ \mathbb{S}([\boldsymbol{\omega}_{\mathcal{B}_{i}}^{N}]_{N}) \cdot [\boldsymbol{I}_{\mathcal{B}_{i}}]_{N+N} \cdot [\boldsymbol{\omega}_{\mathcal{B}_{i}}^{N}]_{N} \end{bmatrix} - \begin{bmatrix} -m_{i}[\boldsymbol{\gamma}]_{N} \\ \mathbb{O} \end{bmatrix}$$
(4.90)

Ou seja:

$$\bar{\mathbb{f}}_{\mathscr{B}_{i}}(\mathbf{q},\dot{\mathbf{q}},\ddot{\mathbf{q}}) = -\left\{ \begin{bmatrix} m_{i}\mathbb{1} & \mathbf{0} \\ \mathbf{0} & \mathbb{I}_{i} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{0}_{i} \\ \mathbf{0}_{i} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbb{S}(\omega_{i}) \cdot \mathbb{I}_{i} \cdot \omega_{i} \end{bmatrix} + \begin{bmatrix} -m_{i}\mathbf{0} \\ \mathbf{0} \end{bmatrix} \right\}$$
(4.91)

Considerando que os subsistemas estão desacoplados, não há forças reativas, portanto o modelo dinâmico de cada subsistema pode ser escrito como:

$$\overline{\mathbf{f}}_{\mathscr{B}_i}(\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}}) = \mathbf{0} \tag{4.92}$$

Além disso, definindo as quasi-velocidades:

$$p_i = \begin{bmatrix} v_i \\ \omega_i \end{bmatrix}$$
(4.93)

E as quasi-coordenadas [45]:

$$\mathsf{d}\boldsymbol{\pi}_i = \boldsymbol{p}_i \mathsf{d}t \tag{4.94}$$

Temos que o trabalho virtual associado a cada subsistema é dado por:

$$\delta W_{\mathscr{B}_i} = \delta \pi_i^{\mathsf{T}} \cdot \bar{\mathbb{F}}_{\mathscr{B}_i} \tag{4.95}$$

## 4.2.2 Sistemas de esforços ativos generalizados

Considere também o subsistema  $\mathcal{F}$ , o que é constituído pelos esforços que os atuadores aplicam nas juntas do mecanismo. Primeiramente, definimos a matriz-coluna de quasi-

velocidades relativas a esse subsistema:

$$\mathbf{p}^{\#} = \dot{\mathbf{q}} \tag{4.96}$$

Tendo em vista que  $u_{\mathcal{S}}$  é a matriz-coluna de esforços generalizados aplicadas pelos atuadores na direção de  $\delta q$ , o trabalho virtual associado a este subsistema é dado por:

$$\delta W_{\mathscr{F}} = \delta \mathfrak{q}^{\mathsf{T}} \cdot \mathfrak{u}_{\mathscr{S}} \tag{4.97}$$

## 4.2.3 Vínculos cinemáticos entre subsistemas

Através das equações (4.33), (4.50) e (4.96), é possível relacionar as quasi-velocidades de cada subsistema com as quasi-velocidades  $p^{\#}$  da seguinte maneira:

$$\mathbb{p}_i = \mathbb{J}_i(\mathbb{q}) \cdot \mathbb{p}^\# \tag{4.98}$$

Sendo:

$$\mathcal{J}_{i}(\mathbf{q}) = \begin{bmatrix} \mathcal{J}_{v\,i}(\mathbf{q}) \\ \mathcal{J}_{\omega\,i}(\mathbf{q}) \end{bmatrix}
 \tag{4.99}$$

Definindo  $p^{\circ}$  como a matriz-coluna que contém as quasi-velocidades de todos os ligamentos:

$$\mathbf{p}^{\circ} = \begin{bmatrix} \mathbf{p}_{1}^{\mathsf{T}} & \dots & \mathbf{p}_{\nu}^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}}$$
(4.100)

 $\mathbb{p}^\circ$ pode ser expresso em função apenas das quasi-velocidades  $\mathbb{p}^{\#}$ da seguinte forma:

$$\mathbb{p}^{\circ} = \mathbb{J}(q) \cdot \mathbb{p}^{\#} \tag{4.101}$$

Sendo:

$$\mathbb{J}(\mathbf{q}) = \begin{bmatrix} \mathbb{J}_1(\mathbf{q})^\mathsf{T} & \dots & \mathbb{J}_\nu(\mathbf{q})^\mathsf{T} \end{bmatrix}^\mathsf{T}$$
(4.102)

Sendo assim, a partir de (4.101), os vínculos entre quasi-velocidades entre subsistemas podem ser expressos como:

$$\overline{p}(q, p) = A(q) \cdot p = 0$$
(4.103)

Sendo:

$$\mathbb{A}(q) = \begin{bmatrix} \mathbb{J}(q) & -\mathbb{1} \end{bmatrix}$$
(4.104)

$$\mathbf{p} = \begin{bmatrix} \mathbf{p}^{\#^{\mathsf{T}}} & \mathbf{p}^{\circ^{\mathsf{T}}} \end{bmatrix}^{\mathsf{T}}$$
(4.105)

## 4.2.4 Acoplamento de subsistemas

Seja ${\mathbb f}$ a matriz-coluna contendo todos os sistemas de esforços não-reativos generalizados:

$$\mathbf{f} = \begin{bmatrix} \mathbf{u}_{\mathscr{S}}^{\mathsf{T}} & \mathbf{f}^{\circ}^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}}$$
(4.106)

Sendo:

$$\mathbb{f}^{\circ} = \begin{bmatrix} \overline{\mathbb{f}}_{\mathscr{B}_{1}}^{\mathsf{T}} & \dots & \overline{\mathbb{f}}_{\mathscr{B}_{\nu}}^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}}$$
(4.107)

Seja ${\ensuremath{\pi}}$ uma matriz-coluna de quasi-coordenadas tal que:

$$\mathsf{d}\boldsymbol{\pi} = \boldsymbol{p}\,\mathsf{d}t \tag{4.108}$$

Ou seja:

$$\mathsf{d}\boldsymbol{\pi} = \begin{bmatrix} \mathsf{d}\boldsymbol{\pi}^{\#^{\mathsf{T}}} & \mathsf{d}\boldsymbol{\pi}^{\circ\mathsf{T}} \end{bmatrix}^{\mathsf{T}} \tag{4.109}$$

Sendo:

$$\mathsf{d}\boldsymbol{\pi}^{\#} = \mathsf{d}\boldsymbol{\mathfrak{q}} \tag{4.110}$$

$$\mathbf{d}\boldsymbol{\pi}^{\circ} = \begin{bmatrix} \mathbf{d}\boldsymbol{\pi}_{1}^{\mathsf{T}} & \dots & \mathbf{d}\boldsymbol{\pi}_{\nu}^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}}$$
(4.111)

Pelo princípio de D'Alembert, temos que, para deslocamentos virtuais compatíveis com os vínculos do sistema:

$$\delta W_{\mathscr{F}} + \sum_{i=1}^{\nu} \delta W_{\mathscr{B}_i} = 0 \tag{4.112}$$

Através de (4.112), (4.97), (4.95), (4.106) e (4.108), temos que:

$$\delta \boldsymbol{\pi}^{\mathsf{T}} \cdot \boldsymbol{\mathbb{f}} = \boldsymbol{0} \tag{4.113}$$

Além disso, a partir da definição de  $\pi$  (4.108) e dos vínculos entre quasi-velocidades (4.103), temos que as variações das quasi-coordenadas  $\pi$  devem respeitar a seguinte relação:

$$\mathbb{A}(q) \cdot \delta \pi = 0 \tag{4.114}$$

Subdividindo  $\delta \pi$  em  $\delta \pi^{\#}$  e  $\delta \pi^{\circ}$  e considerando  $\delta \pi^{\#}$  como variáveis livres, temos:

$$\begin{bmatrix} \mathbb{J}(\mathbf{q}) & -\mathbb{1} \end{bmatrix} \cdot \begin{bmatrix} \delta \pi^{\#} \\ \delta \pi^{\circ} \end{bmatrix} = 0$$
(4.115)

$$\Rightarrow \delta \mathfrak{m}^{\circ} = \mathbb{J}(\mathfrak{q}) \cdot \delta \mathfrak{m}^{\#} \tag{4.116}$$

$$\therefore \delta \mathfrak{m} = \mathbb{C}(\mathfrak{q}) \cdot \delta \mathfrak{m}^{\#} \tag{4.117}$$

Sendo:

$$\mathbb{C}(q) = \begin{bmatrix} \mathbb{1} \\ \mathbb{J}(q) \end{bmatrix}$$
(4.118)

Repare que trocando  $\delta \pi$  por p em (4.114), obtemos os vínculos entre quasi-velocidades do sistema (4.103). Sendo assim, a partir das expressões (4.117) e (4.118), temos que  $\mathbb{C}$  respeita a seguinte relação:

$$\mathbf{p} = \mathbb{C}(\mathbf{q}) \cdot \mathbf{p}^{\#} \tag{4.119}$$

Sendo assim, substituindo (4.117) em (4.113), temos:

$$\delta \pi^{\#^{\mathsf{T}}} \cdot \mathbb{C}^{\mathsf{T}} \mathbb{f} = \mathbb{0} \tag{4.120}$$

Tendo em vista que as quasi-coordenadas  $\pi^{\#}$  são independentes, as variações  $\delta \pi^{\#}$  são arbitrárias. Sendo assim, as equações dinâmicas do sistema são dadas por:

$$\mathbb{C}^{\mathsf{T}}\mathbb{f} = \mathbb{0} \tag{4.121}$$

Substituindo (4.118) e (4.106) em (4.121), temos:

$$\mathbf{u}_{\mathcal{S}} + \mathbf{J}^{\mathsf{T}} \mathbf{f}^{\circ} = \mathbf{0} \tag{4.122}$$

Substituindo (4.102), (4.99), (4.91) e (4.107) em (4.122), temos:

$$\sum_{i=1}^{\nu} \begin{bmatrix} \mathbb{J}_{vi} \\ \mathbb{J}_{\omega i} \end{bmatrix}^{\mathsf{T}} \left\{ \begin{bmatrix} m_{i} \mathbb{1} & \mathbb{0} \\ \mathbb{0} & \mathbb{I}_{i} \end{bmatrix} \cdot \begin{bmatrix} \mathbb{0}_{i} \\ \mathbb{0}_{i} \end{bmatrix} + \begin{bmatrix} \mathbb{0} \\ \mathbb{S}(\omega_{i}) \cdot \mathbb{I}_{i} \cdot \omega_{i} \end{bmatrix} + \begin{bmatrix} -m_{i} \\ \mathbb{0} \end{bmatrix} \right\} = \mathfrak{u}_{\mathcal{S}}$$
(4.123)

Substituindo (4.65) e (4.81) em (4.123), temos:

$$\sum_{i=1}^{\nu} \begin{bmatrix} \mathbb{J}_{vi} \\ \mathbb{J}_{\omega i} \end{bmatrix}^{\mathsf{T}} \left\{ \begin{bmatrix} m_i (\mathbb{J}_{v_i} \ddot{\mathbf{q}} + \underline{\mathbb{Q}}_i) \\ \mathbb{I}_i (\mathbb{J}_{\omega_i} \ddot{\mathbf{q}} + \underline{\mathbb{Q}}_i) \end{bmatrix} + \begin{bmatrix} \mathbb{O} \\ \mathbb{S}(\omega_i) \cdot \mathbb{I}_i \cdot \omega_i \end{bmatrix} + \begin{bmatrix} -m_i \overline{\mathbb{O}} \\ \mathbb{O} \end{bmatrix} \right\} = \mathbf{u}_{\mathscr{S}}$$
(4.124)

Sendo assim, obtemos o modelo dinâmico mostrado anteriormente:

$$\mathbb{M}_{\mathscr{S}}(\mathbf{q})\ddot{\mathbf{q}} + \nu_{\mathscr{S}}(\mathbf{q},\dot{\mathbf{q}}) + \mathbb{g}_{\mathscr{S}}(\mathbf{q}) = \mathbb{u}_{\mathscr{S}}$$
(4.85)

Sendo:

$$\mathbb{M}_{\mathscr{S}}(\mathbf{q}) = \sum_{i=1}^{\nu} m_i \mathbb{J}_{vi}^{\mathsf{T}} \mathbb{J}_{vi} + \mathbb{J}_{\omega i}^{\mathsf{T}} \mathbb{I}_i \mathbb{J}_{\omega i}$$
(4.86)

$$\nu_{\mathscr{S}}(\mathbf{q}, \dot{\mathbf{q}}) = \sum_{i=1}^{\nu} m_i \mathbb{J}_{v\,i}^{\mathsf{T}} \mathbb{g}_i + \mathbb{J}_{\omega\,i}^{\mathsf{T}} \big( \mathbb{I}_i \mathbb{g}_i + \mathbb{S}(\omega_i) \cdot \mathbb{I}_i \omega_i \big)$$
(4.87)

$$\mathfrak{g}_{\mathscr{S}}(\mathfrak{q}) = -\sum_{i=1}^{\nu} m_i \mathbb{J}_{v\,i}^{\mathsf{T}}\mathfrak{g} \tag{4.88}$$

## 4.3 Dinâmica dos atuadores

Esta subseção tem o intuito de complementar o algoritmo de modelagem de mecanismos seriais já apresentado através da inclusão da dinâmica dos atuadores.

Sejam  $\mathscr{R}_1, \ldots, \mathscr{R}_{\nu} \nu$  subsistemas rotores dos atuadores, os quais possivelmente estarão acoplados a redutores de velocidades,  $\mathscr{T}$  um subsistema de esforços ativos generalizados aplicados aos rotores, e  $\mathscr{S}'$  um sistema mecânico serial de  $\nu$  graus de liberdade, constituído por um mecanismo serial  $\mathscr{S}$  e os subsistemas citados anteriormente. Um diagrama de acoplamento dos subsistemas é representado pela figura 11.



Figura 11: Diagrama de acoplamento de subsistemas

Primeiramente, fazemos as seguintes definições:

- $\mathcal{R}_i, i = 1, ..., \nu$ : rotor do i-ésimo atuador.
- R<sub>i</sub>, i = 1, ..., ν: sistema de coordenadas solidário a R<sub>i</sub>, com eixo z paralelo ao eixo z de R<sub>i</sub>.
- $\mathbb{I}_{ri}$ ,  $i = 1, ..., \nu$ : forma matricial do tensor de inércia  $I_{\mathfrak{R}_i}$  escrito na base de N, ou seja,  $[I_{\mathfrak{R}_i}]_{\mathbb{N} \mid \mathbb{N}}$ .
- $\mathbb{I}'_{r_i}$ ,  $i = 1, ..., \nu$ : forma matricial do tensor de inércia  $I_{\mathfrak{R}_i}$  escrito na base de  $B_i$ , ou seja,  $[I_{\mathfrak{R}_i}]_{B_i | B_i}$ .
- $q_{ri}, i = 1, ..., \nu$ : deslocamento angular realizado pelo i-ésimo rotor.
- $q_r$ : matriz-coluna dos deslocamentos angulares realizados pelos rotores, ou seja  $q_r = \begin{bmatrix} q_{r1} & \dots & q_{r\nu} \end{bmatrix}^{\mathsf{T}}$ .
- $\omega_{ri}$ ,  $i = 1, ..., \nu$ : componentes de velocidade angular do rotor  $\mathcal{R}_i$  em relação a  $\mathcal{N}$  no sistema  $\mathbb{N}$ , ou seja  $[\boldsymbol{\omega}_{\mathcal{R}_i}^{\mathbb{N}}]_{\mathbb{N}}$ .
- $r_i, i = 1, ..., \nu$ : relação de transmissão do i-ésimo redutor.

#### 4.3.1 Cinemática

#### 4.3.1.1 Cinemática de velocidades angulares

Devido aos redutores de velocidade e aos fusos de esferas, o deslocamento relativo  $q_{ri}$  gerado pelo i-ésimo rotor é convertido em um deslocamento  $q_i$  através da seguinte relação:

$$\mathbf{Q}_r = \underline{r} \,\mathbf{Q} \tag{4.125}$$

Sabe-se que a velocidade angular de cada rotor  $\mathcal{R}_i$  em relação ao referencial anterior  $\mathcal{B}_{i-1}$  é dada por:

$$\boldsymbol{\omega}_{\mathcal{R}_{i}}^{\mathcal{B}_{i-1}} = \dot{q}_{r\,i}\,\boldsymbol{\hat{k}}_{\mathsf{B}_{i-1}} = r_{i}\dot{q}_{i}\,\boldsymbol{\hat{k}}_{\mathsf{B}_{i-1}} \tag{4.126}$$

Aplicando (4.126) no sistema N, temos que:

$$\omega_{r\,i}'(\mathbf{q},\dot{q}_i) = r_i \dot{q}_i \mathbb{k}_{i-1}(\mathbf{q}) \tag{4.127}$$

Para obter a velocidade angular de cada rotor em relação ao referencial  $\mathcal{N}$ , parte-se do rotor  $\mathcal{R}_1$ . Tendo em vista que  $\mathcal{B}_0$  e  $\mathcal{N}$  são o mesmo referencial, temos que:

$$\begin{bmatrix} \boldsymbol{\omega}_{\mathfrak{R}_1}^{N} \end{bmatrix}_{\mathbb{N}} = \begin{bmatrix} \boldsymbol{\omega}_{\mathfrak{R}_1}^{\mathfrak{B}_0} \end{bmatrix}_{\mathbb{N}}$$
(4.128)

Ou seja

$$\omega_{r1}(\mathbf{q}, \dot{\mathbf{q}}) = \omega_{r1}'(\mathbf{q}, \dot{q}_1) = r_1 \dot{q}_1 \mathbb{k}_{i-1}(\mathbf{q})$$

$$(4.129)$$

 $\omega_{r1}$  pode ser escrito como:

$$\omega_{r\,1}(\mathbf{q},\dot{\mathbf{q}}) = \mathbb{J}_{\omega_{r\,1}}(\mathbf{q})\,\dot{\mathbf{q}} \tag{4.130}$$

Sendo

$$\mathbb{J}_{\omega_r \mathbf{1}}(\mathbf{q}) = r_1 \mathbb{k}_{i-1} \,\partial_{q_1} \mathbf{q}^\mathsf{T} \tag{4.131}$$

Para obter a velocidade angular dos outros rotores, utiliza-se o princípio de composição de movimento para velocidades angulares (equação (A.44)):

$$\boldsymbol{\omega}_{\mathfrak{R}_{i}}^{\mathfrak{N}} = \boldsymbol{\omega}_{\mathfrak{R}_{i-1}}^{\mathfrak{N}} + \boldsymbol{\omega}_{\mathfrak{R}_{i}}^{\mathfrak{R}_{i-1}}$$

$$(4.132)$$

Aplicando (4.132) no sistema N, temos que:

$$\omega_{r\,i}(\mathbf{q},\dot{\mathbf{q}}) = \omega_{i-1} + \omega'_{r\,i} \tag{4.133}$$

Portanto:

$$\omega_{r\,i}(\mathbf{q},\dot{\mathbf{q}}) = \begin{cases} \omega_{r\,1}' & \text{se } i = 1\\ \omega_{i-1} + \omega_{r\,i}' & \text{se } i > 1 \end{cases}$$
(4.134)

Além disso, substituindo (4.33) e (4.127) em (4.133), temos que:

$$\omega_{r\,i}(\mathbf{q},\dot{\mathbf{q}}) = \mathbb{J}_{\omega\,i-1}\,\dot{\mathbf{q}} + r_i \mathbb{k}_{i-1}\,\partial_{q_i} \mathbf{q}^\mathsf{T} \dot{\mathbf{q}} = \left(\mathbb{J}_{\omega\,i-1} + r_i \mathbb{k}_{i-1}\,\partial_{q_i} \mathbf{q}^\mathsf{T}\right)\dot{\mathbf{q}} \tag{4.135}$$

Portanto:

$$\omega_{r\,i}(\mathbf{q},\dot{\mathbf{q}}) = \mathbb{J}_{\omega_{r\,i}}(\mathbf{q})\,\dot{\mathbf{q}} \tag{4.136}$$

Sendo

$$\mathbf{J}_{\omega_{r}i}(\mathbf{q}) = \begin{cases} r_1 \mathbf{k}_0 \,\partial_{q_1} \mathbf{q}^\mathsf{T} & \text{se } i = 1 \\ \mathbf{J}_{\omega \, i-1} + r_i \mathbf{k}_{i-1} \,\partial_{q_i} \mathbf{q}^\mathsf{T} & \text{se } i > 1 \end{cases}$$
(4.137)

#### 4.3.1.2 Cinemática de acelerações angulares

Sabe-se que a aceleração angular de cada rotor  $\mathcal{R}_i$  em relação ao referencial anterior  $\mathcal{B}_{i-1}$  é dada por:

$$\boldsymbol{\alpha}_{\mathcal{R}_{i}}^{\mathcal{B}_{i-1}} = \ddot{q}_{r\,i}\,\hat{\boldsymbol{k}}_{\mathsf{B}_{i-1}} = r_{i}\ddot{q}_{i}\,\hat{\boldsymbol{k}}_{\mathsf{B}_{i-1}} \tag{4.138}$$

Aplicando (4.138) no sistema N, temos que:

$$\mathbf{Q}_{r\,i}^{\prime}(\mathbf{q},\ddot{q}_{i}) = r_{i}\ddot{q}_{i}\mathbf{k}_{i-1}(\mathbf{q}) \tag{4.139}$$

Para obter a aceleração angular de cada rotor em relação ao referencial  $\mathcal{N}$ , parte-se do rotor  $\mathcal{R}_1$ . Tendo em vista que  $\mathcal{B}_0$  e  $\mathcal{N}$  são o mesmo referencial, temos que:

$$\begin{bmatrix} \boldsymbol{\alpha}_{\mathcal{R}_1}^{N} \end{bmatrix}_{\mathbb{N}} = \begin{bmatrix} \boldsymbol{\alpha}_{\mathcal{R}_1}^{\mathcal{B}_0} \end{bmatrix}_{\mathbb{N}}$$
(4.140)

Ou seja

$$\alpha_{r\,1}(\mathbf{q},\dot{\mathbf{q}},\ddot{\mathbf{q}}) = \alpha_{r\,1}'(\mathbf{q},\ddot{q}_1) = r_1\ddot{q}_1 \mathbb{k}_{i-1}(\mathbf{q}) \tag{4.141}$$

 $\alpha_{r1}$  pode ser escrito como:

$$\mathfrak{a}_{r\,1}(\mathfrak{q},\dot{\mathfrak{q}},\ddot{\mathfrak{q}}) = \mathbb{J}_{\omega_r\,1}(\mathfrak{q})\,\ddot{\mathfrak{q}} + \mathfrak{Q}_{r\,1}(\mathfrak{q},\dot{\mathfrak{q}}) \tag{4.142}$$

Sendo

$$\mathfrak{Q}_{r\,\mathbf{1}}(\mathfrak{q},\dot{\mathfrak{q}}) = \mathbb{O} \tag{4.143}$$

Para obter a aceleração angular dos outros rotores, utiliza-se o princípio de composição de movimento para acelerações angulares (equação (A.47)):

$$\boldsymbol{\alpha}_{\boldsymbol{\mathcal{R}}_{i}}^{\boldsymbol{\mathcal{N}}} = \boldsymbol{\alpha}_{\boldsymbol{\mathcal{B}}_{i-1}}^{\boldsymbol{\mathcal{N}}} + \boldsymbol{\alpha}_{\boldsymbol{\mathcal{R}}_{i}}^{\boldsymbol{\mathcal{B}}_{i-1}} + \boldsymbol{\omega}_{\boldsymbol{\mathcal{B}}_{i-1}}^{\boldsymbol{\mathcal{N}}} \wedge \boldsymbol{\omega}_{\boldsymbol{\mathcal{R}}_{i}}^{\boldsymbol{\mathcal{B}}_{i-1}}$$
(4.144)

Aplicando (4.132) no sistema N, temos que:

$$\omega_{ri}(\mathbf{q}, \dot{\mathbf{q}}) = \omega_{i-1} + \omega'_{ri} + \mathbb{S}(\omega_{i-1}) \cdot \omega'_{ri}$$

$$(4.145)$$

Portanto:

$$\mathfrak{a}_{r\,i}(\mathfrak{q},\dot{\mathfrak{q}},\ddot{\mathfrak{q}}) = \begin{cases} \mathfrak{a}_{r\,1}' & \text{se } i = 1\\ \mathfrak{a}_{i-1} + \mathfrak{a}_{r\,i}' + \mathbb{S}(\mathfrak{\omega}_{i-1}) \cdot \mathfrak{\omega}_{r\,i}' & \text{se } i > 1 \end{cases}$$
(4.146)

Além disso, substituindo (4.65) e (4.139) em (4.145), temos que:

$$\mathfrak{Q}_{ri}(\mathfrak{q},\dot{\mathfrak{q}},\ddot{\mathfrak{q}}) = \mathbb{J}_{\omega i-1}\dot{\mathfrak{q}} + \mathbb{Q}_{i-1} + r_i \mathbb{k}_{i-1} \partial_{q_i} \mathfrak{q}^{\mathsf{T}} \ddot{\mathfrak{q}} + \mathbb{S}(\omega_{i-1}) \cdot \omega'_{ri} 
= \left(\mathbb{J}_{\omega i-1} + r_i \mathbb{k}_{i-1} \partial_{q_i} \mathfrak{q}^{\mathsf{T}}\right) \ddot{\mathfrak{q}} + \mathbb{Q}_{i-1} + \mathbb{S}(\omega_{i-1}) \cdot \omega'_{ri}$$

$$= \mathbb{J}_{\omega_r i} \cdot \ddot{\mathfrak{q}} + \mathbb{Q}_{i-1} + \mathbb{S}(\omega_{i-1}) \cdot \omega'_{ri}$$

$$(4.147)$$

Portanto:

$$\mathfrak{Q}_{r\,i}(\mathfrak{q},\dot{\mathfrak{q}},\ddot{\mathfrak{q}}) = \mathbb{J}_{\omega_r\,i}(\mathfrak{q})\,\ddot{\mathfrak{q}} + \mathfrak{Q}_{r\,i}(\mathfrak{q},\dot{\mathfrak{q}}) \tag{4.148}$$

Sendo

$$\mathfrak{Q}_{ri}(\mathbf{q}, \dot{\mathbf{q}}) = \begin{cases} \mathbb{O} & \text{se } i = 1 \\ \mathfrak{Q}_{i-1} + \mathbb{S}(\omega_{i-1}) \cdot \omega'_{ri} & \text{se } i > 1 \end{cases} \tag{4.149}$$

### 4.3.2 Dinâmica Mecânica

O modelo dinâmico de S' é obtido utilizando um procedimento de acoplamento de subsistemas baseado na Metodologia Modular de Modelagem (MMM) [70], e é dado por:

$$\mathbb{M}_{\mathcal{S}'}(\mathfrak{q})\ddot{\mathfrak{q}} + \mathbb{V}_{\mathcal{S}'}(\mathfrak{q},\dot{\mathfrak{q}}) + \mathbb{g}_{\mathcal{S}'}(\mathfrak{q}) = \mathbb{U}_{\mathcal{S}'}$$
(4.150)

Sendo:

$$\mathbb{M}_{\mathcal{S}'}(\mathbf{q}) = \mathbb{M}_{\mathcal{S}}(\mathbf{q}) + \sum_{i=1}^{\nu} \mathbb{J}_{\omega_r i}^{\mathsf{T}} \mathbb{I}_{r i} \mathbb{J}_{\omega_r i}$$
(4.151)

$$\nu_{\mathcal{S}'}(\mathbf{q}, \dot{\mathbf{q}}) = \nu_{\mathcal{S}}(\mathbf{q}, \dot{\mathbf{q}}) + \underline{r}\,((\underline{r}\,\dot{\mathbf{q}}) + \sum_{i=1}^{\nu} \mathbb{J}_{\omega_{r\,i}}^{\mathsf{T}}(\mathbb{I}_{r\,i}\underline{\otimes}_{r\,i} + \mathbb{S}(\omega_{r\,i}) \cdot \mathbb{I}_{r\,i}\omega_{r\,i})$$
(4.152)

$$g_{\mathcal{S}'}(\mathbf{q}) = g_{\mathcal{S}}(\mathbf{q}) \tag{4.153}$$

$$\mathbf{u}_{\mathcal{S}'} = \underline{r}\underline{k}_t \mathbf{\hat{l}} \tag{4.154}$$

Segue abaixo, a dedução.

#### 4.3.2.1 Modelo dos subsistemas rotores

O modelo dinâmico de cada rotor pode ser obtido por Newton-Euler, pois são considerados como corpos rígidos com inércia puramente rotativa, livres no espaço. Os efeitos das massas do rotor, do estator e do redutor podem ser facilmente incluídos no modelo simplesmente atualizando os valores dos parâmetros de inércia dos ligamentos. Sendo assim, através da segunda lei do movimento de Euler (balanço de momentos), obtemos os esforços inerciais aplicados em cada rotor:

$$\boldsymbol{\tau}_{\boldsymbol{\mathcal{R}}_{i}} = -\boldsymbol{I}_{\boldsymbol{\mathcal{R}}_{i}} \cdot \boldsymbol{\alpha}_{\boldsymbol{\mathcal{R}}_{i}}^{\boldsymbol{\mathcal{N}}} - \boldsymbol{\omega}_{\boldsymbol{\mathcal{R}}_{i}}^{\boldsymbol{\mathcal{N}}} \wedge (\boldsymbol{I}_{\boldsymbol{\mathcal{R}}_{i}} \cdot \boldsymbol{\omega}_{\boldsymbol{\mathcal{R}}_{i}}^{\boldsymbol{\mathcal{N}}})$$
(4.155)

Aplicando as equações vetoriais no sistema N, temos:

$$[\boldsymbol{\tau}_{\boldsymbol{\pi}_{i}}]_{\boldsymbol{\mathsf{N}}} = -[\boldsymbol{I}_{\boldsymbol{\pi}_{i}}]_{\boldsymbol{\mathsf{N}}+\boldsymbol{\mathsf{N}}} \cdot [\boldsymbol{\alpha}_{\boldsymbol{\pi}_{i}}^{\boldsymbol{\mathsf{N}}}]_{\boldsymbol{\mathsf{N}}} - \mathbb{S}([\boldsymbol{\omega}_{\boldsymbol{\pi}_{i}}^{\boldsymbol{\mathsf{N}}}]_{\boldsymbol{\mathsf{N}}}) \cdot [\boldsymbol{I}_{\boldsymbol{\pi}_{i}}]_{\boldsymbol{\mathsf{N}}+\boldsymbol{\mathsf{N}}} \cdot [\boldsymbol{\omega}_{\boldsymbol{\pi}_{i}}^{\boldsymbol{\mathsf{N}}}]_{\boldsymbol{\mathsf{N}}}$$
(4.156)

Ou seja:

$$\bar{\mathbb{F}}_{\mathscr{R}_{i}}(\mathbf{q},\dot{\mathbf{q}},\ddot{\mathbf{q}}) = -\mathbb{I}_{r\,i}\cdot\mathbf{\omega}_{r\,i} - \mathbb{S}(\mathbf{\omega}_{r\,i})\cdot\mathbb{I}_{r\,i}\cdot\mathbf{\omega}_{r\,i} \tag{4.157}$$

Tendo em vista que os rotores possuem simetria radial em relação a seus eixos de rotação, e são supostamente balanceados, suas rotações próprias não afetam seus tensores de inércia

$$\mathbf{I}_{r\,i}' = \left[\mathbf{I}_{\mathcal{R}_i}\right]_{\mathbf{R}_i \mid \mathbf{R}_i} = \left[\mathbf{I}_{\mathcal{B}_i}\right]_{\mathbf{B}_i \mid \mathbf{B}_i} \tag{4.158}$$

Sendo assim

$$\left[\boldsymbol{I}_{\mathcal{R}_{i}}\right]_{\mathbb{N}|\mathbb{N}} = \left[\boldsymbol{1}\right]_{\mathbb{N}|\mathbb{B}_{i}} \left[\boldsymbol{I}_{\mathcal{B}_{i}}\right]_{\mathbb{B}_{i}|\mathbb{B}_{i}} \left[\boldsymbol{1}\right]_{\mathbb{B}_{i}|\mathbb{N}}$$
(4.159)

Ou seja

$$\mathbf{I}_{ri}(\mathbf{q}) = \mathbf{R}_{i}(\mathbf{q}) \cdot \mathbf{I}_{ri}' \cdot \mathbf{R}_{i}(\mathbf{q})^{\mathsf{T}}$$
(4.160)

Como os subsistemas estão desacoplados, não há esforços reativos, portanto o modelo dinâmico de cada subsistema rotor pode ser escrito como:

$$\bar{\mathbb{F}}_{\mathscr{R}_i}(\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}}) = \mathbf{0} \tag{4.161}$$

Além disso, definindo as quasi-coordenadas:

$$\mathsf{d} \boldsymbol{\pi}_{r\,i} = \boldsymbol{\omega}_{r\,i} \mathsf{d} t \tag{4.162}$$

Temos que o trabalho virtual associado a cada subsistema é dado por:

$$\delta W_{\mathscr{R}_i} = \delta \pi_{r\,i}^{\mathsf{T}} \cdot \bar{\mathbb{F}}_{\mathscr{R}_i} \tag{4.163}$$

#### 4.3.2.2 Modelo do subsistema serial

O modelo do subsistema serial utilizado é o mesmo que foi deduzido anteriormente considerando u = 0. O efeito das forças ativas aplicadas pelos atuadores será contabilizado na próxima subseção. Sendo assim, os esforços generalizados não-reativos do subsistema serial são dados por:

$$\bar{\mathbb{f}}_{\mathscr{S}}(q,\dot{q},\ddot{q}) = -\mathbb{M}(q)_{\mathscr{S}}\,\ddot{q} - \nu_{\mathscr{S}}(q,\dot{q}) - g_{\mathscr{S}}(q) \tag{4.164}$$

Além disso, o trabalho virtual associado a este subsistema é dado por:

$$\delta W_{\mathscr{S}} = \delta \mathbf{q}^{\mathsf{T}} \cdot \bar{\mathbf{f}}_{\mathscr{S}} \tag{4.165}$$

#### 4.3.2.3 Sistemas de forças ativas generalizadas

Considere também um subsistema constituído pelos esforços que os atuadores aplicam em seus rotores. Os torques gerados pelos atuadores são proporcionais à corrente elétrica que flui pelas suas armaduras e são aplicados na direção dos deslocamentos virtuais relativos dos rotores. Além disso, é possível que haja esforços de atrito devido ao atrito gerado nos mancais e nas engrenagens do redutor, aplicados na direção aposta aos deslocamentos virtuais relativos dos rotores. Sendo assim, o trabalho virtual associado a este subsistema é dado por:

$$\delta W_{\mathcal{T}} = \delta \mathbf{q}_r^{\mathsf{T}} \cdot \left( k_t \, \mathbf{i} - \mathbf{\zeta} \right) \tag{4.166}$$

Sendo

$$\underline{\mathfrak{l}}(\dot{\mathbf{q}}_r) = \underline{b}\,\dot{\mathbf{q}}_r + \underline{\mu}\,\mathrm{sn}(\dot{\mathbf{q}}_r) \tag{4.167}$$

Considerando modelo de atrito viscoso e atrito seco de Coulomb.

#### 4.3.2.4 Vínculos entre subsistemas

Tendo em vista que o sistema mecânico  $\mathcal{S}'$  tem  $\nu$  graus de liberdade, e que q é uma matriz-culuna de  $\nu$  coordenadas generalizadas independentes, podemos relacionar os deslocamentos virtuais  $\delta q_r e \, \delta \pi_{r\,i}$  com os deslocamentos virtuais  $\delta q$ , ou seja, obter os vínculos cinemáticos entre os subsistemas.

Para relacionar  $\delta q_r \mod \delta q$  basta aplicar o operador variação em (4.125):

$$\delta \mathbf{q}_r = \underline{r} \, \delta \mathbf{q} \tag{4.168}$$

Para relacionar  $\delta \mathfrak{m}_{ri}$  com  $\delta \mathfrak{q}$ , aplica-se a relação (4.136) em (4.162):

$$\mathsf{d} \pi_{r\,i} = \mathbb{J}_{\omega_r\,i}(\mathbf{q})\,\mathsf{d} \mathbf{q} \tag{4.169}$$

Portanto:

$$\delta \mathfrak{m}_{r\,i} = \mathbb{J}_{\omega_r\,i}(\mathfrak{q})\,\delta \mathfrak{q} \tag{4.170}$$

#### 4.3.2.5 Acoplamento de subsistemas

Tendo em vista que um precedimento mais detalhado para acoplamento de subsistemas já foi apresentado, nesta subseção ele será realizado de forma mais sucinta.

Pelo princípio de d'Alembert, temos que

$$\delta W_{\mathcal{F}} + \delta W_{\mathcal{S}} + \sum_{i=1}^{\nu} \delta W_{\mathcal{R}_i} = 0 \tag{4.171}$$

Ou seja:

$$\delta \mathbf{q}_{r}^{\mathsf{T}} \cdot \left(\underline{k_{t}}\,\mathbf{\mathring{i}} - \mathbf{\zeta}\right) + \delta \mathbf{q}^{\mathsf{T}} \cdot \bar{\mathbf{f}}_{\mathscr{S}} + \sum_{i=1}^{\nu} \delta \mathbf{\pi}_{r\,i}^{\mathsf{T}} \cdot \bar{\mathbf{f}}_{\mathscr{R}_{i}} = \mathbf{0}$$

$$(4.172)$$

Sabe-se que os deslocamentos virtuais  $\delta q$ ,  $\delta q_r e \delta \pi_{ri}$ , com  $i = 1, ..., \nu$ , não são independentes entre si. Porém, é possível relacionar  $\delta q_r e \delta \pi_{ri}$  com os deslocamentos virtuais  $\delta q$  através das equações (4.168) e (4.170). Sendo assim:

$$(\underline{r}\,\delta\mathfrak{q})^{\mathsf{T}}\cdot\left(\underline{k_{t}}\,\mathring{\mathfrak{l}}-\mathfrak{l}\right)+\delta\mathfrak{q}^{\mathsf{T}}\cdot\overline{\mathfrak{f}}_{\mathscr{S}}+\sum_{i=1}^{\nu}(\mathbb{J}_{\omega_{r\,i}}\,\delta\mathfrak{q})^{\mathsf{T}}\cdot\overline{\mathfrak{f}}_{\mathscr{R}_{i}}=0\tag{4.173}$$

Ou seja:

$$\delta \mathbf{q}^{\mathsf{T}} \cdot \left( \underline{r} \, \underline{k}_{\underline{t}} \, \mathbf{\mathring{i}} - \underline{r} \, \mathbf{\zeta} + \overline{\mathbf{\widehat{f}}}_{\mathcal{S}} + \sum_{i=1}^{\nu} \mathbf{\mathbb{J}}_{\omega_{r} \, i}^{\mathsf{T}} \, \overline{\mathbf{\widehat{f}}}_{\mathscr{R}_{i}} \right) = \mathbf{0} \tag{4.174}$$

Tendo em vista que as coordenadas q são independentes, as variações  $\delta q$  são arbitrárias. Sendo assim, as equações dinâmicas do sistema são dadas por:

$$\underline{r}\,\underline{k_t}\,\mathring{\mathfrak{l}} - \underline{r}\,\emptyset + \bar{\mathbb{f}}_{\mathscr{S}} + \sum_{i=1}^{\nu} \mathbb{J}_{\omega_r\,i}^{\mathsf{T}}\,\bar{\mathbb{f}}_{\mathscr{R}_i} = \mathbb{0}$$

$$(4.175)$$

Substituindo (4.157) e (4.164) em (4.175), temos:

$$\underline{r}\,\underline{k_t}\,\mathring{\mathfrak{l}} - \underline{r}\,(-\mathbb{M}_{\mathscr{S}}\,\ddot{\mathfrak{q}} - \nu_{\mathscr{S}} - \mathfrak{g}_{\mathscr{S}} - \sum_{i=1}^{\nu} \mathbb{J}_{\omega_r\,i}^{\mathsf{T}}\,(\mathbb{I}_{r\,i} \cdot \mathfrak{a}_{r\,i} + \mathbb{S}(\omega_{r\,i}) \cdot \mathbb{I}_{r\,i} \cdot \omega_{r\,i}) = \mathbb{O}$$
(4.176)

Substituindo (4.148) em (4.176):

$$\underline{r}\underline{k}_{\underline{t}}\,\mathring{\mathbf{I}} - \underline{r}\,(-\mathbb{M}_{\mathscr{S}}\,\ddot{\mathbf{q}} - \nu_{\mathscr{S}} - \mathbb{g}_{\mathscr{S}} - \sum_{i=1}^{\nu} \mathbb{J}_{\omega_{r\,i}}^{\mathsf{T}}\,(\mathbb{I}_{r\,i} \cdot (\mathbb{J}_{\omega_{r\,i}} \cdot \ddot{\mathbf{q}} + \mathbb{Q}_{r\,i}) + \mathbb{S}(\omega_{r\,i}) \cdot \mathbb{I}_{r\,i} \cdot \omega_{r\,i}) = \mathbb{O} \quad (4.177)$$

Sendo assim, obtemos o modelo dinâmico mostrado anteriormente:

$$\mathbb{M}_{\mathcal{S}'}(\mathbf{q})\ddot{\mathbf{q}} + \nu_{\mathcal{S}'}(\mathbf{q},\dot{\mathbf{q}}) + \mathbb{g}_{\mathcal{S}'}(\mathbf{q}) = \mathbb{u}_{\mathcal{S}'}$$
(4.150)

Sendo:

$$\mathbb{M}_{\mathcal{S}'}(\mathbf{q}) = \mathbb{M}_{\mathcal{S}}(\mathbf{q}) + \sum_{i=1}^{\nu} \mathbb{J}_{\omega_r \, i}^{\mathsf{T}} \mathbb{I}_{r \, i} \mathbb{J}_{\omega_r \, i}$$
(4.151)

$$\nu_{\mathcal{S}'}(\mathbf{q}, \dot{\mathbf{q}}) = \nu_{\mathcal{S}}(\mathbf{q}, \dot{\mathbf{q}}) + \underline{r}\,((\underline{r}\,\dot{\mathbf{q}}) + \sum_{i=1}^{\nu} \mathbb{J}_{\omega_{r\,i}}^{\mathsf{T}} (\mathbb{I}_{r\,i} \underline{\mathbb{Q}}_{r\,i} + \mathbb{S}(\omega_{r\,i}) \cdot \mathbb{I}_{r\,i} \omega_{r\,i})$$
(4.152)

$$g_{\mathcal{S}'}(q) = g_{\mathcal{S}}(q) \tag{4.153}$$

$$\mathbf{u}_{\mathcal{S}'} = \underline{r}\underline{k}_t \mathring{\mathbf{b}} \tag{4.154}$$

### 4.4 Modelo completo

O modelo do sistema elétrico equivalente de um motor de corrente contínua é dado por uma fonte de tensão variável ligada em série a um indutor, um resistor, e uma força contra-eletromotriz diretamente proporcional à velocidade angular do rotor em relação ao estator, ou seja:

$$L\frac{\mathsf{d}i}{\mathsf{d}t} + R\,i + k_e\,\omega = u\tag{4.178}$$

Tendo em vista que todas as juntas de um mecanismo serial são atuadas, a equação matricial da dinâmica elétrica do sistema é dada por:

$$\underline{L}\frac{\mathrm{d}\check{\mathbf{u}}}{\mathrm{d}t} + \underline{R}\,\check{\mathbf{u}} + \underline{k}_{\underline{e}}\,\dot{\mathbf{q}}_{r} = \mathbf{u}^{\underline{\ell}} \tag{4.179}$$

Sendo assim, juntando as equações (4.150) e (4.179), obtemos a dinâmica do sistema

como um todo:

.

$$\begin{cases} \mathbb{M}_{\mathcal{S}'}(\mathbf{q}) \ddot{\mathbf{q}} + \nu_{\mathcal{S}'}(\mathbf{q}, \dot{\mathbf{q}}) + \mathbb{g}_{\mathcal{S}'}(\mathbf{q}) = \underline{r} \, \underline{k_t} \mathbf{\tilde{i}} \\ \underline{L} \, \frac{\mathrm{d}\mathbf{\tilde{i}}}{\mathrm{d}t} + \underline{R} \, \mathbf{\tilde{i}} + \underline{r} \, \underline{k_e} \, \dot{\mathbf{q}} = \mathbf{u}^{\underline{\ell}} \end{cases} \tag{4.180}$$

# 5 MODELAGEM DE MANIPULADORES PARALELOS

Este capítulo tem o intuito de apresentar um algoritmo genérico baseado na Metodologia Modular de Modelagem (MMM) [70] para a obtenção do modelo dinâmico de mecanismos paralelos cujo efetuador realiza apenas movimentos de translação a partir do modelo de suas cadeias seriais, como está representado pela figura 12.



Figura 12: Modelagem de mecanismo paralelo a partir do modelo de suas cadeias mecânicas

O algoritmo apresentado é implementável em linguagens de programação comumente utilizadas atualmente, como C++, Java e Python, sem necessitar de recursos de manipulação simbólica. Para a obtenção do modelo do mecanismo paralelo, são necessários apenas os modelos de mecanismos seriais deduzidos utilizando o algoritmo apresentado anteriormente, do modelo do efetuador, e de 4 matrizes constantes que são utilizadas para descrever a arquitetura do mecanismo paralelo. Uma implementação do algoritmo pode ser encontrada em <https://github.com/mrcouts/robotics>.

Para realizar a modelagem de mecanismos paralelos a partir de subsistemas seriais já deduzidos, é necessário introduzir mais alguns conceitos. Sejam  $S_1, \ldots, S_n$  n subsistemas seriais,  $\mathscr{C}$  o subsistema do efetuador do mecanismo paralelo e  $\mathscr{P}$  um sistema mecânico mecanismo paralelo gerado pelo acoplamento dos subsistemas citados. O acoplamento dos subsistemas é representado pela figura 13.



Figura 13: Diagrama de acoplamento de subsistemas

Na modelagem realizada, não serão considerados movimentos impostos nos sistemas e subsistemas mecânicos, podendo assim todos serem considerados sistemas esclerônomos.

Sendo assim, definimos:

- $\mathfrak{X}_0$ : Corpo rígido plataforma/efetuador do manipulador paralelo.
- $\mathfrak{X}_i, i = 1, ..., n$ : Corpo rígido efetuador do subsistema serial  $\mathcal{S}_i$ .
- $N_0$ : sistema de coordenadas global, solidário a  $\mathcal{N}$ .
- $\mathbb{N}_i, i = 1, ..., n$ : sistema de coordenadas da base fixa do subsistema  $\mathcal{S}_i$ , solidário a  $\mathbb{N}$ .
- $x_0$ : ponto no espaço fixo ao centro de massa de  $X_0$ .
- $\mathbf{x}_i, i = 1, ..., n$ : ponto no espaço fixo a  $\mathfrak{X}_i$ .
- $X_i$ , i = 0, ..., n: sistema de coordenadas solidário a  $X_i$  com origem em  $x_i$ .
- m: massa da plataforma/efetuador  $\mathfrak{X}_{0}$ .
- $\mathfrak{g}$ : Vetor aceleração gravitacional escrito na base  $\mathbb{N}_0$ , ou seja,  $[\boldsymbol{\gamma}]_{\mathbb{N}_0}$ .
- $q_0$ : matriz-coluna de coordenadas generalizadas do subsistema  $\mathscr{E}$ . São as coordenadas do centro de massa da plataforma/efetuador  $\chi_0$  no sistema  $N_0$ , ou seja  $[x_0]_{N_0}$ .
- $q_i, i = 1, ..., n$ : matriz-coluna de coordenadas generalizadas do subsistema  $S_i$ .
- $q_{\emptyset}$ : matriz-coluna de coordenadas generalizadas dos subsistemas seriais. Definida como  $q_{\emptyset} = \begin{bmatrix} q_1^{\mathsf{T}} & \dots & q_n^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}}$ .
- q: matriz-coluna contendo todas as coordenadas generalizadas do sistema  $\mathscr{P}$ . Definida como  $q = \begin{bmatrix} q_0^T & q_0^T \end{bmatrix}^T$ .

- x̄(q): matriz-coluna dos vínculos de posição entre subsistemas. As equações vinculares são dadas por x̄(q) = 0.
- x
   <sup>x</sup>(q): matriz-coluna dos vínculos de orientação entre subsistemas. As equações vinculares são dadas por x
   <sup>x</sup>(q) = 0.
- $\mathbf{x}_i(\mathbf{q}_i), i = 1, ..., n$ :  $[\mathbf{x}_i]_{\mathbf{N}_i}$  escrito em função das coordenadas  $\mathbf{q}_i$ .
- $\mathbb{J}_{v \, \mathcal{S}_i}(\mathfrak{q}_i), i = 1, ..., n$ : jacobiano de velocidades  $\mathbb{J}_v$  do subsistema  $\mathcal{S}_i$ .
- $\mathbb{J}_{\omega \mathcal{S}_i}(\mathfrak{q}_i), i = 1, ..., n$ : jacobiano de velocidades angulares  $\mathbb{J}_{\omega}$  do subsistema  $\mathcal{S}_i$ .
- $\mathfrak{g}_{\mathcal{S}_i}(\mathfrak{q}_i, \dot{\mathfrak{q}}_i), i = 1, ..., n$ : matriz-coluna  $\mathfrak{g}$  do subsistema  $\mathcal{S}_i$ .
- $\mathfrak{Q}_{\mathscr{S}_i}(\mathfrak{q}_i, \dot{\mathfrak{q}}_i), i = 1, ..., n$ : matriz-coluna  $\mathfrak{Q}$  do subsistema  $\mathscr{S}_i$ .
- $\mathbf{v}_{\mathcal{S}_i}(\mathbf{q}_i, \dot{\mathbf{q}}_i), i = 1, ..., n$ :  $\left[ \mathbf{v}_{\mathbf{x}_i}^{N} \right]_{\mathbf{N}_i} = \mathbb{J}_{v \, \mathcal{S}_i}(\mathbf{q}_i) \cdot \dot{\mathbf{q}}_i$ , ou seja matriz-coluna de componentes velocidade do efetuador  $\mathcal{X}_i$ .
- $\omega_{\mathcal{S}_i}(\mathbf{q}_i, \dot{\mathbf{q}}_i), i = 1, ..., n$ :  $\left[\boldsymbol{\omega}_{\mathcal{B}_i}^{N}\right]_{\mathbf{N}_i} = \mathbb{J}_{\omega \, \mathcal{S}_i}(\mathbf{q}_i) \cdot \dot{\mathbf{q}}_i$ , ou seja matriz-coluna de componentes velocidade angular do efetuador  $\mathcal{X}_i$ .
- $\mathbb{O}_{N_i}$ , i = 1, ..., n: coordenadas da origem do sistema  $\mathbb{N}_i$  no sistema  $\mathbb{N}_0$ , ou seja  $[\mathbb{O}_{\mathbb{N}_i}]_{\mathbb{N}_0}$ .
- $\mathbf{x}'_i$ , i = 1, ..., n: coordenadas efetuador de  $\mathcal{S}_i$  no sistema  $\mathbf{X}_0$ , ou seja  $[\mathbf{x}_i]_{\mathbf{X}_0}$ .
- $X_0$ : matriz de rotação  $[\mathbf{1}]_{N_0|X_0}$  (orientação do efetuador/plataforma do mecanismo paralelo).
- $\mathbb{N}_i, i = 1, ..., n$ : matriz de rotação  $[\mathbf{1}]_{\mathbb{N}_0 \mid \mathbb{N}_i}$ .
- $\breve{x}_0$ : representação via quaternion unitário da matriz de rotação  $[\mathbf{1}]_{N_0|X_0}$  (orientação do efetuador/plataforma do mecanismo paralelo).
- $\breve{\mathbf{x}}_i, i = 1, ..., n$ : representação via quaternion unitário da matriz de rotação  $[\mathbf{1}]_{\mathbf{N}_i | \mathbf{X}_i}$  (orientação do efetuador da cadeia serial  $\mathcal{S}_i$ ).
- $\check{\mathbf{m}}_i, i = 1, ..., n$ : representação via quaternion unitário da matriz de rotação  $[\mathbf{1}]_{\mathbf{N}_0 \mid \mathbf{N}_i}$ .
- $\breve{x}'_i, i = 1, ..., n$ : representação via quaternion unitário da matriz de rotação  $[\mathbf{1}]_{\mathbf{x}_i \mid \mathbf{x}_0}$ .

Para facilitar a leitura das equações, nas expressões que envolvem o indice i, estará subentendido que i varia de 1 a n, ou seja, i = 1, ..., n, a menos que seja explicitado de forma diferente.

Algumas equações serão destacadas através de cores. A cor amarela indica equações que devem ser implementadas no algoritmo. A cor salmão indica uma equação alternativa a ser implementada em um caso espefícico no lugar da equação amarela que estará logo acima. A cor roxa indica equações de destaque no desenvolvimento. A cor azul clara indica equações de destaque secundário no desenvolvimento.

### 5.1 Modelo dos subsistemas

O modelo dinâmico de cada subsistema desacoplado pode ser escrito como:

$$\bar{\mathbb{f}}_{\mathscr{E}}(\mathbb{u}_{\mathscr{E}},\mathbb{q}_{0},\dot{\mathbb{q}}_{0},\ddot{\mathbb{q}}_{0}) = \mathbb{u}_{\mathscr{E}} - \left(\mathbb{M}_{\mathscr{E}}(\mathbb{q}_{i})\ddot{\mathbb{q}}_{i} + \mathbb{v}_{\mathscr{E}}(\mathbb{q}_{i},\dot{\mathbb{q}}_{i}) + \mathbb{g}_{\mathscr{E}}(\mathbb{q}_{i})\right) = 0$$
(5.1)

$$\overline{\mathbb{f}}_{\mathscr{S}_{i}}(\mathbb{u}_{\mathscr{S}_{i}},\mathfrak{q}_{i},\dot{\mathfrak{q}}_{i},\ddot{\mathfrak{q}}_{i}) = \mathbb{u}_{\mathscr{S}_{i}} - \left(\mathbb{M}_{\mathscr{S}_{i}}(\mathfrak{q}_{i})\ddot{\mathfrak{q}}_{i} + \mathbb{v}_{\mathscr{S}_{i}}(\mathfrak{q}_{i},\dot{\mathfrak{q}}_{i}) + \mathbb{g}_{\mathscr{S}_{i}}(\mathfrak{q}_{i})\right) = 0$$
(5.2)

Os trabalhos virtuais dos esforços não-reativos (ativos e inerciais) associados a cada subsistema são dados por:

$$\delta W_{\mathscr{E}} = \delta \mathbf{q}_{\mathbf{0}}^{\mathsf{T}} \cdot \bar{\mathbf{f}}_{\mathscr{E}} \tag{5.3}$$

$$\delta W_{\mathcal{S}_i} = \delta \mathbf{q}_i^\mathsf{T} \cdot \bar{\mathbf{f}}_{\mathcal{S}_i} \tag{5.4}$$

As matrizes  $\mathbb{M}_{\mathcal{S}_i}$ ,  $\mathbb{V}_{\mathcal{S}_i}$  e  $\mathbb{g}_{\mathcal{S}_i}$  são obtidas utilizando o algoritmo de modelagem de mecanismos seriais apresentado anteriormente. Para o efetuador, iremos utilizar o modelo de um corpo rígido livre no espaço, que realiza apenas translação. Sendo assim, aplicando a primeira lei do movimento de Euler no efetuador, obtemos os esforços não-reativos nele aplicados:

$$\mathbf{f}_{\mathbf{x}_0} = -m\mathbf{a}_{\mathbf{x}_0}^{N} + m\mathbf{\gamma} \tag{5.5}$$

Aplicando as equações vetoriais no sistema N, temos:

$$\left[\mathbf{f}_{x_0}\right]_{\mathbf{N}_0} = -m \left[\mathbf{a}_{\mathbf{x}_0}^{\mathbf{N}}\right]_{\mathbf{N}_0} + m \left[\mathbf{\gamma}\right]_{\mathbf{N}_0}$$
(5.6)

# 5.2 Vínculos cinemáticos entre subsistemas

### 5.2.1 Vínculos de posição

Sabe-se que  $\mathbf{x}_i$  é um ponto pertencente à plataforma/efetuador  $\mathfrak{X}_0$  e também ao efetuador  $\mathfrak{X}_i$ , como pode ser visto na figura 14.



Figura 14: Vínculos de posição

Sendo assim, é possível relacionar a posição do ponto  $\mathbf{x}_i$  em relação a  $\mathbf{o}_{N_0}$ , seguindo tanto pela plataforma/efetuador  $\mathscr{E}$ , quanto pela cadeia serial  $\mathscr{S}_i$ :

$$\mathbf{r}_{\mathbf{o}_{N_0} \mid \mathbf{x}_i} = \mathbf{r}_{\mathbf{o}_{N_0} \mid \mathbf{x}_0} + \mathbf{r}_{\mathbf{x}_0 \mid \mathbf{x}_i} = \mathbf{r}_{\mathbf{o}_{N_0} \mid \mathbf{o}_{N_i}} + \mathbf{r}_{\mathbf{o}_{N_i} \mid \mathbf{x}_i}$$
(5.12)

Aplicando a equação vetorial no sistema  $N_0$ :

$$[\mathbf{x}_{i}]_{\mathbf{N}_{0}} = [\mathbf{x}_{0}]_{\mathbf{N}_{0}} + [\mathbf{1}]_{\mathbf{N}_{0} | \mathbf{X}_{0}} [\mathbf{x}_{i}]_{\mathbf{X}_{0}} = [\mathbf{o}_{\mathbf{N}_{i}}]_{\mathbf{N}_{0}} + [\mathbf{1}]_{\mathbf{N}_{0} | \mathbf{N}_{i}} [\mathbf{x}_{i}]_{\mathbf{N}_{i}}$$
(5.13)

Ou seja

$$[\mathbf{x}_i]_{\mathbf{N}_0} = \mathbf{q}_0 + \mathbf{X}_0 \cdot \mathbf{x}'_i = \mathbf{o}_{\mathbf{N}\,i} + \mathbf{N}_i \cdot \mathbf{x}_i(\mathbf{q}_i) \tag{5.14}$$

Tendo em vista que  $\mathtt{x}_i',\,\mathbb{N}_i,\,\mathbb{o}_{\mathbb{N}\,i}$ e $\mathbb{X}_0$ são constantes (o efetuador  $\mathcal E$ não realiza rotações), definindo:

$$\mathbf{d}_{i} = \mathbf{O}_{\mathsf{N}\,i} - \mathbf{X}_{\mathbf{0}} \cdot \mathbf{z}_{i}^{\prime} \tag{5.15}$$

Temos:

$$q_0 = d_i + \mathbb{N}_i \cdot \varkappa_i(q_i) \tag{5.16}$$

Assim:

$$\begin{bmatrix} \mathbb{1} \\ \vdots \\ \mathbb{1} \end{bmatrix} \cdot \mathbb{q}_{0} = \begin{bmatrix} \mathbb{d}_{1} \\ \vdots \\ \mathbb{d}_{n} \end{bmatrix} + \begin{bmatrix} \mathbb{N}_{1} & \dots & \mathbb{O} \\ \vdots & \ddots & \vdots \\ \mathbb{O} & \dots & \mathbb{N}_{n} \end{bmatrix} \cdot \begin{bmatrix} \mathbb{x}_{1}(\mathbb{q}_{1}) \\ \vdots \\ \mathbb{x}_{n}(\mathbb{q}_{n}) \end{bmatrix}$$
(5.17)

Além disso, em alguns casos é necessário incluir vínculos afins entre as coordenadas generalizadas, como vínculos cinemáticos devidos à transmissão por correias ou engrenagens. Estes vínculos podem ser definidos da seguinte maneira:

$$\mathbb{D}_{\oplus} \cdot \mathbf{q}_{\mathbf{0}} = \mathbf{d}_{\oplus} + \mathbb{F}_{\oplus} \cdot \mathbf{q}_{\emptyset} \tag{5.18}$$

Sendo  $d_{\oplus}$ ,  $\mathbb{D}_{\oplus} \in \mathbb{F}_{\oplus}$  constantes.

Juntando a equação (5.18) à equação (5.17), temos:

$$\begin{bmatrix} \mathbb{1} \\ \vdots \\ \mathbb{1} \\ \mathbb{D}_{\oplus} \end{bmatrix} \cdot \mathbb{q}_{0} = \begin{bmatrix} \mathbb{d}_{1} \\ \vdots \\ \mathbb{d}_{n} \\ \mathbb{d}_{\oplus} \end{bmatrix} + \begin{bmatrix} \mathbb{N}_{1} & \dots & \mathbb{0} \\ \vdots & \ddots & \vdots \\ \mathbb{0} & \dots & \mathbb{N}_{n} \\ \mathbb{0} & \dots & \mathbb{0} \end{bmatrix} \cdot \begin{bmatrix} \mathbb{x}_{1}(\mathbb{q}_{1}) \\ \vdots \\ \mathbb{x}_{n}(\mathbb{q}_{n}) \end{bmatrix} + \begin{bmatrix} \mathbb{0} \\ \vdots \\ \mathbb{0} \\ \mathbb{F}_{\oplus} \end{bmatrix} \cdot \mathbb{q}_{\emptyset}$$
(5.19)

Sendo assim, os vínculos de posição entre subsistemas podem ser descritos de maneira genérica por:

$$\overline{\mathbf{x}}(\mathbf{q}) = \mathbb{D} \cdot \mathbf{q}_0 - \mathbf{d} - \mathbb{E} \cdot \mathbf{x}^*(\mathbf{q}_0) - \mathbb{F} \cdot \mathbf{q}_0 = \mathbf{0}$$
(5.20)

Sendo:

$$\mathbb{D} = \begin{bmatrix} \mathbb{1} & \dots & \mathbb{1} & \mathbb{D}_{\oplus}^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}}$$
(5.21)

$$\mathbf{d} = \begin{bmatrix} \mathbf{d}_{1}^{\mathsf{T}} & \dots & \mathbf{d}_{n}^{\mathsf{T}} & \mathbf{d}_{\oplus}^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}}$$
(5.22)
$$\mathbf{E} = \begin{bmatrix} \mathbb{N}_{1} & \dots & \mathbb{0} \\ \vdots & \ddots & \vdots \\ \mathbb{0} & \dots & \mathbb{N}_{n} \\ \mathbb{0} & \dots & \mathbb{0} \end{bmatrix}$$
$$\mathbf{F} = \begin{bmatrix} \mathbb{0}^{\mathsf{T}} & \dots & \mathbb{0}^{\mathsf{T}} & \mathbb{F}_{\oplus}^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}}$$
(5.24)

$$\mathbf{z}^{\star}(\mathbf{q}_{\emptyset}) = \begin{bmatrix} \mathbf{z}_{1}(\mathbf{q}_{1})^{\mathsf{T}} & \dots & \mathbf{z}_{n}(\mathbf{q}_{n})^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}}$$
(5.25)

### 5.2.2 Vínculos de orientação

Supondo que os efetuadores  $\mathcal{X}_i$  de cada cadeia serial estejam ligados rigidamente à plataforma/efetuador  $\mathcal{X}_0$ , temos que as matrizes de rotação  $[\mathbf{1}]_{\mathbf{X}_i | \mathbf{X}_0}$  são constantes e conhecidas. Além disso, tendo em vista que o efetuador/plataforma do mecanismo paralelo só translada, a matriz de rotação  $[\mathbf{1}]_{\mathbf{N}_0 | \mathbf{X}_0}$  também é constante e conhecida. Sendo assim, é possível obter a seguinte relação:

$$[\mathbf{1}]_{\mathbf{N}_0 \mid \mathbf{X}_0} = [\mathbf{1}]_{\mathbf{N}_0 \mid \mathbf{N}_i} \cdot [\mathbf{1}]_{\mathbf{N}_i \mid \mathbf{X}_i} \cdot [\mathbf{1}]_{\mathbf{X}_i \mid \mathbf{X}_0}$$
(5.26)

Passando para a representação por quaternions unitários, temos:

$$\breve{\mathbf{x}}_{\mathbf{0}} = \pm \,\breve{\mathbf{n}}_i \otimes \breve{\mathbf{x}}_i \otimes \breve{\mathbf{x}}_i' \tag{5.27}$$

O sinal  $\pm$  vem do fato de que dois quaternions com sinais opostos representam a mesma rotação.

Utilizando as definições de produto de quaternions apresentadas no apêndice B (equações (B.3), (B.4) e (B.5)), temos:

$$\breve{\mathbf{x}}_0 = \pm \, \tilde{\mathbf{Q}}_i \cdot \breve{\mathbf{x}}_i \tag{5.28}$$

Sendo

$$\check{\mathbf{Q}}_{i} = \check{\mathbf{Q}}_{\mathsf{I}}(\check{\mathbf{n}}_{i}) \cdot \check{\mathbf{Q}}_{\mathsf{II}}(\check{\mathbf{z}}_{i}') \tag{5.29}$$

87

A equação (5.28) poderia ser utilizada como equação vincular de orientação (escolhendo o sinal de + ou de -). Porém, tendo em vista que é uma equação que relaciona matrizes-coluna de ordem 4, haveria 4 equações escalares para restringir 3 graus de liberdade, ou seja, um número maior de equações do que o necessário. Deste modo, será apresentada uma maneira alternativa de representar os vínculos de orientação sem utilizar mais equações do que o necessário.

Considere o seguinte problema de otimização com restrição:

Para o caso de  $\breve{p}$  também ser um quaternion unitário, as únicas soluções do problema são claramente  $\breve{q} = \breve{p}$  (minimização) e  $\breve{q} = -\breve{p}$  (maximização). Porém, vamos resolver o problema sem utilizar esta suposição.

O problema pode ser convertido num problema de otimização sem restrições através do uso de multiplicadores de Lagrange:

$$\underset{\breve{q},\lambda}{\min} \quad \mathfrak{L}(\breve{q},\lambda) = (\breve{q} - \breve{p})^{\mathsf{T}}(\breve{q} - \breve{p}) + \lambda(\breve{q}^{\mathsf{T}}\breve{q} - 1)$$
(5.31)

Aplicando o operador variação na função Lagrangeana, temos:

$$\delta \mathfrak{L} = 2 \, \delta \breve{q}^{\mathsf{T}} (\breve{q} - \breve{p}) + 2\lambda \, \delta \breve{a}^{\mathsf{T}} \breve{q} + \delta \lambda (\breve{q}^{\mathsf{T}} \breve{q} - 1) = 2 \, \delta \breve{q}^{\mathsf{T}} ((1 + 2\lambda) \breve{q} - \breve{p}) + \delta \lambda (\breve{q}^{\mathsf{T}} \breve{p} - 1)$$
(5.32)

Como pode ser visto no apêndice B (subseção B.2.7), é possível relacionar derivadas temporais de quaternions unitários com velocidades angulares:

$$\dot{\breve{q}} = \breve{\mathbb{C}}(\breve{q}) \cdot \omega \tag{B.19}$$

Definindo:

$$\mathsf{d}\boldsymbol{\pi} = \boldsymbol{\omega}\,\mathsf{d}\boldsymbol{t} \tag{5.33}$$

Temos que:

$$\delta \breve{\mathbf{q}} = \breve{\mathbb{C}}(\breve{\mathbf{q}}) \cdot \delta \mathbf{m} \tag{5.34}$$

Substituindo a equação (5.34) em (5.32), temos que:

$$\delta \mathfrak{L} = 2 \, \delta \mathfrak{m}^{\mathsf{T}} \check{\mathbb{C}}(\check{\mathfrak{q}})^{\mathsf{T}} \left( (1+2\lambda) \check{\mathfrak{q}} - \check{\mathbb{p}} \right) + \delta \lambda (\check{\mathfrak{q}}^{\mathsf{T}} \check{\mathfrak{q}} - 1)$$
(5.35)

Tendo em vista que

$$\check{\mathbb{C}}(\check{\mathbf{q}})^{\mathsf{T}}\check{\mathbf{q}} = \mathbf{0} \tag{B.21}$$

Temos:

$$\delta \mathfrak{L} = -2\,\delta \mathfrak{w}^{\mathsf{T}} \breve{\mathbb{C}}(\breve{q})^{\mathsf{T}} \breve{p} + \delta \lambda(\breve{q}^{\mathsf{T}} \breve{q} - 1)$$
(5.36)

Sendo assim, impondo a estacionariedade da função Lagrangeana ( $\delta \mathfrak{L} = 0$ ), temos:

$$\begin{cases} \breve{\mathbb{C}}(\breve{q})^{\mathsf{T}}\breve{p} = 0\\ \breve{q}^{\mathsf{T}}\breve{q} = 1 \end{cases}$$
(5.37)

Como já foi comentado anteriomente, para o caso de  $\breve{p}$  também ser unitário, as únicas soluções do problema são  $\breve{q} = \pm \breve{p}$ . Sendo assim, temos que, para  $\breve{q} \in \breve{p}$  unitários:

$$\check{\mathbb{C}}(\check{\mathbf{q}})^{\mathsf{T}}\check{\mathbb{p}} = \mathbb{O} \Rightarrow \check{\mathbf{q}} = \pm \check{\mathbb{p}}$$

$$(5.38)$$

Além disso, tendo em vista a equação (B.21), temos que:

$$\breve{\mathbf{q}} = \pm \,\breve{\mathbf{p}} \Rightarrow \,\breve{\mathbf{C}}(\,\breve{\mathbf{q}})^{\mathsf{T}}\,\breve{\mathbf{p}} = \mathbf{0} \tag{5.39}$$

Portanto:

$$\check{\mathbb{C}}(\check{\mathbf{q}})^{\mathsf{T}}\check{\mathbf{p}} = \mathbf{0} \Leftrightarrow \check{\mathbf{q}} = \pm \check{\mathbf{p}} \tag{5.40}$$

Sendo assim, a equação (5.28) pode ser reescrita como:

$$\check{\mathbb{C}}(\check{\mathbb{X}}_0)^{\mathsf{T}} \cdot \check{\mathbb{Q}}_i \cdot \check{\mathbb{X}}_i = 0 \tag{5.41}$$

Aplicando para cada uma das cadeias, as equações vinculares de orientação são dadas por:

$$\overline{\breve{\mathbf{x}}}(\mathbf{q}) = \begin{bmatrix} \breve{\mathbb{C}}(\breve{\mathbf{x}}_0)^{\mathsf{T}} \cdot \breve{\mathbb{Q}}_1 \cdot \breve{\mathbf{x}}_1(\mathbf{q}_1) \\ \breve{\mathbb{C}}(\breve{\mathbf{x}}_0)^{\mathsf{T}} \cdot \breve{\mathbb{Q}}_2 \cdot \breve{\mathbf{x}}_2(\mathbf{q}_2) \\ \vdots \\ \breve{\mathbb{C}}(\breve{\mathbf{x}}_0)^{\mathsf{T}} \cdot \breve{\mathbb{Q}}_n \cdot \breve{\mathbf{x}}_n(\mathbf{q}_n) \end{bmatrix} = \mathbf{0}$$
(5.42)

#### 5.2.3 Vínculos entre coordenadas generalizadas

Os vínculos entre coordenadas generalizadas são dados pela união dos vínculos de posição e dos vínculos de orientação (se estes existirem) , ou seja:

$$\overline{\mathbf{q}}(\mathbf{q}) = \begin{bmatrix} \overline{\mathbf{x}}(\mathbf{q}) \\ \overline{\mathbf{x}}(\mathbf{q}) \end{bmatrix} = \mathbf{0}$$
(5.43)

No caso de não haver vínculos de orientação entre os efetuadores das cadeias seriais e o efetuador do mecanismo paralelo (efetuador pontual, ou cadeiais seriais ligadas ao efetuador através de juntas esféricas, no caso de mecanismos espaciais, ou juntas de rotação, no caso de mecanismos planos), os vínculos entre coordenadas generalizadas são os vínculos de posição, ou seja:

$$\overline{\mathbf{q}}(\mathbf{q}) = \overline{\mathbf{z}}(\mathbf{q}) = \mathbf{0} \tag{5.44}$$

### 5.2.4 Derivada temporal dos vínculos de posição

Tendo em vista que d,  $\mathbb{D}$ ,  $\mathbb{E} \in \mathbb{F}$  são constantes, derivando no tempo a equação (5.20), temos:

$$\dot{\overline{\mathbf{x}}}(\mathbf{q}, \dot{\mathbf{q}}) = \mathbb{D} \cdot \dot{\mathbf{q}}_{\mathbf{0}} - \mathbb{E} \cdot \dot{\mathbf{x}}^{\star}(\mathbf{q}_{\emptyset}, \dot{\mathbf{q}}_{\emptyset}) - \mathbb{F} \cdot \dot{\mathbf{q}}_{\emptyset} = \mathbb{O}$$
(5.45)

Tendo em vista a equação (4.50), a derivada  $\dot{x}$  pode ser obtida da seguinte maneira:

$$\dot{\mathbf{x}}^{\star}(\mathbf{q}_{\emptyset}, \dot{\mathbf{q}}_{\emptyset}) = \frac{\mathsf{d}}{\mathsf{d}t} \begin{bmatrix} \mathbf{x}_{1}(\mathbf{q}_{1}) \\ \vdots \\ \mathbf{x}_{n}(\mathbf{q}_{n}) \end{bmatrix} = \begin{bmatrix} \mathbb{J}_{v\,\mathcal{S}_{1}}(\mathbf{q}_{1}) \cdot \dot{\mathbf{q}}_{1} \\ \vdots \\ \mathbb{J}_{v\,\mathcal{S}_{n}}(\mathbf{q}_{n}) \cdot \dot{\mathbf{q}}_{n} \end{bmatrix} = \mathbb{J}_{v}^{\star}(\mathbf{q}_{\emptyset}) \cdot \dot{\mathbf{q}}_{\emptyset}$$
(5.46)

Sendo:

$$\mathbf{J}_{v}^{\star}(\mathbf{q}_{\emptyset}) = \begin{bmatrix}
\mathbf{J}_{v\,\mathcal{S}_{1}}(\mathbf{q}_{1}) & \dots & \mathbf{0} \\
\vdots & \ddots & \vdots \\
\mathbf{0} & \dots & \mathbf{J}_{v\,\mathcal{S}_{n}}(\mathbf{q}_{n})
\end{bmatrix}$$
(5.47)

Assim, substituindo (5.46) em (5.45), obtemos:

$$\dot{\overline{\mathbf{x}}}(\mathbf{q}, \dot{\mathbf{q}}) = \mathbb{D} \cdot \dot{\mathbf{q}}_0 - (\mathbb{E} \cdot \mathbb{J}_v^*(\mathbf{q}_{\emptyset}) + \mathbb{F}) \cdot \dot{\mathbf{q}}_{\emptyset} = 0$$
(5.48)

### 5.2.5 Derivada temporal dos vínculos de orientação

Derivando (5.42) no tempo, temos:

$$\dot{\breve{\mathbf{x}}}(\mathbf{q},\dot{\mathbf{q}}) = \begin{bmatrix} \breve{\mathbb{C}}(\breve{\mathbf{x}}_0)^{\mathsf{T}} \cdot \breve{\mathbb{Q}}_1 \cdot \breve{\mathbb{C}}(\breve{\mathbf{x}}_1(\mathbf{q}_1)) \cdot \omega_{\mathscr{S}_1}(\mathbf{q}_1,\dot{\mathbf{q}}_1) \\ \vdots \\ \breve{\mathbb{C}}(\breve{\mathbf{x}}_0)^{\mathsf{T}} \cdot \breve{\mathbb{Q}}_n \cdot \breve{\mathbb{C}}(\breve{\mathbf{x}}_n(\mathbf{q}_n)) \cdot \omega_{\mathscr{S}_n}(\mathbf{q}_n,\dot{\mathbf{q}}_n) \end{bmatrix} = \mathbf{0}$$
(5.49)

Tendo em vista a equação (4.33):

$$\omega_{\mathcal{S}_i}(\mathbf{q}_i, \dot{\mathbf{q}}_i) = \mathbb{J}_{\omega \, \mathcal{S}_i}(\mathbf{q}_i) \cdot \dot{\mathbf{q}}_i \tag{5.50}$$

E definindo

$$\mathbb{G}_{i}(\mathbf{q}_{i}) = \breve{\mathbb{C}}^{\mathsf{T}}(\breve{\mathbf{x}}_{0}) \cdot \breve{\mathbb{Q}}_{i} \cdot \breve{\mathbb{C}}(\breve{\mathbf{x}}_{i})$$

$$(5.51)$$

Temos:

$$\dot{\overline{\mathbf{x}}}(\mathbf{q},\dot{\mathbf{q}}) = \begin{bmatrix} \mathbb{G}_{1}(\mathbf{q}_{1}) \cdot \mathbb{J}_{\omega \, \delta_{1}}(\mathbf{q}_{1}) \cdot \dot{\mathbf{q}}_{1} \\ \vdots \\ \mathbb{G}_{n}(\mathbf{q}_{n}) \cdot \mathbb{J}_{\omega \, \delta_{n}}(\mathbf{q}_{n}) \cdot \dot{\mathbf{q}}_{n} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbb{G}_{1}(\mathbf{q}_{1}) & \dots & \mathbb{O} \\ \vdots & \ddots & \vdots \\ \mathbb{O} & \dots & \mathbb{G}_{n}(\mathbf{q}_{n}) \end{bmatrix} \begin{bmatrix} \mathbb{J}_{\omega \, \delta_{1}}(\mathbf{q}_{1}) & \dots & \mathbb{O} \\ \vdots & \ddots & \vdots \\ \mathbb{O} & \dots & \mathbb{J}_{\omega \, \delta_{n}}(\mathbf{q}_{n}) \end{bmatrix} \begin{bmatrix} \dot{\mathbf{q}}_{1} \\ \vdots \\ \dot{\mathbf{q}}_{n} \end{bmatrix} = \mathbb{O} \qquad (5.52)$$

Sendo assim, a derivada temporal dos vínculos de orientação pode ser descrita de maneira genérica por:

$$\overline{\breve{\mathbf{x}}}(\mathbf{q},\dot{\mathbf{q}}) = \mathbb{G}(\mathbf{q}_{\emptyset}) \cdot \mathbb{J}_{\omega}^{\star}(\mathbf{q}_{\emptyset}) \cdot \dot{\mathbf{q}}_{\emptyset} = \mathbb{O}$$

$$(5.53)$$

Sendo:

$$\mathbb{G}(\mathbb{q}_{\emptyset}) = \begin{bmatrix}
\mathbb{G}_{1}(\mathbb{q}_{1}) & \dots & \mathbb{O} \\
\vdots & \ddots & \vdots \\
\mathbb{O} & \dots & \mathbb{G}_{n}(\mathbb{q}_{n})
\end{bmatrix}$$
(5.54)

$$\mathbf{J}_{\omega}^{\star}(\mathbf{q}_{\emptyset}) = \begin{bmatrix} \mathbf{J}_{\omega \, \mathcal{S}_{1}}(\mathbf{q}_{1}) & \dots & \mathbf{0} \\ \vdots & \ddots & \vdots \\ \mathbf{0} & \dots & \mathbf{J}_{\omega \, \mathcal{S}_{n}}(\mathbf{q}_{n}) \end{bmatrix}$$
(5.55)

### 5.2.6 Vínculos entre quasi-velocidades

Os vínculos entre quasi-velocidades são dados pela derivada temporal dos vínculos entre coordenadas generalizadas. No caso de existirem vínculos de orientação, temos:

$$\dot{\overline{\mathbf{q}}}(\mathbf{q}, \dot{\mathbf{q}}) = \begin{bmatrix} \dot{\overline{\mathbf{x}}}(\mathbf{q}, \dot{\mathbf{q}}) \\ \dot{\overline{\mathbf{x}}}(\mathbf{q}, \dot{\mathbf{q}}) \end{bmatrix} = \begin{bmatrix} \mathbb{D} \cdot \dot{\mathbf{q}}_0 - \mathbb{E} \cdot \mathbb{J}_v^\star \cdot \dot{\mathbf{q}}_{\emptyset} - \mathbb{F} \cdot \dot{\mathbf{q}}_{\emptyset} \\ \mathbb{G} \cdot \mathbb{J}_\omega^\star \cdot \dot{\mathbf{q}}_{\emptyset} \end{bmatrix} = \mathbf{0}$$
(5.56)

Repare que (5.56) pode ser reescrita como:

$$\dot{\overline{\mathbf{q}}}(\mathbf{q}, \dot{\mathbf{q}}) = \mathbb{A}(\mathbf{q}) \cdot \dot{\mathbf{q}} = \mathbf{0}$$
(5.57)

Sendo A dado por:

$$\mathbb{A}(\mathbf{q}) = \begin{bmatrix}
\mathbb{D} & -(\mathbb{E} \cdot \mathbb{J}_{v}^{\star}(\mathbf{q}_{\theta}) + \mathbb{F}) \\
\mathbb{O} & \mathbb{G}(\mathbf{q}_{\theta}) \cdot \mathbb{J}_{\omega}^{\star}(\mathbf{q}_{\theta})
\end{bmatrix}$$
(5.58)

No caso de não haverem vínculos de orientação entre os efetuadores das cadeias seriais e o efetuador do mecanismo paralelo (efetuador pontual, ou cadeiais seriais ligadas ao efetuador através de juntas esféricas, no caso de mecanismos espaciais, ou juntas de rotação, no caso de mecanismos planos), a matriz A assume a seguinte expressão:

$$\mathbb{A}(\mathbf{q}) = \begin{bmatrix} \mathbb{D} & -(\mathbb{E} \cdot \mathbb{J}_{v}^{\star}(\mathbf{q}_{\emptyset}) + \mathbb{F}) \end{bmatrix}$$
(5.59)

### 5.2.7 Vínculos entre quasi-acelerações

Os vínculos entre quasi-acelerações são dados pela derivada temporal dos vínculos entre quasi-velocidades. Tendo em vista as equações (4.81) e (4.65), derivando (5.56), temos:

$$\frac{\ddot{\mathbf{q}}(\mathbf{q},\dot{\mathbf{q}},\ddot{\mathbf{q}})}{\ddot{\mathbf{q}}(\mathbf{q},\dot{\mathbf{q}},\ddot{\mathbf{q}})} = \begin{bmatrix} \ddot{\mathbf{x}}(\mathbf{q},\dot{\mathbf{q}},\ddot{\mathbf{q}}) \\ \ddot{\mathbf{x}}(\mathbf{q},\dot{\mathbf{q}},\ddot{\mathbf{q}}) \end{bmatrix} = \begin{bmatrix} \mathbb{D}\cdot\ddot{\mathbf{q}}_0 - \mathbb{E}\cdot(\mathbb{J}_v^\star\cdot\ddot{\mathbf{q}}_\theta + \underline{\mathbf{q}}^\star) - \mathbb{F}\cdot\ddot{\mathbf{q}}_\theta \\ \mathbb{G}\cdot(\mathbb{J}_\omega^\star\cdot\ddot{\mathbf{q}}_\theta + \underline{\mathbf{q}}^\star) + \dot{\mathbf{G}}\cdot\omega^\star \end{bmatrix} = \mathbb{O}$$
(5.60)

Sendo:

$$\underline{\mathfrak{g}}^{\star}(\mathbf{q}_{\emptyset}, \dot{\mathbf{q}}_{\emptyset}) = \begin{bmatrix} \underline{\mathfrak{g}}_{\mathscr{S}_{1}}(\mathbf{q}_{1}, \dot{\mathbf{q}}_{1})^{\mathsf{T}} & \dots & \underline{\mathfrak{g}}_{\mathscr{S}_{n}}(\mathbf{q}_{n}, \dot{\mathbf{q}}_{n})^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}}$$
(5.61)

$$\underline{\mathbf{g}}^{\star}(\mathbf{q}_{\emptyset}, \dot{\mathbf{q}}_{\emptyset}) = \begin{bmatrix} \underline{\mathbf{g}}_{\mathcal{S}_{1}}(\mathbf{q}_{1}, \dot{\mathbf{q}}_{1})^{\mathsf{T}} & \dots & \underline{\mathbf{g}}_{\mathcal{S}_{n}}(\mathbf{q}_{n}, \dot{\mathbf{q}}_{n})^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}}$$
(5.62)

$$\omega^{\star}(\mathbf{q}_{\emptyset}, \dot{\mathbf{q}}_{\emptyset}) = \mathcal{J}^{\star}_{\omega}(\mathbf{q}_{\emptyset}) \cdot \dot{\mathbf{q}}_{\emptyset} = \begin{bmatrix} \omega_{\mathcal{S}_{1}}(\mathbf{q}_{1}, \dot{\mathbf{q}}_{1})^{\mathsf{T}} & \dots & \omega_{\mathcal{S}_{n}}(\mathbf{q}_{n}, \dot{\mathbf{q}}_{n})^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}}$$
(5.63)

$$\dot{\mathbf{G}}(\mathbf{q}_{\emptyset}, \dot{\mathbf{q}}_{\emptyset}) = \begin{bmatrix} \dot{\mathbf{G}}_{1}(\mathbf{q}_{1}, \dot{\mathbf{q}}_{1}) & \dots & \mathbf{0} \\ \vdots & \ddots & \vdots \\ \mathbf{0} & \dots & \dot{\mathbf{G}}_{n}(\mathbf{q}_{n}, \dot{\mathbf{q}}_{n}) \end{bmatrix}$$
(5.64)

$$\dot{\mathbb{G}}_{i}(\mathbf{q}_{i},\dot{\mathbf{q}}_{i}) = \check{\mathbb{C}}(\check{\mathbf{x}}_{0})^{\mathsf{T}} \cdot \check{\mathbb{Q}}_{i} \cdot \check{\mathbb{C}}(\check{\mathbb{C}}(\check{\mathbf{x}}_{i}) \cdot \boldsymbol{\omega}_{\mathcal{S}_{i}})$$
(5.65)

Repare que (5.60) pode ser reescrita como:

$$\ddot{\overline{\mathbf{q}}}(\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}}) = \mathbb{A}(\mathbf{q}) \cdot \ddot{\mathbf{q}} + \mathbb{D}(\mathbf{q}, \dot{\mathbf{q}}) = \mathbb{O}$$
(5.66)

Sendo:

$$\mathbf{b}(\mathbf{q}, \dot{\mathbf{q}}) = \begin{bmatrix} -\mathbb{E} \cdot \underline{\mathbf{g}}^{*}(\mathbf{q}_{\theta}, \dot{\mathbf{q}}_{\theta}) \\ \mathbb{G}(\mathbf{q}_{\theta}) \cdot \underline{\mathbf{g}}^{*}(\mathbf{q}_{\theta}, \dot{\mathbf{q}}_{\theta}) + \dot{\mathbb{G}}(\mathbf{q}_{\theta}, \dot{\mathbf{q}}_{\theta}) \cdot \boldsymbol{\omega}^{*}(\mathbf{q}_{\theta}, \dot{\mathbf{q}}_{\theta}) \end{bmatrix}$$
(5.67)

Para o caso de não haver vínculos de orientação, temos simplesmente:

$$\mathbf{b}(\mathbf{q}, \dot{\mathbf{q}}) = -\mathbb{E} \cdot \underline{\mathbf{g}}^{*}(\mathbf{q}_{\emptyset}, \dot{\mathbf{q}}_{\emptyset})$$
(5.68)

#### 5.3Acoplamento de subsistemas

E.

Seja ${\mathbb f}$ a matriz-coluna contendo todos os sistemas de forças não-reativas generalizadas:

$$\mathbb{f} = \begin{bmatrix} \overline{\mathbb{f}}_{\mathscr{C}} \\ \overline{\mathbb{f}}_{\mathscr{S}_{1}} \\ \vdots \\ \overline{\mathbb{f}}_{\mathscr{S}_{n}} \end{bmatrix} = \begin{bmatrix} \mathbb{u}_{\mathscr{C}} \\ \mathbb{u}_{\mathscr{S}_{1}} \\ \vdots \\ \mathbb{u}_{\mathscr{S}_{n}} \end{bmatrix} - \begin{bmatrix} \mathbb{M}_{\mathscr{C}}(\mathbf{q}_{0}) & \mathbb{O} & \dots & \mathbb{O} \\ \mathbb{O} & \mathbb{M}_{\mathscr{S}_{1}}(\mathbf{q}_{1}) & \dots & \mathbb{O} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{O} & \mathbb{O} & \dots & \mathbb{M}_{\mathscr{S}_{n}}(\mathbf{q}_{n}) \end{bmatrix} \cdot \ddot{\mathbf{q}} - \begin{bmatrix} \mathbb{\nu}_{\mathscr{C}}(\mathbf{q}_{0}, \dot{\mathbf{q}}_{0}) \\ \mathbb{\nu}_{\mathscr{S}_{1}}(\mathbf{q}_{1}, \dot{\mathbf{q}}_{1}) \\ \vdots \\ \mathbb{\nu}_{\mathscr{S}_{n}}(\mathbf{q}_{n}, \dot{\mathbf{q}}_{n}) \end{bmatrix} - \begin{bmatrix} \mathbb{g}_{\mathscr{C}}(\mathbf{q}_{0}) \\ \mathbb{g}_{\mathscr{S}_{1}}(\mathbf{q}_{1}) \\ \vdots \\ \mathbb{g}_{\mathscr{S}_{n}}(\mathbf{q}_{0}) \end{bmatrix}$$
(5.69)

Definindo:

$$\mathbb{M}(q) = \begin{bmatrix}
\mathbb{M}_{\mathscr{E}}(q_0) & 0 & \dots & 0 \\
0 & \mathbb{M}_{\mathscr{S}_1}(q_1) & \dots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \dots & \mathbb{M}_{\mathscr{S}_n}(q_n)
\end{bmatrix}$$
(5.70)

$$\nu(\mathbf{q}, \dot{\mathbf{q}}) = \begin{bmatrix} \nu_{\mathscr{C}}(\mathbf{q}_0, \dot{\mathbf{q}}_0)^\mathsf{T} & \nu_{\mathscr{S}_1}(\mathbf{q}_1, \dot{\mathbf{q}}_1)^\mathsf{T} & \dots & \nu_{\mathscr{S}_n}(\mathbf{q}_n, \dot{\mathbf{q}}_n)^\mathsf{T} \end{bmatrix}^\mathsf{T}$$
(5.71)

$$g(\mathbf{q}) = \begin{bmatrix} g_{\mathscr{E}}(\mathbf{q}_0)^\mathsf{T} & g_{\mathscr{S}_1}(\mathbf{q}_1)^\mathsf{T} & \dots & g_{\mathscr{S}_n}(\mathbf{q}_0)^\mathsf{T} \end{bmatrix}^\mathsf{T}$$
(5.72)

$$\mathbf{u} = \begin{bmatrix} \mathbf{u}_{\mathcal{C}}^{\mathsf{T}} & \mathbf{u}_{\mathcal{S}_1}^{\mathsf{T}} & \dots & \mathbf{u}_{\mathcal{S}_n}^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}}$$
(5.73)

(5.69) pode ser reescrita como:

$$\mathbf{f} = \mathbf{u} - \mathbb{M}(\mathbf{q}) \cdot \ddot{\mathbf{q}} - \nu(\mathbf{q}, \dot{\mathbf{q}}) - g(\mathbf{q}) \tag{5.74}$$

Pelo princípio de D'Alembert, temos que:

$$\delta W_{\mathscr{G}} + \sum_{i=1}^{n} \delta W_{\mathscr{S}_{i}} = \delta \mathfrak{q}_{0}^{\mathsf{T}} \cdot \bar{\mathbb{f}}_{\mathscr{G}} + \sum_{i=1}^{n} \delta \mathfrak{q}_{i}^{\mathsf{T}} \cdot \bar{\mathbb{f}}_{\mathscr{S}_{i}} = \mathbf{0}$$
(5.75)

Ou seja:

$$\delta \mathbf{q}^{\mathsf{T}} \cdot \mathbf{f} = \mathbf{0} \tag{5.76}$$

Além disso, a partir da equação (5.57), temos que:

$$\mathbb{A}(q) \cdot \delta q = 0 \tag{5.77}$$

 ${\tt q}$  pode ser escrita em função de  ${\tt q}^{\scriptscriptstyle\#}$  e  ${\tt q}^{\circ}$  da seguinte maneira:

$$\mathbf{q} = \mathbb{Q}^{\#}\mathbf{q}^{\#} + \mathbb{Q}^{\circ}\mathbf{q}^{\circ} \tag{5.78}$$

 $\mathbb{Q}^{\#}$  e  $\mathbb{Q}^{\circ}$  matrizes constantes que contém apenas zeros e uns, contendo apenas um "1" por coluna, dadas por:

$$\mathbb{Q}^{\#} = \partial_{\mathbf{q}^{\#}} \mathbf{q} \tag{5.79}$$

$$\mathbb{Q}^{\circ} = \partial_{\mathbf{q}^{\circ}} \mathbf{q} \tag{5.80}$$

Aplicando o operador variação em (5.78), tem-se que:

$$\delta q = Q^{\#} \delta q^{\#} + Q^{\circ} \delta q^{\circ} \tag{5.81}$$

Substituindo (5.81) em (5.77), podemos isolar  $\delta q^\circ$  em função de  $\delta q^{\#}$ :

$$\delta q^{\circ} = -(\mathbb{A}\mathbb{Q}^{\circ})^{-1} \mathbb{A}\mathbb{Q}^{\#} \delta q^{\#}$$
(5.82)

Substuindo (5.82) em (5.81), obtemos  $\delta q$  apenas em função de q e  $\delta q^{\#}$ :

$$\delta q = \mathbb{C}(q) \cdot \delta q^{\#} \tag{5.83}$$

Sendo:

$$\mathbb{C}(\mathbf{q}) = \mathbb{Q}^{\#} - \mathbb{Q}^{\circ} (\mathbb{A}\mathbb{Q}^{\circ})^{-1} \mathbb{A}\mathbb{Q}^{\#}$$
(5.84)

No caso de  $\mathbb{AQ}^{\circ}$  possuir mais linhas do que colunas, o que pode acontecer no caso de haver equações vinculares redundantes, a inversa de  $\mathbb{AQ}^{\circ}$  é substituida pela pseudo-inversa:

$$\mathbb{C}(\mathbf{q}) = \mathbb{Q}^{\#} - \mathbb{Q}^{\circ} (\mathbb{A}\mathbb{Q}^{\circ})^{\dagger} \mathbb{A}\mathbb{Q}^{\#}$$
(5.85)

Além disso, repare que  $\mathbb C$  respeita a seguinte relação:

$$\dot{\mathbf{q}} = \mathbb{C}(\mathbf{q}) \cdot \dot{\mathbf{q}}^{\#} \tag{5.86}$$

Substuindo (5.83) em (5.76), temos:

$$\delta \mathfrak{q}^{\#\,\mathsf{I}}\,\mathbb{C}^{\mathsf{T}}\mathfrak{f} = \mathbb{O} \tag{5.87}$$

Tendo em vista que  $q^{\#}$  são coordenadas independentes,  $\delta q^{\#}$  são variações arbitrárias. Sendo assim, a equação dinâmica do mecanismo paralelo pode ser escrita como:

$$\mathbb{C}^{\mathsf{T}}\mathbb{f} = \mathbb{0} \tag{5.88}$$

Ou seja:

$$\mathbb{C}(\mathbf{q})^{\mathsf{T}}(\mathbb{M}(\mathbf{q})\ddot{\mathbf{q}} + \nu(\mathbf{q},\dot{\mathbf{q}}) + g(\mathbf{q})) = \mathbb{C}(\mathbf{q})^{\mathsf{T}}\mathbf{u}$$
(5.89)

# 5.4 Simulação dinâmica direta

É possível realizar a simulação dinâmica direta do sistema utilizando a equação dinâmica (5.89) e os vínculos entre quasi-acelerações (5.60):

$$\begin{cases} \mathbb{C}(q)^{\mathsf{T}}(\mathbb{M}(q)\ddot{q} + \nu(q,\dot{q}) + g(q)) = \mathbb{C}(q)^{\mathsf{T}}\mathfrak{u} \\ \mathbb{A}(q)\ddot{q} + \mathbb{b}(q,\dot{q}) = 0 \end{cases}$$
(5.90)

Reescrevendo em forma matricial:

$$\begin{bmatrix} \mathbb{C}(\mathbf{q})^{\mathsf{T}} \mathbb{M}(\mathbf{q}) \\ \mathbb{A}(\mathbf{q}) \end{bmatrix} \cdot \ddot{\mathbf{q}} = \begin{bmatrix} \mathbb{C}(\mathbf{q})^{\mathsf{T}} (\mathbf{u} - \boldsymbol{\nu}(\mathbf{q}, \dot{\mathbf{q}}) - \mathbf{g}(\mathbf{q})) \\ -\mathbb{b}(\mathbf{q}, \dot{\mathbf{q}}) \end{bmatrix}$$
(5.91)

É necessário que as condições iniciais respeitem os vínculos entre coordenadas ge-

neralizadas e os vínculos entre quasi-velocidades. Com isso, teoricamente, os vínculos continuariam sendo respeitados na solução do sistema de EDOs. Porém, devido a erros numéricos de truncamento e erros inerentes ao método de integração numérica utilizado, haverá um acúmulo de erros que irá aumentar a cada passo de integração, e os vínculos entre coordenadas generalizadas e entre quasi-velocidades eventualmente podem deixar de ser respeitados. Esse problema pode ser resolvido utilizando a técnica das constantes de estabilização de Baumgarte [9]. A ideia é substituir a equação dos vínculos entre quasi-acelerações pela seguinte equação:

$$\ddot{\overline{\mathbf{q}}}'(\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}}) = \ddot{\overline{\mathbf{q}}} + 2\lambda\dot{\overline{\mathbf{q}}} + \lambda^2\overline{\mathbf{q}} = 0$$
(5.92)

Substituindo (5.57) e (5.66) em (5.92), temos:

$$\ddot{\overline{\mathfrak{q}}}'(\mathfrak{q},\dot{\mathfrak{q}},\ddot{\mathfrak{q}}) = \mathbb{A}(\mathfrak{q})\,\ddot{\mathfrak{q}} + \mathbb{b}(\mathfrak{q},\dot{\mathfrak{q}}) + 2\lambda\mathbb{A}(\mathfrak{q})\,\dot{\mathfrak{q}} + \lambda^2\overline{\mathfrak{q}}(\mathfrak{q}) = 0 \tag{5.93}$$

Impondo que (5.93) seja respeitada, tenta-se impor uma dinâmica tal que as componentes de  $\overline{q}(q)$  tenderão exponencialmente a zero independentemente das condições iniciais, para  $\lambda > 0$ . Porém, devido aos erros de integração numérica, as componentes de  $\overline{q}(q)$ não irão convergir para zero, mas sim para uma faixa de valores em torno de zero. Quanto maior a ordem do método de integração numérica e quanto menor o passo de integração, menor será a ordem de grandeza dessa faixa de valores em torno do zero. Se essa faixa de valores for suficientemente pequena, pode-se considerar que os vínculos entre coordenadas generalizadas e entre quasi-velocidades estão sendo respeitados mesmo havendo erros de truncamento e erros associados ao método de integração numérica utilizado.

É importante ressaltar que valores muito altos de  $\lambda$  podem comprometer a estabilidade numérica da simulação, e valores muito pequenos podem fazer com que a faixa de valores em torno de zero em que as componentes de  $\overline{\mathfrak{q}}(\mathfrak{q})$  estarão variando pode se tornar muito grande. É seguro dizer que um bom valor de limite superior para  $\lambda$  a ser adotado é 1/h, sendo h o tamanho do passo de integração, pois o pólo s = -1/h pertence ao centro da região de estabilidade do Runge-Kutta explicito de ordem 1 (método de Euler), e consequentemente pertence à região de estabilidade de métodos Runge-Kutta de maior ordem e da maioria dos métodos de integração numérica de EDOs. Na prática, valores de  $\lambda$  em torno de 1/100h se mostraram bastante adequados nas simulações realizadas.

Sendo assim, o sistema de EDOs que será utilizado para realizar a simulação dinâmica

direta é dado por:

$$\begin{bmatrix} \mathbb{C}(\mathbf{q})^{\mathsf{T}} \mathbb{M}(\mathbf{q}) \\ \mathbb{A}(\mathbf{q}) \end{bmatrix} \cdot \ddot{\mathbf{q}} = \begin{bmatrix} \mathbb{C}(\mathbf{q})^{\mathsf{T}} (\mathbf{u} - \nu(\mathbf{q}, \dot{\mathbf{q}}) - \mathbf{g}(\mathbf{q})) \\ -\mathbb{b}(\mathbf{q}, \dot{\mathbf{q}}) - 2\lambda \mathbb{A}(\mathbf{q}) \cdot \dot{\mathbf{q}} - \lambda^2 \overline{\mathbf{q}}(\mathbf{q}) \end{bmatrix}$$
(5.94)

No caso de  $\mathbb{AQ}^{\circ}$  possuir mais linhas do que colunas, a matriz que multiplica  $\ddot{q}$  na equação anterior não será quadrada. Como já foi comentado anteriormente, essa situação acontece quando há equações vinculares redundantes. Neste caso, a equação (5.66) é substuituida por ela mesma multiplicada pela esquerda pela matriz  $(\mathbb{AQ}^{\circ})^{\mathsf{T}}$ , resultando no seguinte sistemas de EDOs para realizar a simulação dinâmica direta:

$$\begin{bmatrix} \mathbb{C}(q)^{\mathsf{T}}\mathbb{M}(q) \\ (\mathbb{A}(q) \cdot \mathbb{Q}^{\circ})^{\mathsf{T}}\mathbb{A}(q) \end{bmatrix} \cdot \ddot{q} = \begin{bmatrix} \mathbb{C}(q)^{\mathsf{T}}(\mathsf{u} - \nu(q, \dot{q}) - g(q)) \\ -(\mathbb{A}(q) \cdot \mathbb{Q}^{\circ})^{\mathsf{T}}(\mathbb{b}(q, \dot{q}) + 2\lambda\mathbb{A}(q) \cdot \dot{q} + \lambda^{2}\overline{q}(q)) \end{bmatrix}$$
(5.95)

### 5.5 Simulação dinâmica inversa

Na simulação dinâmica inversa, são dados os perfis de  $q^{\#}$ ,  $\dot{q}^{\#}$  e  $\ddot{q}^{\#}$  em função do tempo e obtém-se os perfis dos esforços nos atuadores para a trajetória dada. Para isso, será utilizada a equação dinâmica (5.89):

$$\mathbb{C}(\mathbf{q})^{\mathsf{T}}(\mathbb{M}(\mathbf{q})\ddot{\mathbf{q}} + \nu(\mathbf{q},\dot{\mathbf{q}}) + g(\mathbf{q})) = \mathbb{C}(\mathbf{q})^{\mathsf{T}}\mathbf{u}$$
(5.89)

Repare que os termos desta equação dependem de q,  $\dot{q} e \ddot{q}$ . Sendo assim, primeiramente é preciso obter q,  $\dot{q} e \ddot{q}$  dados  $q^{\#}$ ,  $\dot{q}^{\#} e \ddot{q}^{\#}$ .

q é obtido resolvendo numericamente a equação dos vínculos entre coordenadas generalizadas (5.43), a qual é um sistema de equações algébricas não lineares.

$$\overline{\mathfrak{q}}(\mathfrak{q}) = 0 \tag{5.43}$$

Ou seja, dado  $q^{\#}$ ,  $q^{\circ}$  é obtido resolvendo (5.43) numericamente:

$$q^{\circ} = \underline{q}^{\circ}(q^{\#}) \tag{5.96}$$

Sendo  $\underline{q}^{\circ}(q^{\#})$  uma função matricial implícita. Logo:

$$\mathbf{q} = \underline{\mathbf{q}}(\mathbf{q}^{\#}) = \mathbb{Q}^{\#}\mathbf{q}^{\#} + \mathbb{Q}^{\circ}\underline{\mathbf{q}}^{\circ}(\mathbf{q}^{\#})$$
(5.97)

Tendo obtido q,  $\dot{q}$  é obtido pela equação (5.86):

$$\dot{\mathbf{q}} = \mathbb{C}(\mathbf{q}) \cdot \dot{\mathbf{q}}^{\#} \tag{5.86}$$

Logo:

$$\dot{\mathbf{q}} = \underline{\dot{\mathbf{q}}}(\mathbf{q}^{\#}, \dot{\mathbf{q}}^{\#}) = \mathbb{C}(\underline{\mathbf{q}}(\mathbf{q}^{\#})) \cdot \dot{\mathbf{q}}^{\#}$$
(5.98)

Para obter  $\ddot{q}$ , substitui-se a segunda derivada temporal da equação (5.78) na equação dos vínculos entre quasi-acelerações (5.66):

$$\mathbb{A}\mathbb{Q}^{\#}\ddot{q}^{\#} + \mathbb{A}\mathbb{Q}^{\circ}\ddot{q}^{\circ} + \mathbb{b} = \mathbb{0}$$
  

$$\Rightarrow \ddot{q}^{\circ} = -(\mathbb{A}\mathbb{Q}^{\circ})^{-1}(\mathbb{b} + \mathbb{A}\mathbb{Q}^{\#}\ddot{q}^{\#})$$
  

$$\dot{q} = (\mathbb{Q}^{\#} - \mathbb{Q}^{\circ}(\mathbb{A}\mathbb{Q}^{\circ})^{-1}\mathbb{A}\mathbb{Q}^{\#}) \cdot \ddot{q}^{\#} - (\mathbb{A}\mathbb{Q}^{\circ})^{-1}\mathbb{b}$$
(5.99)

Comparando (5.84) com (5.99), temos:

•

$$\therefore \ddot{\mathbf{q}} = \mathbb{C}(\mathbf{q}) \cdot \ddot{\mathbf{q}}^{\#} + \mathbb{c}(\mathbf{q}, \dot{\mathbf{q}})$$
(5.100)

Sendo:

$$\mathbf{c}(\mathbf{q}, \dot{\mathbf{q}}) = -(\mathbb{A}\mathbb{Q}^{\circ})^{-1} \cdot \mathbb{B}$$
(5.101)

No caso de  $\mathbb{A}\mathbb{Q}^\circ$  possuir mais linhas do que colunas: Sendo:

$$\mathbf{c}(\mathbf{q}, \dot{\mathbf{q}}) = -(\mathbf{A}\mathbf{Q}^{\circ})^{\dagger} \cdot \mathbf{b}$$
(5.102)

Além disso, normalmente não há atuadores em todas as juntas do mecanismo paralelo. Sendo assim, u' pode ser reescrito como:

$$\mathbf{u} = \mathbf{U} \cdot \mathbf{u}^{\star} \tag{5.103}$$

Sendo  $\mathbb U$ uma matriz constante composta por zeros e un<br/>s, e $\mathbb u^\star$ os esforços aplicados pelos atuadores, dada por:

$$\mathbb{U} = \partial_{\mathbf{u}^{\star}} \mathbf{u} \tag{5.104}$$

Substituindo (5.86), (5.100) e (5.103) em (5.89), temos:

$$\mathbb{C}^{\mathsf{T}}(\mathbb{M} \cdot (\mathbb{C} \cdot \ddot{\mathbf{q}}^{\#} + \mathbb{c}) + \nu + \mathbb{g}) = \mathbb{C}^{\mathsf{T}} \mathbb{U} \cdot \mathbf{u}^{\star}$$
(5.105)

Definindo:

$$\mathbb{Z}^{\mathsf{T}} = \mathbb{C}^{\mathsf{T}} \mathbb{U} \tag{5.106}$$

Temos:

$$\mathbb{C}^{\mathsf{T}}\mathbb{M}\,\mathbb{C}\cdot\ddot{\mathbf{q}}^{\#} + \mathbb{C}^{\mathsf{T}}(\mathbb{M}\,\mathbb{c}+\nu) + \mathbb{C}^{\mathsf{T}}\mathbf{g} = \mathbb{Z}^{\mathsf{T}}\mathbf{u}^{\star}$$
(5.107)

Sendo assim, (5.107) pode ser reescrita como:

$$\mathbb{M}_{\mathscr{P}}(\mathfrak{q}^{\#})\ddot{\mathfrak{q}}^{\#} + \nu_{\mathscr{P}}(\mathfrak{q}^{\#},\dot{\mathfrak{q}}^{\#}) + \mathfrak{g}_{\mathscr{P}}(\mathfrak{q}^{\#}) = \mathbb{Z}(\mathfrak{q}^{\#})^{\mathsf{T}}\mathfrak{u}^{\star}$$
(5.108)

Sendo:

$$\mathbb{M}_{\mathscr{P}}(\mathfrak{q}^{\#}) = \mathbb{C}(\underline{\mathfrak{q}}(\mathfrak{q}^{\#}))^{\mathsf{T}} \cdot \mathbb{M}(\underline{\mathfrak{q}}(\mathfrak{q}^{\#})) \cdot \mathbb{C}(\underline{\mathfrak{q}}(\mathfrak{q}^{\#}))$$
(5.109)

$$\nu_{\mathscr{P}}(\mathbf{q}^{\#}, \dot{\mathbf{q}}^{\#}) = \mathbb{C}(\underline{\mathbf{q}}(\mathbf{q}^{\#}))^{\mathsf{T}} \left( \mathbb{M}(\underline{\mathbf{q}}(\mathbf{q}^{\#})) \cdot \mathbb{C}(\underline{\mathbf{q}}(\mathbf{q}^{\#}), \underline{\dot{\mathbf{q}}}(\mathbf{q}^{\#}, \dot{\mathbf{q}}^{\#})) + \nu(\underline{\mathbf{q}}(\mathbf{q}^{\#})) \right)$$
(5.110)

$$\underline{g}_{\mathscr{P}}(\mathbf{q}^{\#}) = \mathbb{C}(\underline{\mathbf{q}}(\mathbf{q}^{\#}))^{\mathsf{T}} \cdot \underline{g}(\underline{\mathbf{q}}(\mathbf{q}^{\#}))$$
(5.111)

$$\mathbb{Z}(\mathbf{q}^{\#})^{\mathsf{T}} = \mathbb{C}(\underline{\mathbf{q}}(\mathbf{q}^{\#}))^{\mathsf{T}}\mathbb{U}$$
(5.112)

Sendo assim, para mecanismos sem atuação redundante, a simulação dinâmica inversa é feita utilizando a equação (5.108) para obter os esforços dos atuadores, dados  $q^{\#}$ ,  $\dot{q}^{\#}$  e  $\ddot{q}^{\#}$ .

Para o caso de mecanismos com atuação redundante, há infinitas soluções para u<sup>\*</sup> de modo que o mecanismo realize a trajetória desejada. Sendo assim, normalmente é escolhida uma solução que seja solução de um problema de otimização (como a minimização da energia consumida), tendo a equação (5.108) como restrição.

# 6 PROJETO DOS CONTROLADORES

Este capítulo é destinado ao projeto de controladores não lineares, destinados ao controle de posição de plataformas paralelas cujo modelo dinâmico para simulação dinâmica inversa é dado por (5.108), utilizando a técnica de Linearização por Realimentação aliada a outras leis de controle não linear, como as leis Controle por Modos Deslizantes [85,101], e também aliada a técnicas de controle linear, como a alocação de pólos no espaço de estados em tempo contínuo (Controle por Torque Computado).

Para facilitar a leitura das deduções e com o intuito de deixar um pouco menos carregada a notação, será adotada a seguinte notação:

$$\boldsymbol{\xi} = \boldsymbol{q}^{\#} \tag{6.1}$$

$$\mathbb{H}(\xi) = \mathbb{M}_{\mathscr{P}}(\mathfrak{q}^{\#}) \tag{6.2}$$

$$\mathbb{h}(\boldsymbol{\xi}, \dot{\boldsymbol{\xi}}) = \nu_{\mathscr{P}}(\boldsymbol{q}^{\#}, \dot{\boldsymbol{q}}^{\#}) + \boldsymbol{g}_{\mathscr{P}}(\boldsymbol{q}^{\#})$$
(6.3)

$$\mathbf{U} = \mathbb{Z}(\mathbf{q}^{\#})^{\mathsf{T}}\mathbf{U}^{\star} \tag{6.4}$$

Sendo assim, equação (5.108) pode ser reescrita como:

$$\mathbb{H}(\xi)\ddot{\xi} + \mathbb{h}(\xi,\dot{\xi}) = \mathbf{\upsilon} \tag{6.5}$$

Além disso, definimos o erro de controle como sendo:

$$\mathbf{e} = \boldsymbol{\xi}_d - \boldsymbol{\xi} \tag{6.6}$$

Sendo  $\xi_d$  o sinal de referência

Nas próximas seções, as principais equações serão destacadas através de cores. A cor roxa indica equações de destaque no desenvolvimento. A cor azul clara indica equações de destaque secundário no desenvolvimento.

# 6.1 Linearização por Realimentação (LR)

A técnica de controle conhecida como Linearização por Realimentação consiste em utilizar a entrada de controle para cancelar as não linearidades do sistema, de modo a obter um sistema linear equivalente, normalmente desacoplado, no qual é possível utilizar inúmeras técnicas de controle linear.

Tendo em vista a equação dinâmica (6.5), é proposta a seguinte lei de Linearização por Realimentação:

$$\boldsymbol{\upsilon} = \hat{\mathbb{H}}(\boldsymbol{\xi}) \cdot (\boldsymbol{\ddot{\xi}}_d - \boldsymbol{\upsilon}') + \hat{\mathbb{h}}(\boldsymbol{\xi}, \boldsymbol{\dot{\xi}})$$
(6.7)

Sendo  $\hat{\mathbb{H}}$  e  $\hat{\mathbb{h}}$  estimadores para  $\mathbb{H}$  e  $\mathbb{h},$  respectivamente.

Substituindo a lei de controle (6.7) em (6.5), temos:

$$\ddot{\mathbf{e}} = \mathbf{v}' + \delta(t, \xi, \dot{\xi}, \mathbf{v}') \tag{6.8}$$

Sendo:

$$\delta = \mathbb{H}^{-1} \cdot (\tilde{\mathbb{H}} \cdot (\ddot{\xi}_d - \upsilon') + \tilde{\mathbb{h}})$$
(6.9)

$$\tilde{\mathbb{H}} = \mathbb{H} - \hat{\mathbb{H}} \tag{6.10}$$

$$\tilde{\mathbb{h}} = \mathbb{h} - \hat{\mathbb{h}} \tag{6.11}$$

Repare que, para o caso em que não há erros de modelagem ( $\tilde{\mathbb{H}} = \mathbb{O} \in \tilde{\mathbb{h}} = \mathbb{O} \Rightarrow \mathfrak{S} = \mathbb{O}$ ), a dinâmica de cada componente do erro se comporta como um sistema linear de segunda ordem forçado com inércia unitária e duplo integrador em s = 0.

# 6.2 Controle por Torque Computado (TC)

A lei de Controle por Torque Computado tem o intuito de fazer com que a dinâmica de cada componente do erro de controle se comporte como um movimento harmônico amortecido, de modo que o erro tenda assintoticamente a zero independentemente da condição inicial, na ausência de erros de modelagem. Para atingir este objetivo, basta utilizar a seguinte lei de realimentação de estados para  $\upsilon'$ :

$$\mathbf{u}' = -\underline{k}_v \dot{\mathbf{e}} - \underline{k}_p \mathbf{e} \tag{6.12}$$

Sendo  $\underline{k}_v$  e  $\underline{k}_p$  matrizes diagonais positiva-definidas.

Substituindo a lei de controle (6.12) em (6.8), temos:

$$\ddot{\mathbf{e}} + \underline{k}_v \dot{\mathbf{e}} + \underline{k}_v \mathbf{e} = \delta'(t, \xi, \dot{\xi}) \tag{6.13}$$

Sendo:

$$\mathfrak{G}' = \mathbb{H}^{-1} \cdot \left( \tilde{\mathbb{H}} \cdot \left( \ddot{\xi}_d + \underline{k}_v \dot{\mathbf{e}} + \underline{k}_p \mathbf{e} \right) + \tilde{\mathbb{h}} \right)$$
(6.14)

Repare que o desempenho desta técnica de controle depende diretamente da representatividade do modelo obtido dentro das condições de operação do sistema.

### 6.3 Controle por Modos Deslizantes (MD)

O Controle por Modos Deslizantes é uma técnica de controle não-linear robusto, a qual tem como principal vantagem uma menor sensibilidade aos erros de modelagem, sendo robusto tanto a incertezas estruturadas quanto a incertezas não estruturadas. Nesta subseção serão deduzidas 4 leis de controle baseadas nesta técnica.

### 6.3.1 Dedução das leis de controle

Sejam  $\underline{\lambda}, \underline{k}_v \in \underline{k}_p$  matrizes diagonais positiva-definidas. Assim, pode-se definir uma matriz-coluna s de duas maneiras diferentes:

$$\mathbf{s} = \dot{\mathbf{e}} + \underline{\lambda}\mathbf{e} \tag{6.15}$$

e

$$\mathbf{s} = \ddot{\mathbf{e}} + \underline{k}_v \dot{\mathbf{e}} + \underline{k}_p \mathbf{e} \tag{6.16}$$

Tendo-se definido s, define-se a chamada superfície de escorregamento:

$$\mathfrak{s} = \mathbb{0} \tag{6.17}$$

Repare que fazendo com que o sistema atinja a superfície de escorregamento, o erro de controle tenderá assintoticamente a zero, independente de qual das definições de s for escolhida.

Seja V(s) uma função de Lyapunov candidata dada por:

$$V(\mathfrak{s}) = \frac{1}{2} \mathfrak{s}^{\mathsf{T}} \mathbb{W} \mathfrak{s} \tag{6.18}$$

Sendo  $\mathbb{W}$  uma matriz simétrica positiva-definida. Pela teoria de estabilidade de Lyapunov, se  $\dot{V} < 0 \forall \mathfrak{s} \neq 0$ ,  $\mathfrak{s}$  converge para 0 independentemente das condições iniciais do sistema. Para que isso seja possível, é imposta a seguinte condição:

$$\frac{\mathsf{d}}{\mathsf{d}t}V(\mathfrak{s}) = \mathfrak{s}^{\mathsf{T}}\left(\mathbb{W}\dot{\mathfrak{s}} + \frac{1}{2}\dot{\mathbb{W}}\mathfrak{s}\right) \leq -\mathfrak{s}^{\mathsf{T}}\underline{\eta}\mathfrak{sn}(\mathfrak{s}) \tag{6.19}$$

$$\Rightarrow \mathbf{s}^{\mathsf{T}} \Big( \mathbb{W} \dot{\mathbf{s}} + \frac{1}{2} \dot{\mathbb{W}} \mathbf{s} + \underline{\eta} \operatorname{sn}(\mathbf{s}) \Big) \le \mathbf{0}$$
(6.20)

Sendo  $\underline{\eta}$  uma matriz diagonal positiva-definida. Repare que  $\mathbf{s}^{\mathsf{T}}\underline{\eta}\mathbf{sn}(\mathbf{s})$  é a soma ponderada dos módulos das componentes de s, o que implica que  $-\mathbf{s}^{\mathsf{T}}\underline{\eta}\mathbf{sn}(\mathbf{s}) < \mathbf{0} \quad \forall \mathbf{s} \neq \mathbf{0}$ . Repare também que  $V(\mathbf{s})$  pode ser interpretada como uma distância quadrática do sistema até a superfície de escorregamento. A imposição da condição (6.19) implica que a distância do sistema à superfície de escorregamente é sempre decrescente enquanto o sistema não atingir a superfície de escorregamento, e garante a convergência  $\mathbf{s}$  para zero em tempo finito e, a partir deste momento, a convergência assintótica do erro de controle  $\mathbf{e}$  para zero.

Para ilustrar, considere  $\mathbb{W} = \mathbb{1}$ ; se  $\dot{s} = -\underline{\eta} \operatorname{sn}(s)$ , (6.19) é satisfeita e cada componente de s respeita a EDO  $\dot{s}_i = -\eta_i \operatorname{sn}(s_i)$ , a qual converge para zero em um tempo finito de  $t_i = \frac{|s_i(0)|}{\eta_i}$ .

O projeto do controlador é feito utilizando a condição (6.19), a qual é conhecida como condição de escorregamento, e será subdividido pelas diferentes definições apresentadas para a variável s ((6.15) e (6.16)).

a) Para  $s = \dot{e} + \underline{\lambda}e$ :

Derivando (6.15) e substituindo em (6.19), temos:

$$\mathbf{s}^{\mathsf{T}}\left(\mathbb{W}\cdot\left(\ddot{\mathbf{e}}+\underline{\lambda}\dot{\mathbf{e}}\right)+\frac{1}{2}\dot{\mathbb{W}}\mathbf{s}+\underline{\eta}\,\mathbf{sn}(\mathbf{s})\right)\leq\mathbf{0}\tag{6.21}$$

Subtituindo (6.8) em (6.21), temos:

$$\mathbf{s}^{\mathsf{T}}\Big(\mathbb{W}\cdot\big(\mathbf{\upsilon}'+\underline{\lambda}\dot{\mathbf{e}}+\mathbb{H}^{-1}\cdot\big(\tilde{\mathbb{H}}\cdot\big(\ddot{\xi}_{d}-\mathbf{\upsilon}'\big)+\tilde{\mathbb{h}}\big)\big)+\frac{1}{2}\dot{\mathbb{W}}\mathbf{s}+\underline{\eta}\,\operatorname{sn}(\mathbf{s})\Big)\leq\mathbf{0}\tag{6.22}$$

Definindo:

$$\mathbf{\upsilon}' = -\lambda \dot{\mathbf{e}} + \mathbf{\upsilon}'' \tag{6.23}$$

Temos:

$$\mathbf{s}^{\mathsf{T}}\Big(\mathbb{W}\cdot\big((\mathbb{1}-\mathbb{H}^{-1}\tilde{\mathbb{H}})\mathbf{\upsilon}''+\mathbb{H}^{-1}\cdot\big(\tilde{\mathbb{H}}\cdot\big(\ddot{\xi}_{d}+\underline{\lambda}\dot{\mathbf{e}}\big)+\tilde{\mathbb{h}}\big)\big)+\frac{1}{2}\dot{\mathbb{W}}\mathbf{s}+\underline{\eta}\,\mathsf{sn}(\mathbf{s})\Big)\leq\mathbf{0}\quad(6.24)$$

Note que:

$$\mathbb{1} - \mathbb{H}^{-1}\tilde{\mathbb{H}} = \mathbb{1} - \mathbb{H}^{-1} \cdot (\mathbb{H} - \hat{\mathbb{H}}) = \mathbb{H}^{-1}\hat{\mathbb{H}}$$
(6.25)

Sendo assim, são notáveis duas possíveis escolhas para  $\mathbb W$  que facilitam o projeto do controlador:

$$\mathbb{W} = \mathbb{1} \tag{6.26}$$

е

$$\mathbb{W} = \mathbb{H} \tag{6.27}$$

Mais uma vez, o projeto do controlador será subdividido em 2 casos:

a.1) Para  $\mathbb{W} = \mathbb{1}$ :

Substuindo (6.26) em (6.24), obtém-se:

$$s^{\mathsf{T}}\Big((\mathbb{1}-\mathbb{H}^{-1}\tilde{\mathbb{H}})\upsilon''+\mathbb{H}^{-1}\cdot(\tilde{\mathbb{H}}\cdot(\ddot{\xi}_d+\underline{\lambda}\dot{e})+\tilde{\mathbb{h}})+\underline{\eta}\,\operatorname{sn}(s)\Big)\leq 0 \qquad (6.28)$$

Para satisfazer (6.28), é utilizada a seguinte lei de controle:

$$\mathbf{\upsilon}'' = -\underline{k}\,\mathsf{sn}(\mathbf{s})\tag{6.29}$$

Sendo <u>k</u> uma matriz diagonal positiva-definida, com <u>k</u>  $\geq \underline{\eta}$ . Substituindo (6.29) em (6.28), temos:

$$s^{\mathsf{T}}\Big(-(\underline{k}-\underline{\eta})\operatorname{sn}(s)+\mathbb{H}^{-1}\widetilde{\mathbb{H}}\,\underline{k}\,\operatorname{sn}(s)+\mathbb{H}^{-1}\cdot\left(\widetilde{\mathbb{H}}\cdot\left(\ddot{\xi}_{d}+\underline{\lambda}\dot{e}\right)+\widetilde{\mathbb{h}}\right)\Big)\leq0\qquad(6.30)$$

Pode-se dizer que, (6.30) é sempre satisfeita se:

$$\operatorname{diag}(\underline{k}) - \operatorname{diag}(\underline{\eta}) \ge |\mathbb{H}^{-1} \widetilde{\mathbb{H}} \underline{k} \operatorname{sn}(\mathfrak{s}) + \mathbb{H}^{-1} \cdot (\widetilde{\mathbb{H}} \cdot (\ddot{\xi}_d + \underline{\lambda} \dot{e}) + \tilde{\mathbb{h}})| \qquad (6.31)$$

Aplicando a desigualdade triangular em cada componente do lado direito de (6.31), temos:

$$|\mathbb{H}^{-1}\tilde{\mathbb{H}}\underline{k}\operatorname{sn}(\mathfrak{s}) + \mathbb{H}^{-1}\cdot(\tilde{\mathbb{H}}\cdot(\ddot{\mathbb{K}}_d + \underline{\lambda}\dot{e}) + \tilde{\mathbb{h}})| \leq |\mathbb{H}^{-1}\tilde{\mathbb{H}}|_{max}\operatorname{diag}(\underline{k}) + |\mathbb{H}^{-1}\tilde{\mathbb{H}}|_{max}|\ddot{\mathbb{K}}_d + \underline{\lambda}\dot{e}| + |\mathbb{H}^{-1}\tilde{\mathbb{h}}|_{max}$$

$$(6.32)$$

Portanto, se a seguinte inequação matricial for respeitada:

$$(\mathbb{1} - |\mathbb{H}^{-1}\tilde{\mathbb{H}}|_{max}) \cdot \operatorname{diag}(\underline{k}) \geq \operatorname{diag}(\underline{\eta}) + |\mathbb{H}^{-1}\tilde{\mathbb{H}}|_{max} |\ddot{\xi}_d + \underline{\lambda}\dot{\mathbf{e}}| + |\mathbb{H}^{-1}\tilde{\mathbb{H}}|_{max}$$

$$(6.33)$$

(6.31) será respeitada, o que garante que a condição de escorregamento (6.19) também seja respeitada e consequentemente garante a convergência do erro de controle para zero.

Existe solução para (6.33) apenas se a matriz  $\mathbb{1} - |\mathbb{H}^{-1}\tilde{\mathbb{H}}|_{max}$  for uma *M*-matrix, ou seja, se módulo do maior autovalor de  $|\mathbb{H}^{-1}\tilde{\mathbb{H}}|_{max}$  for menor que 1. Se este for o caso, a solução que minimiza a norma de diag(<u>k</u>) é dada por:

$$\operatorname{diag}(\underline{k}) = (\mathbb{1} - |\mathbb{H}^{-1}\tilde{\mathbb{H}}|_{max})^{-1}(\operatorname{diag}(\underline{\eta}) + |\mathbb{H}^{-1}\tilde{\mathbb{H}}|_{max}|\ddot{\xi}_d + \underline{\lambda}\dot{\mathbf{e}}| + |\mathbb{H}^{-1}\tilde{\mathbb{H}}|_{max}) \quad (6.34)$$

a.2) Para  $\mathbb{W} = \mathbb{H}$ :

Substuindo (6.27) em (6.24), obtém-se:

$$\mathbf{s}^{\mathsf{T}}\left(\hat{\mathbb{H}}\mathbf{\upsilon}'' + \frac{1}{2}\dot{\mathbb{H}}\mathbf{s} + \tilde{\mathbb{H}}\cdot\left(\ddot{\xi}_d + \underline{\lambda}\dot{\mathbf{e}} + \tilde{\mathbb{h}}\right) + \underline{\eta}\,\operatorname{sn}(\mathbf{s})\right) \le 0 \tag{6.35}$$

Para satisfazer (6.35), é utilizada a seguinte lei de controle:

$$\mathbf{\upsilon}'' = -\hat{\mathbb{H}}^{-1} \cdot \left(\underline{k}\operatorname{sn}(\mathfrak{s}) + \frac{1}{2}\dot{\mathbb{H}}\operatorname{s}\right)$$
(6.36)

Sendo <u>k</u> uma matriz diagonal positiva-definida, com <u>k</u>  $\geq \underline{\eta}$ . Substituindo (6.29) em (6.35), temos:

$$\mathbf{s}^{\mathsf{T}}\Big(-(\underline{k}-\underline{\eta})\mathbf{sn}(\mathbf{s})+\frac{1}{2}\dot{\mathbb{H}}\mathbf{s}+\tilde{\mathbb{H}}\cdot(\ddot{\xi}_{d}+\underline{\lambda}\dot{\mathbf{e}})+\tilde{\mathbb{h}}\Big)\leq\mathbf{0}$$
(6.37)

Pode-se dizer que, (6.37) é sempre satisfeita se:

$$\operatorname{diag}(\underline{k}) - \operatorname{diag}(\underline{\eta}) \ge \left| \frac{1}{2} \ddot{\tilde{\mathbb{H}}} \, s + \tilde{\mathbb{H}} \cdot (\ddot{\xi}_d + \underline{\lambda} \dot{e}) + \tilde{\mathbb{h}} \right| \tag{6.38}$$

Aplicando a desigualdade triangular em cada componente do lado direito de (6.38), temos:

$$\left|\frac{1}{2}\dot{\tilde{\mathbb{H}}}s + \tilde{\mathbb{H}} \cdot (\ddot{\xi}_d + \underline{\lambda}\dot{e}) + \tilde{\mathbb{H}}\right| \le \frac{1}{2}|\dot{\tilde{\mathbb{H}}}|_{max}|s| + |\tilde{\mathbb{H}}|_{max}|\ddot{\xi}_d + \underline{\lambda}\dot{e}| + |\tilde{\mathbb{H}}|_{max} \quad (6.39)$$

Portanto, se a seguinte inequação matricial for respeitada:

$$\operatorname{diag}(\underline{k}) \ge \operatorname{diag}(\underline{\eta}) + \frac{1}{2} |\dot{\tilde{\mathbb{H}}}|_{max} |\mathfrak{s}| + |\tilde{\mathbb{H}}|_{max} |\ddot{\xi}_d + \underline{\lambda}\dot{\mathfrak{e}}| + |\tilde{\mathbb{H}}|_{max}$$
(6.40)

(6.38) será respeitada, o que garante que a condição de escorregamento (6.19) também seja respeitada e consequentemente garante a convergência do erro de controle para zero.

Sempre existe solução para (6.40), e a solução que minimiza a norma de  $diag(\underline{k})$  é dada por:

$$\operatorname{diag}(\underline{k}) = \operatorname{diag}(\underline{\eta}) + \frac{1}{2} |\dot{\tilde{\mathbb{H}}}|_{max} |\mathfrak{S}| + |\tilde{\mathbb{H}}|_{max} |\ddot{\xi}_d + \underline{\lambda}\dot{\mathbf{e}}| + |\tilde{\mathbb{H}}|_{max} \qquad (6.41)$$

Repare que as duas leis de controle previamente deduzidas possuem termos descontínuos, os quais podem gerar o efeito conhecido como *chattering*, o qual pode gerar sérios desgastes nos atuadores do sistema e causar vibrações indesejadas no mecanismo. A utilização da definição (6.16) para s na dedução da lei de controle diminui bastante o efeito do *chattering*, pois utiliza termos que são integrais de funções descontínuas, o que consequentemente gera um perfil muito mais suave para o esforço de controle. Sendo assim, agora serão deduzidas as leis de controle baseadas na definição (6.16) para s.

b) Para  $\mathfrak{s} = \ddot{\mathfrak{e}} + \underline{k}_v \dot{\mathfrak{e}} + \underline{k}_p \mathfrak{e}$ 

Substituindo (6.8) em (6.16), temos:

$$\mathbf{s} = \mathbf{u}' + \underline{k}_v \dot{\mathbf{e}} + \underline{k}_p \mathbf{e} + \mathbf{\delta} \tag{6.42}$$

Sendo assim, definimos:

$$\mathbf{\upsilon}' = -\underline{k}_v \dot{\mathbf{e}} - \underline{k}_p \mathbf{e} + \mathbf{\upsilon}'' \tag{6.43}$$

Portanto:

$$\mathbf{s} = \mathbf{u}'' + \mathbf{H}^{-1} \cdot \left( \tilde{\mathbf{H}} \cdot \left( \ddot{\mathbf{\xi}}_d + \underline{k}_v \dot{\mathbf{e}} + \underline{k}_p \mathbf{e} - \mathbf{u}'' \right) + \tilde{\mathbf{h}} \right)$$
(6.44)

Definindo:

$$\sigma = \ddot{\xi}_d + \underline{k}_v \dot{\mathbf{e}} + \underline{k}_p \mathbf{e} \tag{6.45}$$

Temos:

$$\mathbf{s} = (\mathbf{1} - \mathbf{H}^{-1}\tilde{\mathbf{H}})\mathbf{v}'' + \mathbf{H}^{-1} \cdot (\tilde{\mathbf{H}}\boldsymbol{\sigma} + \tilde{\mathbf{h}})$$
(6.46)

Derivando (6.46), temos:

$$\dot{\mathbf{s}} = (\mathbb{1} - \mathbb{H}^{-1}\tilde{\mathbb{H}})\dot{\mathbf{\upsilon}}'' + \mathbb{H}^{-1}\mathbf{\varepsilon}$$

$$(6.47)$$

Sendo:

$$\varepsilon = (\dot{\mathbb{H}}\mathbb{H}^{-1}\tilde{\mathbb{H}} - \dot{\tilde{\mathbb{H}}})\upsilon'' - \dot{\mathbb{H}}\mathbb{H}^{-1} \cdot (\tilde{\mathbb{H}}\sigma + \tilde{\mathbb{h}}) + \dot{\tilde{\mathbb{H}}}\sigma + \tilde{\mathbb{H}}\dot{\sigma} + \dot{\tilde{\mathbb{h}}}$$
(6.48)

Substituindo (6.47) em (6.19), temos:

$$\mathbf{s}^{\mathsf{T}}\Big(\mathbb{W}\cdot\big((\mathbb{1}-\mathbb{H}^{-1}\tilde{\mathbb{H}})\dot{\mathbf{\upsilon}}''+\mathbb{H}^{-1}\mathbf{\varepsilon}\big)+\frac{1}{2}\dot{\mathbb{W}}\mathbf{s}+\underline{\eta}\,\operatorname{sn}(\mathbf{s})\Big)\leq\mathbf{0}\tag{6.49}$$

Mais uma vez, são notáveis duas possíveis escolhas para  $\mathbb W$  que facilitam o projeto do controlador:

$$\mathbb{W} = \mathbb{1} \tag{6.50}$$

е

$$\mathbb{W} = \mathbb{H} \tag{6.51}$$

Subdividido mais uma vez o projeto do controlador em 2 casos:

b.1) Para  $\mathbb{W} = \mathbb{1}$ :

Substuindo (6.50) em (6.49), obtém-se:

$$\mathbf{s}^{\mathsf{T}}\Big((\mathbb{1}-\mathbb{H}^{-1}\tilde{\mathbb{H}})\dot{\mathbf{\upsilon}}''+\mathbb{H}^{-1}\mathbf{\varepsilon}+\underline{\eta}\,\operatorname{sn}(\mathbf{s})\Big)\leq\mathbf{0}\tag{6.52}$$

Para satisfazer (6.52), é utilizada a seguinte lei de controle:

$$\dot{\mathbf{v}}'' = -\underline{k}\,\mathrm{sn}(\mathbf{s}) \tag{6.53}$$

Sendo <u>k</u> uma matriz diagonal positiva-definida, com <u>k</u>  $\geq \underline{\eta}$ . Substituindo (6.53) em (6.52), temos:

$$\mathbf{s}^{\mathsf{T}}\Big(-(\underline{k}-\underline{\eta})\,\mathbf{sn}(\mathbf{s})+\mathbf{H}^{-1}\tilde{\mathbf{H}}\,\underline{k}\,\mathbf{sn}(\mathbf{s})+\mathbf{H}^{-1}\mathbf{\varepsilon}\Big)\leq\mathbf{0}\tag{6.54}$$

Pode-se dizer que, (6.54) é sempre satisfeita se:

$$\operatorname{diag}(\underline{k}) - \operatorname{diag}(\underline{\eta}) \ge |\mathbb{H}^{-1} \widetilde{\mathbb{H}} \underline{k} \operatorname{sn}(\mathfrak{s}) + \mathbb{H}^{-1} \mathfrak{e}|$$
(6.55)

Aplicando a desigualdade triangular em cada componente do lado direito de (6.55), temos:

$$\begin{aligned} \left| \mathbb{H}^{-1}\tilde{\mathbb{H}}\,\underline{k}\,\mathrm{sn}(\mathbf{s}) + \mathbb{H}^{-1}\cdot\left(\left(\dot{\mathbb{H}}\,\mathbb{H}^{-1}\tilde{\mathbb{H}}-\dot{\tilde{\mathbb{H}}}\right)\mathbf{v}''-\dot{\mathbb{H}}\,\mathbb{H}^{-1}\cdot\left(\tilde{\mathbb{H}}\,\sigma+\tilde{\mathbb{H}}\right)+\dot{\tilde{\mathbb{H}}}\sigma+\tilde{\mathbb{H}}\dot{\sigma}+\dot{\tilde{\mathbb{H}}}\right) \right| \leq \\ \left| \mathbb{H}^{-1}\tilde{\mathbb{H}}|_{max}\mathrm{diag}(\underline{k}) + |\mathbb{H}^{-1}\cdot\left(\dot{\mathbb{H}}\,\mathbb{H}^{-1}\tilde{\mathbb{H}}-\dot{\tilde{\mathbb{H}}}\right)|_{max}|\mathbf{v}''-\sigma|+|\mathbb{H}^{-1}\tilde{\mathbb{H}}|_{max}|\dot{\sigma}| \\ + |\mathbb{H}^{-1}\dot{\mathbb{H}}\,\mathbb{H}^{-1}\tilde{\mathbb{H}}|_{max} + |\mathbb{H}^{-1}\dot{\tilde{\mathbb{H}}}|_{max} \end{aligned}$$

$$(6.56)$$
Portanto, se a seguinte inequação matricial for respeitada:

$$\begin{split} (\mathbb{1} - |\mathbb{H}^{-1}\tilde{\mathbb{H}}|_{max}) \cdot \mathsf{diag}(\underline{k}) \geq \mathsf{diag}(\underline{\eta}) + |\mathbb{H}^{-1} \cdot (\dot{\mathbb{H}}\mathbb{H}^{-1}\tilde{\mathbb{H}} - \dot{\tilde{\mathbb{H}}})|_{max} |\mathbb{v}'' - \sigma| + \\ |\mathbb{H}^{-1}\tilde{\mathbb{H}}|_{max} |\dot{\sigma}| + |\mathbb{H}^{-1}\dot{\mathbb{H}}\mathbb{H}^{-1}\tilde{\mathbb{H}}|_{max} + |\mathbb{H}^{-1}\dot{\tilde{\mathbb{H}}}|_{max} \end{split}$$

(6.55) será respeitada, o que garante que a condição de escorregamento (6.19) também seja respeitada e consequentemente garante a convergência do erro de controle para zero.

Existe solução para (6.57) apenas se a matriz  $\mathbb{1} - |\mathbb{H}^{-1}\tilde{\mathbb{H}}|_{max}$  for uma *M*-matrix, ou seja, se módulo do maior autovalor de  $|\mathbb{H}^{-1}\tilde{\mathbb{H}}|_{max}$  for menor que 1. Se este for o caso, a solução que minimiza a norma de diag(<u>k</u>) é dada por:

$$\operatorname{diag}(\underline{k}) = (\mathbb{1} - |\mathbb{H}^{-1}\tilde{\mathbb{H}}|_{max})^{-1} (\operatorname{diag}(\underline{\eta}) + |\mathbb{H}^{-1} \cdot (\dot{\mathbb{H}}\mathbb{H}^{-1}\tilde{\mathbb{H}} - \tilde{\mathbb{H}})|_{max} |\upsilon'' - \sigma| + |\mathbb{H}^{-1}\tilde{\mathbb{H}}|_{max} |\dot{\sigma}| + |\mathbb{H}^{-1}\dot{\mathbb{H}}\mathbb{H}^{-1}\tilde{\mathbb{H}}|_{max} + |\mathbb{H}^{-1}\dot{\tilde{\mathbb{H}}}|_{max}$$

$$(6.58)$$

b.2) Para  $\mathbb{W} = \mathbb{H}$ :

Substuindo (6.51) em (6.49), obtém-se:

$$\mathbf{s}^{\mathsf{T}}\left(\hat{\mathbf{H}}\dot{\mathbf{\upsilon}}'' + \frac{1}{2}\dot{\mathbf{H}}\mathbf{s} + \mathbf{\varepsilon} + \underline{\eta}\,\mathbf{sn}(\mathbf{s})\right) \le \mathbf{0} \tag{6.59}$$

Para satisfazer (6.59), é utilizada a seguinte lei de controle:

$$\dot{\mathbf{\upsilon}}'' = -\hat{\mathbf{H}}^{-1} \cdot \left(\underline{k}\operatorname{sn}(\mathfrak{s}) + \frac{1}{2}\dot{\mathbf{H}}\mathfrak{s}\right) \tag{6.60}$$

Sendo <u>k</u> uma matriz diagonal positiva-definida, com <u>k</u>  $\geq \underline{\eta}$ . Substituindo (6.60) em (6.59), temos:

$$s^{\mathsf{T}}\left(-\left(\underline{k}-\underline{\eta}\right)sn(s)+\frac{1}{2}\dot{\mathbb{H}}s+\varepsilon\right)\leq 0$$
(6.61)

Pode-se dizer que, (6.61) é sempre satisfeita se:

$$\operatorname{diag}(\underline{k}) - \operatorname{diag}(\underline{\eta}) \ge \left| \frac{1}{2} \dot{\tilde{\mathbb{H}}} \, \mathfrak{s} + \mathfrak{c} \right| \tag{6.62}$$

Aplicando a desigualdade triangular em cada componente do lado direito de

(6.62), temos:

$$\begin{aligned} \left|\frac{1}{2}\dot{\tilde{\mathbb{H}}}\mathfrak{s} + (\dot{\mathbb{H}}\mathbb{H}^{-1}\tilde{\mathbb{H}} - \dot{\tilde{\mathbb{H}}})\mathfrak{v}'' - \dot{\mathbb{H}}\mathbb{H}^{-1} \cdot (\tilde{\mathbb{H}}\sigma + \tilde{\mathbb{h}}) + \dot{\tilde{\mathbb{H}}}\sigma + \tilde{\mathbb{H}}\sigma + \dot{\tilde{\mathbb{h}}}\right| &\leq \frac{1}{2}|\dot{\tilde{\mathbb{H}}}|_{max}|\mathfrak{s}| + \\ |\dot{\mathbb{H}}\mathbb{H}^{-1}\tilde{\mathbb{H}} - \dot{\tilde{\mathbb{H}}}|_{max}|\mathfrak{v}'' - \sigma| + |\tilde{\mathbb{H}}|_{max}|\dot{\sigma}| + |\dot{\mathbb{H}}\mathbb{H}^{-1}\tilde{\mathbb{h}}|_{max} + |\dot{\tilde{\mathbb{h}}}|_{max} \\ (6.63) \end{aligned}$$

Portanto, se a seguinte inequação matricial for respeitada:

$$\begin{aligned} \operatorname{diag}(\underline{k}) \geq \operatorname{diag}(\underline{\eta}) + \frac{1}{2} |\dot{\tilde{\mathbb{H}}}|_{max} |\mathfrak{s}| + |\dot{\mathbb{H}}\mathbb{H}^{-1}\tilde{\mathbb{H}} - \dot{\tilde{\mathbb{H}}}|_{max} |\mathfrak{v}'' - \sigma| \\ + |\tilde{\mathbb{H}}|_{max} |\dot{\sigma}| + |\dot{\mathbb{H}}\mathbb{H}^{-1}\tilde{\mathbb{H}}|_{max} + |\dot{\tilde{\mathbb{H}}}|_{max} \end{aligned} \tag{6.64}$$

(6.62) será respeitada, o que garante que a condição de escorregamento (6.19) também seja respeitada e consequentemente garante a convergência do erro de controle para zero.

Sempre existe solução para (6.64), e a solução que minimiza a norma de  $diag(\underline{k})$  é dada por:

$$\mathsf{diag}(\underline{k}) = \mathsf{diag}(\underline{\eta}) + \frac{1}{2} |\dot{\tilde{\mathbb{H}}}|_{max} |\mathfrak{s}| + |\dot{\mathbb{H}}\mathbb{H}^{-1}\tilde{\mathbb{H}} - \dot{\tilde{\mathbb{H}}}|_{max} |\mathfrak{v}'' - \sigma| + |\tilde{\mathbb{H}}|_{max} |\dot{\sigma}| + |\dot{\mathbb{H}}\mathbb{H}^{-1}\tilde{\mathbb{H}}|_{max} + |\dot{\tilde{\mathbb{H}}}|_{max}$$

$$(6.65)$$

#### 6.3.2 Camada Limite

Uma técnica muito utilizada para diminuir os efeitos do *chattering* no MD é a substituição da função sinal por uma função de saturação nas leis de controle. Definindo:

$$\operatorname{sat}(x) = \begin{cases} x, & \operatorname{se} |x| \le 1\\ \operatorname{sn}(x), & \operatorname{se} |x| > 1 \end{cases}$$
(6.66)

Sendo assim, no lugar de sn(s), será utilizado  $sat(s/\phi)$  nas leis de controle, sendo  $\phi$  um número positivo conhecido como comprimento da camada limite.

Ao mesmo tempo que a utilização da camada limite diminui os efeitos do *chattering* no sistema, sua utilização não mais garante que o sistema atinja em tempo finito e se mantenha na superfície de escorregamento, apenas garante que o sistema atinja a camada limite ( $-\phi < s_i < \phi$ ,  $i = 1, ..., \nu^{\#}$ ) em tempo finito, e lá se mantenha.

#### 6.3.3 Ganho adaptativo

O cálculo de  $\underline{k}$  pode ser um tanto complexo utilizando as equações (6.34), (6.41), (6.58) ou (6.65), pois depende do módulo máximo de matrizes que não possuem expressões explícitas. Tal cálculo pode ser feito numericamente discretizando a área de trabalho do mecanismo e atribuindo valores máximos e mínimos para cada parâmetro incerto do sistema, obtendo uma matriz  $\underline{k}$  que varia conforme a posição do mecanismo. O uso desta estratégia, porém, poderá resultar na obtenção de valores de  $\underline{k}$  muito maiores do que o necessário, o que pode amplificar o fenômeno do *chattering*. Sendo assim, é proposta a obtenção da matriz  $\underline{k}$  de forma adaptativa, utilizando a seguinte lei de adaptação, a qual é baseada em uma lei de adaptação proposta em [65]:

$$\underline{k}_{i}[k] = \begin{cases} \left| \underline{k}_{i}[k-1] + \gamma_{i} \operatorname{sn}(s_{i}[k]) \operatorname{sn}(s_{i}[k-1]) \right|, & \operatorname{se} |s_{i}[k]| \ge \phi \text{ ou } \operatorname{sn}(s_{i}[k]) = -\operatorname{sn}(s_{i}[k-1]) \\ \underline{k}_{i}[k-1], & \operatorname{se} |s_{i}[k]| < \phi \text{ e } \operatorname{sn}(s_{i}[k]) = \operatorname{sn}(s_{i}[k-1]) \\ (6.67) \end{cases}$$

Sendo  $\gamma_i$  uma constante positiva, a qual determina a velocidade da adaptação.

Esta lei de adaptação pode ser explicada da seguinte maneira:  $\underline{k}_i$  aumenta enquanto o sistema não atingir a região da camada limite. Enquanto o sistema estiver nesta região,  $\underline{k}_i$  se mantém constante ou diminui a cada cruzamento com a superfície de escorregamento. Se o sistema estiver na região da camada limite e  $\underline{k}_i$  respeitar a inequação (6.33), (6.40), (6.57) ou (6.64) (dependendo da lei de controle utilizada),  $\underline{k}_i$  irá diminuir a cada cruzamento com a superfície de escorregamento, até que o sistema saia ligeiramente da região. Assim que o sistema sair da região,  $\underline{k}_i$  irá aumentar até o sistema atingi-la novamente, repetindo este ciclo infinitamente, com  $\underline{k}_i$  variando em uma faixa de valores muito próxima do menor valor possível para que o sistema se mantenha na região da camada limite.

# PARTE III

RESULTADOS

# 7 RESULTADOS E DISCUSSÃO

"A melhor maneira de explicar é fazer"

-- Lewis Carroll

## 7.1 Modelagem e Simulação

Nesta seção, será realizada a simulação dinâmica direta do mecânismo 5R utilizando o algoritmo de modelagem e simulação de mecanismos paralelos apresentado, e a lei de Controle por Torque Computado no espaço da tarefa, apresentada na subseção anterior. Serão consideradas incertezas paramétricas nas simulações.



Figura 15: Pentágono articulado (5R)

O mecanismo paralelo 5R (figura 15), o qual será denominado sistema  $\mathscr{P}$ , será modelado através do acoplamento de 2 subsistemas seriais  $\mathscr{S}_1 \in \mathscr{S}_2$  do tipo <u>RR</u> (figura 16), e do efetuador pontual  $\mathscr{C}$  de massa  $m_0$ .



Figura 16: Mecanismo <u>RR</u>

#### 7.1.1 Modelo do efetuador $\mathscr{E}$

De acordo com as equações (5.7), (5.8), (5.9) e (5.10), os parâmetros  $m_0$  (massa do efetuador) e  $\mathfrak{d}$  definem o modelo do efetuador.

Para o subsistema em questão, temos:

$$\mathbf{q}_0 = \begin{bmatrix} x & y & z \end{bmatrix}^\mathsf{T} \tag{7.1}$$

O vetor gravidade será considerado na direção e sentido do eixo z (perpendicular ao plano), ou seja:

$$\mathbf{\mathfrak{T}} = \begin{bmatrix} \mathbf{0} & \mathbf{0} & g \end{bmatrix}^\mathsf{T} \tag{7.2}$$

Além disso, a orientação do efetuador de  ${\mathcal P}$  é a mesma do sistema  ${\tt N}_0,$  logo:

$$\breve{\mathbf{x}}_0 = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix} \tag{7.3}$$

#### 7.1.2 Arquitetura das cadeias seriais $S_i$

A arquitetura das cadeias seriais é definida pelos parâmetros de Denavit-Hartemberg e as coordenadas dos centros de massa dos ligamentos  $c'_{Mi}$ , os quais podem ser vistos na

tabela 1.

Tabela 1: Parâmetros de Denavit-Hartemberg de  $\mathcal{S}_1$  e  $\mathcal{S}_2$ e centros de massa de seus elos

| Ligamento | $a_i$ | $\alpha_i$ | $d_i$ | $	heta_i$ | $\mathbb{C}'_{Mi}$                                       |
|-----------|-------|------------|-------|-----------|----------------------------------------------------------|
| (1)       | $l_1$ | 0          | 0     | $q_1(t)$  | $\begin{bmatrix} l_{g1} - l_1 & 0 & 0 \end{bmatrix}^{T}$ |
| (2)       | $l_2$ | 0          | 0     | $q_2(t)$  | $\begin{bmatrix} l_{g2} - l_2 & 0 & 0 \end{bmatrix}^T$   |

#### 7.1.3 Arquitetura do mecanismo paralelo ${\mathcal P}$

Tendo em vista que para formar o mecanismo paralelo  $\mathscr{P}$  basta vincular a posição dos efetuadores de  $\mathscr{S}_1$  e  $\mathscr{S}_2$  com a posição do efetuador  $\mathscr{C}$  (não há vínculos de posição adicionais nem vínculos de orientação), os parâmetros da tabela 2 são suficientes para definir a arquitetura de  $\mathscr{P}$ .

| Tabela 2: Parametros da arquitetura de $\mathscr{P}$ |                                                  |                                                       |                                                                |  |  |  |  |
|------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------|--|--|--|--|
| Cadeia                                               | $\mathbb{O}_{Ni}$                                | $\mathbb{X}_i'$                                       | $\breve{\mathbb{n}}_i$                                         |  |  |  |  |
| $\mathscr{S}_1$                                      | $\begin{bmatrix} l_0 & 0 & 0 \end{bmatrix}^{T}$  | $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}_{\perp}^{T}$ | $\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}_{\mathbf{T}}^{T}$ |  |  |  |  |
| $\mathcal{S}_2$                                      | $\begin{bmatrix} -l_0 & 0 & 0 \end{bmatrix}^{T}$ |                                                       |                                                                |  |  |  |  |

Tabela 2: Parâmetros da arquitetura de  $\mathscr{P}$ 

Consequentemente:

$$d = \begin{bmatrix} l_0 & 0 & 0 & -l_0 & 0 & 0 \end{bmatrix}^{\mathsf{T}}$$
(7.4)  

$$\mathbb{D} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}^{\mathsf{T}}$$
(7.5)  

$$\mathbb{E} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$
(7.6)

 $\mathbb{F} = \mathbb{O} \tag{7.7}$ 

#### 7.1.4 Coordenadas dependentes e independentes

Tendo em vista que o mecanismo em questão possui duas cadeias seriais de 2 graus de liberdade, temos:

$$q = \begin{bmatrix} q_0 \\ q_1 \\ q_2 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ \theta_{1,1} \\ \theta_{1,2} \\ \theta_{2,1} \\ \theta_{2,2} \end{bmatrix}$$
(7.8)

Neste caso são escolhidas as coordenadas x e y para serem as coordenadas generalizadas independentes, tendo em vista que o mecanismo possui dois graus de liberdade, ou seja:

$$q^{\#} = \begin{bmatrix} x & y \end{bmatrix}^{\mathsf{T}} \tag{7.9}$$

$$\mathbf{q}^{\circ} = \begin{bmatrix} z & \theta_{1,1} & \theta_{1,2} & \theta_{2,1} & \theta_{2,2} \end{bmatrix}^{\mathsf{T}}$$
(7.10)

Sendo assim, temos que as matrizes  $\mathbb{Q}^{\#}$  e  $\mathbb{Q}^{\circ}$  são dadas por:

$$\mathbb{Q}^{\#} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$
(7.11) 
$$\mathbb{Q}^{\circ} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
(7.12)

#### 7.1.5 Simulação dinâmica direta

Para realizar a simulação dinâmica direta, definimos:

#### 7.1.5.1 Parâmetros do modelo

Os parâmetros nominais do modelo, considerando os coeficientes de atrito seco e viscoso dos atuadores, são apresentados nas tabelas 3 e 4. Estes parâmetros, com exceção

| Tabela 3: Parâmetros nominais: cadei<br>a $\mathcal{S}_1$ |                       |          | Tabela 4: Parâmetros nominais: cadei<br>a $\mathcal{S}_2$ |                       |          |  |
|-----------------------------------------------------------|-----------------------|----------|-----------------------------------------------------------|-----------------------|----------|--|
| Parâmetros                                                | Valores               | Unidades | Parâmetros                                                | Valores               | Unidades |  |
| lo                                                        | 0,050                 | m        | $l_0$                                                     | 0,050                 | m        |  |
| $l_1$                                                     | 0,120                 | m        | $l_1$                                                     | 0,120                 | m        |  |
| $l_2$                                                     | 0,160                 | m        | $l_2$                                                     | 0,160                 | m        |  |
| $l_{g1}$                                                  | 0,060                 | m        | $l_{g1}$                                                  | 0,060                 | m        |  |
| $l_{g2}$                                                  | 0,078                 | m        | $l_{g2}$                                                  | 0,058                 | m        |  |
| $m_1$                                                     | 0,062                 | kg       | $m_1$                                                     | 0,062                 | kg       |  |
| $m_2$                                                     | 0,124                 | kg       | $m_2$                                                     | 0,097                 | kg       |  |
| $J_{z1}$                                                  | $2,542 \cdot 10^{-4}$ | $kg.m^2$ | $J_{z1}$                                                  | $2,960 \cdot 10^{-4}$ | $kg.m^2$ |  |
| $J_{z2}$                                                  | $5,769 \cdot 10^{-4}$ | $kg.m^2$ | $J_{z2}$                                                  | $3,307 \cdot 10^{-4}$ | $kg.m^2$ |  |
| b                                                         | $1,226 \cdot 10^{-4}$ | Nms      | b                                                         | $2,039 \cdot 10^{-4}$ | Nms      |  |
| $\mu$                                                     | $4,457 \cdot 10^{-2}$ | Nm       | $\mu$                                                     | $4,992 \cdot 10^{-2}$ | Nm       |  |
|                                                           |                       |          |                                                           |                       |          |  |

de  $\mu$ , sempre serão utilizados na parte de compensação de não linearidades do controlador.

Serão realizadas 3 simulações, uma com o mecanismo 5R com os parâmetros nominais, e duas com incertezas nos parâmetros  $l_{g1}$ ,  $l_{g2}$ ,  $m_1$ ,  $m_2$ ,  $J_{z1}$ ,  $J_{z2}$  e *b* de cada cadeia. Os novos valores dos parâmetros citados foram obtidos através da geração de números aleatórios com distribuição normal, com média nos valores nominais e desvio padrão de 20% em relação à média, e podem ser vistos nas tabelas 5 e 6.

Tabela 5: Parâmetros c/ incerteza de 20%: Tabela 6: Parâmetros c/ incerteza de 20%: cadeia  $S_1$  cadeia  $S_2$ 

|                       |                        | 000      |            |                        |          |
|-----------------------|------------------------|----------|------------|------------------------|----------|
| Parâmetros            | Valores                | Unidades | Parâmetros | Valores                | Unidades |
| lo                    | 0,050                  | m        | lo         | 0,050                  | m        |
| $l_1$                 | 0,120                  | m        | $l_1$      | 0,120                  | m        |
| $l_2$                 | 0,160                  | m        | $l_2$      | 0,160                  | m        |
| $l_{g1}$              | 0,043                  | m        | $l_{g1}$   | 0,049                  | m        |
| $l_{g2}$              | 0,101                  | m        | $l_{g2}$   | 0,054                  | m        |
| $m_1$                 | 0,062                  | kg       | $m_1$      | 0,059                  | kg       |
| <i>m</i> <sub>2</sub> | 0,162                  | kg       | $m_2$      | 0,110                  | kg       |
| $J_{z1}$              | $2{,}212\cdot10^{-4}$  | $kg.m^2$ | $J_{z1}$   | $2,\!486\cdot 10^{-4}$ | $kg.m^2$ |
| $J_{z2}$              | $7,211 \cdot 10^{-4}$  | $kg.m^2$ | $J_{z2}$   | $3{,}188\cdot10^{-4}$  | $kg.m^2$ |
| b                     | $1{,}300\cdot10^{-4}$  | Nms      | b          | $2,\!134\cdot 10^{-4}$ | Nms      |
| $\mu$                 | $4,\!457\cdot 10^{-2}$ | Nm       | $\mu$      | $4,992 \cdot 10^{-2}$  | Nm       |
|                       |                        |          |            |                        |          |

Nas tabelas 7 e 8, os novos valores dos parâmetros incertos foram obtidos dobrando a porcentagem de desvio dos valores das tabelas 5 e 6 em relação aos parâmetros nominais.

| adeia $\mathcal{S}_1$ |                       |          | cadeia $\mathcal{S}_2$ |                       |          |  |
|-----------------------|-----------------------|----------|------------------------|-----------------------|----------|--|
| Parâmetros            | Valores               | Unidades | Parâmetros             | Valores               | Unidades |  |
| $l_0$                 | 0,050                 | m        | lo                     | 0,050                 | m        |  |
| $l_1$                 | 0,120                 | m        | $l_1$                  | 0,120                 | m        |  |
| $l_2$                 | 0,160                 | m        | $l_2$                  | 0,160                 | m        |  |
| $l_{g1}$              | 0,025                 | m        | $l_{g1}$               | 0,037                 | m        |  |
| $l_{g2}$              | 0,125                 | m        | $l_{g2}$               | 0,049                 | m        |  |
| $m_1$                 | 0,061                 | kg       | $m_1$                  | 0,055                 | kg       |  |
| $m_2$                 | 0,201                 | kg       | $m_2$                  | 0,122                 | kg       |  |
| $J_{z1}$              | $1,881 \cdot 10^{-4}$ | $kg.m^2$ | $J_{z1}$               | $2,013 \cdot 10^{-4}$ | $kg.m^2$ |  |
| $J_{z2}$              | $8,654 \cdot 10^{-4}$ | $kg.m^2$ | $J_{z2}$               | $3,069 \cdot 10^{-4}$ | $kg.m^2$ |  |
| b                     | $1,373 \cdot 10^{-4}$ | Nms      | b                      | $2,222 \cdot 10^{-4}$ | Nms      |  |
| $\mu$                 | $4,457 \cdot 10^{-2}$ | Nm       | $\mu$                  | $4,992 \cdot 10^{-2}$ | Nm       |  |
|                       |                       |          |                        |                       |          |  |

Tabela 7: Parâmetros c/ incerteza de 40%: Tabela 8: Parâmetros c/ incerteza de 40%: cadeia  $S_1$  cadeia  $S_2$ 

#### 7.1.5.2 Espaço de trabalho

Dados os parâmetros geométricos definidos nas tabelas 3 e 4, obtemos o seguinte espaço de trabalho para o mecanismo (figura 17):



Figura 17: Espaço de trabalho do mecanismo 5R

A região amarela é considerada quasi-singular (próxima a singularidades), e um ponto é considerado pertencente a essa região quando  $|\det(\mathbb{AQ}^{\circ})| < 1,6 \cdot 10^{-6}$ , para  $q^{\#} = \begin{bmatrix} x & y \end{bmatrix}^{\mathsf{T}}$ 

ou 
$$|\det(\mathbb{AQ}^{\circ})| < 10^{-11}$$
, para  $\mathfrak{q}^{\#} = \begin{bmatrix} \theta_{1,1} & \theta_{2,1} \end{bmatrix}^{\mathsf{T}}$ .

#### 7.1.5.3 Trajetória de referência

Foi escolhida a mesma trajetória circular utilizada nos ensaios experimentais como trajetória de referência, com o intuito de observar o comportamento em regime permanente dos erros e esforços de controle.

$$\begin{cases} x_d(t) = -0.05 \sin(2\pi t) \ [m] \\ y_d(t) = 0.158 - 0.05 \cos(2\pi t) \ [m] \end{cases}$$
(7.13)

#### 7.1.5.4 Condições iniciais

As condições inicias foram escolhidas de modo que a posição e velocidade inicial coincida com as referências de posição e velocidade em t = 0, de modo a minimizar os picos de torque no inicio da trajetória, tendo em vista que o intuito é observar o comportamento do sistema em regime permanente.

$$\begin{cases} x(0) = 0\\ y(0) = 0,108 m\\ \dot{x}(0) = -\pi/10 m/s\\ \dot{y}(0) = 0 \end{cases}$$
(7.14)

#### 7.1.5.5 Parâmetros do controlador

$$\underline{k}_{p} = \lambda^{2} \mathbb{1}$$
$$\underline{k}_{v} = 2\lambda \mathbb{1}$$
$$\lambda = 60 \ rad/s$$

Os parâmetros do Controle por Torque Computado foram escolhidos de modo que a dinâmica do erro de controle se comporte como uma dinâmica de segunda ordem com amortecimento crítico. O valor de  $\lambda$  foi escolhido sendo o mesmo utilizado nos ensaios experimentais.

#### 7.1.5.6 Simulações

Nas figuras 18 a 29 são apresentados os resultados de 3 simulações dinâmicas diretas do mecanismo 5R, considerando 3 níveis de incerteza nos parâmetros inerciais e no coeficiente de atrito viscoso: 0%, 20% e 40%. Todas as simulações são realizadas utilizando a lei de Controle por Torque Computado apresentada na seção 6.2, utilizando os parâmetros definidos nas tabelas 3 e 4, sem realizar a compensação de atrito seco.

Nos gráficos pode-se observar o aumento do esforço de controle conforme o nível de incerteza cresce. Também é possível observar que o perfil do erro na coordenada x sofre pouca influência com o aumento do nível de incerteza, enquanto o perfil do erro em y apresenta uma mudança sutil.



Figura 18: $\tau_1:$ sem incerteza



Figura 20: $\tau_1:$ 20% de incerteza



Figura 22: $\tau_1:$  40% de incerteza

Figura 19: $\tau_2:$ sem incerteza



Figura 21: $\tau_2{:}~20\%$ de incerteza



Figura 23: $\tau_2{:}~40\%$ de incerteza



Figura 24:  $e_x$ : sem incerteza



Figura 25: $e_y:$ sem incerteza



Figura 26:  $e_x:$  20% de incerteza



Figura 28:  $e_x:~40\%$  de incerteza



Figura 27: $e_y:$ 20% de incerteza



Figura 29: $e_y:$  40% de incerteza

Tendo em vista que o presente trabalho tem caráter experimental, as comparações entre o desempenho de diferentes estratégias de controle serão feitas baseadas nos resultados obtidos experimentalmente.

### 7.2 Ensaios Experimentais

Nesta seção, será descrita a bancada experimental e serão apresentados e discutidos os resultados experimentais do controle do robô Clara (5R) utilizando 8 diferentes estratégias de controle.

#### 7.2.1 Bancada experimental

A bancada é constituída de:

- 2 motores DC modelo PM70 da AMETEK com as seguintes características:
  - Corrente nominal de 13A
  - Torque nominal de 0,5Nm
  - Potência nominal de 250W
  - -Tensão de alimentação de 24V
  - Rotação nominal de 3600rpm
  - Masa de 1,80 kg
- 2 enconders incrementais do modelo E40S com as seguintes características:
  - Resolução de 5000 pulsos/volta.
  - -Tensão de alimentação de 12V a 24V
  - -3 canais de saída A, B e Z
- 1 driver modelo Pololu Dual VNH5019 Motor Driver Shield com as seguintes características.
  - Tensão de operação: de 5,5V a 24V
  - Corrente de saída: até 12A contínuos (30A de pico)
  - Dois canais de saída para motor
  - -Entrada de tensão compatível com os padrões 5Ve3.3V

- -Frequência de operação do PWM de até<br/> 20 kHz
- 1 Microprocessador responsável pela execução das malhas de controle. O modelo utilizado foi o *Raspberry Pi 2 Model B* com as seguintes características:
  - Processador: quadcore ARMv7
  - 1GB RAM
  - Alimentação de 5V, 2A
- 1 Fonte de tensão chaveada com as seguintes características:
  - Tensão nominal de 24V
  - Corrente saída de até 16,25A
- 1 Placa de conversão de níveis de tensão de fabricação própria com as seguintes características:
  - Converte os 24V gerados pela fonte chaveada para 15V, para alimentar os encoders
  - Converte os níveis de tensão das saídas dos *encoders* de 0V 15V para 0V 3,3V, para poder mandar os sinais dos *encoders* para o *Raspberry Pi*

Boa parte dos elementos da bancada podem ser vistos na figura 30.





#### 7.2.2 Sistema de controle

O sistema de controle é constituído de:

- Derivadores numéricos para a obtenção da velocidade e aceleração dos motores
- Observadores das correntes que passam pelos motores
- Malhas internas de controle de corrente  $(f_a = 1kHz)$
- Uma malha externa de controle de posição  $(f_a = 333Hz)$

Pelos enconders são obtidos os deslocamentos angulares dos motores, e com os derivadores numéricos são obtidos seus sinais de velocidade e acelaração. Esses três sinais juntos com suas respectivas referências são utilizados na malha de controle de posição. Os sinais de velocidade e de tensão que são enviados aos motores são utilizados para estimar as correntes que passam pelos motores. A partir dos erros entre o valores estimados e as correntes de referência, o controlador calcula, a partir da lei de controle, as tensões a serem enviadas aos motores. Representações das arquiteturas de controle implementadas, controle no espaço das juntas e no espaço da tarefa, podem ser vistas nas figuras 31 e 32.



Figura 31: Arquitetura de controle: espaço das juntas



Figura 32: Arquitetura de controle: espaço da tarefa

Repare que na estratégia de controle no espaço da tarefa, a posição do efetuador não é medida, mas estimada a partir da leitura dos *encoders* e da cinemática direta. Esta estatégia foi adotada tendo em vista que a medição direta da posição do efetuador a partir de câmeras e processamento de imagens acarretaria um aumento muito significativo no custo computacional da malha de controle, o que tornaria inviável a utilização da frequência de amostragem de 333Hz adotada e tornaria possível apenas a realização de trajetórias em baixa velocidade. Este tipo de estratégia é discutida em [29].

#### 7.2.3 Derivadores numéricos

A partir das posições angulares obtidas através da leitura dos *encoders*, é possível estimar as velocidades angulares dos motores utilizando um derivador numérico. Uma das formas de se implementar um derivador numérico é utilizar o método das diferenças finitas:

$$\dot{x}_k = \frac{x_k - x_{k-1}}{T} \tag{7.15}$$

No entanto, como há ruídos nos sinais obtidos, a utilização do método das diferenças finitas amplifica os ruídos de alta frequência. Diante disso, os derivadores numéricos foram utilizados em série com filtros passa-baixa tipo Bessel de segunda ordem (para a estimação da velocidade a partir da posição) e oitava ordem (para a estimação da aceleração a partir da velocidade).

#### 7.2.4 Observador de corrente

Para a estimação da corrente elétrica foi considerada a equação da dinâmica elétrica do motor (4.179):

$$u = L\frac{di}{dt} + Ri + k_e\omega \tag{4.179}$$

Esta equação pode ser interpretada como um sistema linear de primeira ordem com entrada  $u - k_e \omega$  e polo em s = -R/L. Sendo assim, o sistema pode ser considerado naturalmente estável e pode ser utilizado um observador em malha aberta para estimar a corrente elétrica.

Tendo em vista que a frequencia do polo deste sistema está em torno de 240Hz, muito acima das frequências em que o sistema mecânico opera, o observador de corrente é implementado simplemente a partir do cálculo da corrente considerando a equação (4.179) em regime permanente, ou seja,  $\frac{di}{dt} = 0$ . Com isso, obtemos a seguinte expressão para o observador de corrente:

$$\hat{i} = \frac{u - k_e \omega}{R} \tag{7.16}$$

#### 7.2.5 Compensadores de não-linearidades

Para implementar as técnicas de controle baseadas em modelo, é utilizado o algoritmo de modelagem proposto para tabelar os termos do modelo dinâmico que dependem apenas da posição.

Tendo em vista que a matriz de inércia generalizada depende apenas da posição, e que a matriz-coluna de esforços de inérciais giroscópicos pode ser expressa como a soma de matrizes coluna dependentes apenas da posição multiplicados por termos quadráticos das quasi-velocidades independentes, é feita uma discretização da área de trabalho, de modo a calcular o valor destas matrizes em um número finito de pontos e realizar interpolações bilineares em tempo real, de modo a obter um valor estimado desses termos da dinâmica em qualquer ponto não singular pertencente à área de trabalho.

A discretização realizada aplica uma malha quadriculada de lado 5mm na área de trabalho do mecanismo, de modo a calcular os termos da dinâmica comentados em cada ponto não singular pertencente à discretização.

#### 7.2.6 Estratégias de controle

Foram realizados ensaios experimentais utilizando as seguintes estratégias de controle:

- Controle Proporcional-Derivativo com pré-alimentação no espaço das juntas (PDq)
- Controle Proporcional-Derivativo com pré-alimentação no espaço da tarefa (PDx)
- Controle por Torque Computado no espaço das juntas (TCq)
- Controle por Torque Computado no espaço da tarefa (TCx)
- Controle Proporcional-Derivativo + Modos Deslizantes no espaço das juntas (PDMDq)
- Controle Proporcional-Derivativo + Modos Deslizantes no espaço da tarefa (PDMDx)
- Controle por Torque Computado + Modos Deslizantes no espaço das juntas (TCMDq)
- Controle por Torque Computado + Modos Deslizantes no espaço da tarefa (TCMDx)

Todas as leis de controle podem ser obtidas através da seguinte lei de controle, deduzida na seção 6.3:

$$\mathbf{u}' = \hat{\mathbb{H}} \cdot \left( \ddot{\xi}_d + \underline{k}_v \dot{\mathbf{e}} + \underline{k}_p \mathbf{e} + \int_0^t \underline{k} \operatorname{sat}(\mathbf{s}/\phi) \, d\tau \right) + \hat{\mathbf{h}}$$
(7.17)

Sendo:

$$\mathbf{s} = \ddot{\mathbf{e}} + \underline{k}_v \dot{\mathbf{e}} + \underline{k}_p \mathbf{e} \tag{7.18}$$

Repare que, para  $\underline{k} = 0$ , temos a lei de Controle por Torque Computado. Para  $\underline{k} = 0$ ,  $\hat{\mathbb{h}} = 0$  e  $\hat{\mathbb{H}}$  constante e diagonal, temos uma lei de Controle Proporcional-Derivativo com pré-alimentação. Sendo assim, para  $\underline{k} \neq 0$ , podemos obter estas mesmas leis de controle, agora com um termo adicional de controle robusto vindo do Controle por Modos Deslizantes.

Esta lei de controle tem a vantagem de, além de poder ser interpretada como uma estratégia híbrida, praticamente elimina o fenômeno do *chattering*, tendo em vista que o termo descontínuo é suavizado através de uma função de saturação e uma integral.

Um diagrama de blocos que representa o caso geral da lei de controle da equação (7.17) pode ser visto na figura 33.



Figura 33: Malha de TCMD

#### 7.2.7 Parâmetros do sistema

Os valores estimados dos parâmetros das cadeias seriais do mecanismo são os mesmos apresentados nas tabelas 3 e 4. A massa do efetuador é considerada nula. Os comprimentos dos elos e a distância entre os atuadores são os valores de projeto do sistema e estão de acordo com as medições realizadas. Os parâmetros inerciais, ou seja, as massas, momentos de inércia, e posição dos centros de massa, foram obtidos a partir do modelo CAD do mecanismo (figura 34). Os momentos de inércia  $J_{z1}$  já consideram a inércia dos atuadores.

Os valores dos parâmetros estimados dos motores são apresentados nas tabelas 19 e 21, as quais estão no apêndice E, juntamente com o processo de identificação utilizado.



Figura 34: Modelo CAD do robô Clara

#### 7.2.8 Trajetórias de referência

A primeira trajetória realizada é uma trajetória circular com período de 1 segundo. São realizados 8 ciclos seguidos de uma parada repentina  $(x_d(t) = y_d(t) = 0 \text{ para } t > 8s)$ . Sua expressão é dada por:

$$\begin{cases} x_d(t) = -0.05 \sin(2\pi t) \ [m] \\ y_d(t) = 0.158 - 0.05 \cos(2\pi t) \ [m] \end{cases}$$
(7.19)

A segunda trajetória a ser realizada é uma trajetória triangular cujas coordenadas dos vértices (em metros) são:

$$\mathbf{x}_1 = \begin{bmatrix} -0,002 \quad 0,108 \end{bmatrix}^{\mathsf{T}} [m] \tag{7.20}$$

$$\mathbf{x}_2 = \begin{bmatrix} \mathbf{0}, \mathbf{050} & \mathbf{0}, \mathbf{258} \end{bmatrix}^\mathsf{T} [m] \tag{7.21}$$

$$\mathbf{x}_3 = \begin{bmatrix} -0,050 & 0,258 \end{bmatrix}^{\mathsf{T}} [m] \tag{7.22}$$

São realizados 2 ciclos, sendo que cada lado do triângulo é percorrido em 0,75s, e sendo o trecho I de  $x_1$  a  $x_2$ , o trecho II de  $x_2$  a  $x_3$ , e o trecho III de  $x_3$  a  $x_1$ . Depois de completar os 2 ciclos, é feita uma parada suave. Em cada lado do triângulo, é parametrizada uma trajetória polinomial de sétima ordem, na qual é imposta a posição inicial e final, velocidade nula, aceleração nula e tranco nulo no início e no final da trajetória. A expressão do polinômio é dada por:

$$\mathbf{x}(\mathbf{t}) = \mathbf{x}_0 + (\mathbf{x}_f - \mathbf{x}_0)(35\mathbf{t}^4 - 84\mathbf{t}^5 + 70\mathbf{t}^6 - 20\mathbf{t}^7)$$
(7.23)

Sendo x a posição atual,  $x_0$  a posição inicial,  $x_f$  a posição final, e t a fração do tempo decorrido em relação ao tempo total da trajetória (repare que  $x(1) = x_f$ ).

#### 7.2.9 Condições iniciais

O mecanismo sempre parte do repouso na posição  $x_1$ , dada pela equação (7.24)

$$x_1 = \begin{bmatrix} -0,002 & 0,108 \end{bmatrix}^{\mathsf{T}} [m]$$
 (7.24)

#### 7.2.10 Parâmetros dos controladores

Com o intuito de que o sistema em malha fechada se comporte como um sistema de segunda ordem com amortecimento crítico,  $\underline{k}_p$  e  $\underline{k}_v$  são parametrizados em função de um parâmetro  $\lambda$ , da seguinte maneira:

$$\underline{k}_p = \lambda^2 \mathbb{1} \tag{7.25}$$

$$\underline{k}_v = 2\lambda \mathbb{1} \tag{7.26}$$

Os parâmetros dos controladores de posição utilizados nas trajetórias definidas são apresentados nas tabelas 9, 10 e 11.

 $\lambda [rad/s]$  $m^{*}[kg.m^{2}]$  $\phi[rad/s^2]$  $k_1[rad/s^2]$  $k_2[rad/s^2]$ Estratégia 35 PDq 35 200 PDMDq 200 TCq 60 TCMDq 20 363 60 363

Tabela 9: Parâmetros dos controladores: espaço das juntas - trajetória circular

Tabela 10: Parâmetros dos controladores: espaço das juntas - trajetória triangular

| Estratégia | $\lambda [rad/s]$ | $m^*[kg.m^2]$        | $\phi[rad/s^2]$ | $k_1[rad/s^2]$ | $k_2[rad/s^2]$ |
|------------|-------------------|----------------------|-----------------|----------------|----------------|
| PDq        | 25                | $3,58 \cdot 10^{-3}$ | -               | -              | -              |
| PDMDq      | 25                | $3,58 \cdot 10^{-3}$ | 90              | 200            | 200            |
| TCq        | 60                | -                    | -               | -              | -              |
| TCMDq      | 60                | -                    | 20              | 363            | 363            |

Tabela 11: Parâmetros dos controladores: espaço da tarefa

| Estratégia | $\lambda [rad/s]$ | $m^*[kg]$ | $\phi[m/s^2]$ | $k_1[m/s^2]$ | $k_2[m/s^2]$ |
|------------|-------------------|-----------|---------------|--------------|--------------|
| PDx        | 70                | 0,207     | -             | -            | -            |
| PDMDx      | 70                | 0,207     | 6             | 70           | 0            |
| TCx        | 60                | -         | -             | -            | -            |
| TCMDx      | 60                | -         | 6             | 103          | 0            |

A determinação dos parâmetros, com excessão de  $m^*$ , foi feita experimentalmente. Para a determinação de  $\lambda$ , foram feitos vários ensaios experimentais com incrementos de 5rad/s em  $\lambda$ , e, para cada estratégia e cada trajetória, foi escolhido como o maior valor de  $\lambda$  que garantisse um nível baixo de vibração do mecanismo no momento da parada. Os valores de  $k_1$  e  $k_2$  foram determinados de forma similar, porém com a ajuda da lei de adaptação proposta em alguns casos. Quanto aos valores de  $\phi$ , estes foram determinados como os menores valores encontrados suficientes para evitar o *chattering*.

Além disso, os controladores de corrente utilizados são controladores lineares de segunda ordem, projetados por alocação de polos. A expressões das funções de transferência de um motor DC são deduzidas e apresentadas no apêndice C, e o projeto do controlador é apresentado no apêndice D. Tendo em vista que o período de amostragem da malha de corrente é de 1ms, 3 dos pólos 4 da malha de corrente são alocados em z = 0, z = 0,6, z = 0,7. O último polo é alocado na mesma posição do zero em malha aberta do sistema.

#### 7.2.11 Resultados experimentais

Nesta subseção são apresentados os gráficos de seguimento de trajetória, da evolução temporal dos erros de controle em x e y, e da evolução temporal dos esforços de controle para todas as 8 estratégias de controle definidas, na seguinte ordem: PDq, PDMDq, TCq, TCMDq, PDx, PDMDx, TCx, TCMDx; primeiramente para a trajetória circular, e depois para a trajetória triangular (figuras de 35 a 114). Também são apresentadas tabelas de comparação de desempenho e é feita a discussão dos resultados.

Como já foi comentado anteriormente, ambas as trajetórias partem do ponto (-0,002; 0,108)m. A trajetória circular termina no ponto (0; 0,108)m e é realizada no sentido horário, e a trajetória triangular termina no mesmo ponto de partida e é realizada no sentido anti-horário.

#### 7.2.11.1 PDq - Trajetória circular



Figura 35: Trajetória realizada



Figura 36: Erro de controle  $e_x$ 



Figura 38: Esforço de controle $\tau_1$ 



Figura 37: Erro de controle  $e_y$ 



Figura 39: Esforço de controle $\tau_2$ 

# 7.2.11.2 PDMDq - Trajetória circular



Figura 40: Trajetória realizada



Figura 41: Erro de controle  $e_x$ 



Figura 43: Esforço de controle $\tau_1$ 



Figura 42: Erro de controle  $e_y$ 



Figura 44: Esforço de controle  $\tau_2$ 

# 7.2.11.3 TCq - Trajetória circular



Figura 45: Trajetória realizada



Figura 46: Erro de controle  $e_x$ 



Figura 48: Esforço de controle $\tau_1$ 



Figura 47: Erro de controle  $e_y$ 



Figura 49: Esforço de controle $\tau_2$ 

# 7.2.11.4 TCMDq - Trajetória circular



Figura 50: Trajetória realizada



Figura 51: Erro de controle  $e_x$ 



Figura 53: Esforço de controle $\tau_1$ 



Figura 52: Erro de controle  $e_y$ 



Figura 54: Esforço de controle $\tau_2$ 

#### 7.2.11.5 PDx - Trajetória circular



Figura 55: Trajetória realizada



Figura 56: Erro de controle  $e_x$ 



Figura 58: Esforço de controle $\tau_1$ 



Figura 57: Erro de controle  $e_y$ 



Figura 59: Esforço de controle $\tau_2$ 

#### 7.2.11.6 PDMDx - Trajetória circular



Figura 60: Trajetória realizada



Figura 61: Erro de controle  $e_x$ 



Figura 63: Esforço de controle $\tau_1$ 



Figura 62: Erro de controle  $e_y$ 



Figura 64: Esforço de controle $\tau_2$ 

#### 7.2.11.7 TCx - Trajetória circular



Figura 65: Trajetória realizada



Figura 66: Erro de controle  $e_x$ 



Figura 68: Esforço de controle $\tau_1$ 



Figura 67: Erro de controle  $e_y$ 



Figura 69: Esforço de controle $\tau_2$ 

#### 7.2.11.8 TCMDx - Trajetória circular



Figura 70: Trajetória realizada



Figura 71: Erro de controle  $e_x$ 



Figura 73: Esforço de controle $\tau_1$ 



Figura 72: Erro de controle  $e_y$ 



Figura 74: Esforço de controle $\tau_2$ 

#### 7.2.11.9 PDq - Trajetória triangular



Figura 75: Trajetória realizada



Figura 76: Erro de controle  $e_x$ 



Figura 78: Esforço de controle $\tau_1$ 



Figura 77: Erro de controle  $e_y$ 



Figura 79: Esforço de controle $\tau_2$ 

#### 7.2.11.10 PDMDq - Trajetória triangular



Figura 80: Trajetória realizada



Figura 81: Erro de controle  $e_x$ 



Figura 83: Esforço de controle $\tau_1$ 



Figura 82: Erro de controle  $e_y$ 



Figura 84: Esforço de controle $\tau_2$ 

#### 7.2.11.11 TCq - Trajetória triangular



Figura 85: Trajetória realizada



Figura 86: Erro de controle  $e_x$ 



Figura 88: Esforço de controle $\tau_1$ 



Figura 87: Erro de controle  $e_y$ 



Figura 89: Esforço de controle $\tau_2$ 

# 7.2.11.12 TCMDq - Trajetória triangular



Figura 90: Trajetória realizada



Figura 91: Erro de controle  $e_x$ 



Figura 93: Esforço de controle $\tau_1$ 



Figura 92: Erro de controle  $e_y$ 



Figura 94: Esforço de controle $\tau_2$
#### 7.2.11.13 PDx - Trajetória triangular



Figura 95: Trajetória realizada



Figura 96: Erro de controle  $e_x$ 



Figura 98: Esforço de controle $\tau_1$ 



Figura 97: Erro de controle  $e_y$ 



Figura 99: Esforço de controle $\tau_2$ 

#### 7.2.11.14 PDMDx - Trajetória triangular



Figura 100: Trajetória realizada



Figura 101: Erro de controle  $\boldsymbol{e}_x$ 



Figura 103: Esforço de controle $\tau_1$ 



Figura 102: Erro de controle  $e_y$ 



Figura 104: Esforço de controle $\tau_2$ 

#### 7.2.11.15 TCx - Trajetória triangular



Figura 105: Trajetória realizada



Figura 106: Erro de controle  $\boldsymbol{e}_x$ 



Figura 108: Esforço de controle $\tau_1$ 



Figura 107: Erro de controle  $e_y$ 



Figura 109: Esforço de controle $\tau_2$ 

#### 7.2.11.16 TCMDx - Trajetória triangular



Figura 110: Trajetória realizada



Figura 111: Erro de controle  $\boldsymbol{e}_x$ 



Figura 113: Esforço de controle $\tau_1$ 



Figura 112: Erro de controle  $e_y$ 



Figura 114: Esforço de controle $\tau_2$ 

#### 7.2.11.17 Tabelas comparativas

As tabelas 12 e 13 apresentam os valores eficazes dos erros de posição e dos esforços de controle nas trajetórias circular e triangular, para cada estratégia de controle, os quais são calculados da seguinte maneira:

$$e_{ef} = \sqrt{\frac{1}{N} \sum_{k=1}^{N} \left( e_x^2[k] + e_y^2[k] \right)}$$
(7.27)

$$\tau_{ef} = \sqrt{\frac{1}{N} \sum_{k=1}^{N} \left(\tau_1^2[k] + \tau_2^2[k]\right)}$$
(7.28)

Tabela 12: Valores eficazes de erro e esforço de controle (em regime permanente) - Trajetória circular

| Estratégia | $e_{ef}[mm]$ | $\tau_{ef}[N.m]$ |
|------------|--------------|------------------|
| PDq        | 3,15         | $0,\!132$        |
| PDMDq      | 2,37         | 0,141            |
| TCq        | 1,14         | 0,143            |
| TCMDq      | 0,77         | 0,168            |
| PDx        | 0,91         | 0,155            |
| PDMDx      | $0,\!65$     | 0,169            |
| TCx        | 1,16         | 0,150            |
| TCMDx      | 0,90         | 0,185            |

Tabela 13: Valores eficazes de erro e esforço de controle - Trajetória triangular

| Estratégia | $e_{ef}[mm]$ | $\tau_{ef}[N.m]$ |
|------------|--------------|------------------|
| PDq        | 5,39         | 0,197            |
| PDMDq      | 5,16         | 0,212            |
| TCq        | 1,85         | $0,\!181$        |
| TCMDq      | 1,63         | 0,191            |
| PDx        | 1,98         | 0,191            |
| PDMDx      | 1,79         | 0,188            |
| TCx        | 1,83         | 0,188            |
| TCMDx      | $1,\!36$     | 0,186            |

As tabelas 14 e 15 apresentam o aumento ou diminuição percentual dos valores eficazes

de erro de posição e esforço de controle das estratégias de controle híbridas (combinadas com MD) em relação às estratégias de controle puras.

Tabela 14: Aumento/diminuição dos valores eficazes de erro e esforço de controle utilizando a associação com o MD - Trajetória circular

| Estratégia                        | $e_{ef}$ | $	au_{ef}$ |
|-----------------------------------|----------|------------|
| $PDq \rightarrow PDMDq$           | -24,9%   | 6,87%      |
| $\mathrm{TCq} \to \mathrm{TCMDq}$ | -32,9%   | 17,5%      |
| $\mathrm{PDx} \to \mathrm{PDMDx}$ | -28,9%   | 8,77%      |
| $\mathrm{TCx} \to \mathrm{TCMDx}$ | -22,1%   | 23,1%      |

Tabela 15: Aumento/diminuição dos valores eficazes de erro e esforço de controle utilizando a associação com o MD - Trajetória triangular

| Estratégia                        | $e_{ef}$ | $	au_{ef}$ |
|-----------------------------------|----------|------------|
| $\mathrm{PDq} \to \mathrm{PDMDq}$ | -4,20%   | 7,88%      |
| $\mathrm{TCq} \to \mathrm{TCMDq}$ | -11,5%   | 5,45%      |
| $\mathrm{PDx} \to \mathrm{PDMDx}$ | -9,64%   | -1,69%     |
| $\mathrm{TCx} \to \mathrm{TCMDx}$ | -25,5%   | -0,68%     |

Por fim, as tabelas 16 e 17 apresentam os valores de erro estacionário de posição, ou seja, o valor de erro de posição após o manipulador terminar de realizar a trajetória e se estabilizar em um ponto fixo. O valor de erro e da terceira coluna é obtido fazendo  $e = \sqrt{e_x^2 + e_y^2}$ , ou seja, é a distância entre a posição desejada e a posição real do efetuador.

| Estratégia | $e_x[mm]$ | $e_y[mm]$ | e[mm] |
|------------|-----------|-----------|-------|
| PDq        | 0,444     | -0,195    | 0,484 |
| PDMDq      | 0,116     | 0,481     | 0,494 |
| TCq        | 0,903     | 0,289     | 0,949 |
| TCMDq      | 0,039     | 0,012     | 0,041 |
| PDx        | 0,423     | -0,033    | 0,425 |
| PDMDx      | -0,010    | 0,034     | 0,036 |
| TCx        | 0,748     | 0,182     | 0,769 |
| TCMDx      | 0,006     | 0,060     | 0,061 |

Tabela 16: Erro estacionário de posição - Trajetória circular

| Estratégia | $e_x[mm]$ | $e_y[mm]$  | e[mm] |
|------------|-----------|------------|-------|
| PDq        | 1,601     | -1,152     | 1,972 |
| PDMDq      | 0,762     | 0,428      | 0,874 |
| TCq        | 0,099     | 0,264      | 0,279 |
| TCMDq      | 0,028     | 0,017      | 0,033 |
| PDx        | 0,368     | -0,229     | 0,434 |
| PDMDx      | 0,017     | $-0,\!170$ | 0,171 |
| TCx        | 0,228     | -0,210     | 0,305 |
| TCMDx      | 0,009     | 0,271      | 0,271 |

Tabela 17: Erro estacionário de posição - Trajetória triangular

Como pode-se perceber, todos os valores eficazes dos erros de controle e dos erros estacionários de posição são apresentados no espaço da tarefa. Apesar da posição do efetuador não estar sendo medida diretamente, mas sim estimada a partir da leitura dos *encoders* e do modelo cinemático, essa métrica foi utilizada tendo em vista que o objetivo do controle é controlar a posição do efetuador. Sendo assim, o erro de controle no espaço da tarefa é muito mais adequado para medir o desempenho da estratégia de controle do que o erro no espaço das juntas. Além disso, tendo em vista que a construção mecânica foi feita de modo que praticamente todas as folgas ficassem na direção ortogonal ao plano de movimentação e que os atuadores são acoplados diretamente no mecanismo (*direct-drive*), o nível de folgas no protótipo construído é baixíssimo, o que torna bastante confiável a estimativa da posição do efetuador através modelo cinemático.

#### 7.2.12 Discussão dos resultados

A partir dos gráficos de seguimento de trajetória, evolução temporal dos erros e esforços de controle, e das tabelas comparativas apresentadas, é possível tirar algumas conclusões sobre as estratégias de controle implementadas.

Primeiramente, analisando as tabelas 12 e 13, é possível perceber que em todos os casos a associação das técnicas de controle PD e TC com o MD levou a uma diminuição nos valores eficazes do erro de controle. Na trajetória circular, essa associação teve como consequência um aumento perceptível no valor eficaz do esforço de controle, como pode ser visto na tabela 14, enquanto que, na trajetória triangular, as estratégias de controle no espaço das juntas tiveram um aumento bem mais sutil, e as estratégias no espaço tarefa tiveram até uma pequena diminuição no custo energético, como pode ser visto na tabela 15. De qualquer maneira, mesmo nos casos em que houve aumento no custo energértico, a utilização da associação de técnicas pode ser considerada vantajosa, tendo em vista que, como foi constatado experimentalmente, um aumento de 5rad/s nos valores utilizados do parâmetro  $\lambda$  já seria o suficiente para comprometer a estabilidade do sistema em todas as estratégias de controle utilizadas. Sendo assim, pode-se concluir que a associação com o MD é uma maneira eficiente de diminuir o erro de seguimento de trajetória sem comprometer a estabilidade do sistema.

Outro resultado interessante que vale a pena ser comentado é a diminuição do erro estacionário de posição obtido com a utilização da associação das técnicas de controle PD e TC com o MD. Como pode ser observado nas tabelas 16 e 17, em todos os casos, com exceção do PDq na trajetória circular e do TCx na trajetória triangular, houve uma diminuição significativa do erro de posição com a utilização da associação de técnicas. No caso do TCx na trajetória triangular, houve uma diminuição significativa do erro de posição na direção x, mas não na direção y. Isso pode ser explicado pelo simples fato de ter sido utilizado um valor nulo para  $k_2$  nessa estratégia de controle, o que significa que o MD teoricamente só estaria atuando na direção x. Esse comportamento de atuar no sentido do erro estacionário de posição praticamente zerar pode ser facilmente observado nas figuras 51, 52, 61, 71, 91, 92, 101 e 111, e tem características similares às técnicas de controle que utilizam a integral do erro de controle com este intuito, com a vantagem da associação com o MD não degradar o desempenho do sistema durante a trajetória (muito pelo contrário) e de não necessitar da utilização de técnicas de *anti-windup* para garantir a estabilidade do sistema no caso de saturação nos esforços de controle.

Mais uma vez, analisando as tabelas 12 e 13, pode-se observar que, em relação ao consumo energético, não há uma diferença tão significativa entre as estratégias de controle, principalmente na trajetória circular. As estratégias com maior consumo energético são PDMDx e TCMDx na trajetória circular, e PDq e PDMDq na trajetória triangular. As estratégias com menor consumo energético são PDq e PDMDq na trajetória circular, e TCq e TCMDx na trajetória triangular. Além disso, em relação aos valores eficazes dos erros de controle, pode-se observar que há diferenças bem mais significativas. As estratégias com os maiores valores eficazes de erro de controle são PDq e PDMDq em ambas as trajetórias. Já as estratégias com os menores valores eficazes de erro de controle são TCMDx em ambas as trajetórias, PDMDx na trajetória circular, e TCMDq na trajetória triangular.

Também vale a pena comentar o comportamento das estratégias de controle na parte do regime transiente na trajetória circular (partida e parada bruscas). Analisando os gráficos de evolução temporal de erro de controle, é bastante nítido que a estrátégia PDx é a que apresenta o menor erro em regime transiente (figuras 56 e 57), seguida da PDMDx (figuras 61 e 62). Além disso, pode-se observar que, nesse quesito, as estratégias de controle híbridas (associadas ao MD) apresentam um desempenho levemente inferior às não híbridas.

Um comportamento interessante foi observado na trajetória triangular. Percebe-se que, para as estratégias PDq e PDMDq, o erro de seguimento de trajetória é maior nos trechos I e III (figuras 75 e 80), enquanto que para TCq, TCMCq, TCx e TCMDx, o erro está mais concentrado no trecho I (figuras 85, 90, 105 e 110), e para PDx e PDMDx o erro está mais concentrado no trecho II (figuras 95 e 100). O maior erro de seguimento de trajetória no trecho I para as estratégias de controle baseadas em modelo pode ser explicado pelo fato de que o trecho I parte de um ponto próximo a uma região quasisingular. Devido a isso, no ponto de partida, a matriz de inércia generalizada utilizada para a compensação de não linearidades assume valores bastante elevados, o que resulta em um valor elevado de ganho do controlador e pode comprometer a estabilidade relativa do sistema. As estratégias PDx e PDMDx não sofrem esse tipo de efeito porque utilizam uma matriz  $\hat{\mathbb{H}}$  constante em todo o espaço de trabalho. As estratégias PDq e PDMDq também utilizam uma matriz  $\hat{\mathbb{H}}$  constante na lei de controle, porém apresentam um valor de  $\lambda$  bem menor, o que compromete bastante o erro de seguimento de trajetória. Com relação ao trecho II, tendo em vista que o valor de  $m^*$  para o PDx e o PDMDx foi baseado nos valores da diagonal da matriz H calculada no centro da trajetória circular, como os pontos  $\mathbb{x}_2$  e  $\mathbb{x}_3$ são mais afastados do centro do círculo do que o ponto $\mathbb{x}_1$ e mais próximos da fronteira do espaço de trabalho, o modelo de inércia equivalente desacoplada e constante é muito menos adequado na região do trecho II, prejudicando assim o desempenho destas estratégias.

Outros fenômenos interessantes observados são que a utilização da associação das técnicas de controle com o MD em geral adiciona harmônicos nas respostas temporais dos erros de controle e gera um efeito de uma leve oscilação de baixa frequência nos valores de pico dos erros. A adição de harmônicos pode ser explicada pelo fato de que o termo associado ao controle MD é a integral de uma função descontínua suavizada. A utilização da integral e da camada limite suaviza bastante o conteúdo de alta frequência gerado por um termo descontínuo, porém não o elimina completamente. Em relação ao efeito de oscilação de baixa frequência nos valores de pico dos erros, este pode estar relacionado à utilização da integral, tendo em vista que integrais amplificam conteúdos harmônicos de baixa frequência. Estes fenômenos podem ser facilmente observados nas figuras 41, 42, Outro efeito interessante que foi observado foi a diminuição dos valores de pico de erro de controle nas trajetórias triangulares, normalmente seguido de um efeito de *undershoot*, quando foi utilizada a associação com o MD. Isso pode ser facilmente observado nas figuras 91, 92, 101 e 111.

Não se pode deixar de mencionar o desempenho surpreendentemente bom das estratégias PDx e PDMDx, tendo em vista que são estratégias de controle não baseadas em modelo, muito superior ao desempenho das estratégias PDq e PDMDq. Na trajetória circular, a estratégia PDMDx obteve o menor valor eficaz de erro de controle e o menor valor de erro estacionário, e a estratégia PDx apresentou um menor valor eficaz de erro de controle e um menor valor de erro estacionário que as estratégias TCq e TCx, como pode ser visto nas tabelas 12 e 16. Já na trajetória triangular, apesar dessas estratégias também apresentarem bom desempenho, a estratégia PDMDx já não mais supera as estratégias TCMDq e TCMDx em relação aos valores eficazes de erro de controle, e a estratégia PDx também já não mais supera as estratégias TCq e TCx nesse mesmo quesito.

O desempenho surpreendentemente bom do PDx e do PDMDx pode ser explicado pelo fato de que, como já foi comentado, o valor de  $m^*$  utilizado nas estratégias PDx e PDMDx ter sido baseado na matriz de inércia generalizada escrita no espaço tarefa calculada no centro da trajetória circular, a qual é praticamente diagonal com as componentes da diagonal com valores muito próximos. Sendo assim, o modelo de inércia equivalente desacoplada e constante é mais adequado para a trajetória circular do que para a trajetória triangular, a qual se afasta muito mais do centro do círculo. Além disso, como o ponto de partida das trajetórias é relativamente próximo de uma região quasi-singular, as matrizes de inércia generalizada estimadas possuem valores mais altos nesse ponto. Isso limita um pouco o maior valor de  $\lambda$  que pode ser escolhido de modo a garantir a estabilidade do sistema nas estratégias TCq, TCx, TCMDq e TCMDx. Por outro lado, nas estratégias PDx e PDMDx, a matriz de inércia generalizada estimada é constante e não possui valores tão altos, o que permitiu a utilização de um maior valor de  $\lambda$  sem afetar a estabilidade do sistema e contribuiu imensamente para a obtenção de menores valores de erros de controle. Além disso, vale comentar que, além de serem competitivas em relação ao erro de controle, as estratégias PDx e PDMDx são competitivas em relação ao consumo energético, tendo em vista que ambas apresentam valores intermediários de consumo energético em ambas as trajetórias.

Por fim, vale fazer a comparação entre o controle no espaço das juntas e o controle no

espaço da tarefa. Analisando as tabelas 12 e 13, pode-se observar que claramente as estratégias PD e PDMD se mostram muito mais eficazes no espaço da tarefa do que no espaço das juntas, tendo em vista a grande diferença nos valores eficazes dos erros de controle e da pequena diferença no custo energético. O desempenho muito menor do PDq e do PDMDq em relação ao PDx e ao PDMDx pode ser explicado pelo fato de que a matriz de inércia generalizada no espaço das juntas possui termos não desprezíveis fora da diagonal principal em praticamente todo o espaço de trabalho, o que gera um grande acoplamento entre as coordenadas generalizadas. Sendo assim, o modelo de inércia equivalente desacoplada e constante é uma aproximação muito pouco representativa. Como consequência, é necessário utilizar ganhos muito menores no controlador para garantir a estabilidade, o que leva a um baixo desempenho no quesito de erro de seguimento de trajetória. Já em relação às estratégias TC e TCMD, não há uma diferença de eficiência considerável comparando os dois espaços, tendo em vista que na trajetória circular as estratégias no espaço das juntas se mostram ligeiramente superiores, enquanto na trajetória triangular as estratégias no espaço da tarefa se mostram levemente superiores.

#### 7.2.13 Observações relativas à implementação

Além da discussão relativa aos resultados dos ensaios experimentais, existem alguns pontos relativos à implementação que valem ser comentados.

#### 7.2.13.1 Custo computacional

A realização do tabelamento dos termos de compensação dinâmica não linear, tornando necessário apenas a realização de interpolações em tempo real, foi fundamental para a implementação das estratégias de controle baseadas em modelo no *hardware* disponível. Apesar do microprocessador utilizado apresentar uma boa capacidade de processamento, o processamento em tempo real não estava sendo realizado com folga. Foi necessário utilizar um código bastante otimizado para conseguir realizar as trajetórias estabelecidas nas frequências de amostragem desejadas sem ter perdas de passo na leitura dos *encoders*. Para exemplificar esse fato, só o fato de alterar o código para realizar a cinemática inversa fora da malha de controle já resolveu os problemas de perda de passo que estavam ocorrendo nas estratégias de controle no espaço das juntas.

#### 7.2.13.2 Algoritmo de modelagem na implementação do controle

A utilização do algoritmo de modelagem desenvolvido na implementação do controle baseado em modelo, além de contribuir para a diminuição do custo computacional devido à possibilidade de utiliza-lo para a realização do tabelamento dos termos do modelo dinâmico, também facilitou muito a implementação do modelo do robô na malha de controle. Tendo em vista que foi feita uma implementação do algoritmo em C++, o código pôde ser rodado diretamente no microprocessador que realiza o controle do robô, o que tornou extramemente simples a implementação de um modelo bastante complexo e não linear.

#### 7.2.13.3 Chattering

A ideia original da pesquisa desenvolvida era aplicar as leis de Controle por Modos Deslizantes tradicionais para realizar o controle de posição do robô Clara. Nas simulações realizadas anteriormente, a lei de controle utilizada se mostrou bastante promissora, apresentando um ótimo desempenho e robustez, e a utilização da camada limite se mostrou bastante eficaz na eliminação do *chattering*. Entretanto, quando a lei de controle foi implementada na bancada experimental, sua utilização se mostrou inviável devido à forte presença de *chattering*, mesmo com a utilização da camada limite. Esse fato que levou à busca, e consequentemente à síntese, de uma lei de Controle por Modos Deslizantes que utilizasse a integral de um termo descontínuo no lugar de um termo descontínuo. A nova lei de controle deduzida tornou possível a utilização do Controle por Modos Deslizantes na bancada experimental, tendo em vista que ela possibilitou a eliminação do *chattering*. Porém, mesmo utilizando a integral para suavizar o termo descontínuo, a utilização da camada limite também se mostrou necessária para obter uma eliminação completa do *chattering*.

## 8 CONCLUSÕES E TEMAS PARA PESQUISA FUTURA

### 8.1 Conclusões

Esta Tese de Doutorado abordou a modelagem dinâmica e o controle de manipuladores paralelos, tendo por objetivo oferecer contribuições para a melhoria do seu desempenho. Especificamente, a busca por este aprimoramento foi realizada mediante o emprego de técnicas de controle baseadas no modelo do manipulador. Com relação ao objeto de estudo, escolheu-se o robô denominado Clara, equipamento desenvolvido no LaMMaR. Sua estrutura mecânica corresponde ao mecanismo pentágono articulado, de dois graus de liberdade, que opera no espaço plano.

A metodologia seguida na pesquisa compreendeu a execução de seis fases, abrangendo desde o desenvolvimento de algoritmos para as modelagens cinemática e dinâmica ao projeto de controladores e sua validação experimental.

Após o desenvolvimento teórico, a execução das simulações e dos ensaios experimentais, foi possível reunir diversas conclusões quanto à modelagem dinâmica, à técnica de controle mais adequada, bem como à sua implementação.

Em relação à modelagem dinâmica, o algoritmo genérico de modelagem de mecanismos paralelos translacionais desenvolvido se mostrou bastante promissor, tendo em vista que, além de facilitar o processo de modelagem, pode ser implementado no próprio microprocessador que realiza o controle do mecanismo, podendo ser utilizado para tabelar previamente os termos de seu modelo dinâmico em função da posição do efetuador. Esta estratégia se mostrou muito vantajosa, pois facilita a implementação de técnicas de controle baseadas em modelo e diminui consideravelmente seus custos computacionais.

A partir dos resultados experimentais obtidos, algumas conclusões relevantes podem ser tiradas. Quanto à lei de Controle por Modos Deslizantes proposta, esta apresenta uma caraterística bastante interessante e conveniente: pode ser interpretada como a combinação de outras técnicas técnicas de controle, como o Controle por Torque Computado ou o Controle Proporcional Derivativo, com um termo adicional proveniente do Controle por Modos Deslizantes.

Além disso, tal combinação permitiu que o efetuador do manipulador realizasse as trajetórias programadas, nos regimes permanente e transitório, com menor erro de seguimento, superando as técnicas puras, tanto no espaço das juntas como no da tarefa. Deve-se ressaltar que tal desempenho foi alcançado sem que houvesse um aumento significativo do consumo energético, mantendo-se a estabilidade do sistema.

Merece também destaque o desempenho do controle Proporcional Derivativo no espaço da tarefa, que mostrou ser bastante competitivo em comparação às técnicas de controle puras baseadas em modelo, nos critérios erro de seguimento e torque dos atuadores, em trajetórias nos regimes permanente e transitório.

Por fim, pôde-se concluir que a escolha entre o espaço das juntas e o da tarefa pode influenciar muito no desempenho do sistema para as leis de controle não baseadas em modelo, indicando que o espaço da tarefa é o mais adequado. No entanto, para as leis de controle baseadas em modelo, tal escolha não influenciou significativamente o desempenho do sistema.

## 8.2 Principais contribuições

Dentre as principais contribuições, destacam-se:

- a) O desenvolvimento de um algoritmo genérico para modelagem cinemática e dinâmica de manipuladores seriais e paralelos translacionais. Este algoritmo poderá integrar os sistemas de controle de outros manipuladores paralelos do LaMMaR, como os robôs Laila [6] e Dora [8].
- b) A síntese de uma nova lei de controle não linear robusto, a qual pode ser interpretada como a combinação das técnicas de Controle por Torque Computado ou Controle Proporcional-Derivativo ao Controle por Modos Deslizantes, e a constatação de seu caráter promissor no que tange à minimização do erro de seguimento de trajetória, sem aumentar demasiadamente o consumo energético do manipulador.
- c) A comparação do desempenho de técnicas combinadas e puras, mediante a execução de ensaios experimentais, com controle da trajetória do efetuador, permitindo a

avaliação do comportamento do manipulador, tanto em regime permanente como em regime transitório.

Outras contribuições referem-se às seguintes publicações realizadas durante o desenvolvimento da Tese:

A partir dos resultados obtidos no trabalho de formatura realizado na graduação, foi publicado um artigo intitulado "Development of a controller for a 3-DOF robotic platform for user interaction in rehabilitation therapies" [33], o qual foi escrito em coautoria com Eng. Guilherme Martinho Dobrianskyj e o Prof. Dr. Tarcisio Antonio Hess Coelho. Este trabalho foi apresentado no BioRob 2014 (IEEE International Conference on Biomedical Robotics and Biomechatronics) na seção de posters, no dia 15 de agosto de 2014. O artigo pode ser acessado por <htp://dx.doi.org/10.1109/BIOROB.2014.6913880>.

Um capítulo de livro, intitulado "Dynamic modelling and control of balanced parallel mechanisms" [69], foi escrito em coautoria com o Dr. Renato M. M. Orsino e com o Prof. Dr. Tarcisio Antonio Hess Coelho, para o livro *Dynamic balancing of mechanisms and synthesizing of parallel robots* (editado pelo Prof. Dr. Dan Zhang da Universidade do Instituto de Tecnologia de Ontario e publicado pela editora Springer). Este capítulo de livro trata do uso de uma metodologia de modelagem modular para o balanceamento adaptativo e desenvolvimento de algoritmos de controle para mecanismos robóticos paralelos. O capítulo pode ser acessado por <a href="http://dx.doi.org/10.1007/978-3-319-17683-3\_16">http://dx.doi.org/10.1007/978-3-319-17683-3\_16</a>>.

Um artigo, publicado no periódico International Journal of Mechanisms and Robotic Systems, intitulado "A new approach for obtaining the dynamic balancing conditions in serial mechanisms" [27], foi escrito em coautoria com o Prof. Dr. Tarcisio Antonio Hess Coelho. O artigo pode ser acessado por <a href="http://dx.doi.org/10.1504/IJMRS.2016">http://dx.doi.org/10.1504/IJMRS.2016</a>.

Um artigo, publicado no *Congresso Brasileiro de Automática - 2018*, intitulado "H-Infinity Control of a 3-DOF RRR Spatial Serial Mechanism" [97]. Foi escrito em coautoria com a Eng. Isabella Stevani, o Prof. Dr. Diego Colón e o Prof. Dr. Tarcisio Antonio Hess Coelho. O artigo pode ser acessado por <a href="https://ssl4799.websiteseguro.com/swge5/">https://ssl4799.websiteseguro.com/swge5/</a> PROCEEDINGS/> (doi:10.20906/CPS/CBA2018-0458).

Um artigo, publicado no COBEM-2019 (25<sup>th</sup> International Congress of Mechanical Engineering - 2019), intitulado "Design And Control Of A 2-DOF Parallel Mechanism" [28]. Foi escrito em coautoria com o Eng. Victor Pacheco Bartholomeu, a Eng. Isabella Stevani, a Eng. Juliana Martins de Oliveira Fuess, o Prof. Dr. Tarcisio Antonio Hess Coelho, e o Prof. Dr. Diego Colón.

## 8.3 Sugestão de temas para pesquisa futura

- Investigar a eficácia do emprego de técnicas de controle combinadas para manipuladores paralelos, redundantes e não-redundantes, que operem no espaço tridimensional.
- Investigar as condições para a eficácia do uso de técnicas de controle para manipuladores paralelos, não-baseadas em modelo e que atuem no espaço da tarefa.
- Generalizar o algoritmo de modelagem proposto para englobar mecanismos paralelos de até 6 graus de liberdade.

## REFERÊNCIAS

1 H. Abdellatif, B. Heimann. Computational efficient inverse dynamics of 6-DOF fully parallel manipulators by using the Lagrangian formalism *Mechanism and Machine Theory*, 44(1): 192–207, 2009.

2 H. Abdellatif, B. Heimann, J. Kotlarski, T. Ortmaier. Practical model-based and robust control of parallel manipulators using passivity and sliding mode theory. *Robotics* 2010: Current and Future Challenges, InTech, 2010.

3 J. Angeles, S. K. Lee. The Formulation of Dynamical Equations of Holonomic Mechanical Systems Using a Natural Orthogonal Complement *Journal of Applied Mechanics*, 55(1): 243–244, 1988.

4 A. Arian, B. Danaei, H. Abdi, S. Nahavandi. Kinematic and dynamic analysis of the Gantry-Tau, a 3-DoF translational parallel manipulator *Applied Mathematical Modelling*, 51: 217–231, 2017.

5 A. Akbarzadeh, J. Enferadi, M. Sharifnia. Dynamics analysis of a 3-RRP spherical parallel manipulator using the natural orthogonal complement *Multibody System Dynamics*, 29(4): 361–380, 2013.

6 R. Z. H. de Almeida. Modelagem dinâmica e controle e robô manipulador de arquitetura paralela assimétrica de três graus de liberdade. *Tese (Doutorado) - Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia Mecatrônica e de Sistemas Mecânicos*, 2013.

7 O. Altuzarra, P. M. Eggers, F. J. Campa, C. Roldan-Paraponiaris, C. Pinto. Dynamic Modelling of Lower-Mobility Parallel Manipulators Using the Boltzmann-Hamel Equations. *Mechanisms, Transmissions and Applications*, 157–165, Springer, 2015.

8 B. J. A. de Aquino Avaliação de Erro Estático da Ferramenta de uma Fresadora com Arquitetura Paralela. Dissertação (Mestrado) - Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia Mecatrônica e de Sistemas Mecânicos, 2016.

9 J. Baumgarte. Stabilization of constraints and integrals of motion in dynamical systems. *Computer Methods in Applied Mechanics and Engineering*, 1(1): 1–16, 1972.

10 P. Begon, F. Pierrot, P. Dauchez. Fuzzy sliding mode control of a fast parallel robot. *Robotics and Automation, 1995. Proceedings., 1995 IEEE International Conference on*, 1178–1183, IEEE, 1995.

11 R. Ben-Horina, M. Shohama, S. Djerassi. Kinematics, dynamics and construction of a planarly actuated parallel robot *Robotics and Computer-Integrated Manufacturing*, 14(2): 163–172, 1998.

12 A.M. Bloch, M. Reyhanoglu, N.H. McClamroch. Control and stabilization of nonholonomic dynamic systems. *Automatic Control, IEEE Transactions on*, 37(11): 1746–1757, 1992.

13 S. Briot, I.A. Bonev. Are parallel robots more accurate than serial robots? *Canadian Society for Mechanical Engineering (CSME) Transactions*, 31(4): 445–456, 2007.

14 E. L. L. Cabral. Cinemática Direta de Robôs Manipuladores. *Análise de Robôs*, sites.poli.usp.br/p/eduardo.cabral/Cinemática Direta.pdf acessado em 25/08/2016.

15 E. F. Camacho, C. B. Alba. *Model predictive control.* Springer Science & Business Media, 2013.

16 L. Campos, F. Bourbonnais, I.A. Bonev, P. Bigras. Development of a five-bar parallel robot with large workspace. *Proc. of the ASME IDETC/CIE 2010 Montreal, Quebec, Canada*, August 15–18, 2010. [DETC2010-28962]

17 A. A. Campos-Bonilla, R. Guenther, D. Martins. Differential kinematics of serial manipulators using virtual chains *Journal of the Brazilian Society of Mechanical Sciences and Engineering*, 24(4): 1–10, 2005.

18 J. C. M. Carvalho, R.C. Ibrahim, T. A. H. Coelho. MECANISMOS, MÁQUINAS & ROBÔS: uma abordagem unificada para a análise e síntese. ISBN: 978-85-3524654-4, Elsevier Editora Ltda, 2018.

19 R. Clavel. Robots parallèles: du packaging à cadence élevée à la production d'ultra haute précision. *Journées Nationales de la Recherche en Robotique*, 8ème Edition, 2011.

20 A. Chemori, G. S. Natal, F. Pierrot. Control of parallel robots: towards very high accelerations. *SSD*'2013: 10th International Multi-Conference on Systems, Signals and Devices, 2013.

21 S-L. Chen, Y-C. Tsai. Contouring control of a parallel mechanism based on equivalent errors. *American Control Conference*, 2008, 2384–2388, IEEE, 2008.

22 H. Cheng, G. Liu, Y-K. Yiu, Z. H. Xiong, Z. Li. Advantages and Dynamics of Parallel Manipulators with Redundant Actuation *Proceedings 2001 IEEE/RSJ International* Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium, 1: 171–176, 2001.

23 H. Cheng, Y-K. Yiu, Z. Li. Dynamics and control of redundantly actuated parallel manipulators. *Mechatronics, IEEE/ASME Transactions on*, 8(4): 483–491, 2003.

24 W. Chung, L-C. Fu, S-H. Hsu. Motion control. *Springer Handbook of Robotics*, Edited by B. Siciliano and O. Khatib, 133–159, 2008.

25 A. Codourey. Dynamic Modelling and Mass Matrix Evaluation of the DELTA Parallel Robot for Axes Decoupling Control Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96, 3: 1211–1218, 1996.

26 A. Codourey, E. Burdet. A body-oriented method for finding a linear form of the dynamic equation of fully parallel robots. *Proceedings of International Conference on Robotics and Automation*, 2: 1612–1618, 1997.

27 A. G. Coutinho, T. A. H. Coelho. A new approach for obtaining the dynamic balancing conditions in serial mechanisms. *International Journal of Mechanisms and Robotic Systems*, 3(1): 32–47, 2016.

A. G. Coutinho, V. P. Bartholomeu, I. Stevani, J. M. de Oliveira-Fuess, T. A.
H. Coelho, D. Cólon. Design And Control Of A 2-DOF Parallel Mechanism In 25th COBEM, Uberlândia, Brazil, Paper ID COBEM2019-0373, 2019.

29 J. J. Craig. *Introduction to robotics: mechanics and control*. Addison-Wesley series in electrical and computer engineering: control engineering. Pearson/Prentice Hall, 2005.

30 B. Dasgupta, T. S. Mruthyunjaya. A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator *Mechanism and Machine Theory*, 33(8): 1135–1152, 1998.

31 J. Denavit, R. S. Hartenberg. A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices. *Trans. of the ASME. Journal of Applied Mechanics*, 22:(1) 215–221, 1955.

32 G. M. Dobriankyj, A. G. Coutinho. Plataforma robótica para reabilitação do membro superior humano. *Tese (Trabalho de Conclusão de Curso) - Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia Mecatrônica e de Sistemas Mecânicos*, 2013.

33 G. M. Dobrianskyj, A. G. Coutinho, T. A. H. Coelho. Development of a controller for a 3-DOF robotic platform for user interaction in rehabilitation therapies. *Biomedical Robotics and Biomechatronics 2014 5th IEEE RAS EMBS International Conference on*, 819 – 825, IEEE, 2014.

34 V. Duchaine, S. Bouchard, C. M. Gosselin. Computationally efficient predictive robot control. *IEEE/ASME Transactions On Mechatronics*, 12(5): 570–578, 2007.

35 M. M. Ebrahimi, F. Piltan, M. Bazregar, A. Nabaee. Intelligent Robust Fuzzy-Parallel Optimization Control of a Continuum Robot Manipulator. *International Journal* of Control and Automation, 6(3): 15–34, 2013.

36 M. Ertugrul, O. Kaynak. Neuro sliding mode control of robotic manipulators. *Mechatronics*, 10(1): 239–263, 2000.

37 R. Featherstone, D. E. Orin. Dynamics. *Springer Handbook of Robotics*, Edited by B. Siciliano and O. Khatib, 35–66, 2008.

38 J. V. C. Fontes, M. M. da Silva. On the dynamic performance of parallel kinematic manipulators with actuation and kinematic redundancies *Mechanism and Machine Theory*, 103: 148–166, 2016.

39 J. V. C. Fontes, J. C. Santos, M. M. da Silva. Numerical and experimental evaluation of the dynamic performance of kinematically redundant parallel manipulators *Journal of the Brazilian Society of Mechanical Sciences and Engineering*, 40: 142, 2018.

40 J. Gallardo-Alvarado, R. Rodríguez-Castro, P. J. Delossantos-Lara. Kinematics and dynamics of a 4- P RUR Schönflies parallel manipulator by means of screw theory and the principle of virtual work *Mechanism and Machine Theory*, 122(4): 347–360, 2018.

41 T. Geike, J. McPhee. Inverse dynamic analysis of parallel manipulators with full mobility *Mechanism and Machine Theory*, 38(6): 549–562, 2003.

42 J. Guldner, V. I. Utkin. The chattering problem in sliding mode system. 14th Int. Symp. Math. Theory Netw. Syst. (MTNS), Perpignan, France, 2000.

43 M. Honegger, R. Brega, G. Schweitzer. Application of a nonlinear adaptive controller to a 6 dof parallel manipulator. *Robotics and Automation, 2000. Proceedings. ICRA'00. IEEE International Conference on*, 1930–1935, IEEE, 2000.

44 H. Hu, P-Y. Woo. Fuzzy supervisory sliding-mode and neural-network control for robotic manipulators. *IEEE Transactions on Industrial Electronics*, 53(3): 929–940, 2006.

45 E. Jarzebowska. Quasi-coordinates based dynamics modeling and control design for nonholonomic systems. *Nonlinear Analysis: Theory, Methods and Applications*, 71(12):118 – 131, 2009.

46 E. Jarzebowska. *Model-based tracking control of nonlinear systems*. Chapman and Hall/CRC, 2016.

47 Y. Jiang, T. Li, L. Wang, F. Chen. Improving tracking accuracy of a novel 3-DOF redundant planar parallel kinematic machine. *Mechanism and Machine Theory*, 119: 198–218, 2018.

48 P. C. Kaminski. Mecânica geral para engenheiros. Edgard Blücher, 2000.

49 T. R. Kane, D.A. Levinson. *Dynamics: theory and applications*. New York: McGraw-Hill; 1985.

50 W. Khalil, E. Dombre. *Modeling, Identification and Control of Robots*. Taylor & Francis, 2002.

51 W. Khalil, O. Ibrahim. General Solution for the Dynamic Modeling of Parallel Robots *Journal of Intelligent and Robotic Systems*, 49(1): 19–37, 2007.

52 W. A. Khan, V. N. Krovi, S. K. Saha, J. Angeles. Recursive kinematics and inverse dynamics for a planar 3R parallel manipulator *Journal of Dynamic Systems*, *Measurement, and Control*, 127(4): 529–536, 2005.

53 H. Kordjazi, A. Akbarzadeh. Inverse dynamics of a 3-prismatic-revolute-revolute planar parallel manipulator using natural orthogonal complement *Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering*, 225(2):258–269, 2011.

54 V. D. Kumazawa, T. A. Hess Coelho, D. Rinaudi, G. Carbone, M. Ceccarelli. Kinematic analysis and operation feasibility of a 3-dof asymmetric parallel mechanism. In 20th COBEM, Gramado, Brazil, Paper No. COB09-0744, 2009.

55 Y. Li, S. Staicu. Inverse dynamics of a 3-PRC parallel kinematic machine *Nonlinear Dynamics*, 67(2): 1031–1041, 2012.

56 Y-W. Li, J-S. Wang, L-P. Wang, X-J. Liu. Inverse dynamics and simulation of a 3-DOF spatial parallel manipulator 2003 IEEE International Conference on Robotics and Automation, 3: 4092-4097, 2003.

57 Q. Li, F. X. Wu. Control performance improvement of a parallel robot via the design for control approach *Mechatronics*, 14(8): 947–964, 2004.

58 Y. Li, Q. Xu. Dynamic modeling and robust control of a 3-PRC translational parallel kinematic machine *Robotics and Computer-Integrated Manufacturing*, 25(3): 630–640, 2009.

59 Y. Li, Q. Xu. Kinematics and inverse dynamics analysis for a general 3-PRS spatial parallel mechanism *Robotica*, 23(2): 219–229, 2005.

60 O. Linda, M. Manic. Uncertainty-robust design of interval type-2 fuzzy logic controller for delta parallel robot *Industrial Informatics, IEEE Transactions on*, 7(4): 661–670, 2011.

61 H. Lipkin. A note on denavit-hartenberg notation in robotics ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 921–926, American Society of Mechanical Engineers, 2005.

62 L. Mariti, N. P. Belfiore, E. Pennestri, P. P. Valentini. Comparison of solution strategies for multibody dynamics equations *International Journal for Numerical Methods in Engineering*, 88(7): 637–656, 2011.

63 J-P. Merlet. Still a long way to go on the road for parallel mechanisms In ASME DETC Conference, Montreal, 2002, 2002.

64 J-P. Merlet, C. Gosselin. Parallel Mechanisms and Robots. *Springer Handbook of Robotics*, Edited by B. Siciliano and O. Khatib, 269–286, 2008.

65 G. Monsees. Discrete-Time Sliding Mode Control. *Doctoral Thesis - Delft University* of *Technology*, 2002.

66 P. E. Nikravesh. *Computer-aided analysis of mechanical systems*. Prentice Hall, 1988.

67 R. M. M. Orsino, T. A. H. Coelho. A contribution for developing more efficient dynamic modelling algorithms of parallel robots *International Journal of Mechanisms and Robotic Systems*, 1(1): 15 – 34, 2013.

68 R. M. M. Orsino, T. A. H. Coelho, C. P. Pesce. Analytical mechanics approaches in the dynamic modelling of Delta mechanism *Robotica*, 33(4): 953–973, 2015.

69 R. M. M. Orsino, A. G. Coutinho, T. A. H. Coelho. Dynamic Modelling and Control of Balanced Parallel Mechanisms *Dynamic Balancing of Mechanisms and Synthesizing of Parallel Robots*, 403–445, Springer International Publishing, 2016.

70 R. M. M. Orsino, T. A. H. Coelho. A contribution on the modular modelling of multibody systems *Proc. Royal Society A*, 471(2183), The Royal Society, 2015.

71 A. Pashkevich, D. Chablat, P. Wenger. Kinematics and Workspace Analysis of a Three-Axis Parallel Manipulator: the Orthoglide *Robotica*, 24: 39–49, 2006.

72 M. Pekal, J. Fraczek. Comparison of natural complement formulations for multibody dynamics. *Journal of Theoretical and Applied Mechanics*, 54(4); 1391–1404, 2016.

73 M. Pekal, J. Fraczek. Comparison of selected formulations for multibody system dynamics with redundant constraints *Archive of Mechanical Engineering*, 63(1); 93–112, 2016.

74 P. J. Prince, J. R. Dormand. High order embedded Runge-Kutta formulae *Journal* of Computational and Applied Mathematics, 7(1): 67–75, 1981.

75 A. G. Ruiz, J. C. Santos, J. Croes, W. Desmet, M. M. da Silva. On redundancy resolution and energy consumption of kinematically redundant planar parallel manipulators *Robotica*, 36: 1–13, 2018.

76 N. Sadati, R. Ghadami. Adaptive multi-model sliding mode control of robotic manipulators using soft computing *Neurocomputing*, 71(13): 2702–2710, 2008.

77 S. K. Saha, W. O. Schiehlen. Recursive kinematics and dynamics for closed loop multibody systems *Int. J. of Mechanics of Structures and Machines*, 29: 143–175, 2001.

78 W. Shang, S. Cong Nonlinear computed torque control for a high-speed planar parallel manipulator *Mechatronics*, 19(6): 987–992, 2009.

79 T-N. Shiau, Y-J. Tsai, M-S. Tsai. Nonlinear dynamic analysis of a parallel mechanism with consideration of joint effects *Mechanism and Machine Theory*, 43(4): 491–505, 2008.

80 A. Shukla, H. Karki. Modeling simulation & control of 6-DOF Parallel Manipulator using PID controller and compensator *IFAC Proceedings Volumes*, 47(1): 421–428, 2014.

81 B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo. *Robotics: modelling, planning and control.* Springer Science & Business Media, 2010.

82 Y. Singh, M. Santhakumar. Inverse dynamics and robust sliding mode control of a planar parallel (2-PRP and 1-PPR) robot augmented with a nonlinear disturbance observer *Mechanism and Machine Theory*, 92: 29–50, 2015.

83 Y. Singh, V. Vinoth, Y. R. Kiran, J. K. Mohanta, M. Santhakumar. Inverse dynamics and control of a 3-DOF planar parallel (U-shaped 3-PPR) manipulator *Robotics and Computer-Integrated Manufacturing*, 34: 164–179, 2015.

84 Y. Singh, V. Vinoth, M. Santhakumar. Dynamic Modelling and Control of a 3-DOF Planar Parallel Robotic (XYTheta Motion) Platform *Procedia Materials Science*, 5: 1528–1539, 2014.

85 J-J. E. Slotine, W. Li. Applied nonlinear control. Prentice Hall, 1991.

86 J-J. E. Slotine. The robust control of robot manipulators *The International Journal* of Robotics Research, 4(2): 49–64, 1985.

87 J-J. E. Slotine, W. Li. On the adaptive control of robot manipulators *The International Journal of Robotics Research*, 6(3): 49–59, 1987.

88 M. W. Spong, S. Hutchinson, M. Vidyasagar. *Robot modeling and control*. Wiley New York, 2006.

89 S. Staicu. Relations matricielles de récurrence en dynamique des mécanismes *Revue Roumaine des Sciences Techniques—Série de Mécanique Appliquée*, 50(1–3):15–28, 2005.

90 S. Staicu. Inverse dynamics of the 3-PRR planar parallel robot *Robotics and* Autonomous Systems, 57(5): 556–563, 2009.

91 S. Staicu. Recursive modelling in dynamics of Delta parallel robot *Robotica*, 27(2): 199–207, 2009.

92 S. Staicu. Recursive modelling in dynamics of Agile Wrist spherical parallel robot *Robotics and Computer-Integrated Manufacturing*, 25(2): 409–416, 2009.

93 S. Staicu, D. C. Carp-Ciocardia. Dynamic analysis of Clavel's Delta parallel robot 2003 IEEE International Conference on Robotics and Automation, 3: 4116–4121, 2003.

94 S. Staicu, X-J. Liu, J. Wang. Inverse dynamics of the HALF parallel manipulator with revolute actuators *Nonlinear Dynamics*, 50:(1), 1–12, 2007.

95 S. Staicu, D. Zhang. A novel dynamic modelling approach for parallel mechanisms analysis *Robotics and Computer-Integrated Manufacturing*, 24(1): 167–172, 2008.

96 S. Staicu, D. Zhang, R. Rugescu. Dynamic modelling of a 3-DOF parallel manipulator using recursive matrix relations *Robotica*, 24(1): 125–130, 2006.

97 I. Stevani, A. G. Coutinho, D. Cólon, T. A. H. Coelho. H-Infinity Control of a 3-DOF RRR Spatial Serial Mechanism *Congresso Brasileiro de Automática 2018 Conference Proceedings ISSN: 2525-8311*, doi:10.20906/CPS/CBA2018-0458, 2018.

98 R. A. Tenenbaum. *Fundamentals of Applied Dynamics*. Springer Science & Business Media, 2006.

99 G. S. Toscano, H. Simas, E. B. Castelan, D. Martins. A new kinetostatic model for humanoid robots using screw theory *Robotica*, 1: 1–18, 2018.

100 L. W. Tsai. *Robot Analysis: The Mechanics of Serial and Parallel Manipulators*. John Wiley & Sons, 1999.

101 V. Utkin, J. Guldner, J. Shi. *Sliding mode control in electro-mechanical systems*. Vol. 34. CRC press, 2009.

102 V. Utkin, H. Lee Chattering problem in sliding mode control systems *International* Workshop on Variable Structure Systems, 2006. VSS'06, 346–350, 2006.

103 A. Vivas, P. Poignet. Predictive functional control of a parallel robot *Control Engineering Practice*, 13(7): 863–874, 2005.

104 K. Waldron, J. Schmiedeler. Kinematics *Springer Handbook of Robotics*, Edited by B. Siciliano and O. Khatib, 9–34, 2008.

105 J. Wang, J. Wu, L. Wang, Z. You. Dynamic feed-forward control of a parallel kinematic machine *Mechatronics*, 19(3): 313–324, 2009.

106 J. Wu, J. Wang, L. Wang, T. Li. Dynamics and control of a planar 3-DOF parallel manipulator with actuation redundancy *Mechanism and Machine Theory*, 44(4): 835–849, 2009.

107 F. Xi, R. Sinatra. Inverse dynamics of hexapods using the natural orthogonal complement method *Journal of manufacturing systems*, 21(2): 73–82, 2002.

108 J. Yao, W. Gu, Z. Feng, L. Chen, Y. Xu, Y. Zhao. Dynamic analysis and driving force optimization of a 5-DOF parallel manipulator with redundant actuation *Robotics and Computer-Integrated Manufacturing*, 48: 51–58, 2017.

109 P-L. Yen, C-C. Lai. Dynamic modeling and control of a 3-DOF Cartesian parallel manipulator *Mechatronics*, 19(3): 390–398, 2009.

110 M. Zeinali, L. Notash. Adaptive sliding mode control with uncertainty estimator for robot manipulators *Mechanism and Machine Theory*, 45(1): 80–90, 2010.

111 Z. Zhan, X. Zhang, Z. Jian, H. Zhang. Error modelling and motion reliability analysis of a planar parallel manipulator with multiple uncertainties *Mechanism and Machine Theory*, 124: 55–72, 2018.

112 Xu. Zhang, Xi. Zhang, Z. Chen. Dynamic analysis of a 3-RRR parallel mechanism with multiple clearance joints *Mechanism and Machine Theory*, 78: 105-115, 2014.

113 Y. Zhao, F. Gao. Inverse dynamics of the 6-dof out-parallel manipulator by means of the principle of virtual work *Robotica*, 27(2): 259–268, 2009.

114 Y. Zhao, F. Gao. Dynamic formulation and performance evaluation of the redundant parallel manipulator *Robotics and Computer-Integrated Manufacturing*, 25(4): 770–781, 2009.

115 Z. Zhu, J. Li, Z. Gan, H. Zhang. Kinematic and dynamic modelling for real-time control of Tau parallel robot *Mechanism and Machine Theory*, 40(9): 1051–1067, 2005.

116 A. Zubizarreta, I. Cabanes, M. Marcos, C. Pinto, E. Portillo. Extended CTC control for parallel robots *Emerging Technologies and Factory Automation (ETFA)*, 2010 IEEE Conference on, 1–8, IEEE, 2010.

117 A. Zubizarreta, I. Cabanes, M. Marcos, C. Pinto. Control of parallel robots using passive sensor data 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2398–2403, IEEE, 2008.

118 A. Zubizarreta, I. Cabanes, M. Marcos, C. Pinto. A redundant dynamic model of parallel robots for model-based control *Robotica*, 31(2): 203–216, 2013.

119 A. Zubizarreta, M. Marcos, I. Cabanes, C. Pinto, E. Portillo. Redundant sensor based control of the 3RRR parallel robot *Mechanism and machine theory*, 54(1): 1–17, 2012.

# APÊNDICE A – CINEMÁTICA DE CORPOS RÍGIDOS

Este apêndice tem o intuito de apresentar os conceitos de derivada temporal de vetores em relação a um referencial, as definições de velocidade e aceleração, as equações de campos de velocidades e acelerações em um corpo rígido, e os princípios de composição de movimento.

Algumas equações serão destacadas através de cores. A cor roxa indica equações de destaque no desenvolvimento. A cor salmão indica equações de destaque secundário no desenvolvimento.

## A.1 Conceitos básicos

#### A.1.1 Produto vetorial

Para a realização do cálculo de derivadas vetoriais, frequentemente é necessário o uso do produto vetorial. A notação para o operador produto vetorial utilizada será o " $\wedge$ ". Com o intuito de deixar as equações mais legíveis, iremos adotar as seguintes convenções:

$$\boldsymbol{a} \wedge (\boldsymbol{b} \wedge \boldsymbol{c}) \equiv \boldsymbol{a} \wedge \boldsymbol{b} \wedge \boldsymbol{c} \tag{A.1}$$

$$\boldsymbol{a} \wedge (\boldsymbol{b} \wedge (\boldsymbol{c} \wedge \boldsymbol{d})) \equiv \boldsymbol{a} \wedge \boldsymbol{b} \wedge \boldsymbol{c} \wedge \boldsymbol{d}$$
(A.2)

Além disso, vale destacar algumas propriedades básicas do produto vetorial que serão utilizadas durante o texto:

$$\boldsymbol{a} \wedge \boldsymbol{a} = \boldsymbol{0} \tag{A.3}$$

$$\boldsymbol{a} \wedge \boldsymbol{b} = -\boldsymbol{b} \wedge \boldsymbol{a} \tag{A.4}$$

$$\boldsymbol{a} \wedge (\boldsymbol{b} + \boldsymbol{c}) = \boldsymbol{a} \wedge \boldsymbol{b} + \boldsymbol{a} \wedge \boldsymbol{c} \tag{A.5}$$

$$(\lambda \mathbf{a}) \wedge \mathbf{b} = \mathbf{a} \wedge (\lambda \mathbf{b}) = \lambda (\mathbf{a} \wedge \mathbf{b}) \tag{A.6}$$

Também é possível definir o produto vetorial para matrizes-coluna de ordem 3. Sejam  $a \in b$  dois vetores e A um sistema de coordenadas.

Definindo:

$$\mathbb{S}(\mathbf{0}) = \begin{bmatrix} \mathbf{0} & -a_3 & a_2 \\ a_3 & \mathbf{0} & -a_1 \\ -a_2 & a_1 & \mathbf{0} \end{bmatrix}$$
(A.7)

Sendo

$$\mathbf{c} = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}^\mathsf{T} \tag{A.8}$$

Temos que

$$[\boldsymbol{a} \wedge \boldsymbol{b}]_{\mathbb{A}} = \mathbb{S}([\boldsymbol{a}]_{\mathbb{A}}) \cdot [\boldsymbol{b}]_{\mathbb{A}} = -\mathbb{S}([\boldsymbol{b}]_{\mathbb{A}}) \cdot [\boldsymbol{a}]_{\mathbb{A}}$$
(A.9)

#### A.1.2 Derivada temporal de versores

Seja  $\hat{\mathbf{x}}_{\scriptscriptstyle B}$  um versor fixo ao referencial  $\mathcal{B}$ . A derivada temporal de  $\hat{\mathbf{x}}_{\scriptscriptstyle B}$  em relação ao referencial  $\mathcal{A}$  é definida como:

$$\frac{\mathsf{d}^{[\mathcal{A}]}\hat{\boldsymbol{x}}_{\scriptscriptstyle{\mathcal{B}}}}{\mathsf{d}t} = \dot{\boldsymbol{x}}_{\scriptscriptstyle{\mathcal{B}}}^{[\mathcal{A}]} = \boldsymbol{\omega}_{\scriptscriptstyle{\mathcal{B}}}^{\scriptscriptstyle{\mathcal{A}}} \wedge \hat{\boldsymbol{x}}_{\scriptscriptstyle{\mathcal{B}}}$$
(A.10)

#### A.1.3 Derivada temporal de vetores

Seja B um sistema de coordenadas fixo ao referencial  $\mathcal{B} \in \mathbf{x}$  um vetor cuja decomposição na base de B é conhecida e dada por  $\mathbf{x} = x\hat{\mathbf{i}}_{B} + y\hat{\mathbf{j}}_{B} + z\hat{\mathbf{k}}_{B}$ . A derivada temporal de  $\mathbf{x}$  em relação ao referencial  $\mathcal{A}$  é definida como:

$$\frac{\mathsf{d}^{[A]}\boldsymbol{x}}{\mathsf{d}t} = \dot{\boldsymbol{x}}^{[A]} = \dot{x}\hat{\boldsymbol{i}}_{\mathsf{B}} + \dot{y}\hat{\boldsymbol{j}}_{\mathsf{B}} + \dot{z}\hat{\boldsymbol{k}}_{\mathsf{B}} + x\dot{\boldsymbol{j}}_{\mathsf{B}}^{[A]} + y\dot{\boldsymbol{j}}_{\mathsf{B}}^{[A]} + z\dot{\boldsymbol{k}}_{\mathsf{B}}^{[A]} 
= \dot{x}\hat{\boldsymbol{i}}_{\mathsf{B}} + \dot{y}\hat{\boldsymbol{j}}_{\mathsf{B}} + \dot{z}\hat{\boldsymbol{k}}_{\mathsf{B}} + \boldsymbol{\omega}_{\scriptscriptstyle B}^{\scriptscriptstyle A} \wedge x\hat{\boldsymbol{i}}_{\mathsf{B}} + \boldsymbol{\omega}_{\scriptscriptstyle B}^{\scriptscriptstyle A} \wedge y\hat{\boldsymbol{j}}_{\mathsf{B}} + \boldsymbol{\omega}_{\scriptscriptstyle B}^{\scriptscriptstyle A} \wedge z\hat{\boldsymbol{k}}_{\mathsf{B}} 
= \dot{x}\hat{\boldsymbol{i}}_{\mathsf{B}} + \dot{y}\hat{\boldsymbol{j}}_{\mathsf{B}} + \dot{z}\hat{\boldsymbol{k}}_{\mathsf{B}} + \boldsymbol{\omega}_{\scriptscriptstyle B}^{\scriptscriptstyle A} \wedge (x\hat{\boldsymbol{i}}_{\mathsf{B}} + y\hat{\boldsymbol{j}}_{\mathsf{B}} + z\hat{\boldsymbol{k}}_{\mathsf{B}})$$
(A.11)

Repare que o termo  $\dot{x}\hat{\imath}_{B} + \dot{y}\hat{\jmath}_{B} + \dot{z}\hat{k}_{B}$  é a derivada temporal do vetor x no referencial  $\mathcal{B}$ . Sendo assim, temos:

$$\frac{\mathsf{d}^{[\mathcal{A}]}\boldsymbol{x}}{\mathsf{d}t} = \dot{\boldsymbol{x}}^{[\mathcal{A}]} = \dot{\boldsymbol{x}}^{[\mathcal{B}]} + \boldsymbol{\omega}_{\mathcal{B}}^{\mathcal{A}} \wedge \boldsymbol{x}$$
(A.12)

#### A.1.4 Derivada temporal de matrizes de rotação

Sejam  $\mathcal{A} \in \mathcal{B}$  dois referenciais, e  $A \in B$  dois sistemas de referência fixos a  $\mathcal{A} \in \mathcal{B}$ , respectivamente. Sendo assim, a matriz de rotação  $[\mathbf{1}]_{A|B}$  é dada por:

$$\begin{bmatrix} \mathbf{1} \end{bmatrix}_{\mathbf{A} \mid \mathbf{B}} = \begin{bmatrix} [\hat{\mathbf{i}}_{\mathbf{B}}]_{\mathbf{A}} & [\hat{\mathbf{j}}_{\mathbf{B}}]_{\mathbf{A}} & [\hat{\mathbf{k}}_{\mathbf{B}}]_{\mathbf{A}} \end{bmatrix}$$
(A.13)

Derivando (A.13), temos:

$$\frac{\mathbf{d} \left[\mathbf{1}\right]_{\mathbf{A} \mid \mathbf{B}}}{\mathbf{d} t} = \left[ \left[ \frac{\mathbf{d}^{[\mathcal{A}]} \hat{\boldsymbol{j}}_{\mathbf{B}}}{\mathbf{d} t} \right]_{\mathbf{A}} \left[ \frac{\mathbf{d}^{[\mathcal{A}]} \hat{\boldsymbol{j}}_{\mathbf{B}}}{\mathbf{d} t} \right]_{\mathbf{A}} \left[ \frac{\mathbf{d}^{[\mathcal{A}]} \hat{\boldsymbol{k}}_{\mathbf{B}}}{\mathbf{d} t} \right]_{\mathbf{A}} \right] \\
= \left[ \left[ \boldsymbol{\omega}_{\mathcal{B}}^{\mathcal{A}} \wedge \hat{\boldsymbol{j}}_{\mathbf{B}} \right]_{\mathbf{A}} \left[ \boldsymbol{\omega}_{\mathcal{B}}^{\mathcal{A}} \wedge \hat{\boldsymbol{j}}_{\mathbf{B}} \right]_{\mathbf{A}} \left[ \boldsymbol{\omega}_{\mathcal{B}}^{\mathcal{A}} \wedge \hat{\boldsymbol{k}}_{\mathbf{B}} \right]_{\mathbf{A}} \right] \\
= \left[ \mathbb{S}(\left[ \boldsymbol{\omega}_{\mathcal{B}}^{\mathcal{A}} \right]_{\mathbf{A}}) \cdot \left[ \hat{\boldsymbol{i}}_{\mathbf{B}} \right]_{\mathbf{A}} \quad \mathbb{S}(\left[ \boldsymbol{\omega}_{\mathcal{B}}^{\mathcal{A}} \right]_{\mathbf{A}}) \cdot \left[ \hat{\boldsymbol{j}}_{\mathbf{B}} \right]_{\mathbf{A}} \quad \mathbb{S}(\left[ \boldsymbol{\omega}_{\mathcal{B}}^{\mathcal{A}} \right]_{\mathbf{A}}) \cdot \left[ \hat{\boldsymbol{k}}_{\mathbf{B}} \right]_{\mathbf{A}} \right] \\
= \mathbb{S}(\left[ \boldsymbol{\omega}_{\mathcal{B}}^{\mathcal{A}} \right]_{\mathbf{A}}) \cdot \left[ \left[ \hat{\boldsymbol{i}}_{\mathbf{B}} \right]_{\mathbf{A}} \left[ \hat{\boldsymbol{j}}_{\mathbf{B}} \right]_{\mathbf{A}} \left[ \hat{\boldsymbol{k}}_{\mathbf{B}} \right]_{\mathbf{A}} \right] \tag{A.14}$$

Portanto:

$$\frac{\mathsf{d}\left[\mathbf{1}\right]_{\mathsf{A}|\mathsf{B}}}{\mathsf{d}t} = \mathbb{S}(\left[\boldsymbol{\omega}_{\mathsf{B}}^{\mathsf{A}}\right]_{\mathsf{A}}) \cdot \left[\mathbf{1}\right]_{\mathsf{A}|\mathsf{B}}$$
(A.15)

#### A.1.5 Definição de vetor velocidade

Supondo que o ponto  $\circ$  esteja fixo a  $\mathcal{A}$ , a velocidade do ponto p em relação ao referencial  $\mathcal{A}$  é definida como:

$$\boldsymbol{v}_{\mathrm{p}}^{\mathrm{A}} = \frac{\mathsf{d}^{[\mathrm{A}]}\boldsymbol{r}_{\mathrm{o}|\mathrm{p}}}{\mathsf{d}t} = \dot{\boldsymbol{r}}_{\mathrm{o}|\mathrm{p}}^{[\mathrm{A}]} \tag{A.16}$$

Caso o não esteja fixo a  $\mathcal{A}$ , temos que:

$$\frac{\mathsf{d}^{[\mathcal{A}]}\boldsymbol{r}_{\mathsf{o}|\mathsf{p}}}{\mathsf{d}t} = \dot{\boldsymbol{r}}_{\mathsf{o}|\mathsf{p}}^{[\mathcal{A}]} = \boldsymbol{v}_{\mathsf{p}}^{\mathcal{A}} - \boldsymbol{v}_{\mathsf{o}}^{\mathcal{A}}$$
(A.17)

#### A.1.6 Definição de vetor aceleração

A aceleração do ponto p em relação ao referencial  ${\cal A}$  é definida como:

$$\boldsymbol{a}_{\mathrm{p}}^{\scriptscriptstyle\mathcal{A}} = \frac{\mathsf{d}^{[\mathcal{A}]}\boldsymbol{v}_{\mathrm{p}}^{\scriptscriptstyle\mathcal{A}}}{\mathsf{d}t} \tag{A.18}$$

#### A.1.7 Definição de vetor aceleração angular

A aceleração angular do corpo  ${\mathcal B}$  em relação ao referencial  ${\mathcal A}$  é definida como:

$$\boldsymbol{\alpha}_{\scriptscriptstyle B}^{\scriptscriptstyle A} = \frac{\mathsf{d}^{[A]} \boldsymbol{\omega}_{\scriptscriptstyle B}^{\scriptscriptstyle A}}{\mathsf{d}t} \tag{A.19}$$

## A.2 Equações de campos de velocidades e acelerações

Esta subseção tem o intuito de apresentar as equações básicos da cinemática de corpos rígidos, as equações de campos de velocidades e acelerações.

#### A.2.1 Equação do campo de velocidades

Sejam  $p \in o$  dois pontos pertencentes a um corpo rígido  $\mathcal{B}$ , e  $\mathcal{A}$  um referencial. Podemos relacionar a velocidades dos ponto  $p \in o$  em relação a  $\mathcal{A}$  através da equação do campo de velocidades:

$$\boldsymbol{v}_{\mathbf{p}}^{\mathcal{A}} = \boldsymbol{v}_{\mathbf{o}}^{\mathcal{A}} + \boldsymbol{\omega}_{\mathcal{B}}^{\mathcal{A}} \wedge \boldsymbol{r}_{\mathbf{o} \mid \mathbf{p}}$$
(A.20)

#### A.2.2 Equação do campo de acelerações

Derivando (A.20) no tempo em relação a  $\mathcal{A}$ , temos:

$$\boldsymbol{a}_{p}^{\scriptscriptstyle A} = \boldsymbol{a}_{o}^{\scriptscriptstyle A} + \boldsymbol{\alpha}_{\scriptscriptstyle B}^{\scriptscriptstyle A} \wedge \boldsymbol{r}_{o|p} + \boldsymbol{\omega}_{\scriptscriptstyle B}^{\scriptscriptstyle A} \wedge (\boldsymbol{v}_{p}^{\scriptscriptstyle A} - \boldsymbol{v}_{o}^{\scriptscriptstyle A})$$
(A.21)

Substituindo (A.20) em (A.21), obtemos a equação do campo de acelerações:

$$\boldsymbol{a}_{p}^{\scriptscriptstyle A} = \boldsymbol{a}_{o}^{\scriptscriptstyle A} + \boldsymbol{\alpha}_{\scriptscriptstyle B}^{\scriptscriptstyle A} \wedge \boldsymbol{r}_{o|p} + \boldsymbol{\omega}_{\scriptscriptstyle B}^{\scriptscriptstyle A} \wedge \boldsymbol{\omega}_{\scriptscriptstyle B}^{\scriptscriptstyle A} \wedge \boldsymbol{r}_{o|p}$$
(A.22)

## A.3 Composição de movimentos

Esta subseção tem o intuito de apresentar um dos princípios básicos da cinemática de corpos rígidos, a composição de movimentos.

#### A.3.1 Composição de velocidades lineares

Sejam  $\mathcal{A}$  um referencial, e  $\mathbf{A}$  um sistema de coordenadas fixo a  $\mathcal{A}$ , definido pela origem  $\mathbf{o}_{\mathbf{A}}$  e pelos versores  $\hat{\boldsymbol{\imath}}_{\mathbf{A}}$ ,  $\hat{\boldsymbol{\jmath}}_{\mathbf{A}}$  e  $\hat{\boldsymbol{k}}_{\mathbf{A}}$ . Sejam também  $\mathcal{B}$  um referencial,  $\mathbf{B}$  um sistema de coordenadas fixo a  $\mathcal{B}$ , definido pela origem  $\mathbf{o}_{\mathbf{B}}$  e pelos versores  $\hat{\boldsymbol{\imath}}_{\mathbf{B}}$ ,  $\hat{\boldsymbol{\jmath}}_{\mathbf{B}}$  e  $\hat{\boldsymbol{k}}_{\mathbf{B}}$ , e p um ponto no espaço. Definindo os vetores  $\boldsymbol{r}_{\mathbf{o}_{\mathbf{A}}\mid\mathbf{o}_{\mathbf{B}}}$ ,  $\boldsymbol{r}_{\mathbf{o}_{\mathbf{B}}\mid\mathbf{p}}$  e  $\boldsymbol{r}_{\mathbf{o}_{\mathbf{A}}\mid\mathbf{p}}$  tem-se que:

$$\mathbf{r}_{\mathbf{o}_{\mathsf{A}}|\mathsf{p}} = \mathbf{r}_{\mathbf{o}_{\mathsf{A}}|\mathsf{o}_{\mathsf{B}}} + \mathbf{r}_{\mathbf{o}_{\mathsf{B}}|\mathsf{p}} \tag{A.23}$$

Derivando (A.23) no tempo em relação a  $\mathcal{A}$ , temos:

$$\boldsymbol{v}_{\mathbf{p}}^{\mathcal{A}} = \boldsymbol{v}_{\mathbf{o}_{\mathsf{B}}}^{\mathcal{A}} + \dot{\boldsymbol{r}}_{\mathbf{o}_{\mathsf{B}}|\mathbf{p}}^{[\mathcal{A}]}$$
(A.24)

Utilizando a equação (A.12), temos que:

$$\dot{\boldsymbol{r}}_{\mathsf{o}_{\mathsf{B}}|\mathsf{p}}^{[\mathcal{A}]} = \dot{\boldsymbol{r}}_{\mathsf{o}_{\mathsf{B}}|\mathsf{p}}^{[\mathcal{B}]} + \boldsymbol{\omega}_{\mathcal{B}}^{\mathcal{A}} \wedge \boldsymbol{r}_{\mathsf{o}_{\mathsf{B}}|\mathsf{p}}$$
(A.25)

Ou seja:

$$\dot{\boldsymbol{r}}_{\mathsf{o}_{\mathsf{B}}|\mathsf{p}}^{[\mathcal{A}]} = \boldsymbol{v}_{\mathsf{p}}^{\mathcal{B}} + \boldsymbol{\omega}_{\mathcal{B}}^{\mathcal{A}} \wedge \boldsymbol{r}_{\mathsf{o}_{\mathsf{B}}|\mathsf{p}}$$
(A.26)

Substituindo (A.26) em (A.24), temos:

$$\boldsymbol{v}_{p}^{\mathcal{A}} = \boldsymbol{v}_{o_{B}}^{\mathcal{A}} + \boldsymbol{\omega}_{B}^{\mathcal{A}} \wedge \boldsymbol{r}_{o_{B}|p} + \boldsymbol{v}_{p}^{\mathcal{B}}$$
(A.27)

Definindo:

$$\boldsymbol{v}_{\mathbf{p}|\mathcal{B}}^{\mathcal{A}} = \boldsymbol{v}_{\mathbf{o}_{\mathsf{B}}}^{\mathcal{A}} + \boldsymbol{\omega}_{\mathcal{B}}^{\mathcal{A}} \wedge \boldsymbol{r}_{\mathbf{o}_{\mathsf{B}}|\mathbf{p}}$$
(A.28)

Temos princípio da composição de movimento para velocidades lineares:

$$\boldsymbol{v}_{p}^{\mathcal{A}} = \boldsymbol{v}_{p \mid \mathcal{B}}^{\mathcal{A}} + \boldsymbol{v}_{p}^{\mathcal{B}}$$
(A.29)

Ou seja,  $\mathbf{v}_{\mathbf{p}}^{\scriptscriptstyle A}$  é composto pela soma de  $\mathbf{v}_{\mathbf{p}|_{\mathcal{B}}}^{\scriptscriptstyle A}$ , que seria a velocidade de p<br/> se p estivesse fixo a  $\mathcal{B}$  (movimento de arrastamento), <br/>e $\mathbf{v}_{\mathbf{p}}^{\scriptscriptstyle B}$ , que é a velocidade de p em relação a  $\mathcal{B}$  (movimento relativo).

#### A.3.2 Composição de acelerações lineares

Derivando (A.27) no tempo em relação a  $\mathcal{A}$ , temos:

$$\boldsymbol{a}_{p}^{\scriptscriptstyle A} = \boldsymbol{a}_{o_{\scriptscriptstyle B}}^{\scriptscriptstyle A} + \boldsymbol{\alpha}_{\scriptscriptstyle B}^{\scriptscriptstyle A} \wedge \boldsymbol{r}_{o_{\scriptscriptstyle B} \mid p} + \boldsymbol{\omega}_{\scriptscriptstyle B}^{\scriptscriptstyle A} \wedge \boldsymbol{\dot{r}}_{o_{\scriptscriptstyle B} \mid p}^{\scriptscriptstyle [A]} + \boldsymbol{\omega}_{\scriptscriptstyle B}^{\scriptscriptstyle A} \wedge \boldsymbol{v}_{p}^{\scriptscriptstyle B} + \boldsymbol{a}_{p}^{\scriptscriptstyle B}$$
(A.30)

Substituindo (A.26) em (A.30), temos:

$$\boldsymbol{a}_{p}^{\scriptscriptstyle A} = \boldsymbol{a}_{o_{\scriptscriptstyle B}}^{\scriptscriptstyle A} + \boldsymbol{\alpha}_{\scriptscriptstyle B}^{\scriptscriptstyle A} \wedge \boldsymbol{r}_{o_{\scriptscriptstyle B}|_{\scriptscriptstyle P}} + \boldsymbol{\omega}_{\scriptscriptstyle B}^{\scriptscriptstyle A} \wedge \boldsymbol{\omega}_{\scriptscriptstyle B}^{\scriptscriptstyle A} \wedge \boldsymbol{r}_{o_{\scriptscriptstyle B}|_{\scriptscriptstyle P}} + 2\boldsymbol{\omega}_{\scriptscriptstyle B}^{\scriptscriptstyle A} \wedge \boldsymbol{v}_{p}^{\scriptscriptstyle B} + \boldsymbol{a}_{p}^{\scriptscriptstyle B}$$
(A.31)

Definindo:

$$\boldsymbol{a}_{\mathbf{p}|_{\mathcal{B}}}^{\mathcal{A}} = \boldsymbol{a}_{\mathbf{o}_{\mathsf{B}}}^{\mathcal{A}} + \boldsymbol{\alpha}_{\mathcal{B}}^{\mathcal{A}} \wedge \boldsymbol{r}_{\mathbf{o}_{\mathsf{B}}|_{\mathsf{P}}} + \boldsymbol{\omega}_{\mathcal{B}}^{\mathcal{A}} \wedge \boldsymbol{\omega}_{\mathcal{B}}^{\mathcal{A}} \wedge \boldsymbol{r}_{\mathbf{o}_{\mathsf{B}}|_{\mathsf{P}}}$$
(A.32)

Temos princípio da composição de movimento para acelerações lineares:

$$\boldsymbol{a}_{\mathrm{p}}^{\scriptscriptstyle A} = \boldsymbol{a}_{\mathrm{p}}^{\scriptscriptstyle A}{}_{\scriptscriptstyle B} + \boldsymbol{a}_{\mathrm{p}}^{\scriptscriptstyle B} + 2\boldsymbol{\omega}_{\scriptscriptstyle B}^{\scriptscriptstyle A} \wedge \boldsymbol{v}_{\mathrm{p}}^{\scriptscriptstyle B}$$
(A.33)

Ou seja,  $\boldsymbol{a}_{p}^{\scriptscriptstyle A}$  é composto pela soma de  $\boldsymbol{a}_{p\mid B}^{\scriptscriptstyle A}$ , que seria a aceleração de p<br/> se p estivesse fixo a  $\mathcal{B}$  (aceleração de arrastamento),  $\boldsymbol{a}_{p}^{\scriptscriptstyle B}$ , que é a aceleração de p<br/> em relação a  $\mathcal{B}$  (aceleração relativa), e da parcel<br/>a $2\boldsymbol{\omega}_{B}^{\scriptscriptstyle A} \wedge \boldsymbol{v}_{p}^{\scriptscriptstyle B}$  (aceleração complementar).

#### A.3.3 Composição de velocidades angulares

Sejam  $\mathcal{A}$  e  $\mathcal{B}$  dois referenciais e  $\mathcal{C}$  um corpo rígido. Sejam também os pontos  $p_1$  e  $p_2$ , ambos fixos a  $\mathcal{C}$ .

Aplicando o princípio da composição de movimento para velocidades lineares, temos que:

$$\boldsymbol{\nu}_{\mathbf{p}_1}^{\scriptscriptstyle\mathcal{A}} = \boldsymbol{\nu}_{\mathbf{p}_1\mid \scriptscriptstyle\mathcal{B}}^{\scriptscriptstyle\mathcal{A}} + \boldsymbol{\nu}_{\mathbf{p}_1}^{\scriptscriptstyle\mathcal{B}} \tag{A.34}$$

$$\boldsymbol{v}_{\mathbf{p}_2}^{\scriptscriptstyle A} = \boldsymbol{v}_{\mathbf{p}_2 \mid \scriptscriptstyle B}^{\scriptscriptstyle A} + \boldsymbol{v}_{\mathbf{p}_2}^{\scriptscriptstyle B} \tag{A.35}$$

A partir da equação (A.28), temos que:

$$\boldsymbol{v}_{\mathbf{p}_1\mid_{\mathcal{B}}}^{\mathcal{A}} = \boldsymbol{v}_{\mathbf{o}_{\mathsf{B}}}^{\mathcal{A}} + \boldsymbol{\omega}_{\mathcal{B}}^{\mathcal{A}} \wedge \boldsymbol{r}_{\mathbf{o}_{\mathsf{B}}\mid_{\mathbf{p}_1}}$$
(A.36)

$$\boldsymbol{v}_{\mathbf{p}_{2}\mid_{\mathcal{B}}}^{\mathcal{A}} = \boldsymbol{v}_{\mathbf{o}_{B}}^{\mathcal{A}} + \boldsymbol{\omega}_{\mathcal{B}}^{\mathcal{A}} \wedge \boldsymbol{r}_{\mathbf{o}_{B}\mid_{\mathbf{p}_{2}}}$$
(A.37)

Sendo assim, temos:

$$\boldsymbol{v}_{p_1}^{\scriptscriptstyle A} = \boldsymbol{v}_{o_{\scriptscriptstyle B}}^{\scriptscriptstyle A} + \boldsymbol{\omega}_{\scriptscriptstyle B}^{\scriptscriptstyle A} \wedge \boldsymbol{r}_{o_{\scriptscriptstyle B} \mid p_1} + \boldsymbol{v}_{p_1}^{\scriptscriptstyle B}$$
(A.38)

$$\boldsymbol{v}_{p_2}^{\scriptscriptstyle A} = \boldsymbol{v}_{o_{\scriptscriptstyle B}}^{\scriptscriptstyle A} + \boldsymbol{\omega}_{\scriptscriptstyle B}^{\scriptscriptstyle A} \wedge \boldsymbol{r}_{o_{\scriptscriptstyle B} \mid p_2} + \boldsymbol{v}_{p_2}^{\scriptscriptstyle B}$$
(A.39)

Subtraindo (A.39) de (A.38), temos:

$$\boldsymbol{v}_{p_1}^{\scriptscriptstyle A} - \boldsymbol{v}_{p_2}^{\scriptscriptstyle A} = \boldsymbol{\omega}_{\scriptscriptstyle B}^{\scriptscriptstyle A} \wedge \boldsymbol{r}_{p_2 \mid p_1} + \boldsymbol{v}_{p_1}^{\scriptscriptstyle B} - \boldsymbol{v}_{p_2}^{\scriptscriptstyle B}$$
(A.40)

Como  $p_1 \mbox{ e } p_2$  pertencem a um mesmo corpo rígido, temos que:

$$\boldsymbol{v}_{p_1}^{\scriptscriptstyle\mathcal{A}} = \boldsymbol{v}_{p_2}^{\scriptscriptstyle\mathcal{A}} + \boldsymbol{\omega}_{e}^{\scriptscriptstyle\mathcal{A}} \wedge \boldsymbol{r}_{p_2 \mid p_1}$$
(A.41)

$$\boldsymbol{v}_{p_1}^{\scriptscriptstyle B} = \boldsymbol{v}_{p_2}^{\scriptscriptstyle B} + \boldsymbol{\omega}_{e}^{\scriptscriptstyle B} \wedge \boldsymbol{r}_{p_2 \mid p_1}$$
(A.42)

Substituindo (A.41) e (A.42) em (A.40):

$$\boldsymbol{\omega}_{e}^{A} \wedge \boldsymbol{r}_{p_{2}|p_{1}} = \boldsymbol{\omega}_{B}^{A} \wedge \boldsymbol{r}_{p_{2}|p_{1}} + \boldsymbol{\omega}_{e}^{B} \wedge \boldsymbol{r}_{p_{2}|p_{1}}$$
(A.43)

Temos princípio da composição de movimento para velocidades angulares:

$$\boldsymbol{\omega}_{e}^{A} = \boldsymbol{\omega}_{B}^{A} + \boldsymbol{\omega}_{e}^{B}$$
(A.44)

Ou seja,  $\boldsymbol{\omega}_{e}^{\scriptscriptstyle A}$  é composta pela soma de  $\boldsymbol{\omega}_{\scriptscriptstyle B}^{\scriptscriptstyle A}$ , que seria velocidade angular de C se C estivesse fixo a  $\mathcal{B}$  (velocidade angular de arrastamento), e  $\boldsymbol{\omega}_{e}^{\scriptscriptstyle B}$ , que é a velocidade angular de C em relação a  $\mathcal{B}$  (velocidade angular relativa).

Repare que, fazendo  $\mathcal{C} \equiv \mathcal{A}$ , temos que:

$$\mathbf{O} = \boldsymbol{\omega}_{\scriptscriptstyle \mathcal{B}}^{\scriptscriptstyle \mathcal{A}} + \boldsymbol{\omega}_{\scriptscriptstyle \mathcal{A}}^{\scriptscriptstyle \mathcal{B}} \tag{A.45}$$

$$\therefore \boldsymbol{\omega}_{\mathcal{A}}^{\mathcal{B}} = -\boldsymbol{\omega}_{\mathcal{B}}^{\mathcal{A}}$$
(A.46)

#### A.3.4 Composição de acelerações angulares

Derivando (A.44) no tempo em relação a  $\mathcal{A}$ , temos princípio da composição de movimento para acelerações angulares:

$$\boldsymbol{\alpha}_{e}^{A} = \boldsymbol{\alpha}_{B}^{A} + \boldsymbol{\alpha}_{e}^{B} + \boldsymbol{\omega}_{B}^{A} \wedge \boldsymbol{\omega}_{e}^{B}$$
(A.47)

Ou seja,  $\boldsymbol{\alpha}_{e}^{\scriptscriptstyle{\mathcal{A}}}$  é composta pela soma de  $\boldsymbol{\alpha}_{\scriptscriptstyle{\mathcal{B}}}^{\scriptscriptstyle{\mathcal{A}}}$ , que seria a aceleração angular de  $\mathfrak{C}$  se  $\mathfrak{C}$ 

estivesse fixo a  $\mathcal{B}$  (aceleração angular de arrastamento),  $\boldsymbol{\alpha}_{e}^{\mathfrak{B}}$ , que é a aceleração angular de  $\mathcal{C}$  em relação a  $\mathcal{B}$  (aceleração angular relativa), e da parcela  $\boldsymbol{\omega}_{\mathfrak{B}}^{\mathfrak{A}} \wedge \boldsymbol{\omega}_{e}^{\mathfrak{B}}$  (aceleralção angular complementar).

Repare que, fazendo  $\mathfrak{C}\equiv \mathcal{A}$ e utilizando (A.46), temos que:

$$\mathbf{0} = \boldsymbol{\alpha}_{\scriptscriptstyle B}^{\scriptscriptstyle A} + \boldsymbol{\alpha}_{\scriptscriptstyle A}^{\scriptscriptstyle B} - \boldsymbol{\omega}_{\scriptscriptstyle B}^{\scriptscriptstyle A} \wedge \boldsymbol{\omega}_{\scriptscriptstyle B}^{\scriptscriptstyle A}$$
(A.48)

$$\therefore \boldsymbol{\alpha}_{\mathcal{A}}^{\mathcal{B}} = -\boldsymbol{\alpha}_{\mathcal{B}}^{\mathcal{A}}$$
(A.49)

# APÊNDICE B – CINEMÁTICA DE ORIENTAÇÃO VIA QUATERNIONS

Este apêndice tem o intuito apresentar alguns conceitos básicos relativos à utilização de quaternions unitários para descrever a orientação de um corpo rígido no espaço.

### B.1 Motivação

Existem várias maneiras de representar a orientação de um corpo rígido no espaço, como a utilização de matrizes de rotação, angulos de Euler e quaternions unitários.

Como foi visto no capítulo 4, utilizando a convenção de Denavit-Hartemberg é possível obter a orientação do efetuador de um mecanismo serial na representação de matriz de rotação. Esta representação possui o inconveniente de possuir um grande número de parâmetros para representar a orientação (9 parâmetros para representar 3 graus de liberdade de rotação). Além disso, a composição de rotações consecutivas através da multiplicação de matrizes de rotação leva ao acúmulo de erros numéricos, o que pode fazer com que a matriz perca as condições necessárias para ser uma matriz de rotação.

A representação por ângulos de Euler possui a vantagem de ter o mínimo número de parâmetros possível (3 parâmetros para representar 3 graus de liberdade de rotação). Porém, este tipo de representação perde um grau de liberdade quando o ângulo intermediário alinha os eixos de rotação do primeiro e do terceiro ângulo, o que pode ser bastante inconveniente. Além disso, este tipo de representação não possui uma maneira de compor rotações consecutivas.

A representação por quaternions unitários possui um número não tão grande de parâmetros (4 parâmetros para representar 3 graus de liberdade de rotação), permite compor rotações consecutivas, pode ser facilmente renormalizada (de modo a evitar o acúmulo de erros numéricos) e não possui o problema de perder graus de liberdade dependendo da configuração. Sendo assim, pode-se dizer que esta é uma forma bastante conveniênte de representar a orientação de um corpo rígido no espaço.

## B.2 Definições, propriedades e fórmulas de conversão

#### B.2.1 Quaternion unitário

Um quaternion pode ser representado pela seguinte matriz-coluna:

$$\breve{\mathbf{q}} = \begin{bmatrix} q_i & q_j & q_k & q_r \end{bmatrix}^\mathsf{T} \tag{B.1}$$

A matriz-coluna  $\breve{q}^{\mathsf{v}} = \begin{bmatrix} q_i & q_j & q_k \end{bmatrix}^{\mathsf{T}}$  é conhecida como parte vetorial e o escalar  $q_r$  como a parte real do quaternion.

Um quaternion é dito unitário quando respeita a seguinte propriedade:

$$\breve{q}^{\mathsf{T}}\breve{q} = q_i^2 + q_j^2 + q_k^2 + q_r^2 = 1$$
(B.2)

#### B.2.2 Produto de quaternions

Da mesma maneira que a composição de rotações consecutivas pode ser feita através da multiplicação de matrizes de rotação, ela também pode ser feita através da multiplicação de quaternions unitários, seguindo a mesma lógica. O produto de dois quaternions pode ser definido da seguinte maneira:

$$\check{a} \otimes \check{b} = \check{\mathbb{Q}}_{\mathsf{I}}(\check{a}) \cdot \check{b} = \check{\mathbb{Q}}_{\mathsf{II}}(\check{b}) \cdot \check{a} \tag{B.3}$$

Sendo:

$$\breve{\mathbb{Q}}_{\mathsf{I}}(\breve{\mathbf{q}}) = \begin{bmatrix}
q_{r} & -q_{k} & q_{j} & q_{i} \\
q_{k} & q_{r} & -q_{i} & q_{j} \\
-q_{j} & q_{i} & q_{r} & q_{k} \\
-q_{i} & -q_{j} & -q_{k} & q_{r}
\end{bmatrix}$$
(B.4)
$$\breve{\mathbb{Q}}_{\mathsf{II}}(\breve{\mathbf{q}}) = \begin{bmatrix}
q_{r} & q_{k} & -q_{j} & q_{i} \\
-q_{k} & q_{r} & q_{i} & q_{j} \\
q_{j} & -q_{i} & q_{r} & q_{k} \\
-q_{i} & -q_{j} & -q_{k} & q_{r}
\end{bmatrix}$$
(B.5)

#### B.2.3 Quaternion inverso/conjugado

Da mesma maneira que é possível definir a multiplicação de quaternions, também é possível definir o quaternion inverso  $\breve{q}^{-1}$ , o qual apresenta a seguinte propriedade:

$$\breve{\mathbf{q}} \otimes \breve{\mathbf{q}}^{-1} = \breve{\mathbf{q}}^{-1} \otimes \breve{\mathbf{q}} = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}^{\mathsf{T}}$$
(B.6)

Também é possível definir o quaternion conjugado  $\breve{q}^*$  como o quaternion com a parte vetorial com sinal invertido e a parte real com o mesmo sinal, ou seja:

$$\breve{q}^* = \begin{bmatrix} -q_i & -q_j & -q_k & q_r \end{bmatrix}^\mathsf{T} \tag{B.7}$$

Para o caso de quaternions unitários, temos que o quaternion inverso é igual ao quaternion conjugado, ou seja:

$$\breve{q}^{-1} = \breve{q}^* \tag{B.8}$$

#### B.2.4 Rotações elementares

As rotações de um angulo  $\theta$  em torno dos eixo  $x, y \in z$  podem ser representadas pelos seguintes quaternions unitários, respectivamente:

$$\check{\mathbf{q}}_x(\theta) = \begin{bmatrix} \sin(\frac{\theta}{2}) & 0 & 0 & \cos(\frac{\theta}{2}) \end{bmatrix}^\mathsf{T}$$
(B.9)

$$\breve{q}_y(\theta) = \begin{bmatrix} 0 & \sin(\frac{\theta}{2}) & 0 & \cos(\frac{\theta}{2}) \end{bmatrix}^{\mathsf{T}}$$
(B.10)

$$\breve{q}_z(\theta) = \begin{bmatrix} 0 & 0 & \sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) \end{bmatrix}^{\mathsf{T}}$$
(B.11)

#### B.2.5 Conversão Matriz de Rotação $\rightarrow$ Quaternion

Serão apresentadas 4 fórmulas de conversão da representação de orientação por matrizes de rotação para representação por quaternions. Seja uma matriz de rotação  $\mathbb{R}$  dada por:

$$\mathbb{R} = \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{33} \\ R_{31} & R_{32} & R_{33} \end{bmatrix}$$
(B.12)

$$\begin{cases} S = 2\sqrt{1 + R_{11} + R_{22} + R_{33}} \\ q_i = (R_{32} - R_{23})/S \\ q_j = (R_{13} - R_{31})/S \\ q_k = (R_{21} - R_{12})/S \\ q_r = S/4 \end{cases}$$
(B.13)

$$\begin{cases} S = 2\sqrt{1 + R_{11} - R_{22} - R_{33}} \\ q_i = S/4 \\ q_j = (R_{12} + R_{21})/S \\ q_k = (R_{13} + R_{31})/S \\ q_r = (R_{32} - R_{23})/S \end{cases}$$
(B.14)

$$\begin{cases} S = 2\sqrt{1 - R_{11} + R_{22} - R_{33}} \\ q_i = (R_{12} + R_{12})/S \\ q_j = S/4 \\ q_k = (R_{23} + R_{32})/S \\ q_r = (R_{13} - R_{31})/S \end{cases}$$
(B.15)

$$\begin{cases} S = 2\sqrt{1 - R_{11} - R_{22} + R_{33}} \\ q_i = (R_{13} + R_{31})/S \\ q_j = (R_{23} + R_{32})/S \\ q_k = S/4 \\ q_r = (R_{21} - R_{12})/S \end{cases}$$
(B.16)

Com o intuito de evitar raízes de números negativos, divisões por zero, e problemas numéricos relacionados a raízes e divisões por números próximos a zero, recomenda-se utilizar a seguinte estratégia: caso o traço de  $\mathbb{R}$  seja maior que zero, utilize a expressão (B.13). Caso contrário, utilize as expressões (B.14), (B.15) ou (B.16), dependendo de qual for o maior elemento da diagonal principal de  $\mathbb{R}$ . Caso seja  $R_{11}$ , utilize a expressão (B.14); caso seja  $R_{22}$ , utilize a expressão (B.15); caso seja  $R_{33}$ , utilize a expressão (B.16).
#### B.2.6 Conversão Quaternion $\rightarrow$ Matriz de Rotação

A conversão da representação de orientação por quaternions para a representação por matrizes de rotação é dada pela seguinte expressão:

$$\mathbb{R} = \underline{\mathbb{R}}(\breve{q}) = \begin{bmatrix} 1 - 2q_j^2 - 2q_k^2 & 2(q_iq_j - q_kq_r) & 2(q_iq_k + q_jq_r) \\ 2(q_iq_j + q_kq_r) & 1 - 2q_i^2 - 2q_k^2 & 2(q_jq_k - q_iq_r) \\ 2(q_iq_k - q_jq_r) & 2(q_iq_r + q_jq_k) & 1 - 2q_i^2 - 2q_j^2 \end{bmatrix}$$
(B.17)

Repare que esta expressão não está sujeita a instabilidades numéricas, dado que há apenas multiplicações, somas e subtrações. Além disso, repare que invertendo o sinal de cada componente do quaternion, a expressão (B.17) contínua a mesma, ou seja,  $\breve{q} = -\breve{q}$  representam a mesma rotação.

#### B.2.7 Conversão Derivada de Quaternion $\leftrightarrow$ Velocidade Angular

Sejam  $\mathcal{A} \in \mathcal{B}$  dois referenciais, e  $\mathbf{A} \in \mathbf{B}$  dois sistemas de referênciais fixos a  $\mathcal{A} \in \mathcal{B}$ , respectivamente. Sejam também  $\breve{q}$  um quaternion unitário que representa a mesma rotação que a matriz  $[\mathbf{1}]_{\mathbf{A}|\mathbf{B}}$ , e  $\omega$  uma matriz-coluna tal que  $\omega = [\boldsymbol{\omega}_{\scriptscriptstyle \mathcal{B}}^{\scriptscriptstyle \mathcal{A}}]_{\mathbf{A}}$ .

Definindo a seguinte matriz:

$$\breve{\mathbb{C}}(\breve{q}) = \frac{1}{2} \begin{bmatrix} q_r & q_k & -q_j \\ -q_k & q_r & q_i \\ q_j & -q_i & q_r \\ -q_i & -q_j & -q_k \end{bmatrix}$$
(B.18)

Pode-se relacionar a derivada temporal de  $\breve{q}$  e  $\omega$  das seguintes maneiras:

$$\dot{\breve{q}} = \breve{\mathbb{C}}(\breve{q}) \cdot \omega$$
 (B.19)

$$\omega = 4\breve{\mathbb{C}}(\breve{q})^{\mathsf{T}}\dot{\breve{q}} \tag{B.20}$$

Além disso, repare que

$$\check{\mathbb{C}}(\check{\mathbf{q}})^{\mathsf{T}}\check{\mathbf{q}} = \mathbf{0} \tag{B.21}$$

$$\check{\mathbb{C}}(\check{a})^{\mathsf{T}}\check{\mathbb{b}} = -\check{\mathbb{C}}(\check{\mathbb{b}})^{\mathsf{T}}\check{a} \tag{B.22}$$

## APÊNDICE C – FUNÇÕES DE TRANSFERÊNCIA DE MOTORES DC

Este apêndice tem o intuito de mostrar a dedução e apresentar as funções de transferência de um motor de corrente contínua.

Para realizar a modelagem dos motores, será considerado o seguinte circuito equivalente apresentado na figura 115.



Figura 115: Circuito elétrico equivalente e modelo mecânico do motor

Pela lei de Ohm, temos que:

$$u = L\frac{di}{dt} + Ri + k_e\omega \tag{C.1}$$

Sendo J a inércia do rotor, b o coeficiente de atrito viscoso, e  $\mu$  o coeficiente de atrito seco do mancal do eixo do motor. Sendo assim, obtemos pelo teorema do momento angular:

$$J\dot{\omega} = T - b\omega - \mu \operatorname{sn}(\omega) - \tau_d \tag{C.2}$$

Sendo  $\tau_d$ o torque que o mecanismo aplica no motor, o qual será considerado um sinal de distúrbio de controle.

Como hipótese, será considerado que o torque fornecido pelo motor é proporcional à corrente de armadura:

$$T = k_t i \tag{C.3}$$

Substituindo (C.3) em (C.2),

$$\begin{cases} L\frac{di}{dt} + Ri + k_e = u \qquad (C.4) \end{cases}$$

$$(J\dot{\omega} + b\omega + \mu \operatorname{sn}(\omega) = k_t i - \tau_d$$
 (C.5)

Considerando  $\mu = 0$  e aplicando a Transformada de Laplace para condições iniciais nulas nas equações (C.4) e (C.5), obtemos:

$$\begin{cases} (Ls+R)I(s) + k_eW(s) = U(s) \end{cases}$$
(C.6)

$$(Js+bs)W(s) = k_t I(s) - \tau_d(s)$$
(C.7)

Isolando W(s) da equação (C.7),

$$W(s) = \frac{k_t I(s) - \tau_d(s)}{Js + b}$$
(C.8)

### C.1 Funções de tranferência de corrente

Substituindo (C.8) na equação (C.6) temos,

$$I(s) = \frac{Js+b}{(Ls+R)(Js+bs) + k_t k_e} U(s) + \frac{k_e}{(Ls+R)(Js+bs) + k_t k_e} \tau_d(s)$$
(C.9)

Assim, as funções de transferência do sistema são dadas por:

$$G_I(s) = \frac{I(s)}{U(s)} = \frac{Js+b}{(Ls+R)(Js+b) + k_t k_e}$$
(C.10)

$$G_{Id}(s) = \frac{I(s)}{\tau_d(s)} = \frac{k_e}{(Ls+R)(Js+b) + k_t k_e}$$
(C.11)

### C.2 Funções de transferência de velocidade

Substituindo as equações (C.9) na equação (C.8) encontramos,

$$W(s) = \frac{k_t}{(Js+b)(Ls+R) + k_e k_t} U(s) - \frac{(Ls+R)}{(Js+b)(Ls+R) + k_e k_t} \tau_d(s)$$
(C.12)

Logo, temos as funções de transferência do motor na forma:

$$G_v(s) = \frac{W(s)}{U(s)} = \frac{k_t}{(Js+b)(Ls+R) + k_e k_t}$$
(C.13)

$$G_{vd}(s) = \frac{W(s)}{\tau_d(s)} = -\frac{(Ls+R)}{(Js+b)(Ls+R) + k_e k_t}$$
(C.14)

### C.3 Funções de transferência de posição

Tendo que vista que a velocidade angular é a derivada temporal da posição angular, baste dividir por s as funções de transferência (C.13) e (C.14) para obtermos as função de transferência de posição do motor.

$$G_p(s) = \frac{k_t}{s((Js+b)(Ls+R) + k_e k_t)}$$
(C.15)

$$G_{pd}(s) = -\frac{(Ls+R)}{s((Js+b)(Ls+R)+k_ek_t)}$$
(C.16)

## APÊNDICE D – CONTROLADOR DE CORRENTE

Este apêndice tem o intuito de mostrar o projeto do controlador de corrente utilizado na implementação experimental das leis de controle de posição.

Como foi visto no apêndice C, a função de transferência de corrente de um motor DC é dada por:

$$G_I(s) = \frac{As+B}{s^2+Cs+D} \tag{D.1}$$

Sendo:

$$\begin{cases}
A = 1/L \\
B = b/LJ \\
C = b/J + R/L \\
D = \frac{Rb + k_t k_e}{LJ}
\end{cases}$$
(D.2)

Discretizando pela técnica do segurador de ordem zero, considerando um período de amostragem T, obtemos:

$$G_{dI}(z) = \frac{\mathcal{A}z + \mathcal{B}}{z^2 + \mathcal{C}z + \mathcal{D}}$$
(D.3)

Sendo:

$$\begin{cases} \mathcal{A} = -\left((BC - 2AD)(e^{T\Delta} - 1) + B\Delta(1 + e^{T\Delta} - 2e^{\frac{T}{2}(\Delta + C)})\right)/\mathcal{E} \\ \mathcal{B} = \left((BC - 2AD)(e^{T\Delta} - 1) - B\Delta(1 + e^{T\Delta} - 2e^{\frac{T}{2}(\Delta - C)})\right)/\mathcal{E} \\ \mathcal{C} = 2De^{\frac{T}{2}(\Delta - C)}\Delta/\mathcal{E} \\ \mathcal{D} = -2D\left(e^{T\Delta} + 1\right)/\mathcal{E} \\ \mathcal{E} = 2De^{\frac{T}{2}(\Delta + C)}\Delta \\ \Delta = \sqrt{C^2 - 4D} \end{cases}$$
(D.4)

Como o sistema é de segunda ordem e não possui integrador, é proposto o seguinte controlador:

$$K(z) = \frac{\alpha z^2 + \beta z + \gamma}{(z-1)(z-\delta)}$$
(D.5)

Como o controlador proposto possui 4 parâmetros, é possível alocar 4 pólos. Tendo em vista que a planta e o controlador são de segunda ordem, o sistema em malha fechada será de quarta ordem. Sendo assim, o controlador proposto é capaz de alocar todos os pólos do sistema.

A função de transferência do sistema em malha fechada é dada por:

$$G_{mf}(z) = \frac{(Az + B)(\gamma + \alpha z^2 + \beta z)}{z^4 + a_3 z^3 + a_2 z^2 + a_1 z + a_0}$$
(D.6)

Sendo:

$$\begin{cases} a_{0} = \mathcal{B}\gamma + \mathcal{D}\delta \\ a_{1} = \mathcal{B}\beta + \mathcal{A}\gamma + (\mathcal{C} - \mathcal{D})\delta - \mathcal{D} \\ a_{2} = \mathcal{B}\alpha + \mathcal{A}\beta + (1 - \mathcal{C})\delta - \mathcal{C} + \mathcal{D} \\ a_{3} = \mathcal{A}\alpha - \delta + \mathcal{C} - 1 \end{cases}$$
(D.7)

Sendo assim, o polinômio característico do sistema em malha fechada é dado por:

$$P(z) = z^4 + a_3 z^3 + a_2 z^2 + a_1 z + a_0$$
(D.8)

Para alocar os pólos do sistema em malha fechada em  $p_1$ ,  $p_2$ ,  $p_3$ ,  $p_4$ , é necessário que:

$$P(z) = z^4 + c_3 z^3 + c_2 z^2 + c_1 z + c_0$$
 (D.9)

Sendo:

$$\begin{cases} c_0 = p_1 p_2 p_3 p_4 \\ c_1 = -p_1 p_2 p_3 - p_1 p_4 p_3 - p_2 p_4 p_3 - p_1 p_2 p_4 \\ c_2 = p_1 p_2 + p_3 p_2 + p_4 p_2 + p_1 p_3 + p_1 p_4 + p_3 p_4 \\ c_3 = -p_1 - p_2 - p_3 - p_4 \end{cases}$$
(D.10)

Portanto, os parâmetros de K(z) podem ser obtidos resolvendo o seguinte sistema de

equações algébricas:

$$\begin{cases} \mathcal{B}\gamma + \mathcal{D}\delta &= c_{0} \\ \mathcal{B}\beta + \mathcal{A}\gamma + (\mathcal{C} - \mathcal{D})\delta - \mathcal{D} &= c_{1} \\ \mathcal{B}\alpha + \mathcal{A}\beta + (1 - \mathcal{C})\delta - \mathcal{C} + \mathcal{D} &= c_{2} \\ \mathcal{A}\alpha - \delta + \mathcal{C} - 1 &= c_{3} \end{cases}$$
(D.11)

O qual é um sistema linear. Representando de forma matricial:

$$\begin{bmatrix} 0 & 0 & \mathcal{B} & \mathcal{D} \\ 0 & \mathcal{B} & \mathcal{A} & \mathcal{C} - \mathcal{D} \\ \mathcal{B} & \mathcal{A} & 0 & 1 - \mathcal{C} \\ \mathcal{A} & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{bmatrix} = \begin{bmatrix} c_0 \\ c_1 + \mathcal{D} \\ c_2 + \mathcal{C} - \mathcal{D} \\ c_3 + 1 - \mathcal{C} \end{bmatrix}$$
(D.12)

Sua solução é dada por:

$$\begin{cases} \alpha = \frac{A^{2}c_{1}+B(-D(A+B)-Ac_{2}+B(C+c_{3}))-(C-c_{4}-1)(B(B-C(A+B))+AD(A+B))}{(A+B)(A^{2}D-ABC+B^{2})} \\ \beta = \frac{C(D(A+B)^{2}+B(B-C(A+B)))-AD^{2}(A+B)+(Ac_{3}-Bc_{4})(D(A+B)-CB)+(A(C-1)-B)(Ac_{1}-Bc_{2})}{(A+B)(A^{2}D-ABC+B^{2})} \\ \gamma = \frac{(A^{2}D-(A+B)(AC-B))c_{1}+D(B(B(1-C+c_{4})-A(C-D+c_{3}))+A^{2}(D+c_{2}))}{(A+B)(A^{2}D-ABC+B^{2})} \\ \delta = \frac{A^{3}c_{1}+B(B(C(A+B)-B)-AD(A+B)-A^{2}c_{2}+B(Ac_{3}-Bc_{4}))}{(A+B)(A^{2}D-ABC+B^{2})} \end{cases}$$
(D.13)

# APÊNDICE E – CURVAS E IDENTIFICAÇÃO DOS PARÂMETROS DOS MOTORES

Este apêndice tem o intuito de mostrar como foi feita a identificação dos parâmetros dos motores através das curvas de velocidades obtidadas e das equações de seu modelo dinâmico.

As curvas de velocidades dos motores foram obtidas aplicando o derivador numérico citado na seção 7.2.3 no sinal de posição fornecido pelo encoders. Foi utilizada uma entrada degrau de tensão 6,5V. As curvas dos motores 1 e 2 podem ser observadas nas figuras 116 e 117 respectivamente.



Figura 116: Curva de velocidade do motor 1



Figura 117: Curva de velocidade do motor 2

Para obtenção dos parâmetros do motor, foram realizados os seguintes procedimentos:

- O valor de indutância (L) foi medido através de um multímetro e considerado constante independentemente da velocidade do motor.
- O valor da constante de força contra-eletromotriz (k<sub>e</sub>) e da resistência (R) foram obtidos através do método dos mínimos quadrados implementado sobre os valores medidos da tensão, corrente e velocidade apresentados na tabela 18. Utilizando a equação do circuito elétrico equivalente do motor (C.1) em regime permanente (di/dt = 0):

$$u = Ri + k_e \omega \tag{E.1}$$

| u(V) | i(A) | $\omega(rad/s)$ |
|------|------|-----------------|
| 1,52 | 0,79 | 12,272          |
| 2,52 | 0,84 | 31,390          |
| 3,51 | 0,89 | 49,755          |
| 4,60 | 0,94 | 68,079          |
| 5,49 | 0,98 | 86,322          |
| 6,51 | 1,02 | 105,74          |
| 7,49 | 1,05 | 123,68          |
| 8,50 | 1,09 | 140,92          |
| 9,49 | 1,11 | 161,11          |
|      |      |                 |

Tabela 18: Medições para obtenção de  $k_e$  do motor 1

Aplicando o método dos mínimos quadrados, temos:

$$\begin{bmatrix} <\omega, \omega > & <\omega, i > \\ <\omega, i > & \end{bmatrix} \begin{bmatrix} k_e \\ R \end{bmatrix} = \begin{bmatrix} <\omega, u > \\ \end{bmatrix}$$
(E.2)

Sendo o produto interno definido como  $\langle f, g \rangle = \sum_{i=1}^{n} f_i \cdot g_i$  obtemos o seguinte sistema linear:

$$\begin{bmatrix} 87991,6 & 799,092\\ 799,092 & 8,5289 \end{bmatrix} \begin{bmatrix} k_e\\ R \end{bmatrix} = \begin{bmatrix} 5400,99\\ 50,4493 \end{bmatrix}$$
(E.3)

Sendo assim, obtemos como resultado:

$$R = 1,10098\,\Omega\tag{E.4}$$

$$k_e = 0.0513822 \, Vs$$
 (E.5)

•  $k_t$  é obtido utilizando a seguinte proporção:

$$k_t = \frac{k'_t}{k'_e} k_e \tag{E.6}$$

Sendo $k_t^\prime$ e $k_e^\prime$ valores obtidos da curva fornecida no datasheet do motor, dados por:

$$k'_t = 0,0467188 \, Nm/A \tag{E.7}$$

$$k'_e = 0,0428786 \, Vs \tag{E.8}$$

Substituindo os valores na equação (E.6), temos que:

$$k_t = 0,055984 Nm/A$$
 (E.9)

 As constantes de atrito viscoso (b) e seco (μ) são obtidas a partir da equação dinâmica mecânica do motor (C.2) em regime permanente (ώ = 0) com ω > 0, ou seja:

$$b\,\omega + \mu = k_t i \tag{E.10}$$

Aplicando novamente o método dos mínimos quadrados, temos:

$$\begin{bmatrix} <1,1> & <\omega,1>\\ <\omega,1> & <\omega,\omega> \end{bmatrix} \begin{bmatrix} \mu\\ b \end{bmatrix} = \begin{bmatrix} <1,k_ti>\\ <\omega,k_ti> \end{bmatrix}$$
(E.11)

Assim, obtemos o seguinte sistema linear:

$$\begin{bmatrix} 9 & 779,272 \\ 779,272 & 87991,6 \end{bmatrix} \begin{bmatrix} \mu \\ b \end{bmatrix} = \begin{bmatrix} 0,487621 \\ 44,7364 \end{bmatrix}$$
(E.12)

Logo, temos que:

$$\mu = 0,0435651 Nm \tag{E.13}$$

$$b = 0,000122595 Nms$$
 (E.14)

 J foi obtido a partir da curva de velocidades do motor (figura 116). Como não houve sobressinal, o tempo de assentamento obtido foi de 0,207s.

$$t_{98\%} = \frac{4}{\sigma} \tag{E.15}$$

Da equação (E.15) temos que  $p = -19,3237 \, rad/s$ . Então, igualando o denominador da função de transferência do motor (C.10) a zero e substituindo o valor do pólo:

$$[(Ls+R)(Js+b) + k_t k_e]_{s=p} = 0$$
(E.16)

Obtemos $J=1,469\cdot 10^{-4} kg\,m^2$ 

Os valores dos parâmetros obtidos são apresentados na tabela 19

| Tabela 19: Parâmetros do Motor 1 |                       |          |  |  |
|----------------------------------|-----------------------|----------|--|--|
| Parâmetros                       | Valores               | Unidades |  |  |
| R                                | 1,101                 | $\Omega$ |  |  |
| L                                | 0,667                 | mH       |  |  |
| b                                | $1,226 \cdot 10^{-4}$ | Nms      |  |  |
| $k_t$                            | $5,598 \cdot 10^{-2}$ | Nm/A     |  |  |
| $\mu$                            | $4,357 \cdot 10^{-2}$ | Nm       |  |  |
| $k_e$                            | $5,138 \cdot 10^{-2}$ | Vs       |  |  |
| J                                | $1,469 \cdot 10^{-4}$ | $kg.m^2$ |  |  |

Analogamente, foram determinamos os parâmetros do motor 2, os quais estão apresentados na tabela 21, sendo que foi considerado um tempo de assentamento de 0.198s. A tabela de medições correspondente a esse motor pode ser observada na tabela 20.

|      |      | -               |  |
|------|------|-----------------|--|
| u(V) | i(A) | $\omega(rad/s)$ |  |
| 1,49 | 0,92 | 13,696          |  |
| 2,48 | 0,99 | 31,747          |  |
| 3,47 | 1,06 | 49,909          |  |
| 4,47 | 1,14 | 67,889          |  |
| 5,46 | 1,20 | 86,067          |  |
| 6,47 | 1,27 | 104,68          |  |
| 7,47 | 1,32 | 122,74          |  |
| 8,48 | 1,37 | 140,55          |  |
|      |      |                 |  |

Tabela 20: Medições para obtenção de  $k_e$  do motor 2

Tabela 21: Parâmetros do Motor 2

| Parâmetros | Valores               | Unidades |
|------------|-----------------------|----------|
| R          | 0,829                 | $\Omega$ |
| L          | 0,667                 | mH       |
| b          | $2,039 \cdot 10^{-4}$ | Nms      |
| $k_t$      | $5,666 \cdot 10^{-2}$ | Nm/A     |
| $\mu$      | $4,992 \cdot 10^{-2}$ | Nm       |
| $k_e$      | $5,200 \cdot 10^{-2}$ | Vs       |
| J          | $1,887 \cdot 10^{-4}$ | $kg.m^2$ |