JOSÉ EURÍPEDES GOMES

Cadeia de Suprimentos na velocidade do pensamento

Tese apresentada à Escola Politécnica da Universidade de São Paulo para obtenção do título de Doutor em Engenharia

Área de concentração: Engenharia Mecânica -

Projetos de Fabricação

Orientador: Prof. Dr. Gilberto Francisco Martha

de Souza

SÃO PAULO 2006

Prof. Stephen Hawking é doutor em cosmologia e ocupa a cadeira de Isaac Newton como professor Lucasiano de Matemática na Universidade de Cambridge

Dedicatória

Amor da minha vida!

No horizonte, em uma paralela qualquer Escrevo meu nome dentro da sua alma No horizonte, em uma paralela qualquer Você vem chegando como o perfume das flores Ensinando devagarzinho o sol a brilhar Trazendo um sorriso de amores Correndo vindo me amar

> Amor da minha vida Oxalá, tivesse o infinito pra chamá-la de querida

No infinito em um mundo qualquer Teu amor vem atropelar minha alma Que acorda, e foge da calma Perde os sentidos, sussurros nos ouvidos Momentos vividos pra nunca esquecer

> Amor da minha vida Quiçá, tivesse o infinito pra chamá-la de querida

Na imensidão do universo Existe apenas um lugar Onde estarei sempre chegando Trazendo amores como o sol do verão Canções sempre amando Este lugar é seu coração

> Amor da minha vida Quisera ter o infinito pra chamá-la de guerida

Em um lugar qualquer brilha nosso amor Você ensina a lua a enamorar-se da terra Ensina as estrelas a brilhar Mostra o caminho para as águas Que sempre navegam para o mar Ensina minha alma a viver Meus versos a sonhar Meu amor somente pra te amar

> Amor da minha vida Quem dera, tivesse o infinito pra chamá-la de querida

Seu beijo me ensina a viver Suas palavras me trazem a calma Seu carinho é meu bem querer Seu coração minha alma Meu modo de viver

> Amor da minha vida Oxalá, tivesse o infinito pra chamá-la de querida.

> > Eurípedes Gomes São Paulo, 11 de março de 2006

Dedico este poema para Lia K uzmenko, companheira, amiga, cúmplice, e amor da minha vida. Sem seu apoio, carinho e admiração, nada teria sentido.

Soneto para Geraldo e Maria

De longe o carro vem cantando Bate sol, poeira, bate chuva, lamaceira Bela terra, bela flor da capoeira Geraldo e Maria no coração, amores de todas as maneiras

> Que amor da madrugada, que amor tão forte Que venceu o tempo, décadas no sertão Que destino tão divino, bela sorte Geraldo e Maria trazem no coração

O sol brilha, as estrelas morrem, o mundo gira Sem ninguém pôr a mão Geraldo e Maria caminham como uma canção

Carregados de vida, de alegria e de coragem De lutas pelo caminho afora Geraldo e Maria sequem firme sua viagem

Eurípedes Gomes Uberlândia, novembro de 2001

F iz este soneto para meus pais de 94 anos que, apesar da vida simples do sertão, tiveram a sabedoria de mostrar-me o caminho da ciência e dos estudos. A gradeço profundamente a minha mãe Maria que, em uma casa de pau-a-pique no sertão de Goiás, com luz de lamparina e, às vezes, com um pouquinho mais de sofisticação com candeias, ensinou-me a ler aos 6 anos de idade.

Meu pai Geraldo, homem velho com um coração de menino, uma alma bonita que me deixa feliz e orgulhoso de tê-lo como pai, sobretudo reconheço que os valores passados a mim têm sido fundamentais para minha vida.

Soneto para a Elisa

Se você quiser, vou dar um pedaço bem dentro do meu peito, para você morar No meu coração ainda tem muito espaço Para um carinho, para te amar

Se você quiser vou pedir aos deuses vou pedir ao sol para iluminar sua vida Vou pedir às estrelas que façam com que você jamais se esqueça que te chamo de querida

Se você quiser vou buscar qualquer flor distante que seja mesmo no universo Pode ser noite não tem tempo só verso

Verso que carrego com amor e apaixonado Como amigo, pai e com todo carinho das flores Vou cantar pela vida afora por você! Sempre enamorado

(Para minha filha de 21 anos)

Soneto para o Alexandre

Seu abraço é a melhor forma de amor Seu beijo muda minha vida Quero apertar sua mão e caminhar pelo mundo afora, sem despedida

Ninguém sabe nosso segredo Mas nos dá alegria e vontade de viver Viver uma vida eterna sem medo de deixarmos de ser amigos e sofrer

Pegue este soneto eternamente como uma recordação de carinho e amor Pelo mundo afora viva alegremente

Conte comigo quando você quiser Estarei com você como cúmplice e amigo Em qualquer lugar, para qualquer coisa que vier

(Para meu filho A lexandre de 20 anos)

AGRADECIMENTOS

Ao Prof. Dr. *Gilberto Francisco Martha de Souza*, meu professor orientador e, sobretudo, uma pessoa que tem sido decisiva na minha vida científica. Sua dedicação, paciência e orientações em momentos críticos foram fundamentais para a conclusão deste trabalho. Ensinar desafia as leis da termodinâmica "Ensinar é uma arte porque conhecimentos são transmitidos, sem se perderem". Penso que, assim como Mozart compunha, o Prof. Dr. Gilberto ensina. Por isso, mais uma vez meu muito obrigado pelo apoio e confiança demonstrados no meu trabalho.

À Cisa Trading, pelo apoio à pesquisa com RFID e pelo trabalho incansável do Paulo Mercado e da Marina Termignoni a quem sou muito grato.

À Seal, pelo extraordinário trabalho que vem fazendo com RFID no Brasil, e batalha diária do Fernando Claro e do Cristiano Teixeira a quem estou agradecido por toda ajuda prestada pelo desenvolvimento desta pesquisa.

Aos meus companheiros da Hewlett-Packard, *Guilherme Huet*, Andrea Petrucci, Regina Oliveira, Caio Wihelmsen e Rafael Nunes. Gostaria de fazer um agradecimento especial ao Alceu Tamashiro pelo apoio e coleguismo demonstrado ao longo deste trabalho. Muito obrigado! À Maria Helena Vargas pelas correções gramaticais, criatividade, sugestões, atenção e dedicação na diagramação e artes gráficas deste trabalho.

Ao Dr. Paulo Henrique Egydio pela dedicação, atenção e principalmente pela sensibilidade de entender minha ansiedade e dificuldades propondo soluções e alternativas louváveis.

Ao Prof. Dr. Adherbal Caminada Netto, Prof. Dr. Renato Vairo Belhot, Prof. Dr. Paulo Carlos Kaminski e Prof. Dr. Fernando Antonio Forcellini, pelo tempo dispensado na leitura minuciosa e pelas sugestões extremamente valorosas que enriqueceram o meu trabalho, tanto na fase de qualificação quanto na defesa final.

A minhas irmãs *Maria de Fátima Gomes* e *Vilma Gomes*, pela fé, confiança e ajuda ao longo de toda minha vida. Não tenho como retribuir o muito que vocês sempre fizeram por mim. Muito obrigado uma vez mais.

A Elisa Gomes, Alexandre Gomes, Alexandre Kuzmenko e Patrícia Kuzmenko meus filhos, pelo carinho e atenção ao longo deste trabalho. Minha admiração e carinho por vocês.

Ao Sr. *Aleksy Kuzmenko* e Senhora *Otília Kuzmenko* por terem me recebido de coração e aberto as portas de sua casa como se eu fosse um filho.

Ao Alex *Kuzmenko*, *Silmara Zaniquelli Kuzmenko* e *Mirella Zaniquelli Kuzmenko* pela amizade e carinho demonstrados.

AGRADECIMENTOS ESPECIAIS

À Hewlett-Packard do Brasil, pelo seu compromisso com o desenvolvimento das pessoas, mantendo um gerenciamento de recursos humanos em alto nível, proporcionando ao seus funcionários a participação de programas de desenvolvimento nas melhores Universidades do mundo e também pelo seu compromisso com o meio ambiente e responsabilidade social que a torna uma companhia diferenciada e deixa seus empregados extremamente orgulhosos.

À Escola Politécnica da Universidade de São Paulo, USP, pelo grande serviço cultural, científico, pela pesquisa básica e aplicada, que vem desenvolvendo e disponibilizando há muitos anos à comunidade mundial.

Não por acaso que, em pesquisa realizada pela ONU, recentemente, a Universidade de São Paulo figurou entre as 200 mais conceituadas

Universidades do mundo com relação à pesquisa básica, aplicada e ensino.

O dia-a-dia na Politécnica tem sido sempre muito agradável para mim e, certamente, já é parte da história de minha vida.

SUMÁRIO

Lista de abreviaturas e siglas Lista de figuras Lista de gráficos Lista de quadro Resumo Summary

1 INTRODUÇÃO	001
1.1 Objetivos	012
1.2 Escopo da Pesquisa	013
1.3 Motivação para a Pesquisa	014
2 CADEIA DE SUPRIMENTOS, CONCEITOS, TENDÊNCIAS E SEUS FENÔMENOS	017
2.1 Introdução ao Gerenciamento da Cadeia de Suprimentos	018
2.1.1 Configuração da rede logística	
2.1.2 Gerenciamento de estoques	026
2.1.3 Gerenciamento compartilhado de riscos	027
2.1.4 Valor da informação	028
2.1.5 Estratégia de distribuição	034
2.1.6 Estratégia de manufatura	035
2.2 Revisão da Literatura e Evolução da Cadeia de Suprimentos	039
2.2.1 Evolução da Cadeia de Suprimentos	040
2.2.2 Sétimo período: gerenciamento da cadeia de fornecimento	
integrada (de 2000 em diante)	044
2.2.3 "Contract manufacturer" (CM)	047
2.2.4 "Contract design and manufacturer" (CDM)	047
2.2.5 "Original design manufacturer" (ODM)	
2.2.6 "Original equipment manufacturer" (OEM)	
2.2.7 Estratégias de manufatura	
2.2.8 "Full postponement"	051
2.2.9 "Localization only"	052
2.2.10 "Factory Finish Good Inventory"	
2.2.11 "FGI-Direct: cross-dock"	
2.2.12 "FGI-Direct: pool-point"	
2.2.13 "FGI-Direct: port pick-up"	
2.2.14 "FGI-Direct: factory pick-up"	
2.2.15 "FGI-Direct: Consumer Direct"	
2.2.16 Desenvolvimento de produto	
2.2.17 Desenvolvimento do processo	
2.3 Importância da Cadeia de Suprimentos para Estratégia do Negócio	
2.3.1 Estratégias de gerenciamento da Cadeia de Suprimentos	
2.3.2 Medidas chave no gerenciamento da cadeia de suprimentos	
2.3.3 Princípios	
2.4 Revisão de artigos publicados mundialmente	
—	
3 DESCRIÇÃO DAS TÉCNICAS EMPREGADAS NA PESQUISA	091
3.1 RFID	
3.1.1 História	
3.1.2 O que é RFID	
3.1.3 Utilização industrial do RFID	
3.1.4 O espectro eletromagnético	

3.1.5	Fatores que afetam o alcance das ondas de rádio	Λ	aa
	Ambientes difíceis		
	Posicionamento das etiquetas de RFID		
	Tipos de antenas		
	Propagação das ondas nas antenas		
	Antenas múltiplas		
	Etiquetas RFID		
3.1.11.1	Componentes das etiquetas RFID		
3.1.11.2	Etiquetas RFID como sensores		
	Impressoras de etiquetas RFID		
	Leitoras e antenas		
	Leitura em portal		
	Componentes do sistema de software	1	13
3.1.16	O que é o EPC		
3.1.16.1	Estrutura do código do sistema EPC	1	15
3.1.16.2	Estrutura de dados EAN x EPC	1	15
3.1.16.3	Arquitetura de rede EPC	1	17
3.1.16.4	Funções do Servidor EPC-IS		
3.1.16.5	Funções do Servidor ONS		
3.1.16.6	Beneficio por fase do produto		
	álise de Modos e Efeitos das Falhas - FMEA		
	Os princípios básicos da análise do tipo FMEA um resumo do	·	
	processo e da cultura	1	22
3.2.1.1	O que é uma análise do tipo FMEA	1	22
3.2.1.2	A História dos FMEAs		
3.2.1.3	Qual é a proposta de um FMEA		
3.2.1.4	Parte de um sistema de qualidade completo		
3.2.1.5	ISO 9000, ISO/TS 16949 e FMEAs		
3.2.1.6	O processo FMEA		
3.2.1.7	Avaliando o risco de falha		
-			
3.2.1.8	Acessando a priorização		
3.2.1.9	O grupo FMEA		
3.2.1.10	O tamanho do grupo FMEA		
3.2.1.11	Quadro de membros do grupo FMEA		
3.2.1.12	O líder do grupo FMEA		
3.2.1.13	O papel do especialista do processo		
3.2.1.14	Treinando o grupo FMEA	1	31
3.2.1.15	Fronteiras de liberdade do FMEA		
3.2.1.16	O principal objetivo do FMEA		
3.2.1.17	Produto/projeto FMEA versus processo FMEA		
3.2.1.18	Os 10 passos para um FMEA		
3.2.1.19	A planilha do FMEA		
3.2.1.20	Quando e onde utilizar FMEAs	1	38
3.3 Se	is Sigmas: o Poder da Cultura	1	42
3.3.1	Introdução	1	42
	Seis Sigma		
	Interpretação estatística		
	Metodologia de implementação		
3.3.4.1	Participantes no processo		
3.3.4.2	Principais fases		
	Benefícios		

4 MÉTODO DE OTIMIZAÇÃO DA CADEIA DE SUPRIMENTOS CDA ² PEM	151
4.1 Introdução4.1	
4.2 Cliente	
4.3 Diagnóstico	
4.4 Análise/Ação	
4.5 Planejar	
4.6 Estudo	
4.6.1 Objetivos de melhoria alcançados?	
4.7 Monitoramento	169
5 APLICAÇÃO DA METODOLOGIA CDA ² PEM	
5.1 Introdução	
5.2 Relacionamento com os clientes	171
5.3 Declaração do trabalho	173
5.4 Fluxograma do processo	175
5.4.1 Introdução	
5.4.2 Processo Atual	
5.4.2.1 Descrição do processo atual	
5.4.2.2 Desenho de integração	
5.4.3 Pontos críticos atuais	
5.4.4 Estudo de melhorias	
5.4.4.1 Análise de ambiente	
1 1 3	
5.4.5 Conclusões preliminares	
5.4.5.1 Impactos funcionais previstos	
5.4.5.2 Impactos técnicos previstos	
5.4.5.3 Impactos estruturais previstos	
5.4.6 Sugestão dos novos processos com aplicação RFID	198
5.4.6.1 Novo processo de recebimento	
5.4.6.2 Novo processo de separação	203
5.4.6.3 Novo processo de expedição	205
5.4.6.4 Nova arquitetura de integração	207
5.4.6.5 Nova configuração de ambiente operacional	208
5.5 Identificação das Medidas de desempenho	209
5.6 Estratégia de coleta e análise de dados do processo atual	220
5.7 Análise geral do sistema RFID - Definição de produtos e	
equipamentos	238
5.7.1 Definição das etiquetas	
5.7.2 Fixação das etiquetas nas impressoras	
5.7.3 Arquitetura sistêmica	
5.8 Análise e definição da aplicação da tecnologia RFID do ponto de	0
vista do processo e do negócio	248
5.8.1 Requisitos básicos	
!	
1 1 1	
5.8.3 Papéis e responsabilidades	
5.9 Planejamento do piloto RFID	
5.10 Estudar	
5.10.1 Primeira fase dos testes	
5.10.2 Segunda fase de testes	
5.10.3 Terceira fase dos testes	
5.11 Monitorar	275

6	RESULTADOS	281
6.1	Primeiro Resultado	283
6.2	Segundo Resultado	284
6.3	Terceiro Resultado	285
6.4	Quarto Resultado	286
6.5	Quinto Resultado - Oportunidade de Melhoria na Tecnologia RFID	287
6.6		
7	CONCLUSÕES	292
8	ANEXO	301
9	REFERÊNCIAS BIBLIOGRÁFICAS	332
10	APÊNDICE	349

LISTA DE ABREVIATURAS E SIGLAS

ANOVA - Análise de variância ("Analysis of variance between groups"

BCP - "Business Continuity Plan"

BL - Boletim de liberaçãoCD - Centro de distribuição

CDA²PEM - Metodologia par otimização da Cadeia de suprimentos

CDM - "Contract design and manufacturer"

CM - "Contract Manufacturing")

CPFR - Planejamento Colaborativo ("Colaborative Planning Forcast

Replanishiment")

CpK - Índice de capacidade do processo

DCF - "Discounted Cash Flow"

DoD - Departamento de Defesa Americano

DOE - Planejamento dos experimentos

EDI - Troca de dados entre sistemas por meio eletrônico ("Electronic

Data Interchange")

EMS - "Eletronic Manufactor Suplly"

EPC - "Eletronic Product Code"

EPC-IS - "EPC Information Services"

ERP - Gerenciamento dos Recursos Corporativos ("Enterprise

Resources Planning")

ETC - Experiência total do cliente

EUA - Estados Unidos da América

FCC - Federal Communications Commision

FGI - Estoque de Produto acabado ("Finish Good Inventory")

FMEA - Análise de modos e efeitos das falhas ("Failure Mode and

Effect Analysis")

Gb - Gigabites

GE - General Electric

GEC - Gestão total do cliente

GHz - Gigahertz

GPS - Sistema de rastreamento global ("Global Positioning System")

GRC - Gestão do relacionamento com o cliente

GTIN - Número de item no comércio global ("Global Trade Item

Number")

H1 - Hipótese alternativa

HF - Alta freqüência ("high frequency")

Ho - Hipótese nula

HP - Hewlett-Packard do Brasil

ID - Identificação

IRR - "Internal Rate of Return"

ISO - "International Organization for Standardization"

KHz - Kilohertz

LF - Baixa freqüência ("low frequency")

Mb - MegabitesMHz - Megahertz

MIT - Massachuset Institute of Technology

MRP - Planejamento de Recursos de Materiais

NPV - "Net Present Value"

ODM - "Original Design Manufacturer"

OEM - "Original equipment manufacturer"

ONS - Operador Nacional do Sistema

P - Probabilidade

PERTCPM- Program (Project) Evaluation and Review Technique/ Critical

Path Method

PIB - Produto Interno Bruto

PIP - "Process Industry Practices"

PML - "Physical Markup Language"

PN - Código que identifica os tipos de produtos ("Part number")

Q1 - Quartil 1
Q2 - Quartil 2
Q3 - Quartil 3

RFID - Identificação por Rádio Frequência ("Radio Frequency

Identification")

ROI - Retorno do investimentoRPN - "Risk Priority Number"

SCOR - "Supply Chain Operational Model"

seg - Segundo

SPC - Controle estatístico do processo

SSPI - "Security Support Provider Interface"

TQC - Controle Total de Qualidade

TQM - Gerenciamento Total da Qualidade

UHF - "Ultra high frequency"

URL - "Uniforme Resource Locators"

VMI - Gerenciamento do inventário do revendedor ("Vendor

management in ventory")

WIP - Estoques em Processo de Fabricação ("Work in Progress")

WMS - Sistema de ferenciamento do almoxarifado do 3PL

("Warehouse Management System")

LISTA DE FIGURAS

Figura 1 -	Cadeia de Suprimentos ponta a ponta	003
Figura 2 -	RFID - Cadeia de Suprimentos	006
Figura 3 -	Evolução histórica do RFID	007
Figura 4 -	Construção de um fluxograma do processo FMEA	008
Figura 5 -	Curva de Gauss	009
Figura 6 -	Seis Sigma - limite de tolerância do processo	009
Figura 7 -	Elementos do Sistema RFID	012
Figura 8 -	Entregando valor ao cliente através da Cadeia de Suprimentos	020
Figura 9 -	Introdução de novos produtos, retornos, garantia, fim da garantia e reciclagem	022
Figura 10 -	Estratégia do canal de distribuição	028
Figura 11 -	Esquemático do efeito chicote ao longo da Cadeia de Suprimentos	029
Figura 12 -	"Triângulo do terror"	030
Figura 13 -	Complexidade na Cadeia de Suprimentos	035
Figura 14 -	CMs e localização das indústrias no Brasil	036
Figura 15 -	Cadeia de Suprimentos – Ciclo operacional	039
Figura 16 -	Evolução da cadeia de suprimentos na indústria de informática	046
Figura 17 -	Modelos estratégicos de manufatura	049
Figura 18 -	Esquema das cinco estratégias de manufatura	051
Figura 19 -	Dinâmica da estrutura de produtos e estrutura de valor na Cadeia de Suprimentos	058
Figura 20 -	Diferença entre Cadeia de Suprimentos	060
Figura 21 -	Gerenciamento da Cadeia de Suprimentos	062
Figura 22 -	Cadeia de Suprimentos integrada (ponta a ponta)	067
Figura 23 -	Reciclagem – Processo de operação	068
Figura 24 -	Cruzando o abismo	078
Figura 25 -	Ciclo de vida do cliente transacional	080
Figura 26 -	Ciclo de vida do cliente consultivo	080
Figura 27 -	O que é RFID	094

Figura 28 -	Evolução histórica do RFID	096
Figura 29 -	O espectro eltromagnético	097
Figura 30 -	Fatores que afetam o alcance das ondas de rádio	099
Figura 31 -	Ambientes difíceis	101
Figura 32 -	Posicionamento das etiquetas	103
Figura 33 -	Tipos de antenas	104
Figura 34 -	Propagação das ondas na antena	105
Figura 35 -	Antenas múltiplas	106
Figura 36 -	Etiquetas RFID	106
Figura 37 -	Componentes das etiquetas RFID	109
Figura 38 -	Etiquetas RFID como sensores	110
Figura 39 -	Impressoras de etiquetas RFID	111
Figura 40 -	Leitoras e antenas	113
Figura 41 -	Produtos para utilização do EPC	114
Figura 42 -	Estrutura do código EPC	116
Figura 43 -	Arquitetura da rede EPC	117
Figura 44 -	Benefícios por fase no produto	119
Figura 45 -	Formulário de Iniciação do FMEA	134
Figura 46 -	Tabela ilustrativa - Seis Sigma	144
Figura 47 -	Quadro ilustrativo do modelo de implementação	149
Figura 48 -	Método "CDA ² PEM" para otimização do processo da Cadeia de Suprimentos	158
Figura 49 -	Indicadores de desempenho	161
Figura 50 -	Diagrama de Ishikawa	162
Figura 51 -	RFID - Cadeia de Suprimentos	175
Figura 52 -	Processo atual	178
Figura 53 -	Processo de Recebimento	181
Figura 54 -	Fluxo atual de separação	183
Figura 55 -	Fluxo atual de expedição	185
Figura 56 -	Diagrama de integração de sistemas	186

Figura 57 -	Diagrama da relação entre velocidade, acuracidade e o custo operacional	189
Figura 58 -	Processo proposto para utilização do RFID	199
Figura 59 -	Fluxograma de recebimento	202
Figura 60 -	Fluxograma do processo de separação	204
Figura 61 -	Fluxograma do processo de expedição	206
Figura 62 -	Nova arquitetura de integração de sistemas	208
Figura 63 -	Recebimento / Expedição - Importadora/ 3PL (I)	211
Figura 64 -	Recebimento / Expedição - Importadora/ 3PL (II)	212
Figura 65 -	Recebimento / Expedição - Importadora/ 3PL (III)	213
Figura 66 -	Recebimento / Expedição - Importadora/ 3PL (IV)	214
Figura 67 -	Failure Mode and Effect Analysis - Centro de Distribuição 3PL - Recebimento (I)	215
Figura 68 -	Failure Mode and Effect Analysis - Centro de Distribuição 3PL - Recebimento (II)	216
Figura 69 -	Failure Mode and Effect Analysis - Centro de Distribuição 3PL - Recebimento (III)	217
Figura 70 -	Failure Mode and Effect Analysis - Centro de Distribuição 3PL - Expedição (I)	218
Figura 71 -	Failure Mode and Effect Analysis - Centro de Distribuição 3PL - Expedição (II)	219
Figura 72 -	Resultados dos testes de hipóteses	222
Figura 73 -	Quadro ilustrativo para interpretação do CpK	238
Figura 74 -	Modelos de etiquetas para impressoras e suprimentos	239
Figura 75 -	Etiquetas em impressoras	240
Figura 76 -	Etiqueta em caixa de suprimentos	240
Figura 77 -	Palete de impressoras	241
Figura 78 -	Palete de suprimentos	242
Figura 79 -	Portal RFID em perspectiva	242
Figura 80 -	Portal RFID vista frontal	243
Figura 81 -	Mesa giratória RFID	243
Figura 82 -	Estação de inspeção RFID vista frontal	244

Figura 83 -	Estação de inspeção RFID vista lateral	244
Figura 84 -	Leitora RFID	245
Figura 85 -	Antena RFID	245
Figura 86 -	Arquitetura sistêmica	247
Figura 87 -	RFID - Planejamento	253
Figura 88 -	Fluxograma do processo de etiquetagem e leitura RFID	255
Figura 89 -	Portal RFID	258
Figura 90 -	Portal RFID com palete no momento da leitura	259
Figura 91 -	(A) Palete com todas as etiquetas voltadas para dentro do palete e (B) Palete com algumas etiquetas voltadas para fora do palete	260
Figura 92 -	Portal RFID	265
Figura 93 -	Vista superior do palete de suprimentos - Alternativa I	266
Figura 94 -	Vista superior do palete de suprimentos - Alternativa II	267
Figura 95 -	Vista superior do palete de suprimentos - Alternativa III	268
Figura 96 -	Vista superior do palete de suprimentos - Alternativa IV	270
Figura 97 -	Vista superior do palete de suprimentos - Alternativa V	270
Figura 98 -	Vista superior do palete de suprimentos - Alternativa VI	272
Figura 99 -	Vista superior do palete de suprimentos - Alternativa III otimizado para conseguir leitura 100%	275
Figura 100 -	Interpretação do Índice CpK	280
Figura 101 -	Método "CDA ² PEM" para otimização de processos da Cadeia de Suprimentos	285
Figura 102 -	Obstáculos para leitura com RFID	287
Figura 103 -	Evolução da aplicação de RFID	298

LISTA DE GRÁFICOS

Gráfico 1 -	Inventário X modal aéreo	024
Gráfico 2 -	Evolução do valor agregado	048
Gráfico 3 -	Problemas na Cadeia de Suprimentos impacta diretamente o preço das ações no mercado	063
Gráfico 4 -	Idade dos produtos no mercado brasileiro	074
Gráfico 5 -	Comparação do desempenho da cadeia de suprimentos pelos competidores	082
Gráfico 6 -	Teste de hipóteses Ho, H1 - Recebimentos de suprimentos	223
Gráfico 7 -	Teste de hipóteses Ho, H1 - Recebimentos de suprimentos	224
Gráfico 8 -	Teste de hipóteses Ho, H1 - Recebimentos de suprimentos	225
Gráfico 9 -	Teste de hipóteses Ho, H1 - Recebimentos de suprimentos	226
Gráfico 10 -	Análise de capacidade do processo - Conceito Seis Sigma	227
Gráfico 11 -	Recebimento de suprimentos - Intervalo de confiança	228
Gráfico 12 -	Teste de hipótese Ho, H1 - Recebimento de impressoras	231
Gráfico 13 -	Teste de hipótese Ho, H1 - Recebimento de impressoras	232
Gráfico 14 -	Teste de hipótese Ho, H1 - Recebimento de impressoras	233
Gráfico 15 -	Teste de hipótese Ho, H1 - Recebimento de impressoras	234
Gráfico 16 -	Análise de capacidade do processo - Conceito Seis Sigma	235
Gráfico 17 -	Intervalo de confiança - Recebimento de impressoras	236
Gráfico 18 -	Monitoramento de desempenho de leituras com 100%	277
Gráfico 19 -	Monitoramento - Análise de capacidade do processo	279

LISTA DE TABELAS

Tabela 1 -	Resultados apresentados com aplicação da solução RFID 283
Tabela 2 -	Resultados apresentados com a otimização RFID

LISTA DE QUADRO

Quadro 1 -	CM's Tecnologias – Principais capacidades	038
Quadro 2 -	Comparação entre venda transacional e consultiva	081
Quadro 3 -	Características das etiquetas	107
Quadro 4 -	Composição do código EPC	116
Quadro 5 -	Doze elementos-chave do processo FMEA	125
Quadro 6 -	Outros usos para FMEAs	141
Quadro 7 -	Quesitos para análise dos sistemas	190
Quadro 8 -	Aspectos para implementação de RFID	191
Quadro 9 -	Análise de velocidade e acuracidade - Recebimento	192
Quadro 10 -	Análise de velocidade e acuracidade - Separação	193
Quadro 11 -	Análise de velocidade e acuracidade - Expedição	193
Quadro 12 -	Análise de velocidade e acuracidade - Outros processos/ subprocessos	194
Quadro 13 -	Requisitos para implementação do RFID	195
Quadro 14 -	Requisitos técnicos para implementação do RFID	195
Quadro 15 -	Requisitos estruturais para implementação do RFID	196
Quadro 16 -	Tempo de recebimento – Suprimentos	221
Quadro 17 -	Tempo de recebimento - Impressoras	230
Quadro 18 -	Papéis e responsabilidades	251
Quadro 19 -	Primeiros paletes testados	258
Quadro 20 -	Definição de intervalo	260
Quadro 21 -	Testes de leitura com duas antenas circulares e lineares	261
Quadro 22 -	Comparativo de resultados de leituras usando duas antenas circulares, combinando com uma circular e uma linear	262
Quadro 23 -	Comparativo de antenas do palete C	262
Quadro 24 -	Comparativo de antenas do palete G	262
Quadro 25 -	Comparativo de antenas com 4% de proteção	263
Quadro 26 -	Amostras selecionada para testes de leitura	265
Quadro 27 -	Resultados de testes - Alternativa I	266

Quadro 28 -	Resultados de testes - Alternativa II	. 268
Quadro 29 -	Resultados dos testes - Alternativa III	. 269
Quadro 30 -	Resultados dos testes - Alternativa IV	. 269
Quadro 31 -	Resultados dos testes - Alternativa V	. 271
Quadro 32 -	Resultados dos testes - Alternativa VI	. 271
Quadro 33 -	Resultados dos testes - Alternativa VII	. 272
Quadro 34 -	Resultados com leitura 100%	. 274
Quadro 35 -	Resultados com leitura 100%	. 286

RESUMO

Nesta pesquisa desenvolveu-se um estudo para otimizar a Cadeia de Suprimentos com a utilização da tecnologia de Identificação por Rádio Freqüência ("Radio Frequency Identification" - RFID). Faz parte do escopo do estudo desenvolver um método de otimização envolvendo FMEA e Seis Sigma para suportar o entendimento do processo e identificar os pontos fracos e onde, no processo, deve ser melhorado.

O método desenvolvido e chamado de CDA²PEM foi aplicado à Cadeia de Suprimentos com resultados surpreendentes tanto do ponto de vista de metodologia como pelos resultados apresentados.

Os principais resultados desta pesquisa mostram que com a utilização da tecnologia RFID pode-se otimizar a Cadeia de Suprimentos centenas de vezes com relação à sua velocidade. Tomando-se como exemplo o processo de recebimento de suprimentos no Centro de Distribuição no atual processo, demora, no melhor caso, 3,22 horas, mediana 12,12 horas, média aritmética 18,28 horas e máximo 98,12 horas. Os resultados indicam uma otimização de 193 vezes para o ponto mínimo, 727 vezes para a mediana, 1091 vezes para a média aritmética e 5887 vezes para o ponto máximo, tomando-se como tempo de referência 60 segundos (tempo gasto pelo sistema RFID para ler um palete de 60 caixas).

Tomando-se o mesmo processo nas mesmas condições, ou seja, ponto mínimo 3,22 horas, mediana 12,12 horas, média aritmética 18,28 horas e ponto máximo 98,12 horas, os resultados indicam uma otimização de 386 vezes para o ponto mínimo, 1454 vezes para a mediana, 2182 vezes para a média aritmética e 11 774 vezes para o ponto máximo, tomando-se, neste caso, o tempo de 30 segundos (tempo gasto pelo sistema RFID para ler um palete de 60 caixas). Outro tempo de processo RFID de 10 segundos para ler a mesma quantidade de caixas também foi estudado, mas deverá demorar um pouco mais para entrar em operação. Os primeiros processos deverão operar com tempos entre 10 e 120 segundos, conforme mostrado no tópico "monitorar" inserido neste trabalho.

Pontos importantes de melhorias também foram encontrados na tecnologia atual dos equipamentos que compõem o sistema RFID. Um dos itens que produz grande impacto são as etiquetas inteligentes porque existem várias áreas de oportunidades de melhorias. Por exemplo, descobriu-se que as etiquetas dentro das caixas, ou seja, afixadas no produto, representa a melhor situação, uma vez que, com isto, permite-se fazer um rastreamento completo do produto ao longo da Cadeia de Suprimentos até o momento da reciclagem dos produtos já usados pelos clientes. Portanto, encontra-se uma dificuldade maior de leitura do que com etiquetas afixadas nas caixas dos produtos.

Entretanto, fez-se um estudo detalhado dos paletes e, finalmente, obteve-se um índice de leitura de 100%, o que evidencia claramente a viabilidade da utilização da tecnologia em larga escala nos próximos anos pelo mercado, como forma de otimização da Cadeia de Suprimentos.

Finalmente, com o advento desta tecnologia, o mercado deverá caminhar para uma integração completa da Cadeia de Suprimentos desde os fornecedores de matérias primas até o momento da reciclagem dos produtos pelos recicladores. Com isto, começa-se a gerir a Cadeia de Suprimentos dentro da nova tendência de mercado que é substituir o modelo ainda vigente chamado de empurrado, ou seja, o planejamento feito pelo fabricante, com os pedidos vindos do Centro de Distribuição, com uma variabilidade muito grande ao longo da Cadeia de Suprimentos, por um novo modelo no qual a Cadeia de Suprimentos, por si só, seja auto-renovável do ponto de vista de informações mais próximas da realidade. Neste momento, estará começando a substituição de inventário por informações, o que, na verdade, faz-se necessário ter informações e dispor do produto ao cliente no momento certo, em uma Cadeia de Suprimentos ideal o inventário dever ser do tamanho da demanda.

ABSTRACT

Herein, we developed a study to optimize the Supply Chain utilizing the Radio Frequency Identification" (RFID) technology. It is part of the scope of this study to develop a method of optimization related to FMEA and Six Sigma to support the understanding of the process, to identify the weak points, and to identify which aspects of the process should be improved.

The method developed and called CDA²PEM was applied to the Supply Chain and showed surprising and significant results.

The main results of this research show that with the use of RFID technology, the Supply Chain velocity can be optimized hundreds of times. For instance, today, receiving supplies in the Distribution Department the process takes in the best case scenario 3.22 hours, a median time of 12.12 hours, an arithmetic mean time of 18.28 hours and a maximum time of 98.12 hours. Results indicate an optimization of 193-fold for the lowest point, 727-fold for the median, 1,091-fold for the arithmetic mean and 5,887-fold for the highest point, considering 60 seconds as the reference time (time spent by the RFID system to read a pallet of 60 boxes).

Considering the same process in the same conditions, lowest point 3.22 hours, median 12.12 hours, arithmetic mean 18.28 hours and highest point 98.12 hours, results show a 386-fold optimization for the lowest point, 1,454-fold for the median, 2,182-fold for the arithmetic mean and a 11,774-fold improvement for the highest point, considering in this case 30 seconds as the reference time (i.e., time spent by the RFID system to read a pallet of 60 boxes). Ten seconds was also studied as the time spent for the RFID system to read the same amount of boxes, but it may take a little longer to start operating. The first processes should operate with times between 10 and 120 seconds, as shown in the topic "Monitor" in this thesis.

Important aspects of improvement were also found in the present technology of equipment that compose the RFID system. One of the items that generated great impact is the intelligent labels which offer several areas of opportunity for improvement. For example, one has discovered that the labels inside the boxes, affixed on the product represent the best scenario,

once this allows a complete tracking of the product through the Supply Chain until the moment of reconstructing the products used by the clients. Thus, it is more difficult to read the labels if they are not affixed on the product box.

However, a thorough study of pallets was performed and finally a reading of a 100% was achieved. This brings clear evidences of the viability of the technology utilization in a large scale over the next several years in the market as a way of optimizing the Supply Chain.

Finally, with technological advances, the market should reach a complete integration of the Supply Chain from the raw materials suppliers to the product re-assemblers. This way, the Supply Chain is managed by a new market tendency, which is to replace the former imposed model (planned by the manufacturer, with the invoices coming from the Distribution Department and with a large volume through the Supply Chain) for a new model where the Supply Chain itself is self-renewable regarding the real information. At this moment, inventory is being replaced by information. It is essential to have information and make the product available for the client at the right time. In an ideal Supply Chain, the inventory level has to match demand.