CELSO LUIZ FELIPINI

Estudo do comportamento do escoamento em tochas de plasma térmico através de simulação numérica

> São Paulo 2015

CELSO LUIZ FELIPINI

Estudo do comportamento do escoamento em tochas de plasma térmico através de simulação numérica

Tese apresentada à Escola Politécnica da Universidade de São Paulo para obtenção do título de Doutor em Ciências

Orientador: Prof. Dr. Marcos de Mattos Pimenta

São Paulo 2015

CELSO LUIZ FELIPINI

Estudo do comportamento do escoamento em tochas de plasma térmico através de simulação numérica

> Tese apresentada à Escola Politécnica da Universidade de São Paulo para obtenção do título de Doutor em Ciências

> Área de Concentração: Engenharia Mecânica – Energia e Fluidos

> Orientador: Prof. Dr. Marcos de Mattos Pimenta

São Paulo 2015 Este exemplar foi revisado e corrigido em relação à versão original, sob responsabilidade única do autor e com a anuência de seu orientador.

São Paulo, 22 de abril de 2015.

Assinatura do autor

Assinatura do orientador

Catalogação-na-publicação

Felipini, Celso Luiz
Estudo do comportamento do escoamento em tochas de plasma térmico através de simulação numérica / C.L. Felipini. -- versão corr. -- São Paulo, 2015. 164 p.
Tese (Doutorado) - Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia Mecânica.
1.Plasma térmico 2.Tocha de plasma 3.Magnetohidrodinâ-mica 4.Mecânica dos fluidos 5.Eletromagnetismo I.Universidade de São Paulo. Escola Politécnica. Departamento de Engenharia Mecânica II.t.

À minha amada esposa Carmen e ao nosso amado filho Bruno

AGRADECIMENTOS

Ao Professor Pimenta, pela dedicação e paciência na orientação do trabalho, pelo incentivo constante, pelas lições e experiências transmitidas durante o nosso convívio. Foi ele, com certeza, que me fez chegar até aqui.

À Diretoria e à Coordenadoria da Universidade São Judas Tadeu, pelo apoio e oportunidades.

Ao Prof. Brunetti (*in memoriam*), pela oportunidade de ingressar na carreira acadêmica.

Ao Prof. Silvares (*in memoriam*), meu orientador no mestrado. Tive a honra de ser seu professor assistente durante bons anos.

Aos meus professores na POLI.

Ao Dr. Durval Guelfi (in memoriam), pelas sábias lições.

Ao meu amigo Dr. Cássio Martins, pelo apoio nos momentos difíceis.

Ao meu pai Luiz (*in memoriam*) e à minha mãe Lourdes (*in memoriam*), pela educação, exemplo e carinho.

À minha madrasta Aidil, à minha sogra Elvira e ao meu sogro Cesário pelo apoio e carinho durante esses anos.

RESUMO

Esta tese apresenta um modelo matemático para simulação numérica do escoamento com turbilhonamento (swirl) em tochas de plasma térmico de arco nãotransferido que operam em corrente contínua, assim como os resultados obtidos com as simulações para estudo de casos. O modelo magneto-hidrodinâmico (modelo MHD) bidimensional permitiu simular a interação entre o escoamento e o arco elétrico usando uma configuração axissimétrica, que abrange as seguintes regiões: entrada do gás; interior da tocha; jato de plasma livre no ambiente. O modelo foi implementado num código numérico baseado no Método dos Volumes Finitos para a solução numérica das equações governantes. Para os estudos foram simulados casos com diferentes condições operacionais (vazão de gás; intensidade de corrente elétrica; gases plasmogênicos: ar e argônio; intensidade de turbilhonamento). A fim de verificar a qualidade do modelo, alguns resultados foram comparados com a literatura e apresentaram boa concordância: a maior diferença obtida entre valores de temperatura experimentais e valores calculados foi -10%, e a média das diferenças obtidas nas comparações foi de aproximadamente ±3,2%. Os perfis de temperatura e de velocidade obtidos para a região do arco e para o jato de plasma resultante permitiram o estudo do comportamento do escoamento na tocha de plasma em diferentes condições. Conclui-se que o modelo desenvolvido é apto à realização de investigações numéricas do escoamento em tochas de plasma e dos efeitos do turbilhonamento na interação arco/escoamento.

Palavras-chave: Plasma térmico. Tocha de plasma. Modelo MHD. Simulação numérica. Método dos volumes finitos. Turbilhonamento.

ABSTRACT

This thesis presents a mathematical model for numerical simulation of swirling flow in DC non-transferred arc thermal plasma torches, as well as the results obtained from simulations to case studies. The two-dimensional magnetohydrodynamic model (MHD model) allowed simulate the interaction between the flow and the electric arc using an axisymmetric configuration, covering the following areas: gas inlet; inside the torch; free jet of plasma in the environment. The model was implemented in a computer code based on the Finite Volume Method (FVM) to enable the numerical solution of the governing equations. For the study, cases were simulated with different operating conditions (gas flow rate; electric current intensity; plasmogenic gases: air and argon; swirl intensity). In order to verify the quality of the model, some results were compared with the literature and showed good agreement: the biggest difference between experimental temperature values and calculated values was -10%, and the average of the differences obtained in the comparisons was approximately ±3.2%. The resulting profiles of temperature and velocity obtained for the region of the arc and the plasma jet allowed the study of the flow behavior in the plasma torch in different conditions. It is concluded that the model developed is able to carry out numerical investigations of the flow in plasma torches and the effects of swirl in the interaction arc/flow.

Keywords: Thermal plasma. Plasma torch. MHD model. Numerical simulation. Finite volume method. Swirl.

LISTA DE FIGURAS

Figura 3.1	-	Modos de descarga elétrica em corrente contínua (CC).	
		Pressão: 0,1 kPa	26
Figura 3.2	-	Comportamento das temperaturas dos elétrons (Te) e das	
		partículas pesadas (Tg) em um plasma de arco em função da	
		pressão	28
Figura 3.3	-	Representação esquemática da distribuição de potencial ao	
		longo do arco elétrico	29
Figura 3.4	-	Esquema da unidade de processo	31
Figura 3.5	-	Representação esquemática de uma tocha de plasma de arco	
		transferido	32
Figura 3.6	-	Representação esquemática de uma tocha de plasma de arco	
		não transferido	33
Figura 5.1	-	Domínio computacional	67

LISTA DE GRÁFICOS

Gráfico 6.8 - Comparação dos perfis de temperatura. Condições operacionais: gás: ar; vazão de gás: 5, 10, 15, 20, 25, 30 l/min; corrente elétrica: 100 A; Sw=0..... 82 Gráfico 6.9 - Comparação dos perfis de temperatura. Condições operacionais: gás: argônio; vazão de gás: 5, 10, 15 l/min; corrente elétrica: 200 A; Sw=0..... 83 Gráfico 6.10 - Comparação dos perfis de temperatura. Condições operacionais: gás: ar; vazão de gás: 5, 10, 15 l/min; corrente elétrica: 200 A: Sw=0..... 83 Gráfico 6.11 - Comparação dos perfis de velocidade axial. Condições operacionais: gás: argônio; vazão de gás: 5, 10, 15, 20, 25, 30 l/min; corrente elétr.: 100 A; Sw=0..... 85 Gráfico 6.12 - Comparação dos perfis de velocidade axial. Condições operacionais: gás: ar; vazão de gás: 5, 10, 15, 20, 25, 30 l/min; corrente elétrica: 100 A; Sw=0..... 85 Gráfico 6.13 - Comparação dos perfis de velocidade axial. Condições operacionais: gás: argônio; vazão de gás: 5, 10, 15 l/min; corrente elétrica: 200 A; Sw=0..... 86 Gráfico 6.14 - Comparação dos perfis de velocidade axial. Condições operacionais: gás: ar; vazão de gás: 5, 10, 15 l/min; corrente elétrica: 200 A; Sw=0..... 86 Gráfico 6.15 - Comparação dos perfis de temperatura. Condições operacionais: gás: argônio; vazão de gás: 5, 10, 15 l/min; corrente elétrica: 100 A e 200 A; Sw=0..... 88 Gráfico 6.16 - Comparação dos perfis de temperatura. Condições operacionais: gás: ar; vazão de gás: 5, 10, 15 l/min; corrente elétrica: 100 A e 200 A; Sw=0..... 88 Gráfico 6.17 - Comparação dos perfis de velocidade axial. Condições operacionais: gás: argônio; vazão de gás: 5, 10, 15 l/min; corrente elétrica: 100 A e 200 A; Sw=0..... 90 Gráfico 6.18 - Comparação dos perfis de velocidade axial. Condições operacionais: gás: ar; vazão de gás: 5, 10, 15 l/min; corrente

elétrica: 100 A e 200 A; Sw=0.....

ix

90

Gráfico 6.19 - Comparação dos perfis de temperatura. Condições operacionais: gás: argônio e ar; vazão de gás: 5, 10, 15 I/min; corrente elétrica: 100 A; Sw=0..... 92 Gráfico 6.20 - Comparação dos perfis de temperatura. Condições operacionais: gás: argônio e ar; vazão de gás: 5, 10, 15 I/min; corrente elétrica: 200 A; Sw=0..... 92 Gráfico 6.21 - Comparação dos perfis de velocidade axial. Condições operacionais: gás: argônio e ar; vazão de gás: 5, 10, 15 I/min; corrente elétrica: 100 A; Sw=0..... 93 Gráfico 6.22 - Comparação dos perfis de velocidade axial. Condições operacionais: gás: argônio e ar; vazão de gás: 5, 10, 15 I/min; corrente elétrica: 200 A; Sw=0..... 93 Gráfico 6.23 - Efeito do turbilhonamento (swirl) no perfil axial de temperatura (posição radial: eixo de simetria (r=0)). Condições operacionais: 250A; 0,59scmh (9,83 l/min)..... 98 Gráfico 6.24 - Efeito do turbilhonamento (swirl) no perfil radial de temperatura (posição axial: 33mm). Condições operacionais: 250A; 0,59scmh (9,83 l/min)..... 99 Gráfico 6.25 - Efeito do turbilhonamento (swirl) no perfil radial de temperatura (posição axial: 45mm). Condições operacionais: 250A; 0,59scmh (9,83 l/min)..... 100 Gráfico 6.26 - Efeito do turbilhonamento (swirl) no perfil radial de temperatura (posição axial: 57mm). Condições operacionais: 250A; 0,59scmh (9,83 l/min)..... 101 Gráfico 6.27 - Efeito do turbilhonamento (swirl) no perfil radial de temperatura (posição axial: 69mm). Condições operacionais: 250A; 0,59scmh (9,83 l/min)..... 102 Gráfico 6.28 - Efeito do turbilhonamento (swirl) no perfil radial de temperatura (posição axial: 80mm). Condições operacionais: 250A; 0,59scmh (9,83 l/min)..... 103 Gráfico 6.29 - Efeito do turbilhonamento (swirl) no perfil axial de temperatura (posição radial: eixo de simetria (r=0)). Condições operacionais: 250A; 0,83scmh (13,83 l/min)..... 104

Gráfico 6.30	-	Efeito	do	turbilhona	mento	(swirl)	no	perfil	radial	de	
		temper	atura	a (posição a	axial: 3	3mm). C	Condiq	ções op	eracion	ais:	
		250A; (),83s	scmh (13,83	3 /min).						105
Gráfico 6.31	-	Efeito	do	turbilhona	mento	(swirl)	no	perfil	radial	de	
		temper	atura	a (posição a	axial: 4	5mm). C	Condig	ções op	eracion	ais:	
		250A; (),83s	scmh (13,83	3 /min).						105
Gráfico 6.32	-	Efeito	do	turbilhona	mento	(swirl)	no	perfil	radial	de	
		temper	atura	a (posição a	axial: 57	7mm). C	Condig	ções op	eracion	ais:	
		250A; (),83s	scmh (13,83	3 /min).						106
Gráfico 6.33	-	Efeito	do	turbilhona	mento	(swirl)	no	perfil	radial	de	
		temper	atura	a (posição a	axial: 69	9mm). C	Condiq	ções op	eracion	ais:	
		250A; (),83s	scmh (13,83	3 /min).						106
Gráfico 6.34	-	Efeito	do	turbilhona	mento	(swirl)	no	perfil	radial	de	
		temper	atura	a (posição a	axial: 80	Omm). C	Condiq	ções op	eracion	ais:	
		250A; (),83s	scmh (13,83	3 /min).						107
Gráfico 6.35	-	Perfis	de v	velocidade	axial	em fun	ção d	da dist	ância a	ixial	
		(posiçã	io r	adial: eix	o de	simetr	ia (i	r=0)).	Efeito	do	
		turbilho	onam	ento (swi	rl). Co	ndições	s ope	eracion	ais: 25	60A;	
		0,59sc	mh (9	9,83 l/min).							108
Gráfico 6.36	-	Perfis	de ve	elocidade a	xial em	função	da d	istância	a radial	nas	
		posiçõe	es a	xiais (jato	de pla	asma):	33mn	n; 45m	nm; 57r	nm;	
		69mm;	80r	nm. Condi	ções d	operacio	onais:	250A;	0,59sc	cmh	
		(9,83 l/	min);	Sw=5							108
Gráfico 6.37	-	Perfis	de ve	elocidade a	axial en	n função	o da o	distânci	ia radial	na	
		posição	o ax	ial: 33mm	. Efeit	o do t	urbilh	oname	nto (sw	/irl).	
		Condiç	ões (operaciona	is: 250/	A; 0,59s	cmh (9,83 l/n	nin)		109
Gráfico 6.38	-	Perfis	de ve	elocidade a	axial en	n função	o da o	distânci	ia radial	na	
		posição	o ax	ial: 45mm	. Efeit	o do t	urbilh	oname	nto (sw	/irl).	
		Condiç	ões (operaciona	is: 250/	A; 0,59s	cmh (9,83 l/n	nin)		109
Gráfico 6.39	-	Perfis	de ve	elocidade a	axial en	n função	o da o	distânci	ia radial	na	
		posição	o ax	ial: 57mm	. Efeit	o do t	urbilh	oname	nto (sw	/irl).	
		Condiç	ões (operaciona	is: 250/	A; 0,59s	cmh (9,83 l/n	nin)		110

xi

LISTA DE TABELAS

Tabela 3.1	-	Características operacionais de tochas de arco transferido e	
		de arco não transferido	34
Tabela 4.1	-	Quadro comparativo de modelos computacionais propostos	
		na literatura	43
Tabela 5.1	-	Sumário das condições de contorno	69
Tabela 6.1	-	Condições operacionais da tocha do INEL	72

LISTA DE ABREVIATURA E SIGLAS

CC	Corrente Contínua
СТР	Código Computacional para Simulação do Escoamento em Tochas
	de Plasma Térmico
ETC	Equilíbrio Termodinâmico Completo
ETL	Equilíbrio Termodinâmico Local
INEL	Idaho National Engineering Laboratory
MHD	Magneto-hidrodinâmica
RF	Rádio-frequência

Lista de símbolos

K	kelvin (temperatura)
V	tensão elétrica
I	corrente elétrica
kPa	kiloPascal
r	coordenada radial
Z	coordenada axial
θ	coordenada azimutal
Tg	temperatura das partículas pesadas
T _e	temperatura dos elétrons
Ua	tensão anódica
U _c	tensão catódica
Un	queda de tensão no arco
L _a	comprimento da zona anódica
L _c	comprimento da zona catódica
L _n	comprimento da coluna
T(r)	perfil radial de temperatura
μ	viscosidade dinâmica
ρ	massa específica
р	pressão do gás
И	componente da velocidade na direção z
v	componente da velocidade na direção r
W	componente da velocidade na direção $ heta$
j_z	componente axial do vetor densidade de corrente elétrica $ec{j}$
j_r	componente radial do vetor densidade de corrente elétrica $ec{j}$
$B_{ heta}$	componente azimutal do vetor intensidade de indução magnética
C_p	calor específico do gás à pressão constante
σ	condutividade elétrica do gás
S _r	dissipação de calor por radiação por unidade de volume de plasma
Φ	potencial elétrico

permeabilidade magnética no espaço livre (vácuo)

 μ_0

Sumário

1.	INTRODUÇÃO	19
1.1	Apresentação e justificativa do tema	19
1.2	Motivação	19
2.	OBJETIVOS	21
3.	ALGUNS ASPECTOS BÁSICOS DE PLASMA E DA TECNOLOGIA	
	DE PLASMA TÉRMICO	22
3.1	Definição de plasma	22
3.2	Tipos de plasma	22
3.3	Plasma térmico	23
3.4	Geração de plasma térmico	24
3.4.1	Métodos de geração	24
3.4.2	Descargas elétricas em gases	25
3.4.3	Características dos arcos de alta intensidade	28
3.4.4	Tochas de plasma térmico	31
3.5	Aplicações tecnológicas	35
4.	REVISÃO DA LITERATURA DE SIMULAÇÃO NUMÉRICA DE	
4.	REVISÃO DA LITERATURA DE SIMULAÇÃO NUMÉRICA DE TOCHAS DE PLASMA TÉRMICO	36
4. 4.1	REVISÃO DA LITERATURA DE SIMULAÇÃO NUMÉRICA DE TOCHAS DE PLASMA TÉRMICO Modelos numéricos de tochas de plasma térmico	36 36
4. 4.1 4.1.1	REVISÃO DA LITERATURA DE SIMULAÇÃO NUMÉRICA DE TOCHAS DE PLASMA TÉRMICO Modelos numéricos de tochas de plasma térmico Descrições microscópicas	36 36 36
4. 4.1 4.1.1 4.1.2	REVISÃO DA LITERATURA DE SIMULAÇÃO NUMÉRICA DE TOCHAS DE PLASMA TÉRMICO Modelos numéricos de tochas de plasma térmico Descrições microscópicas Modelagem macroscópica	36 36 36 37
4. 4.1 4.1.1 4.1.2 4.2	REVISÃO DA LITERATURA DE SIMULAÇÃO NUMÉRICA DETOCHAS DE PLASMA TÉRMICO.Modelos numéricos de tochas de plasma térmico.Descrições microscópicas.Modelagem macroscópica .Alguns modelos de arcos de plasma propostos na literatura.	36 36 36 37 38
 4.1 4.1.1 4.1.2 4.2 4.2.1 	REVISÃO DA LITERATURA DE SIMULAÇÃO NUMÉRICA DETOCHAS DE PLASMA TÉRMICO.Modelos numéricos de tochas de plasma térmico.Descrições microscópicas.Modelagem macroscópica .Alguns modelos de arcos de plasma propostos na literatura.Modelos 0D.	36 36 36 37 38 40
 4.1 4.1.1 4.1.2 4.2 4.2.1 4.2.2 	REVISÃO DA LITERATURA DE SIMULAÇÃO NUMÉRICA DETOCHAS DE PLASMA TÉRMICO.Modelos numéricos de tochas de plasma térmico.Descrições microscópicas.Modelagem macroscópicaAlguns modelos de arcos de plasma propostos na literatura.Modelos 0D.Modelos 1D.	36 36 37 38 40 40
 4.1 4.1.1 4.1.2 4.2 4.2.1 4.2.2 4.2.2 4.2.3 	REVISÃO DA LITERATURA DE SIMULAÇÃO NUMÉRICA DETOCHAS DE PLASMA TÉRMICO.Modelos numéricos de tochas de plasma térmico.Descrições microscópicas.Modelagem macroscópica .Alguns modelos de arcos de plasma propostos na literatura.Modelos 0D.Modelos 1D.Modelos 2D e 3D.	36 36 37 38 40 40
 4.1 4.1.1 4.1.2 4.2 4.2.1 4.2.2 4.2.3 5. 	REVISÃO DA LITERATURA DE SIMULAÇÃO NUMÉRICA DETOCHAS DE PLASMA TÉRMICO.Modelos numéricos de tochas de plasma térmico.Descrições microscópicas.Modelagem macroscópicaAlguns modelos de arcos de plasma propostos na literatura.Modelos 0D.Modelos 1D.Modelos 2D e 3D.METODOLOGIA	36 36 37 38 40 40 42 61
 4.1 4.1.1 4.2 4.2.1 4.2.2 4.2.3 5.1 	REVISÃO DA LITERATURA DE SIMULAÇÃO NUMÉRICA DETOCHAS DE PLASMA TÉRMICO.Modelos numéricos de tochas de plasma térmico.Descrições microscópicas.Modelagem macroscópicaAlguns modelos de arcos de plasma propostos na literatura.Modelos 0D.Modelos 1D.Modelos 2D e 3D.METODOLOGIAModelo 2D.	36 36 37 38 40 40 42 61 62
 4.1 4.1.1 4.2 4.2.1 4.2.2 4.2.3 5.1 5.1.1 	REVISÃO DA LITERATURA DE SIMULAÇÃO NUMÉRICA DETOCHAS DE PLASMA TÉRMICO.Modelos numéricos de tochas de plasma térmico.Descrições microscópicas.Modelagem macroscópicaAlguns modelos de arcos de plasma propostos na literatura.Modelos 0D.Modelos 1D.Modelos 2D e 3D.METODOLOGIAModelo 2D.Hipóteses adotadas.	36 36 37 38 40 40 42 61 62 62
 4.1 4.1.1 4.2 4.2.1 4.2.2 4.2.3 5.1 5.1.1 5.1.2 	REVISÃO DA LITERATURA DE SIMULAÇÃO NUMÉRICA DETOCHAS DE PLASMA TÉRMICO.Modelos numéricos de tochas de plasma térmico.Descrições microscópicas.Modelagem macroscópicaAlguns modelos de arcos de plasma propostos na literatura.Modelos 0D.Modelos 1D.Modelos 2D e 3D.METODOLOGIAModelo 2D.Hipóteses adotadas.Equações do modelo 2D (em coordenadas cilíndricas).	36 36 37 38 40 40 42 61 62 62 63
 4.1 4.1.1 4.2 4.2.1 4.2.2 4.2.3 5.1 5.1.1 5.1.2 5.1.3 	REVISÃO DA LITERATURA DE SIMULAÇÃO NUMÉRICA DETOCHAS DE PLASMA TÉRMICO.Modelos numéricos de tochas de plasma térmico.Descrições microscópicas.Modelagem macroscópicaAlguns modelos de arcos de plasma propostos na literatura.Modelos 0D.Modelos 1D.Modelos 2D e 3D.MetroDoLOGIAModelo 2D.Hipóteses adotadas.Equações do modelo 2D (em coordenadas cilíndricas).Domínio Computacional e Condições de Contorno.	36 36 37 38 40 40 42 61 62 62 63 67

6.	RESULTADOS E ANÁLISE	71
6.1	Comparação com resultados experimentais da literatura	71
6.2	Perfis de temperatura e velocidade axial característicos do escoamento	
	em tochas de plasma térmico de arco não transferido	77
6.3	Estudo de casos	80
6.4	Efeito do turbilhonamento (<i>swirl</i>)	98
7	CONCLUSÕES	112
	REFERÊNCIAS BIBLIOGRÁFICAS	115
	APÊNDICE A – Gráficos de perfis de temperatura e velocidade	
	axial – Estudo de casos	119
	APÊNDICE B – Tabelas de resultados de simulações – Estudo de	
	casos	141

1 INTRODUÇÃO

1.1 Apresentação e justificativa do tema

Desde a década de oitenta, o plasma térmico gerado por arco elétrico em tochas específicas, denominadas tochas de plasma, tem despertado muito interesse devido à diversidade de possíveis aplicações e também, por ser um dos processos eletrotérmicos menos poluidores.

A tecnologia do plasma térmico gerado por arco elétrico em tochas de plasma é uma alternativa atraente que compete com outros equipamentos industriais devido às seguintes características (FEINMAN, 1987): altas temperaturas do arco; alta eficiência na conversão de energia elétrica em térmica; utilização de diversos gases (oxidantes; neutros; redutores); alta entalpia do fluxo de plasma; alta densidade de potência; dimensões relativamente pequenas comparadas às de outros equipamentos; alta condutividade térmica do fluxo de plasma; flexibilidade de temperaturas e velocidades; altos gradientes de temperatura e velocidade. Tais características têm promovido o uso do plasma térmico em diversas aplicações relacionadas à metalurgia, ao desenvolvimento de materiais avançados e a soluções para poluentes que afetam o meio ambiente.

O exposto ajuda a esclarecer a recente intensificação das pesquisas e desenvolvimentos nesse campo e, também, permite prever com boa segurança a implementação dos processos a plasma térmico em novas aplicações nos próximos anos, principalmente nas áreas de materiais avançados e de meio ambiente.

1.2 Motivação

A literatura evidencia que os projetos das tochas de plasma térmico devem ser desenvolvidos especificamente de acordo com as aplicações das mesmas. Portanto, a otimização dos processos a plasma térmico está intrinsecamente relacionada à concepção adequada das tochas, principalmente com referência à geometria/dimensões dos eletrodos (anodos e catodos) e aos parâmetros operacionais: gás de trabalho (gás plasmogênico), intensidade de corrente elétrica,

vazão de escoamento do gás, faixa de temperatura. Os projetos das tochas têm sido realizados, predominantemente, por meio de procedimentos experimentais de tentativa e erro, o que demanda grande dispêndio de tempo e custos elevados. Uma opção muito interessante para reduzir custos e obter uma melhor compreensão dos fenômenos envolvidos, é o desenvolvimento dos projetos das tochas através de simulação por meio da solução numérica de modelos matemáticos (que ainda se encontra em progresso). Essa metodologia permite também estudos de mudanças de escalas e de potências operacionais. Porém, a literatura também mostra que apesar dos esforços empregados até o momento, os trabalhos de simulação na referida área ainda apresentam várias limitações (HSU et al., 1983), (KOVITYA; CRAM, 1986), (SCOTT et al., 1989), (ZHU et al., 1992), (MURPHY; KOVITYA, 1993), (GLEIZES, et al., 2005), (LI; PFENDER, 2007). Portanto, continua o interesse pelo desenvolvimento e aperfeiçoamento da modelagem e simulação numérica de tochas de plasma térmico.

O contexto apresentado é que motivou os meus estudos nessa área, incluindo o tema desta tese do programa de doutorado do Departamento de Engenharia Mecânica da EPUSP – Energia e Fluidos: *Estudo do Comportamento do Escoamento em Tochas de Plasma Térmico Através de Simulação Numérica* (com ênfase nas tochas para aplicações industriais e de meio ambiente).

2 OBJETIVOS

Desenvolver um modelo físico e matemático bidimensional (axissimétrico) do escoamento com turbilhonamento (swirl) em tochas de plasma térmico de arco não transferido que operam em corrente contínua (CC), abrangendo as seguintes regiões: entrada do gás; interior da tocha; jato de plasma livre no ambiente. O modelo computacional é baseado no método dos volumes finitos (SIMPLE – Patankar) e denominado Código Computacional para Simulação do Escoamento em Tochas de Plasma Térmico (CTP).

Através de simulações numéricas:

 Estudar o comportamento do escoamento em tochas de plasma, visando obter conhecimento dos fenômenos que ocorrem na interação entre fluido e descarga elétrica dentro da tocha e os perfis de temperatura e velocidade do jato de plasma livre.

- Estudar e comparar os comportamentos dos escoamentos (e suas interações com os arcos elétricos) de dois diferentes gases plasmogênicos: ar ; argônio.

 Estudar os efeitos de diferentes condições operacionais no comportamento do arco de plasma e do jato de plasma livre: variação da vazão de gás e da intensidade da corrente elétrica.

- Estudar os efeitos da variação das dimensões do espaço (espessura) anular (entre os eletrodos) no comportamento do arco de plasma e do jato livre.

- Estudar os efeitos de diferentes intensidades de turbilhonamento (swirl) no comportamento do arco de plasma e do jato de plasma livre. Observa-se que em relação à literatura, é proposto o seguinte caráter original: estudo sistemático dos efeitos de diferentes intensidades de turbilhonamento no comportamento do arco de plasma e, em consequência, no jato de plasma livre.

3 ALGUNS ASPECTOS BÁSICOS DE PLASMA E DA TECNOLOGIA DE PLASMA TÉRMICO

3.1 Definição de plasma

O cientista americano Irving Langmuir foi o pioneiro (1929) no uso do termo plasma, na Física, para designar um gás parcialmente ionozado (MITCHNER; KRUGER, 1973).

O estado de plasma é freqüentemente definido como *o quarto estado da matéria* (sólido, líquido, gás e plasma), pois se estima que mais de 99% da matéria conhecida do universo se encontra em tal estado (KETTANI; HOYAUX, 1973).

Neste projeto de pesquisa, a definição preliminar de plasma será restrita aos plasmas gasosos, que consistem de uma mistura de elétrons, íons e partículas neutras, em neutralidade elétrica (equilíbrio entre as cargas negativas e positivas – propriedade conhecida como quase neutralidade) e com certo grau de condutividade elétrica, em contraste a um gás comum, devido à presença de cargas elétricas livres entre seus constituintes. Tais cargas são geradas através de processos de ionização por descargas elétricas, ou por processos de colisão em gases a altas temperaturas (BOULOS; FAUCHAIS; PFENDER, 1994).

3.2 Tipos de plasma

Os plasmas são categorizados como naturais ou de laboratório, e cobrem uma grande faixa de temperatura e pressão.

Como exemplo de plasmas naturais, cita-se: corona solar, nebulosas, vento solar, aurora boreal, descarga elétrica atmosférica, centro do sol, chamas, ionosfera terrestre. Com relação aos plasmas de laboratório, ou *plasmas gerados pelo homem*, basicamente podem ser estabelecidas três subcategorias: plasmas físicos, plasmas térmicos e plasmas frios.

Este trabalho limita-se à abordagem do plasma térmico. Uma vasta literatura sobre os outros dois tipos pode ser obtida com facilidade.

3.3 Plasma térmico

Quando todas as propriedades referentes ao plasma são funções unívocas da temperatura e essa for a mesma para todos os seus constituintes e reações possíveis, o plasma é considerado em *Equilíbrio Termodinâmico Completo* (ETC) (ECKERT; PFENDER, 1967). Porém, num plasma de laboratório, a radiação observada é bem menor que a radiação de corpo negro (não satisfazendo a lei de Planck), pois o mesmo é opticamente transparente para uma ampla faixa de comprimentos de onda. Dessa maneira, a temperatura de radiação difere significativamente da temperatura cinética de seus constituintes, ou das temperaturas de ionização e excitação. Além disso, o plasma de laboratório sofre perdas irreversíveis de energia por condução, convecção e difusão, e, portanto, a condição de ETC não pode ser obtida (BOULOS; FAUCHAIS; PFENDER, 1994).

Para tornar viável o tratamento matemático dos plasmas de laboratório, é assumida a hipótese de *Equilíbrio Termodinâmico Local* (ETL), onde predominam os processos de colisão e ocorre uma micro-reversibilidade entre os mesmos. As condições necessárias para que um plasma térmico esteja em ETL são (CHEN, 1984):

- as diferentes espécies que constituem o plasma obedecem uma distribuição maxwelliana de energia;
- as colisões são o mecanismo dominante na excitação das espécies (distribuição de Boltzmann) e a ionização segue a equação de Saha;
- as variações espaciais das propriedades do plasma são suficientemente pequenas, de maneira que as partículas migratórias entre as regiões, têm tempo suficiente para obter o equilíbrio.

Conforme ECKERT; PFENDER (1967), o termo plasma térmico é empregado para descrever os gases que se apresentam parcialmente ionizados, quando aquecidos a altas temperaturas (entre 5000 e 50000 K), em pressões próximas à atmosférica. Em geral, são produzidos por descargas elétricas e se caracterizam pela alta densidade e pela proximidade entre as temperaturas dos elétrons e das partículas pesadas, isto é, o estado termodinâmico do plasma se aproxima do equilíbrio, ou mais precisamente, do equilíbrio termodinâmico local (ETL) (BOULOS, 1991).

Certas características típicas dos plasmas térmicos os diferenciam de um gás comum (ECKERT; PFENDER, 1967):

- a condutividade elétrica, que praticamente inexistente num gás comum, se apresenta no plasma como uma função da temperatura;
- a composição do plasma térmico (elétrons, íons e partículas neutras) é também função da temperatura, assim como suas propriedades térmicas e de transporte;
- a condutividade térmica do plasma também é função da temperatura, podendo apresentar valores bastante superiores ao do mesmo gás na temperatura ambiente;
- prevalece a quase neutralidade no plasma (equilíbrio entre as cargas negativas e positivas). Esta característica não é válida na região de contato entre o plasma e a parede do recipiente que o confina (região em que o plasma é denominado *plasma sheath*), cuja dimensão é da ordem de um comprimento de Debye: comprimento definido como o raio que descreve uma esfera de volume de dimensão mínima para garantir o fenômeno de quase neutralidade (MITCHNER; KRUGER, 1973).

Exemplos típicos de plasmas térmicos são aqueles gerados por: arcos voltáicos transferidos; tochas de plasma de arcos não transferidos; descargas induzidas por rádio freqüência (RF).

3.4 Geração de plasma térmico

3.4.1 Métodos de geração

Conforme apresentado, o plasma térmico pode ser produzido através do fornecimento de energia térmica ou elétrica a certa quantidade de gás, o que resulta no seu aquecimento e ionização provocada pela liberação de elétrons dos átomos ou moléculas. Diversas técnicas são empregadas para promover tais mecanismos, sendo que uma das mais utilizadas é baseada na interação entre o gás a ser ionizado e arcos elétricos de alta intensidade: os elétrons da corrente colidem com os constituintes do gás e o processo gera um número adequado de portadores de

carga elétrica, tornando assim o gás condutor (BOULOS, 1991; FAUCHAIS; VARDELLE, 1997).

O método de descargas de rádio freqüência e o método de passagem de ondas eletromagnéticas (*plasma de microondas*) não serão apresentados neste projeto de pesquisa, mas encontram-se revisados em excelentes textos, como por exemplo: BOULOS; FAUCHAIS; PFENDER, 1994; METAXAS, 1996.

Os arcos elétricos, gerados por correntes contínuas (CC), das tochas de plasma abordadas neste trabalho, são arcos de alta intensidade que representam um dos modos de descargas elétricas em gases (KLINGER, 2002). Portanto, para melhor compreensão das características dos arcos elétricos, na seqüência são apresentadas: uma breve descrição de alguns aspectos de descargas elétricas em gases; as características fenomenológicas gerais dos arcos de alta intensidade.

3.4.2 Descargas elétricas em gases

Um campo elétrico suficientemente intenso aplicado entre dois eletrodos (catodo e anodo) num meio gasoso, pode provocar uma ruptura elétrica: o estabelecimento de um meio de condução eletrônica entre os eletrodos e, consequentemente, a transformação do gás isolante em plasma (gás condutor). A ruptura elétrica depende da: tensão e distância entre eletrodos; geometria dos eletrodos; tipo e potencial de ionização do gás; pressão, temperatura e umidade do gás; intensidade e frequência do campo elétrico aplicado (ANGELES, 2003). Quando a ruptura ocorre, dependendo da característica da tensão *versus* corrente (V x I) da fonte de energia, determinado modo de descarga pode ser produzido (Figura - 3.1). Em cada modo de descarga é produzido um plasma com certo grau de condutividade elétrica e com propriedades termodinâmicas e de transporte características.

Figura – 3.1: Modos de descarga elétrica em corrente contínua (CC). Pressão: 0,1 kPa (ANGELES, 2003)

Observações: o comportamento apresentado na figura 3.1 refere-se ao de um gás a baixa pressão; se o gás estiver a pressões mais altas, o comportamento é semelhante variando os valores de corrente e tensão.

A descarga modo *arco elétrico* encontra-se na região de correntes maiores que 1A e embora seu comportamento ainda não seja completamente conhecido, apresenta características típicas em relação aos outros modos (BUSSOLINI, 2000; ANGELES, 2003).

A título de ilustração, em comparação à descarga modo *luminescente normal* (*normal glow*), a descarga modo *arco elétrico* possui as seguintes características peculiares (ANGELES, 2003; VICENTE, 1985):

- baixa queda do potencial no catodo: no arco, a queda de potencial próxima ao catodo varia de 5 a 15 V, enquanto no modo luminescente (glow) excede a 100 V;

- constrição (pinch): o arco tende a se auto-confinar;

- alta densidade de corrente: na coluna do arco, a densidade de corrente pode chegar a valores superiores a 100 A/cm² sendo que o modo glow não ultrapassa a 10^{-2} A/cm². No catodo, a densidade de corrente é da ordem de 10^{6} A/cm² e a densidade de fluxo de calor para o catodo é da ordem de $10^{6} - 10^{7}$ W/cm², o que requer especial atenção para a integridade dos eletrodos;

- luminosidade da coluna: maior luminosidade na coluna da descarga modo arco do que no modo glow.

No modo arco elétrico o catodo, dependendo da sua natureza, pode apresentar emissão termoiônica ou emissão de campo, o que é descrito em item posterior. Salienta-se também que na região do modo arco se distingue duas sub-regiões: a região de arco de *plasma frio* em que a temperatura (T_g) das partículas pesadas (átomos, moléculas, íons) é bem menor do que a temperatura (T_e) dos elétrons; a região de arco de *plasma térmico* em que as temperaturas dos elétrons e das partículas pesadas são muito próximas (figura 3.2).

Figura 3.2 – Comportamento das temperaturas dos elétrons (T_e) e das partículas pesadas (T_g) em um plasma de arco em função da pressão (VICENTE, 1985).

3.4.3 Características dos arcos de alta intensidade

A maioria das tochas de plasma, assim como as modeladas neste trabalho, operam na região dos arcos de alta intensidade que são definidos como descargas elétricas com correntes (CC) superiores a 50A e pressões maiores que 10 kPa. Nos arcos elétricos de alta intensidade verificam-se três zonas distintas: a zona próxima ao anodo (zona anódica), a coluna do arco e a zona próxima ao catodo (zona catódica). As zonas próximas aos eletrodos são caracterizadas pela alta intensidade do campo elétrico, altos gradientes de temperatura e de potencial elétrico e também por efeitos magneto-hidrodinâmicos significativos que podem também afetar o comportamento da coluna do arco (BIANCHINI, 2000). Essas três zonas podem ser facilmente identificadas através da distribuição de potencial (tensão) ao longo do arco, esquematizada na figura 3.3: a primeira (I) corresponde à zona do anodo que apresenta uma queda de tensão anódica (U_a) próxima ao anodo e se estende por

um comprimento ($L_a \sim 10^{-6}m$); a segunda (*II*) corresponde à coluna do arco (coluna de plasma) com uma queda de tensão (U_n) ao longo da distância (L_n); a terceira (*III*) corresponde à zona do catodo com uma queda de tensão catódica (U_c) e se estende por uma distância ($L_c \sim 10^{-6}m$).

De uma maneira geral, as quedas catódicas e anódicas podem ser explicadas pelo acúmulo de cargas próximas aos eletrodos e dependem significativamente do gás de trabalho (gás plasmogênico) e do material dos eletrodos. Para exemplificar: arcos com correntes maiores que 50A, tendo o argônio como gás plasmogênico, catodo de

tungstênio e anodo de cobre, apresentam queda catódica de aproximadamente 10V e queda anódica com variação de 1V a 7V (VICENTE, 1985).

O catodo atua como um emissor de elétrons, produzindo um fluxo de corrente através do plasma. Existem duas teorias para explicar o fenômeno de emissão eletrônica do catodo: emissão termoiônica, devido à alta temperatura da superfície do catodo; emissão de campo, devido à presença de intenso campo elétrico próximo ao catodo. A emissão termoiônica é aplicada para os chamados *catodos quentes*: catodos de materiais de alto ponto de fusão (exemplo: tungstênio), e a emissão de campo para os chamados *catodos frios*: catodos de baixo ponto de fusão (exemplo: cobre) (KLINGER, 2002). Neste trabalho, os catodos são quentes e, portanto, a emissão de campo não é abordada.

A emissão termoiônica, basicamente, é função da temperatura da superfície e do material do catodo. O modo pelo qual ocorre o aquecimento do catodo pode ser assim explicado: elétrons liberados inicialmente (quando se dá a ignição do arco) são acelerados devido à queda catódica, adquirindo energia cinética suficiente para ionizar, por colisões, átomos neutros. Os íons formados são acelerados em direção ao catodo e transferem energia para o mesmo, na forma de calor, dando assim continuidade ao processo de emissão. A densidade de corrente da superfície emissora (emissão termoiônica) comumente é obtida pela *equação de Richardson-Dushmann* (BAUDRY, 2003).

O anodo tem a função de coletar elétrons da coluna e assim dar continuidade ao fluxo de corrente através do plasma. O anodo sempre é um *eletrodo frio*, geralmente de cobre, e tem sua temperatura controlada por um sistema de resfriamento por convecção forçada, para reduzir a evaporação do material na região de ligação com o arco elétrico (BAUDRY, 2003).

Uma outra característica importante das zonas catódica e anódica é a inexistência de equilíbrio termodinâmico local (VICENTE, 1985), o que, obviamente, dificulta muito a modelagem das mesmas.

A interação entre os efeitos do campo eletromagnético do arco e os efeitos fluidodinâmicos do escoamento pode gerar variações espaciais e temporais (instabilidades) na coluna do arco e também nas zonas de ligação do mesmo com os eletrodos (BAUDRY, 2003; KLINGER, 2002).

3.4.4 Tochas de plasma térmico

A interação entre o gás de trabalho e arcos elétricos de alta intensidade é realizada através das denominadas tochas de plasma.

Embora exista uma grande diversidade de tochas em função de suas aplicações específicas, o princípio operacional é o mesmo e está fundamentado na convecção forçada do gás através da coluna do arco elétrico, estabelecida entre os eletrodos (catodo e anodo), em corrente contínua ou alternada. Na interação, o gás é aquecido e ionizado, deixando a tocha na forma de jato de plasma (SCOTT et al., 1989; MURPHY; KOVITYA, 1993).

A unidade de processo esquematizada na figura 3.4 consiste basicamente de: tocha, fonte de energia, unidade de controle, sistema de suprimento de gás, sistema de suprimento de água para arrefecimento da tocha, transformador, retificador de campo magnético e sistemas de mecanização.

Figura 3.4 - Esquema da unidade de processo.

As tochas a arco elétrico podem ser classificadas sob diferentes aspectos (BOULOS; FAUCHAIS; PFENDER, 1994), sendo a mais comum, em relação ao tipo de arco: arco transferido e arco não transferido (Figuras 3.5 e 3.6).

Na tocha a arco transferido (muito utilizada em processos de soldagem, corte e fusão de metais) o circuito elétrico se fecha entre o catodo (na tocha) e a peça, ou material, a ser processado (que neste caso serve como anodo). Já na tocha a arco não transferido (muito utilizada para aquecimento de gases e deposição de materiais), o circuito elétrico se fecha entre os eletrodos (catodo e anodo) dentro da própria tocha, e o jato de plasma não conduz corrente ao exterior da mesma.

Figura 3.5 – Representação esquemática de uma tocha de plasma de arco transferido.

Figura 3.6 – Representação esquemática de uma tocha de plasma de arco não transferido.

A maior parte das tochas de arco transferido opera com altas correntes elétricas e baixas vazões de gás, enquanto que as tochas de arco não transferido operam com altas tensões elétricas e grandes vazões de gás.

Algumas características operacionais das tochas utilizadas em reatores a plasma térmico são comparadas na tabela 3.1.

A maioria dos gases industriais pode ser utilizada na geração de plasma térmico (argônio, nitrogênio, ar, hidrogênio, amônia, cloro, oxigênio, monóxido de carbono e muitos outros), o que torna a tecnologia do plasma muito flexível (SZENTE et al., 2000).

	Arco não transferido	Arco transferido
Consumo de gás	Alto	Baixo
Tipo de gás	Reativo	Inerte (reativo)
Eficiência da tocha	80%	Alto (95%)
Nível de potência	<30 MW	<40 MW
Corrente	<2000 A	<100000 A
Tensão	<6000 V	<1000 V
Recuperação de energia	Desejável	Desnecessária

Tabela 3.1: Características operacionais de tochas de arco transferido e de arco nãotransferido (SCHRÖTER, 2001).
3.5 Aplicações tecnológicas

Devido às suas características, o plasma térmico tem sido empregado em diversas aplicações relacionadas à metalurgia, meio-ambiente e materiais avançados, entre elas podem ser destacadas (BOULOS, 1991), (FAUCHAIS; VARDELLE, 1997), (SZENTE et al., 2000): corte de metais; soldagem; produção de aços especiais e de metais refratários; reciclagem de alumínio; esferoidização de partículas; deposição de partículas em substratos; deposição de vapor químico; síntese de pó fino; fusão de vidro; aquecimento de produtos; secagem; tratamento de lixo hospitalar; destruição de materiais tóxicos; inertização de materiais contaminados; tratamento de lodo galvânico.

4 REVISÃO DA LITERATURA DE SIMULAÇÃO NUMÉRICA DE TOCHAS DE PLASMA TÉRMICO

4.1 Modelos numéricos de tochas de plasma térmico

Conforme Jackson (1983), o comportamento de um sistema que combina campos eletromagnéticos e campos de escoamento de fluidos, líquidos ou gases condutores (incluindo os plasmas térmicos), é na realidade um complexo sistema acoplado de matéria e de campos: os campos eletromagnéticos atuam não somente sobre os elétrons, mas também sobre átomos ionizados, produzindo efeitos dinâmicos que incluem também o movimento global do próprio meio fluido. Por sua vez, o movimento de massa produz modificações nos campos eletromagnéticos.

Devido aos diferentes tipos de sistemas de plasma (diferentes características fenomenológicas e variados campos de interesse/aplicação), a literatura (CHEN, 1995) apresenta diversos métodos de abordagem, que podem ser subdivididos, de maneira ampla, em: descrições microscópicas (ou cinéticas) e descrições macroscópicas (ou fluidas).

4.1.1 Descrições microscópicas

As descrições microscópicas são baseadas na teoria cinética dos gases e, em geral, derivadas da equação cinética (ou de transporte) de Boltzmann. Elas fornecem a dependência dos fluxos sobre as várias forças e correspondentes coeficientes de transporte. Observa-se que esses procedimentos para casos gerais são muito complexos. Embora tais descrições não façam parte do escopo deste trabalho, é recomendável o conhecimento básico das mesmas devido à sua importância para a compreensão de vários aspectos fenomenológicos. Entre as excelentes obras que tratam do assunto, destaca-se: SPITZER (1969), SAMARAS (1971), MITCHNER; KRUGER (1973), CHEN (1984).

4.1.2 Modelagem macroscópica

As equações relativas à modelagem macroscópica podem ser obtidas através de vários métodos com diferentes graus de acurácia (SAMARAS, 1971). Esses métodos podem ser subdivididos em dois grupos:

 a) derivados da equação geral de transporte de Boltzmann (métodos indiretos): as equações macroscópicas são obtidas através da integração das equações microscópicas (MAECKER, 1964; SPITZER, 1969; SAMARAS, 1971; KETTANI; HOYAUX, 1973).

b) baseados nas leis de conservação (métodos macroscópicos diretos):

b.1) a magneto-hidrodinâmica (MHD) é a ciência que acopla os conceitos do eletromagnetismo com os da dinâmica dos fluidos. Desta maneira, ambos os grupos de equações são usados: as equações da teoria de campo eletromagnético (equações de Maxwell) e as equações de escoamento dadas pela conservação da massa, da quantidade de movimento (equações de Navier-Stokes) e da energia. Este conjunto de sistemas de equações é usualmente referido como equações MHD (COWLING, 1968; SAMARAS, 1971; KETTANI; HOYAUX, 1973).

O plasma é assumido como sendo um meio contínuo presente num campo eletromagnético. Este meio pode ser composto por importantes espécies distintas, algumas das quais podem ser eletricamente carregadas de tal forma que correntes podem fluir através delas. Como resultado da condutividade elétrica do meio, o campo eletromagnético produzirá forças de campo e, também, provocará trocas de energia entre o campo e o fluido.

Para o tratamento do escoamento de plasma térmico, algumas hipóteses simplificadoras podem ser adotadas e o modelo resultante é referido como *aproximação MHD* (KETTANI; HOYAUX, 1973): nas equações de Maxwell o deslocamento de corrente é desprezível comparado à condução de corrente; o fluxo de corrente devido ao transporte de "excesso" de carga é desprezível comparado à condução de corrente; a força eletrostática de campo é desprezível na equação do movimento. b.2) a teoria dinâmica do plasma térmico é baseada na termodinâmica clássica e na termodinâmica irreversível (principalmente com o auxílio das relações recíprocas de Onsager) e permite a descrição correta das relações entre fluxos e forças (internas e externas) para os vários componentes do plasma térmico (elétrons, íons e partículas neutras), numa escala macroscópica (MAECKER, 1964; BOULOS; FAUCHAIS; PFENDER, 1994). As propriedades de transporte devem ser calculadas a partir de considerações cinéticas adicionais. Apesar da sua boa acurácia, seu emprego deve ser previamente avaliado devido à sua complexidade.

Este trabalho é baseado na abordagem macroscópica do modelo *aproximação MHD*, descrito brevemente no item (b.1), e as equações e simplificações são apresentadas em item subsequente. Na sequência, são abordados os modelos macroscópicos de arcos de plasma propostos na literatura.

4.2 Alguns modelos de arcos de plasma propostos na literatura

A modelagem e o estudo numérico dos arcos de plasma tiveram um grande avanço nos últimos anos devido ao aumento da capacidade de processamento dos computadores e, também, devido a uma melhor compreensão dos mecanismos que regem o comportamento do arco (GLEIZES, et al., 2005).

Diversas classificações podem ser adotadas para os modelos descritos na literatura, que vão desde:

- o número de dimensões espaciais do sistema;

- considerar, ou não, a variação das propriedades com o tempo;

- considerar, ou não, a turbulência (BAUDRY, 2003; KLINGER, 2002). Nota-se que a turbulência nos modelos de arco elétrico continua sendo um assunto de discussão, pois o número de Reynolds não é um critério geralmente considerado suficiente para caracterizar a transição laminar / turbulento dos arcos (YAS'KO, 1997; HUANG et al., 1995). As instabilidades do arco podem estar relacionadas com a força de Lorentz (DELALONDRE et al., 1994), mas também com os fenômenos térmicos e/ou elétricos (PODENOK et al., 1994). Alguns modelos supõem que a zona quente permanece laminar, enquanto outros consideram que a zona fria torna-se turbulenta

após o pé do arco, e que essa turbulência pode também induzir turbulência na coluna do arco (GLEIZES, et al., 2005).

Entre as classificações de modelos citadas, a mais adequada ao escopo deste trabalho é a classificação baseada no número de dimensões espaciais e, por esse motivo, a apresentação de alguns dos principais modelos de arco de plasma é realizada com base na referida. Também devido ao seu escopo, este trabalho limitase a apresentar apenas os modelos de arcos gerados por tochas que operam em corrente contínua (CC).

Com respeito às simplificações de modelagem, a maioria dos trabalhos da literatura adota as seguintes:

 o plasma (elétrons; partículas pesadas) obedece ao comportamento dos fluidos e, consequentemente, pode ser descrito através das equações de conservação da fluidodinâmica;

- as funções de distribuição de velocidade e de energia das partículas são maxwellianas, o que permite definir uma energia cinética média e, portanto, uma temperatura cinética. O equilíbrio térmico prevalece no fluido e a hipótese de equilíbrio termodinâmico local (E.T.L.) é empregada. Considerar uma temperatura única para todas as espécies é justificado pela eficiente transferência de energia cinética em colisões elásticas.

Observa-se que alguns modelos refinam sua descrição usando duas temperaturas: uma para os elétrons e outra para as partículas pesadas (átomos, moléculas, íons). A vantagem dos modelos de duas temperaturas é que podem refletir as diferenças na composição de equilíbrio por acoplamento com um modelo de cinética química. Por outro lado, considerar duas temperaturas aumenta significativamente a complexidade de modelagem e a solução numérica requer maior tempo computacional.

Constata-se também que poucos trabalhos descritos na literatura apresentam modelos com a possibilidade de simular o turbilhonamento (swirl).

Na seqüência, apresenta-se uma descrição superficial dos modelos 0D e 1D, e uma descrição um pouco mais abrangente dos modelos 2D, pois são os que efetivamente mais interessam à abordagem deste trabalho. Com o intuito de ampliar o conhecimento, também são apresentados alguns modelos 3D.

4.2.1 Modelos 0D

Os modelos 0D permitem a obtenção de uma representação macroscópica dos arcos, que são considerados como parte de um circuito elétrico, e visam calcular a impedância elétrica. Esses modelos, portanto, não apresentam informações sobre as propriedades locais e instantâneas. Eles são utilizados principalmente para arcos de disjuntores. Para esses modelos, as propriedades locais são médias e as equações governantes não apresentam os termos diferenciais das variáveis de espaço, e é por isso que são denominados modelo 0D (BAUDRY, 2003; BUSSOLINI, 2000).

4.2.2 Modelos 1D

Os modelos 1D são utilizados para calcular o campo de temperatura do arco, considerando as seguintes hipóteses simplificadoras:

- plasma em ETL;

- regime (estado) estacionário;
- simetria cilíndrica do plasma;
- pressão uniforme;
- campo elétrico uniforme;

- escoamento e difusão de partículas elementares desprezível.

Eles representam, de maneira suficientemente adequada, as condições da coluna de um arco estabilizado por paredes. A corrente elétrica e o raio de estabilização são conhecidos e impostos. Os modelos 1D possibilitam o cálculo do valor do campo elétrico e do perfil radial de temperatura T(r), através da solução da lei de Ohm e da

equação da conservação de energia. Quando o termo de perda por radiação é desprezado a equação fica reduzida à conhecida *Equação de Elenbaas-Heller* (BAUDRY, 2003).

Um dos modelos baseado na equação de Elenbaas-Heller é conhecido como "modelo de canal" e utiliza o princípio de mínimo de Steenbeck (BAUDRY, 2003) para calcular o raio de condução do arco. Este princípio estabelece que uma descarga elétrica "dá preferência" à configuração que implica numa queda de tensão mínima. Nesse modelo, considera-se que a condutividade elétrica é constante em um canal de arco de raio r_c . A condutividade térmica pode apresentar dois valores diferentes que correspondem ao domínio interior e ao domínio exterior do canal de condução. A dificuldade é determinar o raio r_c do canal condução. O valor "escolhido" é aquele que conduz a um valor mínimo do campo elétrico *E*.

No caso geral, o sistema formado pelas referidas equações não apresenta dificuldade de solução numérica quando são conhecidas as leis de variação dos parâmetros em função da temperatura para uma dada pressão. Apesar deste tipo de modelo ser limitado às geometrias simples, permite estudar a influência de certos fenômenos sobre a distribuição de temperatura do arco, em especial os fenômenos de condução, ionização e radiação.

Os principais resultados obtidos através dos modelos 1D são (BAUDRY, 2003):

- a condutividade térmica do gás influencia significativamente o perfil radial de temperatura do arco;

- a temperatura aumenta com a corrente do arco;

- para uma dada corrente e um determinado diâmetro, o campo elétrico depende fortemente da natureza do gás;

 - a presença de vapores metálicos (assumindo no modelo uma distribuição uniforme do vapor e alterando as propriedades de transporte) causa uma diminuição da temperatura no centro do arco. Isto é explicado, em parte, por um aumento das perdas radiativas e, em parte, por um aumento do raio de condução, que tende a diminuir a densidade eletrônica.

Esses resultados mostram boa concordância com os resultados experimentais obtidos nos arcos (BAUDRY, 2003; KLINGER, 2002).

4.2.3 Modelos 2D e 3D

Embora o escopo deste trabalho seja a modelagem de tochas de arco não transferido, foram incluídos trabalhos de arcos transferidos por serem os precursores na modelagem das tochas e também porque serviram e continuam servindo tanto como base para a concepção da modelagem de tochas de arco não transferido, como para comparação/validação de resultados.

Com o objetivo de proporcionar uma visão geral e cronológica da evolução da modelagem em geometria 2D e 3D das tochas de plasma (arcos transferidos e arcos não transferidos), foi elaborado um quadro comparativo (Tabela 4.1) com alguns dos principais trabalhos propostos na literatura.

O quadro apresenta para cada trabalho: sua posição QC no mesmo; as referências bibliográficas (autor(es) e ano de publicação); principais hipóteses simplificadoras e condições de contorno dos modelos; domínio de estudo; informações adicionais dos modelos e métodos numéricos; principais condições operacionais; principais conclusões.

QC-1 - Autores/Ano: Hsu; Etemadi; Pfender, 1983.			
Principais Hipóteses Simplificadoras/ Condições de Contorno do Modelo	Domínio de Estudo do Modelo	Demais Informações do Modelo/ Método Numérico	Principais Condições Operacionais Empregadas
 ETL; Arco estacionário em relação à geometria cilíndrica; (2D); Escoamento laminar; Densidade de corrente sobre o catodo e temperatura do anodo: condições impostas (baseadas nos resultados de medições espectrométricas). 	- Arco livre (tipo de tocha: arco transferido).	 O Modelo 2D, MHD empregado, foi baseado na tese do autor Hsu (1982); Método numérico: MDF; Obs: os autores apresentam medições espectrométricas nesse mesmo artigo. 	 Arco de 1 e 2 cm; Argônio à pressão atmosférica; Injeção axial; Intensidade de corrente: 100 a 300 A; Catodo cônico.

Principais Conclusões do Estudo:

- Os campos de temperatura da região do arco comparados com resultados de medições espectrométricas apresentam boa concordância: a distribuição de temperatura tem boa concordância com os resultados experimentais apenas enquanto a ponta do catodo permanece intacta. Conforme a ponta do catodo deteriora, aumenta o desvio entre resultados medidos e calculados;

- Resultados muito sensíveis à condição de contorno imposta de densidade de corrente próxima ao catodo;

- Resultados pouco sensíveis à condição de contorno imposta de temperatura do anodo.

QC-2 - Autores/Ano: Kovitya; Cram, 1986.			
Principais Hipóteses Simplificadoras/ Condições de Contorno do Modelo	Domínio de Estudo do Modelo	Demais Informações do Modelo/ Método Numérico	Principais Condições Operacionais Empregadas
 ETL; Arco estacionário em relação à geometria cilíndrica; (2D); Escoamento laminar. 	- Arco livre (tipo de tocha: arco transferido).	- Modelo 2D, MHD; - Método numérico: relaxação-tempo (sem mais informações).	 Arco de 2 a 5 mm; Argônio; Injeção axial; Intensidade de corrente: 100 a 200 A; Vazão de gás: 0 a 30 I. min⁻¹; Catodo cilíndrico.

Principais Conclusões do Estudo:

- Os perfis de temperatura no jato apresentam boa concordância em relação aos dados experimentais da literatura, mas na região próxima ao catodo a concordância é ruim;

- Os perfis de temperatura são pouco afetados pelas vazões de gás empregadas em aplicações práticas.

QC-3 - Autores/Ano: Scott; Kovitya; Haddad, 1989.			
Principais Hipóteses Simplificadoras/ Condições de Contorno do Modelo	Domínio de Estudo do Modelo	Demais Informações do Modelo/ Método Numérico	Principais Condições Operacionais Empregadas
 ETL; Arco estacionário em relação à geometria cilíndrica; (2D); Escoamento turbulento. 	 Regiões: injeção do gás, arco, jato de plasma; tipo de tocha: arco não transferido. 	 Modelo 2D, MHD; Método numérico: MVF (Patankar, 1980); Modelo de turbulência: <i>K-ε.</i> 	 Argônio (gás de plasma); Argônio (gás ambiente); Vazão de gás: 10 a 50 l. min⁻¹; Intensidade de corrente: 100 a 200 A; Inclui uma componente de turbilhonamento (<i>swirl</i>); Catodo cônico com ponta arredondada de tungstênio; Anodo-bocal de cobre.

Principais Conclusões do Estudo:

- Resultados da simulação comparados com resultados experimentais: apresentam diferenças significativas (os autores atribuem isso às hipóteses simplificadoras adotadas e salientam as dificuldades de modelagem dos fenômenos relativos ao eletrodo).

QC-4 - Autores/Ano: Delalondre; Simonin, 1990.				
Principais Hipóteses Simplificadoras/ Condições de Contorno do Modelo	Domínio de Estudo do Modelo	Demais Informações do Modelo/ Método Numérico	Principais Condições Operacionais Empregadas	
 ETL; Arco estacionário em relação à geometria cilíndrica; (2D); Escoamento laminar. 	- Arco livre; região da bainha do catodo. (tipo de tocha: arco transferido)	 Modelo: combina um modelo 2D, MHD da coluna do arco com um modelo 1D de não equilíbrio da bainha do catodo, acoplado com a determinação da transferência de calor no catodo: resolve as equações de conservação para obter os perfis de temperatura das colunas dos arcos, sem a necessidade de adotar as condições de contorno do catodo; Método numérico: MDF (código Melodie: desenvolvido no Laboratoire National d'Hydraulique E.D.F. – Chatou, France). 	 Arcos de 1 a 5,06 cm (comprimento); Argônio à pressão atmosférica; Injeção axial; Intensidade de corrente: 200 a 300 A; Débito de 30 a 60 l.min⁻¹; Catodo cônico (de tungstênio). 	

Principais Conclusões do Estudo:

- Os resultados numéricos foram comparados com os resultados experimentais de Hsu et al. (1983) e apresentaram boa concordância.

QC-5 - Autores/Ano: Westhoff; Szekely, 1991.				
Principais Hipóteses Simplificadoras/ Condições de Contorno do Modelo	Domínio de Estudo do Modelo	Demais Informações do Modelo/ Método Numérico	Principais Condições Operacionais Empregadas	
 ETL; Arco estacionário em relação à geometria cilíndrica; (2D); Escoamento laminar; Densidade de corrente imposta na ponta do catodo. 	- Região do arco elétrico; jato livre. (tipo de tocha: arco não transferido)	 Modelo 2D, MHD, considerando o turbilhonamento (<i>swirl</i>); Método numérico: MVF (implementado no código 2/E/FIX). 	 Argônio; Injeção em vórtice (gera turbilhonamento- <i>swirl</i>); Intensidade de corrente: 250, 500 e 750 A; Vazão de gás: 9,83 e13,8 l.min⁻¹; Pressão atmosférica; Catodo cônico de tungstênio; Anodo de cobre; Obs: o jato de plasma de argônio sai da tocha para um ambiente controlado de argônio, com o objetivo de eliminar a mistura de gases. 	

Principais Conclusões do Estudo:

 Os perfis de temperatura obtidos para o jato apresentam boa concordância com as medições de Dilawari et al. (1990) (realizadas no Idaho National Engineering Laboratory – INEL);

- As forças eletromagnéticas têm forte influência sobre a temperatura e a velocidade do jato no bocal de saída;

- O turbilhonamento (*swirl*) reduz a densidade de corrente máxima no anodo e o comprimento do arco. A tensão diminui com o aumento de intensidade do turbilhonamento;

- Os resultados mostram que existe um compromisso entre a intensidade de corrente do arco, a intensidade do turbilhonamento e a vazão de gás;

- O turbilhonamento (*swirl*) afeta o comportamento do arco e os perfis de temperatura e velocidade do jato de plasma livre.

QC-6 - Autores/Ano: Lowke; Kovitya; Schmidt, 1992.			
Principais Hipóteses Simplificadoras/ Condições de Contorno do Modelo	Domínio de Estudo do Modelo	Demais Informações do Modelo/ Método Numérico	Principais Condições Operacionais Empregadas
 ETL; Arco estacionário em relação à geometria cilíndrica; (2D); Escoamento laminar; O catodo é considerado um emissor termoiônico; Despreza o efeito de não equilíbrio da bainha do catodo; Requer as distribuições de temperatura das superfícies, inclusive do catodo, nas condições de contorno de entrada (obtidas experimentalmente). 	- Arco livre; catodo. (tipo de tocha: arco transferido)	 Modelo 2D, MHD: resolve as eqs. de conserv.para obter os perfis de temperatura das colunas dos arcos, incluindo o catodo no domínio da solução da eq. da conserv. da corrente – a vantagem é que os perfis de densidade de corrente podem ser calculados na superfície do catodo, enquanto que em trabalhos anteriores (ex: Hsu et al., 1983) a densidade de corrente é um parâmetro de entrada requerido. Obs: este modelo é similar ao de Delalondre e Simonin (1990), que também trata do sistema combinado arco de plasma- catodo; Método numérico: MVF (Patankar, 1980). 	 Arco de 5mm; Argônio à pressão atmosférica Injeção axial; Intensidade de corrente: 200 A; Catodo cônico (60⁰) com ponta plana de raio 0,1mm.

Principais Conclusões do Estudo:

- Os perfis de temperatura obtidos estão em boa concordância com os resultados experimentais de Hsu et al. (1983), Haddad; Farmer (1984) e Vervisch et al. (1990);

- O raio da ponta do catodo apresenta forte influência sobre as densidades de corrente;

- A densidade de corrente é pouco sensível à temperatura do catodo.

QC-7 - Autores/Ano: Zhu; Lowke; Morrow, 1992.				
Principais Hipóteses Simplificadoras/ Condições de Contorno do Modelo	Domínio de Estudo do Modelo	Demais Informações do Modelo/ Método Numérico	Principais Condições Operacionais Empregadas	
 ETL; Arco estacionário em relação à geometria cilíndrica; (2D); Escoamento laminar; O catodo é considerado um emissor termoiônico. 	 Arco livre; região catódica (catodo e bainha do catodo). (tipo de tocha: arco transferido) 	 Modelo: combina o modelo 2D, MHD da coluna do arco de Lowke et al. (1992) com o modelo 1D de não equilíbrio da bainha do catodo de Morrow; Lowke (1992). Assim, permite a predição das propriedades do arco e do catodo através de um tratamento unificado, sem a necessidade de assumir as distribuições de temperatura e de densidade de corrente na superfície do catodo (são obtidas através do cálculo), bem como a resistência efetiva da região da bainha de plasma adjacente ao catodo; Mét. numérico: MVF(Patankar, 1980). 	 Arco de 5mm; Argônio à pressão atmosférica; Injeção axial; Intensidade de corrente: 200 A; Catodo cônico (60°) com ponta arredondada de raio 0,3mm. 	

Principais Conclusões do Estudo:

- Os resultados obtidos estão em boa concordância com as medições das temperaturas da coluna do arco e da superfície do catodo realizadas por Haddad; Farmer (1984);

- Obs: o grau de acurácia dos resultados obtidos com o método de Zhu et al. (1992) não é significativamente maior do que aqueles obtidos pelo método de Lowke et al. (1982). Isso pode ser explicado pelo fato de que o efeito da região da bainha próxima ao catodo (região muito fina: ~ 0,02mm) é muito pequeno. A principal vantagem do método de Zhu em relação ao de Lowke, é que por levar em consideração a região da bainha, não requer o conhecimento prévio da distribuição de temperatura na superfície do catodo.

QC-8 - Autores/Ano: Murphy; Kovitya, 1993.			
Principais Hipóteses Simplificadoras/ Condições de Contorno do Modelo	Domínio de Estudo do Modelo	Demais Informações do Modelo/ Método Numérico	Principais Condições Operacionais Empregadas
 ETL; Arco estacionário em relação à geometria cilíndrica; (2D); Escoamento turbulento. 	 Regiões: injeção do gás; arco; jato de plasma. (tipo de tocha: arco não transferido) 	 Modelo 2D, MHD; Método numérico: MVF (Patankar, 1980); Modelo de turbulência: <i>K-ε;</i> Obs.1: o modelo proposto neste trabalho é uma extensão do modelo de Scott; Kovitya; Haddad (1989); Obs.2: os autores apresentam medições de distribuição de temperatura através de espalhamento de laser nesse mesmo artigo. 	 Arco de 1,5 a 2,5 mm; Argônio à pressão atmosférica; Catodo cônico de tungstênio; Anodo-bocal de cobre (diâmetro interno: 6mm); O catodo e o anodo são resfriados com água; Vazão de gás: 20 e 40 l. min⁻¹; Intensidade de corrente: 200 e 400 A; Inclui uma componente de turbilhonamento (<i>swirl</i>) para estabilizar o arco.

Principais Conclusões do Estudo:

- O rápido resfriamento do jato em contato com a atmosfera ambiente é bem simulado pelo modelo;

- As comparações com os dados experimentais mostram que o modelo pode ser usado para a determinação dos perfis de temperatura com acurácia suficiente para aplicações de engenharia.

QC-9 - Autores/Ano: Kaddani et al., 1995.			
Principais Hipóteses Simplificadoras/ Condições de Contorno do Modelo	Domínio de Estudo do Modelo	Demais Informações do Modelo/ Método Numérico	Principais Condições Operacionais Empregadas
- ETL; - Arco não estacionário; - (3D).	- Arco livre. (tipo de tocha: arco transferido)	- Modelo 3D, MHD.	 Arco de 1 cm; Argônio; Intensidade de corrente: 200 e 300 A.

Principais Conclusões do Estudo:

- Os resultados obtidos com o modelo 3D foram comparados com resultados de simulações 2D e com resultados experimentais da literatura, apresentando boa concordância com ambos;

- A distribuição de densidade de corrente próxima ao catodo é um dos parâmetros críticos que podem modificar significativamente as distribuições de quantidades médias e também afetar a estabilidade do arco.

- Obs.: com base em ampla pesquisa bibliográfica, constata-se que este trabalho (Kaddani et al., 1995) foi o primeiro a apresentar um modelo 3D para simular uma tocha de arco transferido (o primeiro modelo 3D para tochas de arco não transferido foi publicado por Li; Chen em 2001 – vide posição *QC-14* desta tabela).

QC-10 - Autores/Ano: Chen; Han; Yu, 1997.			
Principais Hipóteses Simplificadoras/ Condições de Contorno do Modelo	Domínio de Estudo do Modelo	Demais Informações do Modelo/ Método Numérico	Principais Condições Operacionais Empregadas
 ETL; Arco estacionário em relação à geometria cilíndrica; (2D); Escoamentos: laminar e turbulento. 	 Região do arco elétrico; jato livre. (tipo de tocha: arco não transferido) 	 Modelo 2D, MHD; Método numérico: MVF (algoritmo SIMPLEC); Modelo de turbulência: <i>K-ε.</i> 	 Mistura com 2% de hidrogênio e 98% de argônio; Injeção em vórtice; Intensidade de corrente: 221 A; Vazão de gás: 2,1 m³.h⁻¹(para o caso laminar) e 8,84 m³.h⁻¹ (para o caso turbulento); Pressão atmosférica.

Principais Conclusões do Estudo:

- Hidrogênio mais concentrado nas regiões quentes;

- A abordagem 2D foi considerada insuficiente para esse tipo de estudo e o modelo K- ε considerado controverso.

QC-11 - Autores/Ano: Favalli, 1997; Favalli; Szente, 1998.				
Principais Hipóteses Simplificadoras/ Condições de Contorno do Modelo	Domínio de Estudo do Modelo	Demais Informações do Modelo/ Método Numérico	Principais Condições Operacionais Empregadas	
- ETL;	- Região do arco elétrico:	- Modelo 2D, MHD;	- Argônio;	
- Arco estacionário em relação à	jato livre.	- Método numérico: MVF (Patankar,	- Pressão atmosférica;	
geometria cilindrica; - (2D):	arco não transferido –	- Modelo de	- Injeção axial;	
- Escoamentos: laminar e turbulento:	semelhante a tochas industriais	turbulência: K-ɛ.	- Intensidade de corrente: 100 A;	
- Perfil de densidade de corrente é uma	empregadas em processos de aspersão		- Vazão de gás: 20 I.min ⁻¹ ;	
condição imposta na ponta do catodo.	térmica (plasma spraying))		- Catodo cônico;	
			- Espaço anular (formado entre anodo e catodo) com espessura de 5,2mm;	
			- Comprimento do anodo:13mm.	

Principais Conclusões do Estudo:

- As temperaturas e velocidades obtidas na linha de centro da tocha foram comparadas com os resultados de simulações numéricas de Bauchire et al. (1995). A diferença máxima entre os resultados da velocidade axial é de 25%, enquanto que para a temperatura as diferenças são menores que 5%. Dentro da tocha a temperatura máxima é 21000 K e a velocidade máxima é: 260 m.s⁻¹;

- Rápida diminuição dos perfis de temperatura e velocidade dentro da tocha (provavelmente devido ao resfriamento dos eletrodos);

- Os efeitos da turbulência não foram significativos.

QC-12 - Autores/Ano: Freton et al., 1999.			
Principais Hipóteses Simplificadoras/ Condições de Contorno do Modelo	Domínio de Estudo do Modelo	Demais Informações do Modelo/ Método Numérico	Principais Condições Operacionais Empregadas
 ETL; Arco estacionário em relação à geometria cilíndrica; (2D); Escoamentos: laminar e turbulento; Perfil de densidade de corrente é uma condição imposta na ponta do catodo. 	- Região do arco elétrico; jato livre. (tipo de tocha: arco não transferido)	 Modelo 2D, MHD; Método numérico: MVF – utilizam o código comercial FLUENT; Modelo de turbulência: <i>K-ε.</i> 	 Argônio; Injeção axial; Intensidade de corrente:100 a 150 A; Vazão de gás: 5 a 30 l.min⁻¹; Pressão atmosférica; Diâmetro do basal do saída: 6

Principais Conclusões do Estudo:

- Os valores de temperatura e velocidade obtidos sobre o eixo de simetria da tocha são próximos aos valores experimentais, mas nas zonas periféricas as diferenças apresentadas são significativas (os autores acreditam que isso é causado pelas diferenças entre os efeitos reais de radiação e os previstos pelo modelo).

QC-13 - Autores/Ano: Freton; Gonzalez; Gleizes, 2000; Gonzalez; Freton; Gleizes, 2002.				
Principais Hipóteses Simplificadoras/ Condições de Contorno do Modelo	Domínio de Estudo do Modelo	Demais Informações do Modelo/ Método Numérico	Principais Condições Operacionais Empregadas	
- ETL;	- Comparação	- Modelo 3D, MHD;	- Argônio;	
	entre descrição			
- Arco estacionário;	2D e descrição	- Método numérico: MVE – utilizam o	- Injeção tangencial:	
- (3D);		código comercial	tangenolai,	
	- Tipo de tocha:	FLUENT.	- Intensidade de	
- Escoamento laminar;	arco transferido.		200 A;	
 Perfil de densidade de corrente é uma condição imposta na ponta do catodo. 			- Vazão de gás: 45 l.min ⁻¹ .	

Principais Conclusões do Estudo:

- A descrição axisimétrica foi considerada suficiente para representar um arco livre;

- A comparação dos modelos 2D e 3D de um arco transferido utilizou 3 injetores tangenciais de gás para o 3D e uma injeção axial anular para o 2D: não há diferença significativa no campo de temperatura para a região central do jato de plasma, mas na região periférica do jato as diferenças apresentadas do campo de temperatura são significativas (até 5000 K);

- O modelo 2D foi considerado suficiente para calcular a temperatura no eixo, mas para o cálculo da velocidade no eixo o modelo 3D é necessário.

QC-14 - Autores/Ano: Li; Chen, 2001; Li; Pfender; Chen, 2003.				
Principais Hipóteses Simplificadoras/ Condições de Contorno do Modelo	Domínio de Estudo do Modelo	Demais Informações do Modelo/ Método Numérico	Principais Condições Operacionais Empregadas	
 ETL; Arco estacionário e arco quase estacionário (através do <i>princípio mínimo</i> <i>de Steenbeck</i> a posição do arco é determinada); 3D; Escoamento turbulento 	 Região do arco elétrico; jato livre. (tipo de tocha: tocha de plasma de arco não transferido - corrente contínua (CC)) 	 Modelo 3D, MHD; Método numérico: MVF ; malha não ortogonal; Modelo de turbulência: <i>K-ε.</i> 	 Argônio; Intensidade de corrente: 200 a 800 A; Vazão de gás: 33,3 e 35 l.min⁻¹. 	

Principais Conclusões do Estudo:

 Os resultados do modelo 3D foram comparados com resultados de um modelo 2D. A modelagem 3D apresentou predições mais realistas de tensão e localização do arco;

- Os resultados foram comparados qualitativamente com observações experimentais e apresentaram boa concordância;

- Os efeitos de não-ETL próximos aos eletrodos devem ser considerados;

- Mais de 50% da potência total de entrada é consumida pelo sistema de resfriamento a água do anodo.

- O trabalho de Li; Chen (2001), foi o primeiro a apresentar um modelo 3D para simulação de tocha de plasma de arco não transferido.

QC-15 - Autor/Ano: Klinger, 2002.				
Principais Hipóteses Simplificadoras/ Condições de Contorno do Modelo	Domínio de Estudo do Modelo	Demais Informações do Modelo/ Método Numérico	Principais Condições Operacionais Empregadas	
 ETL; Arco estacionário e pseudo-estacionário; (3D); Escoamento turbulento. 	 Região do arco elétrico; jato livre; (tipo de tocha: tocha de plasma de arco não transferido - corrente contínua (CC), para uso em processos de aspersão térmica (plasma spraying)); Obs: foram realizadas simulações para duas configurações de tochas – uma tocha acadêmica de seção transversal retangular e uma tocha comercial Sulzer-MetcoF4. 	 Modelo 3D, MHD; Método numérico: MVF – implementação das equações do eletromagnetismo no código de solução de escoamentos NSMB (desenvolvido por um consórcio entre EPFL, KTH, CERFACS e SAAB); malhas não-ortogonais; Modelo de turbulência: algébrico 	 Argônio à pressão atmosférica; Intensidade de corrente: 200 e 600 A; Vazão de gás máx.: 30 l.min⁻¹; Foram verificados os efeitos com: aumento de velocidade de escoamento de velocidade de escoamento de entrada e corrente de arco fixa; aumento de corrente do arco e velocidade de escoamento de entrada fixa. Também foi verificada a influência de várias condições de contorno nos eletrodos. 	

Principais Conclusões do Estudo:

- Destaca o aspecto 3D da interação entre escoamento e arco elétrico;

- As comparações entre os resultados das simulações e os resultados experimentais apresentam boa concordância;

- Muito tempo computacional foi requerido.

QC-16 - Autor/Ano: Baudry, 2003.				
Principais Hipóteses Simplificadoras/ Condições de Contorno do Modelo	Domínio de Estudo do Modelo	Demais Informações do Modelo/ Método Numérico	Principais Condições Operacionais Empregadas	
 ETL; Arco não estacionário; 3D; Escoamento laminar; Escoamento incompressível. 	- Região do arco elétrico; jato livre; (tipo de tocha: tocha de plasma de arco não transferido - corrente contínua (CC), para uso em processos de aspersão térmica (plasma spraying)).	- Modelo 3D, MHD; - Método numérico: MVF – utiliza o código ESTET 3.4.	 Mistura de gases: argônio (45 l.min⁻¹) e hidrogênio (15 l.min⁻¹); Injeção em vórtice (gera turbilhonamento- <i>swirl</i>); Intensidade de corrente: 600 A; Diâmetro do anodo-bocal: 7 mm. 	

Principais Conclusões do Estudo:

- O modelo apresenta boas previsões qualitativas do comportamento dinâmico do arco;

- As velocidades e temperaturas do escoamento de gás na saída do bocal concordam bem com resultados experimentais da literatura;

- O modelo superestima a tensão do arco e as dimensões da mancha anódica.

Conclusões e comentários:

A maioria dos trabalhos apresentados na forma de quadro comparativo adotou as seguintes hipóteses: ETL, fluido newtoniano, escoamento laminar e incompressível, plasma opticamente fino.

Historicamente, os primeiros modelos foram realizados para tochas de arco transferido e geometria 2D. Cabe ressaltar que o trabalho de Hsu et al. (1983) serviu como referência de estudo e comparação para diversos trabalhos posteriores. Pelo fato de terem sido pioneiros, os modelos de arcos transferidos continuam sendo realizados (em 2D e 3D), pois os fenômenos envolvidos ainda não são completamente conhecidos e, também, devido ao grande uso industrial dessas tochas.

Os modelos das tochas de arco transferido também foram úteis ao desenvolvimento dos modelos de tochas de arco não transferido, pois estes foram iniciados na forma de adaptações dos modelos de arcos transferidos: na realidade, os primeiros modelos de tochas de arcos não transferidos não simulavam o arco dentro da tocha, apenas o jato livre. Para isso, seus autores assumiam perfis de temperatura e de velocidade na saída do bocal-anodo (seção de saída da tocha), com base em alguns resultados experimentais da época, e assim, simulavam os campos de temperatura e velocidade do jato livre.

Os modelos 2D de tochas de arcos não transferidos que simulam o fenômeno do arco no interior da tocha, usam uma *condição porosa* para a ligação do arco ao anodo. A condição porosa consiste em definir uma seção no bocal-anodo onde o potencial é assumido ser igual a zero. O plasma formado escoa através dessa seção, que corresponde à posição média da ligação do arco ao anodo. Embora, na verdade, ocorram flutuações na posição da ligação nas direções axial e angular, a simplificação descrita permite que um fenômeno não estacionário (transitório) seja tratado em regime estacionário. Nesse modelo, o plasma é aquecido por efeito Joule somente no domínio que abrange desde a ponta do catodo até a seção de ligação do arco ao bocal-anodo.

Em relação aos modelos 2D, os modelos 3D (GLEIZES et al., 2005) estacionários têm mostrado diferenças nos campos de temperatura e velocidade.

Mais recentemente, foram elaborados modelos 3D não estacionários capazes de descrever a ligação lateral do arco ao bocal-anodo. Os modelos não estacionários de tochas de arco não transferido tentam representar as flutuações do arco através da determinação da nova posição do arco no bocal. O número de parâmetros dificulta muito a definição das condições e existem no presente modelos fisicamente não aceitáveis para representar as flutuações do arco. Deve-se notar que uma das novas dificuldades na modelagem das tochas de arco não transferido é a validação experimental em condições não axissimétricas. A literatura é rica em medições espectrométricas na saída do bocal usando a *inversão de Abel*, mas estas hipóteses não são aplicáveis para uma validação 3D.

Devido à complexidade dos fenômenos envolvidos, continuam as propostas de aperfeiçoamento da modelagem de tochas de plasma (de arco transferido e de arco não transferido) em 2D e 3D, algumas incluindo a abordagem não estacionária e os aspectos de não equilíbrio (MEILLOT; GUENADOU; BOURGEOIS, 2008; LI; PFENDER, 2007; GLEIZES; GONZALEZ; FRETON, 2005; MOREAU et al., 2006; MARIAUX; VARDELLE, 2004; TRELLES; HEBERLEIN, 2006): os próprios pesquisadores indicam deficiências nos modelos, bem como a diversidade de questões fenomenológicas e numéricas a serem esclarecidas/investigadas. Apenas para citar uma delas: o efeito do turbilhonamento (swirl) no comportamento do arco de plasma e do jato de plasma.

Destaca-se que a literatura mostra que em muitas tochas de plasma de arco nãotransferido o gás é introduzido com turbilhonamento (swirl) para reduzir a taxa de erosão do anodo através da rotação do arco (WESTHOFF; SZEKELY (1991), SUN; HEBERLEIN (2005)). Também é mostrado que o turbilhonamento no jato de plasma é útil para a síntese de alguns materiais(WESTHOFF; SZEKELY (1991)). Assim sendo, o efeito do turbilhonamento no comportamento do arco de plasma e do jato de plasma é um aspecto de investigação importante que motivou sua inclusão nos objetivos deste trabalho.

5 METODOLOGIA

Para efetivar os objetivos propostos neste trabalho, foram planejadas as seguintes etapas:

 a) estudo da fundamentação teórica da literatura de tochas de plasma de arco não transferido em CC;

 b) desenvolvimento de um modelo físico e matemático bidimensional (axissimétrico) do escoamento com turbilhonamento (swirl) em tochas de plasma térmico de arco não transferido que operam em corrente contínua (CC), abrangendo as seguintes regiões: entrada do gás; interior da tocha; jato de plasma livre no ambiente;

c) implementação do modelo descrito no item anterior (item b) num código computacional 2D, denominado *Código Computacional para Simulação do Escoamento em Tochas de Plasma Térmico (CTP)*, utilizando o método dos volumes finitos (SIMPLE – Patankar)

 d) comparação dos resultados do Código Computacional para Simulação do Escoamento em Tochas de Plasma Térmico (CTP) com resultados experimentais e numéricos da literatura;

 e) simulações e estudo de casos através do Código Computacional para Simulação do Escoamento em Tochas de Plasma Térmico (CTP). Incluindo um estudo sistemático do efeito do turbilhonamento (swirl).

5.1 Modelo 2D

5.1.1 Hipóteses adotadas

Neste trabalho são adotadas as seguintes hipóteses para o modelo 2D.

- o equilíbrio termodinâmico local (ETL) prevalece no domínio de estudo;

- o fluido é newtoniano;

- o plasma é opticamente transparente (a radiação de corpo negro emitida pelo plasma não é absorvida pelo mesmo);

- a dissipação de calor devido às tensões viscosas é desprezível (constituída por termos de segunda ordem);

- a aproximação MHD é aplicável;

- o fluido é mono-espécie;

- estado estacionário

-os efeitos da gravidade são desprezíveis

5.1.2 Equações do modelo 2D (em coordenadas cilíndricas)

- Equação da conservação da massa (eq. da continuidade):

$$\frac{1}{r}\frac{\partial}{\partial r}(r\rho v) + \frac{\partial}{\partial z}(\rho u) = 0 \tag{1}$$

- Equações da quantidade de movimento:

- Na direção z (axial):

$$\frac{1}{r}\frac{\partial}{\partial r}(r\rho uv) + \frac{\partial}{\partial z}(\rho u^2) = \frac{1}{r}\frac{\partial}{\partial r}\left[r\mu\left(\frac{\partial u}{\partial r} + \frac{\partial v}{\partial z}\right)\right] + \frac{\partial}{\partial z}\left(2\mu\frac{\partial u}{\partial z}\right) - \frac{\partial p}{\partial z} + j_r B_\theta$$
(2)

- Na direção r (radial):

$$\frac{1}{r}\frac{\partial}{\partial r}(r\rho v^{2}) + \frac{\partial}{\partial z}(\rho uv) = \frac{1}{r}\frac{\partial}{\partial r}\left(2r\mu\frac{\partial v}{\partial r}\right) + \frac{\partial}{\partial z}\left[\mu\left(\frac{\partial u}{\partial r} + \frac{\partial v}{\partial z}\right)\right] + \rho\frac{w^{2}}{r} - 2\mu\frac{v}{r^{2}} - \frac{\partial p}{\partial r} - j_{z}B_{\theta}$$
(3)

- Na direção θ (tangencial ou azimutal):

$$\frac{1}{r}\frac{\partial}{\partial r}(r\rho vw) + \frac{\partial}{\partial z}(\rho uw) = \frac{1}{r}\frac{\partial}{\partial r}\left(r\mu\frac{\partial w}{\partial r}\right) + \frac{\partial}{\partial z}\left(\mu\frac{\partial w}{\partial z}\right) - \frac{1}{r^2}\mu w - \rho\frac{vw}{r}$$
(4)

Onde:

 μ , ρ e p são a viscosidade dinâmica, a massa específica e a pressão do gás,

respectivamente;

u, $v \in W$ são as componentes da velocidade nas direções z, $r \in \theta$,

respectivamente;

 $j_z\,$ e $\,j_r\,$ são as componentes axial e radial, respectivamente, do vetor densidade de corrente elétrica $\,\vec{j}\,$;

 B_{θ} é a componente azimutal do vetor intensidade de indução magnética (autoinduzida) \vec{B} (obs.: "campo magnético induzido pelo campo elétrico do arco");

Os termos $j_r B_{\theta}$ e $j_z B_{\theta}$ são as componentes do vetor força de Lorentz:

$$\vec{F} = \vec{j} \times \vec{B} \tag{5}$$

- Equação da conservação da energia ("escrita" em função da entalpia específica do gás: $h = \int C_p dT$):

$$\frac{1}{r}\frac{\partial}{\partial r}(r\rho vh) + \frac{\partial}{\partial z}(\rho uh) = \frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{k}{C_{p}}\frac{\partial h}{\partial r}\right) + \frac{\partial}{\partial z}\left(\frac{k}{C_{p}}\frac{\partial h}{\partial z}\right) + \frac{j_{r}^{2} + j_{z}^{2}}{\sigma} - S_{r}$$

$$+ \frac{5}{2}\frac{k_{b}}{e}\left(\frac{j_{r}}{C_{p}}\frac{\partial h}{\partial r} + \frac{j_{z}}{C_{p}}\frac{\partial h}{\partial z}\right) + u\frac{\partial p}{\partial z} + v\frac{\partial p}{\partial r}$$
(6)

Onde: C_p é o calor específico do gás à pressão constante; k é a condutividade térmica do gás; σ é a condutividade elétrica do gás.

Além dos termos que representam o transporte de entalpia por convecção e difusão, a equação da conservação da energia é constituída pelos seguintes termos fonte:

 S_r \rightarrow dissipação de calor por radiação por unidade de volume de plasma

 $(S_r = 4\pi\varepsilon_N)$; onde ε_N é a emissividade NEC – o plasma é considerado opticamente fino- valores experimentais em Baudry (2003); Cram; Evans e Tankin; Fauchais) $\frac{5}{2}\frac{k_b}{e}\left(\frac{j_r}{C_p}\frac{\partial h}{\partial r} + \frac{j_z}{C_p}\frac{\partial h}{\partial z}\right) \Rightarrow (electron \ drift) \ transporte \ de \ entalpia \ pela \ corrente \ de$

elétrons que se dirigi para o anodo. Sendo: k_b a constante de Boltzmann; e a carga elementar.

 $u \frac{\partial p}{\partial z} + v \frac{\partial p}{\partial r} \rightarrow variação de energia devido às variações de pressão$

Obs: alguns autores desprezam os termos

$$\frac{5}{2}\frac{k_b}{e}\left(\frac{j_r}{C_p}\frac{\partial h}{\partial r} + \frac{j_z}{C_p}\frac{\partial h}{\partial z}\right) e$$

 $u \frac{\partial p}{\partial z} + v \frac{\partial p}{\partial r}$ por considerá-los numericamente muito menores que os demais termos da equação (exemplo: Lowke et al. (1992) ; Murphy e Kovitya (1993)).

➔ Propriedades termodinâmicas e de transporte do plasma (ar; argônio; outros): DeVoto (1987); Boulos (1994).

➔ As densidades de corrente e a componente azimutal do campo magnético são obtidas através da solução da eq. da conservação da corrente elétrica e da 3ª eq. de Maxwell, e com o auxílio da equação de Richardson-Dushmann "adaptada" (aplicável para emissão termoiônica).

- Equação da conservação da corrente elétrica (na forma potencial):

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\sigma\frac{\partial\Phi}{\partial r}\right) + \frac{\partial}{\partial z}\left(\sigma\frac{\partial\Phi}{\partial z}\right) = 0$$
(6)

Onde: Φ é o potencial elétrico.

- 3^a Equação de Maxwell (na forma diferencial):

$$\frac{1}{r}\frac{\partial}{\partial r}(rB_{\theta}) = \mu_0 j_z \tag{7}$$

Onde: μ_0 é a permeabilidade magnética no espaço livre (vácuo).

Obs.: esta equação é aplicável apenas para distribuições de corrente simétricas (neste caso específico, simetria em relação ao eixo: axissimetria). Para os casos não simétricos (modelos 3D), o vetor \vec{B} pode ser calculado através da lei de *Biot-Savart* (por processo iterativo da distribuição de densidade de corrente), mas o tempo computacional é muito grande. Uma abordagem numérica alternativa é baseada na solução da equação do vetor potencial magnético $\vec{A} \Rightarrow \nabla^2 \vec{A} = -\mu_0 \vec{j}$. Obtido \vec{A} , o vetor \vec{B} é calculado através de $\Rightarrow \vec{B} = \nabla \times \vec{A}$.

- O vetor densidade de corrente elétrica \vec{j} relaciona-se com o vetor intensidade do campo elétrico \vec{E} , ou com o potencial elétrico Φ , da seguinte forma :

$$\vec{j} = \sigma \,\vec{E} = -\sigma \,\nabla\Phi \tag{8}$$

Para este modelo (modelo 2D), as componentes radial e axial do vetor densidade de corrente elétrica, respectivamente, são expressas por:

$$j_r = -\sigma \frac{\partial \Phi}{\partial r} \tag{9}$$

$$j_z = -\sigma \frac{\partial \Phi}{\partial z} \tag{10}$$

5.1.3 Domínio Computacional e Condições de Contorno

O domínio computacional usado para as simulações deste trabalho está esquematizado na figura 5.1 e as condições de contorno empregadas estão sumariadas na tabela 5.1 (no final deste item).

Figura 5.1- Domínio computacional.

- Entrada (linha FG):

Na seção de entrada a velocidade axial (u) apresenta um perfil parabólico e depende da especificação da vazão em volume do gás. A velocidade radial (v) é zero na entrada. A velocidade azimutal (w) apresenta um perfil composto parcialmente por comportamento de vórtice livre e parcialmente por vórtice forçado. A velocidade azimutal depende do grau de turbilhonamento (swirl) na entrada da tocha. A definição do número de turbilhonamento (swirl), Sw , usada neste trabalho é a apresentada por Westhoff; Szekely (1992): razão entre o fluxo axial do momento axial, normalizado por um raio (R_{o})

apropriado/característico. Neste trabalho, o raio (R_0) é o raio do bocal da tocha. Portanto, o número de turbilhonamento (swirl) é dado por:

$$Sw = G_{\theta} / G_z R_0 \tag{11}$$

sendo o fluxo axial do momento azimutal:

$$G_{\theta} = \int_{0}^{\infty} \rho u w r^{2} dr$$
 (12)

e o fluxo axial do momento axial:

$$G_z = \int_0^\infty \rho u^2 r dr \tag{13}$$

- Demais condições:

Nas superficies dos eletrodos (anodo e catodo) são assumidas condições de nãodeslizamento (u = v = w = 0). No eixo de simetria (linha AB): $\partial u/\partial r = 0$ e v = w = 0. Condições de contorno-livre são assumidas para BC e CD. Para BC: $\partial(\rho p u)\partial z = 0$, $\partial v/\partial z = 0$ e $\partial w/\partial z = 0$. E, para CD: u = w = 0 e $\partial(r\rho v)/\partial r = 0$. As condições de contorno para a entalpia são dadas em temperatura e convertidas em entalpia do gás. Para a entrada da tocha a temperatura é 500K e para a linha CD, a temperatura é 300K. As temperaturas das superfícies do catodo e anodo são assumidas 3000K e 1000K , respectivamente. No eixo de simetria (linha AB): $\partial h/\partial r = 0$; e na linha BC $\partial h/\partial z = 0$.

As superfícies AA' e EE' são condições de contorno internas e são conhecidas como condições de contorno "fictícias" ou "porosas" e nelas são assumidas as condições

Φ

de contorno para o potencial elétrico

Na linha AA', o potencial elétrico é determinado assumindo um perfil de densidade de corrente axial (Hsu et al., 1983; Murphy; Kovitya, 1993), adaptado da equação de Richardson-Dushmann (aplicável para emissão termoiônica):

$$j_{z}(r) = j_{0}e^{-r/r_{c}}$$
(14)

 j_0 e r_c : constantes que dependem da corrente elétrica e são obtidas experimentalmente.

Na linha AB, $\partial j_z / \partial r = 0$ e $j_r = 0$; em ED: $j_r = j_z = 0$ e no anodo: $\Phi = 0$

	и	v	W	h	Φ
AB	$\partial u/\partial r = 0$	0	0	$\partial h/\partial r = 0$	$\partial j_z/\partial r = j_r = 0$
BC	$\partial(\rho u)/\partial z = 0$	$\partial v / \partial z = 0$	$\partial w/\partial z = 0$	$\partial h/\partial z = 0$	
CD	0	$\partial (r\rho\rho)/\partial r = 0$	0	300 <i>K</i>	
FG	u = u(r)	0	w = w(r)	500 <i>K</i>	
AA'					$j_z(r)$ (especificado)
EE'					$j_z = j_r = 0$
Anodo	0	0	0	1000 <i>K</i>	0
Catodo	0	0	0	3000 <i>K</i>	

Tabela 5.1: Sumário das condições de contorno.

5.2 Código Computacional CTP

Conforme o planejamento estabelecido na metodologia para a realização do trabalho, foi desenvolvido um modelo físico e matemático bidimensional (axissimétrico) do escoamento com turbilhonamento (swirl) em tochas de plasma térmico de arco não transferido que operam em corrente contínua (CC), abrangendo as seguintes regiões: entrada do gás; interior da tocha; jato de plasma livre no ambiente. O modelo foi implementado no código computacional 2D desenvolvido, denominado *Código Computacional para Simulação do Escoamento em Tochas de Plasma Térmico (CTP)*, utilizando o método dos volumes finitos (SIMPLE – Patankar) e baseado em Vatavuk (1996), Favalli (1997) e Bianchini (2000). O código CTP foi elaborado em linguagem FORTRAN 90 (Microsoft FORTRAN Powerstation 4.0).

As simulações foram executadas num microcomputador com processador INTEL CORE i7 e 6GB de memória RAM. O tempo computacional médio para cada simulação é 15min, para malhas de 120x80 nós e cerca de 20000 iterações.

Um fator que consumiu um maior tempo de execução foi a dificuldade de convergência do programa nos casos com turbilhonamento (swirl) (principalmente para número de turbilhonamento superior a 3), devido ao acoplamento de mais uma equação (equação do momento da quantidade de movimento), o que requereu reajustes frequentes e empíricos (tentativa e erro) dos coeficientes de relaxação das componentes da velocidade (componentes axial, radial e tangencial). Foram necessárias cerca de 150 tentativas (simulações) para se obter os valores adequados dos coeficientes de relaxação.
6 RESULTADOS E ANÁLISE

Nesta seção são apresentados os resultados das simulações realizadas com o código CTP. Os resultados estão categorizados de acordo com os seus objetivos: comparação de resultados de simulações numéricas com resultados experimentais da literatura; perfis de temperatura e velocidade axial característicos do escoamento em tochas de plasma; estudo de casos; estudo do efeito do turbilhonamento (*swirl*) em tochas de plasma.

6.1 Comparação com resultados experimentais da literatura

Com o objetivo de verificar a qualidade dos resultados das simulações com o CTP, foram pesquisados na literatura resultados experimentais obtidos em tochas de plasma similares às deste trabalho e, também, em condições operacionais comparáveis. Na realidade, existem poucos resultados experimentais publicados na literatura devido às dificuldades técnicas para a realização das medições de temperatura e, principalmente, de velocidade. Acrescenta-se a isso que, em geral, existem diferenças consideráveis entre as tochas pesquisadas experimentalmente e a usada neste trabalho.

Os resultados dos experimentos realizados no Idaho National Engineering Laboratory (INEL) foram escolhidos para as comparações devido à semelhança entre a sua tocha e a tocha simulada neste trabalho e, também, por ser gerado turbilhonamento (swirl) na mesma, o que possibilita uma comparação adequada para o interesse deste trabalho no estudo dos efeitos do turbilhonamento (swirl) no comportamento do arco e do jato de plasma. Os resultados obtidos no INEL foram publicados por Dilawari et al. (1990).

O aparato experimental usado no INEL consistiu de uma tocha de plasma de arco não-transferido e uma câmara para controle de atmosfera de argônio puro. A tocha operou em modo laminar, de maneira que o escoamento no seu interior e no jato perto da saída do seu bocal pode ser assumido como sendo laminar (uma vez que o número de Reynolds na saída está na faixa de 100-200) (Dilawari et al., 1990). Uma técnica de espectroscopia de emissão foi usada para as medições de temperatura do jato de plasma que sai da tocha. Os investigadores estimaram os seguintes erros de medição: $\pm 0,2\%$ para 12000K e $\pm 1,5\%$ para 9000K (Dilawari et al., 1990).

As simulações numéricas foram realizadas para duas condições operacionais da tocha do INEL, que são apresentadas na tabela 6.1.

Código INEL	Gás Plasmogênico	Vazão de Gás (I/min)-(scmh)	Corrente Elétrica (A)	Tensão Elétrica (V)	Potência de Entrada (kW)	Número de Turbilhonamento (Swirl Number)
BES23	Argônio (Ar)	9,83 - 0,59	250	19,16	4,79	Sw=5
BES24	Argônio (Ar)	13,83 - 0,83	250	19,44	4,86	Sw=5

Tabela 6.1: Condições operacionais da tocha do INEL.

As comparações entre os resultados experimentais e calculados de temperatura para as duas condições operacionais são mostradas nos gráficos 6.1., 6.2., 6.3. e 6.4.

Gráfico 6.1 - Perfil de temperatura em função da distância axial na posição radial: eixo de simetria (r=0). Comparação entre resultados experimentais (caso BES23-INEL) e resultados calculados (Calc-mt174-CTP). Condições operacionais: 250A; 0,59scmh (9,83 l/min); Sw=5. Figura discreta denota resultados experimentais; linha indica resultados calculados.

Nesses gráficos, observa-se que as figuras discretas denotam resultados experimentais e as linhas indicam resultados calculados.

O gráfico 6.1 apresenta os valores de temperatura obtidos experimentalmente (medidos) em função da distância axial (origem coincidente com a origem (0) do domínio computacional), para a posição radial: eixo de simetria da tocha (r=0), no jato de plasma que sai da tocha. Refere-se ao caso BES23-INEL, com condições operacionais: 250A (corrente elétrica); 0,59scmh (9,83 l/min) (vazão em volume do gás de plasma); argônio (gás de plasma); Sw=5 (número de turbilhonamento (número de swirl). O perfil de temperatura obtido numericamente (calculado) através do código computacional (CTP), para as mesmas condições operacionais (caso de simulação mt174-CTP), também é plotado no gráfico 6.1. A comparação apresenta as seguintes diferenças: a maior diferença entre os valores de temperatura medidos (experimentais) e os valores calculados (código CTP) é -5,4% (T_{exp} =11196K; T_{calc} =11800K), na distância axial z=33mm. A partir da distância z=41mm, os valores medidos passam a ser maiores que os valores calculados, e a maior diferença entre os mesmos é +4,3%, na distância axial z=69mm. Nas demais distâncias axiais, as diferenças estão entre +2,8% e +3,4%.

Também para o caso BES23-INEL, a comparação entre os valores de temperatura medidos e os perfis radiais de temperatura obtidos com o CTP, é mostrada no gráfico 6.2, para as posições axiais: z=33mm, z=45mm, z=57mm, z=69mm e z=80mm. As diferenças entre valores experimentais e valores calculados são as seguintes:

Posição axial z=33mm: no eixo de simetria da tocha, r=0, a diferença entre valor experimental e calculado é -5,4%, já mostrada também no gráfico 6.1. A maior diferença, -5,5%, ocorre em r=0,45mm. Entre r=0,45mm e r=2,25mm, a diferença varia entre -3,7% e -2%, e entre r=2,7mm e r=4,35mm as diferenças variam de -1,3% a +1,3%.

Posição axial z=45mm: as diferenças variam de +1% a 3,1%.

Posição axial z=57mm: entre o r=0 e r=3,35mm, as diferenças estão entre +3,4% e +4,3%. Em r=3,75mm a diferença diminui para 1,3%.

Posição axial z=69mm: entre o r=0 e r=2,7mm, as diferenças estão entre +4,3% e +1,5%. Em r=3,0mm a diferença é -1,5%.

Posição axial z=80mm: no eixo de simetria da tocha, r=0, a diferença entre valor experimental e calculado é +3% (já mostrada também no gráfico 6.1). Entre

r=0,15mm e r=0,9mm, as diferenças variam de +2,2% a 1,4%. Entre r=1,05mm e r=1,35mm, as diferenças variam de +1,1% a 0,5%. Em r=1,5mm a diferença é -1%.

Gráfico 6.2 – Perfis de temperatura em função da distância radial nas posições axiais (jato de plasma): 33mm; 45mm; 57mm; 69mm; 80mm. Comparação entre resultados experimentais (caso BES23-INEL) e resultados calculados (Calc-mt174-CTP). Condições operacionais: 250A; 0,59scmh (9,83 l/min); Sw=5. Figuras discretas denotam resultados experimentais; linhas indicam resultados calculados.

As comparações entre resultados experimentais e calculados para o caso BES24-INEL são mostradas nos gráficos 6.3 e 6.4. As condições operacionais para esse caso são: 250A (corrente elétrica); 0,83scmh (13,83 l/min) (vazão em volume do gás de plasma); argônio (gás de plasma); Sw=5 (número de turbilhonamento (número de swirl)).

O gráfico 6.3 apresenta a temperatura em função da distância axial para a posição radial r=0 (eixo de simetria da tocha). A comparação entre valores medidos e calculados evidencia as seguintes diferenças: em z=33mm a diferença é -2,7%. A

partir da distância axial z=37mm, , os valores medidos passam a ser maiores que os valores calculados, e a maior diferença entre os mesmos é +4,8% (T_{exp} =10390K; T_{calc} =9890K), na distância axial z=45mm. Nas demais distâncias axiais, as diferenças estão entre +1,5% e +3,5%.

Gráfico 6.3 - Perfil de temperatura em função da distância axial na posição radial: eixo de simetria (r=0). Comparação entre resultados experimentais (caso BES24-INEL) e resultados calculados (Calc-mt178-CTP). Condições operacionais: 250A; 0,83scmh (13,83 l/min); Sw=5. Figura discreta denota resultados experimentais; linha indica resultados calculados.

O gráfico 6.4 apresenta a temperatura em função da distância radial para as posições axiais: z=33mm, z=45mm, z=57mm e z=69mm. As diferenças entre valores experimentais e valores calculados são as seguintes:

Posição axial z=33mm: no eixo de simetria da tocha, r=0, a diferença entre valor experimental e calculado é -2,7% (mostrada também no gráfico 6.3). A maior diferença, -10,0%, ocorre em r=4,75mm. Entre r=0,45mm e r=2,9mm, a diferença

está em torno de -2,5%. Entre r=3,35mm e r=4,35mm as diferenças variam de -4,5% a -7,2%.

Gráfico 6.4 – Perfis de temperatura em função da distância radial nas posições axiais (jato de plasma): 33mm; 45mm; 57mm; 69mm. Comparação entre resultados experimentais (caso BES24-INEL) e resultados calculados (Calc-mt178-CTP). Condições operacionais: 250A; 0,83scmh (13,83 l/min); Sw=5. Figuras discretas denotam resultados experimentais; linhas indicam resultados calculados.

Posição axial z=45mm: entre r=0 e r=1,9mm as diferenças variam de +4,8% a 3,0%. A partir de r=3,35mm os valores medidos passam a ser menores que os valores calculados, e a maior diferença entre os mesmos é -6,0%, em r=4,7mm.

Posição axial z=57mm: as diferenças variam de +2,4% a 1,9% entre r=0 e r=4,35mm. Em r=4,75mm a diferença é -1,6%.

Posição axial z=69mm: entre o r=0 e r=4,35mm as diferenças estão entre +2,4% e +1,3%.

Embora as maiores diferenças entre os valores experimentais e os valores calculados (-5,5% para o caso BES23 e -10,0% para o caso BES24) sejam negativas, isto é, valores experimentais menores que valores calculados, não fica caracterizada uma tendência sistemática nesse sentido, pois existem também diversas regiões em que os valores experimentais são maiores que os calculados (diferenças positivas). Também não fica caracterizada a predominância das maiores diferenças em um dos dois casos investigados em relação ao outro. Considerando que a média das diferenças é cerca de $\pm 3,2\%$ e também as hipóteses simplificadoras do modelo matemático desenvolvido, a concordância dos resultados das simulações numéricas com os resultados das medições é boa e, portanto, o modelo é adequado às investigações propostas neste trabalho.

6.2 Perfis de temperatura e velocidade axial característicos do escoamento em tochas de plasma térmico de arco não transferido

Na subseção anterior (6.1) foram apresentadas comparações entre resultados de simulações numéricas com o *CTP* e resultados experimentais da literatura, com o propósito único de verificar a qualidade dos resultados obtidos com o *CTP* e, por isso, não foram tecidos comentários a respeito de aspectos fenomenológicos.

Nesta subseção são apresentados os perfis de temperatura e de velocidade axial característicos do escoamento em tochas de arco não transferido, obtidos através de simulações numéricas com o *CTP* e, também, são expostos alguns comentários sobre os correspondentes aspectos fenomenológicos típicos, verificados nos resultados de todas as simulações realizadas neste trabalho.

No gráfico 6.5 é apresentado o perfil de temperatura em função da distância axial, para a posição radial: eixo de simetria da tocha (r=0) e no gráfico 6.6, o perfil de velocidade axial na mesma posição radial.

Ambos correspondem às seguintes condições operacionais: argônio (gás plasmogênico); 100A (corrente elétrica do arco); 10 l/min (vazão em volume do gás na seção de entrada da tocha); Sw=0 (número de turbilhonamento - *swirl* - do escoamento na seção de entrada da tocha).

Gráfico 6.5 - Perfil de temperatura em função da distância axial na posição radial: eixo de simetria (r=0). Condições operacionais: 100A; 10 l/min; Sw=0; argônio.

Gráfico 6.6 - Perfil de velocidade axial em função da distância axial na posição radial: eixo de simetria (r=0). Condições operacionais: 100A; 10 l/min; Sw=0; argônio.

Através da análise dos gráficos verificam-se as seguintes características fenomenológicas:

Perfil de temperatura (gráf. 6.5): devido à ionização do gás e, em consequência, ao grande aumento da sua condutividade elétrica (aumento de aproximadamente 118%), na região próxima ao catodo (entre as distâncias axiais de 2,4mm a 3,2mm), onde se apresenta a máxima densidade de corrente, ocorre o aumento acentuado do gradiente de temperatura do gás pelo seu aquecimento por efeito Joule (aumento de 2950K a 22600K, o que corresponde a um aumento de aproximadamente 670%).

Ainda dentro da tocha (até a distância z=13mm) ocorre a diminuição acentuada do gradiente de temperatura do plasma devido à convecção com a superfície resfriada do anodo (diminuição de 22600K para 13700K – aproximadamente 39%). Saindo da tocha, o jato de plasma apresenta uma redução menos acentuada da temperatura em função da distância axial (entre 13mm e 80mm, com diminuição de 13700K para 7210K – aproximadamente 47%), devido à convecção de calor com o gás ambiente (argônio).

Perfil de velocidade axial (gráf. 6.6): também na região próxima ao catodo (2,7mm a 8,5mm), ocorre a aceleração do gás/plasma devido à sua expansão pelo aumento de temperatura e ao efeito das forças de Lorentz resultantes da interação entre a corrente do arco elétrico e o campo magnético induzido. A velocidade axial aumenta de zero (ponta do catodo) a 169m/s. Dentro da tocha, 8,5mm e 13mm, a velocidade axial diminui até 155m/s. Fora da tocha, segue, então, a desaceleração contínua da velocidade axial do jato de plasma em contato com o gás ambiente (argônio), sob efeito do arrasto, e a velocidade na distância axial de 80mm é 43m/s (diminuição de aproximadamente 72%).

Embora, obviamente, os resultados quantitativos variem em função das diferentes condições operacionais das tochas simuladas neste trabalho com o código *CTP*, salienta-se que as características qualitativas dos perfis obtidos são muito semelhantes.

6.3 Estudo de casos

Nesta subseção são apresentados os resultados de simulações numéricas que foram realizadas com o objetivo de verificar se o código *CTP* é adequado para simular os efeitos decorrentes de variações dos parâmetros operacionais e das características dimensionais de tochas de plasma. Através das simulações também foi possível verificar se o *CTP* é uma ferramenta útil no auxílio à compreensão dos fenômenos relativos à interação arco/escoamento.

A metodologia foi estabelecida na forma de estudo de casos, baseados na comparação dos efeitos causados pela variação dos seguintes parâmetros operacionais/características dimensionais das tochas: vazão em volume do gás plasmogênico; intensidade de corrente elétrica; gás plasmogênico; espessura do espaço anular da seção de entrada de gás das tochas.

Os parâmetros escolhidos são fundamentais para o desenvolvimento de tochas destinadas a aplicações industriais e de meio ambiente.

Os resultados obtidos com as simulações numéricas são apresentados por meio dos gráficos 6.7 a 6.22. Com o propósito de facilitar a comparação dos efeitos das diferentes condições operacionais, optou-se pela apresentação de dois gráficos por página e também das diferenças percentuais dos valores das grandezas físicas (temperatura e velocidade axial) em posições de interesse.

Em alguns gráficos também são destacados os valores numéricos das grandezas físicas, variações percentuais e respectivas posições do domínio computacional.

Nos apêndice A, os mesmos gráficos são apresentados, individualmente, em dimensões maiores e sem os destaques descritos anteriormente (gráficos A.1 a A.22). Os resultados numéricos das simulações são apresentados nas tabelas B.1 a B.8 do apêndice B.

As comparações dos perfis de temperatura para diferentes vazões de gás são apresentadas nos gráficos 6.7 a 6.10 e as comparações dos perfis de velocidade axial são apresentadas nos gráficos 6.11 a 6.14.

Os gráficos 6.15 e 6.16 mostram as comparações dos perfis de temperatura para diferentes intensidades de corrente elétrica e os gráficos 6.17 e 6.18 mostram as comparações dos perfis de velocidade axial. As comparações dos perfis de temperatura para diferentes gases plasmogênicos (argônio e ar) são mostradas nos gráficos 6.19 e 6.20 e as comparações dos perfis de velocidade axial são mostradas nos gráficos 6.21 e 6.22.

Observações referentes aos gráficos:

 Todos os perfis de temperatura e velocidade axial (em função da distância axial) apresentados neste item são referentes à posição radial *eixo de simetria da tocha* (r = 0).

- Os sentidos das setas nos gráficos 6.7 a 6.10 indicam: sentido "para cima" indica aumento do valor numérico da grandeza física; sentido "para baixo" indica diminuição do valor numérico da grandeza física. Próximo a cada seta é destacado o valor numérico (em módulo) de aumento ou diminuição da grandeza física em relação ao valor destacado na posição axial anterior e, entre parênteses, é apresentado o valor percentual (em módulo) correspondente.

Nos gráficos 6.7 a 6.14 são apresentadas as diferenças (em módulo) de temperatura ou de velocidade axial entre as vazões 5l/min (menor vazão) e 30l/min (maior vazão) para: valores máximos; posição axial 13mm; posição axial 80mm. Também são apresentadas as diferenças percentuais (em módulo) para as mesmas vazões e posições axiais.

 Nos gráficos 6.15 a 6.22 o sinal negativo indica aumento percentual entre os valores comparados das grandezas (temperatura ou velocidade axial) para as diferentes condições operacionais e o sinal positivo indica diminuição percentual entre os valores comparados.

- As diferenças percentuais foram calculadas como segue:

 - (Gráficos 6.7 a 6.14): dif% = [(V.G.5l/min – V.G.30l/min) / V.G.5lmin] x 100 (os resultados são apresentados em módulo)

- (Gráficos 6.15 a 6.18): dif% = [(V.G.100A – V.G.200A) / V.G.100A] x 100

- (Gráficos 6.19 a 6.22): dif% = [(V.G.argônio – V.G.ar) / V.G.argônio] x 100

Onde V.G.... é o valor da grandeza (temperatura ou velocidade axial) para...

Estudo-Casos: Comparação-Vazão – Perfis de Temperatura 100A – Gráficos 6.7 e 6.8

Gráfico 6.7 - Comparação dos perfis de temperatura. Condições operacionais: gás: argônio; vazão de gás: 5, 10, 15, 20, 25, 30 l/min; corrente elétrica: 100 A; Sw=0.

Gráfico 6.8 - Comparação dos perfis de temperatura. Condições operacionais: gás: ar; vazão de gás: 5, 10, 15, 20, 25, 30 l/min; corrente elétrica: 100 A; Sw=0.

Estudo-Casos: Comparação-Vazão – Perfis de Temperatura 200A – Gráficos 6.9 e 6.10

Gráfico 6.9 - Comparação dos perfis de temperatura. Condições operacionais: gás: argônio; vazão de gás: 5, 10, 15 l/min; corrente elétrica: 200 A; Sw=0.

Gráfico 6.10 - Comparação dos perfis de temperatura. Condições operacionais: gás: ar; vazão de gás: 5, 10, 15 l/min; corrente elétrica: 200 A; Sw=0.

Através do gráfico 6.7 verifica-se que os perfis de temperatura para as vazões de argônio de 5 a 30 l/min praticamente coincidem até a distância axial de 7mm (interior da tocha).

O aumento de temperatura do gás-plasma na região próxima à ponta do catodo (2,7 a 3,2mm) devido à interação com o arco elétrico é de aproximadamente 660% (22500K) para todas as vazões e a diferença entre as temperaturas máximas da menor e da maior vazão é 200K (~1%) (temperatura máxima igual a 22600K para 5l/min e 22400K para 30l/min).

Ainda no interior da tocha, entre 3,2 e 13mm, devido ao resfriamento forçado e contínuo do anodo, ocorre a diminuição acentuada da temperatura (~9000K, ou ~40%) e na saída da tocha (13mm) a diferença de temperatura entre as vazões 5l/min e 30l/min é 700K (15%) (a temperatura é 13600K para 5l/min e 14300K para 30l/min).

O jato de plasma livre, que troca calor por convecção com o ambiente de argônio, apresenta diminuição de temperatura menos acentuada (~7000K, ou ~ 51% ; de 13 a 80 mm) e a diferença de temperatura entre as vazões 5 e 30 l/min é de 16,4% (1090K) no final do domínio computacional (posição axial: 80mm).

O gráfico 6.8 apresenta a comparação dos perfis de temperatura para as vazões de ar de 5 a 30l/min. A diferença de temperatura máxima entre 5 e 30l/min é ~3% (600K) e para a posição axial 13mm (saída da tocha) a diferença é de 10% (1400K). A partir da posição 30mm (jato de plasma livre) os perfis se aproximam muito e a diferença entre as vazões 5 e 30l/min é apenas de 3,5% (200K) na posição 80mm.

A comparação dos perfis de temperatura para as vazões de argônio de 5, 10 e 15 l/min e corrente elétrica de 200A apresentada no gráfico 6.9 evidencia: os perfis de temperatura são praticamente coincidentes apenas até a posição 5mm. A diferença de temperatura entre 5 e 15l/min é 9% (1300K) na saída da tocha (13mm) e aumenta consideravelmente na região de jato livre, sendo 26,4% em 80mm (final do domínio computacional).

O gráfico 6.10 mostra que os perfis de temperatura praticamente coincidem em todo o domínio computacional. Apenas para 5l/min, a partir da posição 56mm, ocorre uma diminuição mais acentuada da temperatura e a diferença entre 5 e 15l/min é 34% na posição 80mm.

Estudo-Casos: Comparação-Vazão – Perfis de Velocidade Axial 100A – Gráficos 6.11 e 6.12

Gráfico 6.11 - Comparação dos perfis de velocidade axial. Condições operacionais: gás: argônio; vazão de gás: 5, 10, 15, 20, 25, 30 l/min; corrente elétr.: 100 A; Sw=0.

Gráfico 6.12 - Comparação dos perfis de velocidade axial. Condições operacionais: gás: ar; vazão de gás: 5, 10, 15, 20, 25, 30 l/min; corrente elétrica: 100 A; Sw=0.

Estudo-Casos: Comparação-Vazão – Perfis de Velocidade Axial 200A – Gráficos 6.13 e 6.14

Gráfico 6.13 - Comparação dos perfis de velocidade axial. Condições operacionais: gás: argônio; vazão de gás: 5, 10, 15 l/min; corrente elétrica: 200 A; Sw=0.

Gráfico 6.14 - Comparação dos perfis de velocidade axial. Condições operacionais: gás: ar; vazão de gás: 5, 10, 15 l/min; corrente elétrica: 200 A; Sw=0.

No gráfico 6.11, verifica-se que exceto na região de aceleração do gás-plasma (região de interação com o arco elétrico), a velocidade axial é significativamente afetada pela vazão. A diferença entre as velocidades axiais para 5 e 30l/min é 27% na saída da tocha (13mm) e 124% em 80mm.

As comparações apresentadas no gráfico 6.12 mostram que também são grandes as diferenças entre as velocidades axiais para as vazões de ar simuladas: 69% na posição 13mm (saída da tocha) e 173% no final do domínio computacional (80mm) (diferenças para 5 e 30l/min).

O gráfico 6.13 mostra a comparação entre os perfis de velocidade axial para as vazões de argônio de 5, 10 e 15l/min.

Verifica-se que a velocidade axial máxima é muito afetada pela vazão: a diferença para 5 e 15l/min é 42,4% (86m/s).

No final da tocha (13mm) a diferença de velocidade axial para as vazões 5 e 15l/min é 46% e para o jato de plasma livre no final do domínio computacional (80mm) a diferença é 132%.

A comparação dos perfis de velocidade axial para as vazões de ar 5, 10 e 15l/min é mostrada no gráfico 6.14. A diferença de velocidade axial máxima para 5 e 15l/min é muito pequena (2%). No final da tocha (13mm) a diferença de velocidade axial para 5 e 15l/min é 21% e não cresce significativamente para a região de jato livre até a distância axial 50mm.

A partir dessa distância axial a diferença entre as vazões 10 e 15l/min permanece praticamente constante, porém a velocidade axial diminui muito para a vazão de 5l/min e a diferença de velocidade axial entre 5 e 15l/min é 277% na posição 80mm (final do domínio computacional).

Estudo-Casos: Comparação-Intensidade de Corrente Elétrica - 100A e 200A Perfis de Temperatura - Gráficos 6.15 e 6.16

Gráfico 6.15 - Comparação dos perfis de temperatura. Condições operacionais: gás: argônio; vazão de gás: 5, 10, 15 l/min; corrente elétrica: 100 A e 200 A; Sw=0.

Gráfico 6.16 - Comparação dos perfis de temperatura. Condições operacionais: gás: ar; vazão de gás: 5, 10, 15 l/min; corrente elétrica: 100 A e 200 A; Sw=0.

As comparações do gráfico 6.15 revelam que os perfis de temperatura para todas as condições operacionais (vazões e intensidade de corrente elétrica) são muito semelhantes qualitativamente.

A temperatura máxima obtida com a corrente elétrica de 100A (valor médio para as três vazões: ~22500K ; aumento médio de ~660%) é aproximadamente 7,5% menor que a obtida com 200A (~24200K ; aumento médio de ~700%), na região próxima à ponta do catodo (distância axial: 2,7 a 3,2mm).

Na distância axial 13mm (final da tocha), em média, a temperatura para 100A (~13600K ; vide também o gráf. 6.7) é aproximadamente 10% menor que para 200A (~14500K ; vide também o gráf. 6.9).

Na distância axial 80mm (final do domínio computacional) a temperatura para 100A (~6650K; vide também o gráf. 6.7) é aproximadamente 13% menor que para 200A (~7100K; vide também o gráf. 6.9).

Ressalta-se também que a redução percentual da temperatura máxima até o final da tocha (13mm) é a mesma para 100A e 200A: 40% (9000K para 100A e 9600K para 200A ; vide também os gráficos 6.7 e 6.9).

A diminuição gradativa da temperatura do jato livre de plasma, que troca calor por convecção com o gás ambiente (argônio) no trecho axial de 13mm a 80mm, também é, em termos percentuais, a mesma para 100A e 200A: 51% (7000K para 100A e 7380K para 200A ; vide também os gráficos 6.7 e 6.9).

O gráfico 6.16, para ar, também mostra a semelhança qualitativa entre os perfis para as diferentes condições operacionais, com exceção ao perfil referente à vazão de 51/min e corrente elétrica de 200A, que a partir da distância axial 56mm apresenta uma diminuição acentuada da temperatura.

Em média, a temperatura máxima para 100A (~19250K) é aproximadamente 10,5% menor que a temperatura máxima para 200A (~21300K).

No final da tocha (13mm) a temperatura para 100A (~13700K) é aproximadamente 7,5% menor que a temperatura para 200A (~14800K) e no final do domínio computacional (80mm), comparando apenas as vazões de 10l/min e 15l/min, a temperatura para 100A (~6010K) é aproximadamente 6,4% menor que para 200A (~6390K).

Estudo-Casos: Comparação-Intensidade de Corrente Elétrica - 100A e 200A Perfis de Velocidade Axial – Gráficos 6.17 e 6.18

Gráfico 6.17 - Comparação dos perfis de velocidade axial. Condições operacionais: gás: argônio; vazão de gás: 5, 10, 15 l/min; corrente elétrica: 100 A e 200 A; Sw=0.

Gráfico 6.18 - Comparação dos perfis de velocidade axial. Condições operacionais: gás: ar; vazão de gás: 5, 10, 15 l/min; corrente elétrica: 100 A e 200 A; Sw=0.

Assim como para os perfis de temperatura, também é verificada a semelhança qualitativa entre os perfis de velocidade axial, através do gráfico 6.17.

As velocidades axiais máximas para 100A (5, 10 e 15l/min) são menores comparadas às de 200A e as diferenças percentuais são respectivamente: 17,3% (5l/min), 40,2% (10l/min) e 72% (15l/min).

No final da tocha (13mm) as diferenças das velocidades para 100A e 200A são: 33,1% (5l/min), 52,9% (10l/min) e 75% (15l/min).

No final do domínio computacional (80mm) foram obtidas as seguintes diferenças: 35,9% (5l/min), 58,7% (10l/min) e 86,3% (15l/min).

Da mesma maneira, existe semelhança qualitativa entre os perfis de velocidade axial do gráfico 6.18, exceto para o perfil referente à vazão de 5l/min e corrente elétrica de 200A, cuja velocidade axial diminui muito a partir da distância axial 47mm (vide também o gráfico 6.14).

A comparação de velocidades axiais máximas para 100A e 200A resulta nas seguintes diferenças percentuais: 40,8% (5l/min), 39,1% (10l/min) e 37,7% (15l/min). Na saída da tocha (13mm) as diferenças percentuais são: 56,7 (5l/min), 45,6% (10l/min) e 40,7% (15lmin).

No final do domínio computacional (80mm) as diferenças resultantes são: 30,4% (10l/min) e 22,4% (15l/min).

Gráfico 6.19 - Comparação dos perfis de temperatura. Condições operacionais: gás: argônio e ar; vazão de gás: 5, 10, 15 l/min; corrente elétrica: 100 A; Sw=0.

Gráfico 6.20 - Comparação dos perfis de temperatura. Condições operacionais: gás: argônio e ar; vazão de gás: 5, 10, 15 l/min; corrente elétrica: 200 A; Sw=0.

Gráfico 6.21 - Comparação dos perfis de velocidade axial. Condições operacionais: gás: argônio e ar; vazão de gás: 5, 10, 15 l/min; corrente elétrica: 100 A; Sw=0.

Gráfico 6.22 - Comparação dos perfis de velocidade axial. Condições operacionais: gás: argônio e ar; vazão de gás: 5, 10, 15 l/min; corrente elétrica: 200 A; Sw=0.

Estudo-Casos: Comparação Argônio – Ar Perfis de Velocidade Axial – Gráficos 6.21 e 6.22

Por meio dos gráficos 6.19, 6.20, 6.21 e 6.22 são comparadas as diferenças dos perfis de temperatura (gráficos: 6.19-100A e 6.20-200A) e de velocidade axial (gráficos: 6.21-100A e 6.22- 200A), obtidos com as simulações dos gases plasmogênicos argônio e ar, nas seguintes condições operacionais da tocha: vazões de gás de 5, 10 e 15 l/min; intensidades de corrente elétrica de 100A e 200A.

O aumento de temperatura para argônio na região do arco, próximo ao catodo (entre 2,7mm e 3,2mm para o argônio e entre 2,7mm e 3,4mm para o ar), resulta em valores máximos maiores do que os obtidos com o ar, para as três vazões, tanto para 100A quanto para 200A. As diferenças percentuais das temperatura máximas (maiores) para o argônio em relação ao ar são:

a) Para 100A (gráfico 6.19): 15,5% (5l/min), 15% (10l/min) e 13,8%(15l/min).
Portanto, considerando a média dos valores referentes às três razões, o argônio proporciona temperatura máxima (~22560K) aproximadamente 14,8% mais alta que o ar (~19230K).

b) Para 200A (gráfico 6.20): 12% (5l/min), 12,3% (10l/min) e 12,3% (15l/min). Portanto, considerando a média dos valores referentes às três vazões, o argônio proporciona temperatura máxima (~24260K) aproximadamente 12,1% mais alta que o ar (~21300K). Os perfis de temperatura do argônio e do ar se aproximam muito dentro da tocha no trecho entre as distâncias axiais 8mm e 13mm, tanto para 100A quanto para 200A (vide também os gráficos 6.7 a 6.10). As diferenças percentuais médias das três vazões na saída da tocha (13mm) são: - 0,7% (menor para o argônio que para o ar; ~13800K; 100A) e 1,7% (maior para o argônio que para o ar; ~15100K ; 200A).

Entre as distâncias axiais 13mm e 35mm (jato de plasma livre) a redução de temperatura dos perfis de ar para as três vazões é muito mais acentuada que a redução de temperatura dos perfis referentes ao argônio (vide também gráficos 6.7 a 6.10).

Após essa distância axial e até o final do domínio computacional (80mm) a redução de temperatura dos três perfis (três vazões) referentes ao ar é menos acentuada que a redução de temperatura dos perfis do argônio e os perfis se aproximam consideravelmente (vide também os gráficos 6.7 a 6.10), exceto o perfil de temperatura do ar de vazão 5l/min e corrente elétrica de 200A, que tem nova queda acentuada a partir da distância axial 56mm (vide também gráfico 6.10).

Na posição axial 80mm (final da tocha) as diferenças percentuais das temperaturas do argônio em relação ao ar são:

a) Para 100A (gráfico 6.19): 13,2% (5l/min), 16,8% (10l/min) e 21% (15l/min).
Portanto, considerando a média dos valores referentes às três vazões, o argônio proporciona temperatura (~7200K) aproximadamente 17% mais alta que o ar (~5900K).

b) Para 200A (gráfico 6.20): 21,8% (10l/min) e 29% (15l/min). Portanto, considerando a média dos valores referentes às vazões 10l/min e 15l/min, o argônio proporciona temperatura (~8600K) aproximadamente 25,4% mais alta que o ar (~6390K).

Com relação aos perfis de velocidade axial para o argônio e para o ar, tanto para 100A quanto 200A, ocorre uma inversão de comportamento: enquanto que as temperaturas máximas dos três perfis (três vazões) referentes ao argônio são mais altas que as referentes ao ar, as velocidades axiais dos três perfis (três vazões) referentes ao ar são mais altas que as referentes ao ar são mais altas que as referentes ao argônio.

As diferenças percentuais entre as velocidades axiais máximas para argônio e ar são:

a) Para 100A (gráfico 6.21): - 31,8% (5l/min), - 33,1% (10l/min) e - 35,7% (15l/min). Portanto, considerando a média dos valores referentes às três vazões, o argônio tem velocidade axial máxima (~170m/s; em ~8,2mm) aproximadamente - 33,5% mais baixa que o ar (~227m/s; em ~5,6mm).

b) Para 200A (gráfico 6.22): - 58,1% (5l/min), - 32,1% (10l/min) e - 8,7% (15l/min).
Portanto, considerando a média dos valores referentes às três vazões, o argônio tem velocidade axial máxima (~243m/s ; em ~11,9mm) aproximadamente - 33% mais baixa que o ar (~316 m/s ; em ~5,7 mm).

Observações:

Enquanto que o aumento de temperatura do gás-plasma devido ao aquecimento por efeito Joule é praticamente exponencial, tanto para o argônio (entre 2,7mm e 3,2mm, isto é, em 0,5mm de distância axial) quanto para o ar (entre 2,7mm e 3,4mm, isto é, em 0,7mm), para 100A e 200A, o aumento de velocidade axial do gás-plasma, devido à aceleração causada pela componente axial do vetor força de Lorentz e pela própria expansão do gás-plasma, ocorre numa distância axial média de 5,5mm (entre 2,7mm e 8,2mm) para o argônio e numa distância axial média de 2,9mm (entre 2,7mm e 5,6mm) para o ar, para 100A, e numa distância axial média de 9,2mm (entre 2,7mm e 11,9mm) para o argônio e numa distância axial média de 3mm (entre 2,7mm e 5,7mm) para o ar, para 200A.

- Conforme verificado anteriormente nos gráficos 6.11 a 6.14, as velocidades axiais máximas alcançadas pelo argônio e pelo ar com corrente de 100A e pelo ar com corrente de 200A, não são afetadas significativamente pela variação de vazão, porém para o argônio com corrente elétrica de 200A a velocidade axial máxima sofre efeito significativo da variação de vazão: 203m/s (5l/min), 237m/s (10l/min) e 289m/s (15l/mn).

Dentro da tocha e no jato livre, os perfis de velocidade axial para o ar decrescem acentuadamente e, a partir da distância axial ~20mm, todos os perfis de velocidade axial para o argônio apresentam valores superiores aos do ar (para 100A e 200A). Na distância axial 80mm (final do domínio computacional) as diferenças percentuais entre os valores de velocidade axial do argônio e do ar são:

- a) Para 100A (gráfico 6.21): 20,3% (5l/min), 8,9% (10l/min) e 8,5% (15l/min).
- b) Para 200A (gráfico 6.22): 25,1% (10l/min) e 40% (15l/min).

Nesta subseção foram apresentados os resultados de simulações realizadas com o código CTP para estudo de casos. Os resultados obtidos mostraram os efeitos das diferentes condições operacionais no escoamento de plasma e, embora não existam valores experimentais para comparações, os comportamentos físicos e os respectivos valores numéricos são coerentes com o esperado, na maior parte das regiões. Portanto, apesar da restrição da falta de comparações com valores experimentais, o código CTP apresentou resultados sensíveis e coerentes às diferentes condições operacionais simuladas, caracterizando-se assim, adequado aos propósitos esperados, isto é, uma ferramenta útil no auxílio ao desenvolvimento de projetos de tochas de plasma.

6.4 Efeito do turbilhonamento (swirl)

Gráfico 6.23 – Efeito do turbilhonamento (swirl) no perfil axial de temperatura (posição radial: eixo de simetria (r=0)). Condições operacionais: 250A; 0,59scmh (9,83 l/min).

Os gráficos 6.23 a 6.34 mostram o efeito do turbilhonamento (para diversos números de turbilhonamento) na temperatura do jato de plasma e os gráficos 6.35 a 6.41 mostram o efeito do turbilhonamento na velocidade axial do jato de plasma. Os gráficos 6.23 (condições operacionais do caso BES23) e 6.29 (condições operacionais do caso BES23) e 6.29 (condições operacionais do caso B24) mostram os perfis de temperatura em função da distância axial para a posição r=0 (eixo de simetria da tocha). Os gráficos 6.24, 6.25, 6.26, 6.27 e 6.28 (caso BES23) e os gráficos 6.30, 6.31, 6.32, 6.33 e 6.34 (caso BES24) apresentam os perfis radiais de temperatura para diversas posições axiais. O gráfico 6.35 mostra os perfis de velocidade axial em função da distância axial em r=0 (eixo de simetria da tocha) para o caso BES23. Os perfis de velocidade axial em função da casial em função da tocha) en caso de simetria da tocha) para o caso BES23.

da distância radial (para diversas posições axiais) são apresentados nos gráficos 6.36, 6.37, 6.38, 6.39, 6.40 e 6.41.

Gráfico 6.24 - Efeito do turbilhonamento (swirl) no perfil radial de temperatura (posição axial: 33mm). Condições operacionais: 250A; 0,59scmh (9,83 l/min).

Gráfico 6.25 - Efeito do turbilhonamento (swirl) no perfil radial de temperatura (posição axial: 45mm). Condições operacionais: 250A; 0,59scmh (9,83 l/min).

Verifica-se também o "achatamento" do perfil radial de velocidade axial do jato de plasma e do perfil radial de temperatura, na direção axial, devido ao arrasto com o gás ambiente, comportamento este relatado também por SCOTT, et al. (1989), MURPHY; KOVITYA (1993), WESTHOFF; SZEKELY (1991).

As curvas de temperatura (gráficos 6.23 a 6.34) com Sw=0 e Sw=1 praticamente coincidem, o que indica que um número de turbilhonamento maior é requerido para modificar o comportamento do arco. Apenas para Sw>3 (caso B23) e para Sw≥ 3(caso B24) o turbilhonamento afeta significativamente os perfis de temperatura (axial e radial). O aumento do momento da quantidade de movimento do jato de plasma devido ao aumento do turbilhonamento intensifica a troca de calor do jato com o gás ambiente e, em decorrência, acarreta a redução mais acentuada da temperatura (verificado nos gráficos de perfis axiais e nos gráficos de perfis radiais).

Com relação à velocidade axial, sua redução é acentuada significativamente para Sw≥3, devido ao aumento de dissipação de energia do jato que interage com o gás ambiente.

Gráfico 6.26 - Efeito do turbilhonamento (swirl) no perfil radial de temperatura (posição axial: 57mm). Condições operacionais: 250A; 0,59scmh (9,83 l/min).

Gráfico 6.27 - Efeito do turbilhonamento (swirl) no perfil radial de temperatura (posição axial: 69mm). Condições operacionais: 250A; 0,59scmh (9,83 l/min).

Gráfico 6.28 - Efeito do turbilhonamento (swirl) no perfil radial de temperatura (posição axial: 80mm). Condições operacionais: 250A; 0,59scmh (9,83 l/min).

Gráfico 6.29 – Efeito do turbilhonamento (swirl) no perfil axial de temperatura (posição radial: eixo de simetria (r=0)). Condições operacionais: 250A; 0,83scmh (13,83 l/min).

Gráfico 6.30 - Efeito do turbilhonamento (swirl) no perfil radial de temperatura (posição axial: 33mm). Condições operacionais: 250A; 0,83scmh (13,83 l/min).

Gráfico 6.31 - Efeito do turbilhonamento (swirl) no perfil radial de temperatura (posição axial: 45mm). Condições operacionais: 250A; 0,83scmh (13,83 l/min).

Gráfico 6.32 - Efeito do turbilhonamento (swirl) no perfil radial de temperatura (posição axial: 57mm). Condições operacionais: 250A; 0,83scmh (13,83 l/min).

Gráfico 6.33 - Efeito do turbilhonamento (swirl) no perfil radial de temperatura (posição axial: 69mm). Condições operacionais: 250A; 0,83scmh (13,83 l/min).

Gráfico 6.34 - Efeito do turbilhonamento (swirl) no perfil radial de temperatura (posição axial: 80mm). Condições operacionais: 250A; 0,83scmh (13,83 l/min).

Gráfico 6.35 - Perfis de velocidade axial em função da distância axial (posição radial: eixo de simetria (r=0)). Efeito do turbilhonamento (swirl). Condições operacionais:250A;0,59scmh(9,83l/min).

Gráfico 6.36 - Perfis de velocidade axial em função da distância radial nas posições axiais (jato de plasma): 33mm; 45mm; 57mm; 69mm; 80mm. Condições operacionais: 250A; 0,59scmh (9,83 l/min); Sw=5.

Gráfico 6.37 - Perfis de velocidade axial em função da distância radial na posição axial: 33mm. Efeito do turbilhonamento (swirl). Condições operacionais: 250A; 0,59scmh (9,83 l/min).

Gráfico 6.38 - Perfis de velocidade axial em função da distância radial na posição axial: 45mm. Efeito do turbilhonamento (swirl). Condições operacionais: 250A; 0,59scmh (9,83 l/min).

Gráfico 6.39 - Perfis de velocidade axial em função da distância radial na posição axial: 57mm. Efeito do turbilhonamento (swirl). Condições operacionais: 250A; 0,59scmh (9,83 l/min).

Gráfico 6.40 - Perfis de velocidade axial em função da distância radial na posição axial: 69mm. Efeito do turbilhonamento (swirl). Condições operacionais: 250A; 0,59scmh (9,83 l/min).

Gráfico 6.41 - Perfis de velocidade axial em função da distância radial na posição axial: 80mm. Efeito do turbilhonamento (swirl). Condições operacionais: 250A; 0,59scmh (9,83 l/min).

7 CONCLUSÕES

Neste trabalho objetivou-se apresentar a abordagem do tema de tese do autor e as atividades pertinentes até então desenvolvidas. O texto se inicia com a apresentação da justificativa do tema, motivação e objetivos. Na sequência, apresentaram-se os fundamentos de plasma e da tecnologia do plasma térmico, a revisão bibliográfica, com ênfase aos modelos de arcos de plasma, e a metodologia, na qual foi descrito o modelo desenvolvido: modelo matemático bidimensional (axissimétrico) do escoamento com turbilhonamento (swirl) em tochas de plasma térmico de arco não transferido que operam em corrente contínua (CC). Também foi apresentado o código computacional 2D denominado CTP (*Código Computacional para Simulação do Escoamento em Tochas de Plasma Térmico)*, desenvolvido para a implementação do modelo.

A revisão bibliográfica realizada permitiu verificar: que poucos modelos de tochas de plasma de arco não-transferido apresentam o turbilhonamento do gás/plasma; a importância do turbilhonamento nas tochas para a redução das taxas de erosão do anodo; que não foi realizado nenhum trabalho com um estudo sistemático do efeito do turbilhonamento no escoamento/arco de plasma. Isto provocou o interesse do autor em incluir em seu trabalho a simulação do turbilhonamento e o estudo sistemático dos seus efeitos no escoamento/arco de plasma.

As simulações iniciais tiveram como objetivo a comparação de seus resultados com resultados experimentais da literatura. A maior diferença obtida entre valores de temperatura experimentais e valores calculados foi -10%, e a média das diferenças obtidas nas comparações foi de aproximadamente ±3,2%. O modelo foi considerado apto à realização de investigações numéricas do escoamento em tochas de plasma e dos efeitos do turbilhonamento na interação arco/escoamento, que serão efetuados na sequência do trabalho.

Os resultados obtidos com as simulações "estudo de casos", realizadas com o CTP, mostraram os efeitos das diferentes condições operacionais no escoamento de plasma e, embora não existam valores experimentais para comparações, os

comportamentos físicos e os respectivos valores numéricos são coerentes com o esperado, na maior parte das regiões.

Assim, apesar da restrição da falta de comparações com valores experimentais, o código CTP apresentou resultados sensíveis e coerentes às diferentes condições operacionais, caracterizando-se adequado aos propósitos esperados, isto é, uma ferramenta útil no auxílio ao desenvolvimento de projetos de tochas de plasma.

Também foram efetuadas simulações para verificação do efeito do turbilhonamento nos perfis de temperatura e de velocidade. Destacam-se as seguintes observações:

As curvas de temperatura (gráficos 6.5 a 6.16) com Sw=0 e Sw=1 praticamente coincidem, o que indica que um número de turbilhonamento maior é requerido para modificar o comportamento do arco. Apenas para Sw>3 (caso B23) e para Sw≥ 3(caso B24) o turbilhonamento afeta significativamente os perfis de temperatura (axial e radial). O aumento do momento da quantidade de movimento do jato de plasma devido ao aumento do turbilhonamento intensifica a troca de calor do jato com o gás ambiente e, em decorrência, acarreta a redução mais acentuada da temperatura (verificado nos gráficos de perfis axiais e nos gráficos de perfis radiais).

Com relação à velocidade axial, sua redução é acentuada significativamente para Sw≥3, devido ao aumento de dissipação de energia do jato que interage com o gás ambiente.

Trabalhos futuros

Seguem as sugestões de trabalhos para a ampliação e o aperfeiçoamento do trabalho atual:

- elaboração/adaptação de um gerador de malhas mais flexível;

 elaboração/adaptação de um programa para geração automática de gráficos científicos;

- desenvolvimento de um código computacional tridimensional;

- ampliação do modelo e do código computacional para a injeção de partículas no jato de plasma;

- investigações experimentais conjuntas com as simulações numéricas para determinação do número de turbilhonamento mais favorável à redução da taxa de erosão do anodo em função de diferentes aplicações tecnológicas.

REFERÊNCIAS BIBLIOGRÁFICAS

ANGELES, P.J.P. **Estudo de tochas de plasma através da teoria da similaridade**. Dissertação de Mestrado, IF, UNICAMP, Campinas,2003.

BAUDRY, C. **Contribution à la modélisation instationnaire et tridimensionnelle du comportement dynamique de l'arc dans une torche de projection plasma**. Thèse pour obtenir le grade de Docteur, Universite de Limoges, France, 2003.

BIANCHINI, R. C. Modelagem e simulação de processos a plasma para tratamento de organo-clorados. Dissertação de Mestrado, IF,USP, São Paulo, 2000.

BOULOS, M. I. ; Thermal plasma processing. **IEEE: Transactions on plasma science**, v. 19, n. 6, p. 1078-1089, december 1991.

BOULOS, M. I.; FAUCHAIS, P.; PFENDER, E. **Thermal plasma: Fundamentals** and applications. New York: Plenum Press, 1994. v.1.

BUSSOLINI, M. Tochas a plasma: Características básicas para projeto e construção.

Tese de Doutorado, IEE, USP, SP, 2000.

CHEN, F. F. Introdution to plasma physics and controlled fusion. New York: Plenum Press, 1984.

CHEN, F. F. **Plasma physics: an encyclopedic view**. IPFR, University of California, Los Angeles, 1995.

CHEN, X.; HAN, P.; YU, L. Modeling of a dc arc plasma torch with a hydrogen-argon mixture as the working gas. **Thermal plasma torches and technologies**, vol. 1, p. 267-279, Russia, ed. O. P. Solonenko, 1997.

COWLING, T. G. Magnetohidrodinámica. Madrid: Editorial Alhambra, 1968.

DELALONDRE, C.; SIMONIN, O. Modelling of high intensity arcs including a nonequilibrium description of the cathode sheath. **Colloque de Physique** C5, Supp. N° 18, Tome 51, 1990.

Dilawari, A. H.; Szekely, J.; Batdorf, J.; Detering, R.; Shaw, C. B. The temperature profiles in an argon plasma issuing into an argon atmosphere: A comparison of measurements and predictions. Plasma Chem Plasma Process. 10, 2. p. 321-337, 1990.

ECKERT, E. R. G. ; PFENDER, E. Advances in Plasma Heat Transfer, University of Minnesota, Minnesota, USA, 1967.

FAUCHAIS, P.; VARDELLE, A. Thermal Plasmas, **IEEE: Transactions on plasma** science, v. 25, n. 6, p 1258-1280, december 1997.

FAVALLI, R. C. **Simulação de Tochas de Plasma de Arco Não Transferido.** Dissertação de Mestrado, Instituto de Física, Universidade de São Paulo, São Paulo, Brasil,1997.

FAVALLI, R. C.; SZENTE, R. N. Physical and mathematical modeling of non transferred plasma torches. **Brazilian Journal of Physics**, vol. 28, n^o 1, p. 25-34, 1998.

FEINMAN, J. **Plasma technology in metallurgical processing**. Grand Junction, USA, Feinman and Associates, 1987.

FRETON, P.; GLEIZES, A.; GONZALES, J. J.; HLINA, J.; SLECHTA, J. Experimental and theoretical investigations of a dc argon plasma jet at atmospheric pressure. **Proc. of 14th International Symposium on Plasma Chemistry**, Prague, Czech Republic, vol. 1, p. 343-348, 1999.

FRETON, P.; GONZALEZ, J. J.; GLEIZES, A. Comparison between a two-and a three-dimensional arc plasma configuration. **J. Phys. D: Appl. Phys.** 33, 2442-2452, 2000.

GLEIZES, A. ; GONZALEZ, J. J. ; FRETON, P. Thermal plasma modelling. J. Phys. D: Appl. Phys. 38, 153-183, 2005.

GONZALEZ, J. J.; FRETON, P.; GLEIZES, A. Comparison between a two-and a three-dimensional models: gas injection and arc attachment. **J. Phys. D: Appl. Phys.** 35, 3181-3191. 2002.

HSU, K. C.; ETEMADI, K.; PFENDER, E. Study of the free-burning high intensity argon arc. **J. Appl. Phys.** 54, p. 1293-1301, 1983.

JACKSON, J. D. Eletrodinâmica clássica. RJ: Guanabara Dois, 1983.

KADDANI, A.; ZAHRAI, S.; DELALONDRE, C.; SIMONIN, O. 3D modeling of unsteady high pressure arcs in argon. **J. Phys. D: Appl. Phys.** 28, p. 1-12, 1995.

KETTANI, M. A. ; HOYAUX, M. F. . **Plasma engineering**. London: London Butterworths, 1973.

KLINGER, L. **Simulation numérique 3d d'une torche à plasma par une méthode de volumes finis.** 2002. N° d'ordre 2678. Thèse (doctorat) -L'école Polytechnique, de Lausanne, France, 2002.

KOVITYA, P.; CRAM, L. E. A two-dimensional model of gas-tungsten welding arcs. **Welding Journal** 65, p. 34, 1986.

LEE, Y. C. **Modelling work in thermal plasma processing**. PhD thesis, University of Minnesota, Minnesota, USA, 1984.

LI, H. P.; CHEN, X. Three-dimensional modeling of a dc non-transferred arc plasma torch. **J. Phys. D: Appl. Phys.** 34, L99-L102. 2001.

LI, H. P.; PFENDER, E.; CHEN, X. Application of steenbeck's minimum principle for three-dimensional modeling of dc arc plasma torches. **J. Phys. D: Appl. Phys.** 36, p.1084-1096, 2003.

LI, H. P.; PFENDER, E. Three dimensional Modeling of the plasma spray process. **Journal of Thermal Spray Technology.** 16 v.(2) p. 245-260, 2007.

LOWKE, J. J.; KOVITYA, P.; SCHMIDT, H. P. Theory of free-burning arc columns including the influence of the cathode. **J. Phys. D: Appl. Phys.** 25, p. 1600-1606, 1992.

MAECKER, H. **Theory of thermal plasma and application to observed phenomena.** Discharge and plasma physics. Armidale, Australia, 1964.

MARIAUX, G.; VARDELLE, A. 3-D time-dependent modeling of the plasma spray process. Part 1: flow modeling. **International Journal of Thermal Sciences**. 44. p. 357-366, 2005.

MAZZA, A. **Studies of an arc plasma reaction for thermal plasma synthesis**. PhD thesis, University of Minnesota, Minnesota, USA, 1983.

MEILLOT, E.; GUENADOU, D.; BOURGEOIS, C. Three-dimension and transient D.C. plasma flow modeling. **Plasma Chem Plasma Process**. 28. p.69-84, 2008.

METAXAS, A. C. Foudations of electroheat: A unified approach. London: Wiley, 1996.

MITCHNER, M.; Kruger, C. H. Partially ionized gases. New York: Wiley, 1973.

MOREAU, E. et. al. Modeling the restrike mode operation of a dc plasma spray torch. **Journal of Thermal Spray Technology.** 15 v.(4) p. 524-530, december, 2006.

MURPHY, A B.; KOVITYA, P. Mathematical model and laser-scattering temperature measurements of a direct-current plasma torch discharging into air. **J. Appl. Phys.** 15, p.4759, 1993.

SAMARAS, D. G. **Theory of ion flow dynamics**. New York: Dover Publications, 1971.

SCHRÖTER, R. A. **Modelo de Reator a plasma para tratamento de cinzas de incineração**. Dissertação de Mestrado, Poli, USP, São Paulo, 2001.

SCOTT, D. A; KOVITYA, P.; HADDAD, G. N. Temperatures in the plume of a dc plasma torch. **J. Appl. Phys.** 66, p. 5232, 1989.

SPITZER, L. **Física de los gases totalmente ionizados**. Madrid: Editorial Alhambra, 1969.

SUN, X. ; HEBERLEIN, J. Fluid dynamic effects on plasma torch anode erosion. **Journal of Thermal Spray Technology.** 14v.(1) p. 39-44, march, 2005.

SZENTE, R. N. et al., **Recuperação de materiais de lodos galvânicos através de plasma térmico**. IPT, SP, 2000.

TRELLES, J. P.; HEBERLEIN, J. V. R. Simulation results of arc behavior in different plasma spray torches. **Journal of Thermal Spray Technology.** 15v.(4) p. 563-569, December, 2006.

VATAVUK, P. **Convecção Natural Transitória no Interior de um Recipiente Cilíndrico Vertical.** Tese de Doutorado, Escola Politécnica, Universidade de São Paulo, São Paulo, Brasil, 1996.

WESTHOFF, R.; SZEKELY, J. Model of fluid, heat flow, and electromagnetic pheomena in a nontransferred arc plasma torch. **J. Appl. Phys.** 70, p. 3455-3466, 1991.

ZHU, P.; LOWKE, J. J.; MORROW, R. A unified theory of free burning arcs, cathode sheaths and cathodes. J. Phys. D: Appl. Phys. 25, p. 1221-1230, 1992.

APÊNDICE A – Gráficos de perfis de temperatura e velocidade axial – Estudo de casos

Gráfico A.2 - Comparação dos perfis de velocidade axial em função da distancia axial, na posição radial: eixo de simetria da tocha (r = 0). Condições operacionais: gás: argônio; vazão de gás: 5, 10, 15, 20, 25, 30 l/min; corrente: 100 A; Sw=0.

Gráfico A.3 - Comparação dos perfis de temperatura em função da distancia axial, na posição radial: eixo de simetria da tocha (r = 0). Condições operacionais: gás: ar; vazão de gás: 5, 10, 15, 20, 25, 30 l/min; corrente: 100 A; Sw=0.

Gráfico A.4 - Comparação dos perfis de velocidade axial em função da distancia axial, na posição radial: eixo de simetria da tocha (r = 0). Condições operacionais: gás: ar; vazão de gás: 5, 10, 15, 20, 25, 30 l/min; corrente: 100 A; Sw=0.

Gráfico A.5 - Comparação dos perfis de temperatura em função da distancia axial, na posição radial: eixo de simetria da tocha (r = 0). Condições operacionais: gás: argônio; vazão de gás: 5, 10, 15 l/min; corrente: 200 A; Sw=0.

Gráfico A.6 - Comparação dos perfis de velocidade axial em função da distancia axial, na posição radial: eixo de simetria da tocha (r = 0). Condições operacionais: gás: argônio; vazão de gás: 5, 10, 15 l/min; corrente: 200 A; Sw=0.

Gráfico A.7 - Comparação dos perfis de temperatura em função da distancia axial, na posição radial: eixo de simetria da tocha (r = 0). Condições operacionais: gás: ar; vazão de gás: 5, 10, 15 l/min; corrente: 200 A; Sw=0.

Gráfico A.8 - Comparação dos perfis de velocidade axial em função da distancia axial, na posição radial: eixo de simetria da tocha (r = 0). Condições operacionais: gás: ar; vazão de gás: 5, 10, 15 l/min; corrente: 200 A; Sw=0.

Gráfico A.9 - Comparação dos perfis de temperatura em função da distancia axial, na posição radial: eixo de simetria da tocha (r = 0). Condições operacionais: gás: argônio; vazão de gás: 5, 10, 15 l/min; corrente: 100 A e 200 A; Sw=0.

Gráfico A.10 - Comparação dos perfis de velocidade axial em função da distancia axial, na posição radial: eixo de simetria da tocha (r = 0). Condições operacionais: gás: argônio; vazão de gás: 5, 10, 15 l/min; corrente: 100 A e 200 A; Sw=0.

Gráfico A.11 - Comparação dos perfis de temperatura em função da distancia axial, na posição radial: eixo de simetria da tocha (r = 0). Condições operacionais: gás: ar; vazão de gás: 5, 10, 15 l/min; corrente: 100 A e 200 A; Sw=0.

Gráfico A.12 - Comparação dos perfis de velocidade axial em função da distancia axial, na posição radial: eixo de simetria da tocha (r = 0). Condições operacionais: gás: ar; vazão de gás: 5, 10, 15 l/min; corrente: 100 A e 200 A; Sw=0.

Gráfico A.13 - Comparação dos perfis de temperatura em função da distancia axial, na posição radial: eixo de simetria da tocha (r = 0). Condições operacionais: gás: argônio e ar; vazão de gás: 5, 10, 15 l/min; corrente: 100 A; Sw=0.

Gráfico A.14 - Comparação dos perfis de velocidade axial em função da distancia axial, na posição radial: eixo de simetria da tocha (r = 0). Condições operacionais: gás: argônio e ar; vazão de gás: 5, 10, 15 l/min; corrente: 100 A; Sw=0.

Gráfico A.15 - Comparação dos perfis de temperatura em função da distancia axial, na posição radial: eixo de simetria da tocha (r = 0). Condições operacionais: gás: argônio e ar; vazão de gás: 5, 10, 15 l/min; corrente: 200 A; Sw=0.

Gráfico A.16 - Comparação dos perfis de velocidade axial em função da distancia axial, na posição radial: eixo de simetria da tocha (r = 0). Condições operacionais: gás: argônio e ar; vazão de gás: 5, 10, 15 l/min; corrente: 200 A; Sw=0.

Gráfico A.17 – Comparação dos perfis de temperatura em função da distancia axial, na posição radial: eixo de simetria da tocha (r = 0). Condições operacionais: gás: argônio; velocidade axial na seção de entrada da tocha: 4 m/s; corrente: 100 A; espessuras anulares A e B (tochas A e B).

Gráfico A.18 – Comparação dos perfis de velocidade axial em função da distancia axial, na posição radial: eixo de simetria da tocha (r = 0). Condições operacionais: gás: argônio; velocidade axial na seção de entrada da tocha: 4 m/s; corrente: 100 A; espessuras anulares A e B (tochas A e B).

Gráfico A.19 – Comparação dos perfis de temperatura em função da distancia axial, na posição radial: eixo de simetria da tocha (r = 0). Condições operacionais: gás: ar; velocidade axial na seção de entrada da tocha: 4 m/s; corrente: 100 A; espessuras anulares A e B (tochas A e B).

Gráfico A.20 – Comparação dos perfis de velocidade axial em função da distancia axial, na posição radial: eixo de simetria da tocha (r = 0). Condições operacionais: gás: ar; velocidade axial na seção de entrada da tocha: 4 m/s; corrente: 100 A; espessuras anulares A e B (tochas A e B).

Gráfico A.21 - Efeito do turbilhonamento (swirl) no perfil axial de temperatura (posição radial: eixo de simetria (r=0)). Condições operacionais: 280A; 10 l/min; gás: argônio; Sw=0, Sw=3, Sw=5.

Gráfico A.22 - Efeito do turbilhonamento (swirl) no perfil de velocidade axial (posição radial: eixo de simetria (r=0)). Condições operacionais: 280A; 10 l/min; gás: argônio; Sw=0, Sw=3, Sw=5.

APÊNDICE B – Tabelas de resultados de simulações - Estudo casos

dist axial	mt221	mt220	mt219	mt228	mt229	mt230	dif pos	indica	diminui
	temp	temp	temp	temp	temp	temp	dif neg	indica	aumenta
	Sw=0	Sw=0	Sw=0	Sw=0	Sw=0	Sw=0	temp	temp	temp
	5l/min	10l/min	15l/min	5l/min	10l/min	15l/min	dif perc	dif perc	dif perc
	argonio	argonio	argonio	argonio	argonio	argonio	100p200A	100p200A	100p200A
	100A	100A	100A	200A	200A	200A	5l/min	10l/min	15l/min
0	2950	2950	2950	2950	2950	2950	0	0	0
0,1	2950	2950	2950	2950	2950	2950	0	0	0
0,31	2950	2950	2950	2950	2950	2950	0	0	0
0,51	2950	2950	2950	2950	2950	2950	0	0	0
0,72	2950	2950	2950	2950	2950	2950	0	0	0
0,92	2950	2950	2950	2950	2950	2950	0	0	0
1,13	2950	2950	2950	2950	2950	2950	0	0	0
1,33	2950	2950	2950	2950	2950	2950	0	0	0
1,54	2950	2950	2950	2950	2950	2950	0	0	0
1,74	2950	2950	2950	2950	2950	2950	0	0	0
1,95	2950	2950	2950	2950	2950	2950	0	0	0
2,15	2950	2950	2950	2950	2950	2950	0	0	0
2,36	2950	2950	2950	2950	2950	2950	0	0	0
2,56	15000	15000	15000	15000	15000	15000	0	0	0
2,77	15000	15000	15000	15000	15000	15000	0	0	0
2,97	22100	22000	21900	23800	23900	24000	-7,69231	-8,63636	-9,58904
3,18	22600	22600	22500	24100	24300	24400	-6,63717	-7,52212	-8,44444
3,38	22400	22400	22300	24000	24200	24300	-7,14286	-8,03571	-8,96861
3,59	22000	22000	21900	23700	23900	24200	-7,72727	-8,63636	-10,5023
3,79	21400	21500	21400	23200	23600	23900	-8,41121	-9,76744	-11,6822
4	20900	21100	20900	22700	23200	23600	-8,61244	-9,95261	-12,9187
4,21	20500	20600	20500	22100	22700	23300	-7,80488	-10,1942	-13,6585
4,41	19800	20100	20000	21600	22300	22900	-9,09091	-10,9453	-14,5
4,62	19300	19600	19500	21100	21800	22600	-9,32642	-11,2245	-15,8974
4,82	18900	19200	19100	20700	21400	22200	-9,52381	-11,4583	-16,2304
5,03	18400	18800	18700	20200	21000	21900	-9,78261	-11,7021	-17,1123
5,23	18100	18400	18400	19700	20700	21600	-8,83978	-12,5	-17,3913
5,44	17700	18100	18000	19300	20300	21300	-9,03955	-12,1547	-18,3333
5,64	17400	17800	17800	19000	19900	21000	-9,1954	-11,7978	-17,9775
5,85	17200	17500	17500	18600	19600	20700	-8,13953	-12	-18,2857
6,05	16900	17300	17300	18300	19200	20500	-8,28402	-10,9827	-18,4971
6,26	16700	17000	17100	18000	18900	20200	-7,78443	-11,1765	-18,1287
6,46	16600	16900	16900	17800	18700	19900	-7,22892	-10,6509	-17,7515
6,67	16400	16700	16700	17500	18400	19600	-6,70732	-10,1796	-17,3653
6,87	16200	16500	16600	17300	18200	19400	-6,79012	-10,303	-16,8675
7,08	16100	16300	16500	17100	18000	19100	-6,21118	-10,4294	-15,7576
7,28	16000	16200	16300	17000	17700	18900	-6,25	-9,25926	-15,9509
7,49	15800	16100	16200	16800	17600	18700	-6,32911	-9,31677	-15,4321
7,69	15700	16000	16000	16700	17400	18500	-6,36943	-8,75	-15,625
7,9	15600	15800	15900	16600	17200	18300	-6,41026	-8,86076	-15,0943
8,1	15500	15700	15800	16500	17100	18100	-6,45161	-8,9172	-14,557
8,31									
	15400	15600	15700	16300	17000	18000	-5,84416	-8,97436	-14,6497

Tabela B.1 – Comparação - temperatura – argônio – 100A e 200A.

continuação...

								2	
-13,5484	-8,44156	-5,92105	17600	16700	16100	15500	15400	15200	8,72
-13,6364	-8,49673	-5,96026	17500	16600	16000	15400	15300	15100	8,92
-13,7255	-8,55263	-6	17400	16500	15900	15300	15200	15000	9,13
-13,8158	-8,60927	-6,04027	17300	16400	15800	15200	15100	14900	9,33
-13,9073	-8,66667	-6,08108	17200	16300	15700	15100	15000	14800	9,54
-13,3333	-8,72483	-6,12245	17000	16200	15600	15000	14900	14700	9,74
-12,6667	-8,78378	-6,16438	16900	16100	15500	15000	14800	14600	9,95
-13,4228	-9,52381	-6,16438	16900	16100	15500	14900	14700	14600	10,2
-13,5135	-8,84354	-6,2069	16800	16000	15400	14800	14700	14500	10,4
-13,6054	-8,90411	-6,25	16700	15900	15300	14700	14600	14400	10,6
-12,9252	-8,96552	-6,29371	16600	15800	15200	14700	14500	14300	10,8
-13,0137	-8,96552	-7,04225	16500	15800	15200	14600	14500	14200	11
-13,7931	-9,79021	-6,33803	16500	15700	15100	14500	14300	14200	11,2
-13,1034	-9,09091	-6,38298	16400	15600	15000	14500	14300	14100	11,4
-13,1944	-9,85915	-6,38298	16300	15600	15000	14400	14200	14100	11,6
-13,2867	-9,92908	-6,42857	16200	15500	14900	14300	14100	14000	11,8
-14,0845	-9,21986	-6,47482	16200	15400	14800	14200	14100	13900	12
-13,3803	-10	-6,47482	16100	15400	14800	14200	14000	13900	12,2
-14,1844	-9,28571	-6,52174	16100	15300	14700	14100	14000	13800	12,4
-13,4752	-9,35252	-7,29927	16000	15200	14700	14100	13900	13700	12,6
-13,5714	-10,1449	-7,35294	15900	15200	14600	14000	13800	13600	12,8
-13,6691	-10,219	-6,61765	15800	15100	14500	13900	13700	13600	13
-12,9496	-9,48905	-6,66667	15700	15000	14400	13900	13700	13500	13,2
-13,7681	-9,55882	-6,71642	15700	14900	14300	13800	13600	13400	13,4
-13,8686	-10,3704	-7,5188	15600	14900	14300	13700	13500	13300	13,6
-13,9706	-10,4478	-7,57576	15500	14800	14200	13600	13400	13200	13,8
-14,0741	-10,5263	-7,63359	15400	14700	14100	13500	13300	13100	14,1
-14,0741	-11,3636	-7,63359	15400	14700	14100	13500	13200	13100	14,3
-14,1791	-10,6061	-7,69231	15300	14600	14000	13400	13200	13000	14,5
-14,2857	-10,687	-6,92308	15200	14500	13900	13300	13100	13000	14,7
-14,3939	-11,5385	-6,92308	15100	14500	13900	13200	13000	13000	14,9
-15,2672	-10,7692	-6,15385	15100	14400	13800	13100	13000	13000	15,1
-14,5038	-10	-6,20155	15000	14300	13700	13100	13000	12900	15,3
-15,3846	-9,23077	-6,20155	15000	14200	13700	13000	13000	12900	15,5
-14,6154	-9,23077	-5,42636	14900	14200	13600	13000	13000	12900	15,7
-13,8462	-10,0775	-4,65116	14800	14200	13500	13000	12900	12900	15,9
-12,5	-7,03125	-3,14961	14400	13700	13100	12800	12800	12700	16,8
-11,0236	-5,55556	-3,2	14100	13300	12900	12700	12600	12500	18,4
-9,6	-4,83871	-4,06504	13700	13000	12800	12500	12400	12300	20
-8,13008	-5,7377	-4,16667	13300	12900	12500	12300	12200	12000	21,6
-9,16667	-7,56303	-5,12821	13100	12800	12300	12000	11900	11700	23,2
-10,1695	-7,69231	-7,07965	13000	12600	12100	11800	11700	11300	24,8
-11,2069	-10,6195	-7,27273	12900	12500	11800	11600	11300	11000	26,4
-14,2857	-10,8108	-7,40741	12800	12300	11600	11200	11100	10800	28
-14,5455	-12,037	-6,66667	12600	12100	11200	11000	10800	10500	29,6
-15,7407	-12,2642	-7,84314	12500	11900	11000	10800	10600	10200	31,2
-16,9811	-12,5	-7	12400	11700	10700	10600	10400	10000	32,8
-17,3077	-12,7451	-7,03364	12200	11500	10500	10400	10200	9810	34,4
-18,6275	-12	-7,06861	12100	11200	10300	10200	10000	9620	36
-17,8218	-11,5619	-7,10498	11900	11000	10100	10100	9860	9430	37,6
~									

...continuação

continuação...
continu	lação								
39,2	9260	9710	9930	9900	10900	11700	-6,91145	-12,2554	-17,8248
40,8	9090	9570	9790	9730	10700	11600	-7,0407	-11,8077	-18,4883
42,4	8930	9430	9670	9570	10500	11300	-7,16685	-11,3468	-16,8563
44	8780	9300	9550	9420	10300	11200	-7,28929	-10,7527	-17,2775
45,6	8640	9170	9430	9270	10200	11000	-7,29167	-11,2323	-16,649
47,2	8500	9050	9320	9130	10000	10900	-7,41176	-10,4972	-16,9528
48,8	8360	8940	9210	9000	9920	10700	-7,6555	-10,962	-16,1781
50,4	8230	8820	9110	8870	9800	10600	-7,77643	-11,1111	-16,3557
52	8110	8710	9010	8740	9680	10500	-7,76819	-11,1366	-16,5372
53,6	7990	8600	8910	8620	9580	10300	-7,88486	-11,3953	-15,6004
55,2	7870	8500	8810	8510	9470	10200	-8,13215	-11,4118	-15,7775
56,8	7760	8400	8720	8390	9370	10100	-8,11856	-11,5476	-15,8257
58,4	7650	8300	8630	8280	9270	10000	-8,23529	-11,6867	-15,8749
60	7540	8200	8540	8180	9170	9910	-8,48806	-11,8293	-16,0422
61,6	7440	8110	8450	8080	9080	9830	-8,60215	-11,9605	-16,3314
63,2	7340	8010	8370	7980	8990	9740	-8,71935	-12,2347	-16,368
64,8	7250	7920	8290	7880	8900	9660	-8,68966	-12,3737	-16,5259
66,4	7160	7840	8210	7780	8810	9580	-8,65922	-12,3724	-16,687
68	7080	7750	8130	7690	8730	9500	-8,61582	-12,6452	-16,8512
69,6	7010	7670	8050	7600	8640	9430	-8,41655	-12,6467	-17,1429
71,2	6950	7590	7980	7520	8560	9350	-8,20144	-12,78	-17,1679
72,8	6890	7510	7900	7430	8480	9280	-7,83745	-12,9161	-17,4684
74,4	6830	7430	7830	7350	8400	9210	-7,61347	-13,0552	-17,6245
76	6770	7360	7760	7270	8330	9140	-7,38552	-13,1793	-17,7835
77,6	6710	7280	7690	7200	8250	9070	-7,30253	-13,3242	-17,9454
79,2	6650	7210	7620	7120	8180	9000	-7,06767	-13,4535	-18,1102
80	6650	7210	7620	7120	8180	9000	-7,06767	-13,4535	-18,1102

dist axial	mt221	mt220	mt219	mt228	mt229	mt230	dif pos	indica	diminui
	vel	vel	vel	vel	vel	vel	dif neg	indica	aumenta
	Sw=0	Sw=0	Sw=0	Sw=0	Sw=0	Sw=0	vel	vel	vel
	argonio	argonio	argonio	argonio	argonio	argonio	dif perc	dif perc	dif perc
	5l/min	10l/min	15l/min	5l/min	10l/min	15l/min	100p200A	100p200A	100p200A
	100A	100A	100A	200A	200A	200A	5l/min	10l/min	15l/min
0,00	0,00	0,00	0,00	0	0	0			
0,21	0,00	0,00	0,00	0	0	0			
0,41	0,00	0,00	0,00	0	0	0			
0,62	0,00	0,00	0,00	0	0	0			
0,82	0,00	0,00	0,00	0	0	0			
1,03	0,00	0,00	0,00	0	0	0			
1,23	0,00	0,00	0,00	0	0	0			
1,44	0,00	0,00	0,00	0	0	0			
1,64	0,00	0,00	0,00	0	0	0			
1,85	0,00	0,00	0,00	0	0	0			
2,05	0,00	0,00	0,00	0	0	0			
2,26	0,00	0,00	0,00	0	0	0			
2,46	0,00	0,00	0,00	0	0	0			
2,67	0,00	0,00	0,00	0	0	0			
2,87	21,50	21,80	21,70	28	24,1	22,2	-30,2326	-10,5505	-2,30415
3,08	54,90	53,70	53,10	83,9	73,9	69,4	-52,8233	-37,6164	-30,6968
3,28	69,10	66,60	65,50	101	89,1	83,7	-46,165	-33,7838	-27,7863
3,49	79,90	76,50	74,90	115	103	97,7	-43,9299	-34,6405	-30,4406
3,69	87,90	83,90	82,50	127	116	111	-44,4824	-38,2598	-34,5455
3,90	94,00	89,60	88,80	135	127	124	-43,617	-41,7411	-39,6396
4,10	99,30	94,50	94,10	140	136	136	-40,9869	-43,9153	-44,5271
4,31	103,00	98,10	97,40	145	143	148	-40,7767	-45,7696	-51,9507
4,51	104,00	100,00	98,80	150	149	158	-44,2308	-49	-59,919
4,72	105,00	102,00	100,00	154	155	168	-46,6667	-51,9608	-68
4,92	112,00	102,00	101,00	157	161	177	-40,1786	-57,8431	-75,2475
5,13	121,00	110,00	109,00	158	167	184	-30,5785	-51,8182	-68,8073
5,33	130,00	119,00	118,00	159	171	191	-22,3077	-43,6975	-61,8644
5,54	139,00	128,00	127,00	159	173	197	-14,3885	-35,1563	-55,1181
5,74	146,00	135,00	134,00	159	174	203	-8,90411	-28,8889	-51,4925
5,95	152,00	142,00	140,00	164	175	208	-7,89474	-23,2394	-48,5714
6,15	157,00	147,00	145,00	169	176	212	-7,64331	-19,7279	-46,2069
6,36	162,00	152,00	149,00	175	176	214	-8,02469	-15,7895	-43,6242
6,56	165,00	156,00	153,00	180	181	217	-9,09091	-16,0256	-41,8301
6,77	167,00	159,00	156,00	184	187	219	-10,1796	-17,6101	-40,3846
6,97	169,00	161,00	159,00	188	192	220	-11,2426	-19,2547	-38,3648
7,18	171,00	163,00	161,00	192	198	220	-12,2807	-21,4724	-36,646
7,38	172,00	165,00	163,00	194	202	221	-12,7907	-22,4242	-35,5828
7,59	172,00	167,00	164,00	197	206	224	-14,5349	-23,3533	-36,5854
7,79	173,00	168,00	165,00	198	210	229	-14,4509	-25	-38,7879
8,00	173,00	168,00	166,00	200	213	233	-15,6069	-26,7857	-40,3614
8,21	172,00	169,00	167,00	201	216	237	-16,8605	-27,8107	-41,9162
8,41	172,00	169,00	167,00	202	218	241	-17,4419	-28,9941	-44,3114
8,62	171,00	169,00	168,00	202	221	245	-18,1287	-30,7692	-45,8333
								contin	uaçao

Tabela B.2 – Comparação – velocidade axial – argônio – 100A e 200A.

-47,619	-31,3609	-18,7135	248	222	203	168,00	169,00	171,00	8,82
-49,4048	-32,5444	-19,4118	251	224	203	168,00	169,00	170,00	9,03
-50,5952	-33,9286	-20,1183	253	225	203	168,00	168,00	169,00	9,23
-52,381	-34,5238	-20,2381	256	226	202	168,00	168,00	168,00	9,44
-54,491	-35,3293	-21,6867	258	226	202	167,00	167,00	166,00	9,64
-55,6886	-36,747	-22,4242	260	227	202	167,00	166,00	165,00	9,85
-56,2874	-37,3494	-22,561	261	228	201	167,00	166,00	164,00	10,10
-58,4337	-38,1818	-23,4568	263	228	200	166,00	165,00	162,00	10,30
-59,0361	-39,6341	-24,2236	264	229	200	166,00	164,00	161,00	10,50
-61,2121	-40,4908	-25,1572	266	229	199	165,00	163,00	159,00	10,70
-62,4242	-41,358	-25,3165	268	229	198	165,00	162,00	158,00	10,90
-63,0303	-42,236	-26,1146	269	229	198	165,00	161,00	157,00	11,10
-64,6341	-43,75	-26,2821	270	230	197	164,00	160,00	156,00	11,30
-65,2439	-44,6541	-27,9221	271	230	197	164,00	159,00	154,00	11,50
-67,4847	-46,2025	-28,1046	273	231	196	163,00	158,00	153,00	11,70
-68,7117	-46,2025	-28,9474	275	231	196	163,00	158,00	152,00	11,90
-69,9387	-47,7707	-29,8013	277	232	196	163,00	157,00	151,00	12,10
-71,1656	-48,4076	-29,8013	279	233	196	163,00	157,00	151,00	12,30
-71,9512	-49,0446	-31,3333	282	234	197	164,00	157,00	150,00	12,50
-73,7805	-51,2821	-31,3333	285	236	197	164,00	156,00	150,00	12,70
-74,3902	-51,2821	-32,2148	286	236	197	164,00	156,00	149,00	12,90
-75	-52,9032	-33,1081	287	237	197	164,00	155,00	148,00	13,10
-75,6098	-53,8961	-33,3333	288	237	196	164,00	154,00	147,00	13,30
-76,6871	-54,902	-35,1724	288	237	196	163,00	153,00	145,00	13,50
-78,3951	-55,9211	-35,4167	289	237	195	162,00	152,00	144,00	13,70
-79,5031	-56,2914	-36,3636	289	236	195	161,00	151,00	143,00	13,90
-80,625	-57,3333	-36,6197	289	236	194	160,00	150,00	142,00	14,20
-81,761	-58,7838	-36,8794	289	235	193	159,00	148,00	141,00	14,40
-82,9114	-59,8639	-36,4286	289	235	191	158,00	147,00	140,00	14,60
-84,0764	-60,274	-36,6906	289	234	190	157,00	146,00	139,00	14,80
-84,6154	-60,6897	-36,2319	288	233	188	156,00	145,00	138,00	15,00
-87,013	-60,4167	-36,4964	288	231	187	154,00	144,00	137,00	15,20
-87,5817	-60,8392	-37,037	287	230	185	153,00	143,00	135,00	15,40
-88,1579	-61,2676	-35,8209	286	229	182	152,00	142,00	134,00	15,60
-88,7417	-62,1429	-36,3636	285	227	180	151,00	140,00	132,00	15,80
-88,6667	-61,1511	-36,1538	283	224	177	150,00	139,00	130,00	16,00
-91,4894	-61,5385	-36,6667	270	210	164	141,00	130,00	120,00	17,60
-94,7761	-63,9344	-37,5	261	200	154	134,00	122,00	112,00	19,20
-95,3125	-64,6552	-38,4615	250	191	144	128,00	116,00	104,00	20,80
-96,7213	-66,9725	-38,5729	240	182	134	122,00	109,00	96,70	22,40
-99,1379	-67,3077	-40	231	174	126	116,00	104,00	90,00	24,00
-100,901	-69,0428	-40,1425	223	166	118	111,00	98,20	84,20	25,60
-102,83	-69,1649	-39,7985	215	158	111	106,00	93,40	79,40	27,20
-102,941	-68,9038	-38,8518	207	151	104	102,00	89,40	74,90	28,80
-102,634	-68,2243	-39,1549	200	144	98,8	98,70	85,60	71,00	30,40
-102,518	-67,8832	-38,9053	193	138	93,9	95,30	82,20	67,60	32,00
-101,517	-68,1416	-38,7597	186	133	89,5	92,30	79,10	64,50	33,60
-101,117	-66,4482	-38,3495	180	127	85,5	89,50	76,30	61,80	35,20
-100,23	-65,3117	-38,2799	174	122	82	86,90	73,80	59,30	36,80
-98,5816	-65,2661	-38,2456	168	118	78,8	84,60	71,40	57,00	38,40
~									

•	continu	iaçao								
	40,00	54,90	69,20	82,40	75,9	114	163	-38,2514	-64,7399	-97,8155
	41,60	53,00	67,20	80,30	73,2	110	158	-38,1132	-63,6905	-96,7621
	43,20	51,20	65,30	78,40	70,7	107	153	-38,0859	-63,8591	-95,1531
	44,80	49,60	63,50	76,60	68,4	104	150	-37,9032	-63,7795	-95,8225
	46,40	48,00	61,90	74,80	66,3	101	146	-38,125	-63,1664	-95,1872
	48,00	46,60	60,30	73,20	64,3	98,2	142	-37,9828	-62,8524	-93,9891
	49,60	45,30	58,80	71,70	62,5	95,7	138	-37,9691	-62,7551	-92,4686
	51,20	44,10	57,40	70,20	60,7	93,3	135	-37,6417	-62,5436	-92,3077
	52,80	42,90	56,10	68,80	59,1	91,1	132	-37,7622	-62,3886	-91,8605
	54,40	41,90	54,90	67,50	57,6	88,9	129	-37,4702	-61,9308	-91,1111
	56,00	40,90	53,70	66,20	56,2	86,9	127	-37,4083	-61,825	-91,8429
	57,60	39,90	52,60	65,00	54,9	85	124	-37,594	-61,597	-90,7692
	59,20	39,00	51,50	63,90	53,6	83,2	122	-37,4359	-61,5534	-90,9233
	60,80	38,20	50,50	62,80	52,4	81,5	119	-37,1728	-61,3861	-89,4904
	62,40	37,40	49,60	61,70	51,3	79,8	117	-37,1658	-60,8871	-89,6272
	64,00	36,60	48,70	60,70	50,2	78,3	115	-37,1585	-60,7803	-89,4563
	65,60	35,90	47,80	59,80	49,2	76,8	113	-37,0474	-60,6695	-88,9632
	67,20	35,20	47,00	58,80	48,2	75,4	111	-36,9318	-60,4255	-88,7755
	68,80	34,60	46,20	58,00	47,3	74	109	-36,7052	-60,1732	-87,931
	70,40	34,00	45,50	57,10	46,5	72,7	107	-36,7647	-59,7802	-87,3905
	72,00	33,50	44,80	56,30	45,7	71,5	106	-36,4179	-59,5982	-88,2771
	73,60	33,00	44,10	55,60	44,9	70,4	104	-36,0606	-59,6372	-87,0504
	75,20	32,50	43,60	55,00	44,3	69,3	103	-36,3077	-58,945	-87,2727
	76,80	32,20	43,10	54,50	43,8	68,5	102	-36,0248	-58,9327	-87,156
	78,40	32,00	42,90	54,20	43,5	68,1	101	-35,9375	-58,7413	-86,3469
	80,00	32,00	42,90	54,20	43,5	68,1	101	-35,9375	-58,7413	-86,3469

.... ñ

	dist axial	mt226	mt225	mt224	mt238	mt239	mt240	dif pos	indica	diminui
		temp	temp	temp	temp	temp	temp	dif neg	indica	aumenta
Si/min 10/min 15/min 11/min 15/min 11/min 11/min<		Sw=0	Sw=0	Sw=0	Sw=0	Sw=0	Sw=0	temp	temp	temp
arararararararararbrow100p200A100p20A		5l/min	10l/min	15l/min	5l/min	10l/min	15l/min	dif perc	dif perc	dif perc
100A100A100A200A200A51/min10/min151/min0301030103010301030103010301030100000,13010301030103010301030103010301000000,513010301030103010301030103010301000 <td></td> <td>ar</td> <td>ar</td> <td>ar</td> <td>ar</td> <td>ar</td> <td>ar</td> <td>100p200A</td> <td>100p200A</td> <td>100p200A</td>		ar	ar	ar	ar	ar	ar	100p200A	100p200A	100p200A
0 3010 30		100A	100A	100A	200A	200A	200A	5l/min	10l/min	15l/min
0 3010 3010 3010 3010 3010 0 0 0 0,1 3010 3010 3010 3010 3010 3010 0 0 0 0,51 3010 3010 3010 3010 3010 3010 0 0 0 0 0,72 3010 3010 3010 3010 3010 3010 0										
0.1 3010 3010 3010 3010 3010 0 0 0.31 3010 3010 3010 3010 3010 3010 0 0 0 0.72 3010 3010 3010 3010 3010 3010 0	0	3010	3010	3010	3010	3010	3010	0	0	0
0,31 3010 3010 3010 3010 3010 0 0 0,51 3010 3010 3010 3010 3010 3010 0 0 0 0,72 3010 3010 3010 3010 3010 3010 3010 0 0 0 0 1,33 3010 3010 3010 3010 3010 3010 0	0,1	3010	3010	3010	3010	3010	3010	0	0	0
0.51 3010 3010 3010 3010 3010 3010 0 0 0,72 3010 3010 3010 3010 3010 3010 0 0 0 0,92 3010 3010 3010 3010 3010 3010 0 0 0 1,13 3010 3010 3010 3010 3010 3010 0 0 0 0 1,54 3010 3010 3010 3010 3010 3010 0 <td< td=""><td>0,31</td><td>3010</td><td>3010</td><td>3010</td><td>3010</td><td>3010</td><td>3010</td><td>0</td><td>0</td><td>0</td></td<>	0,31	3010	3010	3010	3010	3010	3010	0	0	0
0,72 3010 3010 3010 3010 3010 3010 0 0 0,92 3010 3010 3010 3010 3010 3010 0 0 0 1,13 3010 3010 3010 3010 3010 3010 0 0 0 0 1,54 3010 3010 3010 3010 3010 3010 0	0,51	3010	3010	3010	3010	3010	3010	0	0	0
0,92 3010 3010 3010 3010 3010 0 0 0 1,13 3010 3010 3010 3010 3010 3010 0 0 0 1,43 3010 3010 3010 3010 3010 3010 0 0 0 0 1,54 3010 3010 3010 3010 3010 3010 0 <td>0,72</td> <td>3010</td> <td>3010</td> <td>3010</td> <td>3010</td> <td>3010</td> <td>3010</td> <td>0</td> <td>0</td> <td>0</td>	0,72	3010	3010	3010	3010	3010	3010	0	0	0
1,13 3010 3010 3010 3010 3010 3010 0 0 0 1,53 3010 3010 3010 3010 3010 3010 0 0 0 1,74 3010 3010 3010 3010 3010 3010 3010 0 0 0 0 2,15 3010 3010 3010 3010 3010 3010 3010 0 <t< td=""><td>0,92</td><td>3010</td><td>3010</td><td>3010</td><td>3010</td><td>3010</td><td>3010</td><td>0</td><td>0</td><td>0</td></t<>	0,92	3010	3010	3010	3010	3010	3010	0	0	0
1,33 3010 3010 3010 3010 3010 0 0 0 1,74 3010 3010 3010 3010 3010 3010 0 0 0 1,74 3010 3010 3010 3010 3010 3010 0 0 0 0 2,15 3010 3010 3010 3010 3010 3010 0 <td>1,13</td> <td>3010</td> <td>3010</td> <td>3010</td> <td>3010</td> <td>3010</td> <td>3010</td> <td>0</td> <td>0</td> <td>0</td>	1,13	3010	3010	3010	3010	3010	3010	0	0	0
1,54 3010 <th< td=""><td>1,33</td><td>3010</td><td>3010</td><td>3010</td><td>3010</td><td>3010</td><td>3010</td><td>0</td><td>0</td><td>0</td></th<>	1,33	3010	3010	3010	3010	3010	3010	0	0	0
1,74 3010 3010 3010 3010 3010 0 0 1,95 3010 3010 3010 3010 3010 3010 0 0 0 2,15 3010 3010 3010 3010 3010 3010 3010 0 0 0 2,36 3100 15000 15000 15000 15000 0 0 0 0 2,77 15000 15000 15000 15000 15000 -7,7778 -7,18232 -7,14286 3,18 19000 19100 19300 21000 21100 -10 -9,94764 -9,32642 3,38 19100 19200 19400 21200 21100 -11,021 -11,0526 -10,4167 3,79 18800 18700 18800 20600 20800 21000 21101 1,10514 -11,252 -10,4167 4,21 17700 17900 18100 19600 19800 11,602 -11,454 -11,256 -10,4167 4,421 17400 17600	1,54	3010	3010	3010	3010	3010	3010	0	0	0
1,95 3010 0 0 0 2,56 15000 15000 15000 15000 15000 15000 1500 0 0 0 0 2,97 18000 18100 18200 19400 19400 19400 19400 10,944 10,9375 10,393 3,18 19000 19200 19400 21200 21200 21100 -11,7021 -11,625 -10,4167 3,79 18500 18700 18800 20600 20800 -11,814 -11,229 -11,1702 -11,474 -10,8180 4,21 17700 17900 18800 20800 20800 -11,444 -11,256 -10,857 4,42 1700 17900 17800 <td>1,74</td> <td>3010</td> <td>3010</td> <td>3010</td> <td>3010</td> <td>3010</td> <td>3010</td> <td>0</td> <td>0</td> <td>0</td>	1,74	3010	3010	3010	3010	3010	3010	0	0	0
2,15 3010 0 0 0 2,56 15000 15000 15000 15000 15000 15000 15000 0 0 0 0 2,77 15000 15000 15000 15000 15000 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 150	1,95	3010	3010	3010	3010	3010	3010	0	0	0
2,36 3010 3010 3010 3010 3010 0 0 2,56 15000 15000 15000 15000 15000 0 0 0 2,77 15000 15000 15000 15000 15000 0 0 0 2,97 18000 18100 13200 19400 19500 -7,7778 -7,14232 -7,14286 3,18 19000 19200 20900 21100 -10,99476 -9,32642 3,38 19100 19200 19400 21200 21100 -11,7021 -11,0526 -10,4167 3,79 18800 18000 19800 20200 20000 20200 -11,6022 -11,4754 -10,818 4,21 17700 17800 19800 19800 -11,4943 -11,636 -11,236 4,41 17400 17300 17500 19800 19800 -11,4943 -10,6571 4,42 16900 17100 17300	2,15	3010	3010	3010	3010	3010	3010	0	0	0
2,56 15000 15000 15000 15000 15000 15000 0 0 2,77 15000 15000 15000 15000 15000 0 0 0 2,97 18000 18100 18200 19400 19400 21000 21100 -7,7778 7,18232 7,14286 3,18 19000 19200 21200 21100 -10,9948 -10,9375 -10,3033 3,59 18800 19000 19200 21000 21100 21200 -11,7021 -11,7526 -10,4167 3,79 18500 18700 18800 20600 20800 20900 -11,4943 -11,229 -11,1702 4 11700 17900 18100 19800 20000 20200 -11,4943 -11,3636 -11,236 4,41 17400 17600 17800 19400 19100 -11,4943 -11,3636 -11,236 4,62 17100 17300 18600 18800	2,36	3010	3010	3010	3010	3010	3010	0	0	0
2,77 15000 15000 15000 15000 15000 0 0 2,97 18000 18100 18200 19400 19400 19500 -7,7778 -7,18232 -7,14286 3,18 19000 19100 19300 20900 21000 21100 -10 -9,94764 -9,32642 3,38 19100 19200 19200 21000 21000 21000 -10,9948 10,9375 -10,3039 3,59 18800 19000 19200 21000 21000 211,702 -11,0526 -10,4167 3,79 18500 18700 18800 20600 20800 20100 -11,3514 -11,229 -11,1702 4 18100 18300 18600 19800 -11,4943 -11,636 -11,236 4,21 17100 17300 18600 18800 19400 -10,052 -10,523 -10,4046 5,03 16700 1700 18800 18800 -9,5804	2,56	15000	15000	15000	15000	15000	15000	0	0	0
2,97180001810018200194001940019500-7,7778-7,18232-7,142863,18190001910019300209002100021100-110-9,94764-9,326423,381910019200212002110021100-11,021-11,0526-10,41673,59188001900019200210002100021000-11,7021-11,0526-10,41673,791850018700188002000020000-11,6122-11,4754-10,81084,21177001790018100198002000020200-11,8644-11,7318-11,6224,41174001760017800194001960019800-11,443-11,536-11,2364,62171001730017500190001930019100-10,0592-0,5263-10,40665,0316700160001710018300188009,5808+10,0592-9,941525,2316600166001660017700180006,70732-7,87879-8,433735,64164001650016600177001780018200-7,27273-8,43373-8,333335,641640016500166001770017400-6,2831-5,52147-7,31707-7,878796,05162001630016400170001740017600-4,9327-5,52147-6,097566,64615800162001660016	2,77	15000	15000	15000	15000	15000	15000	0	0	0
3,18 19000 19100 19300 20900 21000 21100 -10 -9,94764 -9,32642 3,38 19100 19200 19400 21200 21100 21400 -10,9948 -10,9375 -10,3033 3,59 18800 19000 19200 21000 21100 21200 -11,7021 -11,0526 -10,4167 3,79 18500 18700 18800 20200 20400 20200 -11,6022 -11,4754 -10,8108 4,21 17700 17900 18100 19800 19000 19800 -11,9443 -11,3636 -11,236 4,62 17100 17300 17500 19000 19300 19100 -10,0592 -10,5263 -10,466 5,03 16700 16900 17100 18300 18800 -8,43373 -8,2287 -9,46746 5,23 16600 16600 17500 17800 18800 -6,7273 -8,43373 -8,33333 5,64 16400	2,97	18000	18100	18200	19400	19400	19500	-7,77778	-7,18232	-7,14286
3,38 19100 19200 19400 21200 21300 21400 -10,948 -10,9375 -10,3093 3,59 18800 19000 19200 21000 21100 21200 -11,7021 -11,0526 -10,4167 3,79 18500 18700 18800 20600 20800 20900 -11,3514 -11,229 -11,1702 4 18100 18300 18500 20200 20400 20500 -11,6022 -11,4754 -10,8108 4,21 17700 17900 18100 19800 19100 -11,4943 -11,366 -11,236 4,42 17100 17300 17500 19000 19100 -10,0592 -10,5263 -10,0444 4,62 16900 17100 18300 18800 -9,58084 -10,0592 -9,94152 5,33 16600 16600 17500 18000 18200 -7,27273 -8,43373 -8,3333 5,64 16400 16500 1700	3,18	19000	19100	19300	20900	21000	21100	-10	-9,94764	-9,32642
3,59 18800 19000 19200 21000 21100 21200 -11,7021 -11,0526 -10,4167 3,79 18500 18700 18800 20600 20800 20900 -11,3514 -11,2299 -11,1702 4 18100 18300 18500 20200 20400 20500 -11,6022 -11,4754 -10,8108 4,21 17700 17900 18100 19800 20000 20200 -11,8644 -11,7318 -11,6022 4,41 17400 17300 17500 19000 19300 19000 -10,0592 -10,5571 4,82 16900 17100 17300 18600 18800 -9,58084 -10,0592 -9,94152 5,23 16600 16800 17700 18800 18200 -7,27273 -8,43373 -8,33333 5,64 16400 16500 17200 17600 17800 -5,52147 -7,31707 -7,87879 6,05 16200 16300 <	3,38	19100	19200	19400	21200	21300	21400	-10,9948	-10,9375	-10,3093
3,79185001870018800206002080020900-11,3514-11,2299-11,17024181001830018500202002040020500-11,6022-11,4754-10,81084,21177001790018100198002000020200-11,8644-11,7318-11,60224,41174001760017800194001960019800-11,4943-11,3636-11,2364,62171001730017500190001930019400-11,1111-11,5607-10,85714,82169001710017300186001890019100-10,0592-10,5263-10,40465,0316700169001710018800188009,58084-10,0592-9,941525,23166001660016001800018200-7,27273-8,43373-8,928575,441650016600177001800018200-7,27273-8,43373-8,33335,641640016500172001760017800-6,7032-7,87879-8,43735,851630016400165001720017400-6,28931-5,52147-6,07566,65152001630016600167001700017200-5,6622-4,93827-5,521476,6715800159001660016600166001690017100-5,06329-5,60387,781550015800166001660016600	3,59	18800	19000	19200	21000	21100	21200	-11,7021	-11,0526	-10,4167
4 18100 18300 18500 20200 20400 20500 -11,6022 -11,4754 -10,8108 4,21 17700 17900 18100 19800 20000 20200 -11,8644 -11,7318 -11,6022 4,41 17400 17600 17800 19400 19800 -11,4943 -11,3636 -11,236 4,62 17100 17300 17500 19000 19300 19400 -11,111 -11,5607 -10,8571 4,82 16900 17100 17300 18600 18800 -9,58084 -10,0592 -9,94152 5,23 16600 16800 16900 18000 18800 -8,43373 -8,92857 -9,46746 5,44 16500 16600 16800 17700 17800 18200 -7,2727 -8,43373 -8,33333 5,64 16400 16500 17200 17800 15800 -6,74847 -7,31707 -7,87879 6,05 16200 16300 <	3,79	18500	18700	18800	20600	20800	20900	-11,3514	-11,2299	-11,1702
4,21177001790018100198002000020200-11,8644-11,7318-11,60224,41174001760017800194001960019800-11,4943-11,3636-11,2364,62171001730017500190001930019400-11,1111-11,5607-10,85714,82169001710017300186001880019100-10,0592-10,5263-10,40465,03167001690017100183001880018800-9,58084-10,0592-9,941525,23166001660016600177001800018200-7,27273-8,43373-8,333335,64164001650016600172001780018000-6,70732-7,87879-8,433735,85163001640016500172001760017800-5,52147-7,31707-7,878796,051620016300164001700017400-6,28931-5,52147-6,097566,461580016200163001660017100-5,6622-4,93827-5,521476,67158001590016600166001670017200-5,6622-4,93827-5,521476,67158001590016600166001670017200-5,6622-4,93827-5,521476,67158001590016600166001660017100-5,6622-4,93827-5,521476,6715800 <td>4</td> <td>18100</td> <td>18300</td> <td>18500</td> <td>20200</td> <td>20400</td> <td>20500</td> <td>-11,6022</td> <td>-11,4754</td> <td>-10,8108</td>	4	18100	18300	18500	20200	20400	20500	-11,6022	-11,4754	-10,8108
4,41174001760017800194001960019800-11,4943-11,3636-11,2364,62171001730017500190001930019400-11,1111-11,5607-10,85714,82169001710017300186001890019100-10,0592-10,5263-10,40465,03167001690017100183001860018800-9,58084-10,0592-9,941525,23166001680016900180001830018500-8,43373-8,92857-9,467465,44165001660016600177001800018200-7,27273-8,43373-8,333335,64164001650016600177001780017800-5,52147-7,31707-7,878796,05162001630016400170001770017600-4,93827-6,74847-7,317076,26159001630016400169001770017400-5,6662-4,93827-5,521476,67158001620016300166001690017100-5,6662-4,93827-5,521476,67158001590016200166001660016900-5,09554-5,03145-4,30286,87157001590016200166001660016800-5,12821-5,06329-5,66387,78155001580015900164001650016700-5,09554-5,06329-5,06329 <t< td=""><td>4,21</td><td>17700</td><td>17900</td><td>18100</td><td>19800</td><td>20000</td><td>20200</td><td>-11,8644</td><td>-11,7318</td><td>-11,6022</td></t<>	4,21	17700	17900	18100	19800	20000	20200	-11,8644	-11,7318	-11,6022
4,62171001730017500190001930019400-11,1111-11,5607-10,85714,82169001710017300186001890019100-10,0592-10,5263-10,40465,03167001690017100183001860018800-9,58084-10,0592-9,941525,23166001680016900180001830018500-8,43373-8,92857-9,467465,44165001660016800177001800018200-7,27273-8,43373-8,333335,64164001650016600172001760017800-6,70732-7,87879-8,433735,85163001640016500172001760017800-5,52147-7,31707-7,878796,05162001630016400169001720017400-6,28931-5,52147-6,097566,64158001620016300166001690017100-5,6622-4,93827-5,521476,671580015900166001690017100-5,6622-4,93827-5,521476,671580015900166001660016800-5,12821-5,03145-4,320997,081560015800156001660016600-5,16129-5,06329-5,663287,28155001570015800163001660016600-5,16129-5,06329-5,063297,691540015600<	4,41	17400	17600	17800	19400	19600	19800	-11,4943	-11,3636	-11,236
4,82169001710017300186001890019100-10,0592-10,5263-10,40465,03167001690017100183001860018800-9,58084-10,0592-9,941525,23166001680016900180001830018500-8,43373-8,92857-9,467465,44165001660016800177001800018200-7,27273-8,43373-8,333335,64164001650016600175001780018000-6,70732-7,87879-8,433735,851630016400165001720017600-17000-7,27273-8,43373-7,317076,051620016300164001700017400-6,28931-5,52147-6,097566,64158001620016300166001700017100-5,6662-4,93827-5,521476,67158001590016300166001690017100-5,6662-4,93827-5,521476,67158001590016200165001670016900-5,06329-5,663837,081560015800162001660016600-5,12821-5,06329-5,663837,281550015800163001650016600-5,1484-5,12821-4,430387,491550015800163001650016600-5,1484-5,12821-4,430387,915300156001580016300<	4,62	17100	17300	17500	19000	19300	19400	-11,1111	-11,5607	-10,8571
5,03167001690017100183001860018800-9,58084-10,0592-9,941525,23166001680016900180001830018500-8,43373-8,9257-9,467465,44165001660016600177001800018200-7,27273-8,43373-8,33335,64164001650016600175001780018000-6,70732-7,87879-8,433735,85163001640016500172001760017800-6,70732-7,87879-8,433736,0516200163001640017000174006,28931-5,52147-7,317076,26159001630016400169001720017400-6,28931-5,52147-6,097566,46158001620016300166001690017100-5,6962-4,93827-5,521476,67158001590016300166001690017100-5,0954-5,03145-4,320997,08150015800162001660016800-5,1021-5,06329-5,660387,28155001580015800163001660016600-5,1012-5,0954-5,031457,491550015800163001660016600-5,1012-5,0954-5,063297,691540015800162001660016600-5,1012-5,0954-5,063297,69154001580016200164	4,82	16900	17100	17300	18600	18900	19100	-10,0592	-10,5263	-10,4046
5,23166001680016900180001830018500-8,43373-8,92857-9,467465,44165001660016800177001800018200-7,27273-8,43373-8,333335,64164001650016600175001780018000-6,70732-7,87879-8,433735,85163001640016500172001760017800-5,52147-7,31707-7,878796,05162001630016400170001770017700-4,93827-6,74847-7,317076,26159001630016400169001720017400-6,28931-5,52147-6,097566,46158001620016300166001690017200-5,6962-4,93827-5,521476,67158001590016300166001690017100-5,6962-4,93827-5,521476,671580015900166001690017100-5,6962-4,93827-5,521476,671580015900166001690017100-5,6962-4,93827-5,521476,671580015900166001690017100-5,6962-4,93827-5,521476,671580015900166001690016700-5,0954-5,03145-4,320997,081590015900164001660016600-5,16129-5,06329-5,660387,2815500157001580016300	5,03	16700	16900	17100	18300	18600	18800	-9,58084	-10,0592	-9,94152
5,44165001660016800177001800018200-7,27273-8,43373-8,333335,64164001650016600175001780018000-6,70732-7,87879-8,433735,85163001640016500172001760017800-5,52147-7,31707-7,878796,05162001630016400170001740017600-4,93827-6,74847-7,317076,26159001630016400169001720017200-5,6962-4,93827-5,521476,67158001620016300166001690017100-5,6962-4,93827-5,521476,67158001590016300166001690017100-5,6962-4,93827-5,521476,67158001590016300166001690017100-5,6962-4,93827-5,521476,671580015900166001690017100-5,6962-4,93827-5,521476,671580015900166001660016100-5,6962-4,93827-5,521476,671580015900166001660016800-5,1629-5,660387,8155001580015900164001650016600-5,16129-5,063297,69154001560015800162001660016600-5,16129-5,063297,69154001560015700159001630016600 </td <td>5,23</td> <td>16600</td> <td>16800</td> <td>16900</td> <td>18000</td> <td>18300</td> <td>18500</td> <td>-8,43373</td> <td>-8,92857</td> <td>-9,46746</td>	5,23	16600	16800	16900	18000	18300	18500	-8,43373	-8,92857	-9,46746
5,64164001650016600175001780018000-6,70732-7,87879-8,433735,85163001640016500172001760017800-5,52147-7,31707-7,878796,05162001630016400170001740017600-4,93827-6,74847-7,317076,26159001630016400169001720017400-6,28931-5,52147-6,097566,46158001620016300167001700017200-5,6962-4,93827-5,521476,67158001590016300166001690017100-5,06329-6,28931-4,907986,671580015900166001690017100-5,06329-6,28931-4,907986,671580015900166001690016900-5,06329-6,28931-4,907986,671580015900166001690016900-5,06329-6,28931-4,907987,081500015800166001660016800-5,1821-5,03145-4,32097,8155001580015900164001660016800-5,1821-5,06329-5,063297,49155001580015800162001660016600-5,16129-5,0554-5,063297,9154001560015800162001630016600-5,16129-4,430387,9153001560015700159001	5,44	16500	16600	16800	17700	18000	18200	-7,27273	-8,43373	-8,33333
5,85163001640016500172001760017800-5,52147-7,31707-7,878796,05162001630016400170001740017600-4,93827-6,74847-7,317076,26159001630016400169001720017400-6,28931-5,52147-6,097566,46158001620016300167001700017200-5,6962-4,93827-5,521476,67158001590016300166001690017100-5,06329-6,28931-4,907986,87157001590016200166001670016900-5,09554-5,03145-4,320997,08156001580015900164001660016800-5,12821-5,06329-5,660387,28155001580015900164001650016700-5,16129-5,09554-5,031457,49155001570015800163001660016500-5,16129-5,09554-5,063297,691540015600158001620016600-5,19481-5,09554-5,09554-5,031457,691540015600158001620016600-5,19481-5,09554-5,031457,691540015800162001660016500-5,19481-5,09554-5,035437,69154001560015700159001630016500-3,92157-4,48718-5,095547,9150	5,64	16400	16500	16600	17500	17800	18000	-6,70732	-7,87879	-8,43373
6,05162001630016400170001740017600-4,93827-6,74847-7,317076,26159001630016400169001720017400-6,28931-5,52147-6,097566,46158001620016300167001700017200-5,6962-4,93827-5,521476,67158001590016300166001690017100-5,0952-6,28931-4,907986,87157001590016200165001670016900-5,09554-5,03145-4,320997,08156001580015900164001660016800-5,12821-5,06329-5,660387,28155001580015900164001650016700-5,80645-4,43038-5,031457,49155001570015800162001650016600-5,16129-5,09554-5,063297,69154001560015700159001630016600-5,19481-5,12821-4,430387,9153001560015700159001630016500-5,19481-5,12821-4,430387,9153001560015700159001630016400-4,60526-5,16129-4,45868,31151001540015600158001630016400-4,63576-5,84416-5,128218,5115000154001560015800162001630016300-6,33333-5,19481-4,487	5,85	16300	16400	16500	17200	17600	17800	-5,52147	-7,31707	-7,87879
6,26159001630016400169001720017400-6,28931-5,52147-6,097566,46158001620016300167001700017200-5,6962-4,93827-5,521476,67158001590016300166001690017100-5,06329-6,28931-4,907986,87157001590016200165001670016900-5,09554-5,03145-4,320997,08156001580015900164001660016800-5,12821-5,06329-5,660387,28155001580015900164001650016700-5,80645-4,43038-5,031457,49155001580015800163001650016600-5,16129-5,09554-5,063297,691540015600158001630016600-5,16129-5,09554-5,063297,691540015600158001620016600-5,19481-5,12821-4,430387,9153001560015700159001630016500-3,92157-4,48718-5,095548,1152001550015700159001630016400-4,60526-5,16129-4,45868,31151001540015600158001630016400-4,63576-5,84416-5,128218,511500015600158001630016300-5,33333-5,19481-4,48718	6,05	16200	16300	16400	17000	17400	17600	-4,93827	-6,74847	-7,31707
6,46158001620016300167001700017200-5,6962-4,93827-5,521476,67158001590016300166001690017100-5,06329-6,28931-4,907986,87157001590016200165001670016900-5,09554-5,03145-4,320997,08156001580015900164001660016800-5,12821-5,06329-5,660387,28155001580015900164001650016600-5,16129-5,09554-5,031457,49155001570015800163001650016600-5,16129-5,09554-5,063297,691540015600158001620016600-5,19481-5,12821-4,430387,9153001560015700159001630016500-3,92157-4,48718-5,095548,1152001550015700158001630016400-4,60526-5,16129-4,45868,31151001540015600158001630016400-4,63576-5,84416-5,128218,51150001540015600158001630016300-5,3333-5,19481-4,48718	6,26	15900	16300	16400	16900	17200	17400	-6,28931	-5,52147	-6,09756
6,67158001590016300166001690017100-5,06329-6,28931-4,907986,87157001590016200165001670016900-5,0954-5,03145-4,320997,08156001580015900164001660016800-5,12821-5,06329-5,660387,28155001580015900164001650016700-5,80645-4,43038-5,031457,49155001570015800163001660016600-5,16129-5,09554-5,063297,69154001560015800162001640016500-5,19481-5,12821-4,430387,9153001560015700159001630016500-3,92157-4,48718-5,095548,1152001550015700158001630016400-4,60526-5,16129-4,45868,31151001540015600158001630016400-4,63576-5,84416-5,128218,51150001540015600158001620016300-5,3333-5,19481-4,48718	6,46	15800	16200	16300	16700	17000	17200	-5,6962	-4,93827	-5,52147
6,87157001590016200165001670016900-5,09554-5,03145-4,320997,08156001580015900164001660016800-5,12821-5,06329-5,660387,28155001580015900164001650016700-5,80645-4,43038-5,031457,49155001570015800163001650016600-5,16129-5,09554-5,063297,69154001560015800162001640016500-5,19481-5,12821-4,430387,9153001560015700159001630016500-3,92157-4,48718-5,095548,1152001550015700159001630016400-4,60526-5,16129-4,45868,31151001540015600158001630016400-4,63576-5,84416-5,128218,51150001540015600158001620016300-5,3333-5,19481-4,48718	6,67	15800	15900	16300	16600	16900	17100	-5,06329	-6,28931	-4,90798
7,08156001580015900164001660016800-5,12821-5,06329-5,660387,28155001580015900164001650016700-5,80645-4,43038-5,031457,49155001570015800163001650016600-5,16129-5,09554-5,063297,69154001560015800162001640016500-5,19481-5,12821-4,430387,9153001560015700159001630016500-3,92157-4,48718-5,095548,1152001550015700159001630016400-4,60526-5,16129-4,45868,31151001540015600158001630016400-4,63576-5,84416-5,128218,51150001540015600158001620016300-5,33333-5,19481-4,48718	6,87	15700	15900	16200	16500	16700	16900	-5,09554	-5,03145	-4,32099
7,28155001580015900164001650016700-5,80645-4,43038-5,031457,49155001570015800163001650016600-5,16129-5,09554-5,063297,69154001560015800162001640016500-5,19481-5,12821-4,430387,9153001560015700159001630016500-3,92157-4,48718-5,095548,1152001550015700159001630016400-4,60526-5,16129-4,45868,31151001540015600158001630016400-4,63576-5,84416-5,128218,51150001540015600158001620016300-5,33333-5,19481-4,48718	7,08	15600	15800	15900	16400	16600	16800	-5,12821	-5,06329	-5,66038
7,49155001570015800163001650016600-5,16129-5,09554-5,063297,69154001560015800162001640016500-5,19481-5,12821-4,430387,9153001560015700159001630016500-3,92157-4,48718-5,095548,1152001550015700159001630016400-4,60526-5,16129-4,45868,31151001540015600158001630016400-4,63576-5,84416-5,128218,51150001540015600158001620016300-5,33333-5,19481-4,48718	7,28	15500	15800	15900	16400	16500	16700	-5,80645	-4,43038	-5,03145
7,69154001560015800162001640016500-5,19481-5,12821-4,430387,9153001560015700159001630016500-3,92157-4,48718-5,095548,1152001550015700159001630016400-4,60526-5,16129-4,45868,31151001540015600158001630016400-4,63576-5,84416-5,128218,51150001540015600158001620016300-5,33333-5,19481-4,48718	7,49	15500	15700	15800	16300	16500	16600	-5,16129	-5,09554	-5,06329
7,9153001560015700159001630016500-3,92157-4,48718-5,095548,1152001550015700159001630016400-4,60526-5,16129-4,45868,31151001540015600158001630016400-4,63576-5,84416-5,128218,51150001540015600158001620016300-5,33333-5,19481-4,48718	7,69	15400	15600	15800	16200	16400	16500	-5,19481	-5,12821	-4,43038
8,1152001550015700159001630016400-4,60526-5,16129-4,45868,31151001540015600158001630016400-4,63576-5,84416-5,128218,51150001540015600158001620016300-5,33333-5,19481-4,48718	7,9	15300	15600	15700	15900	16300	16500	-3,92157	-4,48718	-5,09554
8,31 15100 15400 15600 15800 16300 16400 -4,63576 -5,84416 -5,12821 8,51 15000 15400 15600 15800 16200 16300 -5,33333 -5,19481 -4,48718	8,1	15200	15500	15700	15900	16300	16400	-4,60526	-5,16129	-4,4586
8,51 15000 15400 15600 15800 16200 16300 -5,33333 -5,19481 -4,48718	8,31	15100	15400	15600	15800	16300	16400	-4,63576	-5,84416	-5,12821
	8,51	15000	15400	15600	15800	16200	16300	-5,33333	-5,19481	-4,48718

Tabela B.3 – Comparação - temperatura – ar – 100A e 200A.

	.continu	ação								
Γ	8,72	14900	15300	15500	15700	15900	16300	-5,36913	-3,92157	-5,16129
	8,92	14900	15200	15500	15700	15900	16200	-5,36913	-4,60526	-4,51613
	9,13	14800	15200	15400	15600	15900	15900	-5,40541	-4,60526	-3,24675
	9,33	14700	15100	15300	15600	15800	15900	-6,12245	-4,63576	-3,92157
	9,54	14600	15000	15300	15500	15800	15900	-6,16438	-5,33333	-3,92157
	9,74	14500	15000	15200	15500	15800	15900	-6,89655	-5,33333	-4,60526
	9,95	14500	14900	15200	15400	15700	15900	-6,2069	-5,36913	-4,60526
	10,2	14400	14800	15100	15400	15700	15800	-6,94444	-6,08108	-4,63576
	10,4	14300	14800	15100	15300	15600	15800	-6,99301	-5,40541	-4,63576
	10,6	14200	14700	15000	15200	15600	15800	-7,04225	-6,12245	-5,33333
	10,8	14200	14700	15000	15200	15500	15700	-7,04225	-5,44218	-4,66667
	11	14100	14600	14900	15100	15500	15700	-7,0922	-6,16438	-5,36913
	11,2	14000	14500	14900	15100	15400	15700	-7,85714	-6,2069	-5,36913
	11,4	14000	14500	14800	15000	15400	15600	-7,14286	-6,2069	-5,40541
	11,6	13900	14400	14800	15000	15400	15600	-7,91367	-6,94444	-5,40541
	11,8	13800	14400	14700	14900	15300	15600	-7,97101	-6,25	-6,12245
	12	13800	14300	14700	14900	15300	15500	-7,97101	-6,99301	-5,44218
	12,2	13700	14200	14600	14800	15200	15500	-8,0292	-7,04225	-6,16438
	12,4	13700	14200	14500	14800	15200	15400	-8,0292	-7,04225	-6,2069
	12,6	13600	14100	14500	14700	15100	15400	-8,08824	-7,0922	-6,2069
	12,8	13500	14000	14400	14600	15000	15300	-8,14815	-7,14286	-6,25
	13	13400	13900	14200	14500	14900	15200	-8,20896	-7,19424	-7,04225
	13,2	13300	13800	14100	14400	14800	15100	-8,27068	-7,24638	-7,0922
	13,4	13200	13700	14000	14400	14700	15000	-9,09091	-7,29927	-7,14286
	13,6	13200	13600	13900	14300	14600	14900	-8,33333	-7,35294	-7,19424
	13,8	13100	13500	13800	14200	14500	14800	-8,39695	-7,40741	-7,24638
	14,1	13000	13400	13700	14100	14400	14700	-8,46154	-7,46269	-7,29927
	14,3	12900	13300	13600	14100	14400	14600	-9,30233	-8,27068	-7,35294
	14,5	12800	13200	13500	14000	14300	14500	-9,375	-8,33333	-7,40741
	14,7	12800	13100	13400	13900	14200	14400	-8,59375	-8,39695	-7,46269
	14,9	12700	13000	13300	13800	14100	14300	-8,66142	-8,46154	-7,5188
	15,1	12600	12900	13200	13800	14000	14200	-9,52381	-8,52713	-7,57576
	15,3	12500	12800	13100	13700	13900	14100	-9,6	-8,59375	-7,63359
	15,5	12500	12700	13000	13600	13800	14000	-8,8	-8,66142	-7,69231
	15,7	12400	12700	12900	13600	13800	13900	-9,67742	-8,66142	-7,75194
	15,9	12400	12600	12800	13500	13700	13900	-8,87097	-8,73016	-8,59375
	16,8	11700	11900	12200	13000	13100	13300	-11,1111	-10,084	-9,01639
	18,4	11000	11300	11500	12600	12600	12700	-14,5455	-11,5044	-10,4348
	20	10200	10500	10700	12200	12200	12300	-19,6078	-16,1905	-14,9533
	21,6	9460	9660	9820	11600	11600	11700	-22,6216	-20,0828	-19,1446
	23,2	8860	9010	9120	11000	11100	11100	-24,1535	-23,1964	-21,7105
	24,8	8400	8550	8610	10300	10400	10400	-22,619	-21,6374	-20,7898
	26,4	8040	8180	8220	9670	9820	9780	-20,2736	-20,0489	-18,9781
	28	7760	7900	7920	9110	9290	9230	-17,3969	-17,5949	-16,5404
	29,6	7570	7680	7690	8690	8880	8820	-14,7952	-15,625	-14,6944
	31,2	7490	7550	7550	8340	8530	8470	-11,3485	-12,9801	-12,1854
	32,8	7400	7470	7470	8050	8250	8190	-8,78378	-10,4418	-9,63855
	34,4	7310	7400	7390	7820	8020	7960	-6,97674	-8,37838	-7,71313
	36	7220	7320	7320	7630	7820	7770	-5,67867	-6,8306	-6,14754
	37,6	7140	7250	7240	7530	7660	7610	-5,46218	-5,65517	-5,1105
1.6-										

148

20.2	7000	7100	7170	7400	75.00	75.40		F 20240	F 10000
39,2	7060	7180	7170	7460	7560	7540	-5,00572	-5,29248	-5,16039
40,8	6980	7110	7100	7390	7500	7480	-5,8/393	-5,48523	-5,35211
42,4	6910	7040	/030	/310	7440	7420	-5,78871	-5,68182	-5,54765
44	6830	6980	6960	7240	7380	7360	-6,00293	-5,73066	-5,74713
45,6	6760	6910	6900	7180	7320	7300	-6,21302	-5,93343	-5,7971
47,2	6690	6850	6840	7120	7270	7250	-6,4275	-6,13139	-5,99415
48,8	6630	6790	6780	7070	7210	7190	-6,6365	-6,18557	-6,0472
50,4	6560	6740	6720	7030	7150	7140	-7,16463	-6,08309	-6,25
52	6500	6680	6670	6990	7100	7090	-7,53846	-6,28743	-6,29685
53,6	6440	6630	6620	6950	7040	7030	-7,91925	-6,18401	-6,19335
55,2	6390	6580	6570	6900	6990	6990	-7,98122	-6,231	-6,39269
56,8	6330	6530	6520	6810	6940	6940	-7,58294	-6,27871	-6,44172
58,4	6280	6480	6470	6660	6890	6890	-6,05096	-6,32716	-6,4915
60	6230	6440	6430	6440	6840	6850	-3,37079	-6,21118	-6,53188
61,6	6190	6400	6390	6190	6790	6800	0	-6,09375	-6,41628
63,2	6140	6350	6350	5940	6750	6760	3,257329	-6,29921	-6,45669
64,8	6100	6310	6310	5720	6700	6710	6,229508	-6,18067	-6,33914
66,4	6050	6270	6270	5440	6660	6670	10,08264	-6,2201	-6,37959
68	6010	6240	6240	5210	6630	6630	13,31115	-6,25	-6,25
69,6	5970	6200	6200	4990	6590	6590	16,41541	-6,29032	-6,29032
71,2	5940	6170	6170	4830	6560	6560	18,68687	-6,32091	-6,32091
72,8	5900	6130	6140	4720	6530	6520	20	-6,52529	-6,18893
74,4	5870	6100	6110	4670	6500	6480	20,44293	-6,55738	-6,05565
76	5830	6070	6080	4660	6470	6450	20,06861	-6,58979	-6,08553
77,6	5800	6030	6050	4700	6440	6420	18,96552	-6,79934	-6,1157
79,2	5770	6000	6020	4770	6400	6380	17,33102	-6,66667	-5,98007
80	5770	6000	6020	4770	6400	6380	17.33102	-6.66667	-5.98007

dist axial	mt226	mt225	mt224	mt238	mt239	mt240	dif pos	indica	diminui
	vel	vel	vel	vel	vel	vel	dif neg	indica	aumenta
	Sw=0	Sw=0	Sw=0	Sw=0	Sw=0	Sw=0	vel	vel	vel
	ar	ar	ar	ar	ar	ar	dif perc	dif perc	dif perc
	5l/min	10l/min	15l/min	5l/min	10l/min	15l/min	100p200A	100p200A	100p200A
	100A	100A	100A	200A	200A	200A	5l/min	10l/min	5l/min
0	0	0	0	0	0	0			
0,21	0	0	0	0	0	0			
0,41	0	0	0	0	0	0			
0,62	0	0	0	0	0	0			
0,82	0	0	0	0	0	0			
1,03	0	0	0	0	0	0			
1,23	0	0	0	0	0	0			
1,44	0	0	0	0	0	0			
1,64	0	0	0	0	0	0			
1,85	0	0	0	0	0	0			
2,05	0	0	0	0	0	0			
2,26	0	0	0	0	0	0			
2,46	0	0	0	0	0	0			
2,67	0	0	0	0	0	0			
2,87	23,3	21,9	20,6	24,6	22,9	21,7	-5,5794	-4,56621	-5,33981
3,08	69,4	66,5	63,7	82,4	78,3	75,3	-18,732	-17,7444	-18,2104
3,28	116	113	110	145	140	137	-25	-23,8938	-24,5455
3,49	151	147	145	193	186	183	-27,8146	-26,5306	-26,2069
3,69	175	172	170	228	220	217	-30,2857	-27,907	-27,6471
3,9	192	189	188	254	246	242	-32,2917	-30,1587	-28,7234
4,1	204	201	201	273	265	262	-33,8235	-31,8408	-30,3483
4,31	212	209	210	288	280	276	-35,8491	-33,9713	-31,4286
4,51	217	215	216	299	290	288	-37,788	-34,8837	-33,3333
4,72	222	219	220	308	299	296	-38,7387	-36,5297	-34,5455
4,92	224	222	223	313	304	302	-39,7321	-36,9369	-35,426
5,13	226	223	225	317	309	307	-40,2655	-38,565	-36,4444
5,33	227	224	227	320	311	310	-40,9692	-38,8393	-36,5639
5,54	228	225	227	321	313	312	-40,7895	-39,1111	-37,4449
5,74	228	225	228	321	313	313	-40,7895	-39,1111	-37,2807
5,95	227	224	228	321	313	314	-41,4097	-39,7321	-37,7193
6,15	224	222	227	320	313	314	-42,8571	-40,991	-38,326
6,36	221	222	226	319	312	313	-44,3439	-40,5405	-38,4956
6,56	220	219	225	317	310	312	-44,0909	-41,5525	-38,6667
6,77	219	216	225	316	308	311	-44,2922	-42,5926	-38,2222
6,97	216	216	222	314	306	309	-45,3704	-41,6667	-39,1892
7,18	214	214	218	312	304	307	-45,7944	-42,0561	-40,8257
7,38	211	212	218	309	303	305	-46,4455	-42,9245	-39,9083
7,59	208	210	217	307	301	303	-47,5962	-43,3333	-39,6313
7,79	205	207	215	301	299	301	-46,8293	-44,4444	-40
8	202	205	213	296	296	300	-46,5347	-44,3902	-40,8451
8,21	198	202	211	295	292	298	-48,9899	-44,5545	-41,2322
8,41	195	200	209	292	291	297	-49,7436	-45,5	-42,1053
8,62	192	197	207	288	286	294	-50	-45,1777	-42,029

Tabela B.4 – Comparação – velocidade axial – ar – 100A e 200A.

continu	lação								
8,82	188	195	205	285	281	291	-51,5957	-44,1026	-41,9512
9,03	185	192	203	281	280	287	-51,8919	-45,8333	-41,3793
9,23	181	190	201	277	278	282	-53,0387	-46,3158	-40,2985
9,44	178	187	199	273	275	281	-53,3708	-47,0588	-41,206
9,64	174	185	196	269	272	280	-54,5977	-47,027	-42,8571
9,85	171	182	194	265	269	278	-54,9708	-47,8022	-43,299
10.1	168	180	193	261	266	275	-55.3571	-47.7778	-42.487
10.3	164	177	191	257	263	273	-56.7073	-48.5876	-42.9319
10.5	161	175	189	253	260	271	-57.1429	-48.5714	-43.3862
10.7	158	173	187	249	258	269	-57.5949	-49.1329	-43.8503
10.9	156	171	186	245	255	267	-57.0513	-49,1228	-43,5484
11.1	153	169	184	242	252	265	-58,1699	-49.1124	-44.0217
11 3	151	168	183	238	250	263	-57 6159	-48 8095	-43 7158
11 5	148	166	183	235	248	262	-58 7838	-49 3976	-43 1694
11 7	147	166	183	232	247	261	-57 8231	-48 7952	-42 623
11.9	145	165	183	230	246	261	-58 6207	-49 0909	-42 623
12 1	143	166	185	230	246	262	-57 6389	-48 1978	-41 6216
12,1	1//	167	105	226	246	264	-56 9444	-47 3054	-41 1765
12,5	1//	160	107	220	240	269	-56 25	-16 7456	-/1 0526
12,5	1//	105	103	225	240	200	-56.25	-40,7430	-41,0020
12,7	1/12	171	193	223	250	272	-55 04/1	-40,1988	-40,9320
12,9	143	171	194	223	230	273	-56 7276	-40,1988	-40,7210
12.2	141	160	102	221	245	273	-55 71/2	-45,014	-40,7210
13,3	120	109	101	210	240	272	-55,7145	-40,7430 AE 0222	40,9320
13,5	130	100	191	210	245	270	-50,5217	-45,6555	-41,5015
13,7	130	162	109	215	245	207	-30,0170	40,5655	-41,2090
13,9	133	103	104	209	240	204	-57,1429	-47,2393	-41,9355
14,2	131	101	104	200	250	201	-57,2519	-40,0009	-41,0470
14,4	129	158	181	202	233	257	-56,5891	-47,4684	-41,989
14,6	126	155	178	199	229	253	-57,9365	-47,7419	-42,1348
14,8	124	153	175	195	225	249	-57,2581	-47,0588	-42,2857
15	121	150	1/1	191	221	245	-57,8512	-47,3333	-43,2749
15,2	119	147	168	187	216	240	-57,1429	-46,9388	-42,8571
15,4	116	144	165	183	212	235	-57,7586	-47,2222	-42,4242
15,6	114	141	162	1/9	207	230	-57,0175	-46,8085	-41,9753
15,8	111	139	158	1/5	203	225	-57,6577	-46,0432	-42,4051
16	108	135	154	1/0	197	218	-57,4074	-45,9259	-41,5584
17,6	93,8	118	136	146	1/0	189	-55,6503	-44,0678	-38,9706
19,2	84,3	108	125	130	154	171	-54,2112	-42,5926	-36,8
20,8	76,2	99,7	115	117	140	157	-53,5433	-40,4213	-36,5217
22,4	69,8	92,8	108	106	130	145	-51,8625	-40,0862	-34,2593
24	64,9	87,4	102	97,2	120	135	-49,7689	-37,2998	-32,3529
25,6	60,8	83,1	97,3	89,4	112	127	-47,0395	-34,7774	-30,5242
27,2	57,5	79,5	93,5	83,2	106	120	-44,6957	-33,3333	-28,3422
28,8	54,7	76,4	90,3	78,2	100	115	-42,9616	-30,8901	-27,3533
30,4	52,2	73,7	87,5	74,1	95,7	110	-41,954	-29,8507	-25,7143
32	50	71,3	85	70,6	91,9	106	-41,2	-28,892	-24,7059
33,6	47,8	68,9	82,5	67,6	88,5	103	-41,4226	-28,447	-24,8485
35,2	45,8	66,7	80,2	65,1	85,5	99,6	-42,1397	-28,1859	-24,1895
36,8	44	64,6	78	62,9	82,8	96,8	-42,9545	-28,1734	-24,1026
38,4	42,3	62,7	75,9	61	80,4	94,4	-44,208	-28,2297	-24,3742

151

ntinu	iação								
40	40,8	60,8	74	59,2	78,2	92,1	-45,098	-28,6184	-24,4595
41,6	39,4	59,1	72,2	57,5	76,1	89,8	-45,9391	-28,7648	-24,3767
43,2	38,1	57,5	70,5	55,9	74	87,6	-46,7192	-28,6957	-24,2553
44,8	36,9	56	68,9	54,3	72,1	85,6	-47,1545	-28,75	-24,238
46,4	35,8	54,6	67,4	52,6	70,4	83,6	-46,9274	-28,9377	-24,0356
48	34,8	53,3	65,9	50,6	68,7	81,8	-45,4023	-28,8931	-24,1275
49,6	33,9	52,1	64,6	48,2	67,2	80	-42,1829	-28,9827	-23,839
51,2	33	50,9	63,3	45,5	65,8	78,4	-37,8788	-29,2731	-23,8547
52,8	32,2	49,8	62,1	42,3	64,4	76,8	-31,3665	-29,3173	-23,6715
54,4	31,5	48,7	60,9	38,7	63,2	75,3	-22,8571	-29,7741	-23,6453
56	30,8	47,8	59,8	34,9	61,9	73,9	-13,3117	-29,4979	-23,5786
57,6	30,2	46,8	58,8	30,9	60,8	72,5	-2,31788	-29,9145	-23,2993
59,2	29,6	46	57,8	27	59,7	71,2	8,783784	-29,7826	-23,1834
60,8	29	45,1	56,8	23,5	58,6	70	18,96552	-29,9335	-23,2394
62,4	28,5	44,3	55,9	20,6	57,6	68,8	27,7193	-30,0226	-23,0769
64	28,1	43,6	55	18,5	56,6	67,7	34,1637	-29,8165	-23,0909
65,6	27,6	42,9	54,2	16,9	55,8	66,6	38,76812	-30,0699	-22,8782
67,2	27,2	42,2	53,4	15,8	55	65,6	41,91176	-30,3318	-22,8464
68,8	26,9	41,6	52,7	15,4	54,2	64,6	42,75093	-30,2885	-22,5806
70,4	26,5	41	51,9	15,2	53,4	63,7	42,64151	-30,2439	-22,736

...conti

72

73,6

75,2

76,8

78,4

80

26,2

25,9

25,7

25,5

25,5

25,5

40,4

39,9

39,5

39,2

39,1

39,1

51,3

50,7

50,1

49,8

49,6

49,6

15,1

15,1

15,5

16,1

16,1

15

52,7

52,1

51,5

51,1

51

51

62,8 42,36641 -30,4455

61,3 41,24514 -30,3797

60,9 39,21569 -30,3571

60,7 36,86275 -30,4348

60,7 36,86275 -30,4348

62 42,08494 -30,5764

-22,4172

-22,288

-22,3553

-22,2892

-22,379

-22,379

dist axial	mt221	mt220	mt219	mt226	mt225	mt224	dif pos	indica	diminui
	argonio	argonio	argonio	ar	ar	ar	difneg	indica	aumenta
	Sw=0	Sw=0	Sw=0	Sw=0	Sw=0	Sw=0	temp	temp	temp
	5l/min	10l/min	15l/min	5I/m	10l/m	15l/min	dif perc	dif perc	dif perc
	temp	temp	, temp	temp	, temp	, temp	argon-ar	argon-ar	' argon-ar
	100A	100A	100A	100A	100A	100A	5l/min	10l/min	15l/min
							-		
0	2950	2950	2950	3010	3010	3010	-2,0339	-2,0339	-2,0339
0,1	2950	2950	2950	3010	3010	3010	-2,0339	-2,0339	-2,0339
0,31	2950	2950	2950	3010	3010	3010	-2,0339	-2,0339	-2,0339
0,51	2950	2950	2950	3010	3010	3010	-2,0339	-2,0339	-2,0339
0,72	2950	2950	2950	3010	3010	3010	-2,0339	-2,0339	-2,0339
0,92	2950	2950	2950	3010	3010	3010	-2,0339	-2,0339	-2,0339
1,13	2950	2950	2950	3010	3010	3010	-2,0339	-2,0339	-2,0339
1,33	2950	2950	2950	3010	3010	3010	-2,0339	-2,0339	-2,0339
1,54	2950	2950	2950	3010	3010	3010	-2,0339	-2,0339	-2,0339
1,74	2950	2950	2950	3010	3010	3010	-2,0339	-2,0339	-2,0339
1,95	2950	2950	2950	3010	3010	3010	-2,0339	-2,0339	-2,0339
2,15	2950	2950	2950	3010	3010	3010	-2,0339	-2,0339	-2,0339
2,36	2950	2950	2950	3010	3010	3010	-2,0339	-2,0339	-2,0339
2,56	15000	15000	15000	15000	15000	15000	0	0	0
2,77	15000	15000	15000	15000	15000	15000	0	0	0
2,97	22100	22000	21900	18000	18100	18200	18,55204	17,72727	16,89498
3,18	22600	22600	22500	19000	19100	19300	15,9292	15,48673	14,22222
3,38	22400	22400	22300	19100	19200	19400	14,73214	14,28571	13,00448
3,59	22000	22000	21900	18800	19000	19200	14,54545	13,63636	12,32877
3,79	21400	21500	21400	18500	18700	18800	13,5514	13,02326	12,14953
4	20900	21100	20900	18100	18300	18500	13,39713	13,27014	11,48325
4,21	20500	20600	20500	17700	17900	18100	13,65854	13,1068	11,70732
4,41	19800	20100	20000	17400	17600	17800	12,12121	12,43781	11
4,62	19300	19600	19500	17100	17300	17500	11,39896	11,73469	10,25641
4,82	18900	19200	19100	16900	17100	17300	10,58201	10,9375	9,424084
5,03	18400	18800	18700	16700	16900	17100	9,23913	10,10638	8,55615
5,23	18100	18400	18400	16600	16800	16900	8,287293	8,695652	8,152174
5,44	17700	18100	18000	16500	16600	16800	6,779661	8,287293	6,666667
5,64	17400	17800	17800	16400	16500	16600	5,747126	7,303371	6,741573
5,85	17200	17500	17500	16300	16400	16500	5,232558	6,285714	5,714286
6,05	16900	17300	17300	16200	16300	16400	4,142012	5,780347	5,202312
6,26	16700	17000	17100	15900	16300	16400	4,790419	4,117647	4,093567
6,46	16600	16900	16900	15800	16200	16300	4,819277	4,142012	3,550296
6,67	16400	16700	16700	15800	15900	16300	3,658537	4,790419	2,39521
6,87	16200	16500	16600	15700	15900	16200	3,08642	3,636364	2,409639
7,08	16100	16300	16500	15600	15800	15900	3,10559	3,067485	3,636364
7,28	16000	16200	16300	15500	15800	15900	3,125	2,469136	2,453988
7,49	15800	16100	16200	15500	15700	15800	1,898734	2,484472	2,469136
7,69	15700	16000	16000	15400	15600	15800	1,910828	2,5	1,25
7,9	15600	15800	15900	15300	15600	15700	1,923077	1,265823	1,257862
8,1	15500	15700	15800	15200	15500	15700	1,935484	1,273885	0,632911
8,31	15400	15600	15700	15100	15400	15600	1,948052	1,282051	0,636943
8,51	15300	15500	15600	15000	15400	15600	1,960784	0,645161	0

Tabela B.5 – Comparação – temperatura – argônio/ar – 100A.

	iagao								
8,72	15200	15400	15500	14900	15300	15500	1,973684	0,649351	0
8,92	15100	15300	15400	14900	15200	15500	1,324503	0,653595	-0,64935
9,13	15000	15200	15300	14800	15200	15400	1,333333	0	-0,65359
9,33	14900	15100	15200	14700	15100	15300	1,342282	0	-0,65789
9,54	14800	15000	15100	14600	15000	15300	1,351351	0	-1,3245
9,74	14700	14900	15000	14500	15000	15200	1,360544	-0,67114	-1,33333
9,95	14600	14800	15000	14500	14900	15200	0,684932	-0,67568	-1,33333
10,2	14600	14700	14900	14400	14800	15100	1,369863	-0,68027	-1,34228
10,4	14500	14700	14800	14300	14800	15100	1,37931	-0,68027	-2,02703
10,6	14400	14600	14700	14200	14700	15000	1,388889	-0,68493	-2,04082
10,8	14300	14500	14700	14200	14700	15000	0,699301	-1,37931	-2,04082
11	14200	14500	14600	14100	14600	14900	0,704225	-0,68966	-2,05479
11,2	14200	14300	14500	14000	14500	14900	1,408451	-1,3986	-2,75862
11,4	14100	14300	14500	14000	14500	14800	0,70922	-1,3986	-2,06897
11,6	14100	14200	14400	13900	14400	14800	1,41844	-1,40845	-2,77778
11,8	14000	14100	14300	13800	14400	14700	1,428571	-2,12766	-2,7972
12	13900	14100	14200	13800	14300	14700	0,719424	-1,41844	-3,52113
12,2	13900	14000	14200	13700	14200	14600	1,438849	-1,42857	-2,8169
12,4	13800	14000	14100	13700	14200	14500	0,724638	-1,42857	-2,83688
12,6	13700	13900	14100	13600	14100	14500	0,729927	-1,43885	-2,83688
12,8	13600	13800	14000	13500	14000	14400	0,735294	-1,44928	-2,85714
13	13600	13700	13900	13400	13900	14200	1,470588	-1,45985	-2,15827
13,2	13500	13700	13900	13300	13800	14100	1,481481	-0,72993	-1,43885
13,4	13400	13600	13800	13200	13700	14000	1,492537	-0,73529	-1,44928
13,6	13300	13500	13700	13200	13600	13900	0,75188	-0,74074	-1,45985
13,8	13200	13400	13600	13100	13500	13800	0,757576	-0,74627	-1,47059
14,1	13100	13300	13500	13000	13400	13700	0,763359	-0,75188	-1,48148
14,3	13100	13200	13500	12900	13300	13600	1,526718	-0,75758	-0,74074
14,5	13000	13200	13400	12800	13200	13500	1,538462	0	-0,74627
14,7	13000	13100	13300	12800	13100	13400	1,538462	0	-0,75188
14,9	13000	13000	13200	12700	13000	13300	2,307692	0	-0,75758
15,1	13000	13000	13100	12600	12900	13200	3,076923	0,769231	-0,76336
15,3	12900	13000	13100	12500	12800	13100	3,100775	1,538462	0
15,5	12900	13000	13000	12500	12700	13000	3,100775	2,307692	0
15,7	12900	13000	13000	12400	12700	12900	3,875969	2,307692	0,769231
15,9	12900	12900	13000	12400	12600	12800	3,875969	2,325581	1,538462
16,8	12700	12800	12800	11700	11900	12200	7,874016	7,03125	4,6875
18,4	12500	12600	12700	11000	11300	11500	12	10,31746	9,448819
20	12300	12400	12500	10200	10500	10700	17,07317	15,32258	14,4
21,6	12000	12200	12300	9460	9660	9820	21,16667	20,81967	20,1626
23,2	11700	11900	12000	8860	9010	9120	24,2735	24,28571	24
24,8	11300	11700	11800	8400	8550	8610	25,66372	26,92308	27,0339
26,4	11000	11300	11600	8040	8180	8220	26,90909	27,61062	29,13793
28	10800	11100	11200	7760	7900	7920	28,14815	28,82883	29,28571
29,6	10500	10800	11000	7570	7680	7690	27,90476	28,88889	30,09091
31,2	10200	10600	10800	7490	7550	7550	26,56863	28,77358	30,09259
32,8	10000	10400	10600	7400	7470	7470	26	28,17308	29,5283
34.4	9810	10200	10400	7310	7400	7390	25,4842	27,45098	28,94231
36	9620	10000	10200	7220	7320	7320	24,94802	26.8	28,23529
37.6	9430	9860	10100	7140	7250	7240	24,2842	26.47059	28,31683
5,,5	2 100	2000	_0100	. 1.0	. 200	0	,_0 .2	,	

•	continua	açao								
	39,2	9260	9710	9930	7060	7180	7170	23,7581	26,05561	27,79456
	40,8	9090	9570	9790	6980	7110	7100	23,21232	25,70533	27,47702
	42,4	8930	9430	9670	6910	7040	7030	22,62038	25,34464	27,30093
	44	8780	9300	9550	6830	6980	6960	22,20957	24,94624	27,12042
	45,6	8640	9170	9430	6760	6910	6900	21,75926	24,64558	26,82927
	47,2	8500	9050	9320	6690	6850	6840	21,29412	24,30939	26,60944
	48,8	8360	8940	9210	6630	6790	6780	20,69378	24,04922	26,38436
	50,4	8230	8820	9110	6560	6740	6720	20,29162	23,58277	26,23491
	52	8110	8710	9010	6500	6680	6670	19,85203	23,30654	25,97114
	53,6	7990	8600	8910	6440	6630	6620	19,39925	22,90698	25,70146
	55,2	7870	8500	8810	6390	6580	6570	18,80559	22,58824	25,42565
	56,8	7760	8400	8720	6330	6530	6520	18,42784	22,2619	25,22936
	58,4	7650	8300	8630	6280	6480	6470	17,9085	21,92771	25,02897
	60	7540	8200	8540	6230	6440	6430	17,37401	21,46341	24,70726
	61,6	7440	8110	8450	6190	6400	6390	16,80108	21,08508	24,3787
	63,2	7340	8010	8370	6140	6350	6350	16,34877	20,72409	24,13381
	64,8	7250	7920	8290	6100	6310	6310	15,86207	20,32828	23,8842
	66,4	7160	7840	8210	6050	6270	6270	15,50279	20,02551	23,62972
	68	7080	7750	8130	6010	6240	6240	15,11299	19,48387	23,24723
	69,6	7010	7670	8050	5970	6200	6200	14,83595	19,16558	22,98137
	71,2	6950	7590	7980	5940	6170	6170	14,53237	18,70883	22,6817
	72,8	6890	7510	7900	5900	6130	6140	14,36865	18,3755	22,27848
	74,4	6830	7430	7830	5870	6100	6110	14,05564	17,9004	21,96679
	76	6770	7360	7760	5830	6070	6080	13,88479	17,52717	21,64948
	77,6	6710	7280	7690	5800	6030	6050	13,56185	17,17033	21,3264
	79,2	6650	7210	7620	5770	6000	6020	13,23308	16,78225	20,99738
	80	6650	7210	7620	5770	6000	6020	13.23308	16.78225	20.99738

tinu ñ

dist axial	100A	100A	100A	100A	100A	100A	dif pos	indica	diminui
	mt221	mt220	mt219	mt226	mt225	mt224	dif neg	indica	aumenta
	vel	vel	vel	vel	vel	vel	vel	vel	vel
	Sw=0	Sw=0	Sw=0	Sw=0	Sw=0	Sw=0	dif perc	dif perc	dif perc
	5l/min	10l/min	15l/min	5l/min	10l/min	15l/min	argon-ar	argon-ar	argon-ar
	arg	arg	arg	ar	ar	ar	5l/min	10l/min	15l/min
0	0	0	0	0	0	0			
0,21	0	0	0	0	0	0			
0,41	0	0	0	0	0	0			
0,62	0	0	0	0	0	0			
0,82	0	0	0	0	0	0			
1,03	0	0	0	0	0	0			
1,23	0	0	0	0	0	0			
1,44	0	0	0	0	0	0			
1,64	0	0	0	0	0	0			
1,85	0	0	0	0	0	0			
2,05	0	0	0	0	0	0			
2,26	0	0	0	0	0	0			
2,46	0	0	0	0	0	0			
2,67	0	0	0	0	0	0			
2,87	21,5	21,8	21,7	23,3	21,9	20,6	-8,37209	-0,45872	5,069124
3,08	54,9	53,7	53,1	69,4	66,5	63,7	-26,4117	-23,8361	-19,9623
3,28	69,1	66,6	65,5	116	113	110	-67,8726	-69,6697	-67,9389
3,49	79,9	76,5	74,9	151	147	145	-88,9862	-92,1569	-93,5915
3,69	87,9	83,9	82,5	175	172	170	-99,0899	-105,006	-106,061
3,9	94	89,6	88,8	192	189	188	-104,255	-110,938	-111,712
4,1	99,3	94,5	94,1	204	201	201	-105,438	-112,698	-113,603
4,31	103	98,1	97,4	212	209	210	-105,825	-113,048	-115,606
4,51	104	100	98,8	217	215	216	-108,654	-115	-118,623
4,72	105	102	100	222	219	220	-111,429	-114,706	-120
4,92	112	102	101	224	222	223	-100	-117,647	-120,792
5,13	121	110	109	220	223	225	-80,7709	-102,727	-106,422
5,33	130	119	118	227	224	227	-74,0154	-88,2333	-92,3729
5,54	139	128	127	228	225	227	-04,0288	-75,7813	-78,7402
5,74	140	142	134	228	225	228	-50,1044	-00,0007	-70,1493
6 15	152	142	140	227	224	220	-49,5421	-51,7403	-02,0371
6 36	167	147	145	224	222	227	-42,0732	-/6 0526	-51 6779
6,50	165	152	149	221	222	220	-30,4198	-40,0320	-/7 0588
6 77	167	150	155	220	215	225	-31 1377	-35 8/191	-44 2308
6 97	169	161	150	215	210	223	-27 8107	-34 1615	-39 6226
7 18	171	163	161	210	210	222	-25 1462	-31 2883	-35 4037
7,10	172	165	163	214	217	210	-22 6744	-28 /18/18	-33 7423
7,50	172	167	164	211	212	210	-20 9302	-25 7485	-32 3171
7 79	172	168	165	200	210	217	-18 4971	-23,7403	-30 303
2	173	168	166	203	207	213	-16 763	-22 0238	-28 3133
8.21	172	169	167	198	203	213	-15.1163	-19.5266	-26.3473
8.41	172	169	167	195	200	209	-13.3721	-18.3432	-25.1497
8.62	171	169	168	192	197	207	-12.2807	-16.568	-23.2143
5,62		105	100	192	137	207	,_007	contir	102020
								John	.aayu0

Tabela B.6 – Comparação – velocidade axial – argônio/ar – 100A.

-22,0238	-15,3846	-9,94152	205	195	188	168	169	171	8,82
-20,8333	-13,6095	-8,82353	203	192	185	168	169	170	9,03
-19,6429	-13,0952	-7,10059	201	190	181	168	168	169	9,23
-18,4524	-11,3095	-5,95238	199	187	178	168	168	168	9,44
-17,3653	-10,7784	-4,81928	196	185	174	167	167	166	9,64
-16,1677	-9,63855	-3,63636	194	182	171	167	166	165	9,85
-15,5689	-8,43373	-2,43902	193	180	168	167	166	164	10,1
-15,0602	-7,27273	-1,23457	191	177	164	166	165	162	10,3
-13,8554	-6,70732	0	189	175	161	166	164	161	10,5
-13,3333	-6,13497	0,628931	187	173	158	165	163	159	10,7
-12,7273	-5,55556	1,265823	186	171	156	165	162	158	10,9
-11,5152	-4,96894	2,547771	184	169	153	165	161	157	11,1
-11,5854	-5	3,205128	183	168	151	164	160	156	11,3
-11,5854	-4,40252	3,896104	183	166	148	164	159	154	11,5
-12,2699	-5,06329	3,921569	183	166	147	163	158	153	11,7
-12,2699	-4,43038	4,605263	183	165	145	163	158	152	11,9
-13,4969	-5,73248	4,635762	185	166	144	163	157	151	12,1
-14,7239	-6,36943	4,635762	187	167	144	163	157	151	12,3
-15,8537	-7,64331	4	190	169	144	164	157	150	12,5
-17,6829	-9,61538	4	193	171	144	164	156	150	12,7
-18,2927	-9,61538	4,026846	194	171	143	164	156	149	12,9
-18,2927	-10,3226	4,72973	194	171	141	164	155	148	13,1
-17,6829	-9,74026	4,761905	193	169	140	164	154	147	13,3
-17,1779	-9,80392	4,827586	191	168	138	163	153	145	13,5
-16,6667	-9,21053	5,555556	189	166	136	162	152	144	13,7
-15,528	-7,94702	6,993007	186	163	133	161	151	143	13,9
-15	-7,33333	7,746479	184	161	131	160	150	142	14,2
-13,8365	-6,75676	8,510638	181	158	129	159	148	141	14,4
-12,6582	-5,44218	10	178	155	126	158	147	140	14,6
-11,465	-4,79452	10,79137	175	153	124	157	146	139	14,8
-9,61538	-3,44828	12,31884	171	150	121	156	145	138	15
-9,09091	-2,08333	13,13869	168	147	119	154	144	137	15,2
-7,84314	-0,6993	14,07407	165	144	116	153	143	135	15,4
-6,57895	0,704225	, 14,92537	162	141	114	152	142	134	15,6
-4.63576	0.714286	15.90909	158	139	111	151	140	132	15.8
-2,66667	2,877698	16,92308	154	135	108	150	139	130	16
3,546099	, 9,230769	, 21,83333	136	118	93,8	141	130	120	17,6
6,716418	, 11,47541	, 24,73214	125	108	, 84,3	134	122	112	, 19,2
10.15625	, 14.05172	, 26.73077	115	99.7	, 76.2	128	116	104	20.8
11.47541	14.86239	27.81799	108	92.8	69.8	122	109	96.7	22.4
12.06897	15.96154	27.88889	102	87.4	64.9	116	104	90	24
12.34234	15.37678	27,79097	97.3	83.1	60.8	111	98.2	84.2	25.6
11.79245	14.88223	27.58186	93.5	79.5	57.5	106	93.4	79.4	27.2
11,47059	14,54139	26,96929	90.3	76.4	54.7	102	89.4	74.9	28.8
11 34752	13 90187	26 47887	87.5	73 7	52.2	98.7	85.6	71	30.4
10.80797	13,26034	26.0355	85	71.3	50	95.3	82.2	67.6	32
10.61755	12,89507	25,89147	82.5	68.9	47.8	92.3	79.1	64.5	33.6
10,39106	12,58191	25.88997	80.2	66 7	45.8	89 5	76 3	61 8	35.2
10.24166	12,46612	25.80101	78	64 6	44	86.9	73 8	59 3	36 8
10 28369	12 18487	25 78947	75 Q	62 7	 ⊿2 २	84 6	71 A	55,5	30,0
10,20009	10-107	23,70347	, , , , ,	02,7	42,3	04,0	/1,4	57	50,4

	40	54,9	69,2	82,4	40,8	60,8	74	25,68306	12,13873	10,19417
	41,6	53	67,2	80,3	39,4	59,1	72,2	25,66038	12,05357	10,08717
	43,2	51,2	65,3	78,4	38,1	57,5	70,5	25,58594	11,94487	10,07653
	44,8	49,6	63,5	76,6	36,9	56	68,9	25,60484	11,81102	10,05222
	46,4	48	61,9	74,8	35,8	54,6	67,4	25,41667	11,79321	9,893048
	48	46,6	60,3	73,2	34,8	53,3	65,9	25,32189	11,60862	9,972678
	49,6	45,3	58,8	71,7	33,9	52,1	64,6	25,16556	11,39456	9,902371
	51,2	44,1	57,4	70,2	33	50,9	63,3	25,17007	11,32404	9,82906
	52,8	42,9	56,1	68,8	32,2	49,8	62,1	24,94172	11,22995	9,738372
	54,4	41,9	54,9	67,5	31,5	48,7	60,9	24,821	11,29326	9,777778
l	56	40,9	53,7	66,2	30,8	47,8	59,8	24,69438	10,98696	9,667674
l	57,6	39,9	52,6	65	30,2	46,8	58,8	24,31078	11,02662	9,538462
l	59,2	39	51,5	63,9	29,6	46	57,8	24,10256	10,67961	9,546166
l	60,8	38,2	50,5	62,8	29	45,1	56,8	24,08377	10,69307	9,55414
l	62,4	37,4	49,6	61,7	28,5	44,3	55,9	23,79679	10,68548	9,400324
l	64	36,6	48,7	60,7	28,1	43,6	55	23,22404	10,47228	9,390445
l	65,6	35,9	47,8	59,8	27,6	42,9	54,2	23,11978	10,25105	9,364548
l	67,2	35,2	47	58,8	27,2	42,2	53,4	22,72727	10,21277	9,183673
l	68,8	34,6	46,2	58	26,9	41,6	52,7	22,25434	9,95671	9,137931
l	70,4	34	45,5	57,1	26,5	41	51,9	22,05882	9,89011	9,10683
l	72	33,5	44,8	56,3	26,2	40,4	51,3	21,79104	9,821429	8,880995
l	73,6	33	44,1	55,6	25,9	39,9	50,7	21,51515	9,52381	8,81295
	75,2	32,5	43,6	55	25,7	39,5	50,1	20,92308	9,40367	8,909091
	76,8	32,2	43,1	54,5	25,5	39,2	49,8	20,80745	9,048724	8,623853
l	78,4	32	42,9	54,2	25,5	39,1	49,6	20,3125	8,857809	8,487085
	80	32	42,9	54,2	25,5	39,1	49,6	20,3125	8,857809	8,487085

dist axial	mt228	mt229	mt230	mt238	mt239	mt240	dif nos	indica	diminui
	temn	temn	temn	temn	temn	temn	dif neg	indica	aumenta
	argonio	argonio	argonio	ar	ar	ar	temp	temp	temp
	Sw=0	Sw=0	Sw=0	Sw=0	Sw=0	Sw=0	dif perc	difperc	dif perc
	5l/min	10l/min	15l/min	5l/min	10l/min	15l/min	argon-ar	argon-ar	argon-ar
	200A	200A	200A	200A	200A	200A	5l/min	10l/min	15l/min
0.00	2950	2950	2950	3010	3010	3010	-2.0339	-2.0339	-2.0339
0,10	2950	2950	2950	3010	3010	3010	-2,0339	-2,0339	-2,0339
0,31	2950	2950	2950	3010	3010	3010	-2,0339	-2,0339	-2,0339
0,51	2950	2950	2950	3010	3010	3010	-2,0339	-2,0339	-2,0339
0,72	2950	2950	2950	3010	3010	3010	-2,0339	-2,0339	-2,0339
0,92	2950	2950	2950	3010	3010	3010	-2,0339	-2,0339	-2,0339
1,13	2950	2950	2950	3010	3010	3010	-2,0339	-2,0339	-2,0339
1,33	2950	2950	2950	3010	3010	3010	-2,0339	-2,0339	-2,0339
1,54	2950	2950	2950	3010	3010	3010	-2,0339	-2,0339	-2,0339
1,74	2950	2950	2950	3010	3010	3010	-2,0339	-2,0339	-2,0339
1,95	2950	2950	2950	3010	3010	3010	-2,0339	-2,0339	-2,0339
2,15	2950	2950	2950	3010	3010	3010	-2,0339	-2,0339	-2,0339
2,36	2950	2950	2950	3010	3010	3010	-2,0339	-2,0339	-2,0339
2,56	15000	15000	15000	15000	15000	15000	0	0	0
2,77	15000	15000	15000	15000	15000	15000	0	0	0
2,97	23800	23900	24000	19400	19400	19500	18,48739	18,82845	18,75
3,18	24100	24300	24400	20900	21000	21100	13,27801	13,58025	13,52459
3,38	24000	24200	24300	21200	21300	21400	11,66667	11,98347	11,93416
3,59	23700	23900	24200	21000	21100	21200	11,39241	11,71548	12,39669
3,79	23200	23600	23900	20600	20800	20900	11,2069	11,86441	12,5523
4,00	22700	23200	23600	20200	20400	20500	11,01322	12,06897	13,13559
4,21	22100	22700	23300	19800	20000	20200	10,40724	11,89427	13,30472
4,41	21600	22300	22900	19400	19600	19800	10,18519	12,10762	13,53712
4,62	21100	21800	22600	19000	19300	19400	9,952607	11,46789	14,15929
4,82	20700	21400	22200	18600	18900	19100	10,14493	11,68224	13,96396
5,03	20200	21000	21900	18300	18600	18800	9,405941	11,42857	14,15525
5,23	19700	20700	21600	18000	18300	18500	8,629442	11,5942	14,35185
5,44	19300	20300	21300	17700	18000	18200	8,290155	11,33005	14,55399
5,64	19000	19900	21000	1/500	1/800	18000	7,894737	10,55276	14,285/1
5,85	18600	19600	20700	17200	17600	17800	7,526882	10,20408	14,00966
6,05	18300	19200	20500	1/000	17400	17600	7,103825	9,375	14,14634
6,20	17900	18900	20200	16900	17200	17400	6,111111 C 170775	8,994709	13,80139
6,40	17800	18/00	19900	16700	1,000	17200	6,1/9//5	9,090909	13,50784
6,07	17300	10400	19600	16500	16700	1/100	5,142657	0,152174	12,7551
0,07	17300	18200	19400	16400	16600	16900	4,024277	0,241750 7 777770	12,0000
7,08	17100	17700	19100	16400	16500	16700	4,095507	6 770661	11 64021
7,20	16800	17600	18700	16200	16500	16600	2 07610	6.25	11,04021
7,49	16700	17/000	18500	16200	16/00	16500	2,97019	5 7/7126	10 81081
7,09	16600	17200	18200	15000	16200	16500	4 216867	5 222550	9 836066
7,50 & 10	16500	17100	18100	15900	16300	16/100	3 636361	4 678363	9 392265
2 21	16300	17000	12000	15200	16300	16/100	3 067/185	Δ 1176/17	8 888880
2 51 2 51	16200	16800	17200	15800	16200	16300	2 <u>46</u> 9126	3 571/120	8 476966
0,51	10200	10000	1,000	1000	10200	10500	2,-10,11,00	3,371423	0,-120000

Tabela B.7 – Comparação – temperatura – argônio/ar – 200A.

								2	
7,386364	4,790419	2,484472	16300	15900	15700	17600	16700	16100	8,72
7,428571	4,216867	1,875	16200	15900	15700	17500	16600	16000	8,92
8,62069	3,636364	1,886792	15900	15900	15600	17400	16500	15900	9,13
8,092486	3,658537	1,265823	15900	15800	15600	17300	16400	15800	9,33
7,55814	3,067485	1,273885	15900	15800	15500	17200	16300	15700	9,54
6,470588	2,469136	0,641026	15900	15800	15500	17000	16200	15600	9,74
5,91716	2,484472	0,645161	15900	15700	15400	16900	16100	15500	9,95
6,508876	2,484472	0,645161	15800	15700	15400	16900	16100	15500	10,20
5,952381	2,5	0,649351	15800	15600	15300	16800	16000	15400	10,40
5,389222	1,886792	0,653595	15800	15600	15200	16700	15900	15300	10,60
5,421687	1,898734	0	15700	15500	15200	16600	15800	15200	10,80
4,848485	1,898734	0,657895	15700	15500	15100	16500	15800	15200	11,00
4,848485	1,910828	0	15700	15400	15100	16500	15700	15100	11,20
4,878049	1,282051	0	15600	15400	15000	16400	15600	15000	11,40
4,294479	1,282051	0	15600	15400	15000	16300	15600	15000	11,60
3,703704	1,290323	0	15600	15300	14900	16200	15500	14900	11,80
4,320988	0,649351	-0,67568	15500	15300	14900	16200	15400	14800	12,00
3,726708	1,298701	0	15500	15200	14800	16100	15400	14800	12,20
4,347826	0,653595	-0,68027	15400	15200	14800	16100	15300	14700	12,40
3,75	0,657895	0	15400	15100	14700	16000	15200	14700	12,60
3,773585	1,315789	0	15300	15000	14600	15900	15200	14600	12,80
3,797468	1,324503	0	15200	14900	14500	15800	15100	14500	13,00
3,821656	1,333333	0	15100	14800	14400	15700	15000	14400	13,20
4,458599	1,342282	-0,6993	15000	14700	14400	15700	14900	14300	13,40
4,487179	2,013423	0	14900	14600	14300	15600	14900	14300	13,60
4,516129	2,027027	0	14800	14500	14200	15500	14800	14200	13,80
4,545455	2,040816	0	14700	14400	14100	15400	14700	14100	14,10
5,194805	2,040816	0	14600	14400	14100	15400	14700	14100	14,30
5,228758	2,054795	0	14500	14300	14000	15300	14600	14000	14,50
5,263158	2,068966	0	14400	14200	13900	15200	14500	13900	14,70
5,298013	2,758621	0,719424	14300	14100	13800	15100	14500	13900	14,90
5,960265	2,777778	0	14200	14000	13800	15100	14400	13800	15,10
6	2,797203	0	14100	13900	13700	15000	14300	13700	15,30
6,666667	2,816901	0,729927	14000	13800	13600	15000	14200	13700	15,50
6,711409	2,816901	0	13900	13800	13600	14900	14200	13600	15,70
6,081081	3,521127	0	13900	13700	13500	14800	14200	13500	15,90
7,638889	4,379562	0,763359	13300	13100	13000	14400	13700	13100	16,80
9,929078	5,263158	2,325581	12700	12600	12600	14100	13300	12900	18,40
10,21898	6,153846	4,6875	12300	12200	12200	13700	13000	12800	20,00
12,03008	10,07752	1,2	11/00	11600	11600	13300	12900	12500	21,60
15,26/18	13,28125	10,56911	11100	11100	11000	13100	12800	12300	23,20
20	17,46032	14,87603	10400	10400	10300	13000	12600	12100	24,80
24,18605	21,44	18,05085	9780	9820	9670	12900	12500	11800	26,40
27,89063	24,47154	21,46552	9230	9290	9110	12800	12300	11600	28,00
30	26,61157	22,41071	8820	8880	8690	12600	12100	11200	29,60
32,24	28,31933	24,18182	8470	8530	8340	12500	11900	10700	31,20
33,95161	29,48/18	24,76636	8190	8250	8050	12400	11/00	10/00	32,80
34,7541	30,26087	25,52381	/960	8020	/820	12200	11500	10500	34,40
35,78512	30,1/85/	25,92233	7/70	7820	7530	12100	11200	10100	36,00
36,05042	30,36364	25,44554	7610	7660	7530	11900	11000	10100	37,60

39, 40, 42, 44, 45,	20 9900 80 9730 40 9570 00 9420 60 9270	 10900 10700 10500 10300 	11700 11600 11300	7460 7390	7560 7500	7540	24,64646	30,6422	35,55556
40, 42, 44, 45,	80 9730 40 9570 00 9420 60 9270	107001050010300	11600 11300	7390	7500	7400			
42, 44, 45,	40 9570 00 9420 60 9270	10500 10300	11300	7210		7480	24,04933	29,90654	35,51724
44, 45,	00 9420 60 9270	10300		/310	7440	7420	23,61546	29,14286	34,33628
45,	60 9270		11200	7240	7380	7360	23,14225	28,34951	34,28571
		10200	11000	7180	7320	7300	22,54585	28,23529	33,63636
47,	20 9130	10000	10900	7120	7270	7250	22,01533	27,3	33,48624
48,	80 9000	9920	10700	7070	7210	7190	21,44444	27,31855	32,80374
50,	40 8870	9800	10600	7030	7150	7140	20,74408	27,04082	32,64151
52,	00 8740	9680	10500	6990	7100	7090	20,02288	26,65289	32,47619
53,	60 8620	9580	10300	6950	7040	7030	19,37355	26,51357	31,74757
55,	20 8510	9470	10200	6900	6990	6990	18,91892	26,18796	31,47059
56,	80 8390	9370	10100	6810	6940	6940	18,83194	25,93383	31,28713
58,	40 8280	9270	10000	6660	6890	6890	19,56522	25,67422	31,1
60,	00 8180	9170	9910	6440	6840	6850	21,27139	25,40894	30,8779
61,	60 8080	9080	9830	6190	6790	6800	23,39109	25,22026	30,82401
63,	20 7980	8990	9740	5940	6750	6760	25,56391	24,91657	30,59548
64,	80 7880	8900	9660	5720	6700	6710	27,41117	24,7191	30,5383
66,	40 7780	8810	9580	5440	6660	6670	30,07712	24,40409	30,37578
68,	00 7690	8730	9500	5210	6630	6630	32,24967	24,05498	30,21053
69,	60 7600	8640	9430	4990	6590	6590	34,34211	23,72685	30,11665
71,	20 7520	8560	9350	4830	6560	6560	35,77128	23,36449	29,83957
72,	80 7430	8480	9280	4720	6530	6520	36,47376	22,99528	29,74138
74,	40 7350	8400	9210	4670	6500	6480	36,46259	22,61905	29,64169
76,	00 7270	8330	9140	4660	6470	6450	35,90096	22,32893	29,43107
77,	60 7200	8250	9070	4700	6440	6420	34,72222	21,93939	29,2172
79,	20 7120	8180	9000	4770	6400	6380	33,00562	21,76039	29,11111
80,	00 7120	8180	9000	4770	6400	6380	33,00562	21,76039	29,11111

dist axial	200A	200A	200A	200A	200A	200A	dif pos	indica	diminui
	mt228	mt229	mt230	mt238	mt239	mt240	, dif neg	indica	aumenta
	vel	vel	vel	vel	vel	vel	vel	vel	vel
	Sw=0	Sw=0	Sw=0	Sw=0	Sw=0	Sw=0	dif perc	dif perc	dif perc
	5l/min	10l/min	15l/min	5l/min	10l/min	15l/min	argon-ar	argon-ar	argon-ar
	arg	arg	arg	ar	ar	ar	5l/min	10l/min	15l/min
0	0	0	0	0	0	0			
0,21	0	0	0	0	0	0			
0,41	0	0	0	0	0	0			
0,62	0	0	0	0	0	0			
0,82	0	0	0	0	0	0			
1,03	0	0	0	0	0	0			
1,23	0	0	0	0	0	0			
1,44	0	0	0	0	0	0			
1,64	0	0	0	0	0	0			
1,85	0	0	0	0	0	0			
2,05	0	0	0	0	0	0			
2,26	0	0	0	0	0	0			
2,46	0	0	0	0	0	0			
2,67	0	0	0	0	0	0			
2,87	28	24,1	22,2	24,6	22,9	21,7	12,14286	4,979253	2,252252
3,08	83,9	73,9	69,4	82,4	78,3	75,3	1,787843	-5,95399	-8,50144
3,28	101	89,1	83,7	145	140	137	-43,5644	-57,1268	-63,6798
3,49	115	103	97,7	193	186	183	-67,8261	-80,5825	-87,3081
3,69	127	116	111	228	220	217	-79,5276	-89,6552	-95,4955
3,9	135	127	124	254	246	242	-88,1481	-93,7008	-95,1613
4,1	140	136	136	273	265	262	-95	-94,8529	-92,6471
4,31	145	143	148	288	280	276	-98,6207	-95,8042	-86,4865
4,51	150	149	158	299	290	288	-99,3333	-94,6309	-82,2785
4,72	154	155	168	308	299	296	-100	-92,9032	-76,1905
4,92	157	161	177	313	304	302	-99,3631	-88,8199	-70,6215
5,13	158	167	184	317	309	307	-100,633	-85,0299	-66,8478
5,33	159	171	191	320	311	310	-101,258	-81,8713	-62,3037
5,54	159	173	197	321	313	312	-101,887	-80,9249	-58,3756
5,74	159	174	203	321	313	313	-101,887	-79,8851	-54,1872
5,95	164	175	208	321	313	314	-95,7317	-78,8571	-50,9615
6,15	169	176	212	320	313	314	-89,3491	-77,8409	-48,1132
6,36	175	176	214	319	312	313	-82,2857	-77,2727	-46,2617
6,56	180	181	217	317	310	312	-76,1111	-71,2707	-43,7788
6,77	184	187	219	316	308	311	-/1,/391	-64,7059	-42,0091
6,97	188	192	220	314	306	309	-67,0213	-59,375	-40,4545
7,18	192	198	220	312	304	307	-62,5	-53,5354	-39,5455
7,38	194	202	221	309	303	305	-59,2784	-50	-38,009
7,59	197	206	224	307	301	303	-55,8376	-46,1165	-35,26/9
7,79	198	210	229	301	299	301	-52,0202	-42,381	-31,441
8	200	213	233	296	296	300	-48	-38,96/1	-28,7554
8,21	201	216	237	295	292	298	-46,7662	-35,1852	-25,7384
8,41	202	218	241	292	291	297	-44,5545	-55,4862	-23,2365
8,62	202	221	245	288	286	294	-42,5743	-29,4118	-20

Tabela B.8 – Comparação – velocidade axial – argônio/ar – 200A.

continu	lação								
8,82	203	222	248	285	281	291	-40,3941	-26,5766	-17,3387
9,03	203	224	251	281	280	287	-38,4236	-25	-14,3426
9,23	203	225	253	277	278	282	-36,4532	-23,5556	-11,4625
9,44	202	226	256	273	275	281	-35,1485	-21,6814	-9,76563
9,64	202	226	258	269	272	280	-33,1683	-20,354	-8,52713
, 9,85	202	227	260	265	269	278	-31,1881	-18,5022	-6,92308
10.1	201	228	261	261	266	275	-29.8507	-16.6667	-5.36398
10.3	200	228	263	257	263	273	-28.5	-15.3509	-3.80228
10.5	200	229	264	253	260	271	-26.5	-13.5371	-2.65152
10,5	199	229	266	249	258	269	-25 1256	-12 6638	-1 12782
10,7	198	229	268	245	255	265	-23 7374	-11 3537	0 373134
11 1	198	229	269	243	255	265	-22,7574	-10 0437	1 486989
11 3	190	220	200	232	250	263	-20 8122	-8 69565	2 592593
11 5	107	230	270	230	230	203	_10 2803	-7 82609	3 321033
11,5	106	230	271	235	240	202	-19 2672	-6.026/1	1 205604
11,7	190	201	275	232	247	201	17 2460	-0,92041 6 40251	4,393004 E 000000
11,9	190	201	275	230	240	201	-17,5409	-0,49551	5,090909
12,1	190	252	277	227	240	202	15,0105	-0,03440	5,415102
12,5	190	200	279	220	240	204	14 2122	-3,3794 E 09201	3,370344
12,5	197	234	282	225	248	208	-14,2132	-5,98291	4,904539
12,7	197	236	285	225	250	272	-14,2132	-5,9322	4,561404
12,9	197	236	286	223	250	2/3	-13,198	-5,9322	4,545455
13,1	197	237	287	221	249	2/3	-12,1827	-5,06329	4,878049
13,3	196	237	288	218	248	272	-11,2245	-4,64135	5,555556
13,5	196	237	288	216	245	270	-10,2041	-3,37553	6,25
13,7	195	237	289	213	243	267	-9,23077	-2,53165	7,612457
13,9	195	236	289	209	240	264	-7,17949	-1,69492	8,650519
14,2	194	236	289	206	236	261	-6,18557	0	9,688581
14,4	193	235	289	202	233	257	-4,66321	0,851064	11,07266
14,6	191	235	289	199	229	253	-4,18848	2,553191	12,45675
14,8	190	234	289	195	225	249	-2,63158	3,846154	13,84083
15	188	233	288	191	221	245	-1,59574	5,150215	14,93056
15,2	187	231	288	187	216	240	0	6,493506	16,66667
15,4	185	230	287	183	212	235	1,081081	7,826087	18,11847
15,6	182	229	286	179	207	230	1,648352	9,606987	19,58042
15,8	180	227	285	175	203	225	2,777778	10,57269	21,05263
16	177	224	283	170	197	218	3,954802	12,05357	22,9682
17,6	164	210	270	146	170	189	10,97561	19,04762	30
19,2	154	200	261	130	154	171	15,58442	23	34,48276
20,8	144	191	250	117	140	157	18,75	26,70157	37,2
22,4	134	182	240	106	130	145	20,89552	28,57143	39,58333
24	126	174	231	97,2	120	135	22,85714	31,03448	41,55844
25,6	118	166	223	89,4	112	127	24,23729	32,53012	43,04933
27,2	111	158	215	83,2	106	120	25,04505	32,91139	44,18605
28,8	104	151	207	78,2	100	115	24,80769	33,77483	44,44444
30,4	98,8	144	200	74,1	95,7	110	25	33,54167	45
32	93,9	138	193	70,6	91,9	106	24,81363	33,4058	45,07772
33,6	89,5	133	186	67,6	88,5	103	24,46927	33,45865	44,62366
35,2	85,5	127	180	65,1	85,5	99,6	23,85965	32,67717	44,66667
36,8	82	122	174	62,9	82,8	96,8	23,29268	32,13115	44,36782
38,4	78,8	118	168	61	80,4	94,4	22,58883	31,86441	43,80952

40	75,9	114	163	59,2	78,2	92,1	22,00264	31,40351	43,49693
41,6	73,2	110	158	57,5	76,1	89,8	21,44809	30,81818	43,16456
43,2	70,7	107	153	55,9	74	87,6	20,93352	30,84112	42,7451
44,8	68,4	104	150	54,3	72,1	85,6	20,61404	30,67308	42,93333
46,4	66,3	101	146	52,6	70,4	83,6	20,66365	30,29703	42,73973
48	64,3	98,2	142	50,6	68,7	81,8	21,30638	30,04073	42,39437
49,6	62,5	95,7	138	48,2	67,2	80	22,88	29,78056	42,02899
51,2	60,7	93,3	135	45,5	65,8	78,4	25,04119	29,47481	41,92593
52,8	59,1	91,1	132	42,3	64,4	76,8	28,4264	29,30845	41,81818
54,4	57,6	88,9	129	38,7	63,2	75,3	32,8125	28,90889	41,62791
56	56,2	86,9	127	34,9	61,9	73,9	37,90036	28,7687	41,81102
57,6	54,9	85	124	30,9	60,8	72,5	43,71585	28,47059	41,53226
59,2	53,6	83,2	122	27	59,7	71,2	49,62687	28,24519	41,63934
60,8	52,4	81,5	119	23,5	58,6	70	55,15267	28,09816	41,17647
62,4	51,3	79,8	117	20,6	57,6	68,8	59,84405	27,81955	41,19658
64	50,2	78,3	115	18,5	56,6	67,7	63,14741	27,71392	41,13043
65,6	49,2	76,8	113	16,9	55,8	66,6	65,65041	27,34375	41,06195
67,2	48,2	75,4	111	15,8	55	65,6	67,21992	27,0557	40,9009
68,8	47,3	74	109	15,4	54,2	64,6	67,44186	26,75676	40,73394
70,4	46,5	72,7	107	15,2	53,4	63,7	67,31183	26,54746	40,46729
72	45,7	71,5	106	15,1	52,7	62,8	66,95842	26,29371	40,75472
73,6	44,9	70,4	104	15	52,1	62	66,59243	25,99432	40,38462
75,2	44,3	69,3	103	15,1	51,5	61,3	65,91422	25,68543	40,48544
76,8	43,8	68,5	102	15,5	51,1	60,9	64,61187	25,40146	40,29412
78,4	43,5	68,1	101	16,1	51	60,7	62,98851	25,11013	39,90099
80	43,5	68,1	101	16,1	51	60,7	62,98851	25,11013	39,90099