• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.3.2019.tde-08032019-092904
Document
Author
Full name
Fabio Kenji Motezuki
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2018
Supervisor
Committee
Yee, Cheng Liang (President)
Fraga Filho, Carlos Alberto Dutra
Maciel, Geraldo de Freitas
Pileggi, Rafael Giuliano
Souza, Podalyro Amaral de
Title in Portuguese
Desenvolvimento de um sistema para simulação do escoamento fluidos não-newtonianos na engenharia civil por meio do método de partículas Moving Particle Semi-implicit (MPS).
Keywords in Portuguese
Difusão térmica
Escoamento turbulento
Fluidos não newtonianos
Hidrodinâmica
Mecânica dos fluidos computacional
Método de partículas
Moving Particle Semi-implicit (MPS)
Simulação numérica
Transferência de calor
Abstract in Portuguese
O concreto é um dos materiais de construção civil mais versáteis, podendo se adaptar a formas diversas quando em seu estado fresco e resistindo a grandes cargas de compressão em seu estado rígido. No entanto, em estruturas mais densamente armadas ou com geometrias mais complexas, pode-se apresentar dificuldades para a moldagem, causando falhas no preenchimento da forma, o que reduz a capacidade resistente da peça e sua vida útil. Neste trabalho foi utilizado o método de partículas lagrangeanas Moving Particle Semi-Implicit (MPS) como base para um simulador para o estudo do comportamento do escoamento de pastas e argamassas cujo comportamento pode se aproximado por modelos reológicos como Bingham e Herschel-Bulkley. Foram propostos módulos para a simulação da viscosidade não-newtoniana, variação térmica no processo de cura e modelagem de turbulência. Para modelar a variação de viscosidade de um fluido não-newtoniano foi utilizado o modelo de Herschel-Bulkley. O modelo de Herschel-Bulkley possui uma singularidade para taxas de deformação muito pequenas, que resulta em valores de viscosidade infinitas, dificuldade contornada pela solução proposta por Papanastasiou (1987). Na modelagem térmica foram analisados dois modelos de dissipação, sendo um original do método e outro calculado por meio do divergente do gradiente utilizando os modelos de partículas e que teria melhores resultados para o cálculo da dissipação térmica. Também foi modelada a convecção térmica, utilizando para isso a hipótese de Boussinesq. A reação de hidratação do concreto foi modelada utilizando uma equação do tipo Hill para representar a elevação de temperatura obtida por meio um ensaio adiabático. Para complementar as simulações, foi utilizado o modelo de turbulência Detached Eddy Simulation (DES), baseado no método Large Eddy Simulation (LES), que utiliza um modelo de parede para simular a interação do fluido. Para a implementação deste modelo de turbulência foi proposto um algoritmo para o cálculo da distância da partícula de fluido à parede. Este algoritmo utiliza estruturas de dados já existentes no método de partículas de modo que sua execução requer muito menos recursos que a busca binária. Apesar do trabalho ter se guiado pela simulação do concreto fresco, que é um material particularmente complexo, outros escoamentos encontrados na engenharia civil também podem ser beneficiados pelo método, como os estudos do escoamento em sistemas prediais de água e esgoto, do escoamento e prevenção de erosão em rios e córregos, do escorregamento de encostas, dos reatores para depuração de esgotos, entre outros.
Title in English
Development of a simulation system for non-newtonian flows in civil engineering using the Moving Particle Semi-implicit method.
Keywords in English
CFD
Moving Particle Semi- Implicit (MPS)
Non-newtonian fluids
Numerical simulation
Particle methods
Thermal diffusion
Turbulent flow
Abstract in English
The concrete is one of the more versatile civil construction materials, it can adapt to various forms when in its fresh state while resisting to high compression loads in its rigid state. However, in some cases like densely reinforced concrete structures and complex geometry concrete structures can present issues to the casting, and failure in proper form filling can occur. These failures can reduce the resistance and the lifetime of the structure. This work used a simulator based on the lagrangean particle method called Moving Particle Semi-Implicit (MPS) to study the concrete behavior in its distinctive characteristics. Also, this work proposed modules to simulate the non-Newtonian viscosity, the thermal process of concrete cure and to model the turbulent flow. To model the variation of viscosity of a non-Newtonian fluid, the Herschel-Bulkley model, which relates the shear stress with the strain rate, was applied. The Herschel-Bulkley model has a singularity at low strain rates, which results in infinite viscosities. To overcome this issue, Papanastasiou (1987) proposed a modification in the model in order to eliminate the singularity. For the thermal modeling, two models for thermal dissipation were compared, the original method and other calculated from the divergence of gradient using the differential operators for the particle model and that could present improved results for the thermal dissipation calculation. Also, the thermal convection was modeled using the Boussinesq hypothesis. The hydration reaction of the concrete was modeled using a Hill type equation to reproduce the temperature elevation. In addition, a Detached Eddy Simulation (DES) based turbulence model with a simple wall model in the interaction of wall and fluid was applied in the simulations. To improve the turbulence model, an algorithm to calculate the distance between fluid and the nearest wall particle was proposed. The algorithm uses already calculated information from particles so that the execution requires much less resources than a binary search. Although the work has been focused on to the modeling of fresh concrete simulation, which is a particularly complex material, other flows found in civil engineering can also be benefited by the method, such as studies of drainage in water and sewage systems, drainage and prevention of erosion into rivers and streams, prevention and damage mitigation of landslides, reactors for sewage treatment among many others.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2019-03-11
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.