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Resumo

MAUÁ, S. M. Hidrodinâmica de fluidos vivos em microescoamentos. 2019. 178 f. Tese de

doutorado (Doutorado em Engenharia Mecânica de Energia e Fluidos ) - Escola Politécnica, Uni-

versidade de São Paulo, São Paulo, 2019.

A pincipal contribuição do presente trabalho é a proposição de um framework de análise de sus-

pensões ativas utilizando como modelo vivo o nematoide Caenorhabditis elegans. Para tanto, cinco

perspectivas diferentes são utilizadas: cinemática, macrorreológica, numérica, teórica e microrre-

ológica. Primeiramente, uma análise teórica e experimental do movimento cinemático das partícu-

las ativas suspensas em um fluido biológico é apresentada. Duas populações diferentes são exami-

nadas: na ausência de alimento e com nematoides bem alimentados. Mostramos que a relação entre

o comprimento de um nematoide individual e o comprimento de onda de seu movimento é linear e

pode ser ajustada por uma previsão teórica proposta neste trabalho. Uma profunda discussão sobre a

mecânica de propulsão com base em uma análise de escala que identifica três forças principais que

atuam em um nematoide individual é feita. Além disso, investigamos a viscosidade de cisalhamento

das suspensões de Caenorhabditis elegans. Os experimentos em cisalhamento oscilatório revelaram

um comportamento anômalo da viscosidade com a variação da fração volumétrica de suspensão, 𝜑.

A viscosidade efetiva da suspensão diminuiu com o aumento da fração volumétrica do nematoide

para pequenas concentrações. Baseando-se nos dados experimentais, uma equação fenomenológica

para a viscosidade efetiva da suspensão em função da fração volumétrica de partículas é proposta. O

comportamento coletivo dos nematoides é também observado, em regime linear, pela diferença de

tensões normais. Finalmente, o teste de step strain é conduzido para obter os tempos de relaxação.

A presença de uma tensão ativa negativa devido ao comportamento impulsor do nematoide persiste

por um certo período, levando a um undershoot negativo e a um comportamento oscilatório na

função de relaxação. A fim de propor um modelo reológico, simplificações são efetuadas no mod-

elo e simulações usando o método de fronteira imersa são conduzidas em um filamento flexível,

variando o tipo de movimento que este realiza. Observa-se que a presença de assimetrias em seu

movimento ondulatório gera drásticas mudanças em suas respostas cinemáticas. Um modelo re-

ológico em função da orientação do filamento é proposto e validado com os dados experimentais

em regime linear. Após a validação da equação constitutiva proposta, o modelo é observado sob o

regime não-linear do cisalhamento oscilatório, no qual as caracterizações reológicas são feitas com
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base nos frameworks existentes, utilizando curvas de Lissajous-Bowditch e diagramas de Pipkin.

Por fim, é apresentado um protocolo de análise de suspensões em um microrreômetro. Partículas

são adicionadas e rastreadas à medida que um cisalhamento unidirecional (escoamento pulsátil) é

aplicado. Os perfis de velocidade e taxa de cisalhamento são obtidos, assim como os sinais reológi-

cos equivalentes à taxa de deformação e tensão. Ferramentas de análise de sinais são utilizadas e

um sistema de inteligência artificial é proposto para remoção da componente constante do sinal

adicionada pelo cisalhamento unidirecional, visando reconstruir o sinal com média temporal nula

e possibilitando a aplicação de teorias reológicas já conhecidas, como a decomposição de tensões

em coeficientes de Chebyshev para o cálculo das quantidades viscométricas de conformidade e

fluidez. A principal contribuição do estudo diz respeito à observação, caracterização, modelagem e

simulação de um animal microscópico que se movimenta de maneira diferente dependendo do am-

biente e do fluido circundante. As propriedades reológicas analisadas, as simulações realizadas e o

modelo proposto podem ser utilizados tanto para a produção de microorganismos artificiais quanto

para o controle de organismos vivos. Além disso, essa combinação de análises e técnicas pode ser

usada para estudo de qualquer tipo de suspensão ativa e passiva, fornecendo resultados novos e

conclusivos em relação à caracterização reológica e ao comportamento físico das partículas.

Palavras-chave: Fluidos ativos. Reologia (Modelos). Nematoides. Método de fronteira imersa.

Microfluidica.
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Abstract

MAUÁ, S. M. Hydrodynamics of living fluids in microflows. 2019. 178 p. Ph.D. thesis (Doc-

torade in Mechanical Engineering of Energy and Fluids) - Escola Politécnica, University of São

Paulo, São Paulo, 2019.

The main contribution of the present work is the proposition of a framework for analysis of active

suspensions using the Caenorhabditis elegans nematode as the living model. To do so, five different

perspectives are used: kinematics, macro-reological, numerical, theoretical and micro-reological.

First, a theoretical and experimental analysis of the kinematic motion of the nematodes suspended

in a biological fluid is presented. Two different populations are examined: starving and well fed

nematodes. We show that the relationship between the length of an individual nematode and the

wavelength of its movement is linear and can be adjusted by a theoretical prediction proposed in

this work. A deep discussion on propulsive mechanics based on a scale analysis that identifies

three major forces acting on an individual nematode is made. In addition, we investigated the shear

viscosity of Caenorhabditis elegans suspensions. The oscillatory shear experiments revealed an

anomalous viscosity behavior with the variation of the volumetric fraction of suspension, 𝜑. The

effective viscosity of the suspension decreased with increasing nematode volumetric fraction at

low concentrations. Based on the experimental data, a phenomenological equation for the effective

viscosity of the suspension as a function of the volumetric fraction of particles is proposed. The

collective behavior of the nematodes is also observed in linear regime through the difference of

normal stresses. Finally, step strain tests are conducted to obtain the relaxation times. The presence

of a negative active stress due to the nematoid driving behavior persists for a period of time, leading

to a negative undershoot and an oscillatory behavior in the relaxation function. In order to propose

a rheological model, simplifications are made in the model and immersed boundary method sim-

ulations are conducted in a flexible filament, varying the type of movement that it performs. It is

observed that the presence of asymmetries in its undulating movement generates drastic changes

on its kinematic responses. A rheological model as a function of filament orientation is proposed

and validated with experimental data in linear regime. After validation of the proposed constitu-

tive equation, the model is observed under the nonlinear regime of oscillatory shear, in which the

rheological characterizations are made based on existing frameworks using Lissajous-Bowditch

curves and Pipkin diagrams. Finally, a protocol for analysis of suspensions in a microrheometer is
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presented. Particles are added and tracked as unidirectional oscillatory shear (pulsatile flow) is ap-

plied. The velocity and shear rate profiles are obtained, as well as the rheological signals equivalent

to the strain rate and stress. Signal analysis tools are used and an artificial intelligence system is

proposed to remove the component added to the signal by unidirectional shear, aiming to recon-

struct the signal with null temporal average and allowing the application of well known rheological

theories, such as the decomposition of stresses in coefficients of Chebyshev, for the calculation of

viscommetric quantities of compliances and fluidities. The major contribution of the study concerns

the observation, characterization, modeling and simulation of a microsized animal that moves in

different fashion, depending on the environment, and the surrounding fluid. The rheological prop-

erties analyzed, simuations performed and model proposed can be used for both production of

artifitial microorganisms and control of living organisms. Moreover, this combination of analyses

and techniques can be used to study any type of passive and active suspension providing new and

conclusive results regarding the rheological characterization and the physical behavior of the parti-

cles.

Keywords: Active fluids. Rheology (Models). Nematodes. Immersed boundary method. Microflu-

idic.
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1 Introduction

1.1 Active Fluids

Active fluids have attracted much attention in recent years for their interesting and often
unexpected dynamics (SAINTILLAN, 2010). An active particle can be considered as a particle which
consumes energy from the surrouding environment to perform work or uses its own stored energy to
promote its motion. Basically, the term active matter may describe natural or artificial systems that
are out of thermodynamic equilibrium. Living entities such as birds, fish or bacteria intrinsically
exist out of equilibrium by converting chemical content of their food into some form of mechanical
work (DOOSTMOHAMMADI et al., 2018). Similarly, synthetic systems can be designed to perform
work driven by energy from light or chemical gradients (LADOUX AND MEGE, 2017).

A classic example of an active matter system is a flock of birds. A flock is composed of
thousands of individual birds which act autonomously. Each bird is consuming its own on-board
energy supply in order to move. Despite the fact that each bird is able to fly independent of the other
birds, the collection of birds maintains a coherent, amorphous shape. In this thesis, we will focus
on viscous fluids and swimmers. We define a “swimmer” to be a creature or object that moves by
deforming its body in a periodic way (LAUGA AND POWER, 2009).

Many microscopic swimmers use one or more appendages for propulsion (FIELDING et

al., 2011). The appendage could be a relatively stiff helix that is rotated by a motor embedded
in the cell wall, as in the case of Escherichia coli, or it could be a flexible filament undergoing
whip-like motions due to the action of molecular motors distributed along the length of the fila-
ment, as in the spermatozoa of many species. In addition, the swimmer may move its whole body
to produce bending waves and promote propulsion.

An important feature of materials built from active entities is the emergence of collective
motion, in which groups of active particles move together as a unit on scales that are significantly
larger than the size of an individual. Everyday examples are the intricate patterns formed by air-
borne starling flocks or when fish move together to avoid a predator. Similar collective behaviour
persists down to micro-scales, where bacterial suspensions, tissues and intra cellular filaments use
their intrinsic activity to create motions with lengths larger than individual cells or proteins.
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Complex fluids, such as intestinal fluid, human mucus and even mud (FU et al.; FAUCI AND

DILLON; JUAREZ et al.; MALADEN et al.; LAUGA, 2009; 2006; 2010; 2009; 2007) were the basis
of evolution of several microorganisms. The rheology of such fluids can substantially affect the
swimming behaviour of a microorganism (KEIM et al., 2012). Considering a viscoelastic medium,
the regular beating pattern exhibited by a freely swimming spermatozoon is replaced by a high-
amplitude and asymmetric bending of its flagellum (SZNITMAN et al., 2010). An interesting aspect
on the mechanics of swimming is that the biomechanics of a living being must be adapted to its
surroundings. For instance, small bodies seeking to swim in a viscous fluid are subjected to a prin-
ciple known as kinematic reversibility in low Reynolds numbers (SHAPERE AND WILCZEK, 1987).
This principle is related to the linearity of the Stokes equation and forces microoganisms to pro-
duce highly nonlinear motions in order to break the time-reversibility to which they are bonded.
Some rich examples of this nonlinear motion include flagellar (KELLER AND SEGEL; BLAKE AND

SLEIGH, 1971; 1974) and ciliary (BLAKE; DAUPTAIN et al., 1975; 2008) propulsion.

Many of the biological fluids are far from homogeneous. Highly heterogeneous biologi-
cal materials include mucus, which forms a three-dimensional network with a potentially fractal
length-scale distribution, and the cytoskeleton, which is an active structure that undergoes continu-
ous remodeling in response to external and internal stimulation. Nevertheless, with the introduction
of a more involved microstructure, such as the inclusion of long chain molecules (e.g., DNA, pro-
teins, microtubules, nematodes, etc.), continuum assumptions are commonly made to make mathe-
matical modeling and analysis of these complex fluids possible.

As said before, most studies of active fluids have focused on suspensions of motile particles
(ABKENAR AND MARX, 2013) whose active stresses, produced by swimming, and spontaneous
flows can enhance mixing (SOKOLOV AND ARANSON; SAINTILLAN, 2009a; 2010), and affect
chemotactic aggregation (LUSHI et al., 2012). A paradigmatic example is a suspension of self-
propelled microorganisms (bacteria, microphytes and nematodes). Experiments on these systems
have cast light on a number of peculiar phenomena including: large-scale flows and collective
motions on length scales much greater than the particle dimensions, very large density number
fluctuations, enhanced swimming speeds, enhanced passive tracer diffusion and efficient fluid mix-
ing. These effects may have an important impact on the growth of microorganismal colonies via
nutrient and oxygen transport and mixing, both of which are enhanced by these chaotic flows.

Considering the forces exerted by the particle on the surrounding fluid and their directions, a
single particle can be either extensile - if the forces are exerted from the centre of mass to the fluid
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- or contractile - if they are exerted from the fluid to the centre of mass of the particle (FIELDING et

al., 2011). The rheology of active fluids is also expected to display a very intriguing phenomenol-
ogy (MARENDUZZO et al.; GIOMI et al.; CATES et al., 2007; 2008; 2008). Extensile and contractile
particles lead to very different rheological responses. For instance, it has been predicted theoreti-
cally (VOITURIEZ et al., 2006) that active fluids should undergo a nonequilibrium phase transition
between a “passive” quiescent phase, where the motion of each of the particles is basically uncor-
related and the coarse grained mean velocity field is uniform and zero, as in conventional passive
unforced fluids, and an active phase, in which long-range correlations lead to a non-zero sponta-
neous flow in steady state.

Active particles with elongated shape can exhibit orientational order at high concentrations
and have been linked to “living liquid crystals“ (GRULLER et al., 2012). Their rich collective be-
havior includes nonequilibrium phase transition and pattern formation on mesoscopic scales. The
activity of the system has been modeled using continuum equations proposed to describe spe-
cific microscopic models (LIVERPOOL AND MARCHETTI; LIVERPOOL AND MARCHETTI, 2003;
2007) or the hydrodynamic of liquid crystals. In this condition, there are still open questions regard-
ing a constitutive model for these suspensions. However, a thorough study of the phenomenological
characteristics of these microorganisms can produce advances in the proposed theories.

For suspensions of swimming microorganisms hydrodynamic theories were developed ei-
ther based on the macroscopic transport equations phenomenology (SIHMA AND RAMASWAMY;
YATES et al.; TONAR et al., 2002; 2009; 2005) or directly coming from a kinetic theory ac-
counting explicitly for the transfer of momentum to the fluid and the hydrodynamic interactions
between the swimmers (SAINTILLAN AND SHELLEY; SUBRAMANIAN AND KOCH; GACHELIN

AND ET AL., 2008; 2009; 2014). Numerical simulations of swimmers in a surrounding fluid were
also performed to model active suspensions with the aim to test the theoretical predictions or to ex-
pand the studies to limits where the analytical theory is difficult (HERNANDEZ-ORTIZ et al., 2005).
In particular, the issue of collective organization of swimmers was addressed beyond the linear
stability analysis of hydrodynamic modes (SAINTILLAN AND SHELLEY, 2011). An important out-
come of these studies is that, for rear-activated swimmers or “pushers”, long-range nematic ordering
as well as fully isotropic states are both unstable and essentially lead to collective motion. The onset
of collective motion may or may not depend on the system size (HOHENEGGER AND SHELLEY;
BASKARAN AND MARCHETTI, 2010; 2009).

In particular, it is interesting to investigate which types of structures microorganisms can
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form, which kinds of dynamics they can display and, given a particular set of microscopic ele-
mentary units, what range of possible macroscopic architectures, patterns and functionalities can
be generated. While equilibrium statistical mechanics predicts the behaviour of “dead” materials,
there is no analogous theory for non-equilibrium self-organized hierarchical systems of active mat-
ter. In addition, the principal organizing role in the formation of large-scale patterns (e.g., (CATES

et al.; DOMBROWSKI et al., 2008; 2004)) is believed to be played by hydrodynamic interactions
between individual swimmers and the environment. This includes the boundary effects as well as
the hydrodynamic interaction with other swimmers (KELLER AND SEGEL; GYRYA et al., 1971;
2009).

A suspension of microorganisms have nonconventional properties, such as anomalous vis-
cosities, a material property which describes the resistance of a fluid to shearing flows (TONAR et

al.; SIHMA AND RAMASWAMY, 2005; 2002). The microorganisms have the ability to self-organize
into ordered states (LIVERPOOL AND MARCHETTI, 2003), with local alignment, forming patterns
(LIVERPOOL AND MARCHETTI, 2007) and favoring collective transport on scales larger than in-
dividual (MARENDUZZO et al., 2007). There is a wide and growing body of theoretical work fo-
cused on investigating the collective dynamics, picturing the individuals as static force multipoles
(SOKOLOV et al.; SAINTILLAN AND SHELLEY, 2009; 2008) interacting in a fluid or by generic
rules of alignment. However, at the microscopic level, the dynamics of active individuals is often
time dependent.

Despite this considerable body of work that has been carried out to investigate active fluids,
this is a relatively new field of research there are still many points that need to be better understood.
This projects intends to address a few of them proposing a framework for the complete study of
active suspensions. For that, techniques of macroreology, microreology, particle tracking, signal
analysis and machine learning will be used.

1.2 Caenorhabditis elegans

Several works have focused on studying C. elegans regarding its physical properties and as-
pects of low Reynolds number locomotion. Nematodes inhabit virtually every environment and are
among the ubiquitous organisms on earth. The reasons for the use of this nematode as a benchmark
goes from the easiness to manipulate them to the simplicity of its motion. We may say that mere
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100 g of soil will typically house 300 individuals. Higher deformation speeds associated with lower
internal viscous resistance are related to the shear thinning feature of an individual worm. The shape
of an undulating crawler is defined by a dynamic balance between elastic, hydrodynamic, and mus-
cular forces. As a result, the shear thinning property of the worm may influence the dynamics of
motility, and shear thinning should be integrated into a full locomotory model. In a recent work
(BACKHOLM et al., 2013) researchers investigated the response of a single C. elegans worm to the
application of tangential stresses and found out that the elastic feature of the nematodes body may
be responsible for a shear thinning behavior of a suspension of C. elegans. Moreover, as pressure
and shear strength between worm and agar increases, so does the friction, leading to the presence
of greater yield-stresses. When nematodes are on the surface of this medium they simply crawl.
However, when they move inside the medium the forces exerted by their muscles end up breaking
the bondings of the agar molecules and water is released in a process called syneresis.

Similar to other nematodes, the life cycle of C. elegans is comprised of the embryonic stage,
four larval stages (L1-L4) and adulthood, as shown in figure 1.1, but individual sexes are not eas-
ily distinguished until the L4 stage. The lifecycle takes about 3 days at 20 degrees Celsius. The
nematode also has an alternative L3 stage, known as the dauer (enduring) stage. This stage is
anadaptation to survival of extreme conditions (mainly lack of food) and is likely in the wild to
be C. elegans’ dispersal stage. Dauer larval development is induced by crowding (more congeneric
nematodes make dauer entry more likely), lack of food (less food as a L1 makes dauer development
more likely), temperature (higher temperatures make dauer development more likely) and genetics
(CASSADA AND RUSSEL, 1975).

One of the interesting features present in the active particles problem is the decision-making
mechanism. A young C. elegans adult will perform an intensive search of where it believes food
is likely to be found. This strategy, called “local search”, is characterized by the worm making
numerous sharp turns that keep it in its target search area. If the worm has not found food after
15 minutes, it abruptly switches its behavior to a so-called “global search” strategy, which features
fewer sharp turns and more forays into the surrounding area (CALHOUN et al., 2014).

Berri et al. (BERRI et al., 2009) argue that C. elegans forward locomotion in low Reynolds
number flow is achieved through modulation of a single gait. They claim that its interaction with
the surrounding media is highly complex, despite its biological simplicity (it has only 302 neurons),
which allows it to be a very efficient swimmer even subjected to a kinematic reversibility due to its
small size. As a collateral effect, the study of C . elegans has also produced important advances on
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Figure 1.1: Nematode’s life cycle. [Source: (STIERNAGLE, 2006).]

image analysis techniques of moving bodies for biological purposes (BISWAS et al., 1998). Some
of these techniques have shown us the efficiency of its ondulatory motion, as seen in figure 1.2,
which has inspired the production of moving micro and nano robots that use the same propelling
principles (BOYLE et al., 2013) .

Considering that the Reynolds number related to the nematode’s induced flow 𝑅𝑒 ≪ 1, we
shall refer this study as in the Stokesian realm, in contrast to the theories of inviscid flow, which
might be termed as Eulerian realm. Most microorganisms move due to a periodic or near periodic
motion of organelles such as cilia and flagella. Indeed time-reversal symmetry plays a key role in
the selection of swimming strategies. Swimming cells, such as bacteria (prokaryotes) or sperma-
tozoa (eukaryotes), represent the prototypical example of active soft matter (PURCELL, 1977). In
addition, in the absence of inertia, the swimmer remains perpetually force and torque-free (LAUGA

AND POWERS, 2009). In this condition, swimmers should change their shapes in a non-reciprocal
fashion. In the case of C. elegans, flexibility or elasticity can lead to non-reciprocal shape change
and thus to locomotion, as shown in figure 1.3.

Microorganisms, such as nematodes, respond to stimuli by swimming in particular directions.
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Figure 1.2: Nematode sinusoidal like motion. The figures (485µm× 645µm) indicate six different
time steps during the recording of the crawling motion of a nematode with total length of 400µm.
The time-step ∆𝑡 between the images is 2.5×10−3s and the sequence ilustrates the crawling motion
of single worm in the agar gel medium. [Source: the author.]

Such responses are called taxes. This ability to detect and respond to changes in the environment
is a basic necessity for survival of all organisms, and as a result, a variety of mechanisms have
evolved by which organisms sense their environment and respond to signals they detect. Often
the response involves movement toward a more favorable environment or away from a noxious
substance (ERBAN AND OTHMER; PIRRI AND ALKEMA; LEE et al., 2006; 2012; 2011). Taxes
of importance are gravitaxis (or geotaxis), a response to gravity or acceleration; phototaxis, a re-
sponse to light; and chemotaxis, a response to chemical gradients (PARIDA AND PADMANABHAN;
PARIDA et al., 2016; 2017). Responses to shear in the ambient flow are sometimes called rheotaxis.
Compensating torques due to shear and gravity produce gyrotaxis. According to Vidal-Gadea et
al. (VIDAL-GADEA et al., 2015), some bacteria contain magnetic particles (i.e. magnetosomes),
which cause them to swim along magnetic field lines (magnetotaxis).

In this work, we will refer to C. elegans as a nematic particle. Nematic particles are rod-like
with head-tail symmetry. For some ranges of temperature or concentration they can predominantly
align in a given direction, termed the director, resulting in a nematic phase with long-range orien-
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Figure 1.3: Nematode’s head motion from top to bottom and left to right, respectively. It is in-
teresting to observe that even when the body maintains its sinusoidal motion in one frame, the
head produces several movements in diferent directions when searching for food. This different
motion induces secondary frequencies. The time-step ∆𝑡 between figures (485𝜇m× 645𝜇m) is
2.5 × 10−3second. [Source: the author.]

tation, but no long-range positional order.
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1.3 Applications

From a technological and engineering standpoint, active suspensions play an integral role
in medical, industrial, and geophysical settings. The essential role that self-organization has in
cell biology suggests that the use of internally driven components is the key to building materials
with functionalities that have so far been confined to living organisms. The remarkable and diverse
properties of cells arise from a highly conserved and fairly limited set of microscopic components.
Evolutionary processes constrain the number of self-organized structures found in living organisms
as compared with the much vaster manifold of all possible dynamical states that can be assembled
from the same set of building blocks. Systematically assembling biological materials from the
bottom up allows exploration of the phase space of a great number of possible dynamical states.
Thus, in vitro studies not only have the potential for reproducing the properties and behaviours of
biological materials found in living organisms, but also for uncovering entirely new phenomena that
lack direct biological relevance. Such work does not just advance materials science; the simplified,
well-controlled nature of in vitro systems allows detailed tests of principles of active matter, which,
in turn, provides a rigorous foundation for understanding complex self-organizing processes taking
place inside cells.

For instance, synthetic active matter systems have been constructed from the components of
the cytoskeleton, that is, filamentous polymers and their associated proteins. Similar to the cellular
cytoskeleton, such synthetic materials are driven away from equilibrium by energy-consuming pro-
cesses. In order to build these synthetic systems, we must understand how they move and change
the rheology of the surrouding fluid. As a matter of fact, with huge potential energy savings for
technologies ranging from sensors to supercomputers, these self-propelling fluids are a new type of
energy-harvesting machines. Wu (WU et al., 2017) created small machines composed of filaments
and molecular motors. For the first time, fluid with directionless flow autonomously flowed unidi-
rectionally through meter-long 3D channels until the chemical energy was depleted. The direction
of the flow could be controlled with notches in the pipe. Its strength and speed could be regulated by
the structure of the machines, referred to as “soft” because their operation was driven by structural
alterations arising from changes in temperature or forces such as mechanical stress.

The study of the interaction between microorganisms and surrounding fluids is also applied in
medical solutions. For instance, the dynamics of spermatozoon is directly associated with fertility
problems. Coitus induces fluid flow from oviduct to uterus, and sperm align themselves against the
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flow direction and swim upstream (MIKI AND CLAPHAM, 2013), a phenomenon termed rheotaxis.
Although sperm rheotaxis is a passive process dominated by fluid mechanics, these active particles
actively adapt to fluid flow (ZHANG et al., 2016). A bending wave is produced during their motion,
which propagates along the flagellum; this is a feature independent of the swimming fluid. However,
if the spermatozoa fails to move, make little forward progress, moves slowly or exhibit a “non-linear
motility”, infertility problems may arise (TULSIANI, 2012). The bending waves formation and
propagation require adenosine triphosphate (ATP) hydrolysis as the main source of biochemical
energy. Therefore, a flagellum represents a typical biological micro-machine, which transforms
chemical energy into mechanical energy with high efficiency. In fact, the addition of ATP in non-
motile sperm can reinduce its motion. Thus, spermatozoa that have not been activated in vivo can
be activated in vitro by cAMP (a derivative of ATP).

Another interesting application of the study of active matter is that bacteria and other mi-
croorganisms can enhace mixing in their natural environments by creating eddies in their wake
and by dragging water along. However, these mixing mechanisms are inefficient for microorgan-
isms, because swimming-induced variations in velocity, temperature, and dissolved substances are
evened out before they can be advected. In bioconvection, however, microorganisms induce wa-
ter movement not by propulsion directly but by locally changing the fluid density, which drives
convection (SOMMER et al., 2017). Larger animals, such as C. elegans can enhace this mixing.

On the other hand, the interaction between microorganisms can also stabilize suspensions.
For instance, flagellar entanglements have been shown to stabilize bacterial networks (INGHAM

AND BEN JACOB; SERRA et al., 2008; 2013). This is related to the spread and control of microbial
infections. One important virulence strategy is bacterial motility. Motile bacteria are able to direct
their own movement towards important nutrients or away from harmful substances (WIEDEMANN

et al., 2015). Horstmann (HORSTMANN, 2017) studied how Salmonella mobility affects its viru-
lence. This bacterium consists of three main parts: the basal body, the hook, and the filament. The
basal body is composed of an engine (MotAB) and components that anchor the flagellum to the
bacterial membrane. These include rotor and stator protein complexes that are necessary for motor
force generation and flagellar rotation (FRANCIS et al.; SANSONETTI, 1993; 2002).

Breakthroughs in materials science and nanofabrication over the last decade have also en-
abled the design and manufacturing of a multitude of synthetic microswimmers (EBBENS AND

HOWSE, 2010), relying on a variety of propulsion mechanisms that in some cases mimic those
found in biology. Some of the most popular mechanisms involve self-diffusiophoresis using nonuni-
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form surface reactions (MORAN AND POSNER, 2017), self-electrophoresis using redox reactions
(PAXTON et al., 2004), and bubble generation (GIBBS AND ZHAO, 2009), among others. Although
some of these particles are very efficient swimmers, the macroscopic characterization of their rhe-
ological properties has been lagging, in part due to sedimentation out of suspension and to the
difficulty in concentrating these particles without causing aggregation.

Synthetic nanomotors, based on a multitude of propulsion mechanisms, have been developed
over the past decade toward diverse biomedical applications. Major advances in nanomotor tech-
nology, including the design of powerful multifunctional machines, advanced motion control and
cargo towing capabilities, have facilitated different biomedical applications ranging from cell sort-
ing (BALASUBRAMANIAN et al., 2011), to DNA hybridization (KAGAN et al., 2011). Moreover,
the study of biological propulsion can help in the creation of fuel-free micro/nanomachine propul-
sion mechanisms, including the utilization of magnetic (ZHANG et al.; GOSH AND EMMONS;
GAO AND WANG; TOTTORI et al.; GAO AND WANG, 2009; 2008; 2014; 2012; 2014), electrical
(CHANG et al.; LOGET AND KUHN; CALVO-MARZAL et al., 2007; 2010; 2010), optical (LIU et

al., 2010) or ultrasound (WANG et al.; KAGAN et al.; GARCIA-GRADILLA et al., 2012; 2012;
2013) fields.

Magnetically driven nanomotors, inspired by nature swimming microorganisms, are partic-
ularly promising for use in a variety of in vivo biomedical applications. Such micromotors can
swim under externally applied magnetic fields in various biofluids, and perform complex maneu-
vers while obviating fuel requirements. Magnetic actuation is suitable for in vivo applications since
the required field strengths are harmless to humans.

1.4 Rheology of active suspensions

Rheology - the study of material flow behavior - is traditionally carried out by imposing
bulk displacements on a macroscopic sample of material in a viscometer, e.g. via a shearing or
extensional flow. When displacements are steady in time, a range of shear strains may be imposed
to study flow rate-dependent behaviors. Oscillatory and other time-varying motions may be applied
in order to study viscoelastic and transient responses. Constitutive relations between the imposed
flow and the stress may then be developed and, from these, material properties such as viscosity
may be inferred.
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However, many of the techniques used to understand passive systems are not appropriate to
analyze active suspensions. Suspensions of active particles exhibit a rich phenomenology, which is
very different from that of passive systems. The mere propulsion of individual microswimmers can
result in unusual transport properties such as enhanced diffusion, accumulation near boundaries,
and rectification (ELGETTI et al., 2015). As mentioned before, in more concentrated systems, in-
teractions between particles often result in emergent collective dynamics, such as sustained chaotic
turbulent-like motions in the bulk (SOKOLOV AND ARANSON, 2009b) and spontaneous unidirec-
tional flows under confinement (WIOLAND et al., 2015). The response of active suspensions to
external forcing can defy intuition, with rheological measurements in simple flows reporting a pe-
culiar transition to superfluid-like behavior (LOPEZ et al., 2015)

Biological and chemical contributions can become more (or less) important under variations
in, e.g., ionic strength; thus, biologically relevant changes in pH, for example, can lead to profound
changes in material properties such as viscosity. Since in these traditional rheological approaches,
material perturbations are applied over macroscopic length scales and may therefore exclude im-
portant materials of interest, it is necessary to use other techniques to fully describe the materials.

Another key factor in the rheological response of active suspensions, in addition to mi-
croswimmer transport properties, is the disturbance flows induced by individual particles. In the
case of passive objects, a disturbance velocity only arises if an external force or flow field is im-
posed; this is unlike self-propelled particles, which drive fluid disturbances even in quiescent envi-
ronments (SAINTILLAN, 2018).

Furthermore, inertia, secondary flows and viscoelastic waves are very important issues when
dealing with biological fluids. Propagating waves may come from either viscous momentum diffu-
sion or elastic shear waves or both for viscoelastic materials in general, even at vanishing Reynolds
numbers. For rotational rheometers, surface tension may also result in a torque that should not
occur in an ideal, rotationally symmetric geometry. The surface tension torque is reduced by max-
imizing rotational symmetry of the contact line, minimizing evaporation and the migration of the
contact line, reducing the radial location of the contact line, and lowering the surface tension. An
alternative approach is to observe the material over microscopic length scales, known as “microrhe-
ology”. Microrheology comprises a theoretical framework and experimental technique in which the
motion of a particle (or set of particles) is tracked and its motion studied to infer the properties of
the surrounding medium.
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Active particles are very complex systems. For instance, some of them may exhibit intrin-
sic viscoelasticity due to intracellular structure and very nonsymmetric shapes. This creates more
difficulties on the modelling of the particles and the constitutive equations. Besides, the analysis
of the rheological data is very dependent on the used flow. Some frameworks are not adequate for
pulsatile flows, which are very commom in vivo.

1.5 Microrheology

Microrheology is an emerging technique that probes mechanical response of soft material at
micro-scale. Generally, microrheology technique can be divided into active and passive versions.
For active microrheology, a user-controlled force, e.g. magnetic force, electrostatic force, optical
tweezers etc., is applied to embedded particle in medium of interest, and the particle motion under
this force is tracked. For passive microrheology, the embedded particles only move due to thermal
fluctuations in the medium, i.e. Brownian motion, and their trajectories are tracked and analyzed
(XIA et al., 2018).

As a matter of fact, “microrheology” indicates a family of methods, such as video-particle
tracking, light scattering, laser tweezers or magnetic tweezers. For instance, dynamic light scat-
tering (DLS) is the ancestor of today’s microrheology. It can be used with or without the addition
of tracer scattering particles. Requiring more than 90% of light to be transmitted unscattered, this
technique is limited to quite transparent samples, in order to avoid the complication of multiple
scattering (BERNE AND PECORA, 1976). In opaque systems, diffusive wave spectroscopy (DWS)
can be used. This method has the additional advantage of extending measurements to very high fre-
quencies and very good spatial resolution. However it is still a bulk technique, with the limitations
of large (milliliter) sample sizes and inability to resolve spatial heterogeneity (BROWN, 1993).

One of the most common method is video particle tracking, which allows to measure the
compliance and can yield a complete characterization of the linear viscoelasticity of the matrix.
The most challenging aspects of a video tracking experiment are often the process of acquiring the
trajectory of a number of particles and the image analysis (TANAKA et al., 1973), which consist in:
analyze individual frames to extract the coordinates of all the particles in the frame and then match
the particles through subsequent frames to produce data of trajectories.
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Another commom method is two-particle correlation. The particle-tracking approach de-
scribed above assumes that the probe particles do not affect the system locally. This is not always
the case. The probe particle in a solution could become surrounded by either a depletion layer or a
more dense layer of molecules. If this is the case, it is necessary to image and calculate the fluctu-
ations as a function of the distance between pairs of particles. These 2-particle correlations are not
affected by the local environment around each bead, and provide instead an unbiased probe of the
response of the bulk matrix. However, one important downside of 2-particle correlation vs. single-
particle, is that a much more extensive amount of video data needs to be recorded and analyzed in
order to have good statistics for many pairs of particles at many distances.

Overall, microreology has several advantages over macroreology: an extremely wide fre-
quency range, it is a local probe, ideally suitedto heterogeneous systems, the sample can have very
low viscosity and very low elasticity and it is applicable to non-conventional geometries. On the
other hand, it is still quite difficult to make use of microrheology to study the nonlinear response,
it is limited to materials that are at least partially transparent to light, is computationally intensive
and, for very stiff or viscous materials, it will be challenging to observe the very small motion of
the probe particles (CICUTA AND DONALD, 2007).

1.6 General objetives

The main contribution of this thesis is the development of a framework to analyze active (and
living) suspensions that can be extended to any type of microorganism or molecule. In general, it
presents a complete picture of how to analyze a suspension of active (or passive) particles. Figure
1.4 presents the main contributions of the thesis according to the expected objectives.

Numerous experiments have focused on the dynamics in suspensions of swimming bacte-
ria, but almost none focused on nematodes. Moreover, until now there is no fixed procedure to
completely analyze and model an active suspension.

In the present study we propose a complete methodology for the analysis of an active ne-
matode suspension. First, in chapters 3 and 4, respectively, we investigate the kinematics and
rheological properties of C. elegans immersed in a Newtonian fluid, wherein the activity of the
microorganism is observed. This study aims to determine the viscometric characteristics based on
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Figure 1.4: Main contributions of the thesis. [Source: the author.]

    Chapter 3     Chapter 4     Chapter 5     Chapter 6     Chapter 7

Thesis	main	contributions

Determination of
nematode's vibration

modes.

Frequency analysis of
locomotion modes.

Identification of velocity,
trajectory and curvature

characteristics of well fed
and starving nematodes.

Use of immersed
boundary method to

simulate an anguillform
swimmer model.

Use of the
microorganism's material

property states (e.g.
curvature) to simulate
different locomotory

states.

Proposition of a
constitutive model for a
nematode suspension.

Model validation with
experimental data in the

linear regime.

Deep analysis from
Lissajous-Bowditch curve

techniques, Pipkin
diagram and Chebyshev

coefficients.

Development of a
methodology for particle

analysis in a
microreometer (pressure-

driven flow).

Use of neural networks to
emulate the behavior of a

large amplitude
oscillatory shear (LAOS)

experiment from a
unidirectional LAOS.

KINEMATIC ANALYSIS RHEOLOGICAL 
ANALYSIS

NUMERICAL 
SIMULATIONS CONSTITUTIVE MODEL MICRORHEOLOGY

Framework to analyze active suspensions

Rheological analysis of
active suspension in

oscillatory shear.

Determination of active
suspension viscometric

characteristics.

Analysis of the effective
viscosity of the

suspension as a function
of the particle's volume

fraction.

Identification of relaxation
times based on step

strain tests.

the kinematic analysis performed in oscillatory shear and step strain tests.

After analyzing the kinematics of the microorganism and the rheology of the suspension, it
is possible to propose some simplifications for the modeling of the intrinsically elastic behavior of
the nematode. In order to validate the propositions immersed boundary simulations are performed
and the results are compared with experimental kinematic data in chapter 5. These simplifications
are extremely important for a rheological model to be put forward in chapter 6. The proposition of
this constitutive model allows tests in several geometries and parameters to be performed. To do
so, the model is validated using the experimental rheological results in linear viscoelasticity and,
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afterwards, tested considering the non-linearities.

To conclude, in chapter 7 another framework based on microreology is presented in such a
way that the instabilities related to the microscopic behavior of the microorganism can be studied.
For this, different tools of signal analysis and artificial intelligence are used to emulate data based
on experimental results obtained using in vivo inspired flows.

The major contribution of the study concerns the observation, characterization, modeling and
simulation of a microsized animal that moves in different fashion, depending on the environment,
and the surrounding fluid. The rheological properties analyzed, simuations performed and model
proposed can be used for both production of artifitial microorganisms and control of living or-
ganisms. Moreover, this combination of analyses and techniques can be used to study any type
of passive and active suspension providing new and conclusive results regarding the rheological
characterization and the physical behavior of the particles.
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2 Theoretical Foundations

In this chapter, we intend to introduce the fundamental theory necessary to understand the
rheological properties of our suspensions and the equations that model the flow in any continu-
ous material. Although many constitutive models are phenomenological, there are some rules to
propose the correct hypotheses. These principia are part of what is called constitutive formalism.
Many properties of a fluid when observed in a suficiently small scale, which allows us to analyze the
molecular behavior, present a strong non-linear distribution. However, between the molecular scale
and macroscale there is the continuum local scale, defined based on a suficiently small volume so
it can be considered local regarding the macroscale and large enough to contain a substantial num-
ber of molecules. This allow us to assume a perfecly homogeneous distribution of the microscopic
structure and therefore of its physical properties such as mass.

Batchelor (BATCHELOR, 1977) highlights that in the continuum scale, the measured prop-
erties are the analyzed volume average of the molecular effects. Based on that, we may observe
that the molecular fluctuations do not affect these properties, which remain constant. However, in
this work, mesoscale fluctuations must be considered due to the motion of the active particles. The
relation between stress and deformation is modeled using constitutive equations, which represent
the continuum scale of the fuids.

2.1 Constitutive Formalism

Simple rheological equations that describe non-linear viscoelastic phenomena in polymeric
liquids have long attracted the attention of many rheologists. Although there are many ways of de-
riving such equations, all constitutive equations must follow some principles (TRUESDELL, 1991)
in order to be considered adequate. In what follows, the most important of them are presented.

2.1.1 Casuality principle

The casuality principle states that the stress tensor depends on the recent history of the ve-
locity field or deformation. Under a general perspective, we may say that a constitutive equation
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relates the stress of the material, 𝜎(𝑡), in 𝑡 − 𝛿𝑡 with 𝑡. Therefore, the stress tensor is a function of
integrals and derivatives of the velocity field with respect to time and space and contain coefficients
related to the physical properties of the material.

For a linear isotropic viscoelastic material the stress-strain relation is given by Boltzmann
superposition principle, which describes the response of a material to different loading histories
(SHUKLA AND M., 2017), and can be represented either in a stress-controlled or a strain-controlled
form, respectively, given by

𝛾(𝑡) =

∫︁ 𝑡

−∞
𝐽(𝑡− 𝑡′)𝜎̇(𝑡′)𝑑𝑡′, (2.1)

and

𝜎(𝑡) =

∫︁ 𝑡

∞
𝐺(𝑡− 𝑡′)𝛾̇(𝑡′)𝑑𝑡′, (2.2)

where 𝜎(𝑡) is the stress, 𝛾̇(𝑡′) is the strain-rate, 𝑡 is the time, and 𝑡′ is the time at which the defor-
mation was imposed. The response functions, respectivaly, the creep compliance, 𝐽 , and relaxation
modulus, 𝐺, solely depend upon the time elapsed since application of deformation field (𝑡 − 𝑡′).
Thus the stress at a given time 𝑡 is determined by the entire history of the strain. The upper inte-
gration limit ensures the causality. Mathematically, this integral, also called the hereditary integral,
represents a time convolution of the relaxation function and strain rate. If we use the symbol * for
the convolution, then equation 2.2 can be written as

𝜎(𝑡) = 𝐺(𝑡) * 𝛾̇(𝑡). (2.3)

2.1.2 Local action principle

This principle postulates that only near particles must be involved into the determination of
the stress at a specific location of a control volume. It is directly related to the idea of near-field
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forces between particles and molecules. Consider a Lagrangian description of a system, where a
material body 𝛶 located in a initial position 𝑥 at 𝑡 = 0, moves itself to a position 𝑋 ′(𝑥, 𝑡′) and
them to 𝑋 ′′(𝑥,𝑡′′) at 𝑡′′. At an specific location 𝑂 at 𝑡′, we have by Taylor expansion:

𝑋 ′(𝑥 + 𝑑𝑥) = 𝑋 ′(𝑥) +
𝜕𝑋 ′

𝜕𝑥
𝑑𝑥 + 𝒪|𝑑𝑥|2, (2.4)

so

𝑑𝑋 ′ = 𝑋 ′(𝑥 + 𝑑𝑥) −𝑋 ′(𝑥) =
𝜕𝑋 ′

𝜕𝑥
𝑑𝑥 + 𝒪|𝑑𝑥|2. (2.5)

This analysis is based on the continuum hypotheses. Thus, the scale |𝑑𝑋 ′| must be way
bigger than the molecular (𝜆′) and smaller than the macroscopic scale (𝐿). Thus

𝑑𝑋 ′ =
𝜕𝑋 ′

𝜕𝑥
𝑑𝑥 at 𝑡 = 𝑡′ (2.6)

and

𝑑𝑋 ′′ =
𝜕𝑋 ′′

𝜕𝑥
𝑑𝑥 at 𝑡 = 𝑡′′. (2.7)

Neglecting the second order terms, we have and defining the deformation tensor as 𝐹 (𝑡) =

𝜕𝑋 ′/𝑑𝑥, we may write the stress as a functional namelly

𝜎(𝑡) = ℱ{𝐹 (𝑡′)}0<𝑡′<𝑡′′ . (2.8)

Thus, the stress tensor is a function of the deformation tensor.
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2.1.3 Material Frame Indifference principle

A constitutive equation must be valid regardless the coordinate system. Therefore, the func-
tion 𝐹 must be mantained independent of the stress tensor 𝜎 and the velocity gradient ∇𝑢. Phys-
ically, this principle implies that a change in coordinates should not lead to new constitutive equa-
tions.

Mathematically, the principle of material frame-indifference can be stated as invariance of
constitutive function under change of frame. However, great care must be take regarding what such
constitutive functions are. They should not simply be the constitutive functions relative to some
reference configuration in two different frames, because a choice of reference configuration may
change material properties (LIU, 2004).

The indifference principle postulates that if a constitutive equation is satisfied by a given
process, characterized by a movement (successive changes of configuration) and a symmetrical
tensor, denoted respectively by:

𝑥 = 𝑥(𝑋,𝑡) and 𝜎 = 𝜎(𝑋,𝑡), (2.9)

where 𝑋 is the label of a given material particle and 𝑡 is the time, then this must also be satisfied
by an equivalent process (𝑥*,𝜎*), where the tensile motion and tensor are given by:

𝑥* = 𝑥*(𝑋,𝑡*) = 𝑥(𝑡) + 𝑄(𝑡)𝑥(𝑋,𝑡), (2.10)

𝜎* = 𝜎*(𝑋,𝑡*) = 𝜎(𝑡) + 𝑄(𝑡)𝜎(𝑋,𝑡)𝑄(𝑡)𝑇 , (2.11)

𝑡′ = 𝑡− 𝑎, (2.12)
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where 𝑄(𝑡) is a ortogonal time-dependent tensor related to a rigid body rotation and 𝑎 an arbitrary
constant. The physical basis of this principle lies in the fact that the material must be independent
of the referential. That is, the instantaneous field of stresses (response of the material) must be
independent of the movement of the observer. In other words, the mechanical response of a material
must be invariant in relation to a movement of an arbitrary rigid body.

It is interesting to notice that this principle must be applied with care. Material Frame Indif-
ference applies, in a strong approximate sense, to most areas of continuum mechanics where there
is a clear cut separation of scales so that the ratio of fluctuating to mean time scales is extremely
small. While it breaks down for the three-dimensional case, it rigorously applies to Reynolds stress
models in the limit of two-dimensional turbulence where an analogy is made between the Reynolds
stress tensor and the non-Newtonian part of the stress tensor in the laminar flow of a non-Newtonian
fluid. On the other hand, the general invariance group of constitutive equations that is universally
valid is the extended Galilean group of transformations which includes arbitrary time-dependent
translations of the spatial frame of reference; rotational frame-dependence then enters exclusively
through the intrinsic spin tensor (FAUCI AND DILLON, 1998).

2.1.4 Fading Memory

The Fading Memory principle postulates that deformations that occured in a long past should
have less influence on the determination of the tension (TRUESDELL, 1966). That is, the instanta-
neous structure of the stress field is more closely related to more recent events (deformations). In
other words, being 𝑡′ a instant of time in the past and 𝑡 the present time, the deformation effects on
the stress tensor 𝜎 is greater for 𝑡 than 𝑡′.

In the case of elastic materials, the time of rest has no influence on its behavior after releasing
stresses. Such materials do not forget the pre-history of their deformations at all. However, the
behavior of many materials is intermediate. It is possible to observe a phenomenon of retarding
elastic recoil by increasing the delay time, i.e. it is reasonable to treat this effect in terms of the
fading memory of the pre-history of their deformations. The reasons are quite evident: in the period
preceding the elastic recoil, a relaxation partly takes place and stresses responsible for the post-
effect decrease.
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The first illustration of the competition between memory effects and nonlinear elastic re-
sponse in materials with fading memory was provided by the theory of propagation of acceleration
waves. It is tempting to conjecture that the dissipative effect of viscosity dominates in motions near
equilibrium, preserving the smoothness of such motions, while in motions far from equilibrium
the destabilizing action of nonlinear instantaneous elastic response may overpower the dissipative
effect of viscosity causing a sudden variation of the acceleration and the velocity gradient.

2.2 Constitutive Models

The most simple constitutive relation between shear stress and shear rate was proposed by
Newton (LANDAU AND LIFSHITZ, 1998) and describes the behavior of the so called Newtonian
fluids. This relationship is given by

𝜎 = 𝜂 : 𝛾̇. (2.13)

where 𝜂 is the viscosity tensor that maps the strain rate tensor onto the viscous stress tensor. How-
ever, due to spatial symmetries the 81 viscosity coefficients are not all independent. For instance, for
isotropic Newtonian fluids, the coefficients can be reduced to 2 independent parameters: dynamic
viscosity 𝜇 and bulk viscosity 𝜅, and the latter does not play an important role in incompressible
flows.

For many fluids, the Newtonian constitutive equation does not make accurate predictions. For
materials that are not pure (suspensions, emulsions), for large molecule liquids (polymers, gels),
and for liquids with special intermolecular forces (ionic liquids, magnetic liquids), the Newtonian
constitutive equation is inadequate. Materials that generate velocity and stress effects that are not
represented by the Newtonian constitutive equation are called non-Newtonian fluids.

Indeed, under appropriate circumstances, the apparent viscosity of certain materials is not
only a function of flow conditions (geometry, rate of shear), but it also depends on the kinematic
history of the fluid element under consideration. It is convenient to group such materials into three
categories.
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The first one is known as purely viscous, inelastic, time-independent or generalized Newto-
nian fluids. The value of 𝛾̇ of these systems is determined only by the current value of 𝜎 at that
point. When the relation between 𝜎 and the shear rate shows further dependence on the duration of
shearing and kinematic history, the fluids are called time-dependent. And when the system exhibits
a blend of viscous fluid and solid-like behavior, showing partial elastic recovery, recoil and creep,
it is called viscoelastic.

As noted earlier, the aforementioned classification scheme is quite arbitrary, though conve-
nient, because most real materials often display a combination of two or even all these types of
features under appropriate circumstances. In this thesis, we will focus on viscoelastic fluids due to
the intrinsic elasticity of the microorganisms.

Viscoelastic fluids are materials that exhibit both viscous and elastic responses to forces.
The distinction between viscous and elastic materials is best illustrated by their responses to a
sudden deformation: stresses created in an elastic material stay constant in time for as long as the
deformation is present, while stresses in a viscous fluid dissipate on a time scale governed by its
viscosity. For example, a bow is stressed as long as it is strung by a bowstring, while in spilled
water all stresses disappear once the fluid comes to rest. Essentially, whether a material is fluid-like
or solid-like is determined by its longtime response to a deformation. There are basically two main
ideas of how to include memory, attributed to Boltzmann and Maxwell. Boltzmann’s model is an
integral equation for the stress tensor, assuming that it depends linearly on the symmetric part of
the strain rate tensor 𝐷(𝑢(𝑥,𝑡)):

𝜎(𝑡,𝑥) = 2

∫︁ 𝑡

−∞
𝐺(𝑡− 𝑠)𝐷(𝑢(𝑡,𝑥))𝑑𝑠. (2.14)

Here, 𝐺(𝑡 − 𝑠) is called the stress relaxation modulus and it should be positive and monotonic.
To recover the Newtonian model, 𝐺 must be a multiple of the delta function. On the other hand,
Maxwell theory of viscoelasticity assumes that the stress is linked to the velocity gradient by an
ordinary differential equation such as

𝜎 + 𝜆′𝜕𝜎

𝜕𝑡
= 𝜂

𝜕𝛾

𝜕𝑡
, (2.15)
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where 𝛾̇ = 𝜕𝛾/𝜕𝑡 = 2𝐷, being 𝐷 the strain rate tensor and 𝜆′ = 𝜂/𝐺 a material constant
(time scale). Multiplying this expression by an integrating factor, namely 𝑒(1/𝜆

′), we obtain the
constitutive equation for the stress tensor

𝜎(𝑡) =
2𝜂

𝜆′

∫︁ 𝑡

−∞
𝑒−(𝑡−𝑡′)/𝜆′

𝐷(𝑡′)𝑑𝑡′. (2.16)

In this simple case, the elastic component is related to 𝐺′, while the damping effect is con-
nected to 𝜇. The shear is then given by

𝛾̇ =
𝜎̇𝐸

𝐺
+

𝜎𝑉

𝜇
=

𝜎̇

𝐺
+

𝜎

𝜇
, (2.17)

where 𝜎̇𝐸 is related to the Hookean spring and 𝜎𝑉 to the damper.

In reality, however, Maxwell model is insufficient to describe even the linear rheology of
viscoelastic fluids. Nevertheless, it is a very useful minimal model that sets the stage for more
complete theories. Equation 2.15 suffers from a serious physical problem: it is not frame-invariant.
The simplest equations that take the relaxation of the stress into account are produced by writing
a frame-invariant analogue of the linear Maxwell model already discussed. By choosing either the
upper or lower-convective derivative for the full-time derivative in equation 2.15 we arrive at:

𝜏 = −𝑝𝐼 + 𝜎, (2.18)

where 𝜏 is the total stress and the non-Newtonian contribution to the stress 𝜎 obeys

𝜎 + 𝜆′▽𝜎 = 𝜂𝑝𝐷 (upper-convected Maxwell or UCM) (2.19)

as the upper-convected or
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𝜎 + 𝜆′△𝜎 = 𝜂𝑝𝐷 (lower-convected Maxwell or LCM) (2.20)

as the lower-convected. Here, 𝜂𝑝 is the polymer contribution to the viscosity and
△
𝜎 and

▽
𝜎 are

defined respectively as

△
𝜎 =

𝐷𝜎

𝐷𝑡
+ 𝜎 · ∇𝑢 + (∇𝑢)𝑇 · 𝜎, (2.21)

and

▽
𝜎 =

𝐷𝜎

𝐷𝑡
−∇𝑢 · 𝜎 − 𝜎 · (∇𝑢)𝑇 . (2.22)

Alternatively, one can use a linear combination of the upper and lower-convected derivatives
in the Maxwell model to obtain the Johnson-Segalman equation:

𝜎 + 𝜆′
(︂

1 + 𝑎

2

▽
𝜎 +

1 − 𝑎

2

△
𝜎

)︂
= 𝜂𝑝𝐷. (2.23)

The slip parameter 𝑎 sets the relative importance of the two objective time derivatives. If 𝜎 obeys
the UCM model, the resulting set of equations is called the Oldroyd-B model (OLDROYD, 1950).
This model is often formulated in terms of the total deviatoric stress, which satisfies

𝜎 + 𝜆′▽𝜎 = 𝜂

(︂
𝐷 + 𝜆′

𝑟

▽
𝐷

)︂
(Oldroyd-B), (2.24)

where 𝜂 is the summation of the polymeric viscosity 𝜂𝑝 and the solvent viscosity 𝜂𝑠. The so-called
retardation time 𝜆′

𝑟 is not an independent time scale, but is in fact a combination of the Maxwell
relaxation time 𝜆′ and the solvent and polymeric viscosities 𝜆′

𝑟 = 𝜆′(𝜂𝑠/𝜂). One drawback of
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the viscoelastic models above is that tensile stresses can grow without bound in extensional flows.
Another class of models is then formed by adding nonlinear terms in the UCM model. One example
of such models is the Giesekus equation (GIESEKUS; GIESEKUS, 1982; 1985)

𝜎 + 𝜆′▽𝜎 + 𝛼
𝜆′

𝜂𝑝
𝜎 · 𝜎 = 𝜂𝑝𝐷 (Giesekus) (2.25)

Here 𝛼 is a dimensionless model parameter that should be kept smaller than 1/2 to avoid a non-
monotonic dependence of the shear stress on the shear rate in simple shear flows. The origin of
the term involving 𝛼 can be associated with Brownian motion and/or anisotropic hydrodynamic
drag on the constituent polymer. Another example is given by the Phan-Thien-Tanner (PTT) model
(PHAN-THIEN AND TANNER; PHAN-THIEN AND TANNER, 1978; 1977)

𝑓(𝜎) + 𝜆′▽𝜎 = 𝜂𝑝𝐷 (Phan-Thien-Tanner) (2.26)

where 𝑓(𝜎) is a nonlinear function that can be chosen either in its exponential or, more commonly,
in its linear form if 𝑡𝑟(𝜎) is small enough.

𝑓 = exp

[︃
− 𝜀

(︂
𝜆′

𝜂𝑝
𝑡𝑟(𝜎)

)︂]︃
∼ 1 − 𝜀

(︂
𝜆′

𝜂𝑝

)︂
𝑡𝑟(𝜎). (2.27)

In this case, the parameter 𝜀 is related to the elongational behaviour of the fluid, precluding the
possibility of an infinite elongational viscosity in a simple stretching flow as would occur for an
upper Maxwell model, UCM, in which 𝜀 = 0. It basically controls how fast the effective poly-
meric viscosity and the relaxation time decrease with the stress. Other constitutive relations were
developed to correct the unphysical behavior in the Oldroyd-B and similar models, the so-called
finite-extensibility-nonlinear-elastic (FENE) models.

The two most commonly used models of this type are the FENE-CR model, suggested by
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(CHILCOTT AND RALLISON, 1988) and the FENE-P model (a Gaussian closure of the kinetic
theory model suggested by Peterlin (BIRD et al., 1980)):

𝑓(𝜎) + 𝜆′

▽(︂
𝜎

𝑓(𝜎)

)︂
= 𝜂𝑝𝐷 (FENE-CR) (2.28)

𝑓(𝜎) + 𝜆′

▽(︂
𝜎

𝑓(𝜎)

)︂
=

𝜂𝑝
𝑓(𝜎)

𝐷 − 𝜂𝑝
𝐷

𝐷𝑡

(︂
1

𝑓(𝜎)

)︂
𝐼 (FENE-P) (2.29)

In these models, the function 𝑓 is given by

𝑓(𝜎) = 1 +
𝜆′

𝜂𝑝𝐿2
𝑓

𝑡𝑟(𝜎), (2.30)

being 𝐿 a dimensionless parameter related to the maximum possible extension of the polymer
chains. There are several versions of these models in the literature, but in the limit of large 𝐿 they
all reduce to the above equations.

2.3 Rheological Flows

The description of a suspension or a polymeric fluid differs from that provided by Newton’s
viscosity law. A Newtonian, incompressible fluid at constant temperature is completely character-
ized by two material constants: density and viscosity. Therefore, the distribution of stress and veloc-
ity are fixed for any flow type. The situation becomes more complex for non-Newtonian fluids. First
of all, they do not present constant viscosity and may have normal stresses even in incompressible
flows and elastic effects. Although different types of experiments applied to Newtonian fluids lead
a single material constant (viscosity), the same applied to a non-Newtonian liquid leads to a set of
material functions, which depend on the shear rate, frequency, time, and other parameters. These
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functions aim to promote the classification of the different types of non-Newtonian fluids and are
essential for the determination of constants of specific constitutive equations.

Newtonian fluids under steady plane flow (simple shear) present 𝜎𝑥𝑥 = 𝜎𝑦𝑦 = 0. However,
for non-Newtonian fluids, in the absence of a constitutive equation, we must consider that the six
components of the stress tensor are different from zero. Since we cannot separate the contributions
of pressure and traction, the only quantities that we usually analyse experimentally are the shear
stress 𝜎𝑥𝑦 and both normal stress differences 𝑁1 = 𝜎𝑥𝑥 − 𝜎𝑦𝑦 and 𝑁2 = 𝜎𝑦𝑦 − 𝜎𝑧𝑧.

2.3.1 Small Amplitude Oscillatory Shear (SAOS)

The viscoelastic properties of non-Newtonian fluids with memory can be determined by ex-
periments with low-amplitude oscillatory shear, evaluating the viscoelastic response of the fluid
given a known external excitation. The system oscillates with a given frequency 𝜔 and, considering
a regime of small deformations, and therefore linear, it is assumed that the shear stress oscillates
with the same frequency of the system, but not necessarily in phase. Consider, therefore, a simple
oscillating shear with 𝑢𝑥 = 𝛾̇0 cos(𝜔𝑡)𝑦, being 𝛾̇0 the amplitude of the shear rate (a positive and
real value). We consider the application of an excitation to the system in the form of an oscillatory
shear deformation 𝛾(𝑡) = 𝛾0 sin(𝜔𝑡), where 𝛾0 is the deformation amplitude.

The excitation response imposed to the system will be represented by a shear stress 𝜎, written
in terms of deformation amplitude 𝛾0 and the deformation itself 𝛾(𝑡). We may write it in terms of
sums of sines and cosines to make explicit the components of in-phase and out-of-phase with the
excitation:

𝜎(𝑡) = 𝐺′(𝜔)𝛾0 sin(𝜔𝑡) + 𝐺′′(𝜔)𝛾0 cos(𝜔𝑡), (2.31)

or

𝜎(𝑡) = 𝜂′(𝜔)𝛾̇0 cos(𝜔𝑡) + 𝜂′′(𝜔)𝛾̇0 sin(𝜔𝑡), (2.32)
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being 𝐺′, 𝐺′′, 𝜂′ and 𝜂′′ viscoelastic functions of the material. We must note that for a perfect elastic
solid, we have 𝐺′′(𝜔) = 0 and 𝜎 = 𝐺′𝛾(𝑡), where 𝐺′(𝜔) is known as the elastic shear modulus. For
a pure Newtonian fluid, 𝜂′′(𝜔) = 0 and 𝜎(𝑡) = 𝜂′(𝜔)𝛾̇(𝑡). The viscoelastic parameters present the
following physical interpretations: 𝐺′, designated storage modulus, is associated with the elastic
character of the fluid, i.e. the energy stored during the deformation. 𝐺′′ is referred to as the loss
modulus and is associated with the fluid viscous character and its energy dissipation. Therefore 𝜂′

is called dynamic viscosity and it is also related to the dissipative effects, while 𝜂′′ represents the
imaginary part of the complex viscosity, being associated with the intrinsic elasticity of the fluid;
Another important parameter of the system is tan(𝛿) = 𝐺′′(𝜔)/𝐺′(𝜔) since it is a measure of the
system damping capacity.

Another way to approach this problem is through the use of complex variables, in which the
excitation imposed on the system oscillating with a frequency 𝜔, is described in the following form

𝛾(𝑡) = 𝛾0𝑒
𝑖𝜔𝑡. (2.33)

Based on that, the stress is given by

𝜎(𝑡) = 𝜎̃𝑒𝑖(𝜔𝑡+𝜑), (2.34)

We can then write the shear stress as

𝜎*(𝑡) = 𝐺*(𝜔)𝛾(𝑡) = 𝛾0𝐺
*(𝜔)𝑒𝑖𝜔𝑡, (2.35)

or

𝜎*(𝑡) = 𝜂*(𝜔)𝛾̇(𝑡) = 𝜂*(𝜔)𝛾̇0𝑒
𝑖𝜔𝑡. (2.36)

So we may say that 𝐺*(𝜔) = 𝑖𝜔𝜂*(𝜔). Since 𝐺*(𝜔) = 𝐺′(𝜔)+𝑖𝐺′′(𝜔) and 𝜂*(𝜔) = 𝜂′(𝜔)−𝑖𝜂′′(𝜔),
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we have 𝐺′(𝜔) = 𝜔𝜂′′(𝜔) and 𝐺′′(𝜔) = 𝑖𝜔𝜂′(𝜔).

The interesting fact about the linear regime is that several characteristics of the fluid can be
estimated. For instance, when applicable, the shear viscosity can be estimated by applying the Cox-
Merz rule (COX AND MERZ, 1958). It predicts that the aparent viscosity 𝜂 equals the magnitude of
the complex viscosity |𝜂*| for corresponding values of frequency 𝜔 and shear rate 𝛾̇ for the linear
viscoelasticity regime. Laun’s (LAUN, 1986) empirical rule also estimates the fist normal stress
difference in steady shear, 𝑁1, from dynamic mechanical data:

𝑁1(𝛾̇) = 2𝐺′(𝜔) =

[︃
1 +

(︂
𝐺′(𝜔)

𝐺′′(𝜔)

)︂1
]︃0.7

(2.37)

Moreover, when 𝜔 → 0, the Cox-Merz rule reduces to 𝜂′(𝜔) = 𝜂0 = 𝜇. This rule also appies
for the elastic characteristics of the fluid. In this case, it relates the shear elastic modulus 𝐺′(𝜔)

obtained during oscillatory shear test and the first normal stress difference 𝑁1 so that 2𝐺′(𝜔) =

𝑁1(𝛾̇), because (AL-HADITHIH et al., 1992):

𝐺′(𝜔)

𝜔2
=

𝑁1(𝛾̇)

2𝛾̇2
(2.38)

However, we must notice that this is only true for small excitation frequencies (or shear
rates) and suspensions with low elasticity. As the oscillatory frequency increases 𝑁1 ̸= 𝐺′. The
applicability of the Cox-Merz rule has already been reviewed in detail (AL-HADITHI et al., 1992b).
It has been found to hold for almost all polymer melts, and concentrated and semi-dilute solutions.
Deviations from the rule occur at high frequencies, and the oscillatory data can either over or under
estimate the steady state data in these cases.

2.3.2 Step Strain Tests

The step strain is a viscometric flow used to characterize the memory effects of a complex
fluid. Stress relaxation experiments apply a step strain deformation to create an instantaneous strain
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and monitor the stress decay as the specimen is held over time in the same constrained state. The
relaxation function 𝐺(𝑡) and the relaxation times 𝜏𝑖 can be obtained through this test. A fluid with
memory is set between two paralel plates at 𝑡 < 𝑡0, being 𝑡0 a reference time. When 𝑡 = 𝑡0,
the superior plate is sheared and the fluid is deformed. The excitation of the system, given by the
applied shear rate 𝛾̇ in a short period of time 𝑡0− (𝑡0− 𝜖) can be understood as an impulse function:

𝛾̇(𝑡) =
𝛾0

𝑡0 − (𝑡0 − 𝜖)
=

𝛾0
𝜖
. (2.39)

If we want to obtain the expression for the stress tensor 𝜎(𝑡) in the linear viscoelasticity
regime, we have:

𝜎(𝑡) =

∫︁ 𝑡0−𝜖

−∞
𝐺(𝑡− 𝑡′)𝛾̇(𝑡′)𝑑𝑡′ +

∫︁ 𝑡0

𝑡0−𝜖

𝐺(𝑡− 𝑡′)𝛾̇(𝑡′)𝑑𝑡′ +

∫︁ ∞

𝑡0

𝐺(𝑡− 𝑡′)𝛾̇(𝑡′)𝑑𝑡′, (2.40)

but when 𝑡′ ∈ 𝑡 < 𝑡0 − 𝜖 or 𝑡 → ∞, 𝛾̇(𝑡′) = 0 so it reduces to

𝜎(𝑡) =

∫︁ 𝑡0

𝑡0−𝜖

𝐺(𝑡− 𝑡′)𝛾̇(𝑡′)𝑑𝑡′ =
𝛾0
𝜖

∫︁ 𝑡0

𝑡0−𝜖

𝐺(𝑡− 𝑡′)𝑑𝑡′. (2.41)

Taking the limit when 𝜖 → 0 and applying L’Hôpital’s rule we have:

𝜎(𝑡) = lim
𝜖→0

𝛾0

[︃
𝑑
𝑑𝜖

∫︀ 𝑡0
𝑡0−𝜖

𝐺(𝑡− 𝑡′)𝑑𝑡′

𝑑
𝑑𝜖
𝜖

]︃
(2.42)

Therefore, the stress tensor for a viscoelastic fluid subjected to a step strain is given by 𝜎(𝑡) =

𝛾0𝐺(𝑡− 𝑡0). In other words, the stress tensor of a viscoelastic fluid is not instantaneous. Its stresses
respond with an especific delay regarding the applied deformation. Besides, it allows us obtain the
relaxation times.
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2.3.3 Large Amplitude Oscillatory Shear (LAOS)

Under small amplitude oscillatory shear (SAOS), a material can be characterized by the lin-
ear viscoelastic moduli. However, these conventional viscoelastic moduli are not uniquely defined
once the material response becomes nonlinear at sufficiently large strains (EWOLDT et al., 2008a).
Interpretation of large amplitude oscillatory shear (LAOS) nonlinearities is difficult, and has been
hindered because an appropriate and comprehensive framework does not yet exist. The most com-
mon method of quantifying LAOS tests is Fourier transform (FT) rheology. However, graphic in-
terpretations and other polinomials decompositions may also be used.

In addition, the nonlinear rheological response in LAOS can be correlated with the mi-
crostructure of the viscoelastic sample. In strain-controlled LAOS tests, the imposed strain follows
a sinusoidal evolution in time and the corresponding shear stress response measured is not nec-
essarily sinusoidal, revealing the nonlinear behavior of the sample. The sinusoidal strain input is
given by:

𝛾(𝑡) = 𝛾 sin(𝜔𝑡), (2.43)

where 𝜔 is the frequency, 𝑡 is the time and 𝛾 is the maximum strain deformation of the cycle. The
results obtained from LAOS can be analyzed using different approaches: from frequency spectrum
to Chebyshev decomposition. Some of these frameworks will be presented in the next sections.
Figure 2.1 shows the difference of 𝜎(𝑡) when under SAOS or LAOS. It is clear that under large
amplitude oscillatory shear, the Giesekus model behaves in a very nonlinear fashion.
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Figure 2.1: Stress [Pa] as a function of time [s] for Giesekus model (eq. 2.25) with parameters
𝜔 = 0.5, 𝛼 = 0.5, 𝜂 = 0.1, 𝜆′ = 2. The dashed line represents 𝛾̇ = 2.2 and the solid line represents
𝛾̇ = 0.2. The plot bellow shows the frequency [rad · s] spectrum of both signals. [Source: the
author.]

2.3.3.1 Fourier Transform Framework

The shear stress response in a LAOS test can be given as a sum of higher harmonic contribu-
tions (MELITO et al., 2012) in Fourier decomposition

𝜎𝐹𝑇 (𝑡) =
∑︁
𝑚:𝑜𝑑𝑑

𝐼 ′𝑚 sin(𝑚𝜔𝑡) + 𝐼 ′′𝑚 cos(𝑚𝜔𝑡 + 𝛿𝑚), (2.44)

where the Fourier coefficients 𝐼 ′𝑚 and 𝐼 ′′𝑚 are given by

𝐼 ′𝑚 =
𝜔

𝜋

∫︁ 𝜋/𝜔

−𝜋/𝜔

𝜎 sin(𝑚𝜔𝑡)𝑑𝑡, (2.45)
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and

𝐼 ′′𝑚 =
𝜔

𝜋

∫︁ 𝜋/𝜔

−𝜋/𝜔

𝜎 cos(𝑚𝜔𝑡)𝑑𝑡. (2.46)

These Fourier coefficients can be defined in terms of nonlinear storage and loss moduli by

𝐼 ′𝑚 = 𝛾0𝐺
′
𝑚 and 𝐼 ′′𝑚 = 𝛾0𝐺

′′
𝑚, (2.47)

where in the limit 𝛾0 → 0, 𝐺′
1 and 𝐺′′

1 become the usual complex moduli in the linear regime. We
can also define the phase angle for each Fourier mode, 𝑚, as

tan(𝛿𝑚) =
𝐺′′

𝑚

𝐺′
𝑚

. (2.48)

It has been suggested that this framework is sensitive to differing levels of branching (HYUN

et al.; HYUN et al.; HYUN AND WILHELM; KEMPF et al., 2007; 2006; 2009; 2013) and has the
advantage that LAOS is easier experimentally than extensional flow. Typically, measured quantities
include the real and imaginary odd harmonics, 𝐼 ′𝑚 and 𝐼 ′′𝑚, where 𝑚 = 1,3,5,.... From these param-
eters, the absolute value of each harmonic is examined as a fraction of the absolute first harmonic
and can be defined as

𝐼𝑚/1 =

√︃
𝐼 ′𝑚

2 + 𝐼 ′′𝑚
2

𝐼 ′1
2 + 𝐼 ′′1

2 . (2.49)

MacSporran and Spiers (MACSPORRAN AND SPIERS, 1984) have shown that LAOS is a
sensitive technique for investigating the microscopic structure of fluids, in particular the phase shift
for the third harmonic, Φ3 = 𝜑3−3𝜑1 , and the third storage and loss moduli, 𝐺′

3, 𝐺
′′
3 are of special

interest in characterizing a material and characterizing both viscous and elastic nonlinear rheology
(NEIDHOFER et al., 2003). Wilhelm (WILHELM et al., 1998) showed that applying oscillatory shear
to non-Newtonian linear polymers provides a tool for investigating nonlinear response independent
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of the material. By investigating the shear response in Fourier space, higher harmonics were used to
characterize nonlinearities. That investigation continued at the cross over from linear to nonlinear
behavior using the relative magnitude of the third harmonic, 𝐼3/1.

Although this Fourier Transform framework is mathematically robust, it suffers from two
drawbacks. First, when multiple nonlinearities are present, the Fourier spectrum can spread con-
tinuously. The amount of spectral broadening depends on the signal shape and intensity and the
Fourier Transform framework lacks a clear physical interpretation of the higher-order coefficients.
Second, the use of 𝐺′

1 and 𝐺′′
1 (the first harmonic coefficients) as viscoelastic moduli in the nonlin-

ear regime is arbitrary and often fails to capture the rich nonlinearities that appear in the raw data
signal.

The higher harmonic contributions are the main responsible for the nonsinusoidal shape of
the shear stress waveform, with the third harmonic being the one that most affects it. Besides that,
the phase angle for the third harmonic gives information about sample structure.

2.3.3.2 Lissajous-Bowditch Analysis

Ewoldt (EWOLDT et al., 2008a) characterized the complex nonlinear response in LAOS mea-
surements based on the analysis of Lissajous–Bowditch plots, allowing the distinction between
elastic and viscous nonlinearities. In a Lissajous-Bowditch plot, it is possible to illustrate the cyclic
variations of shear stress as a function of strain, or shear stress versus shear rate, which occur during
an oscillatory shear experiment.

In this framework the following variables were defined in order to quantify the nonlinear
viscoelastic properties: the minimum strain elastic shear modulus or tangent modulus at 𝛾 = 0, 𝐺′

𝑀 ;
and the large strain elastic shear modulus or secant modulus evaluated at the maximum imposed
strain (𝛾 = 𝛾1). These variables are defined as

𝐺′
𝑀 =

𝑑𝜎

𝑑𝛾

⃒⃒⃒⃒
⃒
𝛾=0

=
1

𝛾1

∑︁
𝑚:𝑜𝑑𝑑

𝑚𝜎𝑚 cos(𝛿𝑚) =
∑︁
𝑚:𝑜𝑑𝑑

𝑚𝐺′
𝑚, (2.50)
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Figure 2.2: Dimensionless Lissajous-Bowditch for Giesekus model with parameters 𝜔 = 0.5, 𝛼 =
0.5, 𝜂 = 0.1, 𝜆′ = 2 and 𝛾̇ = 2. The graph on the left shows the elastic component and 𝐺′

𝑀 and
𝐺′

𝐿. The plot on the right shows the viscous stress and 𝜂′𝑀 and 𝜂′𝐿. [Source: the author.]

𝐺′
𝐿 =

𝜎

𝛾

⃒⃒⃒⃒
⃒
𝛾=±𝛾1

=
1

𝛾1

∑︁
𝑚:𝑜𝑑𝑑

(−1)(𝑚−1)/2𝜎𝑚 cos(𝛿𝑚) =
∑︁
𝑚:𝑜𝑑𝑑

(−1)(𝑚−1)/2𝐺′
𝑚. (2.51)

These properties can be determined graphically using the Lissajous-Bowditch plot 𝜎(𝛾), as
shown in figures 2.2 and 2.3 or from the Fourier parameters of the higher harmonic stress contribu-
tions, by obtaining the coefficients, 𝐺′

𝑚, the amplitudes, 𝜎𝑚, and the phase angles, 𝛿𝑚. Graphically,
the minimum-strain modulus represents the slope of the tangent at 𝛾 = 0 and the large-strain mod-
ulus represents the slope of a straight line connecting the axes origin to the point where the strain
is maximum. The minimum-rate and large-rate dynamic viscosities, 𝜂′𝑀 and 𝜂′𝐿, respectively, can
also be defined in a similar manner:

𝜂′𝑀 =
𝑑𝜎

𝑑𝛾̇

⃒⃒⃒⃒
⃒
𝛾̇=0

=
1

𝜔𝛾1

∑︁
𝑚:𝑜𝑑𝑑

(−1)(𝑚−1)/2𝑚𝜎𝑚 sin(𝛿𝑚) =
∑︁
𝑚:𝑜𝑑𝑑

(−1)(𝑚−1)/2𝑚𝐺′′
𝑚, (2.52)
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Figure 2.3: Dimensionless Lissajous-Bowditch for UPC Maxwell with parameters 𝜔 = 0.95, 𝜂 = 1,
𝜆′ = 2 and 𝛾̇ = 1.5. The graph on the left shows the elastic component and 𝐺′

𝑀 and 𝐺′
𝐿. The plot

on the right shows the viscous stress and 𝜂′𝑀 and 𝜂′𝐿. [Source: the author.]

𝜂′𝐿 =
𝜎

𝛾̇

⃒⃒⃒⃒
⃒
𝛾=±𝛾̇1

=
1

𝜔𝛾1

∑︁
𝑚:𝑜𝑑𝑑

𝜎𝑚 sin(𝛿𝑚) =
∑︁
𝑚:𝑜𝑑𝑑

𝐺′′
𝑚. (2.53)

These two properties define the instantaneous viscosities at the smallest and at the largest
shear rates, respectively. In a Lissajous-Bowditch plot of the form 𝜎(𝛾̇), 𝜂′𝑀 represents the slope of
the tangent at 𝛾̇ = 0 and 𝜂′𝐿 the slope of a straight line connecting the axes origin to the point for
which the shear rate is maximum.

Based on these variables, it is possible to define the strain-stiffening ratio

𝑆(𝜔, 𝛾1) =
𝐺′

𝐿 −𝐺′
𝑀

𝐺′
𝐿

, (2.54)

and the shear-thickening ratio:
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𝑇 (𝜔, 𝛾1) =
𝜂′𝐿 − 𝜂′𝑀

𝜂′𝐿
. (2.55)

For 𝑆 > 0, the material shows intra-cycle strain-stiffening, whereas 𝑆 < 0 indicates intra-
cycle strain-softening. For a linear elastic response, 𝑆 = 0. Similarly, 𝑇 = 0 represents a linear
viscous response, and 𝑇 > 0 corresponds to intra-cycle shear-thickening and 𝑇 < 0 intra-cycle
shear-thinning.

In Lissajous-Bowditch curves, for the case of linear viscoelastic behavior, the parametric
loops of stress vs. strain are ellipses, with a minor axis that narrows with increasing frequency, i.e.
less is dissipated in the high-frequency elastic region. We may see that in figure 2.4. The evolution
in the shape of the distorted stress waveforms can be related with systematic changes in the internal
microstructure of the material or the polymer topologies (linear or branched chain).

The third coefficients analysis presented with the Chebyshev framework can also be done
based on Lissajous-Bowditch curves. The curvature (second derivative) of the elastic stress 𝜎′(𝛾)

with respect to input strain amplitude can indicate either strain-stiffening (positive concavity;
𝑑2𝜎′/𝑑2𝛾 > 0), strain-softening (negative concavity; 𝑑2𝜎′/𝑑2𝛾 < 0), or linear elastic behavior (zero
concavity). Similarly, the curvature of the viscous stress indicates shear-thickening (positive cur-
vature; 𝑑2𝜎′′/𝑑2𝛾 > 0) or shear-thinning (negative curvature). The magnitude of each Chebyshev
coefficient typically decays monotonically with 𝑚, therefore to leading order positive curvature
results for e𝑚, v𝑚 > 0, whereas negative curvature results for e𝑚, v𝑚 < 0.

2.3.3.3 LAOS Strain Chebyshev Framework

As stated before, it is difficult to obtain a physical understanding from the higher harmonic
components of the stress response. We can represent the individual curves of the decomposed elas-
tic, 𝜎′, and viscous, 𝜎′′, stresses with an orthogonal set of polynomial functions such as the Cheby-
shev polynomials of the first kind. This simplifies the description of the material response because it
is no longer necessary to consider the explicit (and superfluous) temporal dependence in the stress,
and instead focus on how the material response varies with magnitude and rate of deformation.

Usually, the rheological tests are conducted in strain-controlled environment. Cho (CHO et
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Figure 2.4: Lissajous-Bowditch for Giesekus model with parameters 𝜔 = 0.5, 𝛼 = 0.5, 𝜂 = 0.1,
𝜆′ = 2. The dashed line represents the elastic stress [Pa] and the solid line the viscous stress [Pa] as
a function of strain [m/m] and strain rate [s−1]. The left plot represents the model under SAOS with
𝛾̇ = 0.2 and the right plot represents the model under LAOS with 𝛾̇ = 2.2. [Source: the author.]

al., 2005) used a geometrical interpretation of viscoelasticity to decompose the nonlinear response.
The response to a sine-strain input is given by 𝜎(𝑡) = 𝜎′(𝑥) + 𝜎′′(𝑦) and is decomposed into a
superposition of elastic stress 𝜎′(𝑥) and viscous stress 𝜎′′(𝑦):

𝜎′(𝑥̂) =
𝜎(𝛾, 𝛾̇) − 𝜎(−𝛾, 𝛾̇)

2
= 𝛾0

∑︁
𝑚:𝑜𝑑𝑑

𝐺′
𝑚 sin(𝑚𝜔𝑡), (2.56)

𝜎′(𝑦) =
𝜎(𝛾, 𝛾̇) − 𝜎(𝛾,−𝛾̇)

2
= 𝛾0

∑︁
𝑚:𝑜𝑑𝑑

𝐺′′
𝑚 cos(𝑚𝜔𝑡), (2.57)

where 𝑥̂ and 𝑦 are the normalized strain and normalized strain rate, respectively. The decomposition
is based on the concept that 𝜎′ is odd with respect to 𝑥̂ and even with respect to 𝑦, and 𝜎′′ is even
with respect to 𝑥̂ and odd with respect to 𝑦.
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The use of an orthogonal polynomial series may be contrasted with the alternative option of
using a polynomial series of arbitrary order, e.g. 𝜎′(𝛾) = 𝑎1+𝑎3𝛾

3+𝑎5𝛾
5+...+𝑎𝑚𝛾

𝑚, in which the
coefficients 𝑎𝑚 are fit by the method of least squares. Such regressions result in coefficient values
𝑎𝑚 which depend on the highest order of the polynomial used for the fit, in contrast to the use of
orthogonality relations that enable unique determination of the Chebyshev coefficients.

A series of Chebyshev functions, with corresponding weighting coefficients, is then used to
represent the elastic and viscous stresses according to

𝜎′(𝑥̂) = 𝛾0
∑︁
𝑚:𝑜𝑑𝑑

e𝑚(𝜔, 𝛾0)𝑇𝑛(𝑥̂) (2.58)

𝜎′′(𝑦) = 𝛾̇0
∑︁
𝑚:𝑜𝑑𝑑

v𝑚(𝜔, 𝛾0)𝑇𝑛(𝑦) (2.59)

𝑇𝑛(𝑥̂) and 𝑇𝑛(𝑦) correspond to 𝑛th-order of the Chebyshev polynomials of the first kind and v𝑚

and e𝑚 are orthonormal viscous and elastic coefficients respectively. Chebyshev coefficients di-
rectly correspond one-to-one to Fourier coefficients in the time domain as explained in the previous
section as follows:

e𝑚 = 𝐺′
𝑚(−1)(𝑚−1)/2 (2.60)

v𝑚 =
𝐺′′

𝑚

𝜔
= 𝜂′𝑚, (2.61)

for 𝑚 : 𝑜𝑑𝑑. Thus, similar to the third-order Fourier harmonics, the third-order Chebyshev coeffi-
cients v3 and e3 signal the departure from nonlinearity while also providing physical interpretation.
In the linear regime e3/e1 << 1 and v3/v1 << 1 because the effective contribution of higher-order
terms is negligible.

The third-order coefficients determine the concavity of each curve (to leading order), and
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Figure 2.5: Stress [Pa] response of the UPC Maxwell model for 𝜔 = 0.95, 𝛾̇ = 1.5, 𝜂 = 1,
𝜆′ = 2 as a function of time [s]. The markers represent the data itself, the dotted line is the signal
reconstructed with only 1 coefficient, the dashed line shows the addition of the third coefficient and
the solid line represents the signal reconstructed with five coefficients. [Source: the author.]

it is this curvature of the measured material response with respect to strain or strain-rate which
corresponds to a physical interpretation of the nonlinearity within a steady-state oscillatory cycle
(intra-cycle nonlinearities of a nonlinear waveform). For instance, in the nonlinear regime, the
first-order coefficients describe the average, global or intercycle response (basis function is linear
but changes for each cycle of increasing strain amplitude), whereas the third-order reveal local
or intracycle responses (relative nonlinearities within a single cycle). These nonlinearities usually
manifest as curvatures, characterized by upturns or bends. Figures 2.5, 2.6 and 2.7 show how the
amount of coefficients change the characterization of the nonlinearities.

In Chebyshev framework, positive values of the first-harmonic nonlinearities e1 > 0 and v1 >

0 signify intercycle elastic stiffening and viscous thickening (visually observed as counterclockwise
rotation or increasing slope), whereas negative values mean intercycle elastic softening and viscous
thinning (clockwise rotation or decreasing slope). In the same manner, for positive contributions
of the third-harmonic nonlinearities e3 > 0 and v3 > 0, the response is referred as to intracycle
strain stiffening and intracycle shear thickening, respectively (observed as upturns). For negative
contributions, the response is referred as to intracycle strain softening and intracycle shear thinning
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Figure 2.6: Dimensionless Lissajous-Bowditch curve of the elastic stress component of the UPC
Maxwell model for 𝜔 = 0.95, 𝛾̇ = 1.5, 𝜂 = 1, 𝜆′ = 2. The first plot represents the data (markers)
and the signal reconstructed with one coefficient. The second presents the signal reconstructed with
3 coefficients and the last with 5 coefficients. [Source: the author.]

(observed as downturns).

Figure 2.8 shows the elastic en , and viscous, vn , Chebyshev coefficients of Giesekus model.
In this case, 𝑆 = 0.6 and 𝐿 = −0.11, representing a strain-stiffening and shear-thinning fluid.
The Chebyshev coefficients and stiffening/thickening ratios (𝑆 and 𝑇 ) are related in their inter-
pretation and this analysis can also be done based on the coefficients, namely e3 = 𝐺′

3 > 1 and
v3 = 𝐺′′

3/𝜔 < 1. In the case of the Giesekus model, the strain stiffening is caused by the fil-
laments deformation. The stiff filaments deform initially by bending at small strains and then by
stretching at larger strains when their end-to-end vectors align in the shear field. In this mode, fibers
with linear force-extension relations can also produce strain stiffening in networks because of the
geometrical changes as they align in shear. This type of fluid also presents shear thinning, a non-
Newtonian behavior of fluids whose viscosity decreases under shear strain, due to the uncoil of the
macromolecules.
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Figure 2.7: Dimensionless Lissajous-Bowditch curve of the viscous stress component of the UPC
Maxwell model for 𝜔 = 0.95, 𝛾̇ = 1.5, 𝜂 = 1, 𝜆′ = 2. The first plot represents the data (markers)
and the signal reconstructed with one coefficient. The second presents the signal reconstructed with
3 coefficients and the last with 5 coefficients. [Source: the author.]

2.3.3.4 LAOS Stress Chebyshev Framework

A similar ontological framework has been proposed for stress-controlled test: an imposed
cosine oscillating stress 𝜎(𝑡) = 𝜎0 cos(𝜔𝑡) gives a strain response. The same geometry arguments
can be used and the total strain can be decomposed into its elastic and viscous components defined
as 𝛾(𝑡) = 𝛾′(𝑡)+𝛾′′(𝑡). However, the Chebyshev representation is given by the following equations

𝛾′(𝑡) = 𝜎0

∑︁
𝑚:𝑜𝑑𝑑

𝐽 ′
𝑚(𝜔, 𝜎0) cos(𝑚𝜔𝑡) = 𝜎0

∑︁
𝑚:𝑜𝑑𝑑

𝐽 ′
𝑚(𝜔, 𝜎0)𝑇𝑛(𝑥), (2.62)

𝛾′(𝑡) = 𝜎0

∑︁
𝑚:𝑜𝑑𝑑

𝑚𝜔𝐽 ′
𝑚(𝜔, 𝜎0) cos(𝑚𝜔𝑡) = 𝜎0

∑︁
𝑚:𝑜𝑑𝑑

𝑚𝜔𝐽 ′′
𝑚(𝜔, 𝜎0)𝑇𝑛(𝑥), (2.63)

𝐽 ′
𝑚(𝜔, 𝜎0) = c𝑚(𝜔, 𝜎0) and 𝑚𝜔𝐽 ′′

𝑚(𝜔, 𝜎0) = f𝑚(𝜔, 𝜎0) are the interrelations between the Cheby-
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Figure 2.8: Elastic, en , and viscous, vn , Chebyshev coefficients of Giesekus model with parameters
𝜔 = 0.1, 𝛼 = 0.3, 𝜂 = 0.1, 𝜆′ = 0.5. In this case, e3 = 0.0015809𝑃𝑎, 𝐺𝐿/𝐺𝑀 = 2.4751,
v3 = −0.024187𝑃𝑎.𝑠, tan 𝛿1 = 11.4853, 𝜂′𝐿/𝜂

′
𝑀 = 0.89852 and 𝜂′1 = 𝐺′′/𝜔 obtained using

MITLaos software (EWOLDT et al., 2007). [Source: the author.]

shev and Fourier coefficients. The coefficients c𝑚 and f𝑚 represent Chebyshev compliance and
fluidity coefficients, respectively.

2.3.4 Unidirectional Large Amplitude Oscillatory Shear (UD-LAOS)

The UD-LAOS test denotes a superposition of an oscillatory shear in the nonlinear regime
and a steady shear equal in amplitude to the oscillation, namely

𝛾̇(𝑡) = 𝛾̇𝐷𝐶 + 𝛾̇0 cos(𝜔𝑡) (2.64)

where 𝛾̇𝐷𝐶 is a constant strain. UD-LAOS experiments were previously introduced to study
thixotropic suspensions (ARMSTRONG et al., 2016), since the superposition of the steady shear
prevents the flow from reversing. In these coordinates, the transient oscillatory stress is not zero on
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average during the cycle. Using these variables, elastic and viscous projections of the UD-LAOS
stress response, i.e., Lissajous-Bowditch plots, can beconstructed in a manner similar to LAOS. In
these relative coordinates, the shape of a cycle for a linearly viscoelasticfluid and a Newtonian fluid
to a UD-LAOS experiment will be identical to the corresponding shape for a LAOS experi-ment.
However, any nonlinear model will provide different Lissajous-Curves.

Physically, we may see the particles during the positive cycle of 𝛾0 aligning in the flow di-
rection. However, when it enters the negative cycle, the steady shear prevents the particles from
reversing their direction, mantaining its previous orientation. When dealing with nonspherical par-
ticles, UD-LAOS shows the importance of directional structure formation under shear.

This deformation can also be seen in the Lissajous-Bowditch curves in figure 2.9. These
curves show the Giesekus model considering normal LAOS (dashed lines) and UD-LAOS (solid
lines). We may observe that when 𝛾̇𝐷𝐶 ̸= 0, there is the presence of even harmonics, that are not
usual for the shear stress signal.

The presence of these even harmonics are related to the nonlinearities of the Giesekus model.
When the suspension does not have any deformable or anisotropic particles, it is possible to re-
move the DC signal, considering it the energy at 𝜔 = 0. However, the nonlinear constitutive mod-
els usually promote a spreading of the energy in the frequency spectrum. Figure 2.10 shows the
Lissajous-Bowditch curves for Giesekus model considering normal LAOS and UD-LAOS.
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Figure 2.9: Stress [Pa] as a function of time [s] for Giesekus model (eq. 2.25) with parameters
𝜔 = 0.5, 𝛾̇ = 1.5, 𝛼 = 0.5, 𝜂 = 0.1, 𝜆′ = 2. The dashed line represents 𝛾̇𝐷𝐶 = 1.5 and the solid
line represents 𝛾̇𝐷𝐶 = 0. The plot bellow shows the frequency spectrum of both signals. [Source:
the author.]
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Figure 2.10: Lissajous-Bowditch curves of Giesekus model with parameters 𝜔 = 0.5, 𝛾̇ = 1.5,
𝛼 = 0.5, 𝜂 = 0.1 and 𝜆′ = 2. The graph on the left represents elastic stress 𝜎′ (dashed line) and the
viscous stress 𝜎′′ (solid line) [Pa] as a function of strain [m/m] and strain rate [s−1] for 𝛾̇𝐷𝐶 = 0.
The plot on the right represents elastic stress 𝜎′ (dashed line) and the viscous stress 𝜎′′ (solid line)
for 𝛾̇𝐷𝐶 = 1.5. [Source: the author.]
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3 Kinematic Analysis

The present chapter aims to show a statistical analysis on C. elegans size, wavelength and
velocity distribution when a population of nematodes crawls on agar gel. One of the most relevant
features of this work is to highlight the difference, in terms of locomotion, of well-fed and starving
nematodes. This kinematic analysis was made using dynamic system tools.

Although several works have been done in the past exploring the propulsion of microorgan-
isms immersed in liquids, specific informations regarding C. elegans locomotion in high viscosity
media (such as gels) with detailed information on the physical quantities, from the perspective of
a kinematic study is still a poorly explored area. This is an important field that could apply clas-
sical physical theories (GRAY AND LISSMANN, 1964) regarding propulsion and locomotion in
low-Reynolds number to provide a deeper understanding of some fundamental questions of active
matter. There are still several open questions in this field, mostly related to the characterization of
this kind of material. Since the particles have now a metabolism and hence there is an input of
energy within the fluid in which they are immersed, the properties of this complex material may
not be defined in a state of thermodynamic equilibrium (FODOR AND ET AL; TAKATORI AND

BRADY, 2016; 2014).

It is very important to understand how the nematodes move in order to compute their bulk
behavior in rheological properties. This chapter is a starting point regarding the understanding of
how the metabolic conditions change the collective behavior of a population of worms. The relative
importance between the forces and time scales involved in the dynamics of the living particles (or
nematodes) is also discussed and physically interpreted. Finally, we provide a spectral analysis
of the motion of several individuals and show how secondary frequencies are able to break the
time-reversibility to which these worms are subjected and produce a highly efficient motion in low
Reynolds number flow.

Experiments in a gel-like medium were performed using the nematode C. elegans. The high
viscosity gel considered in this work is a mixture of water and agar molecules. During the ne-
matode’s crawling motion, fluid is released from the medium in a process called syneresis, which
consists of the breaking of the agarose molecules bonds. The nematode then crawls in a thin water
film that is formed around its body on a lubrication regime. The crawling behaviour of the nematode
C. elegans (N2 wild type) immersed in a gel (NGM-agar plates with Escherichia coli) was investi-
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gated in a sealed acrylic chamber that was 2 cm in diameter and 1 mm in depth using a microscope
and a high-speed camera.

3.1 Experimental methods

3.1.1 Preparation of growth media

The protocol of Stiernagle (STIERNAGLE, 2006) to produce the gel-like nematode growth
medium (NGM) consists on producing a mix of 3 g of NaCl, 17 g of agar and 2.5 g of peptone in a
2 liter Erlenmeyer flask. After that, 975 ml of H2O was added and the flask was autoclaved for 50
minutes with its mouth covered with aluminium foil. The solution was cooled in 55 ∘C water bath
for 15 minutes. Using sterile procedures, 1 ml of 1 mol CaCl2 and 1 ml of 5 mg/ml cholesterol
were added in ethanol. Next, the solution was swireled with 1 ml of 1 mol MgSO4 and 25 ml 1 mol

KPO4. This NGM solution was dispensed into petri plates using a peristaltic pump and the plates
were filled with 2/3 agar. The plates were left at room temperature for 3 days to allow the detection
of contaminants and the moisture to evaporate.

Approximately 0.5 mL of E. coli OP50 liquid culture was applied onto the plates. The lawns
grew overnight at room temperature for 8 hours. To produce the starving sample, the nematodes
were transfered to other plates using two different techniques. A quick and convienient method is to
move a chunk of agar from an old plate to a fresh one. Due to the fact that hundreds of nematodes
are present in the chunks, this is a good technique for old plates, since the worms will probably
be burrowed into the agar. An alternative approach is to use a worm picker. A 32 gauge platinum
wire was attached to the tip of a Pasture pipet. The wire was flamed between transfers to avoid
contamination. The end of the wire was also flattened and bent, forming a hook. A blob of bacteria
was added inside the hole of the hook and it was gently swiped at the side of the worm and lifted
up. The worm stuck to the bacteria and after the worm picker is slowly lowered to the new plate, it
crawls off the picker.
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3.1.2 Experimental protocol

The main part of the experiment was the nematode tracking, which is used for obtaining kine-
matic data such as swimming speed, beating frequency, and amplitude. The individuals were ob-
served through an Olympus UC30 CCD camera coupled to an Olympus BX51 microscope. Images
were recorded with the focal plane at the centre of the chamber to avoid movies with nematode-wall
interactions; out-of-plane recordings were discarded. The nematodes swimming kinematics were
obtained from the videos using the commercial software WormLab (ROUSSLET et al., 2014). The
software extracts the nematode’s centroid, head and tail positions based on body shape and com-
putes kinematic quantities. The nematode crawling produces the extraction of fluid from the gel.
This fluid is mostly composed of a water-like buffer solution (M9 salt solution, 𝜇 = 1 mPa s). Our
initial experiments showed that C. elegans exhibits a predominately two-dimensional sinusoidal
beating pattern, producing a travelling wave that moves from head to tail. The head, tail, and cen-
troid trajectories were analyzed using an in-house Fast Fourier Transform algorithm. Figures 3.1
and 3.2 show how the software WormLab identify the nematodes and obtain kinematic data.

Figure 3.1: Bending angle at the midpoint. [Source: Rousslet et al. (2014).]

Figure 3.2: Period of the sine wave the best fits the worm’s posture. [Source: Rousslet et al. (2014).]

Kinematics data consisted of an average of 20 individuals analyzed in 20 different recordings.
The statistical distribution of the samples can be seen in figures 3.3 and 3.4. These figures illustrate
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the size distribution, in terms of length, of the samples of well-fed and starving nematodes. It can
be seen that in average the nematodes size distribution of our well-fed and starving samples did
not differ substantially. Thus, this geometrical difference is not the determinant factor that dictates
their differences in terms of motion (dynamic behavior). Therefore, the metabolic feature can be
isolated in terms of how it affects the worm’s kinematics.

Figure 3.3: Cumulative distribution function (CDF) of the standard normal distribution and fre-
quency histogram of well-fed sample. In this case, 85% of individuals were smaller than 500 µm
and the length of most individuals varied between 300 µm and 400 µm. [Source: the author.]
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Figure 3.4: Cumulative distribution function (CDF) of the standard normal distribution and fre-
quency histogram of the starving sample. The CDF shows that 70% of individuals were smaller
than 600 µm and the length of most nematodes varied between 300 µm and 400 µm. [Source: the
author.]
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3.2 Results and discussions

3.2.1 Preliminary characterization

The typical crawling motion of C. elegans was studied considering the geometry and variables
defined in figure 3.5, where 𝑎 is the worm diameter, 𝜆 represents the nematode’s motion wavelenght,
𝛿 is the C. elegans motion amplitude, 𝜃 represents the bending angle and 𝑣 the centroid velocity.
The nematode’s length is given by 𝐿.

A statistical analysis based on two populations of 20 individuals each was performed. In
the first population the nematodes were immersed in a gel medium with food (E. coli bacterial
suspension). For the second population of individuals, food was not available. The populations
were evaluated in different days (during one week) and in different growing stages. The idea of this
preliminary analysis was to check whether different environmental conditions from a biological
perspective could affect the nematode’s motion in two very similar surrouding media.

Figure 3.5: Geometrical sketch of variables 𝑎, 𝛿, 𝜆, 𝜃 and v. [Source: the author.]

The kinematic characteristics of the individuals were analyzed based on statistics over the
population of 40 individuals (including the well-fed and the starving samples) in 40 different exper-
iments. The relevant results of this analysis are presented in tables 3.1 and 3.2. The slip parameter,
𝛼, was defined as 𝛼 = 1 − 𝑈𝑐/𝑈𝑣 where 𝑈𝑐 is the nematode speed with respect to a fixed frame
of reference and 𝑈𝑣 = 𝜆𝑓 is the wave speed with 𝑓 being the main frequency of the nematode’s
motion. Usually when the trace left by the nematode in the base fluid is similar to an harmonic wave
motion, 𝛼 tends to zero. That means that nearly all bending force was converted into propulsion.
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Table 3.1: Nematodes motion characterization in the absence of food. The variables 𝛿, 𝐿 and 𝑎 are
independent of the presence or absence of food. [Source: the author.]

Kinematic variable Range Average Standard Deviation
𝛿 ( µm m) 7.48 - 38.33 19.79 10.65
𝐿 ( µm) 193.14 - 1160.45 515.55 348.89
𝜆 ( µm) 101.92 - 613.07 276.87 183.95

𝑣 ( µm s−1) 25.51 - 170.5 76.89 42.10
𝑎 ( µm) 26.36 - 74.49 43.20 17.31

Table 3.2: Well-fed nematodes motion characterization. The variables 𝛿, 𝐿 and 𝑎 are independent
of the presence or absence of food. [Source: the author.]

Kinematic variable Range Average Standard Deviation
𝛿 ( µm) 5.7 - 158.2 22.02 33.82
𝐿 ( µm) 185.49 - 1073.24 336.11 189.36
𝜆 ( µm) 98.14 - 640.38 179.18 115.20

𝑣 ( µm s−1) 24.56 - 88.94 47.79 18.02
𝑎 ( µm) 17.29 - 68.71 33.742 11.16

3.2.2 Scalings arguments

Now, we shall provide a brief description of our living system. Let’s consider a typical trav-
elling wave 𝐹 = sin((𝑘𝑥 − 𝜔𝑡) propagating from left to right with velocity 𝑐 = 𝜔/𝑘. When the
nematode exerts a force on the agar plate it causes syneresis, or the extraction of water from a
gel. The quantity of released water is inversely proportional to the agarose concentration squared
(DUMITRIU, 1998). In order to move, the nematodes must bend so that the yield stress force
𝐹𝑦 ∼ 𝜏0𝑎

2𝛼 of the surrounding medium is exceeded. Here 𝜏0 is the yield stress of the agar gel.
This bending is directly related to the biological characteristics of the nematodes. The nematode
body wall is composed of a cuticle and a single layer of longitudinal muscle cells. In nematodes,
the cylindrical shape of the body tube is maintained when punctured and its diameter changes only
slightly. However, nematodes are unique among worm-like organisms in lacking circumferential
muscles; therefore their motion is limited to what can be accomplished by applying longitudinal
forces. In the case of bending, the net force due to increased muscle tension would shorten only one
side of the local body tube, while the other side would strech by the equilibrium of forces there.

A typical scale for this bending force is 𝐹𝑏 ∼ 𝑀𝑓/𝜆, where 𝑀𝑓 represents the nematode
bending moment. We may write this bending moment as a function of the elastic modulus 𝐸, the
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moment of inertia and the curvature of the nematode, scaling it with 𝑀𝑓 ∼ 𝐸𝑎4𝛿/𝜆2. The viscous
force, on the other hand, scales with the slip coefficient as 𝐹𝜇 ∼ 𝜇𝛼𝑓𝜆2, with 𝜇 being the carrier
liquid viscosity.

The following calculation is based on the constitutive relation for the moment 𝑀(𝑠, 𝑡) in an
inextensible filament of size 𝑠, representing the C. elegans. The total moment may be considered as
𝑀 = 𝑀𝑝 +𝑀𝑎, where 𝑀𝑝(𝑠,𝑡) is the passive moment and 𝑀𝑎(𝑠,𝑡) is the active moment generated
by the muscles of the nematode. The passive moment is given by the viscoelastic Voig model
(KOELLER, 1950). This constitutive relation is given by:

𝑀𝑝 = 𝐸𝐼𝑘 + 𝜇𝐼
𝜕𝑘

𝜕𝑡
(3.1)

where 𝑘(𝑠,𝑡) is the curvature along the nematode and 𝐼 is the nematode moment of inertia, consid-
ered to be a hollow cylindrical shell (SZNITMAN et al., 2010).

Another force involved in the motion of the nematode is the inertial force on the liquid (which
we will show to be negligible in this problem), 𝐹𝑖 ∼ 𝜌𝛼𝑓𝑣𝜆2𝐿, where 𝜌 is the fluid density. Based
on statistics over 40 individuals, including starving and well-fed nematodes, the average slip for 40
analyzed individuals was 0.009. In this work, we have considered the elastic Young modulus pro-
posed by Arratia et al. (SZNITMAN et al., 2010).The average Young modulus used was 2659.7𝑃𝑎

and the calculated average Reynolds number was 0.035. Here, the Reynolds number is defined in
the standard form as being 𝑅𝑒 = 𝜌𝑣𝐿/𝜇, where 𝜇 is the fluid viscosity, 𝑣 is the nematode’s velocity
and 𝐿 its length. The bending number is defined as 𝐵𝑒 = 𝐹𝑏/𝐹𝜇. The agarose yield stress is also
important for the scaling analysis. When the nematode’s bending tension is larger than the yield
stress tension, the agarose gel behaves as a Newtonian fluid. In this condition, we may introduce
the Bingham number as being 𝐵ℎ = 𝐹𝑦/𝐹𝜇. We may notice that 𝐹𝑏/𝐹𝑦 ∼ 1. Table 3.3 shows the
main dimensional quantities, forces and nondimensional physical parameters of our living system.
This scaling analysis represents every possible movement of the nematode.

In this work, most of the analysis was done on worms crawling with no slip. However, slip
can be extremely important in several instances. Gray and Lissman (GRAY AND LISSMANN, 1964)
concluded that 𝑈𝑐

𝑈𝑣
= 0.9 was a usual value for nematodes crawling on agar jelly. On the other hand,

this relation is much smaller when the nematodes are crawling rigid surfaces such as moist glass or
swimming. Indeed, swimming is related to a C-shape movement and it is simply an extreme phase
of an S-shaped travelling wave with wavelenght longer than the worm’s body (BERRI et al., 2009).
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Table 3.3: Characterization of the main dimensional quantities, forces and physical parameters
averages of the nematodes locomotion. [Source: the author.]

Dimensional Forces Nondimensional
𝑎 ≈ 3.80 × 10−5 m
𝛿 ≈ 2.10 × 10−5 m
𝜆 ≈ 2.28 × 10−4 m
𝐿 ≈ 4.25 × 10−4 m 𝐹𝜇 ∼ 𝜇𝛼𝑓𝜆2 ≈ 1.4 × 10−13 N 𝛼 ∼ 10−3

𝑓 ≈ 3.00 × 10−1𝑠−1 𝐹𝑏 ∼ 𝑀𝑓/𝜆 ≈ 8.8 × 10−9 N 𝐹𝑏/𝐹𝜇 = 𝐵𝑒 ∼ 104

𝑣 ≈ 6.20 × 10−5 m s−1

𝐸 ≈ 2.60 × 103 Pa 𝐹𝑖 ∼ 𝜌𝛼𝑓𝑣𝜆2𝐿 ≈ 3.7 × 10−15 N 𝐹𝑖/𝐹𝜇 = 𝑅𝑒 ∼ 10−2

𝜏0 ≈ 5.00 Pa 𝐹𝑦 ∼ 𝜏0𝑎
2 ≈ 7.22 × 10−9 N 𝐹𝑦/𝐹𝜇 = 𝐵ℎ ∼ 104

𝜇 ≈ 1.00 × 10−3 Pa s
𝑀𝑓 ≈ 2.00 × 10−12 N m
𝜌 ≈ 1.00 × 103 kg m−3

In our condition, the travelling wave is considered to be stationary relative to the substrate,
thus the slip tends to zero. Considering Parida work (PARIDA AND PADMANABHAN; PARIDA et

al., 2016; 2017), it is possible to still use the same scaling analysis. For example, acoording to
the same mentioned work, when the elastic modulus of the medium increases, the amplitude of
the worms motion monotonically decreases. Our scale analysis estimates that the bending force
𝐹𝑏 = 𝐸𝑎4𝛿/𝜆3 is proportional to the worms amplitude 𝛿. Thus, a stiffer medium demands a lower
bending force for the nematode to move. However, the medium stiffness is inversely proportional to
the lubrication film thickness. In this condition, the lateral slip increases and the forward locomotion
becomes less efficient. On the other hand, as mentioned by Parida (PARIDA AND PADMANABHAN;
PARIDA et al., 2016; 2017), the stiffness of the medium may induce other characteristic shapes.
Besides, during the animals reversal, for example, there is no sinusoidal pattern. As a matter of
fact, a sharp turn (omega turn) results in approximately 180 ° change in locomotion. During the
turning process, the animal supresses its lateral head movements and there is a deep ventral head
bend (AKEMA et al., 2005). In all these cases, the scaling analysis presented on table 3.3 represents
the correct forces coupling considering the nematode and the agar dimensional quantities.

We postulate that, locally, viscous effects may be extremely relevant. In the sharp edges of
the nematode’s tail and head, there is a concentration of viscous stresses. Although globaly, in the
nematode’s wavelenght scale, viscous and inertial effects are dominated by bending forces, there is
a concentration of viscous stresses in a minor scale, related to the edges of the nematode’s body. In
this scale, the nematode is forced to move its parts in a highly non-linear and non-harmonic way in
several higher frequencies. This motion emulates a flagelum-like motion and breaks the kinematic
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reversibility in which its solid boundaries are bonded.

This type of behavior is also explained anatomically. Head and body movements are
controlled independently by distinct classes of motor neurons and muscles (PIRRI AND

ALKEMA, 2012). While the body bends are restricted to the dorsal-ventral plane, the animal can
flex its head in three dimensions on specific conditions; this is called nictation. It is interesting to
highlight that even though this is not common, nictation may be observed on old plates with con-
taminating fungi. In this scenario the hyphal tips serve as the projections necessary for adherence
and nictation (LEE et al., 2011). However, on standard agar plates, C. elegans movement is limited
to two dimensions, preventing the observation of a three-dimensional activity such as nictation,
unless the nematode is crawling inside the substrate. Head muscles are divided into eight radial
symmetric sectors, and these are independently innervated by ten classes of motor neurons (WARE

et al.; WHITE et al., 1975; 1986). As a consequence of this motor circuitry, worms can move their
head through 360 ∘C.

From table 3.3 we may also conclude that the living suspension may be treated in the creeping
flow regime, since the ratio 𝐹𝑖/𝐹𝜇 = 𝑅𝑒 ≪ 1. It is also important to notice that the highest
force involved in the problem is the nematode’s bending force. This force is in the same order of
magnitude as the yield stress forces and hence the bending of the nematode’s muscles is capable
of breaking the agar molecules of the gel, releasing water (syneresis effect). It is also important
to highlight that the bending forces are much higher than the viscous forces 𝐹𝑏 ≫ 𝐹𝜇. It is worth
to emphasize that we do not consider elastic forces on the surrounding medium in this work. The
syneresis effect is responsible for the nematode to crawl in a viscous fluid which is very similar to
water, different from that used in the work of Keim et al. (KEIM et al., 2012).

3.2.3 Theoretical prediction - Length and wavelength relation

Due to their small size, microorganisms such as bacteria, sperm cells, nematodes and various
kinds of protozoa move in the low 𝑅𝑒 number regime. In such a regime, linear viscous forces dom-
inate nonlinear inertial forces (BRENNEN AND WINET; CHILDRESS; VOGEL, 1977; 1981; 1994)
and locomotion must result from non-reciprocal motion in order to break time-reversal symmetry.
This is the so-called “scallop theorem”. Taylor (TAYLOR, 1951) demonstrated that a slender body
could swim at low Reynolds number by generating traveling waves along its body. Nematodes, such
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as C. elegans, produce bending waves in order to move, which is an example of non-reciprocal mo-
tion. These bending waves consist of alternating phases of dorsal and ventral muscle contractions
driven by the neuromuscular activity (WHITE et al., 1986).

Lauga (LAUGA AND POWERS, 2009) postulated that the scallop theorem does not hold for
groups of more than one body. In this sense, a body undergoing reciprocal motion cannot swim,
however two bodies undergoing reciprocal motion with nontrivial phase differences are able to take
advantage of the unsteady nature of the generated flow to move. These two bodies are able to create
a collective dynamics. This collective behavior is present in solutions with C. elegans. However,
all analyses in this chapter were made considering isolated individuals, disregarding hydrodynamic
interactions.

Several observations by optical microscopy and video camera indicated that the nematode
motion was harmonic, so the shape of an individual worm could be expressed, during its motion,
by the following curve

𝑔(𝑥) = 𝐶 sin

(︂
2𝜋𝑥

𝜆

)︂
, (3.2)

where 𝑔(𝑥) represents a smooth repetitive oscillation and 𝑥 is the position on the horizontal direc-
tion on which the wave propagate. The wavelenght 𝜆 describes the distance the wave propagates
between two valleys of the sinusoidal curve and 𝐶 is a calibration parameter. The total length of
this curve is obtained through

𝐿(𝜆) =

∫︁ 𝜆

0

[︃
1 +

(︂
𝑑𝑔

𝑑𝑥

)︂2
]︃1/2

𝑑𝑥, (3.3)

with 𝐶 = 𝜆/3 calibrated by experimental data. Now, replacing eq. (3.2) in (3.3) and performing
the integration, we have

𝐿(𝜆) =

⎡⎣2
√

9 + 4𝜋2𝐸
(︁

4𝜋2

9+4𝜋2

)︁
3𝜋

⎤⎦𝜆, (3.4)

where 𝐸(𝑥) represents the elliptical integral of first kind so the expression can be simplified to

𝐿(𝜆) ≈ 1.72677𝜆. (3.5)
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Figure 3.6: The average nematode size based on statistics over 15 starving individuals (black cir-
cles) and 15 well-fed nematodes (non-filled circles) as a function of the wavelength compared to
the theoretical prediction (continuous line). [Source: the author.]

As shown in figure 3.6, our theoretical linear correlation given by eq. (3.5) was also validated
experimentally. It is possible to see that its characteristic motion remains the same regardless the
nematode size for a typical medium with 𝐸 ∼= 2.6𝑘𝑃𝑎. Consequently, the wavelength responds
linearly to the nematode size even in its larval stage. The remarkable agreement between our theory
and the experimental measurements suggests that C. elegans uses indeed a sinusoidal locomotion.
It is interesting to observe that this prediction was proposed considering that 𝐿 ∼ 2𝜆, which was
based on our previous experiments.

We may also compare the nematode’s bending angle 𝜃 with the distance 𝑅 between head and
tail. Considering a sinusoidal movement, the angle should reach its maximum at the smallest 𝑅 and
the minimum angle when 𝑅 reaches its maximum. Figure 3.7 compares distance 𝑅 and angle 𝜃.
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Figure 3.7: Nematode’s bending angle 𝜃 and head to tail distance 𝑅 (defined as 𝐿/2) as a function
of time considering the same trajectory. It is possible to observe at points A, B, C and D how these
two variables relate. At A, the bending angle is high and the nematode’s body curved. The same
behavior is seen at B and C. On the other hand, at D, the bending angle reaches its minimum and
the nematode’s body is fully streched. [Source: the author.]

3.2.4 Non-harmonic motion analysis

Considering the scallop theorem, we may postulate that in order to move, a C. elegans has to
conduct a non-harmonic motion. Analyzing the trajectory of the individuals, as presented in figures
3.8 and 3.9, we may observe a more complex non-harmonic oscillatory motion of the nematode.
The head motion now is composed of different vibrational degrees of freedom in contrast with a
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simple harmonic motion. This condition breaks reversibility and it is necessary for the nematode to
move and find food. However, the centroid trajectory is almost harmonic.

Figure 3.8: Trajectory of 10 starving nematode’s centroid taken randomly from the sample. The
trajectories were subtracted from their point of origin to start at (𝑥, 𝑦) = (0,0). [Source: the author.]

In the absence of food, the individuals tend to move faster and in different directions searching
for food and produzing non-harmonic trajectories as depicted in figure 3.8. Moreover, the worms
increase their velocity and tend to crawl higher distances. However, when a collony of bacteria
is present, all individuals tend to crawl with similar velocities, i.e. proportional to the nematodes
size. Under this condition, they also present fewer non-harmonic oscillations and do not explore the
NGM plate, reducing its crawling path. In the frequency domain, we may understand how numerous
modes of vibration are present in the complex nematode motion. The Fast Fourier Transforms were
perfomed in Scilab using a script developed by the author and the results are shown in figures 3.10
and 3.11. There are typical differences between tail, head and centroid motions. The head presented
a much more complex motion composed of several vibrational modes (degrees of freedom). We
can notice that, there is a non-negligible energy in frequencies slightly higher than 2. This is a
direct consequence of the fact that the nematode head must command the rest of the body and
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Figure 3.9: Trajectory of 10 well-fed nematode’s centroid. In this case, the individuals were taken
randomly from the agar plate filled with E. coli. The trajectories were subtracted from their point
of origin to start at (𝑥, 𝑦) = (0,0). [Source: the author.]

so it responds at higher frequencies and develops a complex “bending” motion in the absence of
food. The centroid follows an almost harmonic pattern showing only one mode corresponding to
the fundamental frequency i.e., having a minimum bending and effort. The thinning of the tail in
relation to the rest of the nematode cylindrical body allows it to function similarly to a flagellum,
presenting several motion modes and frequencies. Thus the kinematic reversibility is overcome.
Considering that the starving nematodes tend to move faster and conduct a non-linear movement we
may expect some broadband spectrum in the frequency domain. Under this condition, the nematode
is searching for food and moving rapidly its head in different path lines. This motion transition of
the nematode head in the absence of food corresponds to a dynamically non-harmonic response
of the nematode trajectories in contrast with the nearly harmonically sinusoidal periodic motion
observed under favorable conditions of food.

It is remarkable that the starving nematodes present a dominant frequency, which represents
the majority of its motion characteristics. However, there is some spectral spreading taking energy
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from this principal frequency. In this condition, the nematode starts to move its body differently
from an harmonic pattern. Although this motion may enable the nematode to move in creeping
flow conditions, it may also hinder its translational motion. Thus the nematode must use some
energy to bend its head in different directions.

Figure 3.10: Comparison of head (a) and centroid (b) motion of one specific individual of the
starving sample with adjusted range. The dashed line shows the energy of the second harmonic.
[Source: the author.]

Figures 3.10 and 3.11 show the difference from head and centroid trajectory FFT from indi-
viduals taken from starving and colonized plates, respectively. When food is available, all nema-
todes follow a very similar behavior following the E. coli colony. However, observing figure 3.11,
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Figure 3.11: Comparison of head (a) and centroid (b) motions of one specific individual of the
well-fed sample with adjusted range. The dashed line shows the energy of the second harmonic.
[Source: the author.]

we may conclude that the motion of the head is quite different from the centroid trajectory. This
behavior is directly associated with the nematodes velocity and size, which can change significantly
depending on their physical and chemical characteristics.

We may observe in figure 3.10 that the starving individuals present a spectrum with a more
continuous distribution of modes of this complex oscillatory motion. Here, they show that the en-
ergy in each frequency is much higher than the energy shown in figure (3.11), for example. As
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shown before, when bacterial collonies are present, the nematodes tend to move slower and in
well-defined harmonic sinusoidal trajectories. Under this condition the trace left behind the ne-
matode seems to be very similiar to a sinusoidal wave and the slip coefficient should be close to
zero. However, when crawling in free surface (NGM without bacteria colonies), considering greater
slip, individuals activate the “global search” mechanism, increasing their velocities, bending and
constantly changing their trajectories.

It is also interesting to notice that the nematode’s extremities excitation has its origins in vis-
cous effects, since its head and tail describe a highly nonlinear motion with much more vibrational
modes than its body. On the other hand, when the nematode is hungry, seeking for food, its excita-
tion is more influenced by biological and physiological aspects. In this regime, the development of
different vibrational modes is more complex, since now the animal body presents a non-harmonic
motion. This can be confirmed by the comparison of typical trajectories in the presence and absence
of food.

3.3 Chapter conclusions

In this chapter we have presented a statistical analysis on the kinematics-wave motion of a
suspension of C. elegans in a gel-like medium. We have studied two different populations from
a biologial perspective of the surrounding medium. These populations consisted in a starving and
a well-fed population of nematodes. We have found experimentally a linear correlation between
the length and the wavelength of the individuals for both populations. We proposed a theoretical
correlation to justify this linear dependence. The results have indicated that C. elegans indeed uses
sinusoidal propulsion to move in creeping flow.

We have also found that, whereas the centroid of the individuals in both populations behaves
nearly harmonically, their heads and tails evolve to highly non-harmonic motion. This nonlinear
motion is used to break the time reversibility in which they are trapped due to their small sizes,
known as kinematic reversibility in low Reynolds number flows. Another important finding of the
present work is the discrepancy observed in the collective motion of both populations. We observed
that well-fed individuals tend to move in the direction of E. coli collonies with less spreading
in the surrounding medium. On the other hand, a starving population collectively behaves quite
differently, seeking for food in several possible directions and with a much stronger head motion.
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In the next chapter, the rheology of the active suspension will be analyzed.
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4 Rheological Analysis

4.1 Experimental Procedure

In the suspended fluid, large quantities of C. elegans can be cultivated depending on the con-
centration of E. coli as food source. Under conditions of plentiful food and low population density,
larvae pass through four larval stages (L1, L2, L3, and L4) before molting into reproductive adults.
It has been observed in previous studies that the presence of the bacteria severely modifies the
kinematic behavior of the nematode (MALVAR et al., 2017). In addition, the development of these
worms is closely linked to the presence of food in the substrate. However, during a short time win-
dow, L1 larvae select one of two alternative developmental pathways in response to environmental
conditions (BAUGH, 2013). When little food is available, nematodes still exhibit the standard si-
nusoidal kinematic behavior, but L1s enter the diapause and arrest development as dauer larvae.
Dauer formation requires energy and, therefore, the presence of food in the environment. For this
reason, all experiments were performed with a small amount (∼ 0.1%) of E. coli in the suspension.
Thus, the nematodes were kept in the dauer stage with an average diameter of 17 µm at standard
kinematic behavior. Although the presence of bacteria could influence the rheological chacteris-
tics of the medium, this behavior is irrelevant due to the low concentration of E. coli and the size
difference between bacteria and the nematodes, which have approximately 17 µm of diameter and
300 µm of lenght.

The protocol we used to produce the liquid medium was proposed by Stiernagle
(STIERNAGLE, 2006) and consists on producing S Basal composed of 2.92 g of NaCl, 0.5 g of
K2HPO4 and 3 g of KH2PO4 dissolved in 400 ml of ddH2O. Each component was separately au-
toclaved and mixed using sterile technique. After that, 1 ml of cholesterol (5 µg/ml dissolved in
100% ethanol) and H2O to 1 liter were added. Sterilized 1 mol potassium citrate 𝑝𝐻6 (2 g of citric
acid monohydrate and 29.4 g of tri-potassium citrate monohydrate dissolved in 70 ml of 𝑑𝑑𝐻2𝑂),
1 mol CaCl (7.35 g of CaCl2 ·H2O dissolved in 40 ml of ddH2O), 1 mol MSO4 and trace metals
100× were mixed to the original suspension. Trace metals solution was produced adding 0.186 g

of disodium 𝐸𝐷𝑇𝐴, 0.069 g of FeSO4 · 7 H2O, 0.02 g MnCl2 · 4 H2O, 0.029 g ZnSO4 · 7 H2O and
0.0025 g of CuSO4 · 5 H2O dissolved in 100 ml ddH2O. This suspension was sterilized by filtration
on 22 µm and protected from light.
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In order to produce the concentrated E. coli OP50 shown in figure 4.1, 2 ml of LB medium
with a colony of freshly streaked OP50 was stored at 37 ∘C for 8 hours. From this culture, 4×0.5 ml

was inoculated in 4 × 500 ml LB in 2 l Erlenmeyer. After 18 hours of growth procedure at 37 ∘C,
the suspension was spun at 8 × 250 ml.

The final liquid medium concentration was obtained using the following protocol. Using
sterile techniques, 45.7 ml of S medium, 50 µl of cholesterol 5 mg/ml, 500 µl of 1 mol potassium
citrate 𝑝𝐻6, 500 µl trace metals ×100, 150 µl 1 mol CaCl2 and 150 µl 1 mol MgSO4 were mixed.
A pellet of OP50 (corresponding to 150 ml of overnight culture) was added. Using a total of 3 ml

of S medium, starving worms were collected from the plates and added to the culture medium. The
suspension shown in figure 4.1 was incubated at 22 ∘C and vigorously shaked for 3 days.

Figure 4.1: Cultivation steps of both studied liquids. scv[Source: the author.]

(a) Solution of E. coli. (b) Suspension of nematodes.

The rheological properties of the nematode suspension in liquid medium was determined
experimentally using an Anton Paar rheometer (Physica model MCR 301 in the Laboratory of Mi-
crohydrodynamic and Rheology - VORTEX - University of Brasília). This rotating disks rheometer
can perform rheology in oscillatory shear experiments, which are very useful to achieve small shear
rates (i.e. linear viscoelastic regime). Its minimum torque is 0.1 µN · m during steady shear and
0.02 µN · m during direct strain oscillation method, which provides the ability to control oscillatory
strains as low as 0.1 µrad - important for studying material with delicate structures - with a torque
resolution of 0.001 µN · m.

It is important to highlight that all samples also contain E. coli colonies which modify the
rheology of the suspension. However, the rheology of suspensions of bacteria was already studied
and its proprerties are well known.
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The experimental data were obtained using the software Rheoplus from Anton Paar, which
define the experiment conditions such as strain, oscillatory frequency and temperature gradient. The
tests were based on isothermal small deformation oscillatory shear. Considering a gap of 0.08 mm

and using a typical strain of 𝛾 = 0.4, three experiments were carried out in 7 different samples with
different volume fractions (0.1 ≤ 𝜑 ≤ 3.5%), in order to observe the active suspension collective
behavior, as can be seen by the suspension microstructure presented in figure 4.2.

Figure 4.2: Three typical suspension selected during the experiments From left to right 𝜑 =
0.9%, 1.5% and 2.1%. [Source: the author.]

4.2 Results and discussions

4.2.1 Comparison between active and passive suspension

The first investigation is based on the comparison of the elastic modulus 𝐺′ for different vol-
ume fractions of C. elegans with a 1% passive suspension of aqueous solution of polyacrylamide.
Figure 4.3 shows the elastic modulus as a function of the volume fraction of the active particles. In
the insert, we can also see the absence of a shear elastic modulus as the frequency goes to zero for
the polyacrylamide suspension (i.e. 𝐺′

0 = 0). The main objective is to show how the presence of
active particles affects the bulk behavior of a viscoelastic suspension. However, we are not only in-
terested in the activity of the nematode, but also in how its morphological characteristics affect the
suspension in general. In other words, the polyacrylamide solution behaves like a simple Maxwell
fluid. On the other hand, in the active suspension, besides the non-monotonic behavior of the elastic
modulus, there is a non-null shear elastic modulus at low frequencies associated with the intrinsic
movement of the active particle, which inserts a solid-like behavior even at low volume fractions.
This is also seen in emulsions subjected to viscoelastic regimes for volume fractions above the
spherical drops maximum random packing (> 64%) (OLIVEIRA AND CUNHA, 2011). In the case
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of nematodes, this elastic intrinsic behavior is mainly related to their bending. As the active parti-
cle increases its curvature, there is an increase in the restoring mechanism. Thus, the bulk viscous
dissipation is altered by the force exerted by the active particle on the ambient fluid.

Figure 4.3: Shear elastic modulus, 𝐺′(𝜔 → 0), and loss modulus, 𝐺′′(𝜔 → 0), as a function of the
volume fraction. The insert shows 𝐺′(𝜔) of an aqueous polyacrylamide solution at 𝜑 = 1%.

In the equilibrium condition the active particle is also not deformed (i.e. not aligned in the
flow direction) by the flow, because the flow is very week and no shear thinning is observed. How-
ever, there is a non-equilibrium condition induced by the active particle motion. The bulk effect of
this bending inhibits stretching and can be associated with an aparent dynamic yield stress at low
shear rate. This effect introduces an elasticity in the bulk suspension and produces a 𝐺′ different
from zero even as the frequency goes to zero. So, this active suspension cannot be described by a
standard Maxwell model in which 𝐺′

0 = 0. In addition, for some volume fraction, the entangle-
ments of nematodes lead to 𝐺′ >> 𝐺′′. In contrast, in polymeric suspension at very low strains,
the macromolecules are not being deformed and there is no elastic effect. In this condition, the
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macromolecule is fully relaxed at an equilibrium condition (i.e. randomly coiled). There is a very
interesting finding here. At volume fractions below the critical (in this case close to 0.004) the ef-
fect of yield stress is higher and it will produce a kind of plastic viscosity, which is the resistance
to deformation after the yielding point.

Using the empirical result obtained by Yasuda, Armstrong & Cohen (YASUDA et al., 1981) ,
which states that 𝑁1 ∼ (2𝐺′)𝛾̇=𝜔 = 𝜎11 − 𝜎22 (i.e. first and second normal stresses differences) for
the limit of small shear (in steady rates) and frequency (oscillatory shear), we can figure out when
the collective behavior effect of the living particles becomes important to the rheology. Laun’s
rule (LAUN, 1986) , which is a correction of this first result, states that the first normal stress
difference from the shear elastic modulus at low frequency. It is important to highlight that this is
valid only when in the limit of low frequency, low shear rate (AL-HADITHI et al., 1992a) and when
(𝐺′/𝐺′′)2 << 1 so that

lim
𝜔→0

𝐺′(𝜔)

𝜔2
= lim

𝛾̇→0

𝑁1(𝛾̇)

2𝛾̇2
. (4.1)

𝐺′(𝜔)

𝜔2

⃒⃒
𝜔→0

=
𝑁1(𝛾̇)

2𝛾̇2

⃒⃒
𝛾̇→0

. (4.2)

Figure 4.4 shows the first normal stress difference for 𝜑 = 3.5%. The insert presents the
difference ∆𝑁1 = 𝑁1(𝜔 → 2.5) − 𝑁1(𝜔 → 0) for different volume fractions of active suspen-
sions. The first normal stress difference increases only for volume fractions above 3%, as the active
particles form structures that can be stretched have a tendency to align in the flow directions. There-
fore, our experiments have indicated that the orientation effect of an individual active particle on
the bulk rheology is not perceptible at concentrations below 3%. For 3.5%, however, there is a
considerable variation of the first normal stress of about 100%. We attribute this variation to the
stretching imposed by flow on the active particle like-structures which in turn produces anisotropy
in the flow due to the presence of deformed-oriented structures. For macromolecules suspensions at
small shear rates, 𝑁1 ∝ 𝛾̇2, (GUPTA, 2010). We observed that in the active suspension, 𝑁1 ∝ 𝛾̇3/2.

Figure 4.5 shows an remarkable difference between the rheological behavior of the active
suspension examined here and a typical passive polymeric suspension. As expected, there is an
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Figure 4.4: Dimensional first normal stress difference obtained through Cox-Merz rule 𝜑 = 3.5%
as a function of the shear rate 𝛾̇. The insert shows the difference in ∆𝑁1 = 𝑁1(𝜔 → 2.5)−𝑁1(𝜔 →
0).

increase of 𝜎11 in the polyacrylamide suspension, due to the high stretching of the macromolecules
that tend to be aligned in the flow direction even in a very dilute regime (𝜑 << 1%). The increase
of 𝜎11 only at higher volume fractions is a distinctive behavior of an active suspension where
the interactions and the collective activity of the active particle, stretching and orientations of the
alive structures become relevant. In this condition, the structures formed by the agglomerates of C.

elegans and their interactions stretch. However, since the microorganism has an internal elasticity,
the bending and relaxation actions of its body do not allow it to stretch and coil the same way as
macromolecules do undergoing flow, and their moving behavior is not easily disturbed.

As observed before, when the shear rate increases, the active particles tend to decrease their
transversal fluctuations and the structures align with the flow direction due to the applied stresses.
Under this condition, there is a decrease in the effective viscosity. Moreover, Berri et al. (BERRI

AND ET AL., 2010) observed that the continuous adaptability of the nematode locomotion is also
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Figure 4.5: Non-dimensional first normal stress difference obtained through Cox-Merz rule for C.
elegans suspension of 𝜑 = 1%. The insert shows 𝑁1 for an aqueous polyacrylamide solution of
𝜑 = 1%. [Source: the author.]

related to the external mechanical resistance. Gradually increasing external mechanical resistance
on a swimming worm induces a continuous transition of locomotory gait, gradually decreasing the
wavelength and frequency of undulations until the active particle gait resembles that of crawling on
agarose surfaces (FANG-YEN et al., 2010).

4.2.2 Effective viscosity for different volume fractions

Considering the intrinsic motion of nematodes, we must observe that there is a disturbance
in the flow even in the diluted regime. These instabilities can generate anomalous behaviors. For
example, the effective viscosity can decrease depending on the volume fraction of microorganisms.
This observation was previously made by Hatwalne et al. (HATWALNE et al., 2004), who general-
ized kinetic equations for liquid crystals to model the rheology of active suspensions. More recently,
Ishikawa and Pedley (ISHIKAWA AND PEDLEY, 2014) performed Stokesian dynamics simulations
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of suspensions of spherical “squirmers”, which swim as a result of a prescribed slip velocity on
their surface. In the dilute limit, they found no change in effective viscosity due to swimming (for
non-bottom heavy particles), a consequence of the spherical shape they assumed, which results in
an isotropic orientation distribution (SAINTILLAN AND SHELLEY, 2011).

Normally, as multi-particle interactions begin to dominate the individual effect, higher or-
der terms appear (i.e. virial expansion having terms 𝜑2, 𝜑3 and so on) as calculated by Batche-
lor (BATCHELOR, 1977). Krieger and Dougherty (KRIEGER AND DOUGHERTY, 1959) proposed a
semi-empirical correlation for the effective viscosity of solid-liquid suspensions which is valid in
the full range of particle volume fraction function, namely

𝜂𝑟 =

(︂
1 − 𝜑

𝜑𝑚𝑎𝑥

)︂−[𝜂]𝜑𝑚𝑎𝑥

, (4.3)

where 𝜂𝑟 is the effective viscosity, 𝜑 is the particle volume fraction, 𝜑𝑚𝑎𝑥 is the maximum packing
and [𝜂] is the intrinsic viscosity. At higher 𝜑, the interaction between particles causes a stronger 𝜑-
dependence and additional mechanisms become pronounced. This physical phenomenon involves
a competition between shearing and thermal forces, in which the size of the particles plays a deter-
mining role (MARON AND PIERCE, 1956).

Mooney (MOONEY, 1951) proposed a useful functional form describing the dependence of
relative viscosity on particle volume fraction. An exponential dependence for semi-diluted suspen-
sions directly related to the particle’s geometry was given as

𝜂𝑟 = exp
[︂(︂

[𝜂]𝜑

1 − 𝜑/𝜑𝑚𝑎𝑥

)︂]︂
. (4.4)

Mooney’s equation can be modified (DUNKEL et al., 2013) in order to compute the complex be-
havior induced by active particle fluctuations (BRATANOV et al., 2015) and crowding behavior
(WENSINK et al., 2012). So we have analyzed each region shown in figure 4.6 based on both ap-
proaches (i.e. equations 4.3 and 4.4) in order to fit our experimental results. It is import to highlight
that this first approach does not compute the deformation of each particle. As a matter of fact, this
proposition is valid only when an equivalent sphere diameter is considered, that is, when the active
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particle is involved by a bounding spherical particle.

Figure 4.6: Effective viscosity 𝜂𝑟 as a function of 𝜑, for a suspension of wild type (N2) C. elegans.
The pure anisotropic region (1), the active elastic region (2) and the structure formation region (3)
are divided, showing the respective critical values of 𝜑. [Source: the author.]

The effective viscosity of a suspension is a result of the total shear stress induced by the
applied shear flow and internal fluctuations. The intrinsic resistance of the suspended fluid related
to the active particle motion is directly related to the suspension viscosity. The effective viscosity
related to the presence of the active particles as a function of the volume fraction is shown in figure
4.6. We observe three different regimes.

1. Pure anisotropic region - 0 < 𝜑 < 0.002: Ttheoretically, in this region, this liquid would be-
have similarly to other very dilute suspensions. However, more experiments would be needed
to corroborate these claims. It corresponds to the very diluted regime, where the effective vis-
cosity presents a linear behavior as 𝜑 increases. In suspension regime, the non-dimensional
effective viscosity would be given by 𝜂𝑟 = 1 + 𝐾𝑛ℓ3, where 𝐾 is an experimental constant,
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𝑛 is the density number and 2ℓ the length of the rod-like active particle (BATCHELOR, 1977).
In terms of the particle volume fraction, we have:

𝜂𝑟 = 1 +

(︂
𝐾

𝜋

)︂
𝜑

(︂
ℓ

𝑎

)︂2

, (4.5)

where 𝑎 is the rod-like active particle radius and ℓ/𝑎 is the particle aspect ratio. Thus, in a very
diluted regime, we have a Batchelor rod like effect that would be equivalent to an Einstein’s
suspension of spheres with radius ℓ (EINSTEIN, 1905). At these very lower volume fractions
the particle activity relaxation time is much smaller than a flow time scale, rendering this
effect imperceptible. Therefore under condition of very dilute active suspension, the average
particle stresslet (particle stress) does not contribute with elastic effect to the suspension bulk
stress.

2. Active elastic region - 0.002 < 𝜑 < 0.004: There is a decrease in the bulk viscosity in a
non-linear fashion. That means that the elastic effect of each particle has already become im-
portant. In this particle volume fraction range, particle activity relaxation time is comparable
to the applied flow time scale. In other words, the non-dissipative energy production results
in negative viscosity values and the particle stresslet decreases. This occurs typically with
pusher particles like the nematodes investigated here in the sense that they repel fluid from
the body along their axis and draw fluid to their sides. Although the volume fraction is still
low, the particle activity and its elastic bending becomes more important than the pure vis-
cous anisotropic effect described for lower concentrations. Thus, this first transition is most
closely linked to the elasticity of the nematodes. The effective viscosity in terms of volume
fraction is:

𝜂𝑟 = 1 + exp
(︂

𝛽𝜑

1 − 𝜑/𝜑𝑚𝑎𝑥

)︂
, (4.6)

where 𝛽 is an important parameter which characterizes the strength of the elementary particle
force dipole exerted on the solved fluid and its sign has vital rheological consequences. The
particle activity enhances effective fluid viscosity for 𝛽 > 0 (i.e. puller microorganisms)
and reduces it if 𝛽 < 0 (i.e. pusher). This active component comes from a swim stress,
which is analogous to the osmotic Brownian stress of passive particles (TAKATORI AND

BRADY, 2014).
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3. Structure formation and particle interaction - 𝜑 > 0.004: The effective viscosity increases
again and assumes positive values. That is probably related to the particle velocity fluctua-
tions produced by viscous hydrodynamic interaction of the neighboring anisotropic particles
over a test particle. The collective effect appears due to the particle-particle interaction and
to the tendency to align in a common direction, producing the increase of the suspension
relative viscosity. In this region, we may write the effective viscosity as a virial expansion:

𝜂𝑟 = 1 + 𝑐1𝜑 + 𝑐2𝜑
2, (4.7)

where 𝑐1 and 𝑐2 are specific coefficients related to the active suspension. The third term of
this equation is explicitly related to the interactions between two active particles.

Lopez (LOPEZ et al., 2015) showed that the collective motion of swimming bacteria can
lower the viscosity of a fluid to zero, mimicking a superfluid like liquid helium. For highly active
bacteria, the viscosity can even become negative, meaning the swimmers are pushing the fluid
along. In the same way, C. elegans can lower the liquid viscosity by aligning themselves such
that their pushing contributes to the velocity gradient. However, contrary to what was observed in
suspensions solely composed of bacteria, in the case of suspension of C. elegans, this decrease is not
enough to decrease 𝜂𝑟−1 to negative values. This is directly related to entanglements and size of the
nematode, which, however, may decrease the bulk viscosity of the suspension as a function of the
volume fraction. Potomkin (POTOMKIN et al., 2017) demonstrated how the flexibility of bacterial
flagella affects macroscopic properties of suspension of microswimmers. They found that flagellar
bending may lead to a decrease of the effective viscosity in the absence of random reorientations,
which is very similar to the behavior observed in C. elegans’ suspension.

4.2.3 Stress relaxation function and particle activity relaxation

Although most experimental measurements and theoretical models have focused on the
steady flow rheology, we anticipate the competition between flow alignment and orientational re-
laxation by run-and-tumble and rotary diffusion producing viscoelastic behavior in unsteady flows.
In order to understand how the nematodes tend to relax after the application of a stress, step strain
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tests were conducted. In this condition, at 𝑡 = 0 an instantaneous shear strain 𝛾 = 0.1 was applied.
The profile of stress relaxation is important to understand how the fluid behaves mechanically.

Figure 4.7: Relaxation function 𝐺(𝑡) of an active suspension of 𝜑 = 1%. The insert shows a zoom
in the zone of transition after the active relaxation. The dashed line represents the active relaxation
time 𝜏 = 0.33𝑠. [Source: the author.]

Upon start-up of rotation, an initial viscous stress jump occurs primarily due to the solvent
viscosity. After this initial jump, particle orientations relax leading to a decrease in the measured
viscosity as a result of the extensible stresslet. When rotation stops, the negative active stress per-
sists for a certain duration, leading to a negative undershoot in the stress response, which corre-
sponds to a retrograde torque. These mechanics lead to the oscillatory response shown in figure
4.7.

Considering the active particle as a slender body (COX AND MERZ, 1958), shown in figure
4.8, in a prestressed weighted state (i.e. with an initial cuvature related to the intrinsic bending), the
tangential forces will not resist exterior action, and will cause bias in the direction of application
of the forces (NOVIKOV, 2006). Thus, the shear modulus might be negative. This is possible in
inhomogeneous media. If the fluid constitutes a self-similar system of clusters of various sizes,
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each cluster will have its own resonance parameters and elastic characteristics, and will affect the
effective shear modulus.

Figure 4.8: C. elegans as a slender body in a prestressed weighted state, i.e. curved. [Source: the
author.]

Source: (NOVIKOV, 2006).

In fact, Bechtel and Khair (BECHTEL AND KHAIR, 2017) tested a modified Cox-Merz rule, in
which the frequency-dependent linear viscosity approximately matches the steady shear viscosity
at the maximum shear rate. The elastic component of viscosity is nonzero and peaks at intermediate
frequencies, as could have been anticipated from the case of rigid rods. However, its sign can be
negative in the case of pushers, which is at the origin of the stress undershoot after the cessation
of rotation. Some constitutive models predicted pronounced oscillatory responses in elongational
stress growth and stress relaxation after step shearing (ACIERNO et al., 1977).

The frequency of the oscillatory response is 𝑓𝑎 = 20 Hz. That means that during the active
relaxation period 𝜏𝑎, the activity time is ∼ 1/𝑓𝑎 = 0.05 s. Thus, the non-equilibrium condition is
felt during the active relaxation time. If this frequency was smaller, the observed behavior would be
very similar to that observed in viscoelastic passive suspensions due to the coupling between these
time scales. In this case, the suspension would still have a non-instantaneous relaxation time, such
as the one observed for the base suspension without nematodes (buffer), but without the oscillatory
behavior, as shown in the dashed line in figure 4.7.

Figure 4.9 shows the active relaxation time 𝜏 as a function of the suspension volume fraction.
As the volume fraction of the suspension increases, so does the active relaxation time. This is
mainly due to the formation of aggregates and interactions between the particulate system, which
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increases the memory of the system.

Figure 4.9: Active relaxation time 𝜏 in seconds as a function of 𝜑. There is an increase in the time
of relaxation due to the collective behavior previously observed. [Source: the author.]

4.2.4 Particle dipole stresslet - a physical interpretation

According to Batchelor (BATCHELOR, 1977) the stress exerted by the surface 𝑆𝑘 of the
bounding sphere of radius ℓ on the fluid is given by

𝑆𝑘 =

∮︁
𝑆𝑘

[𝑥(𝑛 · 𝜎𝑁 ) − 𝜇(𝑢𝑛 + 𝑛𝑢)], (4.8)

where 𝑛 = 𝑥/𝑟 is a unit vector, normal to the surface of the particle. In this case, without torque,
the stresslet is the dipole produced by each particle. For particles prescribing a relative surface
velocity (swimming gait), the second part of the integral does not depend on the swimming velocity.
However, the first term involves the surface traction and without any other simplifications it can
only be obtained by solving the flow everywhere. The bulk stress tensor of the suspension is given
below:

𝜎 = −𝑝𝐼 + 2𝜇𝐷̄ + 𝑛𝑆. (4.9)
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The first two terms on the right-hand side of equation 4.9 are the contributions from the background
continuous phase with an averaged pressure 𝑝 and an average rate of strain 𝐷̄. Here, 𝑛 is the average
number of particles per unit volume and 𝑆 is the average stresslet.

The active stress has the same tensorial form as the Brownian stress in suspensions of rod-like
polymers. However, in active systems, the stress presented in equation 4.8 can be either positive
or negative depending on the entropy production and fluctuations, which is directly related to the
kind of microorganism: pusher or puller (SAINTILLAN AND SHELLEY; SPAGNOLIE, 2011; 2015).
As pointed by Kim and Karrila (KIM AND KARRILA, 1992), a second-rank-tensor called Stokeslet
Green’s function which relates velocity and force linearly can be obtained from the fundamental
solution of creeping flow equation for the disturbance of velocity and pressure produced by a point
force singularity. This tensor, given by 𝐽(𝑟) = (𝐼/𝑟 + 𝑟𝑟/𝑟3)(1/8𝜋𝜇), can be used with the
traction force on the surface of an active particle to find the disturbance velocity. This solution
can be expanded in several moments about the center of this microorganism: the monopole 𝐹 , the
antisymmetric dipole 𝑀 and the symmetric dipole 𝑆, or force, torque and stresslet, respectively.
Therefore, considering a bounding sphere approximation around C. elegans, which permits a rigid
particle description, we can use the multipole expansion. For these rigid particles free of body
forces and torques we have:

𝑢(𝑥) ∼ 𝑆 :

(︂
1 +

ℓ2

10
∇2

)︂
𝐽 , (4.10)

where 𝑆 is the stresslet of a bounding spherical particle of radius ℓ. Thus, for a spherical particle,
𝑆 follows the third Faxén Law (RALLISON, 1978):

𝑆 =
5

2
𝑉𝑝𝜂

(︂
1 +

ℓ2

10
∇2

)︂
𝐷, (4.11)

where 𝑉𝑝 = (4/3)𝜋ℓ3 is the particle volume, 𝜂 is the viscosity of the surrounding fluid, and
𝐷 = ∇𝑢 + (∇𝑢)𝑇 . If we denote the orientation direction of the active particle by 𝑞, the stresslet
component 𝑞𝑞 is positive if the trust force is generated in front of the body and negative if it is
generated behind, as shown in figure 4.10. Therefore, in the case of pushers, the stresslet strength
is negative. For example, E. coli has a pronounced pusher behavior and all thrust comes from the
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rear part of its body.

Figure 4.10: Schematic of the stresslet exerted on the fluid for two types of cells, and the far-field
velocity field relative to the swimming velocities of the cells. The arrows within the cells’ bodies
show the bodies’ direction of “forward” locomotion and also the force by the cell bodies on the
fluid. The external arrows show the associated forces by the flagella on the fluid. Plot (a) shows
the thrust generated in front of the body (puller). Typical of the algae Chlamydomonas, the return
stroke, with somewhat folded flagella, reverses the arrows. The cell body then moves backward. The
return stroke results in less motion than the forward stroke, so the net motion over one complete
cycle is forward. (b) Thrust generated behind the body (pusher). [Source: (ISHIKAWA, 2009).]

At low volume fractions, the interaction between the microorganisms is not considerable.
Thus the active component becomes dominant and the effective viscosity decreases since the parti-
cle viscosity depends on the volume fraction, as seen in figure 4.6. As the volume fraction increases,
the maximum packing becomes important due to the geometric characteristics of the microorgan-
isms. This type of behavior was also observed by Sokolov and Aranson (SOKOLOV AND ARAN-
SON, 2009a). Many different mechanisms contribute to this anomalous behavior (DOMBROWSKI

et al., 2004).

By adding the extra term 𝛽 accounting for the permanent activity of microorganisms in equa-
tion 4.6, we are able to observe both puller and pusher behavior. In weak flows and at strong levels
of activity, we obtained a negative particle viscosity. This result seems to show an nonphysical re-
duction in the viscous dissipation. However, since the particles are constantly injecting mechanical
energy into the fluid, swimming cannot be considered a dissipative mechanism in nature.

Thus, the particle viscosity can be either positive or negative depending on the active power
input of the particle. If it dominates viscous dissipation, there is a decrease in the suspension’s
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viscosity. However, when viscous dissipation is the dominant contribution or the microorganism
motion induces the same dissipative behavior as the applied stress, there is an increase in the effec-
tive viscosity.

4.3 Chapter conclusions

Motivated by the growing interest in active suspensions we conducted a series of experimen-
tal rheological analysis in a C. elegans suspension, a small nematode. It is important t highlight
that even the linear viscoelastic moduli of nematodes active suspensions are poorly understood and
time-dependent rheological studies of nematodes’ suspensions have been scarce in the current lit-
erature. With this study, we were able to observe both hydrodynamic and active mechanisms of the
suspension during oscillatory shear and step strain tests.

Our experimental results have suggested a decrease in the fluids viscosity as the amount of
nematodes increases until a certain critical volume fraction. We identified three important regions.
The pure anisotropic shows an approximately linear increase of the viscosity is observed following
the law of a rod body 𝜂𝑟 𝐾𝜑(ℓ/𝑎)2, where ℓ/𝑎 is the anisotropic aspect ratio. In the active elastic
region the active particles insert elastic energy by their intrinsic motion on the bulk suspension. The
suspension viscosity decreased as a consequence of this elastic energy production by the particles
in the case of pusher microorganisms. After 𝜑 ∼ 0.4% we have identified a region of structure for-
mation, where collective viscous hydrodynamic particle-particle interactions that inhibit the elastic
motion of the nematodes produce a nonlinear increasing of the suspension viscosity as the particle
volume fraction increases.

Considering the similarities of the viscometric characteristics of the fluid in the low frequency
regime, the first normal stress difference (𝑁1) was also obtained. Unlike macromolecule suspen-
sions, the active particle has a natural resistance to stretch, related to its intrinsic elasticity. Thus,
there is anisotropy generated in the body of the nematode. However, as aggregates are formed,
these structures tend to become anisotropic as they are stretching in the flow direction, causing an
increase in the first normal stress difference.

In this chapter it is clear that the presence of microorganisms generates an increase in the
complexity of the rheological characteristics of the suspension. Thus, for the correct representation
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in a constitutive model, simplifications are necessary. In the next chapter, a series of simplifications
will be applied to a numerical model, seeking to obtain validation of the resulting behavior.
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5 Filament Kinematic Simulation

In the previous chapters, we obtained results of the kinematic behavior of one nematode and
rheological characterization of the active suspension. The complexity of the microorganism and
its viscoelastic membrane makes it difficult to define a constitutive model. For this reason, some
simplifications are needed. The results of the stress relaxation function obtained experimentally
suggest an orientational behavior. Thus, we believe that the nematode can be simplified by a flexible
orientational filament.

In this chapter, we intend to simulate the motion of a slender filament, basically an idealized
model of anguilliform swimming. In order to propose a rheological model for the suspension of
nematodes, it is important to simplify the model. In this sense, we intende to study how the kine-
matics of a flexible filament can be compared to that of a nematode. The results presented here,
using the algorithm IB2d proposed by Battista (BATTISTA et al., 2018), are extremely important in
defining the basis of the orientational filaments that are used in the next chapter.

In the 1970s, Peskin (WHITE et al., 2002) developed the immersed-boundary method (IBM)
to simulate flexible membranes in fluid flows. The membrane-fluid interaction is accomplished by
distributing membrane forces as local fluid forces and updating the membrane configuration ac-
cording to the local flow velocity. Since then, the IBM has been widely employed to study various
situations, including cell deformation in micropipettes, leukocyte adhesion and movement, multi-
phase flows, red blood cell deformation and aggregation in shear flows and the behavior of biofilms
(BATTISTA et al., 2017). One distinguishing feature of this approach is the ability to perform the
entire simulation on a fixed Cartesian grid (BATTISTA et al., 2015). Thus, the IBM is an elegant
way to fully couple the motion of a fluid and deformations of an immersed elastic structure.

Controlling the choice of behavioral output is a central function of the nervous system (GOSH

AND EMMONS, 2008). Study of the regulation of behavior in the nematode C. elegans takes advan-
tage of the fact that its behavior is relatively simple and its nervous system contains a constant num-
ber of neurons whose pattern of synaptic connectivity is known (CHEN et al.; WHITE et al., 2006;
1986). Depending on the availability of food and health, nematodes can move symmetrically or
asymmetrically, as will be discussed in this chapter.
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5.1 Immersed boundary method

The conservation of momentum equations that govern an incompressible and viscous fluid
are written as the following set of coupled partial differential equations namely conservation of
momentum and mass

𝜌

(︂
𝜕𝑈

𝜕𝑡
(𝑥,𝑡) + 𝑈(𝑥,𝑡) · ∇𝑈(𝑥,𝑡)

)︂
= −∇𝑝(𝑥,𝑡) + 𝜇∆𝑈(𝑥,𝑡) + 𝐹 (𝑥,𝑡), (5.1)

∇ ·𝑈(𝑥,𝑡) = 0, (5.2)

where 𝑈(𝑥, 𝑡) is the fluid velocity, 𝑝(𝑥, 𝑡) is the pressure, 𝐹 (𝑥, 𝑡) is the force per unit area applied
to the fluid by the immersed boundary, 𝜌 and 𝜇 are the fluid’s density and dynamic viscosity,
respectively. The independent variables are the time 𝑡 and the position 𝑥. The variables 𝑈 , 𝑝 and 𝐹

are all written in an Eulerian frame on the fixed Cartesian mesh 𝑥. The Navier-Stokes equations in
Eulerian domain, e.g., updated 𝑈𝑛+1 and 𝑝𝑛+1 from 𝑈𝑛 and 𝐹 𝑛 are solved using the fast Fourier
Transform and more details can be found in the appendix A. (COOLEY AND TUKEY, 1965).

The equations that couple the motion of the fluid to deformations of the structure are writ-
ten as integral equations. These interaction equations handle all communication between the fluid
(Eulerian) grid and immersed boundary (Lagrangian grid). They are given as the following integral
equations with delta function kernels

𝐹 (𝑥,𝑡) =

∫︁
𝑓(𝑠,𝑡)𝛿(𝑥−𝑋(𝑠,𝑡))𝑑𝑞 (5.3)

𝑢(𝑋(𝑥,𝑡)) =

∫︁
𝑈 (𝑠,𝑡)𝛿(𝑥−𝑋(𝑠,𝑡))𝑑𝑥, (5.4)

where 𝑓(𝑠, 𝑡) is the force per unit area imposed by elastic deformations in the immersed structure
onto the fluid as a function of Lagrangian position, 𝑠, and time, 𝑡, 𝛿(𝑥) is a three-dimensional delta
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function, and 𝑋(𝑠, 𝑡) gives the Cartesian coordinates at time 𝑡 of the material point labeled by the
Lagrangian parameter, 𝑠. The velocity of the fluid, 𝑢(𝑋(𝑥,𝑡)), is given by the derivative of the
Cartesian coordinates 𝑋(𝑠, 𝑡).

Equation 5.3 applies the force from the immersed boundary to the fluid through the external
forcing term in equation 5.1. After that, equation 5.4 moves the boundary at the local fluid velocity.
This enforces the no-slip condition. Each integral transformation uses a three dimensional Dirac
delta function kernel, 𝛿, to convert Lagrangian variables to Eulerian variables and vice versa. To
either hold the geometry nearly rigid or prescribe the motion of the immersed structure, all of the
Lagrangian points along the immersed boundary are tethered to target points. We do this through a
penalty force formulation of 𝑓(𝑠, 𝑡), written as the following

𝑓(𝑠,𝑡) = 𝑘𝑡(𝑌 (𝑠,𝑡) −𝑋(𝑠,𝑡)), (5.5)

where 𝑘𝑡 is a stiffness coefficient and 𝑌 (𝑠, 𝑡) is the prescribed position of the target boundary. Note
that 𝑌 (𝑠, 𝑡) is a function of both the Lagrangian parameter, 𝑠, and time 𝑡 and in these models 𝑘𝑡

was chosen to be large so that it would effectively drag the Lagrangian points into the prescribed
positions. The swimmer is modelled as a chain of springs and beams. Springs allow for stretching
and compressing of the successive Lagrangian points, while beams allow for bending. Their force
equations can be written as the following,

𝐹𝑠𝑝𝑟 = −𝑘𝑠𝑝𝑟

(︂
1 − 𝑅𝐿

||𝑋𝑆 −𝑋𝑀 ||

)︂
· (𝑋𝑆 −𝑋𝑀) + 𝑏𝑠

𝑑

𝑑𝑡
||𝑋𝑆 −𝑋𝑀 ||, (5.6)

𝐹𝑏𝑒𝑎𝑚 = −𝑘𝑏𝑒𝑎𝑚
𝜕4

𝜕𝑠4
(𝑋(𝑠,𝑡) −𝑋𝐵(𝑠,𝑡)) , (5.7)

where 𝑘𝑠𝑝𝑟 and 𝑘𝑏𝑒𝑎𝑚 are the spring stiffness and beam stiffness coefficients, respectively, and 𝑏𝑠 is
the damping coefficient. For the linear spring forces, the terms 𝑋𝑀 and 𝑋𝑆 represent the positions
in Cartesian coordinates of the master and slave Lagrangian nodes at time 𝑡 and 𝑅𝐿 is the spring’s
corresponding resting length. For the bending force, 𝑋𝐵(𝑠, 𝑡) represents the curvature of the con-
figuration at time, 𝑡. In other words, considering the nematode’s model, the resistance to stretching
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between successive Lagrangian points is achieved by modeling the connections with Hookean (or
non-Hookean) springs, while the resistance to bending between three successive Lagrangian point
is modeled by using a noninvariant beam, as shown in figures 5.1 and 5.2, respectively. Thus, the
curvature is changed by interpolating through two different configurative phases of the swimmer.

Figure 5.1: Illustrating the idea behind the damped springs model with a damped spring at equilib-
rium (left) and a damped spring stretched a distanced beyond its resting length 𝑅𝐿 (right). Resis-
tance to stretching or bending is opposed by a friction-like term that is proportional to the velocity
of deformation. [Source: the author.]

𝑋𝑠

𝑋𝑚

𝑅𝐿

𝑋𝑠

𝑋𝑚

𝑅𝐿 + 𝑑

−𝐹𝑑,𝑠𝑝𝑟𝑖𝑛𝑔(𝑡)

𝐹𝑑,𝑠𝑝𝑟𝑖𝑛𝑔(𝑡)

𝐹𝑑𝑎𝑚𝑝𝑖𝑛𝑔
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Figure 5.2: Illustrating the idea behind the noninvariant beam model. The beam has a preferred
x-and y-curvature, given by 𝐶𝑥 and 𝐶𝑦, respectively. When the configuration is deformed so curva-
tures are now 𝐶 ′

𝑥 and 𝐶 ′
𝑦 respectively, a restoring force drives the configuration towards its preferred

equilibrium position. [Source: the author.]

𝑋𝐿

𝑋𝑀

𝑋𝑅

𝐶𝑥,𝐶𝑦

𝑋𝐿

𝑋𝑀

𝑋𝑅

𝐶 ′
𝑥,𝐶

′
𝑦

𝐹𝑏𝑒𝑛𝑑
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Basically, the numerical algorithm is:

∘ Step 1: Find the force 𝑓𝑛 on the immersed boundary, from the current boundary configura-
tion, 𝑋𝑛 using equation 5.5.

∘ Step 2: Use equation 5.3 to spread the boundary force from the Lagrangian bondary mesh to
the Eulerian fluid lattice points.

∘ Step 3: Solve the Navier-Stokes equations (equations 5.1 and 5.2) on the Eulerian grid. In
this condition, 𝑈𝑛+1 and 𝑝𝑛+1 are obtained updating 𝑈𝑛 , 𝑝𝑛 , 𝐹 𝑛 based on FFT (more details
are shown in the appendix B).

∘ Step 4: Uptade the material positions, 𝑋𝑛+1 , using the local fuid velocities, 𝑈𝑛+1, computed
from 𝑈𝑛+1 and equation 5.4, e.g. move the immersed structure at the local fluid velocities
thereby enforcing no-slip boundary conditions.

5.2 Swimmer modelling

During crawling locomotion, C. elegans obtains its maximal muscle activity and maximal
body curvature. These show a small but important phase-shift, with maximal muscle activity pre-
ceding maximal body curvature. Phase-shifts are comparable between dorsal and ventral muscle
but the magnitude increases along the body of the worm and is significantly higher in posterior
muscle compared to anterior and mid-body muscle (VICTORIA J. BUTLER et al., 2015). Such a
relationship has also been observed for the longitudinal red muscle fibres of many fish species that
display anguilliform locomotion similar to C. elegans. An idealized swimmer was constructed by
taking a line segment and attaching a polynomial section to it, as shown in figure 5.4. The straight
portion composes 28% of the total length of the body, while the polynomial, i.e., 𝑦 = 𝑥3, portion
makes up the remaining 72%. The polynomial portion was found starting from 𝑥 = 0 and adding
equally spaced points (at a distance twice of that of the fluid mesh).

In terms of the Eulerian mesh, it is necessary to perform a mesh convergence analysis. How-
ever, we do not have the exact analytical solution. Thus, meshes with different nodes were used
and the position of the filament head 𝑋𝑒 after 4 strokes, as shown in figure 5.3. It is important to
observe that increasing the resolution, while decreasing the error, results in significant increases in
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the computational time required to run a simulation. In general this computational expense scaling
canbe written as

computational time = (resolution factor)dimension (5.8)

Figure 5.3: Swimming strokes performed by the head, 𝑋𝑒, based on the number of the mesh’s
nodes 𝑛. The higher resolution cases demonstrate better forward swimming performance [Source:
the author.]

One must inquire how much accuracy is required for a problem, e.g., validating that the swim-
mer is capturing biologically relevant kinematics and/or swimming speeds at certain resolutions. In
our case, we observed that using (𝑛𝑥, 𝑛𝑦) = 512 × 256 resolution is enough.

We will model the swimmer’s body switching between two curvature states, phase 1 and
phase 2, shown in figure 5.4. Each phase was defined by negating the y-coordinate of the polyno-
mial portion of the body. This is a biologically relevant modeling assumption because muscle ac-
tivation patterns produce specific intrinsic curvatures for a swimmer’s body. When the Lagrangian
points interact with the surrounding fluid, locomotion emerges. The curvatures to be interpolated
between were computed as follows:
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Figure 5.4: The curvature of the nematode is produced based on a straight line, shown by the white
arrow and a interpolation in a polynomial section. The plot on top shows the vorticity field at
𝑡 = 90 [s] for curvature at phase 1, while the bottom plot shows the vorticity field at 𝑡 = 100 [s]
for curvature at phase 2. The idealized anguilliform swimmer moves forward due to vortices being
shed off its caudal end during each stroke. [Source: the author.]

𝐶𝛿
𝑥 = 𝑥𝛿

𝐿𝑎𝑔(𝑠) − 2𝑥𝛿
𝐿𝑎𝑔(𝑠 + 1) + 𝑥𝛿

𝐿𝑎𝑔(𝑠 + 2)

𝐶𝛿
𝑦 = 𝑦𝛿𝐿𝑎𝑔(𝑠) − 2𝑦𝛿𝐿𝑎𝑔(𝑠 + 1) + 𝑦𝛿𝐿𝑎𝑔(𝑠 + 2) (5.9)

where 𝑠 runs over all interior points along the swimmer’s body and 𝛿 refers to phase 1 or 2. Basi-
cally, instead of changing the explicit positions of the Lagrangian points, we update the curvatures
𝐶𝛿

𝑥 and 𝐶𝛿
𝑦 . We also define the downstroke and upstroke to be moving between phase 1 to phase 2

and phase 2 to phase 1, respectively. Furthermore we also define 1 strokeperiod to encompass both
the upstroke and downstroke.
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To solve the position, velocity and acceleration of each point, we use interpolation. Con-
sidering two points 𝑎 and 𝑏, we can parameterize a straight line between them in the following
way:

[𝑥(𝑡),𝑦(𝑡)] = 𝑔0(𝑡) = 𝑎 +
𝑡

𝑡1
(𝑏− 𝑎), (5.10)

for 𝑡 ∈ [0,𝑡1], we have 𝑔0(0) = 𝑎 and 𝑔1(𝑡1) = 𝑏. We can interpolate point 𝑏 with another point 𝑐

[𝑥(𝑡),𝑦(𝑡)] = 𝑔1(𝑡) = 𝑏 +
𝑡− 𝑡1
𝑡2 − 𝑡1

(𝑐− 𝑏), (5.11)

for 𝑡 ∈ [𝑡1,𝑡2]. The piecewise linear interpolant between all three points could be written as

[𝑥(𝑡),𝑦(𝑡)] =

(︃
𝑔0(𝑡)

𝑔1(𝑡)

)︃
=

⎧⎨⎩𝑎 + 𝑡
𝑡1

(𝑏− 𝑎), 0 ≤ 𝑡 ≤ 𝑡1

𝑏 + 𝑡−𝑡1
𝑡2

(𝑐− 𝑏), 0𝑡1 ≤ 𝑡 ≤ 𝑡2
(5.12)

This can be extended to a larger collection of points. If points 𝑎, 𝑏 and 𝑐 are matrices, where each
column contains 𝑁 − (𝑥,𝑦) points:

𝐴 =

⎡⎢⎢⎢⎢⎣
𝑥𝑎
0 𝑦𝑎0

𝑥𝑎
1 𝑦𝑎1
...

...
𝑥𝑎
𝑁 𝑦𝑎𝑁

⎤⎥⎥⎥⎥⎦ ,𝐵 =

⎡⎢⎢⎢⎢⎣
𝑥𝑏
0 𝑦𝑏0

𝑥𝑏
1 𝑦𝑏1
...

...
𝑥𝑏
𝑁 𝑦𝑏𝑁

⎤⎥⎥⎥⎥⎦ , and 𝐶 =

⎡⎢⎢⎢⎢⎣
𝑥𝑐
0 𝑦𝑐0

𝑥𝑐
1 𝑦𝑐1
...

...
𝑥𝑐
𝑁 𝑦𝑐𝑁

⎤⎥⎥⎥⎥⎦ . (5.13)

we can write an analogous spline interpolant as follows

[𝑥(𝑡),𝑦(𝑡)] =

(︃
𝐺1(𝑡)

𝐺1(𝑡)

)︃
==

⎧⎨⎩𝐴 + 𝑡
𝑡1

(𝐵 −𝐴), 0 ≤ 𝑡 ≤ 𝑡1

𝐵 + 𝑡−𝑡1
𝑡2

(𝐶 −𝐵), 𝑡1 ≤ 𝑡 ≤ 𝑡2
(5.14)
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Moreover, rather than use linear interpolation, which leads to instantaneous accelerations, it’s
possible to use a cubic polynomial between successive points. So the intepolant could be written as

𝑔(𝑡) = 𝑎 + ℎ(𝑡)(𝑏− 𝑎), (5.15)

where ℎ(𝑡) is a cubic polynomial, e.g.,

ℎ(𝑡) = 𝑑0 + 𝑑1𝑡 + 𝑑2𝑡
2 + 𝑑3𝑡

3. (5.16)

It leads to the following conditions

continuity

⎧⎨⎩𝑔(0) = 0

𝑔(1) = 1
(5.17)

continuous velocities

⎧⎨⎩𝑔′(0) = 0

𝑔′(1) = 0
(5.18)

no instantaneous accelerations

⎧⎨⎩𝑔′′(0) = 0

𝑔′′(1) = 0
(5.19)

It is possible to solve this over-constrained system interpolating mediary points 𝑝1 and 𝑝2, such that
we partition the interval [0,1] into three regions 0 < 𝑝1 < 𝑝2 < 1. Therefore we can consider the
following interpolant:

𝑔(𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑔0(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡

2 + 𝑎3𝑡
3 0 ≤ 𝑡 ≤ 𝑝1

𝑔1(𝑡) = 𝑏0 + 𝑏1𝑡 + 𝑏2𝑡
2 + 𝑏3𝑡

3 𝑝1 ≤ 𝑡 ≤ 𝑝2

𝑔2(𝑡) = 𝑐0 + 𝑐1𝑡 + 𝑐2𝑡
2 + 𝑐3𝑡

3 𝑝2 ≤ 𝑡 ≤ 1

(5.20)
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which leads to

continuity

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑔(0) = 0

𝑔(1) = 1

𝑔0(𝑝1) = 𝑔1(𝑝1)

𝑔1(𝑝2) = 𝑔2(𝑝2)

(5.21)

continuous velocities

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑔′(0) = 0

𝑔′(1) = 0

𝑔′0(𝑝1) = 𝑔′1(𝑝1)

𝑔′1(𝑝2) = 𝑔′2(𝑝2)

(5.22)

no instantaneous accelerations

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑔′′(0) = 0

𝑔′′(1) = 0

𝑔′′0(𝑝1) = 𝑔′′1(𝑝1)

𝑔′′1(𝑝2) = 𝑔′′2(𝑝2)

. (5.23)

This gives the following linear system to solve, with variables 𝑝1 and 𝑝2
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

1 𝑝1 𝑝21 𝑝31 −1 −𝑝1 −𝑝21 −𝑝31 0 0 0 0

0 1 2𝑝1 3𝑝21 0 −1 −2𝑝1 −3𝑝21 0 0 0 0

0 0 2 6𝑝1 0 0 −2 −6𝑝1 0 0 0 0

0 0 0 0 1 𝑝2 𝑝22 𝑝32 −1 −𝑝2 −𝑝22 −𝑝32

0 0 0 0 0 1 2𝑝2 3𝑝22 0 −1 −2𝑝2 −3𝑝22

0 0 0 0 0 0 2 6𝑝2 0 0 −2 −6𝑝2

0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 1 2 3

0 0 0 0 0 0 0 0 0 0 2 6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎0

𝑎1

𝑎2

𝑎3

𝑏0

𝑏1

𝑏2

𝑏3

𝑐0

𝑐1

𝑐2

𝑐3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

0

0

0

0

1

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

As 𝑝1 → 0 (or 𝑝2 → 1), we see that the initial acceleration (or final deceleration) becomes
greater and greater in magnitude. In practice, these parameters match the acceleration to the kine-
matics coming from a biological system or engineering system. We will vary these points symmet-
rically about the interpolation interval and consider the following cases:

(𝑝1,𝑝2) = (0.1, 0.9)

(𝑝1,𝑝2) = (0.2, 0.8)

(𝑝1,𝑝2) = (0.3, 0.7)

(𝑝1,𝑝2) = (0.4, 0.6)

(5.24)

Upon varying these points, we need to make sure that our interpolation function is consistent,
that is, we need to solve the linear system to get the proper coefficients for the spline interpolant.
Based on that, we are able to compute the polynomial part of the nematode model. The terms
obtained fo each condition tested in these chapter can be found on the appendix C.
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5.3 Results and discussions

5.3.1 Symmetrical changes

Considering the symmetrical change of the mediary points (𝑝1, 𝑝2) as shown in equation 5.24,
we can compute the coefficients of the interpolation function. Figure 5.5 shows the body curvature
of the nematode depending on (𝑝1, 𝑝2). We observe that when (𝑝1, 𝑝2) = (0.1, 0.9), the nematode
has higher curvature. That means that C. elegans transform more elastic energy into propulsion in
this case.

Figure 5.5: Nematode curvature from 𝑡 = 0 time steps to 𝑡 = 90 time steps. The black nema-
tode represents (𝑝1, 𝑝2) = (0.1, 0.9), the red nematode (𝑝1, 𝑝2) = (0.2, 0.8), the blue (𝑝1, 𝑝2) =
(0.3, 0.7) and the green (𝑝1, 𝑝2) = (0.4, 0.6). [Source: the author.]

It is possible to observe in figure 5.6 an 5.7 that the swimming performance is changed.
Higher magnitudes of velocity and acceleration, as presented when (𝑝1, 𝑝2) = (0.4, 0.6) lead to
faster swimming motion. Moreover, when the swimming velocity is higher, the nematode tends to
move faster toward the end of the channel, as depicted in figure 5.8. Figure 5.9 shows the trajectory
of the nematode depending on the interpolation points. It is possible to see the nonlinearity caused
by the difference in symmetry.
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Figure 5.6: Forward distance swam in bodylenghts vs. swimming strokes performed in the case
of symmetric interpolation points (𝑝1, 𝑝2). The dashed line represents (𝑝1, 𝑝2) = (0.4, 0.6), the
dotted line (𝑝1, 𝑝2) = (0.3, 0.7), the dash-dot line (𝑝1, 𝑝2) = (0.2, 0.8) and the solid line (𝑝1, 𝑝2) =
(0.1, 0.9). [Source: the author.]
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Figure 5.7: Forward velocity in bodylenghts per strokes vs. swimming strokes obtained in the cases
of symmetric interpolation points (𝑝1, 𝑝2). The first plot represents (𝑝1, 𝑝2) = (0.1, 0.9), the second
plot (𝑝1, 𝑝2) = (0.2, 0.8), the third (𝑝1, 𝑝2) = (0.3, 0.7) and the last plot (𝑝1, 𝑝2) = (0.4, 0.6).
[Source: the author.]
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Figure 5.8: Zoom of the forward velocity in bodylenghts per strokes vs. swimming strokes per-
formed in the case of symmetric interpolation. The dashed line represents (𝑝1, 𝑝2) = (0.4, 0.6), the
dotted line shows (𝑝1, 𝑝2) = (0.3, 0.7), the dash-dot line (𝑝1, 𝑝2) = (0.2, 0.8) and the solid line
(𝑝1, 𝑝2) = (0.1, 0.9). [Source: the author.]
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Figure 5.9: The trajectory of the nematode in the 𝑥𝑦 space measured in bodylenghts. The first plot
shows the trajectory for (𝑝1, 𝑝2) = (0.1, 0.9), the second (𝑝1, 𝑝2) = (0.2, 0.8), the third shows
(𝑝1, 𝑝2) = (0.3, 0.7) and the last represents (𝑝1, 𝑝2) = (0.4, 0.6). [Source: the author.]

101



5.3.2 Asymmetrical changes

The interpolation points can also be changed asymetrically. Here, we consider the following
cases:

(𝑝1,𝑝2) = (0.1, 0.9)

(𝑝1,𝑝2) = (0.1, 0.7)

(𝑝1,𝑝2) = (0.1, 0.5)

(𝑝1,𝑝2) = (0.1, 0.3)

(5.25)

It is important to note that in this section, although we are asymmetrically varying 𝑝2 about
the interpolation interval, both the upstroke and downstroke have the same period. The only differ-
ence is that the rate of change of the interpolation function during each portion of the stroke. This
change however leads to completely different results. Figure 5.10 shows the body curvature of the
nematode depending on (𝑝1, 𝑝2).

Figure 5.10: Nematode curvature from 𝑡 = 0 time steps to 𝑡 = 90 time steps. The black nema-
tode represents (𝑝1, 𝑝2) = (0.1, 0.3), the red nematode (𝑝1, 𝑝2) = (0.1, 0.5), the blue (𝑝1, 𝑝2) =
(0.3, 0.7) and the green (𝑝1, 𝑝2) = (0.1, 0.9). [Source: the author.]

The dynamics are different between each swimmer for the above cases; however, perhaps
surprisingly, there appears to be less variation than the previous case of symmetric (𝑝1,𝑝2) choices
in terms of forward swimming. Figures 5.11 and 5.12 show the distance and velocity considering
this asymetric change. We observe that in this case there was a non-linear relationship with choice
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of 𝑝2 and how fast the swimmer went, e.g., the case with 𝑝2 = 0.5 was the fastest, followed by
𝑝2 = 0.7, then 0.3, and finally 0.9. A zoom of the forward velocity in bodylenghts per strokes vs.
swimming strokes performed in the case of asymmetric interpolation is shown in figure 5.13.

Figure 5.11: Forward distance swam in bodylenghts vs. swimming strokes performed in the case
of asymmetric interpolation points (𝑝1, 𝑝2). The dotted line represents (𝑝1, 𝑝2) = (0.1, 0.5), the
dash-dot line (𝑝1, 𝑝2) = (0.1, 0.7), the dashed line (𝑝1, 𝑝2) = (0.1, 0.3) and the solid line (𝑝1, 𝑝2) =
(0.1, 0.9). [Source: the author.]

Figure 5.14 shows the trajectory of the nematode considering these asymetric changes. The
asymmetry causes a difference in the trajectory. However, it is perceived that there is a large dif-
ference between these results and the experimental results observed. It is possible to notice that,
despite the numerical capacities of this algorithm, for nematodes with no mutation, the simulations
with symmetric changes in 𝑝1 and 𝑝2 are more similar to the experimental observations.
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Figure 5.12: Forward velocity in bodylenghts per strokes vs. swimming strokes performed in the
case of asymmetric interpolation points (𝑝1, 𝑝2). The first plot represents (𝑝1, 𝑝2) = (0.1, 0.9),
the second plot (𝑝1, 𝑝2) = (0.1, 0.7), the third (𝑝1, 𝑝2) = (0.1, 0.5) and the last plot (𝑝1, 𝑝2) =
(0.1, 0.3). [Source: the author.]
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Figure 5.13: Zoom of the forward velocity in bodylenghts per strokes vs. swimming strokes per-
formed in the case of asymmetric interpolation. The dashed line represents (𝑝1, 𝑝2) = (0.1, 0.3),
the dotted line shows (𝑝1, 𝑝2) = (0.1, 0.5), the dash-dot line (𝑝1, 𝑝2) = (0.1, 0.7) and the solid line
(𝑝1, 𝑝2) = (0.1, 0.9). [Source: the author.]
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Figure 5.14: The trajectory of the nematode in the 𝑥𝑦 space measured in bodylenghts. The first
plot shows the trajectory for (𝑝1, 𝑝2) = (0.1, 0.9), the second (𝑝1, 𝑝2) = (0.1, 0.7), the third shows
(𝑝1, 𝑝2) = (0.1, 0.5) and the last represents (𝑝1, 𝑝2) = (0.1, 0.3). [Source: the author.]
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5.3.3 Asymmetric Stroke Period

The stroke period can also be changed, regardless of the interpolation points (kept as
(𝑝1, 𝑝2) = (0.1, 0.9)). The upstroke 𝑡𝑢 and the downstroke 𝑡𝑑 percentages of the total stroke period
were asymetrically varied. The following cases were simulated:

𝑡𝑢 = 𝑡𝑑 representing 𝑡𝑢 = 0.5𝑇 and 𝑡𝑑 = 0.5𝑇

𝑡𝑢 = 0.75𝑡𝑑 representing 𝑡𝑢 = 0.429𝑇 and 𝑡𝑑 = 0.571𝑇

𝑡𝑢 = 0.5𝑡𝑑 representing 𝑡𝑢 = 0.33𝑇 and 𝑡𝑑 = 0.66𝑇

𝑡𝑢 = 0.25𝑡𝑑 representing 𝑡𝑢 = 0.2𝑇 and 𝑡𝑑 = 0.8𝑇

(5.26)

Figure 5.15: Nematode curvature from 𝑡 = 0 time steps to 𝑡 = 90 time steps. The black nematode
represents 𝑡𝑢 = 0.25𝑡𝑑, the red nematode 𝑡𝑢 = 0.5𝑡𝑑, the blue 𝑡𝑢 = 0.75𝑡𝑑 and the green 𝑡𝑢 = 𝑡𝑑.
[Source: the author.]

Figure 5.15 shows the body curvature of the nematode depending on 𝑡𝑢 and 𝑡𝑑. As the up-
stroke percentage of a stroke decreases, it happens faster. However, although the swimmer that
moves forward the fastest has the quickest upstroke, having a faster upstroke does not always
equate to a faster forward swimming speed. Interestingly, due to the asymmetric upstroke (UPS)
and downstroke (DWS), the swimming velocity profiles look significantly different. In particular,
the waveforms appear trimodal rather than bimodal, which were observed in the cases of varying
the interpolation modes. Figures 5.16 and 5.17 show the forward distance and velocity considering
asymetric UPS and DWS and figure 5.18 represents a zoom in the forward velocity.
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Figure 5.16: Forward distance swam in bodylengths vs. swimming strokes performed in the case
of asymmetric upstroke and downstroke periods. The dashed line represents UPS = 25% DWS, the
dotted UPS = 50% DWS, the dash-dot UPS = 75% DWS and the solid UPS = 100% DWS. [Source:
the author.]
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Figure 5.17: Forward velocity in bodylengths per stroke vs. swimming strokes performed in the case
of asymmetric upstroke and downstroke periods. The first graph represents UPS = 100% DWS, the
second UPS = 75% DWS, the third UPS = 50% DWS and the last UPS = 100% DWS. [Source: the
author.]
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Figure 5.18: Zoom of the forward velocity in bodylenghts per strokes vs. swimming strokes per-
formed in the case of asymmetric upstroke and downstroke periods. The dashed line represents
UPS = 25% DWS, the dotted line shows UPS = 50% DWS, the dash-dot line UPS = 75% DWS and
the solid line UPS = 100% DWS. [Source: the author.]
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Figure 5.19: The trajectory of the nematode in the 𝑥𝑦 space measured in bodylenghts. The first plot
shows the trajectory for UPS = 100% DWS, the second UPS = 75% DWS, the third shows UPS =
50% DWS and the last represents UPS = 25% DWS. [Source: the author.]
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5.4 Chapter conclusions

In the previous chapter, it was observed that the nematode relaxation function is directly re-
lated to its orientational behavior. In order to simplify the rheological model that will be proposed
in the next chapter, immersed boundary simulations of an orientational flexible filament were per-
formed and the results were compared to the kinetic results presented in chapter 3. The observed
results allowed us to relate the curvature of the nematode to its velocity and acceleration conditions.

The interpolation median points used were varied symmetrically and asymmetrically. In this
sense, it can be seen from figures 5.20 and 5.21 that the velocity and acceleration profiles change
abruptly.

Figure 5.20: Plots of the piecewise cubic interpolant, 𝑔(𝑡), its derivative, 𝑔̇(𝑡), and its second deriva-
tive, 𝑔(𝑡), with 0 ≤ 𝑡 ≤ 1, for varying (𝑝1, 𝑝2) symmetrically chosen. The blue lines are represented
by (𝑝1 = 0.1, 𝑝2 = 0.9), (𝑝1 = 0.2, 𝑝2 = 0.8) the red lines, (𝑝1 = 0.3, 𝑝2 = 0.7) the black lines and
(𝑝1 = 0.4, 𝑝2 = 0.6) the green lines. [Source: the author.]

Figure 5.20 shows exactly why when (𝑝1 = 0.4, 0.6) the nematode moved more with less
strokes. The acceleration, 𝑔(𝑡) has the highest value in both phases of curvature. On the other hand,
when the mediary points were asymmetrically modified, as shown in figure 5.21, the two cases
where there is greater symmetry between the acceleration and velocity of both curvature phases are
represented by the red and black lines. In this sense, there is an optimization between the symmetry
of the derivatives and their real magnitude. It is possible to observe that even when not prescribing
the precise movement of a swimmer, but rather the microorganism’s material property states (e.g.,
curvature), changing the spline interpolant affects the system’s outcome.
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Figure 5.21: Plots of the piecewise cubic interpolant, 𝑔(𝑡), its derivative, 𝑔̇(𝑡), and its second deriva-
tive, 𝑔(𝑡), with 0 ≤ 𝑡 ≤ 1, for varying (𝑝1, 𝑝2) asymmetrically chosen. The blue lines are repre-
sented by (𝑝1 = 0.1, 𝑝2 = 0.9), (𝑝1 = 0.1, 𝑝2 = 0.7) the red lines, (𝑝1 = 0.1, 𝑝2 = 0.5) the black
lines and (𝑝1 = 0.1, 𝑝2 = 0.3) the green lines. [Source: the author.]

In addition, it was observed that a simple flexible filament presents results similar to those
observed in kinematic experiments. In general, for the purpose of locomotion, the viscoelastic
characteristics of the nematodes themselves do not seem to interfere severely. In this sense, this
information will be used to construct the rheological model in the next chapter.
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6 Nonlinear Constitutive Model

This chapter provides a constitutive model for the active suspension of nematodes, which
is lacking in the literature. The new model is tested on both linear and nonlinear regimes and
compared with the experimental data, showing promissing results.

Considering the orientational instabilities of the active suspension observed in the experi-
ments, a nonlinear phenomenological model for neutrally buoyant force-free active suspension of
nematodes is proposed and tested on the description of the linear and nonlinear viscoelastic behav-
ior of this living suspension. The model is based on coarse grained equations that govern the motion
of the nematic living particles over suficiently large length and time scales for the continuum de-
scription of the motion to be valid. In a nematic model, it is assumed that interactions among the
cells are such that they maintain a common alignment so that the orientations are all close to the
director orientation. Therefore, it is not necessary to include an orientation distribution.

The central idea behind the modeling of the active nematic is that out of thermal equilibrium,
new terms enter the equation of motion for the nematic director as well as the stress tensor. These
terms are more relevant than the terms mandated by thermodynamic approaches, in the sense that
their effects are stronger at long wavelengths and at long times, i.e. in the thermodynamic limit.

As stated before, the average equations for the balance of mass, accounting for the incom-
pressibility of the medium and the balance of forces in the absence of fluid inertia are, respectively:

∇ · 𝑢 = 0, (6.1)

−∇𝑝 + ∇ · 𝑇 = 0, (6.2)

where 𝑢 denotes the ensemble-average velocity, 𝑝 denotes the mechanical pressure and 𝑇 is the
suspension bulk stress written in terms of two contributions: one due to the viscous ambient fluid,
𝐷, and another due the activity particles 𝜎, as
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𝑇 = 2𝜇𝐷 + 𝜎, (6.3)

where 𝜎 represents the active bulk stress tensor due to particle stress contribution, given by

𝜎 = −𝜑𝛽

(︂
𝑄− 1

3
𝑡𝑟(𝑄)𝐼

)︂
. (6.4)

Here 𝜇 is the viscosity of the ambient fluid, 𝐷 = (1/2)[∇ · 𝑢 + (∇ · 𝑢)𝑇 ] is the average rate
of deformation tensor, 𝜑 is the particle volume fraction and 𝛽 is an important parameter which
characterizes the strength of the elementary particle force dipole exerted on the solvent fluid and its
sign has vital rheological consequences.

Particle activity enhaces effective viscosity if 𝛽 < 0 (i.e. puller) and reduces it if 𝛽 > 0

(pusher), as observed in previous experiments. Now, the alignment order deviatoric tensor 𝑄 in our
model is defined such as described by Simha (SIMHA AND RAMASWAMY, 2002):

𝑄 =< 𝑞𝑘𝑞𝑘 −
1

3
𝐼 > (6.5)

where 𝑞𝑘 is the unit vector along the axis of the kth active particle and represents the particle axis-
direction (or director field), 𝐼 is the identity tensor and < · > denotes an orientational ensemble-
average. Therefore, the order tensor 𝑄 represents an average of the direction of the director field. In
this research, 𝑄 is a smooth field but not nearly isotropic everywhere as considered in the lineaized
model.

In order to provide a closure for the model, a time evolution equation for the order tensor 𝑄 is
needed. As a preliminary model, we use Oldroyd- Maxwell upper convected material derivative for
a dilute active suspension in the absence of thermal or active fluctuations. Under this assumption,
the evolution of 𝑄 can be first described by

𝜕𝑄

𝜕𝑡
= 𝜆𝐷 − 1

𝜏𝑎
𝑄 +

(︀
∇𝑢 ·𝑄 + 𝑄 · ∇𝑢𝑇

)︀
− (𝑢 + 𝑈𝑛) ·𝑄 (6.6)
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where 𝜕/𝜕𝑡 denotes an Eulerian time derivative, ∇𝑢 is the ensemble-average velocity gradient
tensor and 𝜏𝑎 is the activity correlation time related to the particle orientation. Also, 𝜆 is an in-
dependent reactive coefficient which characterizes the reversible response of the director field to
symmetric local stress (FORSTER, 1974).

According to this model, 𝑄 can be convected with the sum of the free active particle velocity
𝑈𝑛 and the fluid velocity 𝑢 and can also be changed due to particle relaxation (or tumbling), rota-
tion and stretching, because of the vorticity and the rate of deformation produced by the ensemble-
averaged fluid velocity field. The signature of this constitutive equation is a shear stress that does
not vanish for zero deformation rate. This is because the active filament system is being driven out
of equilibrium by two sources of energy: one external, due to the shear, and the other internal, due
to the activity.

6.1 Non-affine Motion

Most theories of soft matter elasticity assume that the local strain in a sample after defor-
mation is identical everywhere and equal to the macroscopic strain, or equivalently that the de-
formation is affine. Recently, also the importance of non-affine deformations has been pointed
out (HEUSSINGER AND FREY, 2006). We observed that smaller nematodes frequently undergo
reversible but highly non-affine motion when sheared. In this sense, no result in the literature pro-
poses such a complete model for the study of nematode suspensions.

While the nematodes centers follow the macroscopic shear deformation affinely, the head
and tail can deviate from the affine deformation field in order to minimize the global free energy
(HINSCH AND FREY, 2009). Also, the entanglement of nematodes (ROUSSLET et al., 2014) can
react by non-affine deformation to the macroscopic shear.

In cross-linked polymeric fluids, macroscopic deformation of the medium induces two mo-
tions at the micro-level: (i) sliding of junctions with respect to their reference positions that reflects
non-affine deformation of the network, and (ii) slippage of chains with respect to entanglements that
is associated with unfolding of back-loops (DROZDOV AND GOTTLIEB, 2005). Similar behavior
was observed with C. elegans. In this condition, we rewrite equation 6.6 using Gordon-Schowalter
derivative which takes non-affine motion into account:
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𝐷𝑄

𝐷𝑡
= 𝜆𝐷 − 1

𝜏𝑎
𝑄 + 𝑄 · (∇𝑢− 𝜉𝐷)𝑇 + (∇𝑢− 𝜉𝐷) ·𝑄, (6.7)

where 𝜉 is interpreted as the representative of the slip of the nematode with respect to the neigh-
boring continuum. The special case when 𝜉 = 0 corresponds to the upper-convected derivative
(DEVILLE AND GATSKY; SARAMITO, 2012; 2014). However, this slip parameter should only be
considered when the system is not diluted and there are entanglements of nematodes, as seen in
figure 6.1, obtained from the experiments.

Figure 6.1: Entanglement of nematodes observed during experiments after shear. [Source: the au-
thor.]

At this point it is useful to reiterate the definitions of two commonly used dimension-
less numbers to describe flow, the Deborah number 𝐷𝑒 = 𝜏𝑐𝜔 and the Weissenberg number
𝑊𝑖 = 𝜏𝑐𝜔𝛾0 = 𝜏𝑐𝛾̇. The Deborah number is defined as the ratio of a characteristic relaxation
time of the material 𝜏𝑐 and a characteristic time of observation 𝜏0, which is inverse of the angular
frequency 𝜏0 = 1/𝜔 for oscillatory shear. It measures to what degree elastic effects influence the
overall mechanical response. For example in the Maxwell model, if 𝐷𝑒 < 1 the viscous behavior
dominates, 𝐺′′ > 𝐺′, whereas for 𝐷𝑒 > 1 , the response is predominantly elastic, 𝐺′ > 𝐺′′. The
Weissenberg number, is the ratio of 𝜏𝑐 and a characteristic time 𝜏𝑑 of the deformation. In this case,
𝜏𝑑 is the inverse of the shear rate 𝜏𝑑 = 1/𝛾̇ for steady shear or 𝜏𝑑 = 1/(𝜔𝛾0) for oscillatory shear.
The Weissenberg number can be seen as a dimensionless shear rate that indicates the importance
of nonlinear behavior. That means the input flow is defined as 𝛾̇0 = 𝑊𝑖 cos(𝐷𝑒 𝑡).
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Figures 6.2 and 6.3 show the difference from the elastic and viscous Lissajous-Bowditch
curves when non-affine motion is considered or not. It is possible to observe that when the volume
fraction is small, the response change due to the presence of the slip parameter is not representative.
However, as the volume fraction increases and the collective behavior starts to play a role, the
presence of the slip parameter dramatically changes the behavior of the suspension.

The concentration dependence of large amplitude oscillatory shear (LAOS) behaviour would
be due to the increase in the length of the tubular chains, and the consequent increase in the entan-
glements at higher concentrations. The inverse frequency dependence is due to the fact it competes
with the relaxation processes in the material. When the frequency is small, lesser than the inverse
of the relaxation time, the material has enough time to relax within the period of shear leading to
secondary loops.
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Using Gordon-Schowalter equations allows us to observe that shear and normal stress dif-
ferences are oscillatory functions of shear strain (AGASSANT AND PIAU; LARSON, 1996; 1988).
The shear stress and elastic recovery oscillate between positive and negative values. An oscillatory
response osccurs not only in step shears but also in start-up of steady shearing, if the amplitude of
the forcing becomes large.

Usually, LAOS is focused on the long-time steady-state oscillatory material response that is
represented by a closed space-curve. However time-varying material responses associated with
thixotropy, shear-induced migration or rheological aging can also be represented in this mate-
rial phase-space by trajectories that slowly decay towards the corresponding periodic attractor
(EWOLDT AND MCKINLEY, 2010).

6.2 Linear Regime

In order to compare our model with the small amplitude oscillatory shear results, one can
rewrite the Fourier components which are in-phase and out-phase with the strain input.

𝜎(𝑡) = 𝛾0 (𝐺′(𝜔) sin(𝜔𝑡) + 𝐺′′(𝜔) cos(𝜔𝑡)) . (6.8)

being 𝐺′ and 𝐺′′ the viscoelastic moduli. In the linear regime, the elastic Lissajous curve will be
elliptical as shown in figure 6.4. This curve as a whole is tilted, with a slope corresponding to the
elastic modulus 𝐺′(𝜔) of the material. For a linear material, this slope can either be taken from the
line passing through the points of minimum and maximum strain or as the tangential curve to the
Lissajous curve to zero strain, shown as a dashed line. Both slopes can be used as a definition of the
characteristic elastic modulus. The area under the curve still corresponds to the dissipated energy
per cycle and is completely characterized by the first harmonic of the stress response.

We now introduce an active Deborah number, 𝐷𝑒𝑎, associated with 𝜏𝑎, the swimming
timescale of the nematode. We may see how the activity timescale also influences the behavior
of the suspension in figure 6.5. It is possible to see that as 𝐷𝑒𝑎 increases, the resultant behavior
approaches a pure viscous fluid. However, as it decreases the elastic behavior becomes pronounced
due to the activity. As the amplitude of excitation increases, the nonlinearities also start to appear.
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Figure 6.4: Plot of elastic Lissajous-Bowditch curve for 𝐷𝑒 = 1, 𝐷𝑒𝑎 = 1, 𝑊𝑖 = 0.15, 𝜆 = 1,
𝛽 = 30, 𝜉 = 1 and 𝜑 = 0.5%, showing 𝜎 [Pa] per strain, 𝛾. [Source: the author.]

Considering the linear regime and the small amplitude oscillatory shear tests, we were able to
compare the model to the experimental data. Figure 6.6 shows the stress obtained experimentally
from the values of 𝐺′ and 𝐺′′ in comparison with the values predicted by the model. In this case,
there are no major changes considering 𝜉 = 0 or 𝜉 = 1, since these are small-amplitude tests of a
diluted system.
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Figure 6.6: Stress, 𝜎 [Pa], as a function of time [s], obtained from the experimental data of 𝐺′ and
𝐺′′ (hollow circles) and from the proposed model (solid black line) for 𝜑 = 0.001, 𝜑 = 0.002,
𝜑 = 0.003, 𝜑 = 0.004 and 𝜑 = 0.005 respectively from top to botton. The parameters used to fit
each curve are given in table 6.1. [Source: the author.]
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Table 6.1: Parameters used to fit the experimental data to the model, considering the actual experi-
mental parameters 𝛾 = 0.4, 𝜔 = 0.5, 𝜉 = 1, 𝜂 = 0.01. 𝐷𝑒𝑎 was set to 1, so that the time scales of
the flow and activity become compatible. [Source: the author.]

𝛽 𝜑 𝜆

580 0.001 0.95
390 0.002 1
200 0.003 0.6
80 0.004 0.65

170 0.005 0.35

The relative viscosity fit of the so-called “active elastic region” (ranging from 0.002 . 𝜑 .

0.004) proposed in chapter 4 was also tested with the same values of 𝛽 from table 6.1, as shown
in figure 6.7. Again, there is a decrease in the bulk relative viscosity 𝜂𝑟 in a non-linenar fashion.
That means that the elastic effect of each particle becomes important and there is a maximum value
for the energy production. As stated before, in this particle volume fraction range, particle activity
relaxation is comparable to the applied flow. The non-dissipative energy production gave rise to
negative viscosity values and the particle stresslet decreased. It is important to highlight that 𝛽 is
directly related to the behavior of the particles as a whole. That is, considering that it is stresslet
bulk, the larger the volume fraction, the greater the magnitude of 𝛽. In general, 𝛽 is associated not
only with the type of microorganism, but also with its interactions.
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Figure 6.7: Relative bulk viscosity 𝜂𝑟 of the suspension as a function of the volume fraction, 𝜑 [%].
The hollow circles represent the viscosity obtained assuming the 𝛽 values from the table 6.1, used
to fit the model to the experimental data. The dashed line represent the spline adjusted from the
experiments. [Source: the author.]

126



6.3 Nonlinear Regime

Now, the model can be tested for large amplitudes and frequencies. Using the Lissajoud-
Bowditch approach explained in chapter 2, we are now able to draw the Pipkin diagram of the
fluid. The Pipkin diagram is used to analyze how the fluid changes its behavior depending on the
applied amplitude and frequency. At low frequencies and strain amplitudes, the material response
is purely viscous and Newtonian. As mentioned earlier, this is at timescales larger than the largest
relaxation time in the material. With an increase in frequency, we observe viscoelastic response at
timescales smaller than the largest relaxation time in the material. Depending on the strain ampli-
tude or strain rate amplitude, a crossover from linear viscoelastic behavior to nonlinear viscoelastic
behavior is observed. At low frequencies, this crossover occurs beyond a threshold of strain rate
amplitude, while at high frequencies, it occurs beyond a threshold of strain amplitude. At very high
frequencies, with timescales shorter than the smallest relaxation time of the material, all modes are
frozen and an elastic response is observed.

In general, the projections of nonlinear responses will not entirely be positively oriented
(where positive orientation is defined by the right-hand rule) nor will they be simple closed curves;
they will contain alternating regions of positive and negative orientation and will intersect them-
selves multiple times. As a result, the nonlinear parameter must be defined by only one cycle of the
signal at steady state.

In figures 6.10 and 6.11, at sufficiently low Deborah number, the viscoelastic material has
enough time to relax and behaves like a Newtonian liquid for small amplitudes. Increasing 𝑊𝑖

at constant 𝐷𝑒 means applying higher shear rates that result in nonlinear effects such as shear
thinning, which can be modeled by a generalized Newtonian fluid model. Increasing 𝑊𝑖 at high
but constant 𝐷𝑒 drives the material first into the instrinsic LAOS region.

The distinct non-ellipsoidal wave forms can be interpreted using the sequence of physical
processes approach following Rogers (ROGERS AND LETTINGA, 2012). In figure 6.8, starting at
zero stress (𝛾0 = −𝛾0) and observing the response to increasing strain (reading the Lissajous-
Bowditch figure from left to right), the stress increases almost linearly with strain as depicted by
the portions of the Lissajous curve which are straight in the elastic representation in figure 6.8. It
is associated with the cage modulus or residual modulus 𝐺𝑟 = 𝑑𝜎

𝑑𝛾
|𝜎=0. This modulus quantifies the

strenght of the residual elasticity in the linear region after reversal of flow direction that is recovered
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in every cycle. For small deformations, that is the linear regime, 𝐺𝑟 is equal to the storage modulus
𝐺′ (KIND et al., 2015). Once the yield stress, shown by the dashed line in the same figure, is
exceeded, the material flows with a plastic viscosity which is seen in the non-monotonic portion
of the stress trajectory in the viscous representation. This continues until the end of the half-cycle
(𝛾 = +𝛾0, 𝛾̇ = 0), and subsequently the sequence is repeated in the opposite direction. A similar
behavior is observed in figure 6.9.

Figure 6.8: Plots of elastic (𝜎′ [Pa]) and viscous (𝜎′′ [Pa]) Lissajous-Bowditch curves as a function
of 𝛾 and 𝛾̇ [s−1] for 𝑊𝑖 = 5, 𝐷𝑒 = 0.5, 𝐷𝑒𝑎 = 1, 𝜆 = 1, 𝛽 = 30, 𝜉 = 1 and 𝜑 = 1%. The yielding
point is represented by 𝛾𝑦 and the maximum stress is 𝜎𝑚𝑎𝑥. [Source: the author.]

128



Figure 6.9: Plots of elastic (𝜎′ [Pa]) and viscous (𝜎′′ [Pa]) Lissajous-Bowditch curves as a function
of 𝛾 and 𝛾̇ [s−1] for 𝑊𝑖 = 2, 𝐷𝑒 = 0.1, 𝐷𝑒𝑎 = 1, 𝜆 = 1, 𝛽 = 30, 𝜉 = 1 and 𝜑 = 0.3%. The cage
moduli is represented by 𝐺𝑟 and the maximum stress is 𝜎𝑚𝑎𝑥. [Source: the author.]
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6.4 Normal Stress Differences

Usually, the stress tensor can be represented as the sum of hydrostatic pressure and the de-
viatoric component. If pressure is not high, it is possible to neglect the compressibility of liquid
relevant in some real situations. Therefore, only the deviatoric part of the stress tensor is important
for deformation of fluids. It means that if the hydrostatic pressure is superimposed, it will change
all normal components of the stress tensor but will not influence flow. The direct consequence of
this approach is that in order to characterize the effect of normal stresses in shear flow, it is not the
absolute values of normal stresses but their differences that are important.

Usually, the normal stresses are smaller than the shear stresses at low shear rates but they
grow along with an increase of the shear rate much faster than shear stresses. That happens because
𝑁1 = 𝜎11 − 𝜎22 is a second order effect in relation to shear strain, 𝑁1 ∝ 𝛾2. Furthermore, the first
normal stress difference is the second order effect in the whole shear rate range, including the range
of non-Newtonian flow.

The literature abounds with studies of either normal stress differences, but seldom are both
discussed for a given material. Most of the studies on normal stress differences are conducted
on polymeric systems (i.e. melts and solutions). The second normal stress difference, though not
very large, is usually related to instabilities and development of the elastic-type secondary flows
in the movement of liquid and fractures of viscoelastic liquids and suspensions (MALKIN AND

ISAYEV, 2011). In our case, it is directly related to the destruction and formation of nematode’s
aggregates.

The first normal stress difference in large amplitude oscillatory shear consists of two contribu-
tions: one from non-oscillating nonzero mean value and the other from oscillating even harmonics,
while the nonlinear shear stress can be expressed as a sum of odd harmonics (NAM et al., 2010). In
polymer solutions or melts, the existence of normal stress differences can be attributed essentially
to changes in molecular conformation, and perhaps alignment. In moderate shear environments,
when chain scission does not occur, the individual molecules are elastically strained, and they re-
cover their equilibrium conformation when the stress field is removed or dissipated.

As seen in figure 6.12, the Lissajous curve of normal stress versus shear strain for the suspen-
sions we studied had a symmetrical, butterfly-like shape, and the area enclosed by the curve was

132



related to the phase difference. Because of the left and right symmetry of the curve, the stress could
be divided into three intervals according to the strain changes. Figure 6.12 shows the variation in
structural strain as the normal stress changes. In the first interval, the structural strain increased with
increasing shear strain, leading to a decrease in the normal stress. When the shear strain reached its
maximum, the normal stress increased slightly due to the reduction of the shear rate and the reorga-
nization of the chain-like structure. In this interval, the structural strain was large, the interparticle
space increased, and the chain-like structure was destroyed. In the second interval, as the strain de-
creased, the structural strain decreased rapidly until it reversed. The normal stress increased and the
nematodes formed a chain-likes structure. In the third interval, as the strain continued to increase,
the chain-like structure was destroyed. The normal stress reduced with the increasing structural
strain, causing the normal stress to decrease.

The phase angle behavior of the first normal stress difference can be easily confirmed through
the Lissajous patterns in figure 6.13, as a function of the Deborah number. The characteristics of the
materials are confirmed by the ellipsoidal shape of shear stress with respect to shear strain. Areas
of the ellipsoid of the shear stress vs. shear strain are directly related to the loss modulus of the
materials. The Lissajous patterns of the suspension is close to a line indicating that the shear stress
is nearly in-phase with the shear strain. Furthermore, we observe that when the Deborah number is
too small or too large, the difference in phase of normal stress and shear strain approaches ±𝜋/2.

It is interesting to note the existence of secondary loops in these Lissajous-Bowditch curves.
In normal stresses, they are related to the 2𝜔 dependence of 𝑁1, as seen in the frequency spectrum of
figure 6.14. However, in shear stress, the interpretation of secondary loops has, to date, been limited
to the study of specific material examples, being related to physical microstructural features such
as non-affine deformation (JEYASEELAN AND GIACOMIN, 2008) and the absence of long-chain
branching in polymer melts (STADLER et al., 2008). However, such secondary loops have been
observed for many different material systems including micellar solutions (EWOLDT et al., 2008b),
a polystyrene solution (JEYASEELAN AND GIACOMIN, 2008), several molten polymers (TEE AND

DEALY, 1975), star-polymer networks as well as Xanthan gum solutions and an invert-emulsion
drilling fluid. Nonlinear constitutive models can also show secondary loops, examples include a
non-affine network model, a tube-based model of entangled linear polymers (LEYGUE et al., 2006)
and a single mode Giesekus model (EWOLDT et al., 2008b).

In addition, using Gordon-Schowalter derivative, we may compute second normal stress dif-
ference, 𝑁2, as seen in figure 6.14. If the slip parameter 𝜉 is set to zero, the normal stresses cannot
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be predicted by the model as depicted in figure 6.15. Suspensions of rigid non-colloidal particles are
known to exhibit a strong negative second normal stress difference, in particular when the suspen-
sion is concentrated, giving rise to secondary flows (SIGINER, 2015). Since 𝑁2 can also be seen
as a measure of the relative stretching of particles in the direction of the velocity gradient vs. the
neutral direction, its negative sign implies the nematode’s elongation. The normal stress differences
are deeply related to the nonlinear aspects of the solution. Variables such as shear rate, temperature,
particle size and shape, volume fraction and interaction are related to these measurements. To sum
up, normal stresses arise due to anisotropy and orientation of particles and a robust model should
compute both 𝑁1 and 𝑁2.

6.5 Chapter conclusions

In this chapter, we proposed a constitutive model based on a flexible orientational filament.
The model was tested with both only affine and also non-affine motion. That means that the local
strain in a sample after deformation is not identical everywhere due to the concentration differences
and the elastic disturbances caused by the active particle intrinsic motion. While the nematodes
centers follow the macroscopic shear deformation affinely, the head and tail can deviate from the
affine deformation field in order to minimize the global free energy.

The model was validated with experimental data in linear regime (OSAS) and independent
analysis from nonlinear regime (LAOS). Using the Lissajoud-Bowditch approach, the Pipkin dia-
grams were constructed using different parameters. We observed that at sufficiently low Deborah
number, the viscoelastic material has enough time to relax and behaves like a Newtonian liquid for
small amplitudes. The material was driven into the nonlinear region, when 𝑊𝑖 was increased to
high values but 𝐷𝑒 was kept constant.

The normal stress difference was also studied. It increased when the nematodes formed a
chain-like structure, until it is destroyed. Furthermore, using Gordon-Schowalter derivative, we
were able to compute the second normal stress difference, 𝑁2. Its negative sign is related to the
nematode’s elongation during shear at large amplitudes.In the next chapter, we introduce the use of
microrheometry to analyze active suspensions.
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Figure 6.12: The plot shows the Lissajous-Bowditch curve of the first normal stress difference,
𝑁1(𝑡) [Pa] and the shear strain with its plots as functions of time [s], 𝑁1(𝑡) and 𝛾(𝑡). The parameters
used were 𝑊𝑖 = 1, 𝐷𝑒 = 0.5, 𝐷𝑒𝑎 = 1, 𝜆 = 1, 𝛽 = 50, 𝜉 = 1 and 𝜑 = 1%. [Source: the author.]
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Figure 6.14: The first plot shows the shear stress 𝜎(𝑡) [Pa] (dashed line), first normal stress differ-
ence, 𝑁1(𝑡) [Pa] (solid line) and second normal stress difference, 𝑁2(𝑡) [Pa] (black circles) as a
function of time, 𝑡 s, for 𝑊𝑖 = 1, 𝐷𝑒 = 0.5, 𝐷𝑒𝑎 = 1, 𝜆 = 1, 𝛽 = 50, 𝜉 = 1 and 𝜑 = 1%. The
second plot presents the Fast Fourier Transform as a function of frequency [rad] of the shear stress
(solid line) and the first normal stress difference (dashed line). [Source: the author.]
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Figure 6.15: The plot shows the shear stress 𝜎(𝑡) [Pa] (solid) and the second normal stress differ-
ence 𝑁2(𝑡) [Pa] for 𝜉 = 0 (black circles) and 𝜉 = 1 (dashed line), as a function of time, 𝑡 s. The
parameters of the model are 𝑊𝑖 = 1, 𝐷𝑒 = 0.5, 𝐷𝑒𝑎 = 1, 𝜆 = 1, 𝛽 = 50, 𝜉 = 1 and 𝜑 = 1%.
[Source: the author.]
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7 Microrheometer

In this chapter, a microrheometer developed at the University of Pennsylvania (Penn Complex
Fluids Lab, directed by Professor Paulo Arratia). This new methodology is still under development.
Thus, the experiments performed in this chapter were performed with polymer particles. However,
the experimental and theoretical methodology could (and will be in future works) also be used for
living particles. A pressure pump is coupled to a Poly(methyl methacrylate) (PMMA) microchannel
with square cross-sectional area of ∼ 275 µm. The channel is observed with a microscope and the
flow is recorded using a CCD camera. Pressure sensors (Wet/Wet Differential Pressure Transducer
- model PXM409-025HDWUV from Omega) are used to obtain the correct applied pressure. The
sensors are coupled to flexible microtubes in a T formation. One of the T inlets is associated with
a pressure pump, while the other is directly connected to the microchannel. A schematic of the
microchannel is presented in figure 7.1 and the microrheometer in figure 7.2. The microchannel
was produced by 3D printing and sealed using a thin PMMA plate and Acetonitrile.

Figure 7.1: Microchannel schematic. [Source: the author]

Classical macroscopic rheometry techniques for measuring fluid properties in shear and elon-
gation typically involve characteristic length-scales 𝒪(1 mm), require sample volumes 𝒪(1 mL)
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Figure 7.2: Microrheometer schematic. [Source: the author]

and probe deformation rates of perhaps up to 𝒪(100 − 1000 s−1). While these methods are satis-
factory for understanding the behaviour of many fluids in a wide variety of flows, there are circum-
stances when using devices with smaller length-scales to investigate rheological response may be
advantageous.

It is immediately clear that the advantage of small sample volumes plays a particularly impor-
tant role in biological systems. The amount of material (in particular proteins) is often very limited,
and under these conditions it may not be feasible to produce enough for 1 mL of solution. In this
case, microrheology, a technique used to measure the rheological properties of a medium, such as
microviscosity, via the measurement of the trajectory of a flow tracer (a micrometre-sized particle),
can be used. The motion of the tracer particles reflects the rheological properties of their local en-
vironment. In usual rheometers, errors in torque and angular deflection measurement as well as in
determining the true sample geometry influence the resulting viscosity calculations. In this condi-
tion, it is very difficult to measure low viscous fluids due to the torque resolution. However, it is
not a problem in microrheology and it is possible to obtain very accurate results.

The microrheometer of University of Pennsylvania, uses video-particle tracking to make the
rheological measurements. This method relies on the motion of a tracer particle within a material
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that needs to be characterized. Video tracking allows measuring the compliance and can yield a
complete characterization of the linear viscoelasticity of the matrix. The most challenging aspects
of a video tracking experiment are often the process of acquiring the trajectory of a number of
particles and the image analysis, which consists in analyzing individual frames to extract the co-
ordinates of all the particles in the frame and matching the particles through subsequent frames to
produce data of trajectories.

In this case, the microrheometer consists in a thin microchannel of 275 µm width and 9.05 cm

long. A pressure driven flow is applied at the inlet of the channel and fluorescent particles (Thermo
Scientific𝑇𝑀 Fluoro-Max Dyed Green Aqueous Fluorescent Particles) of polystyrene with 2 µm are
added to the flow in order to obtain the velocity profile.

7.1 Particle tracking analysis

The video analysis enables us to extract the trajectories of individual microspheres from a
video of their microscope images. The time evolution of the distribution of particles, namely

𝜌(𝑟,𝑡) =
𝑁∑︁
𝑖=1

𝛿(𝑟 − 𝑟𝑖(𝑡)), (7.1)

then can be used to calculate quantities of interest. In equation 7.1, 𝑟(𝑡) is the location of the 𝑖-th
particle in a field of 𝑁 particles at time 𝑡 and 𝜌(𝑟,𝑡) is the trajectory.

The software based on IDL, a programming language optimized for visual data analysis, to
extract any particle information 𝜌(𝑟,𝑡) from a sequence of digital images, consists of five logical
steps: correcting imperfections in the individual images, locating candidate particle positions, re-
fining these positions, discriminating “false” particles, and finally linking the time-resolved particle
locations into trajectories.

The difficulty of measuring 𝜌(𝑟,𝑡) can vary greatly from system to system. For instance, im-
ages of a dilute suspension whose particles are geometrically confined at the microscope’s focal
plane are simpler to process than pictures of a dense suspension of colloid moving in three dimen-
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sions. That is one of the reasons why we are using a dilute suspension to analyze the particles.

Digitized images typically suffer from a range of imperfections including noise, nonuniform
contrast and geometric distortion. These all introduce errors into 𝜌(𝑟,𝑡) unless steps are taken to
restore the image to its “ideal” state. Some geometric distortions are caused by defects in the mi-
croscope optics, but most are introduced in later stages of digitization.

Contrast gradients can arise from nonuniform sensitivity among the camera’s pixels. Signif-
icant variation is often due to uneven illumination. Usually, the background is then subtracted, but
it may be difficult if the features of interest are relatively small and diluted as is frequently the case
for colloidal images. Under these circumstances, the background is reasonably well modeled by
a boxcar, 𝐴𝑤, average over a region of extent 2𝑤 + 1, where 𝑤 is an integer larger than a single
sphere’s apparent radius in pixels, but smaller than the intersphere separation:

𝐴𝑤(𝑥,𝑦) =
1

(2𝑤 + 1)2

𝑤∑︁
𝑖,𝑗=−𝑤

𝐴(𝑥 + 𝑖,𝑦 + 𝑗). (7.2)

Another problem that actually destroys information is noise. Some types of noise, such as
that from CCD camera are unavoidable. They tend to be purely random with a correlation length
𝜆𝑛 ≈ 1 pixel. Convolving an image 𝐴𝑤(𝑥,𝑦) with a Gaussian surface of revolution of half width 𝜆𝑛

strongly suppresses such noise without unduly blurring the image (CROCKER AND GRIER, 1996):

𝐴𝜆𝑛(𝑥,𝑦) =
1

𝐵

𝑤∑︁
𝑖,𝑗=−𝑤

𝐴(𝑥 + 𝑖,𝑦 + 𝑗)𝑒𝑥𝑝

(︂
−𝑖2 + 𝑗2

4𝜆2
𝑛

)︂
, (7.3)

with normalization 𝐵 =
[︁∑︀𝑤

𝑖,𝑗=−𝑤 exp
(︁
− 𝑖2+𝑗2

4𝜆2
𝑛

)︁]︁2
. The difference between the noise-reduced and

background images is an estimate of the ideal image. Using a convolution kernel, we can compute
equations 7.2 and 7.3.

The particles are then identified within an image as local brightness maxima. In practice, a
pixel is adopted as a candidate if no other pixel within a distance 𝑤 is brighter. Having already
found a locally brightest pixel at (𝑥,𝑦), which presumably is near a sphere’s geometric center at
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(𝑥0,𝑦0) , we calculate the offset from (𝑥,𝑦) to the brightness-weighted centroid of the pixels in a
region around (𝑥,𝑦):

(︃
𝜖𝑥

𝜖𝑦

)︃
=

1

𝑚0

∑︁
𝑖2+𝑗2≤𝑤2

(︃
𝑖

𝑗

)︃
𝐴(𝑥 + 𝑖, 𝑦 + 𝑗), (7.4)

where 𝑚0 is the integrated brightness of the sphere’s image. The refined location estimate is then
(𝑥0,𝑦0) = (𝑥 + 𝜖𝑥, 𝑦 + 𝜖𝑦). The background subtraction performed by the convolution kernel in
equations 7.2 and 7.3 avoids biasing 𝜖𝑥 and 𝜖𝑦 toward the center of the fitting region and away from
the particle image’s centroid. If neither |𝜖𝑥| nor |𝜖𝑦| exceeds 0.5, the candidate centroid location can
be moved accordingly and the refinement recalculated.

After determining the location of each particle, we can determine which particle in a given im-
age most likely corresponds to one in the preceding image. Tracking more than one particle requires
care since any particle can be identified with only one particle in each of the successive and preced-
ing frames. Thus, we seek the most probable set of 𝑁 identifications between 𝑁 locations in two
consecutive images. If the particles are indistinguishable, as for monodisperse colloidal spheres,
this likelihood can be estimated only by proximity in the two images. More information regarding
the probabilistic theory involved in this step can be found in (CROCKER AND GRIER, 1996), The
implementation of this method is also available in Python as Trackpy (VAN DER WEL et al., 2010).
An example of the particles already identified is seen in figure 7.3.

7.2 Newtonian and polymeric suspensions

As a first approach, a 75% glycerol aqueous solution was used as the working fluid. One
drop of fluorescent particles (Thermo Scientific𝑇𝑀 Fluoro-Max Dyed Green Aqueous Fluorescent
Particles) of polystyrene with 2 µm were added in order to obtain the velocity profile for each mL

of solution. An oscillatory signal with DC component was applied using the MFCS-EZ (Fluigent)
pressure pump with frequency of approximately 𝜔 = 1 rad s−1.

The small length-scales characteristic of microfluidic devices generally result in flows of
liquids in which viscous stresses dominate inertia with typical Reynolds numbers 𝑅𝑒 = 𝜌𝑈𝑑/𝜂 <
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Figure 7.3: Identified particles in water. The particles with especially low mass or especially large
size are probably out of focus or aggregated, respectively.

1, where 𝜂 is the dynamic viscosity, 𝜌 is the fluid density, 𝑑 is a characteristic time scale (such as the
particle diameter) and 𝑈 is a characteristic velocity of the flow which is controlled by the volumetric
flow rate 𝑈 ∼ 𝑄/𝑑2. While low Reynolds number flows present challenges that limit efficient
mixing in microfluidic systems, they are advantageous when seeking to impose laminar viscometric
flows with controlled kinematics and, for Newtonian fluids at least, it is possible to accurately
measure steady two-dimensional and three-dimensional flows. For steady fully-developed flow in a
rectilinear channel the pressure drop is given by the force balance 𝑤𝑐𝑑∆𝑃 = 2𝐿(𝑤𝑐 + 𝑑)𝜏 , where
𝐿 is the channel length. Hence the measured pressure drop ∆𝑃 = 2𝜏𝐿(𝑤𝑐 + 𝑑)/(𝑤𝑑) ∼ 2𝜏𝐿/𝑑,
can be very large when 𝐿/𝑑 ≫ 1 and 𝑤𝑐/𝑑 ≫ 1.

The shear rate, an important variable for estimating polymer deformation, is defined in the
microchannel as

𝛾̇ =
𝜕𝑈𝑧(𝑥,𝑦)

𝜕𝑥
, (7.5)

where 𝑈𝑧(𝑥,𝑦) is the velocity profile in the 𝑧 direction, given by (POZRIKIDIS, 2011)
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𝑈𝑥(𝑦,𝑧) =
1

2𝜂

(︂
𝑑𝑃

𝑑𝑧

)︂(︃
𝑦2 − 𝑏2 + 𝑑2

∞∑︁
𝑛=0

4(−1)𝑛
cosh(2𝛼𝑛𝑥) cos(2𝛼𝑛𝑦)

𝑏𝛼3
𝑛 cosh(𝛼𝑛𝑎)

)︃
, (7.6)

where 𝛼𝑛 = (𝑛 + 1/2)𝜋/𝑏,𝑑𝑃/𝑑𝑧 is the pressure gradient in the streamwise direction, 𝜂 is the
viscosity and 𝑏 is the height of the channel. In addition the shear stress, 𝜎𝑦𝑥(𝑦) is defines as

𝜎𝑥𝑦(𝑦𝑥 =
∆𝑃

𝐿

(︂
𝑥− 𝑏

2

)︂
. (7.7)

Based on that, the input pressure, which is directly related to the input stress, was measured
using a Wet/Wet Differential Pressure Transducer (model PXM409-025HDWUV from Omega).
The resulting signal is seen in figure 7.4. This signal will be the input of the LAOS stress test
and it is normalized by the average pressure. It is important to filter the signal in order to avoid
oversampling and unwanted noise.

Figure 7.4: Normalized input pressure 𝑝/𝑝 as a function of time, 𝑡 [s]. The dashed signal repre-
sents the signal obtained from the pressure sensor. The solid line shows the filtered signal using a
butterworth low-pass filter. [Source: the author.]

After recording the suspension motion using a Fastcam SA1.1 (from Photron) attached to a

145



Observer.Z1 microscope (from Zeiss) at 60 fps, we were able to obtain the velocity of the suspen-
sion over time using the algorithm presented in the first section of this chapter. Next, we computed
the position of each particle on each frame and obtained their trajectories. Figure 7.5 shows the
time history of the velocity and pressure signal after the application of a butterworth low-pass filter.
The velocity was also normalized by the average.

Figure 7.5: Normalized output velocity 𝑣/𝑣 and input pressure as a function of time, 𝑡 [s]. The
dashed signal represents the filtered signal. The velocity here is related to the strain-rate while the
pressure is considered the input stress. [Source: the author.]

After testing the Newtonian solution, a suspension with 175 ppm of poly(acrylic acid) with a
molecular weight of 18 million in a 90% glycerol solution was used. Again, the input pressure was
measured over time as presented in figure 7.6. The resultant velocity of the suspension over time is
shown in figure 7.7.

With both velocity and pressure (representing strain-rate and stress) we are able to compute
the velocity profiles and the shear-rate as a function of the position. The velocity profile is calcu-
lated using one period of the root mean square (RMS) velocity signal. In figure 7.8 we can se a
comparison between the theoretical velocity profile for a Newtonian fluid and the experimental re-
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Figure 7.6: Normalized input pressure 𝑝/𝑝 as a function of time, 𝑡 [s], for the non-Newtonian sus-
pension. The dashed signal represents the filtered signal. [Source: the author.]

sult, showing excellent agreement. Figure 7.9 shows the velocity profile and shear-rate (computed
by centered finite differences) for both Newtonian and non-Newtonian suspensions. It is important
to highlight that approximatey 9% is removed from the proximity of the wall to errors. Thus, the
distance 𝑥 in the case of the velocity profile extends from 𝑥 ≃ 12.5 to 𝑥 ≃ 262.5. In the case of
shear rate, this distance removed is approximately 14% and the profile extends from 𝑥 ≃ 37.5 to
𝑥 ≃ 237.5.

As expected the velocity profile of the polymeric suspension has a small maximum value,
due to the higher viscosity. In addition, the profile is less parabolic, showing a small shear-thinning
behavior. The shear rate near the wall is also higher and more inclined for the non-Newtonian
suspension.
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Figure 7.7: Normalized output velocity 𝑣/𝑣 and input pressure 𝑝/𝑝 as a function of time, 𝑡 [s],
for the non-Newtonian suspension. The dashed signal represents the filtered signal. [Source: the
author.]
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Figure 7.8: Comparison between theoretical (solid line) and experimental (black circles) velocity
pofiles for Newtonian fluid.[Source: the author.]
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Figure 7.9: The left plot shows the velocity [µm/s] profile obtained using the RMS velocity for the
Newtonian (solid line) and non-Newtonian suspensions (dashed line). The right plot represents the
shear-rate [s−1] of the Newtonian (solid line) and non-Newtonian suspensions (dashed line) as a
function of the position in the channel, 𝑥 µm. [Source: the author.]
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7.3 Chebyshev expansion for UD-LAOS

In chapter 2, the Chebyshev decomposition was presented for LAOS tests. Considering that
UD-LAOS will also provide nonlinear signals, any orthogonal decomposition can be used to anal-
yse the signals. Traditional small signal analysis uses Taylor expansion. However, this approach
leads to large errors, or even divergence, when the input signal amplitude is large. Chebyshev se-
ries not only solves the convergence issues associated with Taylor expansions, but also results in
much smaller approximation errors.

Volterra analysis involves the expansion of all system’s nonlinearities in polynomial series
(SARKAS et al., 2008). Traditionally, Taylor series is used. However, the convergence domain of a
Taylor series is a disk in the complex plane (WAMBACQ AND SANSEN, 1998). A complex singular-
ity of the function being expanded reduces the convergence radius affecting the overall convergence
for real values. The second drawback of Taylor series is their non-uniform error distribution behav-
ior. The approximation error is very small near the expansion point but increases rapidly as the
distance from the expansion point increases. This causes large errors when analyzing systems with
large input signals.

On the other hand, the convergence domain of Chebyshev series is an ellipse (with semi axis
𝑎 and 𝑏) in the complex plain and has guaranteed convergence inside the interval [𝑎, 𝑏], as long
as no singularities lie within this interval. This implies that complex singularities do not affect
the convergence of the series, hence it converges for all nonlinearity functions found in practice
(ISAACSON AND KELLER, 1994). Moreover, the min-max sense of the approximation results to
equidistributed error within the interval [𝑎, 𝑏]. This solves the error problem with large input signals.

Thus, a nonlinear function 𝑓(𝜎′) = 𝑓(𝜎 + 𝜎𝐷𝐶), where 𝜎′ is the total stress which can be
decomposed into

𝑓(𝜎 + 𝜎𝐷𝐶) ≃ 𝑎0 + 𝑎1𝜎 + 𝑎2𝜎
2 + 𝑎3𝜎

3 + ... (7.8)

Where 𝜎𝐷𝐶 is the bias (or constant) stress and is considered known and 𝜎 is te perturbation stress.
In oscillatory shear, 𝜎 is a sinusoidal excitation with amplitude 𝛾0, the serie needs to be calculated

151



in the interval [−𝛾0, 𝛾0]. The change of variables 𝜎 = 𝛾0𝑥 is made. The Chebyshev coefficients 𝑐𝑛
of each 𝑇𝑛(𝑥) polynomial are calculated using Chebyshev quadrature as

𝑐𝑛 =
2

𝜋

∫︁ +1

−1

𝑓(𝜎 + 𝛾𝑥)𝑇𝑛(𝑥)√
1 − 𝑥2

𝑑𝑥. (7.9)

Thus, the truncated Chebyshev series of order 𝑛 is given by:

𝑆𝑛(𝑥) =
𝑐0
2

+ 𝑐1𝑇1(𝑥) + 𝑐2𝑇2(𝑥) + ... + 𝑐𝑛𝑇𝑛(𝑥). (7.10)

The reverse variable change 𝑥 = 𝜎/𝛾0 is performed in the above equation and the Cheby-
shev polynomials are expanded, thus obtaining the final expression. The coefficients 𝑎𝑛 are linear
combinations of the coefficients 𝑐𝑛. This comes from the fact that the polynomial 𝑇𝑛(𝑥) comprises
monomials of orders 𝑛, 𝑛 − 2, .... In other words, it is not possible to separe the DC effect from
other harmonics. Equation 7.11 shows the relationship between 𝑎𝑛 and 𝑐𝑛 up to the fifth order, up to
the fifth order, in which it is possible to identify almost all non-linearities of the signals (EWOLDT

et al., 2008b).

𝑎0 =
𝑐0
2
− 𝑐2 + 𝑐4

𝑎1 =
𝑐1
𝛾

− 3𝑐3
𝛾

+
5𝑐5
𝛾

𝑎2 =
2𝑐2
𝛾2

− 8𝑐4
𝛾2

𝑎3 =
4𝑐3
𝛾3

− 20𝑐5
𝛾3

𝑎4 =
8𝑐4
𝛾4

𝑎5 =
16𝑐5
𝛾5

(7.11)

152



7.4 Neural networks

As mentioned in chapters 2 and 6, UD-LAOS is an interesting method to analyze how the
structure of the fluid evolves during shear. However, no physical insight is obtained based on
the typical rheological analysis such as Chebyshev polynomials, stress decomposition and Fourier
transform analysis. As we demonstrated in the previous section, the DC component of strain (or
stress) spread through all coefficients and the symmetry is broken. On the other hand, UD-LAOS
is extremely important for the study of orientational particles. In a flow such as the unidirectional
oscillatory, we can observe how the particles behave to oscillation only, without the reversible flow
behavior. For that reason, we propose a completely new methodology, not yet present in the litera-
ture, to analyze the results obtained in UD-LAOS.

The methodology is based on machine learning. In a simple way, the idea is to remove the
DC signal from the results obtained experimentally in UD-LAOS. We used a deep, artificial neural
network known as multilayer perceptron (MLP) (SIMON, 1998). It is composed of an input layer
to receive the signal, an output layer that makes a decision or prediction about the input, and in
between those two, an arbitrary number of hidden layers that are the true computational engine
of the MLP. MLPs with one hidden layer are capable of approximating any continuous function.
Multilayer perceptrons are often applied to supervised learning problems: they train on a set of
input-output pairs and learn to model the correlation (or dependencies) between those inputs and
outputs. Training involves adjusting the parameters, or the weights and biases, of the model in order
to minimize error. The algorithm of the densely-connected neural network layers was written using
Python with Keras and Tensor Flow.

The building block for these neural networks are artificial neurons as shown in figure 7.10.
These are simple computational units that have weighted input signals and produce an output signal
using an activation function. Like linear regression, each neuron also has a bias which can be
thought of as an input that always has the value 1.0 and it too must be weighted. Thus, the weights
on the inputs are very much like the coefficients used in a regression equation. For example, a
neuron may have two inputs in which case it requires three weights: one for each input and one for
the bias. Weights are often initialized to small random values, such as values in the range 0 to 0.3,
although more complex initialization schemes can be used. Like linear regression, larger weights
indicate increased complexity and fragility. It is desirable to keep weights in the network small and
regularization techniques can be used.
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Figure 7.10: Neural network scheme showing the Input layer with 𝑛 inputs 𝐼𝑛, one hidden layer
with 𝑛 neurons 𝐻𝑛 and one output layer with 𝑛 outputs 𝑂𝑛. [Source: the author.]
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Formally, a one-hidden-layer MLP is a function 𝑓 : 𝑅𝐷 → 𝑅𝐿, where 𝐷 is the size of input
vector 𝑥 and 𝐿 is the size of the outut vector 𝑓(𝑥), such that

𝑓(𝑥) = 𝐺
[︀
𝑏(2) + 𝑊 (2)

(︁
𝑠(𝑏(1) + 𝑊 (1)𝑥)

)︁ ]︀
(7.12)

with bias vectors 𝑏(1), 𝑏(2), weight matrices 𝑊 (1), 𝑊 (2) and activation functions 𝐺 and 𝑠. The
vector ℎ(𝑥) = 𝑠(𝑏(1) + 𝑊 (1)𝑥) constitutes the hidden layer. 𝑊 (1) ∈ 𝑅𝐷×𝐷ℎ is the weight matrix
connecting the input vector to the hidden layer. Each column 𝑊

(1)
·𝑖 represents the weights from the

input units to the 𝑖-th hidden unit.

In this way, known rheological models were used in the generation of data for neural network
training. The parameters used are shown in table 7.1. After obtaining the stress signal from these
rheological models, a signal period obtained in UD-LAOS is decomposed into Chebyshev polyno-
mials up to the seventh order. These coefficients are grouped as the input of the neural network. The
target of the neural network for each of these inputs are the Chebyshev coefficients considering the
LAOS test, with 𝛾𝐷𝐶 = 0. This process was conducted, as shown in figure 7.11, for Maxwell UPC,
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Table 7.1: Parameters used to train the neural network. The network was trainned using different
frequencies in the range 0.1 ≤ 𝜔 ≤ 1. [Source: the author.]

𝜆′ 𝜂𝑝 𝛼 𝜆′
𝑟 𝑎 𝛾𝐷𝐶 𝛾 𝐿𝑓

Maxwell UPC [0.5, 10] [0.002,2] − − − [0.1,1] [0.1,1.5] −
Giesekus [0.5, 10] [0.002,2] [0,0.5] − − [0.1,1] [0.1,1.5] −

Oldroyd-B [0.5, 10] [0.002,2] − [0.1,10] − [0.1,1] [0.1,1.5] −
FENE-P [0.5, 10] [0.002,2] − − [10,1000] [0.1,1] [0.1,1.5] [10,1000]

Giesekus, Oldroyd-B and FENE-P models.
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Figure 7.11: Algorithm used for the data generation considering UPC Maxwell model. [Source: the
author.]
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7.4.1 Methodology validation

The neural network was constructed with one input layer with input vector size 𝑛 = 8,
containning the Chebyshev coefficients up to the 7-th order, based on rectifier linear unit function.
The rectifier is an activation function defined as the positive part of its argument

𝑓(𝑥𝑖) = 𝑥+
𝑖 = max(0,𝑥𝑖), (7.13)

where 𝑥𝑖 is the input to a neuron. This is also known as a ramp function and is analogous to
half-wave rectification in electrical engineering. The function is linear for values greater than zero,
meaning it has a lot of the desirable properties of a linear activation function when training a neural
network.

Since the data is not linearly separable, we use more than one hidden layer. Usually, two hid-
den layers can represent an arbitrary decision boundary to arbitrary accuracy with rational activa-
tion functions and can approximate any smooth mapping to any accuracy (HINTON et al.; HORNIK;
CYBENKO, 2006; 1991; 1989). On both hidden layers, the normalized exponential function (soft-
max) was used as activation. Softmax function outputs a vector that represents the probability
distributions of a list of potential outcomes, namely

𝑓(𝑥𝑖) =
𝑒𝑥𝑖∑︀
𝑖 𝑒

𝑥𝑖
. (7.14)

The first hidden layer has 64 nodes and the second 32 nodes. Since the output layer also has
8 nodes, the network has 1,680 parameters to compute. The RMSprop algorithm (HINTON, 2014)
was used to optimize the learning rate.

The objective of all optimizers is to reach the global minima where the cost function attains
the least possible value. Let’s consider, for instance, the gradient descent, a first-order iterative
optimization algorithm, as example. To find a local minimum of a function using gradient descent,
one takes steps proportional to the negative of the gradient (or approximate gradient) of the function
at the current point. Basically, each time we find the gradient and update the values of weights and
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biases, we move closer to the optimum value. Before we start training the neural network, its cost
would be high. Through each iteration of training the neural network, the cost reduces and moves
closer to the global minimum value. In contrast, the cost function is not always convex and then
there is a chance that the result is in a local minima and the loss might never converge to the global
minimum value. In other words, the weights are updated as

𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 − 𝛼𝐿𝑅
𝜕𝐿

𝜕𝑤𝑜𝑙𝑑

, (7.15)

where 𝛼𝐿𝑅 is the learning rate and 𝜕𝐿/𝜕𝑤 is the gradient of 𝐿, the loss function to minimise the
component 𝑤. The rate used to change the weights and bias and reach the global minimum is called
learning rate. Here, we can modify both learning rate and gradient component. Choosing a large
value for the learning rate could lead to the impossibility to reach the global minima. However,
small values of learning rate lead to high convergence times. The magnitude of the gradient can be
very different for different weights and can change during learning. This makes it hard to choose a
single global learning rate.

The RMSprop optimizer (HINTON et al., 2006) restricts the oscillations (or changes in
weights and bias) in the vertical direction. Therefore, we can increase our learning rate and our
algorithm could take larger steps in the horizontal direction converging faster. Moreover, it does
not modify the gradient itself, but the learning rate. This algorithm update the weights as

𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 −
𝛼𝐿𝑅√

𝑆𝑛𝑒𝑤 + 𝜖

𝜕𝐿

𝜕𝑤𝑜𝑙𝑑

, (7.16)

where

𝑆𝑛𝑒𝑤 = 0.9𝑆𝑜𝑙𝑑 + (1 − 0.9)

(︂
𝜕𝐿

𝜕𝑤𝑜𝑙𝑑

)︂2

(7.17)

being 𝑆𝑜𝑙𝑑 the cumulative sum of current and past squared gradients and 𝜖 the “fuzz factor”, a small
floating point value to always ensure a non-zero division.
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It is important to emphasize that there is no mathematical theory for the definition of num-
ber of nodes, layers or optimization methods. Thus, after some tests, it was determined that these
parameters are the most adequate considering the number of samples and the non-linearities of the
problem.

The neural network was then trainned for 350 epochs using data from Maxwell UPC,
Giesekus and Oldroyb-B (almost 200000 samples). The trainned network was tested for 216 sam-
ples of FENE-P model, resulting in a mean absolute error of 0.0193. Two examples of the output
are presented in figures 7.12 and 7.13. This low error shows that overfitting is not a problem in this
configuration. Based on that, we are now able to use experimental data into the neural network.

Figure 7.12: Stress as a function of time for the output of the neural network. The solid line rep-
resents the expected target, while the dashed line represents the input of the network, namely the
signal with 𝛾𝐷𝐶 . The solid circles are the output of the neural network and represent the signal with
DC after the nonlinear subtraction of 𝛾𝐷𝐶 . The parameters are 𝛾𝐷𝐶 = 0.3, 𝜂𝑝 = 1, 𝜆′ = 1, 𝐿 = 1,
𝛾 = 1, 𝑎 = 1 and 𝜔 = 0.5. [Source: the author.]
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Figure 7.13: Stress as a function of time for the output of the neural network. The solid line rep-
resents the expected target, while the dashed line represents the input of the network, namely the
signal with 𝛾𝐷𝐶 . The solid circles are the output of the neural network and represent the signal with
DC after the nonlinear subtraction of 𝛾𝐷𝐶 . The parameters are 𝛾𝐷𝐶 = 0.9, 𝜂𝑝 = 3, 𝜆′ = 7, 𝐿 = 1,
𝛾 = 1, 𝑎 = 2, and 𝜔 = 0.5. [Source: the author.]

7.4.2 Experimental data

Since the neural network have shown good results, we are able to use the experimental data
to remove the DC signal from the UD-LAOS results. The network was also trainned with FENE-
P model and tested with the Newtonian and polymeric suspension. Figure 7.14 shows the result
obtained from the network for the Newtonian fluid. We observe that just subtracting the average
from the velocity signal obtained from the particle tracking is not enough to reconstruct the LAOS
experiment. There is a phase shift related to the UD-LAOS test. It is possible to see that, as ex-
pected, there is not phase shift between the output signal from the neural network (representing the
strain-rate) and the pressure signal (representing the applied stress). However, for the polymeric
suspension shown in figure 7.15, the agreement is remarkable and it is possible to see the expected
phase shift related to the elastic behavior of the suspension. It means that we are able to obtain the
rheological measurements such as compliances and fluidities.
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Figure 7.14: The plot shows the applied filtered pressure signal (dashed line), the normalized ve-
locity subtracted from the average (solid line) and the output from the neural network, namely
the expected velocity in a simulated LAOS experiment (solid circles) for a Newtonian fluid as a
function of time, 𝑡 [s]. [Source: the author.]

7.5 Chapter conclusions

Classical macroscopic rheometry techniques for measuring fluid properties in shear and elon-
gation typically involve characteristic length-scales 𝒪(1 mm), require sample volumes 𝒪(1 mL)

and probe deformation rates of perhaps up to 𝒪(100 − 1000 s−1). While these methods are satis-
factory for understanding the behaviour of many fluids in a wide variety of flows, there are circum-
stances when using devices with smaller length-scales to investigate rheological response may be
advantageous. The use of unidirectional oscillatory flows in microrheology facilitates the study of
suspensions of microorganisms.

This methodology presents a wide range of possibilities. Experiments in UD-LAOS are ex-
tremely important to understand how the orientation of the particles modifies the flow. In addition,
this type of flow is the most common in in vivo situations in bioengineering. This DC bias in large
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Figure 7.15: The plot shows the applied filtered pressure signal (dashed line), the normalized ve-
locity subtracted from the average (solid line) and the output from the neural network, namely the
expected velocity in a simulated LAOS experiment (solid circles) for a non-Newtonian fluid as a
function of time, 𝑡 [s]. [Source: the author.]

signals often causes a shift in the DC operating point that affects the amplitude, the amount of
nonlinearity and the phase shift.

However, up to the present moment, there is no framework in the literature capable of an-
alyzing quantitatively the rheological results obtained in UD-LAOS. Considering that in the non-
linear regime the DC component of the excitation signal propagates to all degrees of freedom in a
non-separable fashion, the most appropriate way of dealing with the results is to remove the DC
component. In this way, it is possible to analyze the results using the preferred methodology: stress
decomposition, Chebyshev polynomials or Fourier transform.
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8 Conclusion and future work

Motivated by the growing interest in active suspensions, this thesis presented a new frame-
work to fully understand the behavior of these living fluids. Several tools of signal analysis and
artificial intelligence are used in a coupled way with experiments in macroreology and microreol-
ogy, in order to describe the behavior of these suspensions. In addition, analytical tools are used for
the proposition of a rheological model, based on the experimental data of kinematics and rheology.
Simplification of the model is first tested through immersed boundary simulations. This protocol
can also be applied to several types of passive and active suspensions. In this work, the motivation
and the theoretical foundation are presented in chapters 1 and 2.

In the third chapter we have presented a statistical analysis on the kinematics-wave motion of
a suspension of C. elegans in a gel-like medium. We have studied two different populations from a
biological perspective of the surrounding medium. These populations consisted in a starving and a
well-fed group of nematodes. We have found experimentally a linear correlation between the length
and the wavelength of the individuals for both populations. We proposed a theoretical correlation to
justify this linear dependence and the results have indicated that C. elegans indeed uses sinusoidal
propulsion to move in creeping flow.

We have also found that, whereas the centroid of the individuals in both populations behaves
nearly harmonically, their heads and tails evolve to highly non-harmonic motion. This nonlinear
motion is used to break the time reversibility in which they are trapped due to their small sizes,
known as kinematic reversibility in low Reynolds number flows. Another important finding of the
present work is the discrepancy observed in the collective motion of both populations. We observed
that well-fed individuals tend to move in the direction of E. coli collonies with less spreading
in the surrounding medium. On the other hand, a starving population collectively behaves quite
differently, seeking for food in several possible directions and with a much stronger head motion.

The study of the kinematic properties of the active particle is extremelly important to propose
a constitutive model. Depending on the type of propulsion or orientation we may have different
bulk results.

Considering that even the linear viscoelastic moduli of nematodes suspensions are poorly
understood and time-dependent rheological studies of these types of suspensions have been scarce
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in the current literature, we presented a series of experimental rheological analysis of C. elegans

suspensions in chapter 4. We were able to observe both hydrodynamic and active mechanisms of
the suspension during oscillatory shear and step strain tests.

Our experimental results have suggested a decrease in the fluids viscosity as the amount
of nematodes increases until a certain critical volume fraction. We identified three important re-
gions. The pure anisotropic region (0 ≤ 𝜑 ≤ 0.002) shows an approximately linear increase of
the viscosity with nematode volume fraction. The viscosity is observed to follow the law of a
rod body 𝜂𝑟 ∼ 𝐾𝜑(ℓ/𝑎)2, where ℓ/𝑎 is the anisotropic aspect ratio. In the active elastic region
(0.002 ≤ 𝜑 ≤ 0.004) the active particles insert elastic energy by their intrinsic motion on the bulk
suspension. The suspension viscosity decreased as a consequence of this elastic energy production
by the particles in the case of pusher microorganisms. For 𝜑 & 0.4%, we have identified a region
of structure formation, where collective viscous hydrodynamic particle-particle interactions that in-
hibit the elastic motion of the nematodes produce a nonlinear increasing of the suspension viscosity
as the particle volume fraction increases.

At relatively high filling fractions microorganisms interact mostly through hydrodynamic
entrainment induced by their swimming with respect to the ambient fluid. However, at low volume
fractions, the fluctuations caused by the nematode’s mobility, which is also generated by the elastic
response that arise from the worm’s body bending, tend to decrease the bulk viscosity. In the case of
passive objects, a disturbance velocity only arises if an external force or flow field is imposed. This
is unlike self-propelled particles, which drive fluid disturbances even in quiescent environments.
The flow field a swimmer generates depends in a complicated manner on body kinematics, surface
stresses, and possible surface slip.

The normal stress difference (𝑁1) was also calculated. Unlike macromolecule suspensions,
the active particle has a natural resistance to stretch, related to its intrinsic elasticity. Thus, there
is anisotropy generated in the body of the nematode. However, as aggregates are formed, these
structures tend to become anisotropic as they are stretching in the flow direction, causing an increase
in the first difference of normal stress.

We have also observed an oscillatory behavior on the relaxation function. A similar behavior
was previouslly observed in liquid crystals. As a matter of fact, the first normal-stress difference
in shear flow of low-molecular-weight nematics is calculated from the Leslie-Ericksen theory. It is
shown that, depending on the boundary orientation, the stress difference is either always negative,
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always positive or changes from negative to positive with increasing shear stress. This investigation
was prompted by recent experimental studies demonstrating negative values of the first normal-
stress difference for polymeric liquid crystals. In this active suspension, not only the passive re-
laxation time must be observed, but also the active relaxation time. It clearly increases in higher
volume fractions due to the collective behavior previously observed.

Even in the presence of an intrinsic elasticity in the nematode’s membrane, considering the
high aspect ratio of the nematode, we may simplify its shape by a slender filament. This simpli-
fication is important to propose a rheological constitutive model for the suspension. In this sense,
in chapter 5 we analyzes how the kinematics of a flexible filament can be compared to that of a
nematode. We used immersed boundary method to simulate the slender body. It was divided into
a straight line and a third degree polynomial to promote bending. The main objective was to sim-
ulate the anguilliform locomotion of the nematode considering the positions of the interpolating
mediary points, 𝑝1 and 𝑝2, of the polynomial part of the filament. As 𝑝1 and 𝑝2 were symmetrically
and asymetrically changed, we computed trajectory, distance swam as a function of the number of
strokes and velocity. We were then able to qualitativelly compare these results with the kinematic
data presented in the third chapter.

When the mediary points were symmetrically changed, higher magnitudes of velocity and ac-
celeration were observed when the distance from 𝑝2 to 𝑝1 was smaller, namely (𝑝1,𝑝2) = (0.4,0.5).
That means that the nematode curvature is smaller but it has more energy due to the size of the
tail to use as propulsion. Moreover, the size of the center body, defined as 𝑝2 − 𝑝1, is smaller and
perceive less inertia, thus less energy is required to change the signal of the filament’s curvature.
That also means that the nematode tends to swim a longer distance with less strokes.

The mediary points were also changed asymetrically. These asymetries cause a difference in
the trajectory. However, it is perceived that there is a large difference between these results and the
experimental results observed. It is possible to notice that, despite the numerical capacities of this
algorithm, for nematodes with no mutation, the simulations with symmetric changes in 𝑝1 and 𝑝2

are more compatible with experimental data. However, it is important to notice that the change of
𝑝2 does not promote changes as the first case, when 𝑝1 was also changed. Thus, the position of 𝑝1
is probably more important than the size of the center body in terms of propulsion.

The stroke period can also be changed, regardless of the interpolation points (kept as
(𝑝1, 𝑝2) = (0.1, 0.9). The upstroke 𝑡𝑢 and the downstroke 𝑡𝑑 percentages of the total stroke pe-

165



riod were asymetrically varied. As the upstroke percentage of a stroke decreases, it happens faster.
However, although the swimmer that moves forward the fastest has the quickest upstroke, having a
faster upstroke does not always lead to a faster forward swimming speed. Interestingly, due to the
asymmetric UPS and DWS, the swimming velocity profiles were shown to be significantly differ-
ent. In particular, the waveforms appear trimodal rather than bimodal, which were observed in the
cases of varying the interpolation modes. For obvious reasons, the asymetric modification in period
of UPS and DWS changes the trajectory of the filament.

The qualitative comparisons of the distance, trajectory and velocity curves of the immersed
boundary simulations and the experimental data showed that it is possible to consider the nematode
C. elegans as a flexible filament. In this sense, a new constitutive rheological model was developed.

Considering the orientational instabilities of the active suspension observed in the experi-
ments, a nonlinear phenomenological model for neutrally buoyant force-free active suspension of
nematodes was proposed and tested on the description of the linear and nonlinear viscoelastic be-
havior of this living suspension. Viscometric measurements of the simulated model were compared
with the experiments in small amplitude oscillatory shear presented in chapter 4.

The model was tested with both only affine and also non-affine motion. That means that
the local strain in a sample after deformation is not identical everywhere due to the concentration
differences and the elastic disturbances caused by the active particle intrinsic motion. While the
nematodes centers follow the macroscopic shear deformation affinely, the head and tail can deviate
from the affine deformation field in order to minimize the global free energy. We observed that
on LAOS tests and at concentrated suspensions, the non-affine motion must be considered and
Gordon-Schowalter derivative used.

In this condition, 𝐺′ and 𝐺′′ obtained from the simulated model were compared with the
experimental data and the constitutive equations were validated. Moreover, the stress response was
very similar from those obtained through the rheometer. It is extremely important that the models
are validated so that they can be tested in other flows. In general, it is far more practical to simulate
a model and its bulk response than to perform experimental tests with live particles on different
setups, which are in some cases extremelly complex.

Considering that the model was validated with experimental data, tests in the nonlinear
regime were performed. Using the Lissajoud-Bowditch approach, the Pipkin diagrams were con-
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structed using different parameters. We observed that at sufficiently low Deborah number, the vis-
coelastic material has enough time to relax and behaves like a Newtonian liquid for small ampli-
tudes. The material was driven into the nonlinear region, when 𝑊𝑖 was increased to high values
but 𝐷𝑒 was kept constant.

The normal stress difference in LAOS was also studied. The normal stress increased when
the nematodes formed a chain-like structure, until it is destroyed. Furthermore, using Gordon-
Schowalter derivative, we were able to compute the second normal stress difference, 𝑁2. Its neg-
ative sign is related to the nematode’s elongation during shear at large amplitudes. Basically, the
normal stresses arise due to anisotropy and orientation of particles and the proposed model is robust
enough to compute both 𝑁1 and 𝑁2.

As mentioned before, classical macroscopic rheometry techniques for measuring fluid proper-
ties in shear and elongation typically involve characteristic length-scales 𝒪(1 mm), require sample
volumes 𝒪(1 mL) and probe deformation rates of perhaps up to 𝒪(100 − 1000 s−1). While these
methods are satisfactory for understanding the behaviour of many fluids in a wide variety of flows,
there are circumstances when using devices with smaller length-scales to investigate rheological
response may be advantageous. Furthermore, usual macroscopic rheometry does not allow us to
obtain velocity profile and track the particles. Based on that, a framework for analysis of rheologi-
cal properties of active suspensions using microscopic rheometry was proposed on chapter 7.

The protocol developed to use the microfluidic rheometer constructed at University of Penn-
sylvania presents unique results in the literature involving neural networks. This rheometer, based
on pulsatile flow, which is constantly present in vivo, allows studying the reaction of the particles
in non-reversible flows. However, the UD-LAOS flow adds non-linearities to the response of the
fluid due to the DC component of strain (or stress).

Firstly, we analyzed mathematically whether the same decomposition based on Chebyshev
polynomials could be made. We identified that nonlinearities spread throughout the harmonic spec-
trum. In this sense, seeking to remove the DC signal and emulate the behavior of a suspension
under LAOS test from the results obtained in UD-LAOS, a neural network was trained with several
viscoelastic rheological models well established in the literature.

A polymeric viscoelastic suspension was tested in that network and it was observed that it
correctly removed the non-linearities of the response concerning the addition of the DC signal and
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the non-reversibility of this type of flow. From this, it was possible to correctly identify the phase
shift between the excitation and response signals, which allows the viscometric quantities to be
obtained such as compliances and fluidities, viscosities and elastic moduli.

In addition to the viscometric measurements, the particles were also tracked based on the IDL
programming language and the velocity and shear rate profile were measured for both Newtonian
and non-Newtonian suspensions.

In general, this thesis presents a complete picture of how to analyze a suspension of active
(or passive) particles and can be extended to any type of microorganism or molecule. First, it is
necessary to understand how the particle behaves kinetically, so as to understand each organism as
one. With this type of analysis it is possible to determine the type of active particle and how its
propulsion occurs, in addition to the type of instabilities it causes in the surrounding fluid.

After identifying these kinematic characteristics, it is necessary to understand how the be-
havior of several particles modifies the fluid and its rheological measurements. In this sense, ex-
periments in macroreology are important to understand the continuum. However, active particles
are usually complex organisms in physical structure, having intrinsic viscoelastic characteristics
and unconventional shapes, besides having their own propulsion mechanisms. For this reason, in
some cases some simplifications are necessary in order to consider only the crucial aspects of these
particles.

In order to determine if these simplifications are comparable to the reality of the active par-
ticles, simulations may be performed and compared with experimental data. As we observed, the
nematodes can be simplified as a flexible filament based on the immersed boundary simulations.

The rheological model is then proposed considering the simplifications performed. As men-
tioned, active particles are difficult to use in experiments due to its sensibility and the complex setup
necessary to perform tests considering different flows. It is easier to study the behavior of these liv-
ing fluids considering constitutive models, which must be proposed based on the simplifications.
However, it is very important to validate the model using experimental data in linear regime before
performing nonlinear experiments.

To conclude the framework, microrheology can be used in order to obtain the velocity and
shear rate profiles, track the particles and observe their response to shear flows commonly present

168



in vivo, such as pulsatile flows.

This complete framework proposed is completely new in the literature and allows the entire
spectrum of the suspension to be studied from the particle as an independent agent, to its collective
behavior in the various types of experimental flows and setups following other well stablished
frameworks of rheological analysis such as Fourier transform, stress decomposition and Chebyshev
polynomials.

In the future, different other types of suspensions will be studied: one example is the use
of methylotrophic bacteria that produce biopolymers. Brazil is responsible for the production of
6.5 million tons of plastics in the world, mainly in the civil construction, food and automotive
sectors. Even more worrying is that today, about 60% of what is produced are non-biodegradable
plastics. An environmentally correct alternative to the production of petroderivatives is bioplastics,
or also called biopolymers. In particular, the polyhydroxyalkanoates (PHAs) represent a class of
polymers which may serve as potential substitutes for conventional plastics. This is because PHAs
are produced naturally by bacteria through renewable sources, are biodegradable and also biocom-
patible, that is, they do not produce toxic byproducts during their degradation process. These PHAs
are a class of biopolymers naturally produced by bacteria as energy reserve granules.

This class of bacteria is extremely interesting to be studied using this framework. It is nec-
essary to understand how they behave kinetically, since there are several microorganisms present
together. In addition, the presence of the bacteria before and after the production of PHAs changes
the rheology of the suspension fluid. Besides that, because they are complex microorganisms and
act together, the models need to be simplified and then simulated to determine the validity of these
simplifications. After this step it is possible to propose a constitutive model and study the suspen-
sions in all types of flow and conditions. This greatly facilitates the experimental process that is
nowadays done with samples taken from nature (e.g. samples from Santos bay (CARDOSO, 2017)).
Finally, this type of suspension can be studied in the microfluidic rheometer and it is possible to
analyze the trajectory of the particles during flow, identify the velocity profile and also calculate
the viscometric characteristics of the suspension while the orientation of the bacteria is analyzed.
By analyzing all these aspects of this suspension, for example, it is possible to understand what
are the best conditions of concentration, temperature, interaction between microorganisms, type of
flow or excitation applied to increase the production of the biopolymers, producing a sustainable
alternative to common polymers.
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In addition, there are other processes within the proposed framework that can be improved.
For example, during rheological analysis, it is possible to perform other tests such as the creep test
instead of the step strain test. Some exprimental errors related to low torques and inertial problems
can be overcome in this way.

Another limitation that may be tackled is that the trained neural network identifies only vis-
coelastic fluids. Thixotropic suspensions, for example, will not be correctly computed by this net-
work. Currently, different neural networks need to be trained for different types of fluids, consid-
ering existing rheological models. In this sense, it is considered that the training of a more robust
neural network can overcome this problem of previous identification of the type of fluid. In addi-
tion, other types of orthogonal decomposition, other than Chebyshev polynomials or Fourier series,
can be used to train new machine learning algorithms.

In general, a few details of the proposed framework can be improved punctually. However,
each adaptation must be made based on the characteristics of the active particle being studied. All
in all, this work presents several new tools that were still lacking in the literature for understanding
active suspensions. A whole new branch was developed, opening several opportunities for future
work.
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APPENDICES



A Spectral Methods via Fast Fourier Transform (FFT)

In this appendix, we discuss the pseudospectral method based on the Fast Fourier Transform
(FFT). The pseudospectral method is an alternative to finite differences and finite elements for some
classes of partial differential equations. The pseudospectral method is more limited than these other
approaches in several ways. If the problem is not naturally periodic, it has to be reformulated to a
periodic setting.

To solve the incompressivle Navier-Stokes equations via Fast Fourier Transform, we consider
the vorticity formulation

𝜕𝜔

𝜕𝑡
+ ∇× (𝜔 × 𝑢) = 𝜈∇𝜔 (A.1)

∇ · 𝑢 = 0. (A.2)

After some algebraic manipulation, equation A.1 is transformed into the following form

𝜔

𝜕𝑡
+ 𝑢 · ∇𝜔 − 𝜔 · ∇𝑢 = 𝜈∆𝜔. (A.3)

Equation A.3 looks like a parabolic partial differential equation but with the extra term 𝜔 · ∇𝑢.
Using the incompressibility condition and properties of vorticity in 2D, this term is identically
zero, giving the following form of the momentum equation in terms of vorticity

𝜕𝜔

𝜕𝑡
+ 𝑢 · ∇𝜔 = 𝜈∆𝜔. (A.4)

Next, we introduce the streamfunction, 𝜙, as part of the vector potential for 𝑢

𝑢 = ∇× 𝜙𝑘. (A.5)
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Hence if we have the streamfunction, it is possible to obtain the components of the 2D fluid
velocity, e.g.:

𝑢 =
𝜕𝜙

𝜕𝑦
(A.6)

and

𝑣 = −𝜕𝜙

𝜕𝑥
. (A.7)

Furthermore, taking ∇×∇× 𝜙𝑘, we obtain a Poisson problem for 𝜙 in terms of 𝜔,

∆𝜙 = −𝜔. (A.8)

If we are able to solve for the streamfunction, 𝜙, from 𝜔, we can then get 𝑢 and it will
automatically satisfy the incompressibility condition from the form of equation A.5. IB2s uses the
following algorithm to solve Navier-Stokes equations:

∘ Step 1: Solve the Poisson problem for the streamfunction, 𝜙𝑛, from the previous time-step’s
vorticity 𝜔𝑛 i.e.,

𝜙𝑛
𝑖𝑗 =

𝜔𝑛
𝑖𝑗

𝐾2
𝑋𝑖

+ 𝑘2
𝑌𝑗

)
, (A.9)

where 𝑘𝑋𝑖
and 𝑘𝑌𝑗

are the Fourier wave-numbers.

∘ Step 2: Next we compute the x, y-derivatives of the streamfunction, 𝜙𝑛 and vorticity, 𝜔𝑛

(in real space), then compute discretized, advection term, and finally transform the advection
term into frequency space. To do this, we take the derivatives of streamfunction in frequency
space and then the Inverse Fast Fourier Transverse.
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𝑢𝑛
𝑖𝑗 = ℱ−1𝐾𝑌 𝜙𝑛

𝑖𝑗 (A.10)

𝑣𝑛𝑖𝑗 = ℱ−1−𝐾𝑋𝜙𝑛
𝑖𝑗 (A.11)

𝜔𝑛
𝑥𝑖𝑗

= ℱ−1𝐾𝑋𝜔𝑛
𝑖𝑗 (A.12)

𝜔𝑛
𝑦𝑖𝑗

= ℱ−1𝐾𝑌 𝜔𝑛
𝑖𝑗 (A.13)

Once the quantities are in real space, it is possible to compute the advection term, 𝐹 𝑛
𝑎𝑑𝑣𝑖𝑗

,
from equation A.4.

∘ Step 3: Finally we use the Crank-Nicholson scheme to update the streamfunction to the next
time-step 𝜙𝑛+1,

𝜙𝑛+1
𝑖𝑗 =

[︁
1 + 𝜈Δ𝑡

2

(︁
𝑘2
𝑋𝑖𝑗

+ 𝑘2
𝑌𝑖𝑗

)︁]︁
𝜙𝑛
𝑖𝑗 − ∆𝑡𝐹 𝑛

adv𝑖𝑗

1 − 𝜈Δ𝑡
2

(︁
𝑘2
𝑋𝑖𝑗

+ 𝑘2
𝑌𝑖𝑗

)︁ (A.14)

Note that this method is semi-implicit, explicitly discretizing the advective term, while im-
plicitly discretizing the diffusive viscous term. The Crank-Nicholson scheme is second order
accurate in time and is unconditionally stable for an array of parabolic problems.



B Discretizing Navier-Stokes equations

IB2d uses finite difference approximations to discretize the Navier-Stokes equations on a
fixed lattice, e.g., the Eulerian (fluid) grid. It follows the discretization defined as follows

𝜌

(︂
𝑢𝑘+1 − 𝑢𝑘

∆𝑡
+ 𝑆Δ𝑥(𝑢𝑘𝑢𝑘)

)︂
−𝐷0𝑝𝑘+1 = 𝜇Σ2

𝛼=1𝐷
+
𝛼𝐷

−
𝛼𝑢

𝑘+1 + 𝐹 𝑘, (B.1)

𝐷0 · 𝑢𝑘+1 = 0, (B.2)

where ∆𝑡 and ∆𝑥 are the tie-step and Eulerian meshwidth, respectively, and 𝜌 and 𝜇 are the density
and kinematic viscosity of the fluid, respectively. 𝐷0 is the central differencing operator, defined
as

𝐷0 = (𝐷0
1, 𝐷

0
2), (B.3)

with

(𝐷0
𝛼)(𝑥) =

𝜑(𝑥 + ∆𝑥𝑒𝛼) − 𝜑(𝑥 + ∆𝑥𝑒𝛼)

2∆𝑥
, (B.4)

where (𝑒1, 𝑒2) is the standard basis in R2. The viscous term, given by
∑︀2

𝛼=1 𝐷
+
𝛼𝐷

−
𝛼𝑢

𝑘+1 is a dif-
ference approximation to the Laplacian, where the 𝐷±

𝛼 operators are the forward and backward
approximations to 𝜕/𝜕𝑥𝑎. They are defined as

(𝐷+
𝛼 )(𝑥) =

𝜑(𝑥 + ∆𝑥𝑒𝛼) − 𝜑(𝑥)

𝛿𝑥
, (B.5)
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(𝐷−
𝛼 )(𝑥) =

𝜑(𝑥) − 𝜑(𝑥− ∆𝑥𝑒𝛼)

𝛿𝑥
. (B.6)

The skew-symmetic difference operator, 𝑆Δ𝑥, serves as an approximation to the nonlinear
advection term, 𝑢 · ∇𝑢, and is defined as follows

𝑆Δ𝑥 =
1

2

[︀
𝑢 ·𝐷0

Δ𝑥𝜑 + 𝐷0
Δ𝑥𝜑 · (𝑢𝜑)

]︀
. (B.7)

Using the discretizations proposed in equations B.4, B.5, B.6 and B.7, the equations B.1 and
B.2 are linear in 𝑢𝑘+1 and 𝑝𝑘+1. To solve for 𝑢𝑘+1 and 𝑝𝑘+1 from 𝑢𝑘, 𝑝𝑘+1 and 𝐹 𝑘, the Fast Fourier
Transform (FFT) is used. As mentioned before, this assumes a periodic domain.

It is important to highlight that Navier-Stokes equations need not be discretized in this man-
ner, however this discretization makes it easier to spread the Lagrangian forces to the Eulerian grid
and move the Lagrangian structure at the local fluid velocity.



C Spline Interpolant Coefficients for Swimmers

In this supplemental section, we list the spline interpolation coefficients when varying (𝑝1,𝑝2)

for the swimmer.

C.1 Symmetric (𝑝1,𝑝2) coefficients

1. (𝑝1,𝑝2) = (0.1,0.9)

𝑎0 = 0 𝑏0 = 0.014 𝑐0 = −10.111

𝑎1 = 0 𝑏1 = −0.417 𝑐1 = 33.333

𝑎2 = 0 𝑏2 = 4.167 𝑐2 = −33.333

𝑎3 = 11.111 𝑏3 = −2.778 𝑐3 = 11.111

(C.1)

2. (𝑝1,𝑝2) = (0.2,0.8)

𝑎0 = 0 𝑏0 = 0.083 𝑐0 = −5.250

𝑎1 = 0 𝑏1 = −1.250 𝑐1 = 18.750

𝑎2 = 0 𝑏2 = 6.250 𝑐2 = −18.750

𝑎3 = 6.250 𝑏3 = −4.167 𝑐3 = 6.250

(C.2)

3. (𝑝1,𝑝2) = (0.3,0.7)

𝑎0 = 0 𝑏0 = 0.321 𝑐0 = −3.762

𝑎1 = 0 𝑏1 = −3.214 𝑐1 = 14.286

𝑎2 = 0 𝑏2 = 10.714 𝑐2 = −14.286

𝑎3 = 4.762 𝑏3 = −7.143 𝑐3 = 4.762

(C.3)

4. (𝑝1,𝑝2) = (0.4,0.6)
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𝑎0 = 0 𝑏0 = 1.333 𝑐0 = −3.167

𝑎1 = 0 𝑏1 = −10.000 𝑐1 = 12.500

𝑎2 = 0 𝑏2 = 25.000 𝑐2 = −12.500

𝑎3 = 4.167 𝑏3 = 16.667 𝑐3 = 4.167

(C.4)

C.2 Asymmetric (𝑝1,𝑝2) coefficients

1. (𝑝1,𝑝2) = (0.1,0.9)

𝑎0 = 0 𝑏0 = 0.014 𝑐0 = −10.111

𝑎1 = 0 𝑏1 = −0.417 𝑐1 = 33.333

𝑎2 = 0 𝑏2 = 4.167 𝑐2 = −33.333

𝑎3 = 11.111 𝑏3 = −2.778 𝑐3 = 11.111

(C.5)

2. (𝑝1,𝑝2) = (0.1,0.7)

𝑎0 = 0 𝑏0 = 0.019 𝑐0 = −2.704

𝑎1 = 0 𝑏1 = −0.556 𝑐1 = 11.111

𝑎2 = 0 𝑏2 = 5.556 𝑐2 = −11.111

𝑎3 = 14.286 𝑏3 = −4.233 𝑐3 = 3.704

(C.6)

3. (𝑝1,𝑝2) = (0.1,0.5)

𝑎0 = 0 𝑏0 = 0.028 𝑐0 = −1.222

𝑎1 = 0 𝑏1 = −0.833 𝑐1 = 6.667

𝑎2 = 0 𝑏2 = 8.333 𝑐2 = −6.667

𝑎3 = 20.0 𝑏3 = −7.778 𝑐3 = 2.222

(C.7)

4. (𝑝1,𝑝2) = (0.1,0.3)
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𝑎0 = 0 𝑏0 = 0.056 𝑐0 = −0.587

𝑎1 = 0 𝑏1 = −1.667 𝑐1 = 4.762

𝑎2 = 0 𝑏2 = 16.667 𝑐2 = −4.762

𝑎3 = 33.333 𝑏3 = −22.222 𝑐3 = 1.587

(C.8)
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