• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.3.2018.tde-05032018-112239
Document
Author
Full name
Marcio Wagner Batista dos Santos
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2017
Supervisor
Committee
Batalha, Gilmar Ferreira (President)
Bernhart, Gerard Antoine Joseph
Blandin, Jean-jacques Marcel
Moreira, Luciano Pessanha
Robert, Maria Helena
Velay, Vincent Lionel Sebastien
Title in English
Investigation of the mechanical behaviour and microstructure evolution of titanium alloys under superplastic and hot forming conditions.
Keywords in English
Behavioural modelling
Hot forming
Microstructural evolution
Superplastic forming
Superplasticity
Abstract in English
This thesis was developed in the frame of a Brazil-France cooperation agreement between the École des Mines d'Albi-Carmaux and the Polytechnic School of Engineering of the University of Sao Paulo (EPUSP). It aims to contribute to the study of the mechanical behaviour of Ti6Al4V alloys especially in terms of superplastic forming. The general objective of this research is to develop non-conventional forming processes for new titanium alloys applied to aerospace components Therefore, in accordance of the equipment's available in the two groups, the work will be conducted either at the Ecole des Mines d'Albi-Carmaux and either at EPUSP. This thesis aims to answer questions such as what are the implications in relation to the microstructural and mechanical behaviour of these alloys during superplastic and hot forming in order to establish a behaviour law for these alloys based on titanium. This requires a good knowledge of the properties of materials used in the superplastic and hot forming domain to control the parameters governing the phenomenon of superplasticity or high temperature plasticity. For this, a testing strategy and characterization methodology of those new titanium alloys was developed. The tests include high temperature uniaxial tensile tests on several Ti6Al4V alloys showing different initial grain sizes. Special focus was made on the microstructural evolution prior to testing (i.e. during specimen temperature increase and stabilization) and during testing. Testing range was chosen to cover the hot forming and superplastic deformation domain. Grain growth is depending on alloy initial microstructures but also on the duration of the test at testing temperature (static growth) and testing strain rate (dynamic growth). After testing microstructural evolutions of the alloys will be observed by optical micrograph or SEM and results are used to increase behaviour model accuracy. Advanced unified behaviour models where introduced in order to cover the whole strain rate and temperature range: kinematic hardening, strain rate sensitive and grain growth features are included in the model. In order to get validation of the behaviour model, it was introduced in ABAQUSR numerical simulation code and model predictions (especially macroscopic deformation and local grain growth) were compared, for one of the material investigated, to axisymmetric inflation forming tests of sheet metal parts, also known as bulge test. To obtain a simple control cycle, tests performed at IPT/LEL laboratory in San José Dos Campos in Brazil were operated with a constant strain rate. Results show a very good correlation with predictions and allows to conclude on an accuracy of the behaviour models of the titanium alloys in industrial forming conditions.
Title in Portuguese
Estudo do comportamento mecânico e microestrutural da liga de titânio sob condições de conformação a quente e superplástica.
Keywords in Portuguese
Conformação mecânica
Evolução microestrutural
Superplasticidade
Titânio
Abstract in Portuguese
Esta tese desenvolvida dentro do acordo de cooperação internacional celebrado entre a Escola Politécnica da Universidade de São Paulo (EPUSP) e a École des Mines d'Albi-Carmaux tem como tema principal a análise da influência da evolução microestrutural sobre o comportamento mecânico de chapa de liga de titânio - Ti-6Al- 4V sob condições superplásticas e trabalho a quente. O objetivo desta pesquisa é contribuir para o desenvolvimento de processos de conformação não convencional de chapas de ligas a base de titânio utilizadas na manufatura de componentes metálicos. Como objetivo específico, estabelecer uma correlação entre comportamento mecânico e a mudança microestrutural a partir de três tipos de ligas com diferentes tamanhos de grão iniciais (0.5, 3.0 e 4.9 ?m). Os testes foram realizados na faixa de temperatura de 700 a 950 °C combinados às taxas de deformação na faixa de 10-1 s-1 - 10-4 s-1. Para a metodologia, estabeleceu-se uma estratégia de ensaios mecânicos capaz de testar as hipóteses sobre o comportamento do material formuladas no início desta pesquisa. Em seguida, os ensaios mecânicos foram divididos em três partes. Na primeira, utilizou-se um simulador termomecânico modelo Gleeble 3800 para os ensaios a quente variando-se a taxa de deformação (??) entre 10-1 s-1 a 10-3 s-1 e temperaturas da ordem de 700 °C a 850 °C. Na segunda parte dos testes, priorizouse taxas de deformação mais lentas (10-2 s-1 - 10-4 s-1) e temperaturas mais elevadas (800 °C - 950 °C) objetivando atingir as deformações superplásticas do material, nesta etapa utilizou-se como equipamento uma máquina de tração modelo MTS 50kN com câmara de aquecimento acoplada. A terceira parte dos ensaios experimentais envolveu a conformação na condição superplástica por pressão hidrostática (Bulge test) realizadas no LEL-IPT de São José dos Campos. A partir da análise dos dados experimentais levantou-se os parâmetros introduzidos no modelo numérico de comportamento mecânico baseado na evolução da microestrutura da chapa testada permitindo a calibração do modelo numérico a partir das equações constituintes e finalmente introduzido no software de elementos finitos (ABAQUS 6.12) e construído a simulação numérica da conformação superplástica por pressão hidrostática. Os principais resultados indicaram uma forte correlação entre microestrutura inicial da conformação superplástica e a quente de onde se pode observar que tanto menor a microestrutura inicial maior será a quantidade do crescimento de grão. Os resultados da conformação superplástica de expansão multiaxial do domo hemisférico foram, então, comparados à simulação numérica permitindo confrontar os dados do modelo numérico do comportamento mecânico com a lei de comportamento estudada, o que possibilitou um melhor entendimento dos mecanismos da conformação plástica em condições de superplasticidade e também de trabalho a aquente do material.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2018-03-08
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.