• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
https://doi.org/10.11606/D.3.2013.tde-06072014-201304
Documento
Autor
Nombre completo
André dos Santos Bonatto
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2013
Director
Tribunal
Meneghini, Julio Romano (Presidente)
Carmo, Bruno Souza
Santos, Luis Carlos de Castro
Título en portugués
Caracterização e simulação do ruído aerodinâmico gerado por "slats".
Palabras clave en portugués
Acústica
Aerodinâmica de aeronaves
Dinâmica dos fluidos
Geometria e modelagem computacional
Resumen en portugués
A crescente preocupação com a qualidade de vida nos centros urbanos aliada ao aumento da densidade demográfica nas regiões próximas de aeroportos tem chamado a atenção das autoridades de aviação civil para a poluição sonora provocada por aeronaves. Nesse contexto, os limites de ruído externo para homologação de aeronaves tornaram-se muito restritivos nos últimos anos, com o claro objetivo de confinar o ruído no interior dos aeroportos. Com a evolução tecnológica dos motores aeronáuticos, diminuir o ruído aerodinâmico gerado por trens de pouso e hipersustentadores tornou-se uma competência fundamental para manter a competitividade da aeronave no requisito ruído. Esse trabalho estuda o mecanismo de geração de ruído aerodinâmico pelo "slat" através de simulações numéricas nas seguintes condições de túnel de vento: número de Mach 0,1, número de Reynolds 'Aproximadamente' 10'POT.6' e ângulos de ataque 4°, 6° e 8°. As estimativas de ruído foram comparadas com medições experimentais baseadas da técnica de beamforming, tendo sido observada diferença máxima de 2:5 dB no nível global de ruído. A variação de ruído com o ângulo de ataque foi superestimada em 0:8 dB pelas simulações. O recolamento da camada cisalhante foi identificado através dos contornos de flutuação de pressão na superfície do "slat" como a principal fonte de ruído do "slat". Para explicar a diminuição do ruído com o aumento do ângulo de ataque foi proposto que as flutuações na camada cisalhante seriam intensificadas através de realimentação de energia dos vórtices capturados pela zona de recirculação na cova. A existência desse mecanismo foi testada comparando os perfis de vorticidade na cúspide e bordo de fuga do "slat" e espectros ao longo da trajetória da camada cisalhante para os ângulos de ataque 4° e 8°. Embora o perfil inicial da camada cisalhante seja o mesmo nas duas condições, a esteira no bordo de fuga indica que maior parcela dos vórtices é capturada na condição 4°. Como consequência, as flutuações da camada cisalhante nas proximidades do recolamento são maiores nessa condição, consistente com os maiores níveis de ruído.
Título en inglés
Characterization and simulation of aerodynamically generated slat noise.
Palabras clave en inglés
Acoustics
Aircraft aerodynamics
Fluid dynamics
Geometry and computational modeling
Resumen en inglés
The growing concern about the life quality in urban centers coupled with increasing population density in near airports areas has drawn the attention of civil aviation authorities for aircraft noise pollution. In this context, external noise limits for approval of aircraft have become very restrictive in recent years, with the clear objective to confine aircraft noise inside airports. With the technological evolution of aircraft engines, reducing noise generated by aerodynamic landing gear and highlift devices have become a core competency to keep the aircraft competitive regarding noise requirements. This work studies the generation mechanism of aerodynamic noise by slats through numerical simulations in the following wind tunnel conditions: Mach number 0.1, Reynolds number 'Approximately' 10'POT.6' and angles of attack 4°, 6° and 8°. The noise estimates were compared with experimental measurements based on beamforming technique, and it was observed the maximum difference of 2:5 dB in the overall noise level. The noise variation with angle of attack was over-estimated at 0.8 dB by the simulations. The reattachment of the shear layer was identified by the contours of pressure fluctuation on the surface of the slat as the key noise generation mechanism. To explain the noise reduction when the angle of attack is increased it has been proposed that fluctuations in the shear layer would be enhanced through feedback of energy captured by the vortex recirculation zone in the slat cove. The existence of this mechanism was tested by comparing the vorticity profiles at both the cusp and trailing edge, as well as velocity fluctuation spectra along the trajectory of the shear layer for angles of attack 4° and 8 degree. Although the initial profile of the shear layer is the same in both conditions, the wake at the trailing edge indicates that a higher percentage of the vortices is trapped in the recirculation for the condition 4°. Consequently, fluctuations in the shear layer near the reattachment are greater in this condition, which is consistent with the higher noise levels.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2014-07-11
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2024. Todos los derechos reservados.