JOÃO VITOR FONTENELE ROMERO

ESTUDO EXPERIMENTAL DE SONDA DIRECIONAL PARA DETERMINAÇÃO DA VELOCIDADE DO ESCOAMENTO DE AR

São Paulo 2011 JOÃO VITOR FONTENELE ROMERO

ESTUDO EXPERIMENTAL DE SONDA DIRECIONAL PARA DETERMINAÇÃO DA VELOCIDADE DO ESCOAMENTO DE AR

Dissertação apresentada à Escola Politécnica da Universidade de São Paulo para obtenção do título de Mestre em Engenharia

> Área de Concentração: Engenharia Mecânica de Energia e Fluidos

Orientador: Prof. Dr. Antonio Luís de Campos Mariani

São Paulo 2011

Este exemplar foi revisado e alterado em relação à versão original, sob responsabilidade única do autor e com a anuência de seu orientador.
São Paulo, 05 de maio de 2011.
Assinatura do autor
Assinatura do orientador

FICHA CATALOGRÁFICA

Romero, João Vitor Fontenele Estudo experimental de sonda direcional para determinação da velocidade do escoamento de ar / J.V.F. Romero. – ed.rev. --São Paulo, 2011. 167 p. Dissertação (Mestrado) - Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia Mecânica. 1. Velocidade do fluxo dos fluídos (Medição) 2.Instrumenta ção (Física) I. Universidade de São Paulo. Escola Politécnica. Departamento de Engenharia Mecânica II. t. DEDICATÓRIA

Dedico este trabalho à minha esposa Ana, ao meu filho Vítor, aos meus pais Paulo Romero e Silvia Romero e a meu irmão Gabriel Romero.

AGRADECIMENTOS

À minha esposa Ana, pelo apoio e companheirismo durante o trabalho.

Ao Professor Dr. Antonio Luis de Campos Mariani pela orientação e parceria no decorrer de todo o projeto, aos técnicos do Laboratório de Instrumentação em Mecânica dos Fluidos Laércio Damacena e Douglas Silva por toda a ajuda e participação no projeto.

Aos profissionais Dr. Gilder Nader, Prof. Dr. Antônio Luiz Pacífico, MSc. Paulo Jabardo, Josiel e André pelo suporte nos ensaios realizados na Divisão de Metrologia de Fluidos do Intituto de Pesquisas Tecnológicas de São Paulo (IPT). Ao Professor Dr. Gustavo Assi do NDF pela fabricação de sondas em prototipagem rápida, a Daniel Strauss, da TECSIS, pelo incentivo nas etapas iniciais do trabalho.

RESUMO

O presente trabalho trata do desenvolvimento de uma sonda de pressão para medição de magnitude e direção da velocidade em um escoamento de ar.

Primeiramente, é feita uma pesquisa sobre métodos e instrumentos de medição de velocidade de escoamentos de ar, utilizando a literatura existente sobre os tipos de medidores e suas restrições e capacidades na medição de direção do escoamento.

Em seguida, são escolhidos dois tipos de medidores capazes de atender aos requisitos de fabricação simples e robusta, sendo um deles aplicado a escoamentos bidimensionais (sensor de três orifícios, tipo prisma) e o outro, a escoamentos tridimensionais (sensor de cinco orifícios, tipo pirâmide).

É feito o projeto detalhado destes medidores e define-se o método de fabricação dos mesmos, comparando o método da prototipagem rápida com a usinagem.

Uma vez fabricados os sensores, são realizados ensaios de caráter investigativo para mensurar a faixa de ângulos de medição de cada sensor. De posse dos resultados, é feito um estudo sobre os coeficientes adimensionais utilizados para a definição do ângulo de escoamento a partir das medições de pressão realizadas pelo sensor. É proposto um novo conjunto de coeficientes adimensionais com os quais se determina uma faixa de medição de ângulos entre -25° e + 25° para a sonda tipo prisma e uma faixa entre -35° e + 35° para a sonda tipo pirâmide.

Finalmente, são feitas as curvas de calibração para os sensores e se discute sobre suas aplicações na medição de velocidade de escoamentos de ar.

Palavras-chave: Tubo de Pitot. Medidor de velocidade direcional. Ventilação Industrial. Escoamento de ar.

ABSTRACT

The present work deals with the development of a pressure probe for measuring magnitude and direction of velocity from an air flow.

Initially, it is made a review of methods and instruments to measure air flow velocity, using the existing literature on kinds of instruments with their restrictions and capabilities on flow direction measurement.

Secondly, two kinds of sensors are chosen based on the requirements of easy and robust manufacturing, being one of them applied to bi-dimensional flows (three-hole probe, prism type) and the other one for tri-dimensional flows (five-hole probe, pyramid type).

The detailed design of these probes is made and the fabrication method is chosen comparing the fast prototyping method with machining.

Once these sensors are manufactured, investigative tests are carried out in order to measure the flow angle range for each sensor. With these results, a study is made on the non-dimensional coefficients used for definition of flow angle from the pressure measurements from the sensor. A new set of non-dimensional coefficients is proposed and a flow angle range between -25° and $+25^{\circ}$ is determined for the prism probe and a range between -35° and $+35^{\circ}$ for the pyramid probe,

Finally, the calibration curves are made for the two sensors, followed by a discussion on the applications on air flow velocity measurements.

Keywords: Pitot probes. Multihole velocity probes. Industrial ventilation. Air flow.

LISTA DE ILUSTRAÇÕES

Figura	1	Algumas configurações de sondas: Tubo de Pitot (a). Tubo estático (b). Tubo Pitot- estático (c)	17
Figura	2	Representação de um anemômetro de fio quente	17
Figura	3	Anemômetro de pás modelo Pacer DA400	18
Figura	4	Aparato e princípio de funcionamento da anemometria laser-Doppler	19
Figura	5	Disposição dos furos em sonda direcional de três furos	21
Figura	6	Determinação do ângulo do escoamento	21
Figura	7	Sondas de velocidade e direção de escoamento utilizadas no trabalho NACA TN 2830	28
Figura	8	Sondas de velocidade e direção do escoamento utilizadas no trabalho NACA 2830. Sonda tipo piramidal e tipo prisma	29
Figura	9	Desenho esquemático de sondas de guinada, representada no trabalho NACA TN 2830	30
Figura	10	Resultados de leituras de pressão de sondas de guinada. Resultados extraídos de NACA TN 2830	31
Figura	11	Sonda tipo garra. Extraído de NACA TN 2830	32
Figura	12	Resultados de sensibilidade a ângulo de guinada do escoamento para diversas configurações de sondas tipo garra. NACA TN 2830	32
Figura	13	Sonda tipo A (NACA TN 2830)	33
Figura	14	Sonda tipo B	34
Figura	15	Sonda tipo C	34
Figura	16	Sonda tipo D	34
Figura	17	Sonda tipo E	34
Figura	18	Sonda tipo F	35
Figura	19	Sonda tipo G	35
Figura	20	Sonda tipo H	35

Figura	21	Sonda tipo prisma (NACA TN 2830)	38
Figura	22	Sonda tipo pirâmide (NACA TN 2830)	39
Figura	23	Variação na leitura de pressão dos tubos de guinada e diferenças nas leituras de pressão total e estática da sonda prisma em relação a uma sonda padrão tipo Pitot, com respeito ao ângulo de guinada. V=60 m/s	40
Figura	24	Variação na leitura de pressão dos tubos de guinada e diferenças nas leituras de pressão total e estática da sonda prisma em relação a uma sonda padrão tipo Pitot, com respeito ao ângulo de guinada. V=119m/s	41
Figura	25	Sensores de pressão feitos de tubos abertos: (a) Sonda de 2 tubos; (b) Sonda assimétrica de 2 tubos; (c) Sonda de 4 tubos; (d) Sonda tipo garra; (e) Sonda de 2 tubos divergente	43
Figura	26	Vários sensores de pressão: (a) Cilindro-transverso; (b) Cabeça hemisférica; (c) Cunha em balanço; (d) Conrad; (e) Chisel; (f) Cônico; (g) Piramidal; (h) Hemisférico com feixe de tubos divergentes; (i) Seção de aerofólio	43
Figura	27	Sistema de coordenadas do medidor (ZILLIAC, 1989)	46
Figura	28	Sonda de 7 orifícios e esquema de numeração dos orifícios	48
Figura	29	Variação de pressão em uma sonda de 7 furos. (a) Variação de pressão medida. (b) Variação de pressão teórica	49
Figura	30	Exemplo de resultado de medições de aumento de pressão total na direção radial do rotor	52
Figura	31	Exemplo de posicionador mecânico para calibração utilizado no trabalho NACA TN 2830	55
Figura	32	Esquema de montagem de posicionador mecânico utilizado no trabalho NACA TN 2830	55
Figura	33	Ventilador axial de aplicação em mineração	57
Figura	34	Curva do ventilador TJF11013075	58
Figura	35	Função das aletas de saída	59
Figura	36	Deslocamento do medidor devido à força de arrasto	61
Figura	37	Variação do coeficiente de arrasto de corpo cilíndrico inserido em um escoamento	62

Figura	38	Esquema da haste da sonda direcional	65
Figura	39	Esquema da ponta da sonda tipo pirâmide	66
Figura	40	Esquema da ponta da sonda tipo prisma	67
Figura	41	Esquema da haste da sonda com suas divisões	69
Figura	42	Haste da sonda ao lado de uma régua de 50 cm	70
Figura	43	Ponta tipo prisma fabricada	71
Figura	44	Ponta tipo pirâmide fabricada	72
Figura	45	Tubos de cobre colados na parte interna das pontas de sonda	73
Figura	46	Teste de vazamento	73
Figura	47	Sonda tipo prisma fabricada em latão	74
Figura	48	Dispositivo posicionador para sonda de pressão direcional	77
Figura	49	Montagem do dispositivo posicionador no cilindro de regulagem vertical de altura	78
Figura	50	Micro-manômetro FCO 510	81
Figura	51	Indicadores de temperatura e barômetro DHI	82
Figura	52	Indicações de pressão no programa Flowsense	83
Figura	53	Indicações ângulos de guinada e arfagem	84
Figura	54	Nivelamento da sonda antes dos ensaios	86
Figura	55	Ângulos de posicionamento da sonda pirâmide no escoamento	87
Figura	56	Numeração das tomadas de pressão na sonda pirâmide	88
-			00
⊦ıgura	57	Curva de calibração do transdutor de pressão #011195	90

Figura	58	Ensaio de calibração da sonda tipo prisma. V=10,11 m/s. Coeficiente de arfagem definido segundo (TREASTER, et al., 1978)	97
Figura	59	Ensaio de calibração da sonda tipo prisma. V=10,11 m/s. Coeficiente de arfagem definido segundo (NOWACK, 1970)	98
Figura	60	Ensaio de calibração da sonda tipo prisma. V=10,11 m/s. Coeficiente de arfagem definido segundo (NOWACK, 1970), região entre -25º e +25º	99
Figura	61	Ensaio de calibração da sonda tipo prisma. V=10,11 m/s. Coeficiente de arfagem definido com o denominador $\sqrt{\overline{p}^2}$	100
Figura	62	Ensaio de calibração da sonda tipo prisma. V=10,11 m/s. Coeficiente de arfagem definido com o denominador $\sqrt{\overline{p}^2}$. Faixa de ângulos entre -25º e +25º	100
Figura	63	Ensaio de calibração da sonda tipo prisma. Velocidades de 10,11 m/s, 7,13 m/s e 12,1 m/s.	101
Figura	64	Ensaio de calibração da sonda tipo prisma. V=10,11 m/s. Coeficiente de pressão total definido segundo Treaster (TREASTER, et al., 1978)	102
Figura	65	Ensaio de calibração da sonda tipo prisma. V=10,11 m/s. Coeficiente de pressão estática definido segundo Treaster (TREASTER, et al., 1978).	103
Figura	66	Ensaio de calibração da sonda tipo prisma. V=10,11 m/s. Coeficiente de pressão total definido com o denominador $\sqrt{\overline{p}^2}$	104
Figura	67	Ensaio de calibração da sonda tipo prisma. V=10,11 m/s. Coeficiente de pressão estática definido com o denominador $\sqrt{\overline{p}^2}$	104
Figura	68	Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de guinada definido segundo (NOWACK, 1970)	106
Figura	69	Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de arfagem definido segundo (NOWACK, 1970)	107
Figura	70	Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de guinada definido segundo (TREASTER et al. , 1978)	108
Figura	71	Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de arfagem definido segundo (TREASTER et al. , 1978)	109
Figura	72	Ensaio de calibração da sonda tipo pirâmide. V=10,11 m/s. Coeficiente de guinada definido com o denominador $\sqrt{\overline{p}^2}$.	110
Figura	73	Ensaio de calibração da sonda tipo pirâmide. V=10,11 m/s. Coeficiente de guinada definido com o denominador $\sqrt{\overline{p}^2}$ e faixa de ângulos de -35 a +35 graus	110
Figura	74	Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de arfagem definido com o denominador $\sqrt{\overline{p}^2}$.	111
Figura	75	Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de arfagem definido com o denominador $\sqrt{\overline{p}^2}$ e faixa de ângulos de -35 a +35 graus	112
Figura	76	Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Variação dos ângulos de guinada e arfagem na mesma proporção.	113

Figura	77	Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Variação dos ângulos de guinada e arfagem na mesma proporção. Faixa de ângulos entre -30º e +35º	113
Figura	78	Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Variação dos ângulos de guinada e arfagem na mesma proporção	114
Figura	79	Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Variação dos ângulos de guinada e arfagem na mesma proporção. Faixa de ângulos entre -30º e +35º	114
Figura	80	Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de pressão total definido conforme Treaster (TREASTER, et al., 1978) e Zilliac (ZILLIAC, 1989)	116
Figura	81	Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de pressão estática definido conforme Treaster (TREASTER, et al., 1978) e Zilliac (ZILLIAC, 1989)	116
Figura	82	Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de pressão total definido com o denominador $\sqrt{\overline{p}^2}$	117
Figura	83	Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de pressão total definido com o denominador $\sqrt{\overline{p}^2}$, faixa de ângulos entre -35º e +35º	118
Figura	84	Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de pressão estática definido com o denominador $\sqrt{\overline{p}^2}$	118
Figura	85	Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de pressão estática definido com o denominador $\sqrt{\overline{p}^2}$, faixa de ângulos entre -35° e +35°	119
Figura	86	Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de pressão total definido conforme Treaster (TREASTER, et al., 1978) e Zilliac (ZILLIAC, 1989)	120
Figura	87	Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de pressão estática definido conforme Treaster (TREASTER, et al., 1978) e Zilliac (ZILLIAC, 1989)	120
Figura	88	Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de pressão total definido com o denominador $\sqrt{\overline{p}^2}$	121
Figura	89	Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de pressão total definido com o denominador $\sqrt{\overline{p}^2}$, faixa de ângulos entre -35º e +35º	122
Figura	90	Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de pressão estática definido com o denominador $\sqrt{\overline{p}^2}$	122
Figura	91	Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de pressão estática definido com o denominador $\sqrt{\overline{p}^2}$, faixa de ângulos entre -35° e +35°	123
Figura	92	Ensaio de calibração da sonda tipo pirâmide. Variação do coeficiente de guinada com as variações dos ângulos de arfagem e guinada	124
Figura	93	Ensaio de calibração da sonda tipo pirâmide. Variação do coeficiente de arfagem com as variações dos ângulos de arfagem e guinada	125
Figura	94	Ensaio de calibração da sonda tipo pirâmide. Variação do coeficiente de pressão total com as variações dos ângulos de arfagem e guinada	126
Figura	95	Ensaio de calibração da sonda tipo pirâmide. Variação do coeficiente de pressão estática com as variações dos ângulos de arfagem e guinada	127

LISTA DE TABELAS

Tabela	1	Resultados de medições de sondas tipo B a H. NACA TN 2830	36
Tabela	2	Comparação entre sensibilidades de medidores para escoamento incompressível	45
Tabela	3	Instrumentação utilizada nos ensaios	79

LISTA DE SÍMBOLOS

- α Ângulo de inclinação da sonda em relação ao plano horizontal
- β Ângulo entre orifícios de tomada de pressão
- δ Ângulo de arfagem do medidor
- *ζ* Ângulo entre eixo x e a direção do escoamento não-perturbado
- θ Ângulo de ataque do escoamento
- λ Posição ao longo do raio do rotor
- μ Viscosidade dinâmica
- v_{eff} Graus de liberdade efetivos
- v_i Grau de liberdade do elemento i
- ξ Coordenada circunferencial transformada
- ρ Massa específica do ar
- φ Ângulo de separação entre orifícios
- ψ Ângulo de guinada do medidor
- Δp_{min} menor diferença de pressão lida pelo manômetro
- Φ Potencial de velocidade do escoamento
- Φ_{ext} Diâmetro externo do tubo
- Φ_{int} Diâmetro interno do tubo
- X Ângulo de rotação
- A Ângulo de corte da ponta de sonda de guinada
- A_{anular} Área do anel entre o cubo do rotor e as paredes do duto
- B Ângulo de abertura entre tomadas de pressão
- C_c coeficiente de calibração de tubo de Pitot
- $C_{p\psi}$ Coeficiente de sensibilidade a guinada
- C_P Coeficiente de pressão
- C_d Coeficiente de arrasto do cilindro
- d Diâmetro interno do tubo
- d_e Diâmetro externo da haste da sonda
- d1 Deflexão da haste engastada
- d2 Deflexão da haste engastada
- D Diâmetro externo do tubo
- Dx Arrasto na direção axial
- E Módulo de Elasticidade
- g aceleração da gravidade
- h altura de coluna d'água
- H Pressão total lida pelo sensor
- H₀ Pressão total de referência
- I₀ Momento de Inércia
- k Fator de abrangência

K_{ψ}	Coeficiente de guinada
K_δ	Coeficiente de arfagem
K _{total}	Coeficiente de pressão total
K _{estatica}	Coeficiente de pressão estática
L	Comprimento da haste da sonda
р	Pressão lida pelo tubo de guinada
p_{s0}	Pressão estática de referência
p ₁	Pressão lida pelo tubo 1
p ₂	Pressão lida pelo tubo 2
p ₃	Pressão lida pelo orifício 3
p ₄	Pressão lida pelo orifício 4
p_5	Pressão lida pelo orifício 5
\overline{p}	Média das pressões entre orifícios 2, 3, 4 e 5
P _{din}	Pressão dinâmica
P _{total}	Pressão total
P _{estática}	Pressão estática
Pt	Pressão total do escoamento à jusante do rotor
Pa	Pressão total do escoamento à montante do rotor
Q	Vazão volumétrica de ar
q_0	Pressão dinâmica de referência
Re	Número de Reynolds
$\mathcal{U}_{\Delta P}$	Incerteza de medição associada ao manômetro de referência
u _A	Incerteza padrão tipo A
u _c	Incerteza padrão combinada
ui	Incerteza padrão do elemento i
u _p	Incerteza associada à variações na medida de pressão devido a erros de posicionamento da sonda
Ur	Incerteza associada à resolução de pressão do sistema
Us	Incerteza associada aos parâmetros de variação da pressão
U _{st}	Incerteza associada à estabilidade da medida de pressão
u _t	Incerteza associada a variações na medição de pressão devido a efeitos de temperatura
U	Incerteza padrão expandida
V	Velocidade do escoamento
V_1	Velocidade do escoamento defletido
Vr	Velocidade rotacional do escoamento
V_{x}	Velocidade na direção axial
V∞	Velocidade do escoamento não-perturbado

SUMÁRIO

1. INTRODUÇÃO	15
1.1 MEDIÇÃO DE VELOCIDADE DE ESCOAMENTOS	15
1.2 METODOLOGIA DE TRABALHO	22
2. OBJETIVOS	24
3. REVISÃO DA LITERATURA	26
3.1 HISTÓRICO	26
3.2 SONDAS DIRECIONAIS	28
3.3 APLICAÇÕES EM MEDIÇÃO DE ESCOAMENTOS À JUSANTE DE	
VENTILADORES AXIAIS	51
4. DEFINIÇÃO DOS MEDIDORES E DO APARATO EXPERIMENTAL	53
4.1 ESCOLHA DO SENSOR	53
4.2 DEFINIÇÃO DO APARATO EXPERIMENTAL	54
4.3 APLICAÇÃO DA MEDIÇÃO: ESTUDO DO ESCOAMENTO À JUSANTE	
DE ROTORES DE VENTILADORES AXIAIS	57
5. PROJETO DOS SENSORES	60
5.1 DEFINIÇÕES GERAIS	60
5.2 PROJETO DETALHADO DOS SENSORES	64
5.3 FABRICAÇÃO E VALIDAÇÃO DOS PROTÓTIPOS	68
6. ENSAIOS EXPERIMENTAIS	75
6.1 DESCRIÇÃO GERAL E OBJETIVOS DO ENSAIO	75
6.2 APARATO EXPERIMENTAL	76
6.3 PROCEDIMENTO EXPERIMENTAL PARA OS ENSAIOS	84
6.4 ANÁLISE DE INCERTEZAS	89
6.5 SELEÇÃO E DEFINIÇÃO DE COEFICIENTES	94
6.6 RESULTADOS DOS ENSAIOS E ANÁLISE DE COEFICIENTES	96
6.7 DETERMINAÇÃO DOS PARÂMETROS DE VELOCIDADE E DIREÇÃO	
	128
7. ANALISE DOS RESULTADOS E CONCLUSOES	131
8. REFERENCIAS BIBLIUGRAFICAS	134
APÊNDICE II - RESULTADOS DO ENSAIO DE VERIFICAÇÃO DA SONDA PRISMA	130
PIRÂMIDE	140
APÊNDICE III – CALIBRAÇÕES DOS TRANSDUTORES DE PRESSÃO	164

1. INTRODUÇÃO

1.1 MEDIÇÃO DE VELOCIDADE DE ESCOAMENTOS

A medição de grandezas em escoamentos de gases encontra aplicações em diversas áreas da engenharia. O presente trabalho nasce da necessidade de avaliação do módulo do vetor velocidade de sua direção em pontos de um escoamento à jusante de um rotor de ventilador axial utilizado em ventilação de minas. Estes equipamentos são fundamentais para a operação da mina, uma vez que fornecem vazão de ar de modo a atingir os requisitos para condições de segurança e salubridade dos que trabalham no seu interior, bem como ventilar áreas que necessitem um controle específico de temperatura, como salas de máquinas.

A caracterização do campo de velocidades do ar em seções à jusante do rotor de um ventilador axial permite conhecer a forma que o equipamento de ventilação está acelerando o ar, fornecendo informações valiosas do ponto de vista de projeto deste equipamento. No entanto, os vetores velocidade do escoamento à jusante de um rotor possuem componentes nas direções axiais, tangenciais e radiais, exigindo um mapeamento e determinação do módulo, direção e sentido destes vetores, o que não pode ser obtido apenas com o uso de medidores que pressupõem um alinhamento do sensor com a direção do escoamento. Isto porque ao se realizar a medição não se conhece, *a priori*, a direção e o sentido do vetor velocidade do fluido em cada ponto de uma dada seção de escoamento.

Os ensaios de ventiladores industriais normalmente se limitam a determinar a capacidade de geração de vazão de ar, os ganhos de pressão e potências relacionadas ao movimento do fluido. Com o estudo de características do escoamento à jusante do rotor do ventilador, podem-se inferir aspectos importantes sobre a eficiência na aceleração da massa de ar, permitindo ao engenheiro avaliar melhores geometrias de pás e aletas difusoras para aperfeiçoamento do projeto do equipamento. Medições pontuais em seções de interesse podem detectar não-uniformidades no campo de

velocidades e também indicar onde devem ocorrer intervenções para evoluir o ventilador.

Sendo assim, neste projeto é feita a investigação de medidores de velocidade com as seguintes características: facilidade de calibração e operação, capacidade de medir direção e sentido para ampla faixa de ângulos e módulos dos vetores velocidade, capacidade de realizar medições locais, fabricação com baixo custo, reduzida necessidade de manutenção e robustez. Certas características são decorrentes de que há aplicações em ambientes fabris com partículas de fibra de vidro em suspensão.

A partir das primeiras tentativas de medições de velocidade de escoamento no século XVIII, diversos tipos de medidores foram desenvolvidos. Os princípios de funcionamento destes medidores variam desde a aquisição de valores de pressão no escoamento até a medição de intervalos de tempo entre o choque de partículas do fluido com feixes de laser. O campo da medição de velocidades em fluidos evoluiu de tal forma que hoje é possível obter um alto nível de detalhamento sobre as características do escoamento. Muitas das técnicas desenvolvidas também permitem a obtenção de parâmetros com o uso de medidores e procedimentos que não representam custos elevados, o que também é um dos requisitos desta pesquisa.

Um dos instrumentos utilizados para a medição de velocidade em escoamentos de fluidos é o tubo de Pitot (PITOT, 1732). Este medidor, e também sua versão mais recente, o tubo Pitot-estático (FOLSOM, 1955; BRYER e PANKHURST, 1971), estiveram entre os primeiros sensores criados para a medição de velocidade de um fluido através de medições de pressão total e estática. Seu uso é bastante difundido em ambientes industriais e em laboratórios de pesquisa (figura 1).

Figura 1 – Algumas configurações de sondas: Tubo de Pitot (a). Tubo estático (b). Tubo Pitot-estático (c). Fonte: NASA.

Outro medidor de velocidade em meios fluidos de ampla utilização é o anemômetro de fio quente (GJESSING, et al., 1969), que consiste basicamente em uma haste com um fio (ou conjunto de fios) de espessura da ordem de micrômetros aquecido eletricamente (figura 2). Um material de uso comum para esse tipo de fio é o tungstênio. Este medidor apresenta também a capacidade de determinar a magnitude da velocidade. Há modelos que possibilitam medir a direção do escoamento através da determinação de até três componentes do vetor velocidade. Há a possibilidade de ser utilizado para medições em alta freqüência de taxas de aquisição, quando é importante medir o comportamento transiente do escoamento.

e	M	
R	H	5
		1

Figura 2 – Representação de um anemômetro de fio quente

Para medições em ventilação industrial, em particular, é comum o uso de um anemômetro de pás, que consiste em um rotor com pás de metal ou plástico (ver figura 3) que giram a uma rotação proporcional à velocidade de passagem do escoamento de ar no sentido normal ao plano do rotor.

Figura 3 – Exemplo de anemômetro de pás (modelo Pacer DA400)

Técnicas mais recentes desenvolvidas a partir dos anos 80, como anemometria a laser por efeito Doppler, cujo aparato está representado na figura 4, permitem a caracterização do campo de velocidades de fluidos com o uso de feixes de laser direcionados à região do escoamento que se deseja medir. Partículas podem ser inseridas no escoamento por meio de um processo de atomização, são chamadas de traçadores e devem possuir comportamento no escoamento similar ao dos fluidos predominantes. Uma grande vantagem desta técnica é não haver a necessidade de inserir algum medidor no escoamento, mas sim feixes de laser, sendo assim uma técnica não-intrusiva.

Figura 4 – Aparato e princípio de funcionamento da anemometria laser Doppler. (ENER, 2009)

Desta maneira, existe uma vasta gama de técnicas de medição e medidores para velocidade de fluidos em diferentes aplicações e requisitos de exatidão de resultados, freqüência de aquisição de dados, aparato experimental necessário, seu custo e rapidez em se obter as medições.

Dadas as características do escoamento a ser avaliado, pode-se iniciar a escolha do tipo de medidor de velocidade e verificar quais apresentam as características necessárias para se realizar a medição.

Considerando o propósito deste trabalho e os requisitos relacionados à área de ventilação, não são investigados medidores do tipo anemometria laser Doppler ou demais métodos óticos, pelo grande investimento necessário nesses casos. A análise de alternativas inicialmente estabelecidas fica entre os medidores portáteis pontuais e intrusivos, como anemômetros de fio quente, anemômetros de pás e sensores de pressão fabricados a partir do tubo de Pitot, com orifícios adicionais permitindo a determinação da direção do escoamento.

Os anemômetros de fio quente apresentam uma grande vantagem que é sua resposta em freqüência e sua resolução espacial (quando comparada às dos tubos de Pitot convencionais), e podem servir para medir a direção e velocidade do vento, utilizando fios orientados em 2 ou mais eixos distintos. Por outro lado, estes medidores

são bastante frágeis e caros quando comparados aos medidores derivados do tubo de Pitot.

Ainda que os anemômetros de fio quente possuam propriedades bastante interessantes, na aplicação deste projeto, não necessitamos de uma resposta em freqüência muito alta para esse primeiro estudo. Além, disso, a robustez do aparelho em termos de resistência a choques e resíduos presentes no escoamento é muito importante, uma vez que as estações de ensaios são localizadas em ambiente fabril e estão sujeitas a esbarrar em peças, a ambiente hostil, como por exemplo pó de fibra de vidro.

Embora este medidor não seja o mais apropriado para esta medição específica, deve-se considerá-lo essencial para estudos de turbulência e camada-limite, por sua ótima resolução espacial e resposta em freqüência.

Os anemômetros de pás medem a velocidade do escoamento da seguinte maneira: as pás associadas a um rotor, ao passar por um ímã ou um sensor de proximidade posicionado no copo do rotor (a peça que envolve o rotor), fecham (ou abrem) um contato, resultando em um fornecimento de uma saída em voltagem em pulsos, de amplitude proporcional à alimentação do aparelho e freqüência igual à freqüência de passagem das pás do rotor. A freqüência de passagem é simplesmente a rotação do rotor multiplicada pelo número de pás, e a rotação é determinada por um sensor tipo *pick-up* magnético.

Estes anemômetros são bastante utilizados para medições em ventiladores industriais por serem robustos e apresentarem intervalos de medição de velocidade do ar de 0,2 a 30 m/s. No entanto, o menor destes medidores encontrado comercialmente possui uma pequena ventoinha com pás, limitando dessa forma a capacidade de realização de medições pontuais, embora tenha sua utilidade para outros tipos de medições menos detalhadas e para ventiladores maiores, como os de torres de resfriamento.

Uma família de medidores que realizam a medição da pressão do escoamento e determinam, além da velocidade, a direção do escoamento, são as chamadas sondas direcionais. Estas sondas consistem em tubos cilíndricos com um ou mais furos,

captando a pressão total do escoamento e comparando-a com a pressão estática ou pressão de esteira do medidor.

Há basicamente duas maneiras para se determinar a direção do escoamento utilizando este tipo de sonda. Uma com base em leituras nulas de tomadas dispostas simetricamente no sensor, e outra com base em uma calibração que relacione a diferença entre as pressões lidas e o ângulo do escoamento.

A primeira maneira, que ocorre, por exemplo, na determinação da direção do ângulo do escoamento por um tubo com três orifícios, consiste em igualar a leitura de pressão nos dois furos em ângulo, como mostra o detalhe da figura 5 (BRYER e PANKHURST, 1971). Quando isso acontece, significa que o tubo cilíndrico está no plano do escoamento e o ângulo em que a sonda está posicionada é o ângulo do escoamento no plano de medição do tubo com orifícios, como mostra a figura 6. Para igualar-se a pressão nos dois orifícios (1 e 3 na figura 5), deve-se mover o medidor. Dessa forma, para se fazer uma medição automatizada, seria necessário um controle que ajustasse a posição do medidor de acordo com a diferença de pressão entre as tomadas 1 e 3.

Figura 5 – Disposição dos furos em sonda direcional de três furos.

Figura 6 – Determinação do ângulo do escoamento.

Já a segunda maneira de se determinar a direção do escoamento utilizando este tipo de medidor consiste em calibrar o instrumento de modo que a pressão lida (ou diferenças de pressão) seja proporcional ao ângulo que o escoamento faz com o plano que contém a haste dos furos. Neste último método, o medidor fica estacionário, dessa forma, tem-se a vantagem de não necessitar de algum servomecanismo para o caso de automatização do sistema, sendo, contudo, necessário fazer calibrações periódicas do medidor em uma maior freqüência em relação ao sensor que utiliza o método nãoestacionário.

Para estes tipos de sensores, a resolução da medição de ângulo que se pode atingir está ligada à menor diferença de pressão que pode ser lida pelo conjunto sensor-manômetro.

Considerando a capacidade de medição de velocidade e direção de escoamento de ar verificada para as sondas direcionais, bem como sua capacidade de medição pontual, diferentemente do verificado com os anemômetros de pá, e fabricação robusta, ao contrário dos anemômetros de fio quente, opta-se por investigar e focar esta pesquisa neste tipo de medidor.

1.2 METODOLOGIA DE TRABALHO

Nesta seção discutem-se as etapas seguidas para o desenvolvimento do trabalho.

Inicialmente, foi feita uma revisão da literatura sobre medidores de velocidade por diferença de pressão em escoamentos e particularmente sobre medições desta natureza que podem ser aplicadas a ventiladores axiais. Desta forma, ficaram claras quais técnicas são utilizadas para cada conjunto de dados que se deseja obter. Verificou-se que os medidores de pressão desenvolvidos a partir dos tubos de Pitot, bem como configurações de anemômetros de fio quente, são bastante utilizados em medições em escoamentos à jusante de rotores de ventiladores axiais, como mostram os trabalhos de Li et al. (2007), Zilliac (1989) e Gjessing et al. (1969). A segunda etapa do projeto foi a escolha da família de medidores, com base nas informações coletadas na revisão da literatura e conhecendo os requisitos do medidor, tanto em faixa de velocidades e ângulos de escoamento, como a necessidade de fabricação de baixo custo, robustez do medidor e capacidade de realizar medições pontuais, tendo em vista o gradiente elevado de velocidades na seção em questão.

Escolhida a família de medidores, definiram-se dois modelos de sensores em particular para fabricação e realização de ensaios. Estes dois medidores podem determinar a velocidade e direção do escoamento de ar, no entanto, um dos sensores é capaz de determinar o ângulo do escoamento em apenas um plano (ou apenas o ângulo de guinada do escoamento), e o outro é capaz de realizar uma medição de ângulo em dois planos, o que em outras palavras, permite a determinação dos ângulos de guinada e arfagem do escoamento. Ou seja, um deles tem aplicação a escoamentos bidimensionais e o outro a tridimensionais.

Após a determinação dos dois tipos de medidores de velocidade, foi realizado o projeto com o desenho detalhado e fabricação, seguido do planejamento dos ensaios de validação dos medidores. Em seguida foram verificadas as faixas de ângulo do vetor velocidade do escoamento que cada sensor é capaz de determinar e as incertezas de medições em termos de magnitude de direção da velocidade do escoamento.

Após a análise de resultados e incertezas de medição, foram constatadas as diferenças entre os dois medidores, no que diz respeito a capacidade de determinação de valores para os ângulos das componentes do vetor velocidade associadas ao escoamento bidimensional, caso da sonda prisma, e tridimensional, caso da sonda pirâmide.

2. OBJETIVOS

O objetivo central deste trabalho é realizar um estudo experimental que desenvolva e analise alternativas de sensores capazes de realizar medições da magnitude e direção da velocidade do escoamento.

Uma das principais metas para aplicação de tais medidores é a caracterização de escoamentos encontrados na descarga de ventiladores industriais. Ou seja, os sensores podem ser utilizados em laboratórios de testes e desenvolvimento de ventiladores e seus componentes, como aletas de estatores, de empresas fabricantes destes equipamentos. Assim, estes medidores devem atender a requisitos como facilidade de operação e calibração, bem como baixo custo de fabricação e robustez.

Inicialmente o trabalho deve determinar os melhores tipos de medidores que atendem aos requisitos propostos, sendo assim realizada uma pesquisa bibliográfica e comparando diversos sensores direcionais e as várias técnicas de medição de velocidade em escoamentos de fluidos bidimensionais e tridimensionais.

Uma vez definidos os medidores a serem projetados e fabricados, como objetivos secundários do trabalho estão: o desenvolvimento do projeto de sondas bidimensionais e tridimensionais com seu dimensionamento, a fabricação e validação de protótipos. No processo de fabricação das sondas, especialmente das ponteiras sensoras, são comparados dois métodos: prototipagem rápida em material plástico tipo ABS (Acrilonitrila-butadieno-estireno) e usinagem em material metálico, sendo definido o latão.

Definidos, projetados, fabricados e validados os protótipos dos sensores, são analisados em ensaios em túnel de vento, de forma que seja possível avaliar a capacidade de medição de cada sensor em termos de determinação da faixa de ângulos do vetor velocidade nos planos identificados por arfagem e guinada através das medições de pressão.

Os ensaios em túnel de vento exigiram que fossem estudados e definidos mecanismos e dispositivos para realizar o posicionamento dos sensores. Eles têm

como objetivo determinar as curvas de calibração dos sensores e também avaliar as incertezas de medição de todo o sistema. Desta forma, ao final do trabalho, é possível conhecer as capacidades e limitações das sondas, estando as mesmas prontas para uso, de posse de suas curvas de calibração.

3. REVISÃO DA LITERATURA

3.1 HISTÓRICO

O estudo experimental de medições de velocidade de um fluido teve origem em um artigo de 1732 (PITOT, 1732) com as medições realizadas por Henri Pitot no rio Sena. Neste artigo, Pitot propõe uma relação quadrática entre a pressão em coluna d'água medida pelo seu instrumento e a velocidade do fluido.

A partir do trabalho de Pitot, muitos desenvolvimentos foram feitos no tubo que foi batizado com seu nome. Em 1854 e 1858, Darcy publica artigos respectivamente sobre o movimento de água no interior de tubos e sobre modificações realizadas nos tubos de Pitot. Com estes desenvolvimentos, Darcy concluiu que um tubo com tomadas de pressão na parte de trás e nas laterais apresentava medidas de pressão estática com melhor precisão. Também obteve redução da influência das vibrações através da utilização de orifícios de diâmetros menores que o do tubo (DARCY, 1854, 1858; MARIANI, 2000).

Ainda no final do século XIX, o tubo de Pitot era pouco utilizado por engenheiros e apenas no início do século XX, com o rápido desenvolvimento de campos como a aerodinâmica e com a necessidade de medições de campos de escoamento foi que esse instrumento desenvolveu-se até a forma parecida com a que se conhece atualmente (FOLSOM, 1955).

Em 1901 houve um importante desenvolvimento na forma da equação até então utilizada para medições da velocidade por meio da obtenção da pressão em coluna d'água. Até esta época, era comum utilizar-se a forma:

$$V = \sqrt{gh} \tag{1}$$

E com os estudos de White, reportados por Folsom em seu artigo de revisão sobre o desenvolvimento dos tubos de Pitot (FOLSOM, 1955), chegou-se a uma expressão melhor ajustada:

$$V = \sqrt{2gh} \tag{2}$$

Em 1914, houve importante desenvolvimento na teoria para a pressão dinâmica medida por um tubo de Pitot, com os trabalhos de Moody et al. (1914). Neste momento, apresentou-se o equacionamento:

$$V = C_C \sqrt{2gh} \tag{3}$$

Em que C_C é o coeficiente para o tubo de Pitot e h representa a diferença de pressão em termos da altura da coluna de fluido (MARIANI, 2000).

Durante a década de 1930 houve um interesse renovado em estudar os fundamentos do tubo de Pitot e outros tubos medidores de velocidade aplicados à medição de vazão de água (FOLSOM, 1955). No trabalho de Allen e Hooper (1932), procurou-se estabelecer uma metodologia para a avaliação da pressão estática realizando a medição através das paredes de um conduto com um piezômetro. Esta metodologia, embora simples, não apresentou bons resultados (ALLEN, HOOPER, 1932). Trabalhos de Hubbard (1939) e Cole (1935) também realizaram discussões sobre os fundamentos das medições utilizando tubo de Pitot

No trabalho de Hubbard, em especial, investigam-se os erros que influenciam os resultados das medições realizadas com os tubos de Pitot, como a influência da presença do suporte do tubo de Pitot e sua distância entre este e o ponto onde a pressão estática é medida. A presença do suporte do tubo diminui a área da seção transversal ocupada pelo fluido. A conclusão do trabalho de Hubbard é que, para se medir a pressão estática fazendo uso do tubo de Pitot, dois fatores podem afetar a medição: a geometria do tubo e a distância entre os planos dos orifícios e a extremidade deste tubo.

A partir de 1930, houve uma grande variedade de desenvolvimentos dos tubos de Pitot para várias aplicações em ciência e engenharia (FOLSOM, 1955). Estudos sobre escoamentos compressíveis, estudos da camada limite, escoamentos multifásicos e medições em alta troposfera são algumas das ramificações das medições de escoamentos originadas com o tubo de Pitot.

3.2 SONDAS DIRECIONAIS

Aplicações mais específicas de medidores de pressão que pretendem determinar não só a velocidade do escoamento de ar, mas também a direção do mesmo, são tratadas no NACA TN 2830 (SCHULZE et al., 1952), que é um estudo detalhado sobre este tipo de medidor. Esta é uma das principais referências para este trabalho no que diz respeito à escolha das propriedades geométricas do medidor. No trabalho de Schulze, foi utilizada uma estação de ensaio cuja seção de teste, circular, possui 0,2 metros de diâmetro e foram feitos ensaios com velocidades nesta seção de até 135,6 m/s. Observou-se que as medições realizadas pela sonda podem ser influenciadas: por alterações locais no escoamento causadas pela própria inserção da sonda, pela incapacidade de tomar várias medidas simultaneamente no mesmo ponto, por mudanças em fatores de calibração que são funções do Número de Mach e do número de Reynolds, bem como pela deformação da sonda.

Levando em consideração a necessidade de se fabricar uma sonda de seção transversal pequena, interferindo o mínimo possível nas características do escoamento, o trabalho descrito no NACA TN 2830 utilizou sondas de diâmetros 3,17 mm e 6,34 mm, como as mostradas nas figuras 7 e 8 a seguir.

Figura 7 – Sondas de velocidade e direção de escoamento utilizadas no trabalho NACA TN 2830. (SCHULZE et al., 1952)

Figura 8 – Sondas de velocidade e direção do escoamento utilizadas no trabalho NACA 2830. Sonda tipo piramidal e tipo prisma. (SCHULZE et al., 1952)

Com os resultados do trabalho NACA TN 2830, verificou-se que as sondas mostradas na figura 7 não apresentaram resultados satisfatórios em termos de exatidão nas medidas de ângulo de escoamento. No entanto, as sondas representadas na figura 8 se mostraram melhores em termos de exatidão. A sonda tipo prisma é capaz de medir a direção do escoamento em um plano, assim como pressão estática e pressão total. A sonda tipo pirâmide é capaz de medir a direção do escoamento em dois planos, assim como pressão estática e pressão total.

Para as sondas de guinada (*yaw-element probes*), as quatro sondas ensaiadas neste trabalho, mostradas na figura 9 a seguir para ângulos de cortes na ponta do tubo de 30°, 45°, 60° e 90° mostraram alta sensibilidade a ângulo de escoamento. Cada uma das sondas indica uma leitura de pressão total quando a inclinação da face do tubo está orientada na direção normal ao escoamento. Para outros ângulos de guinada, a

inclinação da face da abertura influencia a leitura de pressão. As figuras 9 e 10 a seguir mostram, respectivamente, um desenho esquemático destas sondas e os resultados de leituras de ângulos obtidos no trabalho NACA TN 2830, para uma velocidade de escoamento na seção de testes de 89,9 m/s.

Figura 9 – Desenho esquemático de sondas de guinada, representada no trabalho NACA TN 2830. (SCHULZE et al., 1952)

Figura 10 – Resultados de leituras de pressão de sondas de guinada. Resultados extraídos de NACA TN 2830. (SCHULZE et al., 1952)

Como pode ser observado na figura 10 acima, todas as quatro sondas de guinada ensaiadas apresentaram alta sensibilidade em respeito ao ângulo do escoamento. Desta maneira, este tipo de sonda é altamente recomendável para determinação de direção do escoamento.

Além das sondas tipo guinada, também foi investigada a sensibilidade a direção de escoamento para as sondas tipo garra, mostradas na figura 11 a seguir. Para as 35 diferentes configurações de sondas tipo garra que o autor investigou, a que apresentou a maior sensibilidade angular foi aquela com ângulo de encontro entre os tubos de 120°

tendo as faces do tubo com abertura de 15°, ou seja, B=30° (ver figura 11). Para esta configuração, uma mudança de 1° no ângulo de guinada do escoamento produziu uma diferença de 9,5% na leitura de pressão dinâmica entre as duas tomadas de pressão do medidor. A figura 6 mostra os resultados da investigação de sensibilidade a ângulo de guinada para diversas configurações de ângulos A e B.

Figura 12 – Resultados de sensibilidade a ângulo de guinada do escoamento para diversas configurações de sondas tipo garra. NACA TN 2830. (SCHULZE et al., 1952)

Para a determinação de uma configuração final de sonda capaz de medir ângulo de escoamento, pressão estática e pressão total, muitas outras configurações foram investigadas no estudo NACA TN 2830. As sondas representadas na figura 13, denominadas sondas tipo A, se mostraram adequadas para medições em campos de escoamento uniforme caso seja feita uma correção de pressão estática. No entanto, os finos tubos são facilmente defletidos pelo escoamento de forma que as calibrações de pressão estática e ângulo de escoamento são afetadas. Além disso, como os elementos da sonda estão relativamente distantes entre si, esta sonda não deve ser utilizada em medições em campos de escoamento não-uniformes.

Figura 13 – Sonda tipo A. NACA TN 2830 (SCHULZE et al., 1952)

As sondas representadas nas figuras 14 a 20 a seguir foram rejeitadas pelo estudo NACA TN 2830 devido a altos erros na medição de pressão estática, alto erro na indicação de ângulo de guinada do escoamento ou baixa sensibilidade a ângulo de guinada do escoamento. Os resultados das medições realizadas com estes tipos de sondas estão compilados na tabela 1 a seguir, também retirada do estudo NACA TN 2830.

	Tipo de sonda		sonda	Erro de pressão estática, % de q (sonda em nulo; V escoamento = 90m/s)	Erro de pressão estática, % de q (sonda em nulo; V escoamento = 61m/s)	Erro incremental de pressão estática, % de q (ψ=15o)	Sensibilidade média a guinada, (p1-p2)/q, % por grau	Razão para projeto insatisfatório
		A, pol 0,060	B, pol 0,056	-7,4	-7,0			Erro de pressão estática varia com a
	В	0,060	0,019	-1,15	-0,75			velocidade do escoamento e com as dimensões A e
_		0,050 Distân orifíc nariz	0,016 icia do io do , pol.	0	0,65			B Sensibilidade a guinada é muito baixa e
	С	0,72		6,9		Alto	0,3	o erro de pressão
		0,48		2,8		±1,5	0,6	estática não é simétrico com
		0,2	24	1,5		±1,5	0,2	a guinaua
	D	Distância do orifício do nariz, pol. 0,50		1		$ \left\{ \begin{matrix} 0,8\\ -3,0 \end{matrix} \right\} $	0,5	Sensibilidade a guinada é muito baixa e o erro de pressão
		0,20		-2,2		$\left\{\begin{matrix}1,7\\-9,0\end{matrix}\right\}$	0,9	estática não é simétrico com a guinada
	E			0,6	0,6	-0,3	2,5	Ângulo nulo de guinada varia ±6 graus com arfagem de 10 graus
	F			-2,0	-0,6			Erro de pressão estática e ângulo nulo de guinada variam com a velocidade do escoamento

Tabela 1 – Resultados de medições de sondas tipo B a H. NACA TN 2830. (SCHULZE et al., 1952)

					Erro de
	2,1	1,5			pressão
					estática varia
					com a
					velocidade do
G					escoamento e
0					a sonda divide
					o escoamento
					antes do
					ângulo do
				escoamento	
					ser captado
	8,3	7,7			O erro de
					pressão
					estática é
Н					expressivo e
					varia com a
					velocidade do
					escoamento

Os resultados representados na tabela 1 apontam a necessidade de um projeto aerodinamicamente limpo para os medidores, no sentido de evitar interferências mútuas entre os elementos da sonda. Se as aberturas da sonda forem instaladas no nariz de um tubo de Pitot, a exatidão da indicação de pressão total e estática será mantida e o ângulo de guinada pode ser adquirido em um escoamento não-perturbado (SCHULZE et al., 1952). Esta consideração levou ao projeto das sondas tipo prisma e piramidal, representadas nas figuras 8, 21 e 22.

Figura 21 – Sonda tipo prisma. NACA TN 2830. (SCHULZE et al., 1952)

Figura 22 – Sonda tipo pirâmide. NACA TN 2830. (SCHULZE et al., 1952)

Nestes tipos de sonda, há cinco tomadas de pressão, sendo uma no centro da seção frontal da sonda e as outras quatro, inclinadas em 30º em relação à direção normal ao escoamento já que, em estudos em outros tipos de sonda, este ângulo mostrou fornecer boa sensibilidade a ângulo de guinada de escoamento. As superfícies em que os orifícios são usinados são planas, de forma que se houver pequenos erros no posicionamento do orifício no momento de fabricação da sonda, não se verificam grandes alterações nos dados de calibração do instrumento. Há também tomadas de

pressão de referência localizadas a mais de três diâmetros de sonda à jusante do nariz da sonda, em uma região em que os erros nas leituras de pressão de referência foram verificados como sendo muito pequenos da ordem de 0,5% para uma velocidade na seção de teste de 135,6 m/s (SCHULZE, et al., 1952). As tomadas de pressão para este tipo de sensor estão muito próximas entre si, estando separadas em apenas 1 mm. Sendo assim, estas sondas são pouco afetadas por escoamentos não uniformes, salvo em regiões do escoamento com um alto gradiente de pressão. A sonda é pequena de forma a permitir a medição simultânea de pressões e ângulo do escoamento em distâncias axiais e radiais de 12,7 mm e 2,3 mm, respectivamente. A sensibilidade desta sonda ao ângulo de guinada foi obtida para duas velocidades, 60 m/s e 118,8 m/s (SCHULZE, et al., 1952). Estes resultados estão representados nas figuras 23 e 24 a seguir.

Figura 23 – Variação na leitura de pressão dos tubos de guinada e diferenças nas leituras de pressão total e estática da sonda prisma em relação a uma sonda padrão tipo Pitot, com respeito ao ângulo de guinada. V=60 m/s. (Fonte: NACA TN 2830)

Figura 24 – Variação na leitura de pressão dos tubos de guinada e diferenças nas leituras de pressão total e estática da sonda prisma em relação a uma sonda padrão tipo Pitot, com respeito ao ângulo de guinada. V=119m/s. (Fonte: NACA TN 2830)

A referência NACA TN 2830 concluiu que a sonda tipo prisma, e sua variação para medidas em duas dimensões, a sonda pirâmide (figura 8) são consideradas adequadas para a medição de pressão estática, pressão total e direção do escoamento.

O trabalho de Bryer e Pankhurst (BRYER, PANKHURST, 1971) também é uma referência importante para o estudo de medidores de direção de escoamento e também serve de base para a escolha do medidor mais adequado à aplicação deste trabalho.

Para as sondas de pressão direcionais, capazes de medir direção de escoamento, a resolução da medição de ângulo que se pode atingir está ligada à menor diferença de pressão que pode ser lida pelo conjunto medidor-manômetro. Para escoamento incompressível, a sensibilidade de um medidor de direção do escoamento pode ser expressa por (BRYER, PANKHURST, 1971):

$$(C_{p})_{\psi} = \frac{p_{1} - p_{2}}{\frac{1}{2}\rho V^{2}\psi}$$
(4)

Nesta equação, a sensibilidade do medidor é expressa em termos da diferença de pressão entre dois tubos (ou furos) sensores por grau, em termos da pressão dinâmica do escoamento.

A menor variação de ângulo que pode ser detectada por um dado sistema pode ser expressa pela equação:

$$\Delta \psi = \frac{\Delta p_{\min}}{\left(C_p\right)_{\psi} \times \frac{1}{2} \rho V^2}$$
(5)

Nesta equação, Δp_{\min} é a menor diferença de pressão que pode ser lida pelo manômetro.

Um exemplo citado no livro de Bryer e Pankhurst (BRYER, PANKHURST, 1971), para efeito de ordens de grandeza consiste em um manômetro de coluna d'água em U, que pode ser lido em intervalos de 1 mm e uma sonda com uma sensibilidade típica de 0,05, o ângulo do escoamento é detectável com uma resolução de 0,4 graus a uma velocidade de escoamento de 30m/s.

Observando a equação 5, pode-se concluir que há a necessidade de manômetros com boa resolução quando se quer medir velocidades mais baixas de escoamento, para se obter a mesma resolução em ângulo.

O trabalho de Bryer e Pankhurst, assim como o trabalho de Schulze (SCHULZE et al., NACA TN 2830, 1952) citado anteriormente, também investigou uma série de sondas de pressão capazes de medir velocidade e direção do escoamento. Estas sondas estão mostradas nas figuras 25 e 26.

Figura 25 – Sensores de pressão feitos de tubos abertos: (a) Sonda de 2 tubos; (b) Sonda assimétrica de 2 tubos; (c) Sonda de 4 tubos; (d) Sonda tipo garra; (e) Sonda de 2 tubos divergente. (BRYER, PANKHURST, 1971)

Figura 26 – Vários sensores de pressão: (a) Cilindro-transverso; (b) Cabeça hemisférica; (c) Cunha em balanço; (d) Conrad; (e) Chisel; (f) Cônico; (g) Piramidal; (h) Hemisférico com feixe de tubos divergentes; (i) Seção de aerofólio. (BRYER, PANKHURST, 1971)

O efeito do gradiente de pressão na exatidão do sensor pode ser grande, sobretudo quando existe grande separação dos furos ou tubos sensores, como no caso dos sensores 25-d, 25-e e 26-h. Na prática (BRYER, PANKHURST, 1971), vê-se que os erros na medição de ângulo em gradientes de pressão total com pequena variação de pressão estática também dependem do tipo de sonda a ser usada e para uma dada separação de furos ou tubos sensores. Os sensores tipo cunha (26-c e 26-i) são menos sujeitos a erro. No caso em questão, não esperamos grandes variações de pressão estática para uma mesma seção de medição (entre o rotor e as aletas de um ventilador axial, por exemplo).

Sensores do tipo cilindro-transverso 26-a, são bastante úteis para medidores de direção do vento em que se aplica o princípio de leitura nula, ou seja, para a família de medidores em que se posiciona o sensor de modo a fornecer a mesma leitura para as duas tomadas de pressão. Os furos podem ser executados na posição de máximo gradiente de pressão e, para baixos números de Mach, este ângulo de separação entre os dois orifícios se encontra em torno de 90 graus (BRYER, PANKHURST, 1971).

Os sensores dos tipos Cunha, Chisel, cônico, piramidal e Conrad, são mais sensíveis do que os que possuem uma cabeça esférica e a sensibilidade destas sondas cresce à medida que aumenta o ângulo de seu nariz, entre 15 e 90 graus, dependendo do número de Mach do escoamento a ser medido. Outra vantagem destes tipos de sensores é a sua facilidade de construção, pois o posicionamento dos furos é menos crítico do que em sensores de seção circular ou elipsoidal.

O efeito do ângulo de arfagem na medição do ângulo de guinada é menor nos medidores tipo cunha, piramidal e Conrad do que nos medidores tipo cônico e Chisel, sendo assim, tem-se mais um critério para a escolha do medidor. Comparando-se esses três medidores, segundo a referência (BRYER, PANKHURST, 1971), temos as sensibilidades representadas na tabela 2, para escoamento incompressível e para os dados ângulos de separação dos furos.

Medidor	Ângulo de separação	Sensibilidade	
	(graus)		
Cunha	30	0,053	
Piramidal	45	0,042	
Conrad	30	0,049	

Tabela 2: Comparação entre sensibilidades de medidores para escoamento incompressível. (BRYER, PANKHURST, 1971)

O trabalho de Zilliac (ZILLIAC, 1989) consiste em um estudo experimental e analítico sobre sondas de 7 orifícios. Estas sondas funcionam segundo o mesmo princípio das sondas tipo pirâmide citadas no trabalho de Schulze, citadas anteriormente, com a vantagem de permitir medições em uma maior faixa de ângulos. Este trabalho discute um modelo analítico fundamentado na teoria de escoamento em torno de corpos rombudos e também em métodos dos painéis, fazendo uso das formulações desenvolvidas nos trabalhos de Smith (SMITH et. al., 1970) e Huffman (HUFFMAN et. al., 1980). O programa de método dos painéis PANAIR foi utilizado no trabalho de Zilliac para resolver as equações potenciais do fluido para o modelo da sonda. Este método de painéis resolve a equação de Laplace para o potencial de velocidade Φ fazendo a superposição de um dipolo variando quadraticamente e singularidades tipo fonte variando linearmente em painéis mapeados na superfície do modelo da sonda. As equações que regem o problema, bem como as condições de contorno são (ZILLIAC, 1989):

$$\vec{\nabla}^2 \Phi = 0 \tag{6}$$

$$\vec{\nabla} \Phi = \vec{V}_{\infty} \quad \text{em} \infty$$
 (7)

$$\vec{\nabla} \Phi \bullet \vec{\nabla} F = 0 \qquad \text{em F}(\mathbf{r}, \theta, \mathbf{z}) = 0 \tag{8}$$

Em que

$$\vec{V} = \vec{\nabla} \quad \Phi \tag{9}$$

É a solução para um corpo em ângulo de ataque e guinada arbitrários. Esta solução pode ser encontrada pela combinação linear da solução em $\alpha=0^{\circ}$ e $\alpha=90^{\circ}$. Se Φ_1 é a solução em $\alpha=0^{\circ}$ e Φ_2 é a solução em $\alpha=90^{\circ}$, então a solução em qualquer α é dada por:

$$\Phi = \Phi_1 \cos(\alpha) + \Phi_2 sen(\alpha) \tag{10}$$

Como pode se verificar via substituição, essa expressão satisfaz as equações e as condições de contorno para um corpo de revolução sob ângulo de ataque. Para determinar Φ , dados α (ângulo de ataque) e β (ângulo de guinada), para um corpo de revolução, pode-se utilizar uma transformação de coordenadas. Essa transformação é equivalente à rotação de um ângulo x em torno do plano x-z do vetor velocidade do escoamento não-perturbado, conforme mostrado no sistema de coordenadas representado na figura 26a a seguir.

Figura 27 – Sistema de coordenadas do medidor. (ZILLIAC, 1989)

A transformação do sistema (r, θ , z) para o sistema (r, ξ , z) é definida por:

$$\xi = \theta + \chi \tag{11}$$

Em que:

$$\chi = \tan^{-1} \left(\frac{sen(\beta)}{\cos(\beta)sen(\alpha)} \right)$$
(12)

Dessa forma, o novo ângulo de ataque x é usado junto com a expressão para Φ para determinar o potencial de velocidade para um sólido de revolução sob ângulo de ataque e guinada.

$$\varsigma = \cos^{-1} \left[\cos(\alpha) \cos(\beta) \right]$$
(13)

E o coeficiente de pressão é dado por:

$$C_{P} = \frac{P - P_{\infty}}{\frac{1}{2}\rho U_{\infty}^{2}} = 1 - \frac{\left|\vec{V}\right|^{2}}{V_{\infty}^{2}} = 1 - \frac{\left|\vec{\nabla}\Phi\right|^{2}}{V_{\infty}^{2}}$$
(14)

Essa técnica é aplicável de uma forma geral a corpos de revolução em que se deseja a solução do escoamento potencial em um certo par ângulo de ataque e guinada arbitrários (ZILLIAC, 1989). O trabalho de Zilliac apresenta uma comparação dos resultados calculados analiticamente com medições realizadas com uma sonda de 7 furos. A figura 26b representa a sonda de 7 orifícios discutida no trabalho de Zilliac enquanto a figura 27 a mostra uma comparação dos resultados analíticos e de medição para a variação de pressão com ângulo de guinada $\theta=0^{\circ}$.

Figura 28 – Sonda de 7 orifícios e esquema de numeração dos orifícios (ZILLIAC, 1989)

Figura 29 – Variação de pressão em uma sonda de 7 furos. (a) Variação de pressão medida. (b) Variação de pressão teórica. (ZILLIAC, 1989).

Como pode ser visto pela comparação na figura 29, as tendências e ordens de grandeza mostram grande nível de correspondência. De acordo com o trabalho de Zilliac, as maiores diferenças entre os resultados são devidas a:

a) A queda na distribuição de pressão experimental diminui com o β na ponta da sonda (tubo 7) mas não é tão dramática como a queda calculada computacionalmente. Possivelmente, isso pode ser causado por pequenas diferenças entre o modelo de sonda fabricado e o modelado computacionalmente.

- b) Os picos de pressão computados no furo 5 perto de β =-40° e no furo 3 perto de β =40° são um pouco menores que o valor medido. Considerando que o ângulo da geratriz do cone na ponta da sonda é 45°, é esperado que esses picos estejam perto da pressão de estagnação, assim como é o caso dos dados experimentais.
- c) Quando em grandes ângulos de guinada negativos, a pressão calculada no tubo 2 é substancialmente maior que os resultados experimentais. Essa discrepância é uma evidência de separação do escoamento nesta parte da sonda. Tipicamente, quando o escoamento se separa em um sólido de revolução, a sucção desenvolvida pela parte da sonda onde o escoamento está separado é maior do que aquela prevista pelo escoamento potencial, devido à presença de vórtices na região de escoamento separado. Situações similares ocorrem no tubo 6 em grandes ângulos de guinada e também para outros furos em diferentes ângulos de ataque.

O trabalho de Zilliac ainda apresenta uma comparação entre os valores calculados e determinados experimentalmente dos coeficientes de calibração da sonda para cada uma das 7 tomadas de pressão. Há diferenças, mas as tendências gerais e as magnitudes dos resultados são próximas o suficiente para serem capazes de ajudar na etapa de projeto de sondas desse tipo. Esses resultados serão usados neste trabalho para a escolha da geometria e configuração da sonda.

O trabalho de Nowack (NOWACK, 1970) apresenta uma maneira para efetuar a calibração de sondas direcionais de pressão com 5 orifícios. É apresentado um método de calibração que consiste em posicionar a sonda de 5 orifícios na frente de um soprador de ar calibrado para fornecer um escoamento alinhado com o eixo da sonda e com velocidade conhecida. Um dispositivo posicionador rotaciona a sonda em torno de dois eixos, um de guinada e um de arfagem. Durante a calibração, foram tomadas leituras de pressão para incrementos de ângulo de 5 graus para um dado ângulo de arfagem constante. Dessa forma, foram feitas variações angulares nas direções identificadas como arfagem e guinada, sendo medidas das pressões para uma faixa

entre -90 e +90 graus em incrementos de 5 graus. Com estes valores, foram traçadas curvas de calibração em um diagrama ângulo de guinada versus ângulo de arfagem, para diversos valores de coeficientes de guinada K_{ψ} e arfagem K_{δ} em que:

$$K_{\psi} = \frac{p_1 - p_3}{p_1 - p_5} \quad \mathbf{e} \quad K_{\delta} = \frac{p_1 - p_2}{p_1 - p_4} \tag{15}$$

Sendo p_1 o valor da pressão lida pelo orifício central, p_3 e p_5 são leituras das pressões dos orifícios localizados no plano de guinada e p_2 e p_4 são as leituras de pressões nos orifícios no plano de arfagem.

O trabalho de Nowack realizou esta calibração para diferentes valores de velocidade de escoamento e em diferentes condições climáticas (temperatura e umidade do ar), verificando que os fatores K_{ψ} e K_{δ} apresentaram praticamente os mesmos valores (NOWACK, 1970).

3.3 APLICAÇÕES EM MEDIÇÃO DE ESCOAMENTO À JUSANTE DE VENTILADORES AXIAIS

Um estudo sobre o campo de velocidades à jusante de rotores de ventiladores axiais foi realizado, tomando como base os experimentos conduzidos por Li et. al. (Li et al., 2007). Este estudo sobre o desempenho aerodinâmico em ventiladores axiais realizou dois tipos de experimentos.

A primeira série de experimentos consistiu na utilização de uma sonda por medição de pressão com 5 furos para a caracterização do escoamento na saída do rotor. Esta sonda foi posicionada em 21 estações ao longo do raio do rotor e foi fixada a 15 mm atrás da pás do rotor. Este tipo de medição permitiu determinar a distribuição radial de aumento pressão total e a distribuição radial do coeficiente de perda de pressão total do rotor. Alguns resultados desta série de experimentos estão representados na figura 30 a seguir, e permite ter uma idéia do tipo de resultado que se espera obter em medições deste tipo.

Figura 30 – Exemplo de resultado de medições de aumento de pressão total na direção radial do rotor. (Li et al., 2007)

Na figura 30, o parâmetro λ representa a estação ao longo do raio em que foi realizada a medição. A razão P_t/P_a representa o aumento de pressão total naquela estação, sendo P_a a pressão total do escoamento à montante do rotor e P_t a pressão total do escoamento à jusante de rotor.

A segunda série de experimentos utilizou um anemômetro de fio quente acoplado a um posicionador que permite rotacionar o anemômetro e deslocá-lo no sentido radial do ventilador – da ponta das pás até o centro do ventilador. Dessa forma, realizando medições em 10 estações ao longo do raio e 417 pontos ao longo da circunferência do rotor, foi possível realizar um mapeamento do campo de velocidade num plano localizado 15 mm a jusante do rotor. Um sistema de gatilho via reflexão fotoeletrônica foi utilizado para que a placa de aquisição interpretasse quando uma das pás (que continha uma fita refletora) passasse em frente a um sensor infravermelho. A aquisição de sinais era realizada por um gatilho externo que recebeu um sinal deste sensor infravermelho.

4. DEFINIÇÃO DOS MEDIDORES E DO APARATO EXPERIMENTAL

Neste item são apresentados os fundamentos para a escolha do sensor, valendo-se das pesquisas apresentadas no capítulo de revisão da literatura, e em especial o levantamento referente a sondas direcionais. Conforme já mencionado na introdução, as sondas direcionais possuem requisitos que levam à sua escolha, considerando o contexto de aplicação em questão, que é a medição de escoamento à jusante de ventiladores axiais. Estes requisitos são: construção robusta, capacidade de realização de medição em um ponto do escoamento, baixo custo de fabricação e relativa facilidade de calibração.

Após definido o medidor, procede-se à determinação do aparato experimental necessário para as etapas de calibração do medidor e realização dos experimentos, encerrando a seção com o estudo em mais detalhe do escoamento à jusante de rotores de ventiladores axiais.

4.1 ESCOLHA DO SENSOR

Partindo do conjunto de diferentes tipos de sondas direcionais descrito na revisão da literatura, os tipos de sondas direcionais selecionados preliminarmente foram: do tipo garra (figura 12), tipo prisma (figura 21), tipo piramidal (figura 22), e a sonda de 7 orifícios (figura 28).

Devido à necessidade de realização de medições pontuais, de forma a ser possível a captação de gradientes elevados de velocidade ou direção de escoamento, as sondas tipo garra se mostraram menos adequadas, pois suas tomadas de pressão possuem um espaçamento entre si da ordem de 15 mm em comparação com espaçamentos da ordem de 5 mm ou menos para as sondas tipo piramidal, prisma e de 7 orifícios.

Os procedimentos de calibração para estas diferentes sondas foram analisados com base no artigo NACA TN2830 (SCHULZE et al., 1952) que estuda as sondas tipo prisma, pirâmide e garra, enquanto que para o tubo de 7 orifícios, os procedimentos são detalhados no trabalho NASA TM102200 (ZILLIAC, 1989).

Desta comparação, verificou-se que o processo de calibração das sondas de 7 orifícios é longo, uma vez que devem ser calibradas em escoamentos tridimensionais e o número de pontos de posicionamento da sonda no espaço é da ordem de 2000 pontos. O procedimento de calibração da sonda tipo prisma é mais simples, considerando medições de ângulo em apenas em um plano. Em seguida está o processo de calibração da sonda tipo pirâmide que, apesar de consumir um tempo pelo menos três vezes maior do que o necessário para a calibração da sonda tipo prisma e necessitar de aparatos de calibração com maior grau de liberdade de rotação, ainda assim pode ser viável para a aplicação neste projeto de experimentos.

A sonda de 7 orifícios, apesar de possuir um grau mais alto em termos de precisão, resolução e faixa de ângulos de medição (até 80 graus em relação a um plano que contém o eixo do orifício central), não possui um procedimento de calibração simples, adequado às possibilidades experimentais dos laboratórios utilizados, somando ao fato de sua fabricação ser mais suscetível a erros, o que pode aumentar significativamente os custos de desenvolvimento deste tipo de medidor.

Pelas razões apresentadas, optou-se pelo projeto e fabricação de protótipos de duas sondas direcionais, uma tipo prisma e outra tipo pirâmide.

4.2 DEFINIÇÃO DO APARATO EXPERIMENTAL

Definidos os protótipos a ser fabricados, há necessidade de instrumentos que viabilizem a calibração e execução de experimentos atendendo aos requisitos de amplitude da faixa de medição e resolução das medidas, tanto para a pressão quanto para o posicionamento angular.

Para a calibração, o dispositivo para posicionamento do sensor deve possuir liberdade de rotação em dois eixos, que são relacionados aos ângulos de guinada e arfagem. Um possível dispositivo que contém apenas partes mecânicas está representado nas figuras 31 e 32 a seguir.

Figura 31 – Exemplo de posicionador mecânico para calibração utilizado no trabalho NACA TN 2830.

Figura 32 – Esquema de montagem de posicionador mecânico utilizado no trabalho NACA TN 2830.

Na etapa de calibração, são necessários manômetros capazes de medir valores de pressão na faixa pretendida e com a resolução mínima de 1 Pa, a fim de que o manômetro não seja um limitante quanto à resolução da medição da velocidade do escoamento. Para medir velocidades de escoamento na faixa de 0 a 15 m/s com resolução da ordem de 1 m/s utiliza-se a equação (15) a seguir para relacionar pressão e velocidade:

$$V = \sqrt{\frac{2P_{din}}{\rho}}$$
(16)

Uma variação na velocidade significa esta variação ao quadrado para a pressão dinâmica. Sendo assim, se o manômetro possuir uma resolução de 1 Pa e uma faixa de medição de -125 Pa a +125 Pa do valor da pressão diferencial, garante-se a possibilidade de determinar a velocidade em uma faixa a partir de 1,3 m/s até 14,4 m/s e uma resolução de velocidade da ordem de 0,6 m/s, o que atende o requisito de pelo menos 1 m/s de resolução dentro da faixa de medições pretendida. A maior dificuldade desta medição ocorre em velocidades menores, em que a diferença de pressão entre as tomadas de pressão da sonda são pequenas. Para eliminar este problema, pode-se utilizar micro-manômetros, com resolução da ordem de 0,001 Pa e faixa de medição entre -100 Pa e +200 Pa, o que resulta na possibilidade de determinar a velocidade do escoamento em uma faixa entre 0,05 m/s e 20 m/s com resolução da ordem de 0,02 m/s.

Outros instrumentos necessários são termo-higrômetro e medidor de pressão atmosférica para a determinação da massa específica do ar ambiente, bem como termopares na região de interesse das medições, para uma correção da massa específica do ar local usando como referência a temperatura naquele ponto (AMCA 210). Finalmente, é desejável usar um sistema de aquisição de dados para a execução do experimento, considerando o grande número de medidas a fazer.

4.3 APLICAÇÃO DA MEDIÇÃO: ESTUDO DO ESCOAMENTO À JUSANTE DE ROTORES DE VENTILADORES AXIAIS

Outro aspecto que auxiliou a definição do medidor foram as medições de características de velocidade nos escoamentos em dutos associados a turbomáquinas ou ventiladores axiais. Algumas particularidades, como o escoamento estar confinado em pequenas passagens e passar por mudanças bruscas de direção e velocidade, motivam a inserção de uma sonda neste escoamento para avaliar suas propriedades.

Para escolher o tipo de sensor adequado, é necessário antes conhecer as características do escoamento que se quer estudar com o uso deste. A figura 33 a seguir apresenta uma ilustração do ventilador de mineração.

Figura 33 - Ventilador axial de aplicação em mineração. Fonte: Tecsis

A título de exemplo, e para estimar intervalos de velocidade em que as sondas irão operar, foi selecionado um modelo. Este equipamento possui uma rotação nominal de 1780 rpm e sua curva característica, em termos de pressão e vazão, de acordo com o passo da pá é dada na figura 34. Para este caso, o ponto de operação do ventilador é de uma vazão de 16,4 m³/s a uma pressão estática de 2128 Pa e massa específica do ar de 1.1 kg/m³. A massa específica do ar considerada nesta curva é aquela considerada para as condições usuais em ambientes da mina.

Figura 34 – Curva do ventilador TJF11013075 (Fonte: TECSIS – Divisão de Ventilação Industrial)

Sendo assim, para uma vazão Q de 16,4 m³/s em um duto de diâmetro interno de 1 m e área A, tem-se uma velocidade média na direção axial do escoamento de:

$$V = \frac{Q}{A} = \frac{16,4m^3 / s}{\pi \times \left(\frac{1,1m}{2}\right)^2} = 17,2 \ m/s$$
(17)

Contudo, o interesse da medição é de obter características mais específicas sobre o campo de velocidades nas condições de escoamento, e para tal, é necessário observar como se dá o escoamento na interface com as pás do ventilador.

O equipamento de ventilação em questão apresenta aletas atrás do rotor. Conforme representado na figura 35, o escoamento de ar se aproxima das pás do ventilador com velocidade $V_0 = Q/A_{anular}$ (BLEIER, 1997) onde A_{anular} é a área da seção anular entre a carcaça do duto e o cubo onde são fixas as pás do rotor. O escoamento então é defletido pelas pás e as deixa a uma velocidade V_1 . Esta velocidade V_1 possui uma componente axial V_0 , que deve ser mantida pela continuidade, e uma componente rotacional V_r , tais que:

$$V_1 = \sqrt{V_0^2 + V_r^2}$$
(18)

Figura 35 – Função das aletas de saída

Sendo assim, deseja-se ter a possibilidade de posicionar o medidor no plano entre as pás do rotor e as aletas, e também à jusante das aletas, a fim de se medir a velocidade e o ângulo do escoamento em cada seção. Além da determinação da velocidade média em cada seção, pretende-se mapear o perfil de velocidades locais em cada seção, a fim de entender a distribuição de pressões e estudar formas de aperfeiçoar o desempenho de pás e aletas do sistema de ventilação.

Uma das principais restrições para este tipo de medição é o pouco espaço disponível na seção entre o rotor e as aletas de saída, da ordem de 500 mm. Outra peculiaridade é o acentuado gradiente no campo de velocidade local presente na seção, já que o escoamento mudará de direção de maneira abrupta, e sua velocidade varia a grandes taxas no sentido radial, da raiz para as pontas das pás.

5. PROJETO DOS SENSORES 5.1 DEFINIÇÕES GERAIS

As diretrizes que determinam parâmetros geométricos dos medidores como diâmetros de tomadas de pressão, espaçamento ideal entre orifícios, diâmetros de hastes (corpo do medidor) e distância entre tomada de pressão total e haste principal serão discutidas neste capítulo, com o auxílio, principalmente, das referências NACA TN 2830 e NASA TM 102200 que tratam dos efeitos destes parâmetros nos resultados de medição.

No tópico 4.1 – Processo de escolha do sensor - foram explicados os motivos pelos quais as sondas tipo prisma e tipo pirâmide foram escolhidas. Cabe agora definir parâmetros geométricos destas sondas e apresentar o fundamento da escolha destas dimensões.

Parâmetros geométricos a serem definidos, tanto para as sondas tipo prisma quanto para as sondas tipo pirâmide são (ver figura 36):

a) Comprimento da haste;

O comprimento da haste do medidor deverá ter no mínimo o comprimento do raio do ventilador axial a ser ensaiado, já que o medidor deve ser posicionado radialmente com sua haste na direção do centro do ventilador, sendo necessário que a haste do medidor tenha um comprimento pelo menos igual ao raio do ventilador para que se possa medir todo o campo de velocidades. Como valor típico para o diâmetro destes ventiladores é de 800 mm, decidiu-se por fabricar um medidor com 600 mm de comprimento de haste, possibilitando o uso do mesmo medidor para ventiladores maiores.

b) Diâmetro da haste;

O diâmetro da haste deve ser tal que ofereça um reforço estrutural para o medidor, que pode ser tratado como uma viga em balanço inserida no escoamento. Ao mesmo tempo, o diâmetro da haste não pode ser grande o bastante de modo a influenciar o valor da velocidade.

Conforme é mostrado no desenho esquemático a seguir, a sonda é submetida a um escoamento cujo vetor velocidade na direção axial \vec{V}_x é representado na figura a

seguir. A sonda, sendo um corpo rombudo inserido em um escoamento, sofre uma pressão distribuída cuja resultante é uma força de arrasto na direção axial \vec{D}_x aplicada no centro aerodinâmico da sonda.

Figura 36 – Deslocamento do medidor devido à força de arrasto.

O deslocamento da ponta do medidor (um tubo cilíndrico), devido à força descrita é dada por:

$$d = d1 + d2$$
 (19)

em que:

$$d1 = \frac{D_x \left(\frac{L}{2}\right)^3}{3EI_0}$$
(20)

$$d2 = \frac{L}{2} sen\theta \tag{21}$$

е

$$\theta = \frac{D_x \left(\frac{L}{2}\right)^2}{2EI_0} \tag{22}$$

onde

Em que E é o módulo de elasticidade do material da haste e I_0 é o momento de inércia da seção.

O módulo da força de arrasto a que o corpo cilíndrico do medidor é submetido é dado por:

$$D_x = \frac{1}{2} \rho V_x^2 A C_d \tag{23}$$

Onde ρ é a massa específica do ar, V_x é a velocidade do escoamento na direção axial (conforme figura 36), A é a área de referência, igual a $L \times d_{e}$ (comprimento x diâmetro externo da haste da sonda) e C_d é o coeficiente de arrasto do cilindro.

O coeficiente de arrasto de um corpo rombudo em forma de cilindro é uma função do número de Reynolds do escoamento, como mostra o gráfico a seguir, retirado da referência (Scienceworld, 2009).

Figura 37 – Variação do coeficiente de arrasto de corpo cilíndrico inserido em um escoamento.

Para o escoamento em que se deseja realizar os ensaios, o módulo da velocidade atingirá o valor máximo de 30 m/s. Dessa maneira, teremos (para um diâmetro externo de haste de 25 mm):

$$\operatorname{Re} = \frac{\rho V_x d_e}{\mu} = \frac{1.0 \times 30 \times 0.025}{1.78 \times 10^{-5}} = 4.2 \times 10^4$$
(24)

Sendo assim, pelo gráfico da figura 37, teremos um C_d da ordem de 1,0. Na equação 24, μ é a viscosidade dinâmica do fluido.

Para a seção da haste, que é uma casca cilíndrica, temos o momento de inércia I_0 da seção dado por (d_e=25mm e d_i=23mm):

$$I_0 = \frac{\pi}{4} \left(\left(\frac{d_e}{2} \right)^4 - \left(\frac{d_i}{2} \right)^4 \right) = 5,44 \times 10^{-9} \, m^4 \tag{25}$$

Inserindo o resultado do Reynolds do escoamento na equação (23), temos que

 $D_x = 13,5$ N, com o material da haste sendo aço inox 304, o valor do módulo de elasticidade *E* é igual a 200 GPa.

Inserindo esse valor nas equações (20) e (21), temos:

d1 \approx 0,1 mm e θ \approx 0,01 graus, o que leva a d2 \approx 0,16 mm..

Logo, pela equação (16), d \approx 0,26 mm é a deflexão na ponta do instrumento. Sabendose que L=0,6 m, pode-se dimensionar por iteração as paredes da haste cilíndrica do sensor para que a deflexão na ponta não seja superior a 1mm. Dessa maneira, a opção de d_e=25 mm e d_i=23 mm gera um deslocamento máximo de 0,26 mm na ponta da haste em engaste.

c) Comprimento do eixo do sensor;

O comprimento do eixo do sensor funciona como um espaçador entre a haste de suporte e as tomadas de pressão, de forma que estas meçam um escoamento o mais limpo possível, sem sofrer interferências de uma eventual proximidade da haste. Conforme a norma AMCA 210 para medições em ventilação industrial, a recomendação é que o comprimento do eixo do sensor seja de 24 vezes o diâmetro da haste (AMCA, 2007) e foi este o comprimento adotado.

d) Diâmetro das tomadas de pressão;

A escolha do diâmetro das tomadas de pressão são uma solução de compromisso entre dificuldade de fabricação e exatidão das medidas (TAVOULARIS, 2005). Necessita-se atender aos requisitos de 1 Pa de resolução nas medições de pressão pelo conjunto medidor-manômetro. Dessa maneira, com base nas medições conduzidas por Shaw (SHAW,1959) para determinação da influência de diâmetro do orifício de tomada de pressão estática nos resultados de medições desta pressão, optou-se por um diâmetro de 1,0 mm para estas tomadas de pressão.

e) Ângulo da face do prisma/pirâmide (θ).

A escolha do ângulo da face do prisma (ou pirâmide) foi feita visando a maior faixa de medição de ângulos possível. A referência NACA TN 2830 descreve sensores

com ângulo de face do prisma (ou pirâmide) de 30 graus, conforme visto nas figuras 21 e 22. No entanto, o trabalho de Bryer e Pankhurst descreve sensores tipo pirâmide com ângulo de face de prisma (ou pirâmide) de 45 graus, apontando para uma faixa maior de ângulos de medição. Dessa maneira, embasando-se em resultados já obtidos com a fabricação de medidores tipo pirâmide e prisma em outros trabalhos como os citados anteriormente, optou-se por um ângulo de face do prisma (ou pirâmide) de 45 graus.

5.2 PROJETO DETALHADO DOS SENSORES

Com base nas propostas apresentadas, foram projetados dois protótipos de sensores, um para sonda prisma e outro para sonda pirâmide. As dimensões das sondas foram escolhidas levando em consideração restrições de fabricação e os requisitos de comprimento de hastes e diâmetros de orifícios de forma a realizar medições com exatidão.

A fim de reduzir a necessidade de fabricação, foi projetada uma haste única para os medidores e a ponta do medidor podendo ser tipo pirâmide ou tipo prisma. Desta forma, é possível intercambiar as sondas apenas substituindo a ponta a ser acoplada à haste, como mostrado nas figuras 38 a 40 a seguir.

Figura 38 – Esquema da haste da sonda direcional

Figura 39 – Esquema da ponta da sonda tipo pirâmide

Figura 40 – Esquema da ponta da sonda tipo prisma

Como pode ser visto na figura 39, a sonda tipo pirâmide possui cinco orifícios, sendo um deles central e os demais dispostos em faces que formam 45 graus com o plano do furo central. Todos os orifícios possuem diâmetro de 1 mm.

A sonda tipo prisma, representada na figura 40, possui três orifícios, sendo um deles central e os outros dois em planos que formam um ângulo de 45 graus com o plano normal ao eixo da sonda. Os três orifícios possuem diâmetro de 1 mm.

5.3 FABRICAÇÃO E VALIDAÇÃO DOS PROTÓTIPOS

O procedimento de fabricação e validação com testes de estanqueidade e verificação geométrica dos protótipos das pontas das sondas, tipo pirâmide e tipo prisma está apresentada a seguir.

Após estar definida a geometria e o dimensionamento das sondas, partiu-se para a definição do material utilizado na fabricação. Devido ao requisito de resistência à corrosão, optou-se pelo aço inox 306 para a peça da haste maior da sonda. Escolhido o material, verificou-se que seria mais viável dividir a haste em três peças: uma haste maior, um cotovelo também em aço inox e uma peça intermediária em alumínio para ligar o cotovelo da haste à ponta da sonda. Com esta montagem, não foi necessário realizar a dobra de um tubo de aço, o que se mostrou difícil operacionalmente.

Figura 41 – Esquema da haste da sonda com suas divisões

O acoplamento entre as partes da haste foi feito por parafusos de cabeça cônica em furos com acabamento escareado, de forma a não formar ressaltos na superfície da haste e ainda assim possibilitando fácil montagem e desmontagem. A conexão entre haste e ponta se deu também pelo uso de parafuso de cabeça cônica e foi feita de forma a impedir qualquer movimento de rotação da ponta em relação à haste.

Figura 42 – Haste da sonda ao lado de uma régua de 50 cm.

5.3.1 FABRICAÇÃO DAS PONTAS DAS SONDAS POR PROTOTIPAGEM RÁPIDA

Para as pontas de sondas, cogitou-se inicialmente o uso do alumínio 7075T651 de uso aeronáutico, sendo descartado pela dificuldade em se encontrar esse material comercialmente nas dimensões desejadas e pela necessidade de usinar com grande precisão um tarugo de alumínio para se obter a geometria das pontas das sondas. Decidiu-se então pela fabricação em prototipagem rápida usando material plástico identificado por ABS (Acrilonitrila-butadieno-estireno), que fornece como produto final um sólido já com as dimensões de projeto da ponta.

Após a fabricação de cada ponta, deu-se um acabamento superficial nas faces da sonda usando lixas de gramaturas 320, 400, 600, 1000 e 1200, e também aplicou-se uma fina camada de cianoacrilato para vedação da superfície porosa que é característica do plástico ABS.
5.3.2 VALIDAÇÃO DOS PROTÓTIPOS DAS PONTAS DE SONDA EM MATERIAL ABS

A análise dos protótipos em plástico ABS preocupou-se com várias características da sonda e de seu material. Inicialmente foi considerada a hipótese de realizar a medição da rugosidade das superfícies das sondas utilizando o rugosímetro, porém optou-se por não realizar esta medição pelo fato de o instrumento ter de riscar a face com uma ponta diamante durante a medição. As superfícies com tratamento de cianoacrilato e lixamento dispensaram esta avaliação.

Figura 43 – Ponta tipo prisma fabricada

Figura 44 – Ponta tipo pirâmide fabricada

Verificadas as dimensões das pontas de sondas, são fixados tubos de cobre na parte interna das pontas, para facilitar o acoplamento dos tubos de silicone que correm no interior da haste. Os tubos de cobre são colados a cada ponta de sonda usando silicone.

Um teste de estanqueidade em cada canal e orifício de cada sonda é realizado para verificar a qualidade da vedação dos tubos. O teste de vazamento consiste em acoplar um tubo de silicone ao tubo de cobre colado na ponta de sonda, pressurizar este tubo com o auxílio de uma seringa e tampando a tomada de pressão na face da ponta de sonda. Em seguida, insere-se o conjunto em um béquer com água para verificar vazamento através da presença de bolhas.

Na realização dos testes para as pontas de sonda fabricadas por prototipagem rápida utilizando material plástico tipo ABS, verifica-se o vazamento de ar devido a comunicação entre as tomadas de pressão da sonda. Conclui-se que havia porosidade no material que interligava as tomadas de pressão da sonda, permitindo a passagem de

ar. Sendo assim, avaliou-se que estas sondas fabricadas pelo método de prototipagem rápida não são adequadas para os objetivos deste trabalho.

Figura 45 – Tubos de cobre colados na parte interna das pontas de sonda.

Figura 46 - Teste de vazamento

5.3.3 FABRICAÇÃO DAS PONTAS DAS SONDAS POR USINAGEM

O resultado do teste de estanqueidade das pontas fabricadas em material plástico tipo ABS desqualificou aqueles protótipos, sendo feita a opção pela fabricação de novos protótipos de pontas de sondas através de processo de usinagem de material metálico.

Foram considerados o aço inox, o alumínio e o latão para este propósito. Analisando as propriedades dos materiais, conclui-se que haveria maior dificuldade na usinagem do aço inox devido à sua resistência ao desbaste, especialmente na fabricação dos detalhes de dimensões reduzidas nas furações. O uso do alumínio poderia dificultar os detalhes por se tratar de um material que poderia sofrer deformações plásticas nas regiões de atuação das ferramentas de usinagem, o que poderia prejudicar o processo de fabricação. Assim, optou-se pelo latão, que atende aos requisitos para uma boa usinagem. Após a usinagem, as superfícies sofreram acabamento com lixas de gramaturas 320, 400, 600, 1000 e 1200. Após sua fabricação, também foi realizado o teste de estanqueidade com estas pontas de sonda usinadas em latão, em que foi verificada a ausência de vazamentos.

Figura 47 – Sonda tipo prisma fabricada em latão

6. ENSAIOS EXPERIMENTAIS

6.1 DESCRIÇÃO GERAL E OBJETIVOS DOS ENSAIOS

O ensaio experimental para a calibração e avaliação das sondas consiste em verificar se estas são efetivamente capazes de medir a velocidade e a direção do escoamento de ar que incide na sonda. Para isso, é necessário que haja um escoamento de referência, não-perturbado, com pressão dinâmica, pressão estática e condições psicrométricas conhecidas. Neste escoamento de referência, as sondas são posicionadas em determinados ângulos. Como as sondas possuem múltiplas tomadas de pressão, relações entre medidas de pressão determinam a magnitude e a direção do vetor velocidade do escoamento de ar que incide na sonda, além da pressão estática e da pressão total associada a uma linha de corrente do escoamento. Uma das complexidades deste ensaio é a fixação da sonda e seu posicionamento, uma vez que ela deve rotacionar em torno de 2 eixos perpendiculares para a calibração. Dessa forma, um dispositivo de posicionamento próprio para esta aplicação é utilizado.

Os ensaios experimentais consistem em posicionar a sonda em um escoamento de ar com velocidade e direção conhecidas. É utilizado para este fim um túnel de vento. Com o auxílio de um tubo de Pitot de referência, é medida a pressão dinâmica em uma linha de corrente do escoamento e calculada a velocidade do ar. O ar é utilizado como fluido e o regime de escoamento é variado na faixa de Reynolds de $1x10^4$ a $2x10^4$, utilizando como comprimento característico o diâmetro da sonda 25,4 mm e velocidades do escoamento de 7 a 12 m/s.

A sonda é posicionada em vários ângulos em relação à linha de corrente de referência, tomando medidas de pressão para os diversos orifícios da sonda. Conhecendo-se os ângulos em que a sonda foi posicionada e os valores medidos nas tomadas de pressão desta, determina-se uma curva de calibração que relaciona as leituras de pressão com a magnitude do vetor velocidade do escoamento e com os ângulos entre o vetor velocidade e os eixos associados à sonda.

Para a sonda tipo prisma, são variados ângulos de posicionamento apenas no plano dos 3 orifícios da ponta da sonda, por se tratar de uma sonda para escoamento bidimensional.

A sonda tipo pirâmide é posicionada no escoamento e são variados ângulos de guinada e arfagem, uma vez que esta sonda é capaz de detectar as componentes do vetor velocidade do ar em dois planos.

6.2 APARATO EXPERIMENTAL

6.2.1 Equipamentos utilizados

Para a realização dos ensaios de calibração das sondas, são necessários os seguintes equipamentos:

- a) Túnel de vento
- b) Posicionador das sondas

a) Túnel de vento

Foi utilizado o túnel de vento do Laboratório de Anemometria do IPT, que é do tipo aberto e possui uma seção de teste de 500 mm x 500 mm. A movimentação do ar é realizada por um ventilador centrífugo acionado por um motor elétrico de 50 cv. O ajuste da condição de vazão é obtido através de um inversor estático de freqüência que estabelece a rotação do motor. Para selecionar a vazão pode-se utilizar também um registro radial instalado na entrada do ventilador. fornece um escoamento permanente com velocidade de até 40 m/s. As sondas são posicionadas ao longo da seção de testes, na saída do túnel de vento. As velocidades ensaiadas foram de 7 m/s, 10 m/s e 12 m/s.

b) Posicionador das sondas

Para a variação dos ângulos de posicionamento da sonda em relação ao escoamento de referência, é utilizado o posicionador angular representado na figura 48 a seguir:

Figura 48 – Dispositivo posicionador para a sonda direcional

Este dispositivo é capaz de posicionar cada sonda efetuando rotações em torno de dois eixos. Ele permite rotação de 180° em torno de um dos eixos e 360° em torno do outro eixo. A resolução no posicionamento angular é de 5° para ambos os eixos. A figura 49 a seguir mostra a montagem do dispositivo posicionador acoplado a um cilindro de regulagem vertical de altura que está preso a uma base e pode ser movido,

permitindo o posicionamento da sonda para uma faixa de ângulos entre +60 e -60 graus.

Figura 49 – Montagem do dispositivo posicionador no cilindro de regulagem vertical de altura no túnel de vento do laboratório de anemometria do IPT.

6.2.2 Instrumentação utilizada

Para as medições realizadas, utiliza-se a seguinte instrumentação:

- a) Transdutores de pressão
- b) Micro-manômetro
- c) Termopar
- d) Psicrômetro
- e) Barômetro
- f) Sistema monitor de pressões

As grandezas medidas e as características dos instrumentos estão representados na tabela 3 a seguir.

Instrumento	Grandeza	Faixa de Operação	Resolução
Transdutores de Pressão	Pressão	-125 Pa a +125 Pa	0,24 Pa
Micro-manômetro	Pressão	-200 a +200 Pa	0,001 Pa
Termopar tipo J	Temperatura de Bulbo Seco do jato de ar	0 a 50ºC	0,1 °C
Psicrômetro	Temperatura de Bulbo Úmido	0 a 50°C	0,1 °C
Barômetro	Pressão atmosférica	até 110 kPa	0,1 Pa
Sistema monitor de pressões	Pressão	-125 Pa a +125 Pa	1 Pa

Tabela 3: Instrumentação utilizada nos ensaios

a) Transdutores de pressão

Os transdutores de pressão utilizados são modelo Autotran série 850 com uma faixa de medição de pressão diferencial de -125 Pa até +125 Pa. Esta faixa de leitura de pressões é adequada para a realização dos ensaios, já que a maior diferença de pressão que poderia ser medida seria a de um escoamento com velocidade de 12 m/s (condição de maior velocidade a ser ensaiada), o que corresponde a uma pressão dinâmica da ordem de 80 Pa.

A incerteza de medição deste instrumento informada pelo fabricante é de 1% do fundo de escala, o que corresponde a \pm 1,25 Pa. O microprocessador utilizado na medição é do tipo PIC 16F877. Este microprocessador transmite os sinais analógicos de voltagem do transdutor (1 a 5V) ao computador em sinais digitais. A resolução deste microprocessador é de 1024 dígitos. Desta forma, tem-se uma faixa de 4 V (1 a 5V) dividida em 1024 intervalos. Desta forma, os sinais enviados ao computador são discretizados a cada 3,0625x10⁻³V, que equivalem a uma resolução de 0,24 Pa.

Todos os transdutores utilizados nos ensaios e instalados no sistema monitor de pressão foram calibrados previamente. O padrão para esta calibração foi o manômetro inclinado modelo type 4 do fabricante Airflow, que é a referência de pressão adotada no Laboratório de Instrumentação em Mecânica dos Fluidos, cuja resolução é 0,05 Pa. Para esta calibração também foi usado o multímetro HP padrão com resolução de 10⁻⁴ mV. Os resultados destas calibrações estão apresentados no apêndice III.

b) Micro-manômetro

O micro-manômetro é utilizado para as medições de pressão total, pressão dinâmica e pressão estática pelo tubo de Pitot de referência. O micro-manômetro modelo FCO 510 do fabricante Furness Controls tem uma incerteza associada ao instrumento inferior a 0,5% do valor indicado, com resolução de 0,001 Pa e faixa de medição de -200 a +200 Pa.

Figura 50 – Micro-manômetro FCO 510.

c) Termopar

No experimento em questão é utilizado um termopar tipo J para medir a temperatura de bulbo seco do ar no escoamento da seção de testes. O termopar utilizado possui resolução de 0,1 °C e faixa de medição entre 0 e 50°C. Esta medição é necessária para a determinação da massa específica do ar.

d) Psicrômetro

O psicrômetro é utilizado para a medição da temperatura de bulbo úmido. A resolução deste instrumento é de 0,1°C e a faixa de medições de temperatura está entre 0 e 50°C. Com esta medição, a pressão atmosférica e a temperatura de bulbo seco do ar no escoamento, pode-se determinar a massa específica do ar.

e) Barômetro

Um barômetro é utilizado no experimento para a determinação da pressão atmosférica e este valor é utilizado no cálculo da massa específica do ar. O barômetro utilizado na medição é capaz de registrar pressões atmosféricas com resolução de 0,1 Pa. A figura 51 a seguir mostra este aparelho, assim como os indicadores de temperatura de bulbo seco ambiente, temperatura de bulbo úmido e temperatura de bulbo seco do ar no escoamento.

Figura 51 – Indicadores de temperatura e barômetro DHI.

f) Sistema monitor de pressões

A fim de facilitar o procedimento experimental, é utilizado um sistema monitor de pressões que faz a aquisição de dados dos transdutores de pressão descritos

anteriormente. Trata-se de um sistema microprocessado que faz a leitura e a transformação analógica-digital possibilitando o registro das pressões em um arquivo de computador.

O programa de computador Flowsense (MARIANI, 2000) interpreta os sinais digitais e, usando coeficientes de calibração para cada um dos transdutores, mostra em uma tela até 16 valores simultâneos de pressão. Estes valores correspondem à média de 10 amostras tomadas a cada 150 ms, ou seja, a cada 1,5 s uma nova média é mostrada para cada tomada de pressão. O programa possui a vantagem de indicar e salvar até 16 valores de pressão simultaneamente, o que facilita as medições. Caso não houvesse tal possibilidade, seria necessário realizar a medição de pressão em cada tomada da sonda individualmente uma após a outra.

Figura 52 – Indicações de pressão no programa Flowsense.

Para este sistema, verifica-se que o valor de pressão lido varia em ± 1 Pa devido a instabilidades do escoamento e também devido ao fato de a resolução do sistema monitor de pressão ser de 1 Pa.

6.3 PROCEDIMENTO EXPERIMENTAL PARA ENSAIOS EM TÚNEIS DE VENTO

A principal meta dos ensaios é medir valores nas tomadas de pressão das sondas direcionais para cada posição da sonda em relação à linha de corrente de referência do escoamento.

O escoamento de ar unidimensional com velocidade conhecida estabelece a referência desejada. Os sensores são posicionados em diversas combinações de ângulos de guinada (ψ) e arfagem (δ) em relação à direção do escoamento, conforme mostrado na figura 54 a seguir, para o caso da sonda tipo pirâmide.

Figura 53 – Indicações ângulos de guinada e arfagem

6.3.1 Ensaios de verificação na EPUSP (Escola Politécnica da Universidade de São Paulo)

Antes da realização dos ensaios no túnel de vento do IPT (Instituto de Pesquisas Tecnológicas), são realizados ensaios em um túnel de vento de menor seção e potência, do Laboratório de Instrumentação em Mecânica dos Fluidos da EPUSP, para verificação da operação do sistema de aquisição e do processo de medição.

Neste teste, a sonda foi posicionada em um escoamento de velocidade de 10 m/s em três combinações de ângulos de arfagem e guinada. Sendo assim, percebese a variação das medições de pressão nas diferentes tomadas da sonda quando é variada sua posição em relação ao escoamento de referência.

O teste permite estimar o tempo de ensaio necessário para a calibração completa da sonda, considerando os procedimentos de medição, registro dos dados no computador e posicionamento da sonda.

Este teste é considerado essencial já que o tempo disponível para ensaio no túnel de vento de anemometria do IPT era limitado e deveriam ser minimizadas as possibilidades de falha no sistema de medição.

6.3.2 Ensaios de avaliação e calibração de sondas no IPT

6.3.2.1 Sonda tipo prisma

A sonda tipo prisma é posicionada no túnel de vento e é realizado um nivelamento e alinhamento da sonda em relação à seção de ensaio, conforme representado na figura 54 a seguir.

Figura 54 – Nivelamento da sonda antes dos ensaios.

Na figura 54 pode ser visto o tubo de Pitot usado como referência para medições de pressões estática e total. Ao se posicionar a sonda na seção de teste, há um nivelamento da sua haste no plano vertical, que é paralelo à direção do escoamento de referência. Este nivelamento foi realizado com um nível de bolha, conforme mostrado na figura 54. Este procedimento é necessário para que o eixo axial da sonda fique alinhado com o escoamento de referência quando o posicionador indica zero graus para o ângulo de arfagem.

O alinhamento do eixo axial da sonda no plano horizontal também é necessário, já que este eixo deve estar com ângulo de guinada nulo na condição inicial dos ensaios. Este alinhamento é realizado tomando-se medições de distância entre a haste e a parede lateral do túnel em duas posições da sonda, uma na ponta e outra próxima à acoplagem entre sonda e dispositivo posicionador. Igualando-se estas distâncias, garante-se o paralelismo entre a sonda e a parede lateral do túnel. A sonda prisma é ensaiada para três velocidades de escoamento: 7,1 m/s, 10,1 m/s e 12,1 m/s e a faixa de ângulo de arfagem varia de -60° a +60°, com incrementos de 5°. Os valores de pressão medidos e as condições ambientes de ensaio encontramse no apêndice I.

6.3.2.2 Sonda tipo pirâmide

A sonda tipo pirâmide foi posicionada no túnel seguindo o procedimento descrito no item 6.2.2.1 para o alinhamento do eixo axial da sonda com o eixo do escoamento de referência. Esta sonda é ensaiada para uma velocidade de escoamento de 10,03 m/s. O dispositivo posicionador permite que a sonda seja rotacionada em torno de seu eixo e também em torno de um eixo perpendicular ao eixo axial da sonda, conforme representado na figura 55.

Figura 55 – Ângulos de posicionamento da sonda pirâmide no escoamento.

São definidos os ângulos "a" e "g" para auxiliar a identificação do posicionamento da sonda. O ângulo a é formado entre o eixo axial da sonda e o eixo vertical do cilindro de regulagem de altura. O ângulo g fica estabelecido pela rotação em torno do eixo axial da sonda.

Os ângulos de arfagem δ e de guinada ψ relacionam-se com os ângulos *a* e *g* pelas expressões:

$$\delta = a \times \cos(g) \tag{26}$$

$$\psi = a \times sen(g) \tag{27}$$

Na figura 55 estão representados os ângulos a e g.

Nos ensaios o ângulo g é variado entre 0° e 175° em intervalos de 5°. Para cada valor de ângulo g, o ângulo a é variado de -60° e +60° em intervalos de 5°. Desta forma, a combinação dos ângulos a e g resultam em 900 posições diferentes da sonda. Para cada uma dessas posições, são feitas medições das cinco pressões da sonda pirâmide.

O procedimento de medição adotado não considera que a sonda seja perfeitamente simétrica. Eventuais ausências de simetria decorrentes do processo de fabricação indicam que a calibração é válida apenas aquela sonda ensaiada.

A convenção de numeração das tomadas de pressão na sonda segue o representado na figura 56.

Figura 56 – Numeração das tomadas de pressão na sonda pirâmide

Os resultados deste ensaio encontram-se no apêndice II.

Um procedimento importante para ensaios com medições de baixas pressões, como o presente caso, é a verificação do zero nos medidores de pressão. Isto deve ser

feito antes de iniciar as medições e periodicamente durante o ensaio. Para tanto, são verificadas as indicações de pressão quando os transdutores não estão conectados à sonda, de forma a calibrar o zero do transdutor. Nos casos em que a indicação não é nula, é realizado o ajuste do zero no programa Flowsense.

6.4 ANÁLISE DE INCERTEZAS

Este item da etapa de ensaios experimentais refere-se à análise de incerteza de todo o sistema de medição. Informações sobre as resoluções de instrumentos utilizados já foram apresentadas na descrição do aparato experimental, item 3.2.

O objetivo é determinar as incertezas dos resultados para os ângulos das componentes do vetor velocidade, para a magnitude da velocidade do escoamento e para a pressão estática.

Todas estas grandezas dependem da incerteza das medições de pressão nas tomadas de pressão da sonda, bem como da massa específica do ar.

A análise de incerteza segue as recomendações do Guia para expressão da incerteza de medição do INMETRO (INMETRO, 1998). Foi utilizado como referência para análise de incerteza de medições de pressão o trabalho de Ferreira (FERREIRA, et al., 2009).

São determinadas a seguir as incertezas tipo A, tipo B, a incerteza padrão combinada e a incerteza expandida para as medições de pressão.

6.4.1 Incerteza tipo A

Conforme sugerido pelo guia para expressão da incerteza de medição (INMETRO, 1998), estabeleceu-se uma relação entre uma grandeza de entrada e o mensurando. Para o caso da pressão, isto é feito através das curvas de calibração dos transdutores de pressão. Esta calibração relaciona uma pressão aplicada ao transdutor a um sinal de tensão elétrica medido por um multímetro de laboratório. O transdutor possui uma faixa de tensão elétrica entre 1V e 5V.

Figura 57 – Curva de calibração do transdutor de pressão #011195.

Desta maneira, para este transdutor foi estabelecida a relação da pressão medida com a tensão elétrica descrita a seguir:

$$P = 63,126 \times V - 163,52 \tag{28}$$

Considerando a incerteza de medição correspondente à variação ΔP na pressão de referência, temos a expressão:

$$P = 63,126 \times V - 163,52 + \Delta P \tag{29}$$

Durante a medição de cada ponto da curva, observou-se uma variação similar nos valores de tensão elétrica lidos. Para o exemplo do ponto correspondente à pressão de 75 Pa obtiveram-se 5 valores de tensão elétrica, com média de 3,772 V e um desvio padrão de 0,007 V. Desta forma, a incerteza tipo A associada à variação do sinal de tensão do transdutor é dada por:

$$u_A = \frac{u_V}{\sqrt{n}} = \frac{0,007}{\sqrt{5}} = 0,003 \ V \tag{30}$$

6.4.2 Incerteza tipo B

Para a determinação da incerteza tipo B, três parâmetros que influenciam na medição de pressão são observados. Estes parâmetros são:

- Resolução da leitura de pressão do sistema (u_r);
- Variações na medição devido a efeitos de temperatura (ut);
- Estabilidade da medida de pressão (ust).
- Variação na medição devido a erros de posicionamento da sonda (u_p).

Conforme apontado na descrição do aparato experimental, o sistema de medição possui uma resolução de 1 Pa em sua leitura, o que corresponde a 0,016 V. Dessa maneira, considerando uma distribuição normal de probabilidade para as medições,

temos
$$u_r = \frac{0,016 V}{\sqrt{3}} = 0,009 V.$$

Segundo o fabricante, para a faixa de temperatura entre 5°C e 60°C a estabilidade da medição de ± 0,5% do fundo de escala é garantida, o que corresponde a uma variação de $\frac{0,5}{100} \times (5 V - 1 V) = 0,02 V$. Considerando uma distribuição normal de

probabilidade para estes dados, tem-se $u_{st} = \frac{0.02 V}{\sqrt{3}} = 0.011 V$.

Da mesma forma, o fabricante informa que a variação na medição devido a efeitos de temperatura corresponde a $\pm 0,01\%$ do fundo de escala, o que corresponde a $\frac{0,01}{100} \times (5V - 1 V) = 0,0004 V$. Considerando uma distribuição normal de probabilidade

para estes dados, tem-se $u_t = \frac{0,0004 V}{\sqrt{3}} = 0,0002 V$.

A variação nas medições de pressão devido a erros de posicionamento da sonda foram estimadas durante as medições como sendo a variação da pressão observada quando a sonda era ajustada para sua posição de alinhamento e essa variação corresponde a 1 Pa, o que corresponde a uma variação de 0,016 V. Considerando uma distribuição normal de probabilidades para esta medição, tem-se $u_p = \frac{0,016V}{\sqrt{3}} = 0,009V$.

Adicionalmente a estes fatores, adiciona-se a incerteza de medição associada ao manômetro de referência utilizado, que possui uma incerteza de 0,5 Pa, sendo então expresso como esta incerteza, quando expressa em termos de tensão, $u_{\Delta P} = 0.5Pa$.

Os valores de u_r, u_{st}, u_t e u_p somados ao valor de $u_{\Delta P}$ constituem a incerteza tipo B para o modelo proposto.

6.4.3 Incerteza padrão combinada

Para a determinação da incerteza padrão combinada (u_c), são feitas as derivadas parciais da função que relaciona a pressão medida com a tensão de saída, dada pela curva de calibração cuja equação é reproduzida abaixo.

$$P = 63,126 \times V - 163,52 + \Delta P$$

As grandezas que influenciam na medição da tensão elétrica podem ser consideradas não-correlacionadas, uma vez que os efeitos de cada uma delas já possui sua própria influência na exatidão das medições conforme informado pelo fabricante. Desta forma, as derivadas parciais da função P(V) com relação às variáveis de entrada descritas anteriormente são mostradas a seguir:

$$u_{C}^{2} = \left(\frac{\partial P}{\partial V}\right)^{2} u_{S}^{2} + \left(\frac{\partial P}{\partial \Delta P}\right)^{2} u_{\Delta P}^{2}$$
(31)

Em que:

$$u_{s}^{2} = u_{r}^{2} + u_{t}^{2} + u_{st}^{2} + u_{p}^{2} \rightarrow u_{s} = 0,017V$$
(32)

$$\left(\frac{\partial P}{\partial V}\right) = 63,126Pa/V$$
, $\left(\frac{\partial P}{\partial \Delta P}\right) = 1$
 $u_{\Delta p} = 0,5Pa$

Dessa forma:

$$u_{C} = 1,17Pa$$

6.4.4 Incerteza padrão expandida

A incerteza padrão expandida foi calculada considerando um intervalo de confiança de 95,45%. A fórmula de Welch-Sattertwaite (INMETRO, 1998) foi utilizada para a determinação dos graus de liberdade efetivos v_{eff}.

$$v_{eff} = \frac{u_c^4(y)}{\sum_{i=1}^{N} \frac{u_i^4(y)}{v_i}}$$
(33)

Da mesma forma que sugerido pela referência (FERREIRA, et al., 2009), os graus de liberdade associados a u_r, u_{st}, u_t e u_p foram considerados como $\rightarrow \infty$. Para u_A temos v = n - 1 = 5 - 1 = 4. Sendo assim,

$$v_{eff} = \frac{(1,17)^4}{(0,186)^4} = 6262,55 \to \infty$$

Desta maneira, para o intervalo de confiança considerado, com o valor de v_{eff} pode-se assumir um fator de abrangência k=2. Sendo assim, a incerteza padrão expandida U é descrita por:

$$U = k \times u_{C}(P) = 2 \times 1,17Pa = 2,34Pa$$
(34)

De posse da incerteza expandida das medições de pressão, pode-se calcular o impacto desta variação nos coeficientes de arfagem, guinada, pressão estática e pressão total e conseqüentemente, o impacto desta variação na determinação do ângulo e da magnitude do vetor velocidade e da pressão total do escoamento.

Uma variação de 2,34 Pa nas leituras de pressão gera as seguintes variações nos coeficientes:

$$\Delta K_{\delta} = 0,0106 \text{, } \Delta K_{\psi} = 0,0106 \text{, } \Delta K_{estática} = 0,023 \text{ e} \Delta K_{total} = 0,047$$

Estes valores representam uma variação da ordem de ±0,5° no ângulo de escoamento (tanto em guinada quanto em arfagem), uma variação de ±4% no valor da velocidade do escoamento e uma variação de ±1 Pa no valor da pressão estática do escoamento.

6.5 SELEÇÃO E DEFINIÇÃO DOS COEFICIENTES

6.5.1 Sonda pirâmide

Os coeficientes adimensionais definidos a partir das medições de pressão permitem a determinação do ângulo e magnitude do vetor velocidade do escoamento, assim como a pressão estática, conforme descrito a seguir.

Os coeficientes de guinada K_{ψ} e arfagem K_{δ} , definidos conforme Treaster et al., (1978) são:

$$K_{\psi} = \frac{p4 - p5}{p1 - \overline{p}}$$
 e $K_{\delta} = \frac{p2 - p3}{p1 - \overline{p}}$, com $\overline{p} = \frac{p2 + p3 + p4 + p5}{4}$ (35)

É também considerada a definição dos coeficientes de arfagem e guinada segundo Nowack (1970), em que a numeração das tomadas de pressão p1, p2, p3, p4 e p5 está mostrada na figura 56.

$$K_{\psi} = \frac{p1 - p4}{p1 - p5} \ \mathbf{e} \ K_{\delta} = \frac{p1 - p3}{p1 - p5}$$
(36)

De posse da curva de calibração, podem-se relacionar as leituras de pressão dos cinco orifícios com o par (ângulo de guinada; ângulo de arfagem) do vetor velocidade.

Para a determinação da magnitude do vetor velocidade do escoamento através das medições de pressão nos 5 orifícios, definem-se os coeficientes de pressão total e pressão estática dados por Treaster et al., (1978):

$$K_{total} = \frac{p1 - p_{total}}{p1 - \overline{p}} \quad \mathbf{e} \quad K_{estatica} = \frac{\overline{p} - p_{estatica}}{p1 - \overline{p}} \tag{37}$$

Uma outra definição de coeficientes de pressão estática e pressão dinâmica é proposta neste trabalho:

$$K_{total} = \frac{p1 - p_{total}}{\sqrt{\bar{p}^2}} \quad e \quad K_{estatica} = \frac{p1 - p_{estatica}}{\sqrt{\bar{p}^2}}$$

Com $\bar{p} = \frac{p1 + p2 + p3 + p4 + p5}{5}$. (38)

Dessa forma, nos ensaios de avaliação da sonda de 5 orifícios, deve-se conhecer também a pressão total e pressão estática do escoamento, com o uso de um tubo de Pitot calibrado.

6.5.2 Sonda prisma

Para a calibração da sonda de 3 orifícios (prisma), o procedimento é análogo, sendo determinado no entanto o ângulo do escoamento em apenas um dos planos. Sendo p1 a pressão referente ao orifício central da sonda e p2 e p3 as pressões referentes aos orifícios dos planos inclinados.

Desta forma, o coeficiente de arfagem proposto por Treaster et al., (1978) tornase:

$$K_{\delta} = \frac{p^2 - p^3}{p^1 - \overline{p}} \operatorname{com} \overline{p} = \frac{p^2 + p^3}{2}$$
 (39)

O coeficiente de arfagem definido por Nowack (1970) é:

$$K_{\delta} = \frac{p1 - p2}{p1 - p3}$$
(40)

É definido ainda, neste trabalho, um terceiro coeficiente de arfagem:

$$K_{\delta} = \frac{p2 - p3}{\sqrt{\overline{p}^2}} \operatorname{com} \overline{p} = \frac{p1 + p2 + p3}{3}$$
 (41)

Os coeficientes de pressão total e pressão estática para esta sonda de 3 orifícios são definidos da mesma maneira que para a sonda de 5 orifícios, ou seja (TREASTER et al., 1978):

$$K_{total} = \frac{p1 - p_{total}}{p1 - \overline{p}} \quad \mathbf{e} \quad K_{estatica} = \frac{\overline{p} - p_{estatica}}{p1 - \overline{p}} \tag{42}$$

Para a determinação da pressão estática e da pressão total, também foi proposto por este trabalho um outro par de coeficientes dado por:

$$K_{total} = \frac{p2 - p3 + p_{total}}{\sqrt{\bar{p}^2}} \quad \text{e} \quad K_{estatica} = \frac{p2 - p3 + p_{estatica}}{\sqrt{\bar{p}^2}}$$
(43)
Com $\bar{p} = \frac{p1 + p2 + p3}{3}$.

A comparação dos coeficientes apresentados é feita na etapa de análise dos resultados.

6.6 RESULTADOS DOS ENSAIOS E ANÁLISE DE COEFICIENTES

Com as medições de pressão realizadas para as diferentes posições da ponta da sonda em relação ao escoamento, calculam-se coeficientes adimensionais para estabelecer uma relação entre as pressões medidas e o ângulo de posicionamento da sonda em relação ao escoamento. Com o uso de um tubo de Pitot calibrado, é possível também relacionar as medidas de pressão estática e pressão total do escoamento com as indicações de pressão da sonda.

6.6.1 Sonda Prisma

Foram definidos coeficientes de arfagem de três maneiras para a análise dos dados, conforme apresentado no item 6.5. Os gráficos a seguir representam os resultados dos ensaios realizados com a sonda prisma.

Figura 58 – Ensaio de calibração da sonda tipo prisma. V=10,11 m/s. Coeficiente de arfagem definido segundo (TREASTER, et al., 1978)

Como pode ser observado por estes resultados, esta definição de coeficiente não é muito interessante para a análise, já que os valores do coeficiente de arfagem possuem uma relação unívoca com o ângulo de arfagem apenas para a faixa de ângulos entre -10º e +15º.

A figura a seguir mostra os resultados utilizando a definição de coeficiente de arfagem estabelecida pela referência (NOWACK, 1970).

Figura 59 – Ensaio de calibração da sonda tipo prisma. V=10,11 m/s. Coeficiente de arfagem definido segundo (NOWACK, 1970)

Com a definição de coeficientes de arfagem segundo a referência (NOWACK, 1970), pode-se verificar a incapacidade de relacionar o coeficiente com o ângulo de arfagem, mesmo para ângulos mais próximos ao zero grau. Na figura a seguir está representada uma região do gráfico entre -25º e +25º.

Figura 60 – Ensaio de calibração da sonda tipo prisma. V=10,11 m/s. Coeficiente de arfagem definido segundo (NOWACK, 1970), região entre -25º e +25º.

Analisando a região do gráfico entre -25° e +25°, é possível verificar que para a faixa de ângulos entre -10° a +10° existe uma relação única entre coeficiente de arfagem e ângulo de arfagem, ou seja, para esta faixa, um valor de coeficiente de arfagem corresponde a um único valor de ângulo de arfagem.

O terceiro coeficiente de arfagem definido é uma modificação daquele proposto no trabalho de Treaster (TREASTER, et al., 1978), substituindo o denominador $p1-\overline{p}$ por $\sqrt{\overline{p}^2}$, com $\overline{p} = \frac{p1+p2+p3}{3}$. Desta forma, o denominador será sempre maior ou igual a zero e o coeficiente mudará de sinal quando o ângulo de arfagem cruzar o plano horizontal (zero grau). O resultado do ensaio com o uso deste coeficiente está representado nas figuras 61 e 62 a seguir.

Figura 61 – Ensaio de calibração da sonda tipo prisma. V=10,11 m/s. Coeficiente de arfagem definido com o denominador $\sqrt{\overline{p}^2}$.

Figura 62 – Ensaio de calibração da sonda tipo prisma. V=10,11 m/s. Coeficiente de arfagem definido com o denominador $\sqrt{\overline{p}^2}$. Faixa de ângulos entre -25° e +25°.

Verifica-se pelo gráfico que esta definição de coeficiente produz uma curva de calibração de maior utilidade, uma vez que é possível relacionar o coeficiente de arfagem com apenas um ângulo de arfagem para a faixa de ângulos entre -25° e +25°.

Desta forma, este coeficiente é escolhido para a definição das curvas de calibração.

A figura 63 a seguir mostra a comparação dos valores de coeficiente de arfagem para as três velocidades de escoamento ensaiadas.

Figura 63 – Ensaio de calibração da sonda tipo prisma. Velocidades de 10,11 m/s, 7,13 m/s e 12,1 m/s.

Pelos resultados, pode-se confirmar a independência dos valores do coeficiente de arfagem com a velocidade, bem como uma região de instabilidade em torno do ângulo +30° e do ângulo -25°. Para ângulos de arfagem próximos a estes valores,

verifica-se uma região onde as pressões variam rapidamente, o que pode representar o descolamento do escoamento da superfície da sonda.

Adicionalmente, foram verificados os resultados dos coeficientes de pressão estática e pressão total, a fim de que se possa determinar além da direção do escoamento, sua velocidade e a pressão estática do escoamento.

Os gráficos das figuras 64 e 65 representam os coeficientes de pressão estática e pressão total definidos segundo Treaster (TREASTER et al., 1978).

Figura 64 – Ensaio de calibração da sonda tipo prisma. V=10,11 m/s. Coeficiente de pressão total definido segundo Treaster (TREASTER, et al., 1978).

Figura 65 – Ensaio de calibração da sonda tipo prisma. V=10,11 m/s. Coeficiente de pressão estática definido segundo Treaster (TREASTER, et al., 1978).

Como se pode observar, as definições de coeficientes de pressão total e pressão estática sugeridas por Treaster:

$$K_{total} = \frac{p1 - p_{total}}{p1 - \overline{p}} \quad \text{e} \quad K_{estatica} = \frac{\overline{p} - p_{estatica}}{p1 - \overline{p}} \tag{44}$$

não apresentam uma faixa de ângulos para que seja relacionado um valor de coeficiente de pressão para apenas um ângulo. Desta forma, buscaram-se outras definições de coeficientes em que esta relação fosse possível para uma faixa representativa de ângulos em torno do zero grau.

Testando algumas relações entre pressões estática, total e leituras de pressão nas tomadas da sonda, definiram-se os coeficientes:

$$K_{total} = \frac{p2 - p3 + p_{total}}{\sqrt{\overline{p}^2}} \quad \text{e} \quad K_{estatica} = \frac{p2 - p3 + p_{estatica}}{\sqrt{\overline{p}^2}} \tag{45}$$

 $\operatorname{Com} \ \overline{p} = \frac{p1 + p2 + p3}{3}.$

Que resultaram nos gráficos das figuras 66 e 67 a seguir.

Figura 66 – Ensaio de calibração da sonda tipo prisma. V=10,11 m/s. Coeficiente de pressão total definido com o denominador $\sqrt{\overline{p}^2}$.

Figura 67 – Ensaio de calibração da sonda tipo prisma. V=10,11 m/s. Coeficiente de pressão estática definido com o denominador $\sqrt{\overline{p}^2}$.

Verifica-se então que com estas novas definições de coeficiente de pressão total e pressão estática, é possível determinar o valor do coeficiente da pressão em questão pra uma faixa de ângulos entre -25º e +25º.

A decisão por este novo coeficiente ocorreu após a análise dos dados com o uso dos demais coeficientes propostos por Treaster et al. (1978) e Nowack (1970), buscando relações entre as pressões que fornecessem uma maior faixa de capacidade de determinação do ângulo de arfagem e das pressões total e estática a partir dos coeficientes. A divisão pelo fator $\sqrt{\overline{p}^2}$ apresentou os melhores resultados.

Desta forma, definiram-se para este trabalho os coeficientes de pressão estática e pressão total para a sonda tipo prisma:

$$K_{total} = \frac{p2 - p3 + p_{total}}{\sqrt{p^2}} \quad e \quad K_{estatica} = \frac{p2 - p3 + p_{estatica}}{\sqrt{p^2}}$$
(46)
Com $\bar{p} = \frac{p1 + p2 + p3}{3}$.

6.6.2 Sonda Pirâmide

A primeira análise feita foi a escolha do melhor coeficiente para representar os dados medidos, assim como realizado para a sonda tipo prisma. Os gráficos das figuras 68 a 75 a seguir mostram os resultados dos coeficientes de guinada quando a sonda é posicionada em relação ao escoamento variando apenas o ângulo de guinada e os resultados dos coeficientes de arfagem quando a sonda é posicionada em relação ao escoamento variando a sonda é posicionada em relação ao escoamento variando a sonda é posicionada em relação ao escoamento variando a sonda é posicionada em relação ao escoamento variando a sonda é posicionada em relação ao escoamento variando apenas o ângulo de arfagem, segundo três diferentes definições de coeficientes. Desta forma, assim como o realizado para a sonda tipo prisma, é feita uma comparação entre os coeficientes propostos por Nowack (NOWACK, 1970), Treaster (TREASTER, et al., 1978) e outros coeficientes propostos neste trabalho.

Figura 68– Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de guinada definido segundo (NOWACK, 1970).

Pela definição de coeficientes de guinada segundo Nowack, ou seja,

$$K_{\psi} = \frac{p1 - p2}{p1 - p3}$$

Verifica-se que a faixa de medição da sonda, ou seja, a faixa de ângulos de guinada para a qual um valor de coeficiente de guinada corresponde a apenas um valor de ângulo de guinada é a região entre -15° e +35°, o que representa uma amplitude de 50°. O gráfico a seguir representa uma análise similar para o coeficiente de arfagem definido segundo Nowack.

Para esta medição, verificou-se uma assimetria dos coeficientes em torno do zero grau. Isto se deve a mau-posicionamento inicial da sonda, o que fez com que as medições ficassem defasadas. A mesma situação é verificada na figura 69 e na definição dos coeficientes segundo Treaster, figuras 70 e 71.

Figura 69 – Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de arfagem definido segundo (NOWACK, 1970).

Para este caso, o coeficiente de arfagem é definido como:

$$K_{\delta} = \frac{p1 - p5}{p1 - p4} \tag{47}$$

Verifica-se uma faixa de medição de ângulos entre -40° e 10°. Assim como verificado para o ângulo de guinada, uma amplitude de 50° entre o menor e o maior valor de ângulo que pode ser determinado univocamente pelo coeficiente em questão.

Os gráficos a seguir representam a mesma análise, porém feita com os coeficientes definidos segundo Treaster (TREASTER, et al., 1978).

Figura 70 – Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de guinada definido segundo (TREASTER et al. , 1978).

Pela definição de coeficientes de guinada segundo Treaster, ou seja,

$$K_{\psi} = \frac{p2 - p3}{p1 - \overline{p}} \quad \text{com } \overline{p} = \frac{p2 + p3 + p4 + p5}{4}$$
 (48)

Verifica-se que a faixa de medição da sonda, ou seja, a faixa de ângulos de guinada para a qual um valor de coeficiente de guinada corresponde a apenas um valor de ângulo de guinada é a região entre -25° e +25°, o que representa uma amplitude de 50°. O gráfico a seguir representa uma análise similar para o coeficiente de arfagem definido segundo Treaster.

Figura 71 – Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de arfagem definido segundo (TREASTER et al. , 1978).

Para este caso, coeficiente de arfagem é definido como:

$$K_{\delta} = \frac{p4 - p5}{p1 - \overline{p}} \quad \text{com } \overline{p} = \frac{p2 + p3 + p4 + p5}{4}$$
 (49)

Verifica-se uma faixa de medição de ângulos entre -25° e 25°. Assim como verificado para o ângulo de guinada, uma amplitude de 50° com centro em 0°.

Em seguida, analisaram-se para os mesmos casos os coeficientes definido como modificações daqueles propostos por Treaster, substituindo o denominador $p1-\overline{p}$ por

 $\sqrt{\overline{p}^2}$, com $\overline{p} = \frac{p1+p2+p3+p4+p5}{5}$. Desta forma, o denominador será sempre maior ou igual a zero e o coeficiente mudará de sinal quando o ângulo de arfagem cruzar o plano horizontal (zero grau). O resultado do ensaio com o uso destes coeficientes estão representados a seguir.

Figura 72 – Ensaio de calibração da sonda tipo pirâmide. V=10,11 m/s. Coeficiente de guinada definido com o denominador $\sqrt{\overline{p}^2}$.

Figura 73 – Ensaio de calibração da sonda tipo pirâmide. V=10,11 m/s. Coeficiente de guinada definido com o denominador $\sqrt{\overline{p}^2}$ e faixa de ângulos de -35 a +35 graus.

Verifica-se através destes resultados que o uso desta definição de coeficiente de guinada $K_{\psi} = \frac{p2 - p3}{\sqrt{\overline{p}^2}}$ com $\overline{p} = \frac{p1 + p2 + p3 + p4 + p5}{5}$ estende a faixa de medição de

ângulos para a região entre -35º e +35º, ou seja, uma amplitude de 70º.

Com esta definição de coeficientes, verifica-se a simetria em torno do zero grau, já que o uso do denominador $\sqrt{\overline{p}^2}$ faz com que os coeficientes mudem de sinal apenas quando as relações de pressão no numerador do coeficiente também mudem de sinal, já que o denominador da expressão $\sqrt{\overline{p}^2}$ será sempre maior ou igual a zero.

A seguir é representado o resultado da mesma análise para os ângulos de arfagem definidos desta nova forma.

Figura 74 – Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de arfagem definido com o denominador $\sqrt{\overline{p}^2}$.

Figura 75 – Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de arfagem definido com o denominador $\sqrt{\overline{p}^2}$ e faixa de ângulos de -35 a +35 graus.

Por este resultado também se verifica uma faixa de medições entre -35° e +35° para o ângulo de arfagem, definido o novo coeficiente de arfagem como

$$K_{\delta} = \frac{p4 - p5}{\sqrt{\overline{p}^2}} \text{ com } \overline{p} = \frac{p1 + p2 + p3 + p4 + p5}{5}.$$
 (50)

Desta maneira, definiram-se para este trabalho os coeficientes de guinada e arfagem como:

$$K_{\psi} = \frac{p2 - p3}{\sqrt{\overline{p}^2}} e \quad K_{\delta} = \frac{p4 - p5}{\sqrt{\overline{p}^2}} com \ \overline{p} = \frac{p1 + p2 + p3 + p4 + p5}{5}$$

Uma vez definidos os coeficientes a serem utilizados, prossegue-se à análise dos resultados obtidos para a sonda tipo pirâmide.

As figuras abaixo representam as variações dos coeficientes de arfagem e guinada quando a sonda é ensaiada variando os ângulos de guinada e arfagem na mesma proporção.

Figura 76 – Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Variação dos ângulos de guinada e arfagem na mesma proporção.

Figura 77 – Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Variação dos ângulos de guinada e arfagem na mesma proporção. Faixa de ângulos entre -35º e +35º.

Figura 78 – Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Variação dos ângulos de guinada e arfagem na mesma proporção.

Figura 79 – Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Variação dos ângulos de guinada e arfagem na mesma proporção. Faixa de ângulos entre -35º e +35º.

Como pode ser verificado tanto para o caso do coeficiente de arfagem quanto para o coeficiente de guinada, o comportamento dos coeficientes muda nos ângulos -40° e +40°. Verifica-se que a faixa de ângulos que a sonda é capaz de medir situa-se entre -35° e +35°. No caso anterior, isto também foi evidenciado quando a sonda é

submetida a um escoamento que forma ângulos de guinada e arfagem variando na mesma proporção, ou seja, na condição (ψ , δ) = (θ , θ) com θ variando entre -60° e +60°.

Desta forma, conclui-se que a faixa de medições para a sonda pirâmide ensaiada é de -35º a +35º com o eixo da sonda, tanto para guinada quanto para arfagem.

A definição dos coeficientes de pressão total e pressão estática da sonda pirâmide foi feita de maneira análoga àquela feita para a sonda tipo prisma. Inicialmente, tomou-se como referência a definição de coeficientes adotada pelas referências NASA TM 102200 (ZILLIAC, 1989) e Treaster (TREASTER, et al., 1978). Segundo estas referências, os coeficientes de pressão total e pressão estática são descritos como:

$$K_{total} = \frac{p1 - p_{total}}{p1 - \overline{p}} \quad \text{e} \quad K_{estatica} = \frac{\overline{p} - p_{estatica}}{p1 - \overline{p}} \tag{51}$$

 $\operatorname{com} \quad \overline{p} = \frac{p2 + p3 + p4 + p5}{4}$

Esta definição de coeficiente gera as curvas representadas a seguir, tomando-se como exemplo os casos de ângulo de arfagem igual a zero e ângulo de guinada igual a zero.

Figura 80 – Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de pressão total definido conforme Treaster (TREASTER, et al., 1978) e Zilliac (ZILLIAC, 1989).

Figura 81 – Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de pressão estática definido conforme Treaster (TREASTER, et al., 1978) e Zilliac (ZILLIAC, 1989).

Pelas curvas apresentadas segundo os coeficientes definidos por Treaster e Zilliac, percebe-se que o coeficiente muda bruscamente de valor nos ângulos de -30° e +30°. Outra particularidade é o fato de os coeficientes de pressão apresentarem uma característica de que um valor de coeficiente poder representar dois ângulos de guinada ou arfagem. Isto não é problema, uma vez que é o ângulo detectado pelas sondas que determinará o coeficiente de pressão, e não o contrário. Para a definição de coeficientes segundo Treaster e Zilliac, a faixa de ângulos em que se pode determinar a pressão estática e total através dos coeficientes fica entre -25° e +25°.

Os gráficos a seguir mostram o comportamento destes coeficientes para o caso de variação do ângulo de guinada e ângulo de arfagem mantido constante e igual a 0°.

Figura 82 – Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de pressão total definido com o denominador $\sqrt{\overline{p}^2}$.

Figura 83 – Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de pressão total definido com o denominador $\sqrt{\overline{p}^2}$, faixa de ângulos entre -35° e +35°.

Figura 84 – Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de pressão estática definido com o denominador $\sqrt{\overline{p}^2}$

Figura 85 – Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de pressão estática definido com o denominador $\sqrt{\overline{p}^2}$, faixa de ângulos entre -35° e +35°.

Observa-se que esta última definição de coeficientes de pressão total e pressão estática estendem a faixa de medições para aquela entre -35° e +35°. Da mesma forma observada para os coeficientes definidos por Treaster e Zilliac, o coeficiente de pressão pode representar dois ângulos de guinada. No entanto, isso não é problema, uma vez que a determinação da pressão se faz utilizando o gráfico com valores de ângulo de guinada e arfagem previamente determinados pelos coeficientes de guinada e arfagem.

Os gráficos a seguir representam a mesma análise de coeficientes para o caso em que se varia o ângulo de arfagem e o ângulo de guinada é mantido constante e igual a 0º.

Figura 86 – Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de pressão total definido conforme Treaster (TREASTER, et al., 1978) e Zilliac (ZILLIAC, 1989).

Figura 87 – Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de pressão estática definido conforme Treaster (TREASTER, et al., 1978) e Zilliac (ZILLIAC, 1989).

Conforme observado nos gráficos anteriores, com a definição dos coeficientes de pressão segundo Treaster e Zilliac, a faixa de ângulos que pode ser medida situa-se entre -25° e +25°, uma vez que se observa uma brusca variação no valor dos coeficientes para os ângulos de -30° e +30°.

Os gráficos a seguir apresentam a mesma análise para o caso dos coeficientes de pressão estática e pressão total definidos como:

Com

$$K_{total} = \frac{p1 - p_{total}}{\sqrt{p^2}} \quad \mathbf{e} \quad K_{estatica} = \frac{p1 - p_{estatica}}{\sqrt{p^2}} \tag{52}$$
$$\overline{p} = \frac{p1 + p2 + p3 + p4 + p5}{5}.$$

Figura 88 – Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de pressão total definido com o denominador $\sqrt{\overline{p}^2}$

Figura 89 – Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de pressão total definido com o denominador $\sqrt{\overline{p}^2}$, faixa de ângulos entre -35° e +35°.

Figura 90 – Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de pressão estática definido com o denominador $\sqrt{\overline{p}^2}$

Figura 91 – Ensaio de calibração da sonda tipo pirâmide. V=10,03 m/s. Coeficiente de pressão estática definido com o denominador $\sqrt{\overline{p}^2}$, faixa de ângulos entre -35° e +35°.

Conforme observado nos gráficos das figuras 88 a 91, esta nova definição de coeficientes de pressão total e pressão estática, utilizando o denominador $\sqrt{\overline{p}^2}$, permitem a determinação dos coeficientes para uma faixa de ângulos entre -35° e +35°.

Uma vez que todos os coeficientes estão definidos, assim como a faixa de medição de ângulos da sonda, os resultados para os coeficientes de guinada, arfagem, pressão estática e pressão total são representados nos gráficos das figuras 92 a 95, para todas as combinações de guinada e arfagem entre -35° e +35°.

Figura 92 – Ensaio de calibração da sonda tipo pirâmide. Coeficiente de guinada em função dos ângulos de arfagem e guinada.

Figura 93 – Ensaio de calibração da sonda tipo pirâmide. Coeficiente de arfagem em função dos ângulos de arfagem e guinada.

Figura 94 – Ensaio de calibração da sonda tipo pirâmide. Coeficiente de pressão total em função dos ângulos de arfagem e guinada.

Aligulo de allagelli (grads)

Figura 95 – Ensaio de calibração da sonda tipo pirâmide. Coeficiente de pressão estática em função dos ângulos de arfagem e guinada.

Do resultado destas medições, pode-se observar que o coeficiente de guinada é praticamente invariante com a variação do ângulo de arfagem e possui uma grande sensibilidade à variação do ângulo de guinada. Da mesma forma, observa-se que o coeficiente de arfagem possui uma relativa independência do ângulo de guinada enquanto varia sensivelmente conforme o ângulo de arfagem é variado.

Para os coeficientes de pressão total e pressão estática, observa-se uma simetria do valor do coeficiente em relação à posição de arfagem e guinada nulas. Isto se explica pela simetria da sonda e pelo fato de a determinação das pressões total e estática poder ser feita através de uma relação da pressão em questão com a média das pressões medidas pela sonda. Sendo assim, o coeficiente de pressão total se altera conforme a inclinação da sonda em relação ao escoamento é alterada. No entanto, não importa se esta inclinação possui uma componente maior no plano de

arfagem ou no plano de guinada. No gráfico da figura 95, em que é representada a pressão estática, observa-se uma grande assimetria para os valores em torno do ângulo de arfagem zero grau. Isto é explicado por falha de posicionamento da sonda para este ângulo e deve-se esperar um comportamento simétrico deste coeficiente, de uma maneira semelhante ao observado para o coeficiente de pressão total, na figura 94.

6.7 DETERMINAÇÃO DOS PARÂMETROS DE VELOCIDADE E DIREÇÃO DO ESCOAMENTO

A partir dos resultados das medições e dos gráficos dos coeficientes para as sondas, pode-se determinar características do escoamento a partir de medições de pressão realizadas e com o uso dos gráficos de coeficientes para as sondas.

A seguir é apresentado um roteiro para a determinação de características do escoamento com cada uma das sondas, com exemplo numérico.

6.7.1 Sonda Prisma

- a) Insere-se a sonda no escoamento que se deseja caracterizar e realizam-se as medições das três pressões nas tomadas p1, p2 e p3. Ex: p1= 21 Pa , p2 = 9 Pa, p3 = 54 Pa.
- b) Com estes valores, calcula-se o coeficiente de arfagem do escoamento, dado

por:
$$K_{\delta} = \frac{p^2 - p^3}{\sqrt{p^2}}$$
 com $\bar{p} = \frac{p^1 + p^2 + p^3}{3}$

Ex: Kδ = -1,6

- c) A partir do gráfico da figura 62, determina-se o ângulo de inclinação da sonda em relação vetor velocidade ao escoamento. Ex: $\delta = 20^{\circ}$
- d) Conhecendo-se o ângulo do vetor velocidade, determina-se o coeficiente de pressão total a partir da figura 66. Ex: K_{total} = 0,5

 e) De posse do coeficiente de pressão total e das medições de pressão da sonda, calcula-se a pressão total do escoamento pela expressão:

$$K_{total} = \frac{p2 - p3 + p_{total}}{\sqrt{p^2}} \quad \text{com } \bar{p} = \frac{p1 + p2 + p3}{3}$$

Ex: Ptotal = 59 Pa.

- f) Analogamente, para a determinação da pressão estática, conhecendo-se o ângulo do vetor velocidade, determina-se o coeficiente de pressão estática a partir da figura 67. Ex: K_{estatica} = -1,5.
- g) De posse do coeficiente de pressão estática e das medições de pressão da sonda, calcula-se a pressão estática do escoamento pela expressão:

$$K_{estatica} = \frac{p2 - p3 + p_{estatica}}{\sqrt{\overline{p}^2}} \quad \text{com } \overline{p} = \frac{p1 + p2 + p3}{3}$$

Ex: P_{estatica} = 3 Pa.

h) A magnitude do vetor velocidade do escoamento pode então ser determinada pela expressão: $V = \sqrt{\frac{2(P_{total} - P_{estática})}{\rho}}$ em que ρ é a massa específica do ar. Ex: V = 10,1 m/s

6.7.2 Sonda Pirâmide

- a) Insere-se a sonda no escoamento que se deseja caracterizar e realizam-se as medições das três pressões nas tomadas p1, p2, p3, p4 e p5. Ex: p1= 53 Pa, p2 = 45 Pa, p3 = 19 Pa, p4 = 41 Pa, p5 = 24 Pa
- b) Com estes valores, calculam-se os coeficientes de guinada e arfagem do escoamento. Dados por:

$$K_{\psi} = \frac{p2 - p3}{\sqrt{\overline{p}^2}} e \quad K_{\delta} = \frac{p4 - p5}{\sqrt{\overline{p}^2}} \text{ com } \overline{p} = \frac{p1 + p2 + p3 + p4 + p5}{5}$$

Ex: $K_{\delta} = 0,47 \text{ e} K_{\psi} = 0,71$.

- c) A partir dos gráficos das figuras 92 e 93, determina-se o ângulo de inclinação da sonda em relação vetor velocidade ao escoamento, nas componentes guinada e arfagem. Ex: δ = -6,3° e ψ = 13,6°
- d) Conhecendo-se o ângulo do vetor velocidade, nas componentes de guinada e arfagem, determina-se o coeficiente de pressão total a partir da figura 94.
 Ex: K_{total} = -0,11
- e) De posse do coeficiente de pressão total e das medições de pressão da sonda, calcula-se a pressão total do escoamento pela expressão:

$$K_{total} = \frac{p1 - p_{total}}{\sqrt{\overline{p}^2}} \quad \text{com } \ \overline{p} = \frac{p1 + p2 + p3 + p4 + p5}{5}. \ \text{Ex: } P_{total} = 57 \ \text{Pa.}$$

- f) Analogamente, para a determinação da pressão estática, conhecendo-se o ângulo do vetor velocidade, determina-se o coeficiente de pressão estática a partir da figura 95. Ex: K_{estatica} = 1,37.
- g) De posse do coeficiente de pressão estática e das medições de pressão da sonda, calcula-se a pressão estática do escoamento pela expressão:

$$K_{estatica} = \frac{p1 - p_{estatica}}{\sqrt{\overline{p}^2}} \text{ com } \overline{p} = \frac{p1 + p2 + p3 + p4 + p5}{5}$$

- Ex: P_{estatica} = 3 Pa.
- h) A magnitude do vetor velocidade do escoamento pode então ser determinada pela expressão: $V = \sqrt{\frac{2(P_{total} - P_{estática})}{\rho}}$ em que ρ é a massa específica do ar. Ex: V = 10,1 m/s.

7. ANÁLISE DE RESULTADOS E CONCLUSÕES

Para medições de propriedades de escoamentos em máquinas rotativas como ventiladores, compressores e turbinas, é importante utilizar sistemas de medições capazes de fornecer informações de magnitude e direção da velocidade do escoamento em seções de interesse. Este tipo de informação é necessária tanto para a fase de desenvolvimento de máquinas como para a parte de medição de desempenho da máquina e de suas partes integrantes, em particular o elemento rotor.

Este trabalho apresenta um estudo de alternativas de sensores capazes de realizar medições da magnitude da velocidade e direção desse vetor.

A primeira etapa foi estudar a literatura existente sobre sondas direcionais medidoras da velocidade do escoamento de fluidos. Foram encontradas muitas propostas de modelos de sondas. Elas apresentavam diferentes características construtivas, limitações distintas para suas aplicações e faixas de medição próprias.

Foram selecionados dois tipos de sondas, tipo prisma de 3 orifícios e tipo pirâmide de 5 orifícios em função de desejar-se medir escoamentos bidimensionais e tridimensionais.

Foi realizado o projeto detalhado destas sondas, determinando-se parâmetros construtivos como dimensionamento de diâmetro de orifícios e ângulos das faces das pontas de sonda, peças intermediárias, hastes e conexões. Para tanto, foram considerados os esforços na haste devido à força de arrasto.

A fabricação dos protótipos comparou dois processos distintos: a prototipagem rápida em plástico tipo ABS e a usinagem de material metálico, sendo escolhido o latão. Após a realização de ensaios de validação verificando a estanqueidade dos canais transmissores de pressão destes protótipos, verificou-se a inadequação do protótipo fabricado em ABS pela porosidade do material.

A etapa seguinte de ensaios de protótipos em túnel de vento exigiu a busca de alternativas para um dispositivo de posicionamento dos sensores que permitisse a variação angular em dois graus de liberdade. Este dispositivo de posicionamento foi integrado a um cilindro de posicionamento vertical de forma que a sonda pudesse ser localizada na seção de testes do túnel de vento para uma ampla gama de ângulos.

Foram realizados ensaios para a sonda tipo prisma adotando-se os seguintes parâmetros: velocidades do escoamento de 7,13 m/s, 10,11 m/s e 12,10 m/s; faixa de ângulos de arfagem de -60° a +60° com incrementos de 5°. Dessa forma foram realizadas 75 medições para esta sonda.

Os valores para os coeficientes de arfagem, pressão total e pressão estática obtidos nestes ensaios foram calculados segundo três modelos distintos: aquele proposto por Treaster et al. (1978), Nowack (1970) e o novo modelo proposto neste trabalho.

A análise dos resultados obtidos com o uso dos coeficientes de arfagem, pressão estática e pressão total definidos por Treaster et al. (1978) determinou uma faixa de ângulos de arfagem entre -10° e +15° em que é possível estabelecer uma relação entre coeficientes e as respectivas grandezas. Já para o coeficiente determinado conforme Nowack (1970), essa região de correspondência entre coeficientes e ângulo de arfagem situou-se entre -10° e +10°. Um terceiro conjunto de coeficientes foi proposto no trabalho e resultou na determinação de uma faixa de ângulos entre -25° e +25° em que é possível determinar o ângulo de arfagem do vetor velocidade, a pressão estática e a pressão total do escoamento na linha de corrente de referência.

Os ensaios para a sonda tipo pirâmide adotaram como parâmetros a velocidade do escoamento de 10,04 m/s; faixa de ângulos de arfagem e guinada entre -60° e +60° com um total de 900 pontos de medição para esta sonda.

Os resultados dos coeficientes de arfagem, guinada, pressão total e pressão estática também foram calculados segundo três modelos distintos: aquele proposto por Treaster et al. (1978), Nowack (1969) e o novo modelo proposto neste trabalho.

A análise dos resultados obtidos com o uso dos coeficientes definidos por Treaster et al. (1978) resultou em uma faixa de ângulos de arfagem e guinada entre -25° e +25° em que os coeficientes de guinada, arfagem, pressão estática e pressão total podem ser relacionados com os ângulos de guinada e arfagem. Pela análise dos dados obtidos com o uso dos coeficientes definidos por Nowack (1969), a faixa de medição ficou situada entre -40° e +10° para a determinação do ângulo de arfagem e entre -15° e +35° para a determinação do ângulo de guinada do vetor velocidade. Estes resultados apresentaram grande dispersão e assimetria. Para o terceiro conjunto de coeficientes proposto neste trabalho, determinou-se uma faixa de ângulos de arfagem e guinada entre -35° e + 35° em que se pode relacionar os coeficientes de arfagem, guinada, pressão total e pressão estática com os ângulos de arfagem e guinada do escoamento.

Dessa maneira, para a sonda tipo prisma é estabelecida a faixa de medições de ângulos entre -25° e + 25° em escoamentos bidimensionais e para a sonda tipo pirâmide, a faixa entre -35° e +35° em escoamentos tridimensionais.

Foram determinados parâmetros adimensionais usados para avaliação das sondas. Os resultados podem ser extrapolados para outros valores de velocidade do escoamento, uma vez que os coeficientes apresentados independem da velocidade.

Com estes dados, foi possível habilitar os protótipos de medidores fabricados para uso em medições de escoamento, uma vez que sua calibração foi realizada e suas faixas de operação foram determinadas.

Como recomendação para trabalhos futuros, sugere-se o desenvolvimento de outras geometrias de pontas de sondas para tentar ampliar as faixas de medições de ângulos e magnitude da velocidade de escoamento. Também pode ser investigada a aplicação das sondas em ambiente industrial e sua validação adotando-se outras metodologias.

8. REFERÊNCIAS BIBLIOGRÁFICAS

ALLEN, C. M.; HOOPER, L. J. *Piezometer Investigation*, Transactions of the ASME, vol. 54, 11p., 1932.

AMCA standard 210-07: Laboratory Methods of Testing Fans for Certified Aerodynamic Performance Rating; 2007.

BLEIER, F. P.: *Fan Handbook: selection, application and design;* pp 4.19-4.21; McGraw-Hill; 1997.

BRYER, D. W.; PANKHURST, R. C.: *Pressure-probe methods for determining Wind speed and flow direction*; pp.31-40; National Physics Laboratory, The Campfield Press, St. Albans, UK; 1971.

COLE, E. S. The Pitot Tube in Current Practice, Civil Engr., vol.5, pp.220-222, 1935.

DARCY, H. Mémoires sur le mouvement de l'eau dans les tuyaux, Paris, Comptes Rendus, Académie des Sciences, vol. 38, p.407, 1854.

DARCY, H. *Relative a quelques modifications à introduire dans le tube Pitot*, Paris, Annales des Pontes et Chaussés, ser.3, 1st part, pp.351-359, 1858.

ENER - DEPARTMENT OF ENERGY AND PROCESS ENGINEERING OF TAMPERE UNIVERSITY OF TECHNOLOGY; *Laser Doppler Anemometry*; 2009. Disponível em:

< http://www.tut.fi/units/me/ener/laitteistot/EFD/LDA.html#The equipment at TUT/ENER>, acessado em 10 set. 2010.

FERREIRA, J.; PEREIRA, N.; JUNIOR, M.; SILVA, J.; BRITTO, R.; PARREIRA, V.; VASCONCELOS, F.; CRIOLLO, C.: *Calibração e cálculo da incerteza para um medidor digital de pressões respiratórias*, VII SEMETRO, 2009.

FOLSOM, R.G. *Review of the Pitot Tube*, Chicago, Fluid Meters Research Commitee, 1955.

GJESSING, D.T.; LANES, T.; TANGERUD, A.: A hot wire anemometer for the measurement of the three orthogonal components of wind velocity, and also directly the wind direction, employing no moving parts; J. Physics E: Sci. Instrum. 2 51-54; 1969.

HUBBARD, C. W. *Investigation of Errors of Pitot Tubes*, Transactions of the ASME, vol. 61, pp. 477-492, 1939.

INMETRO: Guia para expressão da incerteza de medição; ABNT, Rio de Janeiro, 1988.

LI,Y.; OUYANG, H.; DU, Z. Experimental Research on Aerodynamic Performance and Exit Flow Field of Low Pressure Axial Flow Fan with Circumferential Skewed Blades, Journal of Hydrodynamics Ser. B, 2007, 19(5), pp. 579-586.

MARIANI, A. L. C: *Estudo experimental de escoamentos turbulentos em passagens curtas com sensores multífuros multidirecionais*, São Paulo, 212 p. Tese (Doutorado). Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia Mecânica. 2000.

MOODY, L. F. *Measurement of the Velocity of Flowing Water*, Proc. Engrs. Soc. West. Penn., vol. 30, pp.280-323, 1914.

NOWACK, C.: Improved calibration method for a five-hole spherical Pitot probe; Journal of Physics E : Scientific Instruments; 1970.

PITOT, H. Description d'une machine pour mesurer la vitesse des eaux courantes et le sillage des vaisseaux, Paris, Mémoires, Académie des Sciences, pp. 363-376, 1732.

SCHULZE, W.; ASHBY, G; ERWIN, J.: Several combination probes for surveying static and total pressure and flow direction; NACA TN 2830, Langley Aeronautical Laboratory, Langley Field, Va. Nov. 1952.

SHAW, R.: *The influence of hole dimension on static pressure measurements*; Journal of Fluid Mechanics; Cambridge; 1960.

TAVOULARIS, S.: Measurement in Fluid Mechanics; Cambridge, New York, 2005.

TREASTER, A; YOCUM, M.: *The Calibration and Application of Five-Hole Probes*; ISA Transactions; 1979.

WEISSTEIN, E. *Cylinder Drag*, Wolfram Research; 2006. Disponível em: <<u>http://scienceworld.wolfram.com/physics/CylinderDrag.html></u>, acessado em 15 set. 2010.

ZILLIAC, G. Calibration of Seven-Hole Pressure Probes for Use in Fluid Flows with Large Angularity, NASA TM 102200, 1989

APÊNDICE I

RESULTADOS DO ENSAIO DE VERIFICAÇÃO DA SONDA PRISMA

Ângulo de arfagem δ (graus)	p1 (Pa)	p2 (Pa)	p3 (Pa)	P estática (Pa)	Ptotal (Pa)	Temperatura de Bulbo Seco (jato) °C	Temperatura de Bulbo Úmido ⁰C	Patm (kPa)	Massa específica do ar (kg/m3)
0	60	31	31	3,109	58,661	24,6	20,6	93,039	1,078
5	61	22	37	3,382	58,661	24,8	20,6	93,040	1,077
10	54	15	45	3,518	58,661	25,0	20,7	93,041	1,077
15	42	10	49	3,655	58,661	25,0	20,7	93,041	1,076
20	21	9	54	3,792	58,661	25,2	20,7	93,042	1,076
25	-1	1	55	3,928	58,661	25,3	20,8	93,043	1,076
30	-19	-51	60	4,065	58,661	25,4	20,8	93,044	1,075
35	-35	-62	61	4,201	58,661	25,6	20,8	93,044	1,075
40	-42	-62	62	4,338	58,661	25,7	25,7 20,8		1,074
45	-48	-63	61	4,474	58,661	25,8	20,8	93,046	1,074
50	-56	-66	58	4,611	58,661	25,9	20,9	93,046	1,074
55	-62	-71	57	4,747	58,661	26,0	20,9	93,047	1,073
60	-59	-74	53	4,884	58,661	26,1	26,1 20,9		1,073
-5	54	36	22	5,020	58,661	26,3 21,0		93,048	1,072
-10	38	42	16	5,157	58,551	26,4	21,0	93,049	1,072
-15	11	47	11	5,240	58,551	26,5	21,0	93,048	1,072
-20	-19	51	8	5,253	58,551	26,4	20,9	93,048	1,072
-25	-41	55	5	5,232	58,551	26,5	21,0	93,049	1,073
-30	-54	58	-48	5,323	58,551	26,5	20,9	93,048	1,072
-35	-61	59	-59	5,242	58,551	26,3	21,0	93,049	1,072
-40	-57	60	-60	5,216	58,551	26,4	20,9	93,049	1,072
-45	-51	60	-61	5,328	58,551	26,3	21,0	93,049	1,072
-50	-48	58	-64	5,357	58,551	26,5	20,8	93,048	1,072
-55	-46	56	-69	5,211	58,551	26,3	20,9	93,049	1,072
-60	-43	52	-68	5,258	58,551	26,4	20,8	93,049	1,072

a) Ensaios para V=10,11 m/s

Ângulo de arfagem δ (graus)	p1 (Pa)	p2 (Pa)	p3 (Pa)	P estática (Pa)	Ptotal (Pa)	Temperatura de Bulbo Seco (jato) ℃	Temperatura de Bulbo Úmido ℃	Patm (kPa)	Massa específica do ar (kg/m3)
0	33	16	16	0,595	31,342	26,8	21,3	93,036	1,070
5	32	12	19	0,885	31,154	26,8	21,3	93,037	1,070
10	28	8	23	1,031	31,079	26,8	21,3	93,037	1,070
15	21	5	24	1,176	31,013	26,8	21,3	93,037	1,070
20	10	5	27	1,321	30,955	30,955 26,8 21,3 93,037		93,037	1,070
25	1	-2	29	1,466	30,903	26,8 21,3		93,038	1,070
30	-10	-28	31	1,612	30,857	26,8	21,3	93,038	1,070
35	-19	-32	32	1,757	30,816	26,8	21,3	93,038	1,070
40	-23	-32	32	1,902	30,778	26,8	21,3	93,038	1,070
45	-27	-33	31	2,047	30,744	26,8	21,3	93,038	1,070
50	-30	-36	31	2,192	30,713	26,8	21,3	93,038	1,070
55	-32	-38	30	2,338	30,684	26,9	21,3	93,039	1,070
60	-33	-39	28	2,483	30,658	26,9	21,3	93,039	1,070
-5	29	19	12	2,628	30,026	26,9	21,3	93,041	1,070
-10	21	22	9	2,828	30,795	26,9	21,3	93,041	1,070
-15	5	24	5	2,828	30,481	27,0	21,3	93,041	1,070
-20	-9	26	4	2,728	30,390	26,9	21,3	93,041	1,070
-25	-21	28	0	2,628	30,481	26,9	21,3	93,041	1,070
-30	-28	30	-24	2,928	30,026	26,9	21,3	93,041	1,070
-35	-32	31	-28	2,928	30,208	26,9	21,3	93,041	1,070
-40	-31	31	-31	2,628	30,208	26,9	21,3	93,041	1,070
-45	-31	32	-33	3,028	30,481	27,0	21,3	93,041	1,070
-50	-29	32	-36	2,928	30,208	26,9	21,3	93,041	1,070
-55	-28	31	-38	2,728	30,390	26,9	21,3	93,041	1,070
-60	-24	29	-38	2,828	30,481	26,9	21,3	93,041	1,070

b) Ensaios para V=7,13 m/s

c) Ensaios para V=12,10 m/s

Ângulo de arfagem δ (graus)	p1 (Pa)	p2 (Pa)	p3 (Pa)	P estática (Pa)	Ptotal (Pa)	Temperatura de Bulbo Seco (jato) °C °C °C		Patm (kPa)	Massa específica do ar (kg/m3)
0	83	41	42	1,418	80,67	27,5	21,2	93,028	1,068
5	82	31	50	2,251	80,697	27,5	21,2	93,028	1,068
10	73	21	60	2,667	80,711	27,5	21,2	93,028	1,068
15	53	13	66	3,084	80,724	27,5	21,2	93,027	1,068
20	24	10	72	3,500	80,738	27,5	21,2	93,027	1,068
25	-2	3	77	3,916	80,752	27,5	21,2	93,027	1,068
30	-31	-70	80	4,333	80,765	27,4	21,1	93,027	1,068
35	-49	-88	83	4,749	80,779	27,4	21,1	93,027	1,068
40	-61	-87	82	5,165	80,793	27,4	21,1	93,027	1,068
45	-72	-88	83	5,582	80,806	27,4	21,1	93,026	1,068
50	-81	-94	80	5,998	80,820	27,4	21,1	93,026	1,068
55	-87	-102	78	6,415	80,833	27,4	21,1	93,026	1,068
60	-85	-104	74	6,831	80,847	27,4	21,1	93,026	1,068
-5	78	51	32	6,990	80,883	27,4	21,1	93,026	1,068
-10	55	59	23	7,217	80,881	27,4	21,1	93,026	1,068
-15	12	66	14	6,831	80,872	27,4	21,1	93,026	1,068
-20	-30	71	9	6,854	80,865	27,4	21,1	93,026	1,068
-25	-61	76	7	6,990	80,892	27,4	21,1	93,026	1,068
-30	-77	79	-58	6,967	80,858	27,4	21,1	93,026	1,068
-35	-85	82	-87	7,126	80,863	27,4	21,1	93,026	1,068
-40	-77	83	-87	6,945	80,872	27,4	21,1	93,026	1,068
-45	-71	83	-84	7,172	80,886	27,4	21,1	93,026	1,068
-50	-69	82	-88	7,013	80,854	27,4	21,1	93,026	1,068
-55	-69	78	-98	6,876	80,856	27,4	21,1	93,026	1,068
-60	-59	74	-97	7,263	80,858	27,4	21,1	93,026	1,068

APÊNDICE II

RESULTADOS DO ENSAIO DE VERIFICAÇÃO DA SONDA PIRÂMIDE

Ângulo g (graus)	Ângulo a (graus)	Ângulo de guinada ψ (graus)	Ângulo de arfagem δ (graus)	p1 (Pa)	p2 (Pa)	p3 (Pa)	p4 (Pa)	p5 (Pa)	P est (Pa)	P din (Pa)	Ptotal (Pa)	Temperatura de Bulbo Seco (jato) °C	Temperatura de Bulbo Úmido ℃	Patm (kPa)	massa específica do ar (kg/m3)
90	0	0	0	63	36	33	41	34	3,254	54,193	57,113	27,7	21,2	92,825	1,064
90	-5	-5	0,0	62	30	38	41	33	3,299	54,181	57,151	27,7	21,2	92,823	1,064
90	-10	-10	0,0	62	24	44	41	31	3,343	54,170	57,188	27,8	21,2	92,822	1,064
90	-15	-15	0,0	56	17	50	39	29	3,387	54,159	57,225	27,8	21,2	92,820	1,064
90	-20	-20	0,0	49	10	54	36	25	3,430	54,148	57,261	27,9	21,2	92,818	1,063
90	-25	-25	0,0	37	2	58	32	21	3,472	54,136	57,297	27,9	21,2	92,816	1,063
90	-30	-30,0	0,0	22	-4	60	27	20	3,514	54,125	57,332	28,0	21,3	92,815	1,063
90	-35	-35,0	0,0	2	-11	60	22	11	3,555	54,115	57,367	28,0	21,3	92,813	1,063
90	-40	-40,0	0,0	-22	-16	61	17	-27	3,595	54,104	57,400	28,1	21,3	92,811	1,063
90	-45	-45,0	0,0	-40	-38	59	7	-43	3,635	54,093	57,434	28,1	21,3	92,809	1,063
90	-50	-50,0	0,0	-57	-51	55	-13	-58	3,674	54,083	57,466	28,2	21,3	92,808	1,062
90	-55	-55,0	0,0	-68	-65	51	-25	-69	3,712	54,072	57,499	28,2	21,3	92,806	1,062
90	-60	-60,0	0,0	-76	-64	44	-36	-90	3,750	54,062	57,530	28,2	21,3	92,804	1,062
90	5	5,0	0,0	59	40	28	40	32	3,787	54,052	57,561	28,3	21,3	92,803	1,062
90	10	10,0	0,0	55	45	21	37	30	3,823	54,042	57,591	28,3	21,3	92,801	1,062
90	15	15,0	0,0	50	50	14	33	29	3,858	54,032	57,621	28,4	21,3	92,799	1,062
90	20	20,0	0,0	43	54	6	29	26	3,893	54,022	57,650	28,4	21,3	92,797	1,062
90	25	25,0	0,0	31	57	0	24	22	3,928	54,012	57,679	28,4	21,3	92,796	1,062
90	30	30,0	0,0	16	58	-6	20	18	3,961	54,002	57,707	28,5	21,4	92,794	1,061
90	35	35,0	0,0	-3	59	-12	16	14	3,994	53,993	57,734	28,5	21,4	92,792	1,061
90	40	40,0	0,0	-27	58	-20	-8	-6	4,026	53,983	57,761	28,6	21,4	92,790	1,061
90	45	45,0	0,0	-46	55	-40	-33	-25	4,058	53,974	57,787	28,6	21,4	92,789	1,061
90	50	50,0	0,0	-62	52	-44	-49	-40	4,089	53,965	57,813	28,6	21,4	92,787	1,061
90	55	55,0	0,0	-76	47	-54	-63	-46	4,119	53,956	57,838	28,7	21,4	92,785	1,061
90	60	60,0	0,0	-84	41	-67	-68	-46	4,149	53,947	57,862	28,7	21,4	92,783	1,061
95	0	0,0	0,0	58	34	32	38	31	4,178	53,938	57,886	28,7	21,4	92,782	1,061
95	5	5,0	-0,4	58	40	27	38	31	4,206	53,929	57,909	28,8	21,4	92,780	1,060
95	10	10,0	-0,9	56	45	20	36	30	4,234	53,921	57,932	28,8	21,4	92,778	1,060
95	15	14,9	-1,3	50	50	14	34	28	4,260	53,912	57,954	28,8	21,4	92,776	1,060
95	20	19,9	-1,7	43	53	6	30	24	4,287	53,904	57,975	28,9	21,4	92,774	1,060
95	25	24,9	-2,2	31	57	0	26	21	4,312	53,895	57,996	28,9	21,5	92,773	1,060
95	30	29,9	-2,6	14	58	-7	19	18	4,337	53,887	58,016	28,9	21,5	92,771	1,060
95	35	34,9	-3,1	-6	58	-14	15	8	4,361	53,879	58,036	29,0	21,5	92,769	1,060
95	40	39,8	-3,5	-28	58	-20	6	-24	4,385	53,871	58,055	29,0	21,5	92,767	1,060

Ângulo g (graus)	Ângulo a (graus)	Ângulo de guinada ψ (graus)	Ângulo de arfagem δ (graus)	p1 (Pa)	p2 (Pa)	p3 (Pa)	p4 (Pa)	p5 (Pa)	P est (Pa)	P din (Pa)	Ptotal (Pa)	Temperatura de Bulbo Seco (jato) °C	Temperatura de Bulbo Úmido ℃	Patm (kPa)	massa específica do ar (kg/m3)
95	45	44,8	-3,9	-47	55	-38	-14	-40	4,408	53,863	58,073	29,0	21,5	92,766	1,059
95	50	49,8	-4,4	-62	52	-40	-32	-52	4,430	53,856	58,091	29,0	21,5	92,764	1,059
95	55	54,8	-4,8	-75	46	-51	-44	-65	4,452	53,848	58,109	29,1	21,5	92,762	1,059
95	60	59,8	-5,2	-87	40	-60	-47	-78	4,473	53,840	58,125	29,1	21,5	92,760	1,059
95	-5	-5,0	0,4	58	29	39	41	31	4,493	53,833	58,142	29,1	21,5	92,759	1,059
95	-10	-10,0	0,9	57	23	44	38	29	4,512	53,826	58,157	29,2	21,5	92,757	1,059
95	-15	-14,9	1,3	53	16	49	36	27	4,531	53,819	58,172	29,2	21,5	92,755	1,059
95	-20	-19,9	1,7	45	9	53	32	24	4,549	53,812	58,186	29,2	21,5	92,753	1,059
95	-25	-24,9	2,2	34	2	56	28	21	4,567	53,805	58,200	29,2	21,5	92,751	1,059
95	-30	-29,9	2,6	19	-4	60	23	18	4,584	53,798	58,213	29,3	21,6	92,750	1,059
95	-35	-34,9	3,1	-1	-11	60	18	13	4,600	53,791	58,226	29,3	21,6	92,748	1,059
95	-40	-39,8	3,5	-24	-16	59	11	-21	4,615	53,784	58,238	29,3	21,6	92,746	1,058
95	-45	-44,8	3,9	-42	-35	58	-8	-35	4,630	53,778	58,249	29,3	21,6	92,744	1,058
95	-50	-49,8	4,4	-57	-43	54	-28	-49	4,644	53,772	58,260	29,3	21,6	92,742	1,058
95	-55	-54,8	4,8	-70	-49	50	-42	-59	4,658	53,765	58,270	29,4	21,6	92,741	1,058
95	-60	-59,8	5,2	-76	-55	44	-58	-74	4,671	53,759	58,280	29,4	21,6	92,739	1,058
100	0	0,0	0,0	60	35	35	37	35	4,683	53,753	58,289	29,4	21,6	92,737	1,058
100	-5	-4,9	0,9	60	29	41	36	35	4,695	53,747	58,297	29,4	21,6	92,735	1,058
100	-10	-9,8	1,7	58	23	46	34	34	4,706	53,739	58,304	29,4	21,6	92,733	1,058
100	-15	-14,8	2,6	52	15	51	30	32	4,717	53,732	58,310	29,5	21,6	92,731	1,058
100	-20	-19,7	3,5	44	8	55	27	29	4,727	53,723	58,314	29,5	21,6	92,730	1,058
100	-25	-24,6	4,3	32	2	58	22	25	4,737	53,714	58,318	29,5	21,6	92,728	1,058
100	-30	-29,5	5,2	16	-5	60	18	20	4,746	53,704	58,320	29,5	21,6	92,726	1,058
100	-35	-34,5	6,1	-4	-11	60	8	18	4,755	53,694	58,321	29,5	21,6	92,724	1,057
100	-40	-39,4	6,9	-27	-18	60	-23	7	4,764	53,684	58,322	29,6	21,7	92,722	1,057
100	-45	-44,3	7,8	-46	-35	58	-38	-10	4,771	53,673	58,321	29,6	21,7	92,720	1,057
100	-50	-49,2	8,7	-60	-41	53	-51	-18	4,779	53,662	58,319	29,6	21,7	92,718	1,057
100	-55	-54,2	9,6	-73	-52	48	-73	-21	4,786	53,650	58,317	29,6	21,7	92,716	1,057
100	-60	-59,1	10,4	-82	-62	42	-94	-16	4,792	53,638	58,314	29,6	21,7	92,713	1,057
100	5	4,9	-0,9	61	38	31	37	35	4,797	53,626	58,309	29,7	21,7	92,711	1,057
100	10	9,8	-1,7	59	44	25	36	33	4,802	53,614	58,305	29,7	21,7	92,709	1,057
100	15	14,8	-2,6	55	49	17	33	31	4,807	53,602	58,299	29,7	21,7	92,707	1,057
100	20	19,7	-3,5	48	53	10	31	27	4,811	53,590	58,293	29,7	21,7	92,705	1,057
100	25	24,6	-4,3	37	56	3	27	23	4,814	53,578	58,286	29,7	21,7	92,703	1,057
100	30	29,5	-5,2	23	58	-3	22	19	4,816	53,566	58,278	29,8	21,7	92,701	1,057
100	35	34,5	-6,1	5	58	-11	17	13	4,818	53,554	58,270	29,8	21,7	92,699	1,057
100	40	39,4	-6,9	-16	58	-17	13	-13	4,819	53,542	58,261	29,8	21,7	92,697	1,057
100	45	44,3	-7,8	-38	56	-34	1	-36	4,820	53,530	58,252	29,8	21,7	92,695	1,057
100	50	49,2	-8,7	-56	53	-36	-14	-54	4,819	53,519	58,242	29,8	21,7	92,692	1,057
100	55	54,2	-9,6	-70	48	-56	-27	-66	4,818	53,508	58,232	29,8	21,8	92,690	1,057
Ângulo g (graus)	Ângulo a (graus)	Ângulo de guinada ψ (graus)	Ângulo de arfagem δ (graus)	p1 (Pa)	p2 (Pa)	p3 (Pa)	p4 (Pa)	p5 (Pa)	P est (Pa)	P din (Pa)	Ptotal (Pa)	Temperatura de Bulbo Seco (jato) °C	Temperatura de Bulbo Úmido °C	Patm (kPa)	massa específica do ar (kg/m3)
------------------------	------------------------	-----------------------------------	-----------------------------------	---------	---------	---------	---------	---------	------------	------------	-------------	--	--	---------------	--------------------------------------
100	60	59,1	-10,4	-81	42	-64	-34	-82	4,816	53,498	58,222	29,9	21,8	92,688	1,057
105	0	0,0	0,0	60	32	36	36	35	4,814	53,488	58,211	29,9	21,8	92,686	1,057
105	5	4,8	-1,3	60	38	31	37	34	4,810	53,478	58,200	29,9	21,8	92,684	1,057
105	10	9,7	-2,6	57	43	24	37	31	4,806	53,469	58,188	29,9	21,8	92,682	1,057
105	15	14,5	-3,9	53	48	17	35	29	4,801	53,461	58,177	29,9	21,8	92,680	1,057
105	20	19,3	-5,2	46	52	10	32	25	4,796	53,453	58,165	29,9	21,8	92,678	1,056
105	25	24,1	-6,5	36	55	3	29	21	4,789	53,446	58,153	29,9	21,8	92,676	1,056
105	30	29,0	-7,8	21	57	-4	24	19	4,781	53,439	58,141	29,9	21,8	92,674	1,056
105	35	33,8	-9,1	3	57	-11	19	9	4,773	53,434	58,129	29,9	21,8	92,672	1,056
105	40	38,6	-10,4	-19	57	-19	14	-30	4,764	53,429	58,116	29,9	21,8	92,670	1,056
105	45	43,5	-11,6	-38	54	-40	10	-46	4,754	53,425	58,104	29,9	21,8	92,668	1,056
105	50	48,3	-12,9	-56	51	-66	4	-62	4,743	53,422	58,092	29,9	21,8	92,666	1,056
105	55	53,1	-14,2	-72	46	-60	-5	-73	4,731	53,420	58,080	29,9	21,8	92,664	1,056
105	60	58,0	-15,5	-83	41	-66	-8	-84	4,718	53,419	58,068	29,9	21,8	92,663	1,056
105	-5	-4,8	1,3	59	27	43	37	32	4,704	53,420	58,056	29,9	21,8	92,661	1,056
105	-10	-9,7	2,6	57	22	47	34	32	4,689	53,421	58,044	29,9	21,8	92,659	1,056
105	-15	-14,5	3,9	53	14	53	31	30	4,673	53,424	58,033	29,9	21,8	92,657	1,056
105	-20	-19,3	5,2	44	8	56	27	27	4,656	53,428	58,022	29,9	21,9	92,656	1,056
105	-25	-24,1	6,5	32	1	60	23	26	4,638	53,433	58,011	29,9	21,9	92,654	1,056
105	-30	-29,0	7,8	16	-5	60	19	21	4,620	53,440	58,000	29,9	21,9	92,652	1,056
105	-35	-33,8	9,1	-4	-11	61	6	17	4,600	53,448	57,990	29,9	21,9	92,651	1,056
105	-40	-38,6	10,4	-27	-18	60	-26	11	4,579	53,457	57,980	29,8	21,9	92,649	1,056
105	-45	-43,5	11,6	-45	-35	58	-41	-4	4,556	53,468	57,971	29,8	21,9	92,648	1,056
105	-50	-48,3	12,9	-59	-46	53	-53	-11	4,533	53,481	57,962	29,8	21,9	92,646	1,056
105	-55	-53,1	14,2	-70	-57	48	-70	-12	4,509	53,495	57,954	29,8	21,9	92,645	1,056
105	-60	-58,0	15,5	-79	-67	42	-83	-5	4,483	53,511	57,946	29,7	21,9	92,644	1,056
110	0	0,0	0,0	60	32	37	40	32	4,457	53,528	57,939	29,7	21,9	92,642	1,056
110	-5	-4,7	1,7	58	27	43	37	33	4,429	53,548	57,933	29,7	21,9	92,641	1,056
110	-10	-9,4	3,4	57	21	48	34	33	4,400	53,569	57,927	29,6	21,9	92,640	1,056
110	-15	-14,1	5,1	52	15	53	31	31	4,370	53,592	57,922	29,6	21,9	92,639	1,056
110	-20	-18,8	6,8	44	7	56	26	29	4,338	53,618	57,918	29,6	21,9	92,638	1,056
110	-25	-23,5	8,6	32	1	60	22	26	4,303	53,647	57,913	29,5	21,9	92,637	1,056
110	-30	-28,2	10,3	16	-5	60	18	23	4,264	53,679	57,910	29,5	21,9	92,636	1,056
110	-35	-32,9	12,0	-6	-13	60	-10	19	4,224	53,714	57,906	29,4	21,9	92,635	1,056
110	-40	-37,6	13,7	-27	-17	60	-35	16	4,180	53,752	57,903	29,3	21,9	92,634	1,056
110	-45	-42,3	15,4	-43	-54	57	-47	12	4,134	53,793	57,901	29,3	21,9	92,633	1,056
110	-50	-47,0	17,1	-60	-68	53	-64	8	4,085	53,837	57,898	29,2	21,9	92,632	1,056
110	-55	-51,7	18,8	-74	-70	48	-76	7	4,035	53,883	57,896	29,1	21,9	92,631	1,056
110	-60	-56,4	20,5	-83	-85	42	-87	1	3,982	53,931	57,894	29,1	21,9	92,631	1,056
110	5	4,7	-1,7	59	36	32	40	31	3,926	53,982	57,892	29,0	21,9	92,630	1,056

Ângulo g (graus)	Ângulo a (graus)	Ângulo de guinada ψ (graus)	Ângulo de arfagem δ (graus)	p1 (Pa)	p2 (Pa)	p3 (Pa)	p4 (Pa)	p5 (Pa)	P est (Pa)	P din (Pa)	Ptotal (Pa)	Temperatura de Bulbo Seco (jato) °C	Temperatura de Bulbo Úmido ℃	Patm (kPa)	massa específica do ar (kg/m3)
110	10	9,4	-3,4	58	42	26	41	28	3,869	54,035	57,891	28,9	21,9	92,629	1,056
110	15	14,1	-5,1	53	46	18	40	24	3,810	54,091	57,890	28,8	21,9	92,628	1,056
110	20	18,8	-6,8	46	50	12	37	21	3,749	54,148	57,889	28,7	21,9	92,628	1,056
110	25	23,5	-8,6	35	53	4	34	18	3,687	54,207	57,888	28,7	21,9	92,627	1,056
110	30	28,2	-10,3	22	54	-3	31	19	3,622	54,267	57,888	28,6	22,0	92,626	1,056
110	35	32,9	-12,0	4	54	-11	25	12	3,557	54,330	57,887	28,5	22,0	92,626	1,056
110	40	37,6	-13,7	-16	54	-18	20	-33	3,490	54,394	57,887	28,4	22,0	92,625	1,056
110	45	42,3	-15,4	-35	51	-40	14	-63	3,421	54,459	57,887	28,3	22,0	92,625	1,056
110	50	47,0	-17,1	-50	47	-73	8	-70	3,352	54,525	57,887	28,2	22,0	92,624	1,056
110	55	51,7	-18,8	-68	43	-82	2	-79	3,282	54,593	57,887	28,1	22,0	92,624	1,056
110	60	56,4	-20,5	-83	37	-90	-3	-93	3,210	54,662	57,887	28,0	22,0	92,623	1,056
115	0	0,0	0,0	60	31	37	39	33	3,138	54,731	57,887	27,9	22,0	92,623	1,056
115	5	4,5	-2,1	60	37	32	40	31	3,065	54,802	57,887	27,8	22,0	92,623	1,056
115	10	9,1	-4,2	57	41	26	41	28	2,991	54,873	57,888	27,7	22,0	92,622	1,056
115	15	13,6	-6,3	53	45	19	41	24	2,917	54,944	57,888	27,6	22,0	92,622	1,056
115	20	18,1	-8,5	45	49	11	40	19	2,843	55,016	57,888	27,4	22,0	92,622	1,056
115	25	22,7	-10,6	36	52	5	39	18	2,768	55,089	57,889	27,3	22,0	92,621	1,056
115	30	27,2	-12,7	22	53	-3	34	18	2,693	55,161	57,889	27,2	22,0	92,621	1,056
115	35	31,7	-14,8	5	53	-10	29	21	2,618	55,234	57,889	27,1	22,0	92,621	1,056
115	40	36,3	-16,9	-17	51	-17	23	-36	2,543	55,306	57,889	27,0	22,0	92,621	1,056
115	45	40,8	-19,0	-34	48	-33	18	-67	2,468	55,379	57,890	26,9	22,0	92,620	1,056
115	50	45,3	-21,1	-49	44	-78	12	-80	2,394	55,451	57,890	26,8	22,0	92,620	1,056
115	55	49,8	-23,2	-65	40	-84	7	-90	2,319	55,522	57,890	26,7	22,0	92,620	1,056
115	60	54,4	-25,4	-83	34	-91	-2	-92	2,245	55,593	57,890	26,6	22,0	92,620	1,056
115	-5	-4,5	2,1	60	28	43	38	34	2,172	55,664	57,889	26,4	22,0	92,620	1,056
115	-10	-9,1	4,2	57	22	48	34	34	2,100	55,734	57,889	26,3	22,0	92,620	1,056
115	-15	-13,6	6,3	52	15	53	30	33	2,028	55,803	57,888	26,2	22,0	92,620	1,056
115	-20	-18,1	8,5	44	8	57	25	32	1,957	55,871	57,888	26,1	22,0	92,620	1,056
115	-25	-22,7	10,6	31	1	59	20	30	1,887	55,937	57,887	26,0	22,0	92,620	1,056
115	-30	-27,2	12,7	15	-6	60	15	26	1,818	56,003	57,886	25,9	22,0	92,620	1,056
115	-35	-31,7	14,8	-5	-13	60	-17	22	1,751	56,067	57,885	25,8	22,0	92,620	1,056
115	-40	-36,3	16,9	-26	-18	59	-45	18	1,685	56,130	57,883	25,7	22,0	92,621	1,056
115	-45	-40,8	19,0	-43	-64	56	-56	13	1,620	56,191	57,881	25,6	22,0	92,621	1,056
115	-50	-45,3	21,1	-57	-68	52	-66	9	1,557	56,250	57,879	25,5	22,0	92,621	1,056
115	-55	-49,8	23,2	-75	-81	46	-80	4	1,495	56,308	57,877	25,4	22,0	92,621	1,056
115	-60	-54,4	25,4	-86	-85	39	94	-3	1,435	56,364	57,874	25,3	22,0	92,622	1,056
120	0	0,0	0,0	60	32	38	38	33	1,377	56,417	57,872	25,2	22,0	92,622	1,056
120	-5	-4,3	2,5	60	28	43	36	34	1,321	56,469	57,868	25,1	22,0	92,622	1,056
120	-10	-8,7	5,0	57	22	48	32	35	1,267	56,518	57,865	25,0	22,0	92,622	1,056
120	-15	-13,0	7,5	53	15	53	28	35	1,215	56,565	57,861	24,9	22,0	92,623	1,056

Ângulo g (graus)	Ângulo a (graus)	Ângulo de guinada ψ (graus)	Ângulo de arfagem δ (graus)	p1 (Pa)	p2 (Pa)	p3 (Pa)	p4 (Pa)	p5 (Pa)	P est (Pa)	P din (Pa)	Ptotal (Pa)	Temperatura de Bulbo Seco (jato) °C	Temperatura de Bulbo Úmido ℃	Patm (kPa)	massa específica do ar (kg/m3)
120	-20	-17,3	10,0	44	8	56	22	34	1,166	56,609	57,857	24,8	22,0	92,623	1,056
120	-25	-21,7	12,5	33	1	57	18	31	1,119	56,650	57,852	24,7	22,0	92,624	1,056
120	-30	-26,0	15,0	17	-6	58	15	28	1,074	56,689	57,847	24,7	22,0	92,624	1,056
120	-35	-30,3	17,5	-3	-12	58	-17	25	1,032	56,725	57,842	24,6	21,9	92,625	1,056
120	-40	-34,6	20,0	-24	-18	57	-51	20	0,993	56,758	57,836	24,5	21,9	92,625	1,057
120	-45	-39,0	22,5	-41	-63	53	-65	16	0,956	56,788	57,830	24,4	21,9	92,626	1,057
120	-50	-43,3	25,0	-56	-74	49	-73	13	0,923	56,814	57,823	24,4	21,9	92,626	1,057
120	-55	-47,6	27,5	-72	-80	43	-83	6	0,892	56,837	57,816	24,3	21,9	92,627	1,057
120	-60	-52,0	30,0	-85	-86	36	-85	0	0,865	56,857	57,808	24,3	21,9	92,627	1,057
120	5	4,3	-2,5	59	36	31	40	31	0,841	56,873	57,800	24,2	21,9	92,628	1,057
120	10	8,7	-5,0	57	40	26	43	27	0,820	56,885	57,791	24,1	21,9	92,629	1,057
120	15	13,0	-7,5	53	44	19	43	22	0,803	56,894	57,782	24,1	21,9	92,629	1,057
120	20	17,3	-10,0	46	47	12	41	17	0,788	56,900	57,772	24,0	21,9	92,630	1,057
120	25	21,7	-12,5	35	49	4	39	15	0,776	56,902	57,761	24,0	21,9	92,631	1,057
120	30	26,0	-15,0	21	50	-2	36	14	0,768	56,900	57,750	24,0	21,8	92,632	1,058
120	35	30,3	-17,5	8	51	-8	32	17	0,762	56,896	57,739	23,9	21,8	92,633	1,058
120	40	34,6	-20,0	-14	48	-14	27	-26	0,759	56,888	57,726	23,9	21,8	92,634	1,058
120	45	39,0	-22,5	-33	46	-38	21	-71	0,759	56,877	57,714	23,8	21,8	92,635	1,058
120	50	43,3	-25,0	-48	41	-85	15	-87	0,761	56,863	57,700	23,8	21,8	92,636	1,058
120	55	47,6	-27,5	-63	36	-89	9	-97	0,766	56,847	57,686	23,8	21,8	92,638	1,058
120	60	52,0	-30,0	-80	31	-96	2	-100	0,774	56,827	57,672	23,7	21,7	92,639	1,059
125	0	0,0	0,0	60	31	37	38	32	0,784	56,805	57,657	23,7	21,7	92,640	1,059
125	5	4,1	-2,9	58	35	31	40	31	0,796	56,780	57,642	23,7	21,7	92,642	1,059
125	10	8,2	-5,7	58	39	26	43	26	0,811	56,752	57,626	23,7	21,7	92,643	1,059
125	15	12,3	-8,6	53	42	19	44	20	0,828	56,722	57,610	23,6	21,7	92,645	1,059
125	20	16,4	-11,5	46	45	12	43	16	0,847	56,689	57,594	23,6	21,6	92,646	1,060
125	25	20,5	-14,3	35	47	6	40	13	0,868	56,654	57,577	23,6	21,6	92,648	1,060
125	30	24,6	-17,2	23	47	0	39	11	0,891	56,617	57,559	23,6	21,6	92,650	1,060
125	35	28,7	-20,1	7	47	-7	35	14	0,917	56,578	57,542	23,5	21,6	92,651	1,060
125	40	32,8	-22,9	-12	45	-12	30	-23	0,944	56,536	57,524	23,5	21,6	92,653	1,061
125	45	36,9	-25,8	-32	42	-49	25	-75	0,973	56,492	57,505	23,5	21,5	92,655	1,061
125	50	41,0	-28,7	-47	37	-90	19	-92	1,003	56,447	57,486	23,5	21,5	92,657	1,061
125	55	45,1	-31,5	-61	33	-92	13	-99	1,036	56,399	57,467	23,5	21,5	92,659	1,061
125	60	49,1	-34,4	-74	26	-96	7	-103	1,070	56,350	57,448	23,5	21,5	92,660	1,062
125	-5	-4,1	2,9	60	27	40	34	35	1,106	56,298	57,428	23,5	21,4	92,662	1,062
125	-10	-8,2	5,7	57	22	44	30	35	1,143	56,246	57,408	23,5	21,4	92,664	1,062
125	-15	-12,3	8,6	53	15	50	24	36	1,181	56,191	57,388	23,4	21,4	92,666	1,063
125	-20	-16,4	11,5	44	9	53	19	37	1,221	56,135	57,368	23,4	21,3	92,668	1,063
125	-25	-20,5	14,3	34	2	54	17	36	1,262	56,078	57,347	23,4	21,3	92,670	1,063
125	-30	-24,6	17,2	20	-4	55	17	32	1,305	56,019	57,326	23,4	21,3	92,672	1,063

Ângulo g (graus)	Ângulo a (graus)	Ângulo de guinada ψ (graus)	Ângulo de arfagem δ (graus)	p1 (Pa)	p2 (Pa)	p3 (Pa)	p4 (Pa)	p5 (Pa)	P est (Pa)	P din (Pa)	Ptotal (Pa)	Temperatura de Bulbo Seco (jato) °C	Temperatura de Bulbo Úmido ℃	Patm (kPa)	massa específica do ar (kg/m3)
125	-35	-28,7	20,1	2	-10	55	-6	30	1,348	55,959	57,305	23,4	21,3	92,675	1,064
125	-40	-32,8	22,9	-19	-17	52	-51	25	1,393	55,898	57,284	23,4	21,2	92,677	1,064
125	-45	-36,9	25,8	-37	-54	49	-73	21	1,438	55,836	57,263	23,4	21,2	92,679	1,064
125	-50	-41,0	28,7	-51	-80	45	-83	17	1,485	55,773	57,241	23,4	21,2	92,681	1,065
125	-55	-45,1	31,5	-66	-80	39	-90	12	1,532	55,709	57,219	23,4	21,1	92,683	1,065
125	-60	-49,1	34,4	-78	-85	32	-89	5	1,581	55,643	57,198	23,4	21,1	92,685	1,065
130	0	0,0	0,0	59	31	35	37	32	1,630	55,578	57,176	23,4	21,1	92,688	1,065
130	-5	-3,8	3,2	59	27	40	33	35	1,679	55,511	57,154	23,4	21,1	92,690	1,066
130	-10	-7,7	6,4	57	22	43	28	38	1,729	55,444	57,132	23,5	21,0	92,692	1,066
130	-15	-11,5	9,6	53	16	47	24	39	1,780	55,376	57,109	23,5	21,0	92,695	1,066
130	-20	-15,3	12,9	46	10	51	19	38	1,831	55,307	57,087	23,5	21,0	92,697	1,067
130	-25	-19,2	16,1	35	4	52	16	38	1,883	55,239	57,065	23,5	20,9	92,699	1,067
130	-30	-23,0	19,3	22	-2	54	16	37	1,935	55,170	57,043	23,5	20,9	92,701	1,067
130	-35	-26,8	22,5	5	-8	52	5	34	1,987	55,100	57,020	23,5	20,9	92,704	1,068
130	-40	-30,6	25,7	-15	-15	50	47	30	2,039	55,031	56,998	23,5	20,9	92,706	1,068
130	-45	-34,5	28,9	-36	-53	45	-79	25	2,092	54,961	56,976	23,5	20,8	92,708	1,068
130	-50	-38,3	32,1	-49	-86	40	-88	21	2,144	54,892	56,954	23,5	20,8	92,711	1,068
130	-55	-42,1	35,4	-62	-86	34	-94	16	2,197	54,822	56,931	23,5	20,8	92,713	1,069
130	-60	-46,0	38,6	-74	-87	28	-92	10	2,249	54,753	56,909	23,6	20,7	92,715	1,069
130	5	3,8	-3,2	57	35	29	41	30	2,301	54,684	56,887	23,6	20,7	92,718	1,069
130	10	7,7	-6,4	55	39	23	43	25	2,353	54,615	56,865	23,6	20,7	92,720	1,070
130	15	11,5	-9,6	51	42	17	44	20	2,405	54,547	56,843	23,6	20,6	92,722	1,070
130	20	15,3	-12,9	43	44	10	44	14	2,456	54,479	56,822	23,6	20,6	92,725	1,070
130	25	19,2	-16,1	33	46	4	43	10	2,507	54,411	56,800	23,6	20,6	92,727	1,070
130	30	23,0	-19,3	18	46	-3	40	9	2,557	54,344	56,779	23,6	20,6	92,729	1,071
130	35	26,8	-22,5	4	45	-8	38	11	2,607	54,278	56,758	23,7	20,5	92,732	1,071
130	40	30,6	-25,7	-16	42	-11	33	-33	2,656	54,213	56,736	23,7	20,5	92,734	1,071
130	45	34,5	-28,9	-34	38	-60	29	-79	2,705	54,148	56,716	23,7	20,5	92,736	1,072
130	50	38,3	-32,1	-50	33	-96	22	-98	2,752	54,085	56,695	23,7	20,4	92,738	1,072
130	55	42,1	-35,4	-63	28	-102	16	-103	2,799	54,022	56,675	23,7	20,4	92,741	1,072
130	60	46,0	-38,6	-75	23	-102	8	-106	2,845	53,961	56,654	23,8	20,4	92,743	1,072
135	0	0,0	0,0	58	31	34	37	33	2,890	53,900	56,634	23,8	20,4	92,745	1,073
135	5	3,5	-3,5	57	35	29	41	29	2,934	53,841	56,615	23,8	20,3	92,747	1,073
135	10	7,1	-7,1	54	38	23	44	23	2,976	53,784	56,595	23,8	20,3	92,749	1,073
135	15	10,6	-10,6	49	41	17	45	18	3,018	53,727	56,576	23,8	20,3	92,751	1,073
135	20	14,1	-14,1	41	42	10	46	12	3,058	53,673	56,558	23,8	20,3	92,753	1,074
135	25	17,7	-17,7	31	43	5	45	8	3,097	53,619	56,539	23,9	20,2	92,756	1,074
135	30	21,2	-21,2	19	43	-2	43	4	3,134	53,568	56,521	23,9	20,2	92,758	1,074
135	35	24,7	-24,7	3	42	-3	40	4	3,170	53,518	56,504	23,9	20,2	92,760	1,074
135	40	28,3	-28,3	-15	38	-8	36	-37	3,205	53,470	56,486	23,9	20,2	92,762	1,075

Ângulo g (graus)	Ângulo a (graus)	Ângulo de guinada ψ (graus)	Ângulo de arfagem δ (graus)	p1 (Pa)	p2 (Pa)	p3 (Pa)	p4 (Pa)	p5 (Pa)	P est (Pa)	P din (Pa)	Ptotal (Pa)	Temperatura de Bulbo Seco (jato) °C	Temperatura de Bulbo Úmido ℃	Patm (kPa)	massa específica do ar (kg/m3)
135	45	31,8	-31,8	-34	34	-65	30	-77	3,238	53,423	56,469	23,9	20,2	92,764	1,075
135	50	35,4	-35,4	-49	29	-98	25	-101	3,269	53,379	56,453	24,0	20,1	92,765	1,075
135	55	38,9	-38,9	-61	24	-105	19	-107	3,298	53,337	56,437	24,0	20,1	92,767	1,075
135	60	42,4	-42,4	-72	18	-105	13	-108	3,326	53,297	56,421	24,0	20,1	92,769	1,075
135	-5	-3,5	3,5	60	29	39	32	39	3,352	53,259	56,406	24,0	20,1	92,771	1,075
135	-10	-7,1	7,1	58	23	41	27	41	3,375	53,223	56,391	24,0	20,1	92,773	1,076
135	-15	-10,6	10,6	53	16	46	22	41	3,397	53,190	56,377	24,1	20,0	92,774	1,076
135	-20	-14,1	14,1	46	10	48	17	42	3,417	53,159	56,363	24,1	20,0	92,776	1,076
135	-25	-17,7	17,7	35	4	50	16	41	3,434	53,130	56,349	24,1	20,0	92,778	1,076
135	-30	-21,2	21,2	22	-1	50	14	40	3,449	53,105	56,337	24,1	20,0	92,779	1,076
135	-35	-24,7	24,7	6	-6	49	10	37	3,462	53,082	56,324	24,1	20,0	92,781	1,076
135	-40	-28,3	28,3	-15	-11	45	-47	33	3,473	53,061	56,313	24,1	20,0	92,782	1,077
135	-45	-31,8	31,8	-33	-66	42	-83	29	3,481	53,044	56,302	24,1	19,9	92,784	1,077
135	-50	-35,4	35,4	-49	-92	36	-93	24	3,487	53,029	56,291	24,2	19,9	92,785	1,077
135	-55	-38,9	38,9	-60	-95	31	-98	19	3,490	53,017	56,281	24,2	19,9	92,786	1,077
135	-60	-42,4	42,4	-71	-92	24	-95	14	3,490	53,009	56,272	24,2	19,9	92,788	1,077
140	0	0,0	0,0	60	34	36	37	35	3,488	53,003	56,263	24,2	19,9	92,789	1,077
140	-5	-3,2	3,8	60	31	38	33	38	3,483	53,000	56,255	24,2	19,9	92,790	1,077
140	-10	-6,4	7,7	59	26	42	29	41	3,477	53,000	56,247	24,2	19,9	92,791	1,077
140	-15	-9,6	11,5	55	20	44	23	44	3,469	53,001	56,240	24,2	19,9	92,792	1,077
140	-20	-12,9	15,3	48	14	46	17	45	3,458	53,005	56,233	24,3	19,9	92,794	1,077
140	-25	-16,1	19,2	36	6	46	13	47	3,447	53,010	56,226	24,3	19,9	92,795	1,077
140	-30	-19,3	23,0	25	5	46	9	46	3,433	53,018	56,220	24,3	19,9	92,796	1,077
140	-35	-22,5	26,8	12	0	45	7	43	3,418	53,027	56,214	24,3	19,9	92,797	1,077
140	-40	-25,7	30,6	-6	-3	42	-28	41	3,401	53,038	56,208	24,3	19,8	92,798	1,077
140	-45	-28,9	34,5	-25	-58	38	-70	37	3,382	53,052	56,203	24,3	19,8	92,799	1,077
140	-50	-32,1	38,3	-42	-72	33	-89	32	3,363	53,067	56,199	24,4	19,8	92,800	1,077
140	-55	-35,4	42,1	-53	-84	26	-94	27	3,341	53,083	56,194	24,4	19,8	92,801	1,077
140	-60	-38,6	46,0	-63	-83	22	-91	22	3,318	53,101	56,190	24,4	19,8	92,802	1,077
140	5	3,2	-3,8	56	37	29	40	30	3,294	53,121	56,186	24,4	19,8	92,802	1,077
140	10	6,4	-7,7	55	40	24	43	25	3,269	53,143	56,183	24,4	19,8	92,803	1,077
140	15	9,6	-11,5	50	42	18	46	19	3,242	53,166	56,180	24,4	19,8	92,804	1,077
140	20	12,9	-15,3	41	43	13	46	12	3,214	53,190	56,177	24,5	19,8	92,805	1,077
140	25	16,1	-19,2	32	43	7	41	9	3,184	53,216	56,174	24,5	19,8	92,806	1,077
140	30	19,3	-23,0	18	42	2	45	5	3,154	53,243	56,172	24,5	19,8	92,807	1,077
140	35	22,5	-26,8	5	40	2	42	3	3,122	53,271	56,170	24,5	19,8	92,807	1,077
140	40	25,7	-30,6	-14	37	-4	39	-28	3,090	53,301	56,168	24,6	19,8	92,808	1,077
140	45	28,9	-34,5	-32	33	-62	34	-70	3,056	53,332	56,166	24,6	19,8	92,809	1,077
140	50	32,1	-38,3	-48	28	-96	28	-96	3,022	53,364	56,165	24,6	19,8	92,810	1,077
140	55	35,4	-42,1	-60	22	-101	23	-102	2,986	53,397	56,164	24,6	19,8	92,810	1,077

Ângulo g (graus)	Ângulo a (graus)	Ângulo de guinada ψ (graus)	Ângulo de arfagem δ (graus)	p1 (Pa)	p2 (Pa)	p3 (Pa)	p4 (Pa)	p5 (Pa)	P est (Pa)	P din (Pa)	Ptotal (Pa)	Temperatura de Bulbo Seco (jato) °C	Temperatura de Bulbo Úmido ℃	Patm (kPa)	massa específica do ar (kg/m3)
140	60	38,6	-46,0	-70	16	-104	17	-103	2,950	53,431	56,163	24,6	19,8	92,811	1,077
145	0	0,0	0,0	59	33	34	35	33	2,913	53,466	56,163	24,7	19,8	92,812	1,077
145	5	2,9	-4,1	56	37	30	40	29	2,875	53,502	56,162	24,7	19,8	92,812	1,077
145	10	5,7	-8,2	54	38	25	43	23	2,836	53,539	56,162	24,7	19,8	92,813	1,077
145	15	8,6	-12,3	51	41	19	45	17	2,797	53,577	56,162	24,7	19,8	92,814	1,077
145	20	11,5	-16,4	43	41	14	47	11	2,757	53,615	56,162	24,8	19,8	92,814	1,076
145	25	14,3	-20,5	32	41	8	47	6	2,716	53,654	56,163	24,8	19,9	92,815	1,076
145	30	17,2	-24,6	20	39	5	47	1	2,675	53,694	56,163	24,8	19,9	92,816	1,076
145	35	20,1	-28,7	4	37	8	45	-1	2,633	53,735	56,164	24,8	19,9	92,816	1,076
145	40	22,9	-32,8	-15	33	-22	41	-25	2,591	53,776	56,165	24,9	19,9	92,817	1,076
145	45	25,8	-36,9	-33	29	-70	35	-72	2,548	53,818	56,166	24,9	19,9	92,817	1,076
145	50	28,7	-41,0	-46	24	-94	30	-95	2,505	53,860	56,167	24,9	19,9	92,818	1,076
145	55	31,5	-45,1	-58	19	-100	24	-101	2,462	53,902	56,168	25,0	19,9	92,818	1,076
145	60	34,4	-49,1	-69	13	-100	19	-98	2,419	53,945	56,170	25,0	19,9	92,819	1,076
145	-5	-2,9	4,1	58	31	37	32	39	2,375	53,988	56,171	25,0	19,9	92,819	1,076
145	-10	-5,7	8,2	57	27	40	28	42	2,331	54,032	56,173	25,0	19,9	92,820	1,076
145	-15	-8,6	12,3	54	22	42	23	45	2,287	54,075	56,174	25,1	19,9	92,821	1,075
145	-20	-11,5	16,4	47	16	44	16	47	2,242	54,119	56,176	25,1	19,9	92,821	1,075
145	-25	-14,3	20,5	39	12	44	11	49	2,198	54,163	56,178	25,1	19,9	92,822	1,075
145	-30	-17,2	24,6	28	9	43	6	49	2,154	54,207	56,180	25,1	19,9	92,822	1,075
145	-35	-20,1	28,7	13	10	42	4	47	2,110	54,251	56,182	25,2	19,9	92,822	1,075
145	-40	-22,9	32,8	-4	-12	39	-7	46	2,066	54,295	56,184	25,2	19,9	92,823	1,075
145	-45	-25,8	36,9	-22	-65	34	-62	41	2,022	54,339	56,186	25,2	19,9	92,823	1,075
145	-50	-28,7	41,0	-38	-87	31	-86	36	1,978	54,382	56,189	25,2	19,9	92,824	1,075
145	-55	-31,5	45,1	-50	-91	25	-90	30	1,934	54,426	56,191	25,3	20,0	92,824	1,075
145	-60	-34,4	49,1	-60	-92	17	-84	25	1,891	54,469	56,193	25,3	20,0	92,825	1,074
150	0	0,0	0,0	60	32	37	37	35	1,848	54,512	56,195	25,3	20,0	92,825	1,074
150	-5	-2,5	4,3	59	29	41	33	39	1,805	54,554	56,197	25,3	20,0	92,826	1,074
150	-10	-5,0	8,7	57	25	43	27	43	1,763	54,597	56,200	25,4	20,0	92,826	1,074
150	-15	-7,5	13,0	53	20	45	21	46	1,721	54,638	56,202	25,4	20,0	92,826	1,074
150	-20	-10,0	17,3	47	16	45	15	49	1,680	54,679	56,204	25,4	20,0	92,827	1,074
150	-25	-12,5	21,7	37	12	45	10	50	1,639	54,720	56,206	25,4	20,0	92,827	1,074
150	-30	-15,0	26,0	24	10	42	5	50	1,599	54,760	56,208	25,5	20,0	92,828	1,074
150	-35	-17,5	30,3	10	11	39	2	48	1,559	54,799	56,210	25,5	20,0	92,828	1,074
150	-40	-20,0	34,6	-8	-36	36	-30	46	1,520	54,838	56,212	25,5	20,0	92,829	1,073
150	-45	-22,5	39,0	-25	-75	31	-70	41	1,482	54,875	56,214	25,5	20,0	92,829	1,073
150	-50	-25,0	43,3	-40	-87	26	-86	37	1,445	54,912	56,216	25,6	20,0	92,829	1,073
150	-55	-27,5	47,6	-52	-92	20	-87	31	1,408	54,948	56,218	25,6	20,0	92,830	1,073
150	-60	-30,0	52,0	-61	-90	14	-85	27	1,373	54,984	56,220	25,6	20,0	92,830	1,073
150	5	2,5	-4,3	58	41	27	33	33	1,338	55,018	56,222	25,6	20,0	92,831	1,073

Ângulo g (graus)	Ângulo a (graus)	Ângulo de guinada ψ (graus)	Ângulo de arfagem δ (graus)	p1 (Pa)	p2 (Pa)	p3 (Pa)	p4 (Pa)	p5 (Pa)	P est (Pa)	P din (Pa)	Ptotal (Pa)	Temperatura de Bulbo Seco (jato) °C	Temperatura de Bulbo Úmido ℃	Patm (kPa)	massa específica do ar (kg/m3)
150	10	5,0	-8,7	55	44	22	37	29	1,304	55,051	56,223	25,7	20,1	92,831	1,073
150	15	7,5	-13,0	52	46	17	40	22	1,271	55,083	56,225	25,7	20,1	92,832	1,073
150	20	10,0	-17,3	45	47	12	41	17	1,240	55,114	56,226	25,7	20,1	92,832	1,073
150	25	12,5	-21,7	36	46	8	43	13	1,209	55,143	56,227	25,7	20,1	92,832	1,073
150	30	15,0	-26,0	23	45	3	43	8	1,180	55,172	56,228	25,8	20,1	92,833	1,072
150	35	17,5	-30,3	9	42	-1	40	6	1,151	55,199	56,229	25,8	20,1	92,833	1,072
150	40	20,0	-34,6	-8	38	0	38	-14	1,124	55,225	56,230	25,8	20,1	92,834	1,072
150	45	22,5	-39,0	27	33	-50	34	-57	1,098	55,249	56,230	25,8	20,1	92,834	1,072
150	50	25,0	-43,3	-42	28	-90	29	-93	1,074	55,272	56,231	25,8	20,1	92,835	1,072
150	55	27,5	-47,6	-55	22	-99	23	-102	1,051	55,294	56,231	25,9	20,1	92,835	1,072
150	60	30,0	-52,0	-66	16	-102	19	-104	1,029	55,314	56,231	25,9	20,1	92,836	1,072
155	0	0,0	0,0	57	37	28	29	38	1,009	55,332	56,231	25,9	20,1	92,836	1,072
155	5	2,1	-4,5	57	40	26	34	31	0,990	55,349	56,231	25,9	20,1	92,836	1,072
155	10	4,2	-9,1	55	42	21	39	27	0,974	55,363	56,231	25,9	20,1	92,837	1,072
155	15	6,3	-13,6	51	43	17	42	19	0,959	55,376	56,231	26,0	20,1	92,837	1,072
155	20	8,5	-18,1	44	43	12	45	13	0,945	55,388	56,232	26,0	20,1	92,838	1,072
155	25	10,6	-22,7	35	42	8	46	8	0,934	55,397	56,232	26,0	20,1	92,838	1,072
155	30	12,7	-27,2	22	40	4	45	2	0,924	55,405	56,233	26,0	20,1	92,839	1,072
155	35	14,8	-31,7	8	37	8	45	-2	0,915	55,411	56,234	26,0	20,1	92,839	1,072
155	40	16,9	-36,3	-10	32	-5	42	-9	0,908	55,415	56,235	26,0	20,1	92,840	1,072
155	45	19,0	-40,8	-27	28	-55	38	-54	0,903	55,418	56,236	26,1	20,1	92,840	1,071
155	50	21,1	-45,3	-42	23	-91	33	-92	0,900	55,419	56,237	26,1	20,1	92,841	1,071
155	55	23,2	-49,8	-54	17	-97	28	-99	0,898	55,419	56,239	26,1	20,1	92,841	1,071
155	60	25,4	-54,4	-65	11	-101	22	-98	0,897	55,417	56,241	26,1	20,1	92,842	1,071
155	-5	-2,1	4,5	58	31	36	30	40	0,898	55,413	56,243	26,1	20,1	92,842	1,071
155	-10	-4,2	9,1	55	27	36	23	44	0,901	55,408	56,245	26,2	20,1	92,843	1,071
155	-15	-6,3	13,6	51	23	38	18	47	0,905	55,402	56,247	26,2	20,2	92,843	1,071
155	-20	-8,5	18,1	44	18	39	11	50	0,910	55,394	56,249	26,2	20,2	92,843	1,071
155	-25	-10,6	22,7	34	15	37	5	51	0,917	55,384	56,251	26,2	20,2	92,844	1,071
155	-30	-12,7	27,2	21	15	33	-1	50	0,925	55,373	56,254	26,2	20,2	92,844	1,071
155	-35	-14,8	31,7	6	11	30	-7	50	0,934	55,361	56,257	26,2	20,2	92,845	1,071
155	-40	-16,9	36,3	-11	-39	26	-13	49	0,945	55,348	56,259	26,3	20,2	92,845	1,071
155	-45	-19,0	40,8	-28	-69	22	-69	45	0,957	55,333	56,262	26,3	20,2	92,846	1,071
155	-50	-21,1	45,3	-39	-79	17	-77	40	0,971	55,316	56,265	26,3	20,2	92,846	1,071
155	-55	-23,2	49,8	-54	-89	10	-80	35	0,985	55,299	56,268	26,3	20,2	92,847	1,071
155	-60	-25,4	54,4	-65	-87	5	-82	30	1,001	55,280	56,272	26,3	20,2	92,847	1,071
160	0	0,0	0,0	58	34	32	33	35	1,018	55,260	56,275	26,3	20,2	92,847	1,071
160	-5	-1,7	4,7	58	32	34	29	39	1,036	55,239	56,279	26,4	20,2	92,848	1,070
160	-10	-3,4	9,4	56	28	34	23	44	1,056	55,217	56,282	26,4	20,2	92,848	1,070
160	-15	-5,1	14,1	52	24	36	17	48	1,076	55,193	56,286	26,4	20,2	92,849	1,070

Ângulo g (graus)	Ângulo a (graus)	Ângulo de guinada ψ (graus)	Ângulo de arfagem δ (graus)	p1 (Pa)	p2 (Pa)	p3 (Pa)	p4 (Pa)	p5 (Pa)	P est (Pa)	P din (Pa)	Ptotal (Pa)	Temperatura de Bulbo Seco (jato) °C	Temperatura de Bulbo Úmido ℃	Patm (kPa)	massa específica do ar (kg/m3)
160	-20	-6,8	18,8	44	20	35	10	52	1,098	55,168	56,290	26,4	20,2	92,849	1,070
160	-25	-8,6	23,5	34	17	33	5	53	1,121	55,142	56,294	26,4	20,2	92,850	1,070
160	-30	-10,3	28,2	22	17	30	-2	54	1,145	55,116	56,298	26,4	20,2	92,850	1,070
160	-35	-12,0	32,9	6	4	27	-8	52	1,169	55,088	56,302	26,5	20,2	92,850	1,070
160	-40	-13,7	37,6	-12	-41	22	-14	50	1,195	55,059	56,306	26,5	20,2	92,851	1,070
160	-45	-15,4	42,3	-28	-64	19	-57	47	1,222	55,029	56,310	26,5	20,3	92,851	1,070
160	-50	-17,1	47,0	-42	-72	14	-70	43	1,250	54,998	56,314	26,5	20,3	92,852	1,070
160	-55	-18,8	51,7	-55	-81	8	-74	38	1,278	54,966	56,319	26,5	20,3	92,852	1,070
160	-60	-20,5	56,4	-70	-80	1	-80	33	1,308	54,933	56,323	26,5	20,3	92,852	1,070
160	5	1,7	-4,7	57	31	33	40	27	1,338	54,899	56,328	26,5	20,3	92,853	1,070
160	10	3,4	-9,4	55	32	30	45	22	1,370	54,865	56,333	26,6	20,3	92,853	1,070
160	15	5,1	-14,1	51	32	25	49	15	1,402	54,829	56,337	26,6	20,3	92,854	1,070
160	20	6,8	-18,8	43	31	20	51	8	1,435	54,793	56,342	26,6	20,3	92,854	1,070
160	25	8,6	-23,5	34	29	16	53	1	1,469	54,756	56,347	26,6	20,3	92,854	1,069
160	30	10,3	-28,2	22	26	15	54	-5	1,503	54,718	56,352	26,6	20,3	92,855	1,069
160	35	12,0	-32,9	6	23	16	52	-11	1,539	54,680	56,357	26,6	20,3	92,855	1,069
160	40	13,7	-37,6	-14	18	-30	51	-19	1,575	54,640	56,362	26,6	20,3	92,856	1,069
160	45	15,4	-42,3	-30	15	-60	47	-35	1,611	54,600	56,367	26,7	20,3	92,856	1,069
160	50	17,1	-47,0	-44	10	-74	43	-80	1,649	54,560	56,372	26,7	20,3	92,856	1,069
160	55	18,8	-51,7	-57	5	-83	38	-82	1,687	54,518	56,377	26,7	20,3	92,857	1,069
160	60	20,5	-56,4	-74	-1	-89	31	-91	1,725	54,476	56,382	26,7	20,3	92,857	1,069
165	0	0,0	0,0	57	29	35	35	32	1,764	54,434	56,387	26,7	20,4	92,857	1,069
165	5	1,3	-4,8	57	31	34	40	27	1,804	54,391	56,392	26,7	20,4	92,858	1,069
165	10	2,6	-9,7	56	32	30	46	21	1,844	54,347	56,397	26,7	20,4	92,858	1,069
165	15	3,9	-14,5	51	30	26	49	14	1,885	54,303	56,403	26,8	20,4	92,858	1,069
165	20	5,2	-19,3	44	29	22	53	7	1,927	54,258	56,408	26,8	20,4	92,859	1,069
165	25	6,5	-24,1	34	26	16	54	0	1,968	54,213	56,413	26,8	20,4	92,859	1,069
165	30	7,8	-29,0	21	23	15	55	-6	2,011	54,167	56,418	26,8	20,4	92,859	1,069
165	35	9,1	-33,8	4	19	10	55	-13	2,053	54,121	56,424	26,8	20,4	92,860	1,069
165	40	10,4	-38,6	-16	14	-35	53	-20	2,096	54,075	56,429	26,8	20,4	92,860	1,069
165	45	11,6	-43,5	-34	10	-56	50	-43	2,140	54,028	56,434	26,8	20,4	92,860	1,069
165	50	12,9	-48,3	-46	6	-66	47	-71	2,183	53,981	56,440	26,9	20,4	92,861	1,068
165	55	14,2	-53,1	-65	1	-79	41	-83	2,227	53,933	56,445	26,9	20,4	92,861	1,068
165	60	15,5	-58,0	-78	-3	-87	34	-93	2,272	53,885	56,450	26,9	20,4	92,861	1,068
165	-5	-1,3	4,8	57	28	38	31	39	2,316	53,837	56,456	26,9	20,4	92,862	1,068
165	-10	-2,6	9,7	55	25	39	24	44	2,361	53,789	56,461	26,9	20,4	92,862	1,068
165	-15	-3,9	14,5	51	21	38	17	48	2,406	53,741	56,466	26,9	20,5	92,862	1,068
165	-20	-5,2	19,3	43	17	38	11	51	2,452	53,692	56,472	26,9	20,5	92,863	1,068
165	-25	-6,5	24,1	33	16	35	5	52	2,497	53,643	56,477	26,9	20,5	92,863	1,068
165	-30	-7,8	29,0	20	16	32	-2	53	2,543	53,594	56,482	27,0	20,5	92,863	1,068

Ângulo g (graus)	Ângulo a (graus)	Ângulo de guinada ψ (graus)	Ângulo de arfagem δ (graus)	p1 (Pa)	p2 (Pa)	p3 (Pa)	p4 (Pa)	p5 (Pa)	P est (Pa)	P din (Pa)	Ptotal (Pa)	Temperatura de Bulbo Seco (jato) °C	Temperatura de Bulbo Úmido ℃	Patm (kPa)	massa específica do ar (kg/m3)
165	-35	-9,1	33,8	3	2	27	-8	52	2,589	53,545	56,487	27,0	20,5	92,863	1,068
165	-40	-10,4	38,6	-14	-47	23	-14	50	2,634	53,496	56,493	27,0	20,5	92,864	1,068
165	-45	-11,6	43,5	-29	-65	17	-65	47	2,680	53,446	56,498	27,0	20,5	92,864	1,068
165	-50	-12,9	48,3	-42	-74	13	-72	43	2,726	53,397	56,503	27,0	20,5	92,864	1,068
165	-55	-14,2	53,1	-58	-82	6	-74	37	2,772	53,348	56,508	27,0	20,5	92,865	1,068
165	-60	-15,5	58,0	-73	-82	0	-79	33	2,818	53,298	56,513	27,0	20,5	92,865	1,068
170	0	0,0	0,0	58	31	37	36	33	2,864	53,249	56,518	27,0	20,5	92,865	1,068
170	-5	-0,9	4,9	58	29	38	32	40	2,910	53,200	56,523	27,0	20,5	92,865	1,068
170	-10	-1,7	9,8	55	26	38	24	45	2,956	53,151	56,528	27,1	20,5	92,866	1,068
170	-15	-2,6	14,8	51	23	35	18	48	3,002	53,102	56,533	27,1	20,5	92,866	1,067
170	-20	-3,5	19,7	43	19	34	12	52	3,048	53,053	56,538	27,1	20,5	92,866	1,067
170	-25	-4,3	24,6	34	17	32	5	54	3,093	53,004	56,542	27,1	20,5	92,866	1,067
170	-30	-5,2	29,5	21	18	28	-2	54	3,139	52,956	56,547	27,1	20,6	92,866	1,067
170	-35	-6,1	34,5	5	-2	24	-8	54	3,184	52,907	56,552	27,1	20,6	92,867	1,067
170	-40	-6,9	39,4	-14	-43	19	-15	52	3,229	52,859	56,556	27,1	20,6	92,867	1,067
170	-45	-7,8	44,3	-30	-56	15	-53	49	3,273	52,812	56,561	27,1	20,6	92,867	1,067
170	-50	-8,7	49,2	-45	-65	9	-68	46	3,318	52,764	56,565	27,1	20,6	92,867	1,067
170	-55	-9,6	54,2	-62	-76	3	-77	40	3,362	52,717	56,570	27,1	20,6	92,868	1,067
170	-60	-10,4	59,1	-77	-88	-3	-82	35	3,406	52,670	56,574	27,2	20,6	92,868	1,067
170	5	0,9	-4,9	57	30	35	41	27	3,449	52,623	56,578	27,2	20,6	92,868	1,067
170	10	1,7	-9,8	55	30	30	46	20	3,492	52,577	56,582	27,2	20,6	92,868	1,067
170	15	2,6	-14,8	50	28	26	50	13	3,535	52,532	56,586	27,2	20,6	92,868	1,067
170	20	3,5	-19,7	44	27	23	54	6	3,577	52,486	56,590	27,2	20,6	92,868	1,067
170	25	4,3	-24,6	33	23	18	56	0	3,619	52,442	56,594	27,2	20,6	92,869	1,067
170	30	5,2	-29,5	20	20	14	56	-7	3,661	52,397	56,597	27,2	20,6	92,869	1,067
170	35	6,1	-34,5	3	16	8	56	-13	3,702	52,354	56,601	27,2	20,6	92,869	1,067
170	40	6,9	-39,4	-16	12	30	55	-22	3,742	52,310	56,605	27,2	20,6	92,869	1,067
170	45	7,8	-44,3	-32	9	-44	52	-43	3,782	52,268	56,608	27,2	20,6	92,869	1,067
170	50	8,7	-49,2	-51	5	-61	48	-67	3,821	52,226	56,611	27,2	20,6	92,869	1,067
170	55	9,6	-54,2	-64	3	-73	43	-72	3,860	52,184	56,614	27,3	20,6	92,869	1,067
170	60	10,4	-59,1	-78	-2	-83	36	-69	3,898	52,143	56,617	27,3	20,6	92,870	1,067
175	0	0,0	0,0	48	29	36	36	32	3,936	52,103	56,620	27,3	20,7	92,870	1,067
175	5	0,4	-5,0	57	30	35	41	27	3,972	52,064	56,623	27,3	20,7	92,870	1,066
175	10	0,9	-10,0	55	29	32	46	20	4,009	52,025	56,626	27,3	20,7	92,870	1,066
175	15	1,3	-14,9	50	27	28	49	14	4,044	51,987	56,628	27,3	20,7	92,870	1,066
175	20	1,7	-19,9	43	25	24	54	6	4,079	51,950	56,631	27,3	20,7	92,870	1,066
175	25	2,2	-24,9	33	21	20	55	-1	4,113	51,914	56,633	27,3	20,7	92,870	1,066
175	30	2,6	-29,9	21	17	16	57	-7	4,146	51,878	56,635	27,3	20,7	92,870	1,066
175	35	3,1	-34,9	3	14	13	57	-13	4,178	51,843	56,637	27,3	20,7	92,870	1,066
175	40	3,5	-39,8	-17	10	-17	55	-20	4,210	51,809	56,639	27,3	20,7	92,870	1,066

Ângulo g (graus)	Ângulo a (graus)	Ângulo de guinada ψ (graus)	Ângulo de arfagem δ (graus)	p1 (Pa)	p2 (Pa)	p3 (Pa)	p4 (Pa)	p5 (Pa)	P est (Pa)	P din (Pa)	Ptotal (Pa)	Temperatura de Bulbo Seco (jato) °C	Temperatura de Bulbo Úmido °C	Patm (kPa)	massa específica do ar (kg/m3)
175	45	3,9	-44,8	-36	-3	-36	54	-37	4,240	51,776	56,641	27,3	20,7	92,870	1,066
175	50	4,4	-49,8	-51	-11	-49	49	-46	4,270	51,744	56,642	27,3	20,7	92,870	1,066
175	55	4,8	-54,8	-63	-18	-65	44	-59	4,299	51,713	56,644	27,4	20,7	92,871	1,066
175	60	5,2	-59,8	-73	-15	-85	38	-66	4,327	51,683	56,645	27,4	20,7	92,871	1,066
175	-5	-0,4	5,0	58	29	38	30	40	4,354	51,654	56,646	27,4	20,7	92,871	1,066
175	-10	-0,9	10,0	56	27	37	25	44	4,380	51,626	56,647	27,4	20,7	92,871	1,066
175	-15	-1,3	14,9	52	24	36	18	49	4,405	51,599	56,648	27,4	20,7	92,871	1,066
175	-20	-1,7	19,9	44	20	33	11	52	4,429	51,573	56,648	27,4	20,7	92,871	1,066
175	-25	-2,2	24,9	34	17	29	4	54	4,452	51,548	56,649	27,4	20,7	92,871	1,066
175	-30	-2,6	29,9	21	17	26	-2	55	4,474	51,525	56,649	27,4	20,7	92,871	1,066
175	-35	-3,1	34,9	4	-6	20	-10	56	4,495	51,502	56,649	27,4	20,7	92,871	1,066
175	-40	-3,5	39,8	-12	-36	15	-15	55	4,514	51,481	56,649	27,4	20,7	92,871	1,066
175	-45	-3,9	44,8	-29	-46	11	-55	51	4,533	51,460	56,648	27,4	20,7	92,871	1,066
175	-50	-4,4	49,8	-47	-61	8	-64	48	4,550	51,441	56,648	27,4	20,7	92,871	1,066
175	-55	-4,8	54,8	-62	-72	4	-73	43	4,566	51,424	56,647	27,4	20,7	92,871	1,066
175	-60	-5,2	59,8	-76	-81	-2	-83	37	4,581	51,407	56,646	27,4	20,7	92,870	1,066
180	0	0,0	0,0	58	30	36	36	34	4,595	51,392	56,645	27,4	20,7	92,870	1,066
180	-5	0,0	5,0	58	29	36	30	39	4,607	51,378	56,644	27,4	20,7	92,870	1,066
180	-10	0,0	10,0	56	28	35	25	45	4,618	51,366	56,642	27,4	20,7	92,870	1,066
180	-15	0,0	15,0	51	26	34	18	49	4,628	51,355	56,641	27,5	20,7	92,870	1,066
180	-20	0,0	20,0	45	22	30	10	52	4,636	51,345	56,639	27,5	20,7	92,870	1,066
180	-25	0,0	25,0	35	19	27	4	54	4,644	51,337	56,637	27,5	20,7	92,870	1,066
180	-30	0,0	30,0	22	17	22	-3	57	4,649	51,330	56,634	27,5	20,7	92,870	1,066
180	-35	0,0	35,0	4	0	18	-10	56	4,653	51,325	56,632	27,5	20,7	92,870	1,066
180	-40	0,0	40,0	-14	-29	13	-16	56	4,656	51,321	56,629	27,5	20,7	92,870	1,066
180	-45	0,0	45,0	-31	-41	8	-40	53	4,658	51,319	56,626	27,5	20,7	92,870	1,066
180	-50	0,0	50,0	-48	-53	6	-54	50	4,657	51,318	56,623	27,5	20,7	92,869	1,066
180	-55	0,0	55,0	-62	-67	1	-56	44	4,656	51,319	56,619	27,5	20,7	92,869	1,066
180	-60	0,0	60,0	-69	-82	2	-57	37	4,653	51,322	56,616	27,5	20,7	92,869	1,066
180	5	0,0	-5,0	57	25	40	40	26	4,648	51,326	56,612	27,5	20,7	92,869	1,066
180	10	0,0	-10,0	55	23	38	46	20	4,641	51,332	56,607	27,5	20,7	92,869	1,066
180	15	0,0	-15,0	50	22	34	50	13	4,633	51,339	56,603	27,5	20,7	92,869	1,066
180	20	0,0	-20,0	43	19	30	53	6	4,624	51,348	56,598	27,5	20,7	92,868	1,066
180	25	0,0	-25,0	33	17	26	56	-1	4,612	51,359	56,593	27,5	20,7	92,868	1,066
180	30	0,0	-30,0	19	16	19	57	-7	4,599	51,372	56,588	27,5	20,7	92,868	1,066
180	35	0,0	-35,0	2	10	15	57	-14	4,585	51,387	56,583	27,5	20,7	92,868	1,066
180	40	0,0	-40,0	-18	-22	11	55	-21	4,568	51,403	56,577	27,5	20,7	92,868	1,066
180	45	0,0	-45,0	-38	-37	-6	52	-38	4,550	51,421	56,571	27,5	20,7	92,867	1,066
180	50	0,0	-50,0	-53	-50	-18	49	-51	4,530	51,441	56,565	27,5	20,7	92,867	1,066
180	55	0,0	-55,0	-65	-65	-31	44	-57	4,508	51,463	56,558	27,5	20,7	92,867	1,066

Ângulo g (graus)	Ângulo a (graus)	Ângulo de guinada ψ (graus)	Ângulo de arfagem δ (graus)	p1 (Pa)	p2 (Pa)	p3 (Pa)	p4 (Pa)	p5 (Pa)	P est (Pa)	P din (Pa)	Ptotal (Pa)	Temperatura de Bulbo Seco (jato) °C	Temperatura de Bulbo Úmido ℃	Patm (kPa)	massa específica do ar (kg/m3)
180	60	0,0	-60,0	-75	-70	-26	38	-62	4,485	51,487	56,552	27,5	20,7	92,867	1,066
185	0	0,0	0,0	57	25	41	35	31	4,459	51,513	56,545	27,5	20,7	92,866	1,066
185	5	-0,4	-5,0	57	24	40	40	27	4,432	51,540	56,537	27,5	20,7	92,866	1,066
185	10	-0,9	-10,0	55	22	39	45	18	4,403	51,570	56,530	27,5	20,7	92,866	1,066
185	15	-1,3	-14,9	50	21	36	50	13	4,371	51,602	56,522	27,5	20,7	92,866	1,066
185	20	-1,7	-19,9	43	18	33	52	6	4,338	51,636	56,514	27,5	20,7	92,865	1,066
185	25	-2,2	-24,9	33	16	29	55	-1	4,303	51,671	56,505	27,5	20,7	92,865	1,066
185	30	-2,6	-29,9	19	16	23	56	-7	4,266	51,709	56,496	27,5	20,7	92,865	1,066
185	35	-3,1	-34,9	3	8	18	56	-14	4,227	51,749	56,487	27,5	20,6	92,864	1,066
185	40	-3,5	-39,8	-16	-31	13	55	-21	4,185	51,792	56,478	27,5	20,6	92,864	1,066
185	45	-3,9	-44,8	-34	-45	9	52	-39	4,142	51,836	56,468	27,5	20,6	92,864	1,066
185	50	-4,4	-49,8	-52	-58	2	49	-58	4,097	51,882	56,458	27,5	20,6	92,863	1,066
185	55	-4,8	-54,8	-65	-69	-1	44	-68	4,049	51,931	56,448	27,5	20,6	92,863	1,066
185	60	-5,2	-59,8	-77	-84	0	37	-64	3,999	51,982	56,437	27,5	20,6	92,863	1,066
185	-5	0,4	5,0	58	32	34	30	40	3,948	52,035	56,427	27,5	20,6	92,862	1,066
185	-10	0,9	10,0	57	31	34	24	44	3,893	52,091	56,415	27,5	20,6	92,862	1,066
185	-15	1,3	14,9	51	28	31	18	49	3,837	52,149	56,404	27,5	20,6	92,861	1,066
185	-20	1,7	19,9	45	25	27	11	52	3,779	52,209	56,392	27,5	20,6	92,861	1,066
185	-25	2,2	24,9	35	22	24	4	55	3,718	52,272	56,380	27,5	20,6	92,861	1,066
185	-30	2,6	29,9	21	18	18	-1	55	3,655	52,337	56,367	27,5	20,6	92,860	1,066
185	-35	3,1	34,9	5	13	16	-8	57	3,589	52,404	56,354	27,5	20,6	92,860	1,066
185	-40	3,5	39,8	-14	-11	3	-15	56	3,521	52,474	56,341	27,5	20,5	92,859	1,066
185	-45	3,9	44,8	-31	-28	-15	-32	54	3,451	52,546	56,328	27,5	20,5	92,859	1,066
185	-50	4,4	49,8	-46	-40	-24	-34	50	3,378	52,621	56,314	27,5	20,5	92,858	1,066
185	-55	4,8	54,8	-61	-49	-35	-46	46	3,303	52,699	56,300	27,5	20,5	92,858	1,066
185	-60	5,2	59,8	-68	-56	-23	-58	40	3,226	52,779	56,285	27,5	20,5	92,857	1,066
190	0	0,0	0,0	57	32	36	35	33	3,146	52,861	56,270	27,5	20,5	92,857	1,066
190	-5	0,9	4,9	56	32	35	31	40	3,063	52,946	56,255	27,5	20,5	92,856	1,066
190	-10	1,7	9,8	55	32	33	24	44	2,978	53,034	56,239	27,5	20,5	92,856	1,066
190	-15	2,6	14,8	50	30	30	18	50	2,890	53,125	56,223	27,5	20,5	92,855	1,066
190	-20	3,5	19,7	43	27	27	10	54	2,800	53,218	56,206	27,5	20,5	92,855	1,066
190	-25	4,3	24,6	33	24	23	4	56	2,708	53,314	56,189	27,5	20,4	92,854	1,066
190	-30	5,2	29,5	21	20	19	-2	57	2,614	53,411	56,172	27,5	20,4	92,854	1,066
190	-35	6,1	34,5	4	16	16	-9	57	2,518	53,510	56,154	27,5	20,4	92,853	1,066
190	-40	6,9	39,4	-16	8	-10	-16	57	2,421	53,610	56,137	27,5	20,4	92,853	1,066
190	-45	7,8	44,3	-35	-11	-33	-34	54	2,323	53,711	56,119	27,5	20,4	92,852	1,066
190	-50	8,7	49,2	-49	-25	-43	-43	51	2,225	53,813	56,101	27,5	20,4	92,851	1,066
190	-55	9,6	54,2	-60	-31	-53	-50	46	2,125	53,916	56,083	27,5	20,4	92,851	1,066
190	-60	10,4	59,1	-71	-29	-69	-59	40	2,026	54,019	56,065	27,5	20,4	92,850	1,066
190	5	-0,9	-4,9	56	32	33	41	28	1,926	54,122	56,046	27,4	20,3	92,850	1,067

Ângulo g (graus)	Ângulo a (graus)	Ângulo de guinada ψ (graus)	Ângulo de arfagem δ (graus)	p1 (Pa)	p2 (Pa)	p3 (Pa)	p4 (Pa)	p5 (Pa)	P est (Pa)	P din (Pa)	Ptotal (Pa)	Temperatura de Bulbo Seco (jato) °C	Temperatura de Bulbo Úmido ℃	Patm (kPa)	massa específica do ar (kg/m3)
190	10	-1,7	-9,8	54	30	32	46	22	1,826	54,226	56,028	27,4	20,3	92,849	1,067
190	15	-2,6	-14,8	49	27	29	50	14	1,727	54,328	56,010	27,4	20,3	92,848	1,067
190	20	-3,5	-19,7	43	24	27	53	6	1,628	54,430	55,992	27,4	20,3	92,848	1,067
190	25	-4,3	-24,6	32	20	23	56	1	1,531	54,532	55,974	27,4	20,3	92,847	1,067
190	30	-5,2	-29,5	19	16	19	57	-6	1,434	54,632	55,957	27,4	20,3	92,846	1,067
190	35	-6,1	-34,5	2	12	15	57	-13	1,338	54,730	55,939	27,4	20,3	92,846	1,067
190	40	-6,9	-39,4	-19	-14	9	56	-20	1,245	54,827	55,922	27,4	20,2	92,845	1,067
190	45	-7,8	-44,3	-38	-36	-8	54	-39	1,153	54,922	55,905	27,4	20,2	92,845	1,067
190	50	-8,7	-49,2	-53	-47	-19	49	-49	1,063	55,015	55,889	27,4	20,2	92,844	1,067
190	55	-9,6	-54,2	-67	-65	-27	43	-57	0,975	55,106	55,873	27,4	20,2	92,844	1,067
190	60	-10,4	-59,1	-76	-72	-18	38	-64	0,890	55,194	55,857	27,4	20,2	92,843	1,067
195	0	0,0	0,0	57	33	32	34	35	0,807	55,280	55,842	27,4	20,2	92,842	1,067
195	5	-1,3	-4,8	57	32	33	40	29	0,726	55,364	55,827	27,4	20,2	92,842	1,067
195	10	-2,6	-9,7	55	29	33	45	22	0,646	55,446	55,812	27,4	20,2	92,841	1,067
195	15	-3,9	-14,5	50	26	30	49	15	0,569	55,526	55,797	27,4	20,2	92,841	1,067
195	20	-5,2	-19,3	43	22	28	53	8	0,492	55,605	55,783	27,4	20,1	92,840	1,067
195	25	-6,5	-24,1	32	18	25	55	1	0,418	55,682	55,769	27,4	20,1	92,840	1,067
195	30	-7,8	-29,0	18	15	21	56	-6	0,345	55,757	55,755	27,4	20,1	92,839	1,067
195	35	-9,1	-33,8	1	6	16	56	-14	0,274	55,831	55,742	27,4	20,1	92,839	1,067
195	40	-10,4	-38,6	-18	-28	12	54	-19	0,204	55,903	55,729	27,4	20,1	92,838	1,067
195	45	-11,6	-43,5	-35	-43	9	52	-39	0,136	55,973	55,716	27,4	20,1	92,838	1,067
195	50	-12,9	-48,3	-52	-59	2	48	-56	0,069	56,042	55,703	27,4	20,1	92,837	1,067
195	55	-14,2	-53,1	-68	-72	1	43	-68	0,004	56,109	55,691	27,4	20,1	92,837	1,067
195	60	-15,5	-58,0	-78	-84	-2	36	-69	-0,059	56,174	55,679	27,4	20,1	92,836	1,067
195	-5	1,3	4,8	59	36	30	30	40	-0,121	56,238	55,667	27,4	20,1	92,836	1,067
195	-10	2,6	9,7	56	36	29	24	45	-0,181	56,301	55,656	27,4	20,1	92,835	1,067
195	-15	3,9	14,5	52	35	27	18	49	-0,240	56,361	55,644	27,4	20,1	92,835	1,067
195	-20	5,2	19,3	44	32	24	10	54	-0,297	56,420	55,633	27,4	20,1	92,834	1,067
195	-25	6,5	24,1	34	29	20	2	56	-0,353	56,478	55,622	27,4	20,0	92,834	1,067
195	-30	7,8	29,0	21	25	19	-3	58	-0,407	56,534	55,612	27,4	20,0	92,833	1,067
195	-35	9,1	33,8	3	20	10	-10	57	-0,460	56,589	55,602	27,4	20,0	92,833	1,067
195	-40	10,4	38,6	-16	16	-29	-18	57	-0,512	56,642	55,592	27,4	20,0	92,832	1,068
195	-45	11,6	43,5	-32	12	-45	-46	54	-0,562	56,693	55,582	27,4	20,0	92,832	1,068
195	-50	12,9	48,3	-49	6	-57	-64	51	-0,610	56,743	55,572	27,4	20,0	92,832	1,068
195	-55	14,2	53,1	-66	4	-71	-73	45	-0,657	56,792	55,563	27,4	20,0	92,831	1,068
195	-60	15,5	58,0	-80	2	-80	-80	39	-0,703	56,839	55,554	27,4	20,0	92,831	1,068
200	0	0,0	0,0	57	36	33	35	34	-0,747	56,884	55,545	27,4	20,0	92,830	1,068
200	-5	1,7	4,7	57	37	31	30	40	-0,790	56,929	55,536	27,4	20,0	92,830	1,068
200	-10	3,4	9,4	54	37	29	25	44	-0,832	56,972	55,528	27,4	20,0	92,829	1,068
200	-15	5,1	14,1	51	36	25	18	49	-0,872	57,013	55,520	27,4	20,0	92,829	1,068

Ângulo g (graus)	Ângulo a (graus)	Ângulo de guinada ψ (graus)	Ângulo de arfagem δ (graus)	p1 (Pa)	p2 (Pa)	p3 (Pa)	p4 (Pa)	p5 (Pa)	P est (Pa)	P din (Pa)	Ptotal (Pa)	Temperatura de Bulbo Seco (jato) °C	Temperatura de Bulbo Úmido °C	Patm (kPa)	massa específica do ar (kg/m3)
200	-20	6,8	18,8	43	34	22	11	53	-0,911	57,053	55,512	27,4	20,0	92,829	1,068
200	-25	8,6	23,5	34	32	19	4	55	-0,949	57,092	55,504	27,4	20,0	92,828	1,068
200	-30	10,3	28,2	21	28	18	-3	57	-0,985	57,129	55,496	27,4	20,0	92,828	1,068
200	-35	12,0	32,9	5	24	15	-11	56	-1,020	57,165	55,489	27,4	20,0	92,827	1,068
200	-40	13,7	37,6	-17	18	-37	-18	55	-1,054	57,200	55,482	27,4	20,0	92,827	1,068
200	-45	15,4	42,3	-31	15	-53	-34	53	-1,086	57,233	55,475	27,4	20,0	92,826	1,068
200	-50	17,1	47,0	-45	10	-63	-66	48	-1,117	57,265	55,468	27,4	20,0	92,826	1,068
200	-55	18,8	51,7	-61	5	-74	-76	44	-1,147	57,296	55,462	27,4	20,0	92,826	1,068
200	-60	20,5	56,4	-79	0	-88	-85	37	-1,176	57,325	55,456	27,4	20,0	92,825	1,068
200	5	-1,7	-4,7	57	30	34	38	29	-1,203	57,353	55,450	27,4	20,0	92,825	1,068
200	10	-3,4	-9,4	54	27	33	42	23	-1,229	57,380	55,444	27,4	20,0	92,825	1,068
200	15	-5,1	-14,1	50	24	32	46	16	-1,254	57,406	55,438	27,4	20,0	92,824	1,068
200	20	-6,8	-18,8	42	19	30	50	8	-1,278	57,430	55,433	27,4	20,0	92,824	1,068
200	25	-8,6	-23,5	32	16	28	53	1	-1,301	57,453	55,427	27,4	19,9	92,823	1,068
200	30	-10,3	-28,2	19	15	23	53	-5	-1,322	57,475	55,422	27,4	19,9	92,823	1,068
200	35	-12,0	-32,9	1	8	19	54	-14	-1,343	57,496	55,417	27,4	19,9	92,823	1,068
200	40	-13,7	-37,6	-18	-37	14	52	-21	-1,362	57,516	55,413	27,4	19,9	92,822	1,068
200	45	-15,4	-42,3	-35	-55	10	48	-51	-1,380	57,534	55,408	27,4	19,9	92,822	1,068
200	50	-17,1	-47,0	-49	-66	5	44	-70	-1,397	57,551	55,404	27,4	19,9	92,822	1,068
200	55	-18,8	-51,7	-66	-77	1	39	-84	-1,413	57,568	55,400	27,4	19,9	92,821	1,068
200	60	-20,5	-56,4	-81	-86	-4	33	-92	-1,428	57,583	55,396	27,4	19,9	92,821	1,068
205	0	0,0	0,0	56	32	32	33	35	-1,442	57,597	55,392	27,4	19,9	92,821	1,068
205	5	-2,1	-4,5	55	30	34	38	29	-1,454	57,609	55,389	27,4	19,9	92,820	1,068
205	10	-4,2	-9,1	54	27	34	42	23	-1,466	57,621	55,385	27,4	19,9	92,820	1,068
205	15	-6,3	-13,6	49	23	34	46	16	-1,477	57,632	55,382	27,4	19,9	92,820	1,068
205	20	-8,5	-18,1	42	18	32	49	9	-1,486	57,641	55,379	27,4	19,9	92,819	1,068
205	25	-10,6	-22,7	33	15	30	51	2	-1,495	57,650	55,376	27,4	19,9	92,819	1,068
205	30	-12,7	-27,2	20	14	27	51	-5	-1,502	57,657	55,373	27,4	19,9	92,819	1,067
205	35	-14,8	-31,7	3	15	23	51	-13	-1,509	57,664	55,371	27,4	19,9	92,818	1,067
205	40	-16,9	-36,3	-15	-32	18	50	-20	-1,514	57,670	55,368	27,4	19,9	92,818	1,067
205	45	-19,0	-40,8	-31	-63	14	47	-34	-1,519	57,674	55,366	27,4	20,0	92,818	1,067
205	50	-21,1	-45,3	-45	-71	8	43	-77	-1,523	57,678	55,364	27,4	20,0	92,817	1,067
205	55	-23,2	-49,8	-62	-80	2	37	-85	-1,526	57,680	55,362	27,4	20,0	92,817	1,067
205	60	-25,4	-54,4	-76	-87	-4	30	-89	-1,528	57,682	55,360	27,4	20,0	92,817	1,067
205	-5	2,1	4,5	57	36	30	29	39	-1,529	57,682	55,359	27,4	20,0	92,816	1,067
205	-10	4,2	9,1	56	37	27	24	45	-1,529	57,682	55,357	27,4	20,0	92,816	1,067
205	-15	6,3	13,6	52	37	23	18	49	-1,528	57,681	55,356	27,4	20,0	92,816	1,067
205	-20	8,5	18,1	45	36	20	10	52	-1,526	57,679	55,355	27,4	20,0	92,815	1,067
205	-25	10,6	22,7	35	34	16	4	54	-1,524	57,676	55,354	27,4	20,0	92,815	1,067
205	-30	12,7	27,2	23	30	15	-3	55	-1,520	57,672	55,353	27,4	20,0	92,815	1,067

Ângulo g (graus)	Ângulo a (graus)	Ângulo de guinada ψ (graus)	Ângulo de arfagem δ (graus)	p1 (Pa)	p2 (Pa)	p3 (Pa)	p4 (Pa)	p5 (Pa)	P est (Pa)	P din (Pa)	Ptotal (Pa)	Temperatura de Bulbo Seco (jato) °C	Temperatura de Bulbo Úmido °C	Patm (kPa)	massa específica do ar (kg/m3)
205	-35	14,8	31,7	7	27	19	-11	56	-1,516	57,668	55,352	27,4	20,0	92,815	1,067
205	-40	16,9	36,3	-13	22	-30	-18	54	-1,511	57,662	55,352	27,4	20,0	92,814	1,067
205	-45	19,0	40,8	-30	18	-59	-27	51	-1,505	57,656	55,351	27,4	20,0	92,814	1,067
205	-50	21,1	45,3	-42	13	-71	-73	47	-1,499	57,648	55,351	27,4	20,0	92,814	1,067
205	-55	23,2	49,8	-57	8	-79	-76	42	-1,491	57,640	55,350	27,5	20,0	92,813	1,067
205	-60	25,4	54,4	-73	1	-82	-82	36	-1,483	57,632	55,350	27,5	20,0	92,813	1,067
210	0	0,0	0,0	58	35	33	37	34	-1,474	57,622	55,350	27,5	20,0	92,813	1,067
210	-5	2,5	4,3	58	38	31	32	39	-1,465	57,612	55,351	27,5	20,0	92,813	1,067
210	-10	5,0	8,7	56	39	27	26	44	-1,454	57,601	55,351	27,5	20,0	92,812	1,067
210	-15	7,5	13,0	53	39	23	20	46	-1,443	57,589	55,351	27,5	20,0	92,812	1,067
210	-20	10,0	17,3	46	39	17	14	50	-1,431	57,576	55,352	27,5	20,0	92,812	1,067
210	-25	12,5	21,7	36	38	16	8	53	-1,419	57,563	55,352	27,5	20,0	92,811	1,067
210	-30	15,0	26,0	24	35	13	1	53	-1,406	57,549	55,353	27,5	20,0	92,811	1,067
210	-35	17,5	30,3	9	31	19	-6	53	-1,392	57,534	55,354	27,5	20,0	92,811	1,067
210	-40	20,0	34,6	-8	28	-13	-12	52	-1,377	57,519	55,355	27,5	20,0	92,811	1,067
210	-45	22,5	39,0	-26	23	-54	-27	48	-1,362	57,503	55,356	27,5	20,0	92,810	1,067
210	-50	25,0	43,3	-40	18	-75	-74	43	-1,347	57,486	55,357	27,5	20,0	92,810	1,067
210	-55	27,5	47,6	-54	13	-85	-77	39	-1,330	57,469	55,358	27,5	20,0	92,810	1,067
210	-60	30,0	52,0	-68	7	-86	-80	32	-1,313	57,451	55,360	27,5	20,0	92,810	1,067
210	5	-2,5	-4,3	58	31	36	39	30	-1,296	57,433	55,361	27,5	20,0	92,809	1,067
210	10	-5,0	-8,7	56	26	38	44	23	-1,278	57,414	55,363	27,5	20,1	92,809	1,067
210	15	-7,5	-13,0	52	22	37	47	16	-1,259	57,394	55,365	27,5	20,1	92,809	1,067
210	20	-10,0	-17,3	45	17	37	51	9	-1,240	57,374	55,366	27,5	20,1	92,809	1,067
210	25	-12,5	-21,7	36	14	36	53	3	-1,220	57,353	55,368	27,5	20,1	92,808	1,067
210	30	-15,0	-26,0	24	12	33	54	-3	-1,200	57,331	55,370	27,5	20,1	92,808	1,067
210	35	-17,5	-30,3	7	15	28	53	-11	-1,179	57,309	55,372	27,5	20,1	92,808	1,067
210	40	-20,0	-34,6	-12	-23	24	50	-17	-1,158	57,287	55,374	27,5	20,1	92,808	1,067
210	45	-22,5	-39,0	-28	-61	20	48	-32	-1,136	57,264	55,376	27,6	20,1	92,807	1,067
210	50	-25,0	-43,3	-40	-79	14	42	-83	-1,114	57,241	55,379	27,6	20,1	92,807	1,067
210	55	-27,5	-47,6	-56	-88	9	38	-84	-1,091	57,217	55,381	27,6	20,1	92,807	1,066
210	60	-30,0	-52,0	-70	-90	3	31	-91	-1,068	57,192	55,383	27,6	20,1	92,807	1,066
215	0	0,0	0,0	58	33	34	36	35	-1,044	57,168	55,386	27,6	20,1	92,806	1,066
215	5	-2,9	-4,1	58	30	37	41	30	-1,020	57,142	55,388	27,6	20,1	92,806	1,066
215	10	-5,7	-8,2	56	26	38	44	24	-0,996	57,117	55,391	27,6	20,1	92,806	1,066
215	15	-8,6	-12,3	51	22	39	47	18	-0,971	57,091	55,394	27,6	20,1	92,806	1,066
215	20	-11,5	-16,4	44	16	39	50	11	-0,946	57,064	55,396	27,6	20,1	92,805	1,066
215	25	-14,3	-20,5	36	13	38	53	4	-0,920	57,037	55,399	27,6	20,1	92,805	1,066
215	30	-17,2	-24,6	24	9	36	53	-2	-0,894	57,010	55,402	27,6	20,1	92,805	1,066
215	35	-20,1	-28,7	7	13	32	51	-9	-0,868	56,982	55,405	27,6	20,2	92,805	1,066
215	40	-22,9	-32,8	-9	0	29	49	-14	-0,842	56,954	55,408	27,6	20,2	92,804	1,066

Ângulo g (graus)	Ângulo a (graus)	Ângulo de guinada ψ (graus)	Ângulo de arfagem δ (graus)	p1 (Pa)	p2 (Pa)	p3 (Pa)	p4 (Pa)	p5 (Pa)	P est (Pa)	P din (Pa)	Ptotal (Pa)	Temperatura de Bulbo Seco (jato) °C	Temperatura de Bulbo Úmido °C	Patm (kPa)	massa específica do ar (kg/m3)
215	45	-25,8	-36,9	-27	-64	24	46	-40	-0,815	56,926	55,411	27,6	20,2	92,804	1,066
215	50	-28,7	-41,0	-40	-83	18	41	-87	-0,787	56,898	55,414	27,6	20,2	92,804	1,066
215	55	-31,5	-45,1	-53	-94	13	35	89	-0,760	56,869	55,417	27,6	20,2	92,804	1,066
215	60	-34,4	-49,1	-66	-97	8	29	-95	-0,732	56,840	55,420	27,6	20,2	92,804	1,066
215	-5	2,9	4,1	58	37	32	32	39	-0,704	56,810	55,424	27,6	20,2	92,803	1,066
215	-10	5,7	8,2	56	39	29	27	44	-0,676	56,780	55,427	27,6	20,2	92,803	1,066
215	-15	8,6	12,3	53	39	24	21	48	-0,647	56,750	55,430	27,7	20,2	92,803	1,066
215	-20	11,5	16,4	45	39	20	14	50	-0,618	56,720	55,434	27,7	20,2	92,803	1,066
215	-25	14,3	20,5	36	39	16	8	52	-0,589	56,690	55,437	27,7	20,2	92,802	1,066
215	-30	17,2	24,6	23	37	14	1	53	-0,560	56,659	55,440	27,7	20,2	92,802	1,066
215	-35	20,1	28,7	8	33	19	-5	52	-0,531	56,628	55,444	27,7	20,2	92,802	1,066
215	-40	22,9	32,8	-9	30	-15	-10	51	-0,501	56,597	55,447	27,7	20,2	92,802	1,066
215	-45	25,8	36,9	-27	26	-61	-41	46	-0,471	56,566	55,451	27,7	20,2	92,801	1,066
215	-50	28,7	41,0	-39	21	-78	-76	42	-0,441	56,534	55,454	27,7	20,3	92,801	1,066
215	-55	31,5	45,1	-52	16	-87	-76	37	-0,411	56,503	55,458	27,7	20,3	92,801	1,066
215	-60	34,4	49,1	-65	10	-88	-80	30	-0,381	56,471	55,461	27,7	20,3	92,801	1,066
220	0	0,0	0,0	59	34	35	38	35	-0,351	56,439	55,465	27,7	20,3	92,801	1,066
220	-5	3,2	3,8	59	37	31	33	39	-0,320	56,407	55,469	27,7	20,3	92,800	1,065
220	-10	6,4	7,7	56	39	28	29	43	-0,290	56,376	55,472	27,7	20,3	92,800	1,065
220	-15	9,6	11,5	53	41	23	22	47	-0,259	56,343	55,476	27,7	20,3	92,800	1,065
220	-20	12,9	15,3	46	42	18	17	49	-0,229	56,311	55,479	27,7	20,3	92,800	1,065
220	-25	16,1	19,2	36	41	14	10	51	-0,198	56,279	55,483	27,7	20,3	92,799	1,065
220	-30	19,3	23,0	24	40	12	4	51	-0,167	56,247	55,487	27,7	20,3	92,799	1,065
220	-35	22,5	26,8	9	37	15	-2	50	-0,136	56,215	55,490	27,8	20,3	92,799	1,065
220	-40	25,7	30,6	-8	33	-6	-6	48	-0,106	56,182	55,494	27,8	20,3	92,799	1,065
220	-45	28,9	34,5	-25	30	-60	-35	44	-0,075	56,150	55,498	27,8	20,3	92,799	1,065
220	-50	32,1	38,3	-39	25	-82	-80	39	-0,044	56,118	55,501	27,8	20,3	92,798	1,065
220	-55	35,4	42,1	-52	20	-89	-83	34	-0,013	56,085	55,505	27,8	20,3	92,798	1,065
220	-60	38,6	46,0	-62	14	-90	-83	28	0,017	56,053	55,509	27,8	20,4	92,798	1,065
220	5	-3,2	-3,8	59	31	36	41	29	0,048	56,021	55,512	27,8	20,4	92,798	1,065
220	10	-6,4	-7,7	56	27	37	46	24	0,079	55,989	55,516	27,8	20,4	92,797	1,065
220	15	-9,6	-11,5	53	22	39	49	18	0,109	55,957	55,519	27,8	20,4	92,797	1,065
220	20	-12,9	-15,3	46	17	40	51	11	0,140	55,925	55,523	27,8	20,4	92,797	1,065
220	25	-16,1	-19,2	36	12	39	52	4	0,170	55,893	55,527	27,8	20,4	92,797	1,065
220	30	-19,3	-23,0	25	8	38	52	-1	0,200	55,861	55,530	27,8	20,4	92,796	1,065
220	35	-22,5	-26,8	9	11	35	51	-7	0,230	55,830	55,534	27,8	20,4	92,796	1,065
220	40	-25,7	-30,6	-8	5	31	48	-12	0,260	55,798	55,537	27,8	20,4	92,796	1,065
220	45	-28,9	-34,5	-24	-59	28	44	-34	0,290	55,767	55,541	27,8	20,4	92,796	1,065
220	50	-32,1	-38,3	-40	-87	22	-39	-90	0,320	55,736	55,544	27,8	20,4	92,796	1,065
220	55	-35,4	-42,1	-52	-95	17	33	-94	0,349	55,705	55,547	27,8	20,4	92,795	1,065

Ângulo g (graus)	Ângulo a (graus)	Ângulo de guinada ψ (graus)	Ângulo de arfagem δ (graus)	p1 (Pa)	p2 (Pa)	p3 (Pa)	p4 (Pa)	p5 (Pa)	P est (Pa)	P din (Pa)	Ptotal (Pa)	Temperatura de Bulbo Seco (jato) °C	Temperatura de Bulbo Úmido ℃	Patm (kPa)	massa específica do ar (kg/m3)
220	60	-38,6	-46,0	-63	-97	11	28	-93	0,379	55,674	55,551	27,8	20,4	92,795	1,065
225	0	0,0	0,0	59	34	34	37	34	0,408	55,644	55,554	27,9	20,4	92,795	1,065
225	5	-3,5	-3,5	58	30	36	40	29	0,436	55,614	55,558	27,9	20,5	92,795	1,065
225	10	-7,1	-7,1	57	26	39	43	25	0,465	55,583	55,561	27,9	20,5	92,794	1,064
225	15	-10,6	-10,6	52	19	40	47	18	0,494	55,554	55,564	27,9	20,5	92,794	1,064
225	20	-14,1	-14,1	45	15	42	48	13	0,522	55,524	55,567	27,9	20,5	92,794	1,064
225	25	-17,7	-17,7	37	10	42	50	7	0,550	55,495	55,570	27,9	20,5	92,794	1,064
225	30	-21,2	-21,2	26	7	41	50	1	0,577	55,466	55,573	27,9	20,5	92,793	1,064
225	35	-24,7	-24,7	10	7	38	48	-3	0,604	55,437	55,576	27,9	20,5	92,793	1,064
225	40	-28,3	-28,3	-8	3	35	45	-5	0,631	55,409	55,579	27,9	20,5	92,793	1,064
225	45	-31,8	-31,8	-25	-50	31	40	-54	0,658	55,381	55,582	27,9	20,5	92,793	1,064
225	50	-35,4	-35,4	-41	-89	26	35	-92	0,685	55,353	55,585	27,9	20,5	92,792	1,064
225	55	-38,9	-38,9	-55	-98	21	29	-100	0,711	55,326	55,588	27,9	20,5	92,792	1,064
225	60	-42,4	-42,4	-54	-98	20	29	-101	0,736	55,299	55,591	27,9	20,5	92,792	1,064
225	-5	3,5	3,5	59	38	31	32	40	0,762	55,272	55,593	27,9	20,5	92,792	1,064
225	-10	7,1	7,1	57	40	26	27	45	0,786	55,246	55,596	27,9	20,5	92,791	1,064
225	-15	10,6	10,6	52	42	21	21	48	0,811	55,220	55,599	27,9	20,5	92,791	1,064
225	-20	14,1	14,1	44	43	17	15	49	0,835	55,195	55,601	27,9	20,5	92,791	1,064
225	-25	17,7	17,7	35	43	13	9	50	0,859	55,170	55,604	27,9	20,6	92,791	1,064
225	-30	21,2	21,2	24	42	9	4	40	0,882	55,145	55,606	28,0	20,6	92,790	1,064
225	-35	24,7	24,7	9	40	13	-1	48	0,905	55,121	55,608	28,0	20,6	92,790	1,064
225	-40	28,3	28,3	-10	37	-4	-3	45	0,927	55,098	55,610	28,0	20,6	92,790	1,064
225	-45	31,8	31,8	-28	33	-61	-55	41	0,949	55,074	55,612	28,0	20,6	92,790	1,064
225	-50	35,4	35,4	-41	28	-88	-86	36	0,971	55,052	55,615	28,0	20,6	92,789	1,064
225	-55	38,9	38,9	-53	23	-94	-91	30	0,992	55,030	55,616	28,0	20,6	92,789	1,064
225	-60	42,4	42,4	-63	17	-91	-87	23	1,012	55,008	55,618	28,0	20,6	92,789	1,064
230	0	0,0	0,0	60	34	35	36	35	1,032	54,987	55,620	28,0	20,6	92,789	1,064
230	-5	3,8	3,2	59	38	32	33	40	1,051	54,967	55,622	28,0	20,6	92,788	1,064
230	-10	7,7	6,4	57	41	28	28	44	1,070	54,947	55,623	28,0	20,6	92,788	1,064
230	-15	11,5	9,6	53	44	21	22	46	1,088	54,928	55,625	28,0	20,6	92,788	1,064
230	-20	15,3	12,9	46	45	16	17	47	1,106	54,909	55,626	28,0	20,6	92,787	1,064
230	-25	19,2	16,1	36	45	10	10	47	1,123	54,891	55,627	28,0	20,6	92,787	1,064
230	-30	23,0	19,3	21	44	4	6	47	1,140	54,873	55,629	28,0	20,6	92,787	1,063
230	-35	26,8	22,5	5	41	3	3	45	1,155	54,856	55,630	28,0	20,6	92,787	1,063
230	-40	30,6	25,7	-12	39	2	-5	43	1,171	54,840	55,631	28,0	20,6	92,786	1,063
230	-45	34,5	28,9	-31	36	-61	-57	38	1,185	54,825	55,632	28,0	20,6	92,786	1,063
230	-50	38,3	32,1	-45	31	-92	-89	32	1,199	54,810	55,632	28,0	20,6	92,786	1,063
230	-55	42,1	35,4	-59	25	-97	-96	26	1,213	54,796	55,633	28,0	20,7	92,785	1,063
230	-60	46,0	38,6	-68	20	-96	-93	21	1,225	54,782	55,634	28,0	20,7	92,785	1,063
230	5	-3,8	-3,2	55	28	37	39	31	1,237	54,769	55,634	28,1	20,7	92,785	1,063

Ângulo g (graus)	Ângulo a (graus)	Ângulo de guinada ψ (graus)	Ângulo de arfagem δ (graus)	p1 (Pa)	p2 (Pa)	p3 (Pa)	p4 (Pa)	p5 (Pa)	P est (Pa)	P din (Pa)	Ptotal (Pa)	Temperatura de Bulbo Seco (jato) °C	Temperatura de Bulbo Úmido ℃	Patm (kPa)	massa específica do ar (kg/m3)
230	10	-7,7	-6,4	53	23	40	41	26	1,249	54,757	55,634	28,1	20,7	92,785	1,063
230	15	-11,5	-9,6	50	17	43	43	19	1,259	54,746	55,634	28,1	20,7	92,784	1,063
230	20	-15,3	-12,9	44	12	43	45	14	1,269	54,735	55,634	28,1	20,7	92,784	1,063
230	25	-19,2	-16,1	34	6	44	45	9	1,278	54,725	55,634	28,1	20,7	92,784	1,063
230	30	-23,0	-19,3	22	0	44	44	4	1,287	54,716	55,634	28,1	20,7	92,783	1,063
230	35	-26,8	-22,5	6	-5	42	42	3	1,294	54,708	55,634	28,1	20,7	92,783	1,063
230	40	-30,6	-25,7	-11	-5	39	39	-12	1,301	54,701	55,633	28,1	20,7	92,783	1,063
230	45	-34,5	-28,9	-31	-49	35	34	-65	1,307	54,694	55,633	28,1	20,7	92,782	1,063
230	50	-38,3	-32,1	-46	-91	31	30	-96	1,312	54,688	55,632	28,1	20,7	92,782	1,063
230	55	-42,1	-35,4	-60	-101	24	24	-103	1,317	54,683	55,631	28,1	20,7	92,782	1,063
230	60	-46,0	-38,6	-70	-102	19	18	-104	1,320	54,679	55,630	28,1	20,7	92,781	1,063
235	0	0,0	0,0	56	32	32	35	35	1,323	54,676	55,629	28,1	20,7	92,781	1,063
235	5	-4,1	-2,9	56	28	36	38	31	1,325	54,673	55,628	28,1	20,7	92,781	1,063
235	10	-8,2	-5,7	54	23	40	41	27	1,328	54,670	55,627	28,1	20,7	92,780	1,063
235	15	-12,3	-8,6	49	16	44	41	21	1,330	54,668	55,625	28,1	20,7	92,780	1,063
235	20	-16,4	-11,5	42	10	45	43	16	1,332	54,665	55,624	28,1	20,7	92,780	1,063
235	25	-20,5	-14,3	32	5	47	43	12	1,335	54,662	55,623	28,1	20,7	92,779	1,063
235	30	-24,6	-17,2	20	-1	46	41	8	1,337	54,659	55,622	28,1	20,7	92,779	1,063
235	35	-28,7	-20,1	4	-7	45	40	10	1,339	54,656	55,620	28,1	20,7	92,779	1,063
235	40	-32,8	-22,9	-15	-9	42	36	-23	1,342	54,654	55,619	28,1	20,7	92,778	1,063
235	45	-36,9	-25,8	-32	-45	39	31	-69	1,344	54,651	55,618	28,1	20,7	92,778	1,063
235	50	-41,0	-28,7	-48	-90	34	26	-93	1,346	54,648	55,617	28,1	20,7	92,778	1,063
235	55	-45,1	-31,5	-61	-98	29	21	-99	1,349	54,645	55,615	28,1	20,7	92,777	1,063
235	60	-49,1	-34,4	-72	-97	23	15	-100	1,351	54,642	55,614	28,1	20,7	92,777	1,063
235	-5	4,1	2,9	56	38	29	34	37	1,353	54,640	55,613	28,1	20,7	92,777	1,063
235	-10	8,2	5,7	55	41	24	29	40	1,356	54,637	55,612	28,2	20,7	92,776	1,063
235	-15	12,3	8,6	50	44	18	24	42	1,358	54,634	55,610	28,2	20,7	92,776	1,063
235	-20	16,4	11,5	43	46	12	18	44	1,361	54,631	55,609	28,2	20,7	92,776	1,063
235	-25	20,5	14,3	34	48	7	14	44	1,363	54,628	55,608	28,2	20,7	92,775	1,063
235	-30	24,6	17,2	23	48	2	10	43	1,365	54,625	55,607	28,2	20,7	92,775	1,063
235	-35	28,7	20,1	7	47	-3	12	41	1,368	54,623	55,605	28,2	20,8	92,775	1,063
235	-40	32,8	22,9	-10	44	-7	5	37	1,370	54,620	55,604	28,2	20,8	92,774	1,063
235	-45	36,9	25,8	-28	41	-46	-54	34	1,372	54,617	55,603	28,2	20,8	92,774	1,063
235	-50	41,0	28,7	-44	36	-86	-85	28	1,375	54,614	55,602	28,2	20,8	92,774	1,063
235	-55	45,1	31,5	-56	31	-93	-91	24	1,377	54,611	55,600	28,2	20,8	92,773	1,062
235	-60	49,1	34,4	-66	26	-90	-90	17	1,380	54,608	55,599	28,2	20,8	92,773	1,062
240	0	0,0	0,0	56	33	33	37	35	1,382	54,606	55,598	28,2	20,8	92,773	1,062
240	-5	4,3	2,5	56	38	29	34	38	1,384	54,603	55,597	28,2	20,8	92,772	1,062
240	-10	8,7	5,0	55	42	24	29	40	1,387	54,600	55,595	28,2	20,8	92,772	1,062
240	-15	13,0	7,5	51	45	18	24	42	1,389	54,597	55,594	28,2	20,8	92,772	1,062

Ângulo g (graus)	Ângulo a (graus)	Ângulo de guinada ψ (graus)	Ângulo de arfagem δ (graus)	p1 (Pa)	p2 (Pa)	p3 (Pa)	p4 (Pa)	p5 (Pa)	P est (Pa)	P din (Pa)	Ptotal (Pa)	Temperatura de Bulbo Seco (jato) °C	Temperatura de Bulbo Úmido °C	Patm (kPa)	massa específica do ar (kg/m3)
240	-20	17,3	10,0	42	48	11	19	42	1,391	54,594	55,593	28,2	20,8	92,771	1,062
240	-25	21,7	12,5	34	50	6	16	41	1,394	54,591	55,592	28,2	20,8	92,771	1,062
240	-30	26,0	15,0	21	50	0	13	40	1,396	54,588	55,590	28,2	20,8	92,771	1,062
240	-35	30,3	17,5	5	49	-6	16	36	1,399	54,586	55,589	28,2	20,8	92,770	1,062
240	-40	34,6	20,0	-11	48	-10	-4	34	1,401	54,583	55,588	28,2	20,8	92,770	1,062
240	-45	39,0	22,5	-29	44	-45	-61	29	1,403	54,580	55,587	28,2	20,8	92,769	1,062
240	-50	43,3	25,0	-44	40	-84	-82	24	1,406	54,577	55,585	28,2	20,8	92,769	1,062
240	-55	47,6	27,5	-57	35	-86	-88	19	1,408	54,574	55,584	28,2	20,8	92,769	1,062
240	-60	52,0	30,0	-68	30	-86	-86	13	1,411	54,571	55,583	28,2	20,8	92,768	1,062
240	5	-4,3	-2,5	56	27	37	38	31	1,413	54,568	55,582	28,2	20,8	92,768	1,062
240	10	-8,7	-5,0	56	22	43	40	27	1,415	54,566	55,580	28,2	20,8	92,768	1,062
240	15	-13,0	-7,5	50	16	45	42	22	1,418	54,563	55,579	28,3	20,8	92,767	1,062
240	20	-17,3	-10,0	45	10	47	41	17	1,420	54,560	55,578	28,3	20,8	92,767	1,062
240	25	-21,7	-12,5	33	4	49	41	13	1,423	54,557	55,577	28,3	20,8	92,767	1,062
240	30	-26,0	-15,0	21	-2	49	39	10	1,425	54,554	55,575	28,3	20,8	92,766	1,062
240	35	-30,3	-17,5	2	-9	48	37	14	1,427	54,551	55,574	28,3	20,8	92,766	1,062
240	40	-34,6	-20,0	-17	-12	45	32	-31	1,430	54,548	55,573	28,3	20,8	92,766	1,062
240	45	-39,0	-22,5	-34	-47	41	28	-76	1,432	54,545	55,571	28,3	20,8	92,765	1,062
240	50	-43,3	-25,0	-50	-88	37	23	-90	1,435	54,542	55,570	28,3	20,8	92,765	1,062
240	55	-47,6	-27,5	-65	-94	32	16	-97	1,437	54,540	55,569	28,3	20,8	92,765	1,062
240	60	-52,0	-30,0	-75	-94	26	11	-98	1,439	54,537	55,568	28,3	20,8	92,764	1,062
245	0	0,0	0,0	56	32	32	35	34	1,442	54,534	55,566	28,3	20,8	92,764	1,062
245	5	-4,5	-2,1	56	27	37	37	32	1,444	54,531	55,565	28,3	20,8	92,764	1,062
245	10	-9,1	-4,2	55	22	42	39	29	1,447	54,528	55,564	28,3	20,8	92,763	1,062
245	15	-13,6	-6,3	50	16	46	40	23	1,449	54,525	55,563	28,3	20,8	92,763	1,062
245	20	-18,1	-8,5	42	9	48	40	18	1,452	54,522	55,561	28,3	20,8	92,763	1,062
245	25	-22,7	-10,6	32	3	51	38	16	1,454	54,519	55,560	28,3	20,9	92,762	1,062
245	30	-27,2	-12,7	19	-4	50	35	15	1,456	54,516	55,559	28,3	20,9	92,762	1,062
245	35	-31,7	-14,8	1	-11	50	32	17	1,459	54,513	55,557	28,3	20,9	92,762	1,062
245	40	-36,3	-16,9	-19	-17	48	28	-25	1,461	54,511	55,556	28,3	20,9	92,761	1,062
245	45	-40,8	-19,0	-38	-35	45	24	-73	1,464	54,508	55,555	28,3	20,9	92,761	1,062
245	50	-45,3	-21,1	-51	-82	40	19	-85	1,466	54,505	55,554	28,3	20,9	92,760	1,062
245	55	-49,8	-23,2	-67	-87	36	14	-94	1,469	54,502	55,552	28,3	20,9	92,760	1,062
245	60	-54,4	-25,4	-81	-92	29	7	-95	1,471	54,499	55,551	28,3	20,9	92,760	1,062
245	-5	4,5	2,1	57	36	29	31	39	1,474	54,496	55,550	28,3	20,9	92,759	1,062
245	-10	9,1	4,2	54	41	23	28	42	1,476	54,493	55,548	28,3	20,9	92,759	1,062
245	-15	13,6	6,3	51	44	18	23	42	1,478	54,490	55,547	28,4	20,9	92,759	1,062
245	-20	18,1	8,5	42	47	11	19	43	1,481	54,487	55,546	28,4	20,9	92,758	1,062
245	-25	22,7	10,6	34	49	6	15	43	1,483	54,484	55,545	28,4	20,9	92,758	1,062
245	-30	27,2	12,7	22	49	0	13	40	1,486	54,481	55,543	28,4	20,9	92,758	1,061

Ângulo g (graus)	Ângulo a (graus)	Ângulo de guinada ψ (graus)	Ângulo de arfagem δ (graus)	p1 (Pa)	p2 (Pa)	p3 (Pa)	p4 (Pa)	p5 (Pa)	P est (Pa)	P din (Pa)	Ptotal (Pa)	Temperatura de Bulbo Seco (jato) °C	Temperatura de Bulbo Úmido ℃	Patm (kPa)	massa específica do ar (kg/m3)
245	-35	31,7	14,8	5	49	-6	16	37	1,488	54,478	55,542	28,4	20,9	92,757	1,061
245	-40	36,3	16,9	-15	47	-12	-18	33	1,491	54,475	55,541	28,4	20,9	92,757	1,061
245	-45	40,8	19,0	-31	44	-41	-66	28	1,493	54,472	55,539	28,4	20,9	92,757	1,061
245	-50	45,3	21,1	-44	40	-81	-79	23	1,496	54,469	55,538	28,4	20,9	92,756	1,061
245	-55	49,8	23,2	-56	35	-83	-85	18	1,498	54,467	55,537	28,4	20,9	92,756	1,061
245	-60	54,4	25,4	-69	30	-83	-84	12	1,501	54,464	55,536	28,4	20,9	92,756	1,061
250	0	0,0	0,0	56	32	34	34	37	1,503	54,461	55,534	28,4	20,9	92,755	1,061
250	-5	4,7	1,7	56	37	30	32	39	1,505	54,458	55,533	28,4	20,9	92,755	1,061
250	-10	9,4	3,4	53	42	23	28	41	1,508	54,455	55,532	28,4	20,9	92,755	1,061
250	-15	14,1	5,1	49	46	16	24	41	1,510	54,452	55,530	28,4	20,9	92,754	1,061
250	-20	18,8	6,8	43	49	11	21	41	1,513	54,449	55,529	28,4	20,9	92,754	1,061
250	-25	23,5	8,6	33	51	5	16	39	1,515	54,446	55,528	28,4	20,9	92,753	1,061
250	-30	28,2	10,3	19	52	-2	16	37	1,518	54,443	55,526	28,4	20,9	92,753	1,061
250	-35	32,9	12,0	1	52	-10	17	33	1,520	54,440	55,525	28,4	20,9	92,753	1,061
250	-40	37,6	13,7	-17	50	-15	-29	28	1,523	54,437	55,524	28,4	20,9	92,752	1,061
250	-45	42,3	15,4	-33	47	-47	-65	25	1,525	54,434	55,522	28,4	20,9	92,752	1,061
250	-50	47,0	17,1	-47	43	-75	-76	19	1,528	54,431	55,521	28,4	20,9	92,752	1,061
250	-55	51,7	18,8	-62	38	-79	-83	13	1,530	54,428	55,520	28,4	20,9	92,751	1,061
250	-60	56,4	20,5	-75	33	-83	-81	6	1,533	54,425	55,519	28,4	20,9	92,751	1,061
250	5	-4,7	-1,7	56	27	37	37	32	1,535	54,422	55,517	28,4	20,9	92,751	1,061
250	10	-9,4	-3,4	54	22	42	38	28	1,538	54,419	55,516	28,4	20,9	92,750	1,061
250	15	-14,1	-5,1	49	15	45	37	23	1,540	54,416	55,515	28,5	21,0	92,750	1,061
250	20	-18,8	-6,8	43	8	49	37	20	1,543	54,413	55,513	28,5	21,0	92,750	1,061
250	25	-23,5	-8,6	33	2	51	35	17	1,545	54,410	55,512	28,5	21,0	92,749	1,061
250	30	-28,2	-10,3	17	-5	52	32	15	1,548	54,407	55,511	28,5	21,0	92,749	1,061
250	35	-32,9	-12,0	0	-12	51	28	19	1,550	54,404	55,509	28,5	21,0	92,748	1,061
250	40	-37,6	-13,7	-20	-18	50	24	-27	1,553	54,401	55,508	28,5	21,0	92,748	1,061
250	45	-42,3	-15,4	-39	-37	47	20	-67	1,555	54,398	55,507	28,5	21,0	92,748	1,061
250	50	-47,0	-17,1	-55	-80	42	13	-81	1,558	54,395	55,505	28,5	21,0	92,747	1,061
250	55	-51,7	-18,8	-72	-84	37	9	-90	1,560	54,392	55,504	28,5	21,0	92,747	1,061
250	60	-56,4	-20,5	-85	-92	33	1	-91	1,563	54,389	55,503	28,5	21,0	92,747	1,061
255	0	0,0	0,0	56	32	31	35	35	1,565	54,386	55,501	28,5	21,0	92,746	1,061
255	5	-4,8	-1,3	56	28	37	37	33	1,568	54,383	55,500	28,5	21,0	92,746	1,061
255	10	-9,7	-2,6	53	21	41	37	30	1,570	54,380	55,499	28,5	21,0	92,746	1,061
255	15	-14,5	-3,9	50	15	46	36	26	1,573	54,377	55,497	28,5	21,0	92,745	1,061
255	20	-19,3	-5,2	42	7	51	35	21	1,575	54,374	55,496	28,5	21,0	92,745	1,061
255	25	-24,1	-6,5	31	1	52	32	18	1,578	54,371	55,495	28,5	21,0	92,745	1,061
255	30	-29,0	-7,8	17	-6	53	29	19	1,580	54,368	55,493	28,5	21,0	92,744	1,061
255	35	-33,8	-9,1	-2	-13	54	25	15	1,583	54,365	55,492	28,5	21,0	92,744	1,061
255	40	-38,6	-10,4	-24	-20	53	20	-40	1,585	54,362	55,491	28,5	21,0	92,743	1,061

Ângulo g (graus)	Ângulo a (graus)	Ângulo de guinada ψ (graus)	Ângulo de arfagem δ (graus)	p1 (Pa)	p2 (Pa)	p3 (Pa)	p4 (Pa)	p5 (Pa)	P est (Pa)	P din (Pa)	Ptotal (Pa)	Temperatura de Bulbo Seco (jato) °C	Temperatura de Bulbo Úmido ℃	Patm (kPa)	massa específica do ar (kg/m3)
255	45	-43,5	-11,6	-42	-41	50	16	-64	1,588	54,359	55,489	28,5	21,0	92,743	1,061
255	50	-48,3	-12,9	-57	-75	46	10	-73	1,590	54,356	55,488	28,5	21,0	92,743	1,061
255	55	-53,1	-14,2	-74	-84	42	4	-81	1,593	54,353	55,487	28,5	21,0	92,742	1,061
255	60	-58,0	-15,5	-87	-87	36	-1	-86	1,596	54,350	55,486	28,5	21,0	92,742	1,060
255	-5	4,8	1,3	57	38	31	34	38	1,598	54,347	55,484	28,5	21,0	92,742	1,060
255	-10	9,7	2,6	54	43	23	31	40	1,601	54,344	55,483	28,5	21,0	92,741	1,060
255	-15	14,5	3,9	49	47	17	27	39	1,603	54,341	55,481	28,6	21,0	92,741	1,060
255	-20	19,3	5,2	42	51	10	23	38	1,606	54,338	55,480	28,6	21,0	92,741	1,060
255	-25	24,1	6,5	32	54	4	19	35	1,608	54,335	55,479	28,6	21,0	92,740	1,060
255	-30	29,0	7,8	20	54	-2	18	33	1,611	54,332	55,477	28,6	21,0	92,740	1,060
255	-35	33,8	9,1	3	54	-10	15	28	1,613	54,329	55,476	28,6	21,0	92,739	1,060
255	-40	38,6	10,4	-19	53	-17	-35	23	1,616	54,326	55,475	28,6	21,0	92,739	1,060
255	-45	43,5	11,6	-35	50	-43	-60	19	1,618	54,323	55,473	28,6	21,0	92,739	1,060
255	-50	48,3	12,9	-48	46	-69	-65	14	1,621	54,320	55,472	28,6	21,0	92,738	1,060
255	-55	53,1	14,2	-67	42	-79	-75	8	1,623	54,317	55,471	28,6	21,0	92,738	1,060
255	-60	58,0	15,5	-80	36	-80	-80	2	1,626	54,313	55,469	28,6	21,0	92,738	1,060
260	0	0,0	0,0	57	33	33	35	37	1,629	54,310	55,468	28,6	21,1	92,737	1,060
260	-5	4,9	0,9	56	39	29	34	39	1,631	54,307	55,467	28,6	21,1	92,737	1,060
260	-10	9,8	1,7	54	43	23	32	39	1,634	54,304	55,465	28,6	21,1	92,737	1,060
260	-15	14,8	2,6	50	48	16	28	38	1,636	54,301	55,464	28,6	21,1	92,736	1,060
260	-20	19,7	3,5	42	52	10	24	35	1,639	54,298	55,463	28,6	21,1	92,736	1,060
260	-25	24,6	4,3	32	54	3	20	33	1,641	54,295	55,461	28,6	21,1	92,735	1,060
260	-30	29,5	5,2	17	56	-4	18	28	1,644	54,292	55,460	28,6	21,1	92,735	1,060
260	-35	34,5	6,1	0	56	-11	8	25	1,647	54,289	55,459	28,6	21,1	92,735	1,060
260	-40	39,4	6,9	-21	54	-18	-35	19	1,649	54,286	55,457	28,6	21,1	92,734	1,060
260	-45	44,3	7,8	-36	52	-51	-52	16	1,652	54,283	55,456	28,6	21,1	92,734	1,060
260	-50	49,2	8,7	-53	48	-64	-61	10	1,654	54,280	55,455	28,6	21,1	92,734	1,060
260	-55	54,2	9,6	-69	44	-79	-73	5	1,657	54,277	55,453	28,6	21,1	92,733	1,060
260	-60	59,1	10,4	-81	38	-87	-84	3	1,659	54,274	55,452	28,6	21,1	92,733	1,060
260	5	-4,9	-0,9	55	27	37	36	32	1,662	54,270	55,451	28,6	21,1	92,732	1,060
260	10	-9,8	-1,7	53	21	42	36	30	1,665	54,267	55,449	28,7	21,1	92,732	1,060
260	15	-14,8	-2,6	49	15	45	35	26	1,667	54,264	55,448	28,7	21,1	92,732	1,060
260	20	-19,7	-3,5	42	8	50	34	22	1,670	54,261	55,446	28,7	21,1	92,731	1,060
260	25	-24,6	-4,3	30	1	53	30	19	1,672	54,258	55,445	28,7	21,1	92,731	1,060
260	30	-29,5	-5,2	16	-5	53	27	19	1,675	54,255	55,444	28,7	21,1	92,731	1,060
260	35	-34,5	-6,1	-3	-13	54	22	10	1,677	54,252	55,442	28,7	21,1	92,730	1,060
260	40	-39,4	-6,9	-24	-20	53	17	-38	1,680	54,249	55,441	28,7	21,1	92,730	1,060
260	45	-44,3	-7,8	-43	-42	51	12	-58	1,683	54,246	55,440	28,7	21,1	92,729	1,060
260	50	-49,2	-8,7	-59	-70	47	6	-67	1,685	54,243	55,438	28,7	21,1	92,729	1,060
260	55	-54,2	-9,6	-77	-82	42	0	-78	1,688	54,240	55,437	28,7	21,1	92,729	1,060

Ângulo g (graus)	Ângulo a (graus)	Ângulo de guinada ψ (graus)	Ângulo de arfagem δ (graus)	p1 (Pa)	p2 (Pa)	p3 (Pa)	p4 (Pa)	p5 (Pa)	P est (Pa)	P din (Pa)	Ptotal (Pa)	Temperatura de Bulbo Seco (jato) °C	Temperatura de Bulbo Úmido ℃	Patm (kPa)	massa específica do ar (kg/m3)
260	60	-59,1	-10,4	-87	-90	37	-3	-88	1,690	54,236	55,436	28,7	21,1	92,728	1,060
265	0	0,0	0,0	55	32	31	35	34	1,693	54,233	55,434	28,7	21,1	92,728	1,060
265	5	-5,0	-0,4	55	28	37	35	33	1,696	54,230	55,433	28,7	21,1	92,728	1,060
265	10	-10,0	-0,9	54	21	43	35	31	1,698	54,227	55,431	28,7	21,1	92,727	1,060
265	15	-14,9	-1,3	49	14	47	34	26	1,701	54,224	55,430	28,7	21,1	92,727	1,060
265	20	-19,9	-1,7	41	8	51	31	23	1,703	54,221	55,429	28,7	21,1	92,727	1,059
265	25	-24,9	-2,2	30	1	53	28	20	1,706	54,218	55,427	28,7	21,1	92,726	1,059
265	30	-29,9	-2,6	18	-3	55	24	19	1,709	54,215	55,426	28,7	21,1	92,726	1,059
265	35	-34,9	-3,1	-4	-13	55	19	8	1,711	54,211	55,425	28,7	21,1	92,725	1,059
265	40	-39,8	-3,5	-27	-19	55	14	-34	1,714	54,208	55,423	28,7	21,2	92,725	1,059
265	45	-44,8	-3,9	-43	-47	52	9	-48	1,717	54,205	55,422	28,7	21,2	92,725	1,059
265	50	-49,8	-4,4	-61	-66	49	2	-64	1,719	54,202	55,420	28,7	21,2	92,724	1,059
265	55	-54,8	-4,8	-77	-68	44	-6	-76	1,722	54,199	55,419	28,7	21,2	92,724	1,059
265	60	-59,8	-5,2	-88	-67	39	-9	-85	1,724	54,196	55,418	28,7	21,2	92,724	1,059
265	-5	5,0	0,4	55	39	27	33	36	1,727	54,193	55,416	28,8	21,2	92,723	1,059
265	-10	10,0	0,9	53	44	21	31	36	1,730	54,190	55,415	28,8	21,2	92,723	1,059
265	-15	14,9	1,3	48	49	14	27	35	1,732	54,186	55,413	28,8	21,2	92,722	1,059
265	-20	19,9	1,7	41	52	7	23	32	1,735	54,183	55,412	28,8	21,2	92,722	1,059
265	-25	24,9	2,2	30	55	0	20	28	1,738	54,180	55,411	28,8	21,2	92,722	1,059
265	-30	29,9	2,6	15	56	-6	17	24	1,740	54,177	55,409	28,8	21,2	92,721	1,059
265	-35	34,9	3,1	-5	56	-13	1	20	1,743	54,174	55,408	28,8	21,2	92,721	1,059
265	-40	39,8	3,5	-24	55	-16	-32	16	1,745	54,171	55,407	28,8	21,2	92,721	1,059
265	-45	44,8	3,9	-40	53	-47	-46	11	1,748	54,167	55,405	28,8	21,2	92,720	1,059
265	-50	49,8	4,4	-60	49	-56	-61	0	1,751	54,164	55,404	28,8	21,2	92,720	1,059
265	-55	54,8	4,8	-72	44	-60	-71	3	1,753	54,161	55,402	28,8	21,2	92,719	1,059
265	-60	59,8	5,2	-81	38	-63	-83	0	1,756	54,158	55,401	28,8	21,2	92,719	1,059

APÊNDICE III

CALIBRAÇÕES DOS TRANSDUTORES DE PRESSÃO

