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Resumo

Costa, J. C. . Condições essenciais de contorno e interface na análise de cas-

cas com métodos sem malha. 2015. 63 f. Tese (Doutorado) - Escola Politécnica da

Universidade de São Paulo, São Paulo, 2015.

Métodos sem malha geram campos de aproximação com alta continuidade, conve-

nientes para estruturas �nas como cascas. No entanto, a ausência da propriedade de Delta

de Kronecker di�culta a formulação de condições essenciais de contorno, já que os campos

de aproximação e teste não podem ser moldados aos valores de contorno. Um problema

similar aparece quando diferentes regiões de aproximação precisam ser juntadas em um

problema multi-regiões como dobras, vincos ou junções. Este trabalho apresenta três méto-

dos de imposição ambas condições cinemáticas: o já conhecido método dos multiplicadores

de Lagrange, usado desde o começo do método de Galekin sem elementos (EFG); uma

abordagem de penalidade pura; e o recentemente redescoberto método de Nitsche. Nós

usamos a técnica de discretização com EFG para cascas espessas de Reissner-Mindlin e

adaptamos a forma fraca de forma a separar graus de liberdade de deslocamento e rotação

e obter coe�cientes de estabilização diferentes e apropriados. Essa abordagem permite a

modelagem de cascas discontínuas e o re�namento local em problemas multi-regiões.

Palavras-chave: cascas, métodos sem malha, método de Nitsche, problemas multi-regiões,

cascas com cisalhamento.
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Abstract

Costa, J. C. . Essential boundary and interface conditions in the meshless anal-

ysis of shells. 2015. 63 p. Thesis (Doctorate) - Escola Politécnica da Universidade de

São Paulo, São Paulo, 2015.

Meshless methods provide a highly continuous approximation �eld, convenient for thin

structures like shells. Nevertheless, the lack of Kronecker Delta property makes the for-

mulation of essential boundary conditions not straightforward, as the trial and test �elds

cannot be tailored to boundary values. Similar problem arise when di�erent approxima-

tion regions must be joined, in a multi-region problem, such as kinks, folds or joints. This

work presents three approaches to impose both kinematic conditions: the well known La-

grange Multiplier method, used since the beginning of the Element Free Galerkin method;

a pure penalty approach; and the recently rediscovered alternative of Nitsche's Method.

We use the EFG discretization technique for thick Reissner-Mindlin shells and adapt

the weak form as to separate displacement and rotational degrees of freedom and obtain

suitable and separate stabilization parameters. This approach enables the modeling of

discontinuous shells and local re�nement on multi-region problems.

Keywords: shells, meshless methods, nitsche's method, multi-region problems, shear de-

formable shells.
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Chapter 1

Introduction

Meshless approximations provide a great resource for the analysis of structures as

high order continuity in the approximated �elds can be achieved. This feature is well

suited for thin systems like shells, provided that the geometry can be better approximated

and stresses can be obtained as smoothly as desired. They have been applied to thin

Kirchho�-Love shells [37, 31], where C1 continuity is necessary, moderately thick Reissner-

Mindlin shells [48, 58, 12] and solid-like shells based on 3D continuum [38]. However, the

non-interpolatory characteristic of such approximants makes the formulation of essential

boundary and interface conditions not straightforward.

We introduce interface conditions for continuity and equilibrium across a boundary

between two discretization domains. The coupling of multiple regions is quite straight-

forward in Finite Elements (FE) with matching nodes along the interface, but this limits

the liberty of each region's re�nement. A growing application in Computer Aided En-

gineering is the possibility to analyze full, complex models composed of multiple parts,

keeping the possibility to re�ne the response in most critical areas. In Computational

Mechanics, this translates into the need for multiple regions to be describe together while

maintaining the ability to be re�ned independently. One region might possibly need a

more re�ned solution, or di�erent approximation techniques might be employed in each

side of the interface (i.e., FEs and meshless). Similar problem arise when dealing with

approximations that do not ful�ll the Kronecker delta property such as most meshless

methods (meshless approximations on both domains). For mapped shell theories, each

domain must also be smooth, so any kink or junction of shells is treated as a interface

between independently approximated �elds.

Essential boundary conditions (EBCs) and interface conditions (ICs) are formulated in

the same way and have been discussed since the early development of meshless methods.

From the beginning, as in the classical Element-Free Galerkin Method (EFG, [6]), La-

grange Multipliers have been used to enforce EBCs, but disadvantages like increasing the

number of unknowns for the problem and limitations on the choice of approximation �elds

compelled more research on the subject [35, 18]. Solutions ranged from coupling with FEs

1



1. Introduction 2

along the boundaries [7, 29] to the use of the domain shape functions to approximate the

Lagrange multipliers [42, 43, 9].

Recently, an alternative has been revisited: the interior penalty method, usually re-

ferred to as Nitsche's Method [47], which identi�es the Lagrange Multipliers with the �ux

at the essential or interface boundary and introduces a penalty-like stabilization param-

eter, which guarantees the coercivity of the bilinear form.

Among other applications, this approach has been used to impose EBCs in Poisson's

problems with meshless methods [20, 18] and FEs [57]. It has been applied with eXtended

Finite Elements (XFEM) for EBCs and ICs in single-�eld problems [15, 25, 28], to enforce

weak discontinuities between elastic materials [51, 52, 2, 1]; and applied to non conforming

embedded FE meshes for elastostatics [53, 54]. B-splines and NURBs-base FEs share

similar features with meshless approximations and can also take advantage of Nitsche's

Method, as in [16] for 2nd and 4th order problems, [46, 33, 49, 50] for elasticity, [27, 26]

for thin plates and [22, 23] for thin shells. The theory has also been extended for contact

with FEs [59] and XFEM [4, 3].

It is the authors' opinion that in the future Nitsche's method may become the

standard treatment to enforcing essential boundary condition for meshfree

Galerkin methods. [39, p. 114]

The present work develops Nitsche's method for the linear elastic analysis of shear de-

formable Reissner-Mindlin shells [12], both for the imposition of boundary displacements

and for multi-region problems. In the latter, re�nement over one portion of the domain

can be performed without a�ecting other regions, even maintaining their sti�ness matri-

ces, and di�erent regions can be discretized with di�erent approximants, e.g., FE-EFG or

EFG-IGA coupling.

In both cases, its advantage over Lagrange Multipliers is that it precludes the de�ni-

tion of a new approximation space, new degrees of freedom and a hybrid interpolation,

along with its complications. A penalty-like stabilization term is necessary to ensure the

coercivity of the bilinear form. Nevertheless, the weak form remains consistent and, con-

trary to a pure penalty imposition, accuracy is guaranteed for a wide range of values for

the parameter.

The shear deformable shell theory is developed in [14] with Finite Elements and in

[58] with Multiple Fixed Least Squares (MFLS). In [12], a consistent linear model is de-

rived for small displacements and rotations, using MFLS and Lagrange multipliers. The

extension to geometrically exact thin shells is present in [31] and the boundary conditions

are discussed in [32]. This work presents the multi-region formulation for independent

particle distributions, using both Lagrange multipliers and Interior Penalty for the inter-

faces. Numerical examples are laid out to assess the method's suitability, while comparing

solutions with similar number of degrees of freedom.
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Throughout the text, italic Greek or Latin lowercase letters (a, b, ... , α, β, ...) de-

note scalar quantities; bold italic Greek or Latin lowercase letters (a , b, ... , α, β, ...)

denote vectors and bold italic Greek or Latin capital letters (A, B , ... , Φ, Γ , ...) denote

second-order tensors in a three-dimensional Euclidean space. Summation convention over

repeated indices is adopted, with Greek indices ranging from 1 to 2 and Latin indices

from 1 to 3.



Chapter 2

Linear shell theory

2.1 Introduction

The nonlinear shell theory developed in [14] has been later remodeled in a consistent

way to a neat linear formulation in [12] to the �rst order in the displacements and rotations.

This chapter outlines the process as in [10] so a consistent linear shell model is obtained.

The shell is parameterized by a �at reference con�guration, consisting of a �at midsur-

face and a thickness h. The initial curved con�guration is then obtained by a stress-free

transformation after which the actual or e�ective transformation takes place. Fig. 2.1

depicts these transformations for the geometrically exact shell.

Let e i be an orthogonal frame, with the vectors erα on the reference plane and the

vector er3 orthogonal to it. At the reference con�guration, a point of the shell can be

described by its position

ξ = ζ + ar, (2.1)

where ζ = ξαerα de�nes the projection of this position in the midsurface and ar = ξ3e
r
3

is the through-the-thickness component. The set [ξ1, ξ2, ξ3] de�nes a Cartesian system of

coordinates in three dimensions.

The shell's midsurface is the domain Ωr ∈ er1×er2 and we assume that the midsurface

is actually on the midpoint of the shell thickness ξ3 ∈ [−h/2,
h/2]

2.2 Kinematics

The initial deformation is regarded as a mapping from the �at reference con�guration.

The position of the shell midsurface points is described in its initial stress-free con�gura-

tion by

z o = z o (ξα) . (2.2)

4



2. Linear shell theory 5
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Figure 2.1: Shell kinematics for large displacements

These displacements are �nite, and so are the rotations of the midsurface and the

director. Nevertheless, Kirchho�-Love kinematics is assumed, so that the director ao re-

mains normal to the curved midsurface. We can describe this rotation by the tensor Qo

so

ao = Qoar = Qoξ3e
r
3. (2.3)

The reference frame follows the same rotation,

eoi = Qoeri , (2.4)

what makes it describable by

Qo = eoi ⊗ eri (2.5)

As the initial frame eoi follows the midsurface curvature, it can be expressed of the

derivatives of the initial position by the mapping coordinates:

eo1 =
z o,1
‖z o,1‖

, (2.6a)

eo2 = eo3 × eo1 and (2.6b)

eo3 =
z o,1 × z o,2
‖z o,1 × z o,2‖

. (2.6c)

eo1 and eo2 are tangent to the shell surface and the director is ao = ξ3e
o
3. With the
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de�nition of the initial cross-sectional strain vectors

ηoα = z oα −Qoerα and (2.7a)

κoα = axial
(
Qo

,αQoT
)
,K o

α = Skew (κoα) (2.7b)

at hand, the initial strain vectors at any material point can be computed by

γoα = ηoα + κoα × ao, (2.8)

so that the initial deformation gradient can be expressed by

F o = (ηoα + K o
αao)⊗ erα + Qo = γoα ⊗ erα + Qo. (2.9)

The quantities above are a�ected by superposed rigid body motions and not suit-

able for an objective theory. Therefore, it's compelling to introduce their back-rotated

counterparts as follows

γorα = QoTγoα = ηorα + κorα × ar (2.10a)

ηorα = QoTηoα = QoTz o,α − erα (2.10b)

κorα = QoTκoα =
(
eo2,α · ee3

)
er1 +

(
eo3,α · ee1

)
er2 +

(
eo1,α · ee2

)
er3 (2.10c)

F or = QoTF o (2.10d)

For later use, it is convenient to gather the initial cross-sectional strain vectors in two

generalized initial strain vectors

εorα =

[
ηorα

κorα

]
. (2.11)

Next, the actual motion of the shell takes place. The displacement of any point in the

shell can be once again split into the displacement u of its projection on the midsurface

and a rotation of the director a = Qeao. Since Reissner-Mindlin kinematics is assumed,

the cross-section rotation is considered an independent quantity. The e�ective rotation θ

can be described by Euler parameters grouped in the rotation vector through the Euler-

Rodrigues relation:

Qe = I + h1 (θ) Θ + h2 (θ) Θ2, (2.12)
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where

Θ = Skew (θ) , (2.13a)

θ = ‖θ‖, (2.13b)

h1 (θ) =
sin (θ)

θ
, (2.13c)

h2 (θ) =
1

2

(
sin
(
θ
2

)
θ
2

)2

. (2.13d)

The current position of a material shell point can be expressed by

x = z + a = z o + u + Qeao. (2.14)

The components of u along with the components of θ in a global Cartesian system

de�ne the six degrees of freedom of the theory.

The deformation from the �at reference con�guration to the current deformed con�g-

uration is called the total deformation, and its gradient is given by

F =
∂x

∂ξ
= Q + (ηα + κα × a)⊗ erα (2.15)

where, as it was done for the initial deformation, one can de�ne

ηα = z ,α − eα = z o,α + u ,α −Qerα and

κα = axial
(
Q ,αQT

)
= κeα + Qeκoα,

(2.16)

as the cross-sectional strain vectors. Once again, their back-rotated counterparts are more

suitable for an objective theory. After some algebra, we arrive at

ηrα = QTηα = QTz ,α − erα and

κrα = QTκα = κerα + κorα ,
(2.17)

where
κerα = Γ Tθ,α, with

Γ = I + h2 (θ) Θ + h3 (θ) Θ2 and

h3 (θ) =
1− h1 (θ)

θ2
.

(2.18)

Finally the back-rotated strain vectors can be de�ned as

εrα =

[
ηrα

κrα

]
, (2.19)



2. Linear shell theory 8

and the total back-rotated strains as

γrα = ηrα + κrα × ar, (2.20)

so the total deformation gradient can be expressed by

F = Q (I + γrα ⊗ erα) . (2.21)

Its back-rotated counterpart, not a�ected by rigid body motions is

F r = QTF = I + γrα ⊗ erα (2.22)

This total deformation gradient can be decomposed into initial and e�ective ones

F = F eF o,F e = FF o−1 = Q (f eri ⊗ eoi ) . (2.23)

The e�ective back-rotated strains can be de�ned as

γerα = f erα − erα = Jo−1
(
erα · g orβ

) (
erβ + γrβ

)
− erα, (2.24)

where g orβ are derived from the initial transformation and Jo is its Jacobian, as follows

Jo = detF o = detF o = er3 · f or1 × f or2 , (2.25a)

g or1 = f or2 × er3, g
or
2 = er3 × f or1 , g

or
3 = f or1 × f or2 . (2.25b)

2.3 Statics

The shell speci�c internal power per unit volume at the reference con�guration can be

expressed by

P : Ḟ = JoP : Ḟ
e

= τ rα · η̇rα + (ar × τ rα) · κ̇rα, (2.26)

where P = τα ⊗ erα is the �rst Piolla-Kirchho� stress tensor, τ rα = QoTτα are its back-

rotated column vectors and Ḟ is the velocity gradient. Integration across the thickness

yields the internal power per unit area of the midsurface in the initial con�guration∫
H

(
P : Ḟ

)
dH = nr

α · η̇rα + mr
α · κ̇rα, (2.27)

where H = [−h/2,
h/2] is the thickness domain and the vectors

nr
α =

∫
H

(τ rα) dH and mr
α =

∫
H

(ar × τα) dH (2.28)



2. Linear shell theory 9

are the back-rotated force and moment resultants, respectively. Those can be gathered in

the generalized back-rotated stress vectors

σrα =

[
nr
α

mr
α

]
(2.29)

so that the internal the internal power of the shell is

P int =

∫
V r

(
P : Ḟ

)
dV r =

∫
Ωr

(σrα · ε̇rα) dΩr. (2.30)

The external power can be computed in the reference con�guration by

P ext =

∫
Ωr

(
q̄Ω

r · ḋ
)
dΩr +

∫
Γ rt

(
q̄Γ

r
t · ḋ

)
dΓt +

∫
Γ ru

(
qΓ

r
u · ḋ

)
dΓ r

u (2.31)

where

q̄Ω
r

=

[
n̄Ωr

Γ Tm̄Ωr

]
(2.32)

are the force and moment resultants of the loads applied in the domain,

q̄Γ
r
t =

[
n̄Γ rt

Γ Tm̄Γ rt

]
(2.33)

in the natural boundary and

qΓ
r
u =

[
nΓ ru

Γ TmΓ ru

]
(2.34)

are the (unknown) reactions in the essential boundary Γ r
u . Those (true) stress resultants

are de�ned as

n̄Ωr = t̄
tr

+ t̄
br

+

∫
h

b̄
r
dh

m̄Ωr = a × t̄
br

+

∫
h

a × b̄
r
dh

(2.35a)

on the domain,

n̄Γ rt =

∫
h

t̄
lr
dh

m̄Γ rt =

∫
h

a × t̄
lr
dh

(2.35b)
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on the Neumann boundary, and

nΓ ru =

∫
h

rdh

mΓ ru =

∫
h

a × rdh

(2.35c)

on the Dirichlet boundary.

In (2.35), t̄
t, t̄

b, t̄
l are, respectively, the external surface tractions on the top, the

bottom and the lateral of the shell, per unit reference area, b̄ is the body force vector

per unit reference volume and r is the reaction on the lateral surface at the kinematic

boundary.

2.4 Linear approximation

The consistent linearization of the model to a �rst order in the displacements and

rotations was carried out in [12]. The obtained model is similar to a thick plate theory,

encompassing shell curvature and membrane deformation.

To the �rst order in θ, the displacement δ during the e�ective transformation of a

given point in the shell is

δ = u + θ × ao. (2.36)

Back-rotated (objective) generalized membrane and curvature strain quantities [8, p.

2043] can be de�ned as the approximations of Eq. 2.17 to the �rst order in u and θ

ηrα = QoT
(
z o,α + Z o

,αθ + u ,α

)
− erα and (2.37a)

κrα = QoT
(
κo,α + θ,α

)
. (2.37b)

where

Z o
,α = Skew

(
z o,α
)
. (2.38)

It is interesting to note the neat additive property

ηrα = ηorα + ηer, where (2.39a)

ηorα = QoTz o,α − erα and (2.39b)

ηerα = QoTZ o
,αθ + QoTu ,α (2.39c)

and

κrα = κorα + κer, where (2.40a)

κorα = QoTκoα =
(
eo2,α · eo3

)
er1 +

(
eo3,α · eo1

)
er2 +

(
eo1,α · eo2

)
er3 (2.40b)
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κerα = QoTθ,α, (2.40c)

of the generalized strains. It's also compelling to split the generalized strain vectors εrα
given in (2.19) into initial and e�ective strains

εrα = εorα + εerα . (2.41)

The initial strains εorα are given by (2.39b) and (2.40b) and εerα can be expressed in

matrix for as

εerα = ∆αd , (2.42a)

∆α =

[
QoT 0

0 QoT

][
I ∂
∂ξα

Z o
,α

0 I ∂
∂ξα

]
, (2.42b)

where the shell's degrees of freedom are collected in

d =

[
u

θ

]
. (2.43)

2.5 Material

A generalized Hooke material is used. With the little abuse of nomenclature made

in most of the consulted literature, the model presented here is said to be subject to a

plane stress assumption. Actually, the model accounts for shear stresses in the thickness

direction, what by itself is a violation of the plane stress condition. The assumption made

herein is that there is no normal stress acting on the midsurface plane (er3 ·P rer3 = 0), as

it has been done in [13] for the polyconvex neo-Hookean Simo-Ciarlet material (see [55],

page 258). Thus, it is stated that

τ erα = C er
αβγ

er
β , where (2.44a)

C er
αβ =

E

2 (1− ν)
erα ⊗ erβ +

E

2 (1 + ν)
εαβE

r
3 +

E

2 (1 + ν)
δαβI , (2.44b)

which is the isotropic plane stress generalized Hooke's law in our notation. In (2.44b), the

skew-symmetric tensor E r
3 = Skew (er3), the Kronecker symbol δαβ and the permutation

symbol εαβ = erα · erβ × er3 have been introduced. The linear elastic relation between

the generalized back-rotated stresses σrα and the generalized e�ective strains εerα can be

written as displayed below.

σrα = Dαβε
er
β = Dαβ

(
εrβ − εorβ

)
, (2.45)
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Figure 2.2: Initial deformations (a) �at shell, (b) cylindrical shell and (c) spherical shell

where

Dαβ =

[
Dηη

αβ Dηκ
αβ

Dκη
αβ Dκκ

αβ

]
, (2.46)

with

Dηη
αβ =

∫
H

1

Jo
(g orα · erδ) C er

δγ

(
erγ · g orβ

)
dξ3,

Dηκ
αβ = −

∫
H

1

Jo
(g orα · erδ) C er

δγ

(
erγ · g orβ

)
Ardξ3

= DκηT
αβ and

Dκκ
αβ =

∫
H

1

Jo
Ar (g orα · erδ) C er

δγ

(
erγ · g orβ

)
Ardξ3.

(2.47)

In (2.47) the skew symmetric tensor Ar
3 = Skew (ar) has been introduced and g orα

are the column vectors of the inverse of the transformation gradient F or
i ⊗ eri given in

Eq. 2.25b.

2.6 Initial Deformation

The evaluation of the through the thickness integrals in the material matrix can be

numerically performed for any initial mapping, including parametric approximations such

as NURBS or T-splines. This can be avoided for some initial shell shapes through an

analytical evaluation. Some of the obtained expressions can be further simpli�ed if a

thinness assumption is introduced, which is here de�ned by the condition h
R
� 1 , i.e. the

initial curvature radius R of the shell is much bigger than its thickness h. In [12], those

integrations are done for the plane, cylindrical and spherical initial shapes depicted in

Fig. 2.2. The resulting expressions for the sub-matrices in (2.47), common to all explicit
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and numerical mappings are

Dηη
αβ = hJo−1 (g orα · erδ)

(
erγ · g orβ

)
C er

δγ,

Dηκ
αβ = DκηT

αβ = 0 and

Dκκ
αβ = −h

3

12
Jo−1 (g orα · erδ)

(
erγ · g orβ

)
E r

3C
er
δγE

r
3,

(2.48)

with Jo and g orα evaluated on the shell midsurface.

2.7 Weak Form of Equilibrium

Equilibrium can be asserted in a weak form as stating that the di�erence between

internal and external works is zero. We can derive the internal virtual work from (2.30)

as

δW int =

∫
Γ ru

σrα · δεrα dΩr. (2.49)

From the external power (2.31), we separate the contributions of the external loads

into the external virtual work

δW ext =

∫
Ωr

q̄Ω
r · δd dΩr +

∫
Γ rt

q̄Γ
r
t · δd dΓ r

t (2.50)

and the external virtual work of the reaction forces

δW rea =

∫
Γ ru

qΓ
r
u · δd dΓ r

u . (2.51)

That separation will come in handy when describing the imposition of essential bound-

ary conditions. Equilibrium can than be stated in a weak form as

δW reg = δW int − δW ext − δW rea = 0. (2.52)

Or in a more expressive way as ��nd d ∈H 1 (Ω) such that d = d̄ in Γd and

δW reg =

∫
Ωr
σrα · δεrαdΩr −

∫
Ωr

q̄Ω
r · δddΩr

−
∫
Γ rt

q̄Γ
r
t · δddΓ r

t −
∫
Γ ru

qΓ
r
u · δddΓ r

u = 0
(2.53)

for all δd ∈H 1 (Ω)�. It is important to note that using a non-interpolatory approximation

δd cannot be made to vanish on the essential boundary, thus the last term (in Γ r
u) is not

canceled like in a Finite Element framework.

This imposition is linear on the generalized displacements as the stresses σrα are linearly

dependent on the strains εrα according to (2.45) and δε
r
α = ∆αδd is the variation of (2.41)
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Figure 2.3: Multi-region problem.

using (2.42).

2.8 Multi-region shells

A multi-region problem arises when the problem domain cannot be represented by a

single approximation region for lacking material continuity, usually due to change in ma-

terial parameters such as Young modulus or thickness; or when di�erent approximation

properties are required, as coupling di�erent approximation methods (e.g. EFG coupled

to FEs, or Isogeometric NURBS) or di�erent approximation properties like polynomial

base or sudden particle density. In mapped shell analysis the initial con�guration comes

from a Kirchho�-Love mapping, which require the shell to be continuous with also con-

tinuous �rst derivatives. The presence of folds or the connection of multiple shells along

a line poses a material discontinuity, and the model should encompass these jumps. The

approximation should then be continuous for displacements and rotations, but discontin-

uous for the generalized strains. This is said to be a weak discontinuity, as opposed to a

strong discontinuity on the displacement �elds.

Let the initial domain Ωo in Fig. 2.3 be split into nreg multiple regions Ωo
n. Each region

will have boundaries Γ o
un where it meets the Dirichlet boundary, Γ o

tn along its intersection

with the Newman boundary and interface boundary Γ o
in where it contacts other regions

(i.e. Ωo
1). Regions may have more than one interface boundary, or interact with other

region rather than Ωo
1, but in order to keep a simple notation, those easily derivable cases

will be omitted.

Each region comes by a di�erent initial transformation F o
n from a reference con�gu-
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ration Ωr
n. Our shell formulation performs integrations over these reference domains and

the respective boundaries (Γ r
un, Γ

r
tn and Γ r

in). An interface refers to the line where dif-

ferent shells' midsurfaces intersect and the interface condition is the compatibility of the

displacements and rotations coming from the approximations in both regions

d |Ω1 = d |Ω2 (2.54)

and the equilibrium between the generalized stresses normal to the interface in both

regions.

σn|Ω1 = σn|Ω2 . (2.55)



Chapter 3

Meshless Approximation

Among the many meshless approximation schemes described for instance in [39, 40]

, the Moving Least Squares (MLS) will be used in the numerical examples. Still, the

shell model and consequent discrete system of equations may be used with any �eld

approximation scheme, especially non-interpolatory ones.

The so called Di�use Approximation was used by Nayroles at al. [45] for plane elasticity

problems. The seminal paper [6] identi�es the formulation as the same approximation used

for scattered data �tting by Lancaster and Salkauskas, McLain, Gordon and Wixom,

Barnhill among others, called Moving Least Squares.

May u (x ) be a �eld variable to be approximated over Ω. In the MLS framework, its

approximation uh around a point x ∈ Ω is expressed by a linear combination of set of

functions, the basis p (x ):

uh (x ) = p (x ) · a (x ) , (3.1)

with coe�cients a that vary across the domain. If a set of particles x̄ i, positions over the

domain or close to it, is associated to a set of nodal values ū i, the coe�cients a (x ) can

be obtained through the minimization of the weighted error

J (a) =
n∑
i=1

w (r)
(
ūi − uh (x̄ i)

)2
, (3.2)

r =
‖x − x̄‖
rmax

(3.3)

with respect to a , where w is a weighting function that enforces the local character

of the approximation. It is usually a bell-shaped function with support radius 1, that

monotonically decreases from the unit at r = 0 to zero when r ≥ 1. The requirements for

this function can be found along with examples in [58]. For the present context, it su�ces

16
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to say that the �fth order spline

w (r) =

1− 10r2 + 20r3 − 15r4 + 4r5 if r ≤ 1

0, if r > 1
(3.4)

was chosen. The radius rmax characterizes the support of w (r) at point x̄ i.

The minimization of (3.2) renders the linear system of equations

Ax ax = Bx ū , (3.5)

where

Ax =
n∑
i=1

w (ri) p (x̄ i) p (x̄ i)
T , (3.6a)

Bx =
[
Bx

1 Bx
2 · · ·Bx

n

]
(3.6b)

Bx
i = w (ri) p (x̄ i) . (3.6c)

Bx
i is the ith column of Bx and Ax is usually known as the moment matrix. The

approximation can then be expressed as

uh (x ) =
n∑
i=1

φi (x ) ūi, (3.7)

where φi (x ) = p (x ) A−1 (x ) B i (x ) is the shape function associated to the i particle

evaluated at point x . The shape functions can be gathered in the vector Φ (x ), so the

approximation is expressed in the standard way by

uh (x) = Φ (x ) ū, (3.8)

where ū gathers the approximation coe�cients.

Usually, the number of particles in the support n is higher than the size of the poly-

nomial basis p (x ). Thus Bx is not square and ax has a di�erent size than ū . This min-

imization leads to functions that do not obey the Kronecker Delta property Φi (x i) = δij

or uh (x i) = ū i.

The MLS are said to be an approximation without an interpolatory characteristic, and

this will have major repercussions in the imposition of essential conditions (prescribed

displacements) and continuity across di�erent regions (kinks).

A distinction must be made as to how the weight function is de�ned. More speci�-

cally, how its parameters are stored. The MLS formulation presented requires the weight

function (actually the support size parameter) to be de�ned in every interest point, i.e.,
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quadrature sample, force application, result output points. In most found applications,

the support for an interest point is not de�ned; instead each particle has its in�uence

region limited by a support radius.

In [41], this distinction is made in the nomenclature of the domain sub-regions. If

either the interest point support domain or the node in�uence domain is de�ned. In

[58, 12], the former is called MLS and the latter Multiple Fixed Least Squares (MFLS).

Other texts usually don't make this distinction, describing the approximation as MLS but

implementing MFLS. For the numerical examples shown, the MFLS were used, with the

nodal in�uence domains being de�ned by the weight function maximum radius rmax.

This value is computed for each particle so that the approximation is well de�ned at

every interest point, i.e., the moment matrix (3.6a) can be inverted. An semi-automatic

procedure to determine the support radius for each particle was put in place. A set is

made with the position of all interest points: domain and boundary integration points,

force application points, output sample points, where the moment matrix will need to

be inverted. A loop through these interest points make sure that each is enclosed in at

least (m+ 1) (m+ 2) /2 in�uence domains, where m is the number of elements of the

2D polynomial base. If not enough particles de�ne the approximation there, the radia

corresponding to the closest particles whose supports do not include the interest point

are increased. Nevertheless, particle alignment and other geometrical combinations might

render linear dependencies. To ameliorate that, an ampli�cation factor (1.75 unless stated

otherwise) is applied to rmax, which also serves to improve smoothness.

Throughout the text, we adopt the following approximation conventions. Suppose we

use np particles to approximate each generalized displacement �eld. We approximate the

displacements and rotations with MFLS as

d (x ) = Φ (x ) d, (3.9)

and most of the time omit the dependencies on x .

d = [u1 u2 u3 θ1 θ2 θ3]T (3.10)

gathers the domain degrees of freedom. The matrix

Φ =
[
Φ1I6 Φ2I6 · · · ΦnI6,

]
(3.11)

where I6 is the identity matrix of order 6, distributes the shape functions and d collects

the 6 approximation coe�cients per particle. A reordering of the strain components allows
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for more useful expressions

ηer =

[
ηer1

ηer2

]
=

[
∆η

1Φ

∆η
2Φ

]
d = Bηd, and

κer =

[
κer1

κer2

]
=

[
∆κ

1Φ

∆κ
2Φ

]
d = Bκd.

(3.12)

Matrices B gather the derivatives of the shape functions as to obtain the generalized

strains from the nodal degrees of freedom.

The Lagrange Multipliers, when used, must be de�ned along a line (a boundary or

an interface). We use piece-wise linear interpolation for each component and gather the

shape functions in matrix Ψ. The approximated �elds are then

qΓ
r
u = Ψλu, on the kinematic boundary (3.13a)

qΓ
r
i = Ψλi, on the interfaces. (3.13b)

Vectors λu and λi group respectively degrees of freedom on Γ r
u and Γ r

i . The corre-

sponding virtual quantities are approximated likewise.

δqΓ
r
u = Ψδλu (3.14a)

δqΓ
r
i = Ψδλi. (3.14b)



Chapter 4

Kinematic Constraints

Chapter 3 described the Moving Least Squares shape functions used in the Element-

free Galerkin (EFG) Method. Like many of other meshless approximation schemes, MLS

lacks the Kronecker Delta property, what makes the direct imposition of boundary values

unpractical. As the test functions cannot be made zero along the essential boundary, term

comprising the virtual work of the reaction forces cannot be omitted from Eq. 2.53, and as

the trial space cannot be tailored to prescribed displacements and rotations, compatibility

should be imposed otherwise.

Fernández-Méndez and Huerta [18] classify the imposition of EBCs in the EFG in two

categories: modi�cations on the approximation shape functions and on the weak form,

both approaches pursued in parallel during the development of meshless methods. A �rst

example for modifying the weak form is Belytschko at al. [6], text that coined the term

�Element-free Galerkin" and makes use of Lagrange Multipliers. A text by the same group

[42] identi�es the Lagrange Multipliers as the tractions on the boundary and adopts the

same approximation used for the primary �eld to interpolate these tractions. This modi�ed

variational principle is very similar to a weak form derived by Nitsche [47] but for a

stabilization term. Later [43], the trace of the domain shape functions was used to describe

the Lagrange Multipliers on the boundary, also avoiding new degrees of freedom. These

techniques couldn't reproduce the results obtained from Lagrange Multipliers, probably

because the bilinear form lost its coercivity.

Modi�cations on the shape function are mostly of two kind. The meshless character-

istic of the approximation is retained, such as in the Point Interpolation Method [41] or

the approximation is blended into Finite Elements near the boundary, either for imposing

EBCs or to join di�erently approximated domains. The merge is carried out with ramp

functions[7, 35] or accounting for the FE shape function in the MLS reproducibility im-

position ([29, 30] for EFG and [17] for Smooth Particle Hydrodynamics). Only the FE

shape functions would have support over the boundaries and the EBCs would be imposed

as such. [18] compares the techniques of modifying the shape function (bridging scales

and continuous blending methods) and three possible modi�cations on the weak form:

20
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Lagrange Multipliers, Penalty and a revamped Nitsche's Method.

A similar imposition must be made when material properties change in the domain. In

shell analysis, this would be characterized by shells with di�erent thickness, materials, a

sudden change in the shell curvature (folds or kinks) or the connection of more than two

shells. In the formulation of the mapped shell problem, the initial mapping Ωr → Ωo is

assumed to be of Kirchho�-Love type and continuous, so a fold or connection, as a sudden

change in this mapping, represents a transition of material. The solution �eld should then

be continuous with discontinuous �rst derivatives. This is the typical nature of a �nite

element trial space if the mesh conforms to the boundary, as the shape functions are

piecewise polynomials, but with discontinuous derivatives along the element edges.

Nevertheless, non-matching meshes cannot enforce continuity in a straightforward

manner so many works are devoted to the use of Finite Elements for multiple regions.

In [19], a comparison between Lagrange Multipliers and interior penalty is carried for

linear elasticity, using multi-grids in nonconforming meshes, while [24] apply them to

heat conduction, developing a priori and a posteriori error estimates. [53] uses the three

approaches presented in this section for immersed boundaries (�ctitious domain) in 2D

elasticity problems. The domains can also be attached by coupling �nite elements [34]

with large aspect ratios that model the interaction between the domains.

Usual meshless functions are smooth across the domain. A high concentration of par-

ticles close to the interface area can provide a very steep gradient in the solution, but

not exactly reproduce the jump. The process is quite similar to imposing essential bound-

ary conditions, the displacement of the intersecting regions must be made equal and the

stresses normal to the interface boundary compatible, so the solutions found are also sim-

ilar to those used for EBCs, either modifying the shape function or adding contributions

to the weak form.

Cordes and Moran [9] truncates the weight function of each node for the domain it is in.

This corresponds to using di�erent sets of nodes for the approximation of each domain,

but for the nodes resting on the boundary, whose support stretches both domains. In

[5, 36], the shape functions are enriched with a new term with the desired properties, in

a similar procedure to eXtended Finite Elements (XFEM).

XFEM is another �eld in which such impositions must be made, as the boundaries and

interfaces are not required to conform with the mesh and may cut through elements. In

[28] Nitsche's method is derived from a Augmented Lagrange standpoint for an idealized

di�usion problem. In [15], it is used for jump and Dirichlet problems in linear elastic-

ity, with a more precise way to evaluate the �ux on the interface and to determine the

stabilization parameter in each element.

The method is also applied to spline-based approximations. The Finite Cell method

consists of using FEs with spline base functions in a background mesh with immersed

boundaries. Nitsche's method is than used to impose EBCs [49] and ICs [50] in two and
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three dimensional elasticity and is successful used to describe thin and solid-like shells

[22, 21, 23]

This chapter focus on modi�cations of the weak form to impose EBCs and ICs between

pairs of approximation domains in a shell model framework, retaining the MLS approxi-

mant in its most usual form for each domain. The next sections present the development

needed for each type of modi�cation of the weak form, recovering the original strong form

whenever possible. Emphasis is given to Nitsche's Method, also known as Interior Penalty

Method, as it is a new application for shells using EFG. The modi�cation of the weak form

takes the form of added virtual works on the kinematic boundary (δW u) and interfaces

(δW i), so the �nal weak form is

δW =
∑
reg

δW reg − δW u −
∑
int

δW i. (4.1)

For the sake of simplicity, we will retain our descriptions to a case with two approx-

imation regions (Ωr
1 and Ωr

2), with the essential boundary entirely contained on the

limits of Ωr
1. Extension to di�erent situations is straightforward. We describe both types

of imposition together to keep notation as simple as possible and the terms corresponding

to EBCs and ICs resembles each other. Eq. (4.1) can then be expanded to

δW = δW int
1 + δW int

2 − δW ext

−δW rea − δW u − δW i = 0.
(4.2)

The �rst three terms are de�ned by Eqs. 2.49-2.50 and the last three will be de�ned

for each method.

4.1 Lagrange Multipliers

The Element-free Galerkin method is a development from the Di�use Approximation

introduced by Nayroles el al. [45]. One of the advances presented in [6] was the correct

imposition of EBCs, along with corrections on the shape function derivatives and on the

order of the integration quadrature. The earlier work used direct imposition on boundary

nodes values, which is not su�cient for a non-interpolatory approximation. Lagrange

multipliers were then introduced as to impose EBCs via a modi�cation of the weak form.

The multipliers can be identi�ed with the boundary reactions qΓ
r
u , approximated in-

dependently from the domain �elds. Their contribution to the virtual work δW rea is kept

as stated in Eq. 2.51 and their complementary virtual work is added as a weak imposition

of the EBCs that also keeps the bilinear form symmetric.

δW u
lag =

∫
Γ ru

δqΓ
r
u ·
(
d − d̄

)
dΓ r

u = 0,∀δqΓ ru (4.3)
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It is important to note that the choice of the interpolation space for qΓ
r
u and conse-

quently δqΓ
r
u must be careful. The problem becomes a saddle point problem, stable only

if the approximated �elds, e.g., qΓ
r
u and d obey an inf-sup Babuska-Brezzi stability condi-

tion. A poor approximation space for qΓ
r
u may not impose the boundary conditions with

satisfactory accuracy while a richer space may render the resulting system of equations

singular.

In a similar fashion, Interface conditions can be imposed. The generalized tractions

normal to the interfaces qΓ
r
i must be approximated independently from the displacements.

A gap along the interface boundary would mean an additional potential

Π i
lag =

∫
Γ ri

qΓ
r
i · (d 1 − d 2) dΓ r

i , (4.4)

where d 1 and d 2 are the displacements obtained by di�erent region's approximation. The

variation of (4.4) yields

δW i
lag =

∫
Γ ri

δqΓ
r
i · (d 1 − d 2) dΓ r

i +

∫
Γ ri

qΓ
r
i · (δd 1 − δd 2) dΓ r

i

= 0,∀δqΓ ri , δd 1, δd 2,

(4.5)

which is the weak imposition of the continuity across the interface boundary using La-

grange Multipliers. The same observations made about the choice of the approximation

space for qΓ
r
u are valid for choosing the approximation space for qΓ

r
i , with the aggravating

fact that a typical multi-region problem have interface boundaries Γ r
i longer than Γ r

u .

The sum of the virtual works arising from all region's domain, the essential boundaries

and interfaces gives the �nal weak form of the problem. For the Lagrange Multipliers,

one should substitute (2.53), (4.3) and (4.5) into (4.1). If we de�ne the jump operator

[.] = (.)Ωr1 − (.)Ωr2 on Γ r
i as the di�erence on the values obtained for the same �eld,

at a same point on an interface, but using di�erent domain approximation spaces, and

[.] = (.)Ωr − (̄.) on Γ r
u as the di�erence between the quantity evaluated from the domain

approximation and the prescribed value on the essential boundary, we can write the

complete weak form for Lagrange Multipliers

δWlag =
∑
nreg

∫
Ωr
δεrα · σrα dΩr −

∑
nreg

∫
Ωr
δd · q̄Ωr dΩr −

∫
Γ rt

δd · q̄Γ rt dΓ r
t

−
∫
Γ ru

δd · qΓ ru dΓ r
u −

∫
Γ ru

δqΓ
r
u · [d ] dΓ r

u

−
∫
Γ ri

δqΓ
r
i · [d ] dΓ r

i −
∫
Γ ri

[δd ] · qΓ ri dΓ r
i

= 0,∀δd , δqΓ ru , δqΓ ri

(4.6)
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After the discretization with nodal-based functions through Eqs. 3.9, 3.12 and 3.13,

and choosing alternate unitary nodal virtual displacements, the linear system of equations

can be obtained. 
K1 0 Gu

1 Gi
1

0 K2 0 Gi
2

GuT
1 0 0 0

GiT
1 GiT

2 0 0




d1

d2

λu

λi

 =


f1

f2

qu

0

 (4.7)

where

Kn =

∫
Ωrn

BT
αDαβBβ dΩ

r
n (4.8)

is the sti�ness matrix for each region,

Gu
1 = −

∫
Γ ru

ΦT
1 Ψ dΓ r

u (4.9)

imposes the EBCs and

Gi
1 = −

∫
Γ ri

ΦT
1 Ψ dΓ r

i , (4.10a)

Gi
2 =

∫
Γ ri

ΦT
2 Ψ dΓ r

i . (4.10b)

impose the ICs. The force vectors are

fn = fΩ
r
n + fΓ

r
tn (4.11a)

fΩ
r

=

∫
Ωr

ΦT q̄Ω
r

dΩr in the domain, (4.11b)

fΓ
r
t =

∫
Γ rt

ΦT q̄Γ
r
t dΓ r

t on the natural boundary, and (4.11c)

qulag = −
∫
Γ ru

Ψd̄ dΓ r
u on the essential boundary. (4.11d)

The vectors dn are the degrees of freedom used to approximate the displacements

and rotations in region n, λu and λi are the degrees of freedom used to approximate the

Lagrange Multipliers on the Dirichlet and interface boundaries respectively.

We should emphasize the block of zeros in the lower-right corner. The dimension of

this block relates to the dimension of the Lagrange Multipliers approximation spaces.

The matrix is symmetric, but not positive-de�nite, so a proper solver for linear systems

of equations must be chosen.

MATLAB [44] have been used for the numerical examples in this work and the method

for solving the system was kept transparent as it falls away from the scope of this article.



4. Kinematic Constraints 25

Nevertheless, the solver warned for matrices close to singular or badly scaled, with a low

condition number specially for models with long boundaries and interfaces, when a trivial

approximation space was used for the Lagrange Multipliers (i.e. one node for each row of

particles in that direction in the domain). This emphasizes the need for discretion on the

choice of approximation spaces for this method.

The equilibrium equations for the original problem can be recovered from the �nal

weak form (4.6). Using the strain de�nitions (2.37) and integrating by parts, the �rst

term is

δW int =

∫
Ωr
δεrα · σrα dΩr =

∫
Ωr
δηrα · nr

α + κrα ·mr
α dΩ

r

=

∫
Ωr

QoT
(
Z o
,αδθ + δu ,α

)
· nr

α + QoT δθ,α ·mr
α dΩ

r

=

∫
Ωr

QoT
(
Z o
,αδθ + δu ,α

)
·QoTnα + QoT δθ,α ·QoTmα dΩ

r

=

∫
Ωr

Z o
,αδθ · nα dΩ

r +

∫
Γ r
δu · nnd Γ

r −
∫
Ωr
δu · nα,α dΩ

r

+

∫
Γ r
δθ ·mnd Γ

r −
∫
Ωr
δθ ·mα,α dΩ

r

= −
∫
Ωr
δu · nα,α dΩ

r +

∫
Ωr
δθ ·

(
Z o
,αnα −mα,α

)
dΩr

+

∫
Γ ru

δu · nn dΓ
r
u +

∫
Γ rt

δu · nn dΓ
r
t +

∫
Γ ri

δu · nn dΓ
r
i

+

∫
Γ ru

δθ ·mn dΓ
r
u +

∫
Γ rt

δθ ·mn dΓ
r
t +

∫
Γ ri

δθ ·mn dΓ
r
i .

(4.12)

We can then substitute this term into the full weak form (4.6) and gather the terms
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according to integration domain as to obtain

δWlag =
∑
nreg

[
−
∫
Ωr
δu ·

(
nα,α + n̄Ωr

)
dΩr

−
∫
Ωr
δθ ·

(
Z o
,αnα + mα,α + m̄Ωr

)
dΩr

]
+

∫
Γ rt

δu ·
(
nn − n̄Γ rt

)
dΓ r

t +

∫
Γ rt

δθ ·
(
mn − m̄Γ rt

)
dΓ r

t

+

∫
Γ ru

δu ·
(
nn − nΓ ru

)
dΓ r

u +

∫
Γ ru

δθ ·
(
mn −mΓ ru

)
dΓ r

u

−
∫
Γ ru

δnΓ ru · [u ] dΓ r
u −

∫
Γ ru

δmΓ ru · [θ] dΓ r
u

+

∫
Γ ri

δu1 ·
(
n1n − nΓ ri

)
dΓ r

i +

∫
Γ ri

δu2 ·
(
n2n + nΓ ri

)
dΓ r

i

+

∫
Γ ri

δθ1 ·
(
m1n −mΓ ri

)
dΓ r

i +

∫
Γ ri

δθ2 ·
(
m2n + mΓ ri

)
dΓ r

i

−
∫
Γ ri

δnΓ ri · [u ] dΓ r
i −

∫
Γ ri

δmΓ ri · [θ] dΓ r
i

= 0,∀δu , δθ, δnΓ ru , δmΓ ru , δnΓ ri , δmΓ ri .

(4.13)

where nn and mn are the stresses normal to the boundary. Evoking the arbitrarity of the

virtual �elds, we can recover the strong formulation of our problem as

nα,α + n̄Ωr = 0

mα,α + Z o
,αnα + mα,α = 0

}
in Ωr, (4.14)

that is the equilibrium statement for the domain,

nn = n̄Γ rt

mn = m̄Γ rt

}
on Γ r

t , (4.15)

the equilibrium on the natural boundary between the tractions and the imposed external

forces,
nn = nΓ ru

mn = mΓ ru

[u ] = u − ū = 0

[θ] = θ − θ̄ = 0


on Γ r

u , (4.16)

which impose the equilibrium between the internal generalized stresses and the generalized

reactions and the compatibility on the kinematic boundary, which are the independently

approximated Lagrange Multipliers for the Dirichlet boundary.
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n1n = −n2n = nΓ ri

m1n = −m2n = mΓ ri

[u ] = u1 − u2 = 0

[θ] = θ1 − θ2 = 0


on Γ r

i (4.17)

states the equilibrium on the interface between the generalized stresses approximated from

each region, identi�es then with the Lagrange Multipliers for the interface and imposes

continuity of generalized displacements across the interface.

The sets (4.14) - (4.17) are the Euler-Lagrange equations for the weak form presented.

4.2 Penalty Method

The prescribed displacements on the kinematic boundary and the continuity across

the interfaces can also be imposed using the penalty method. This widely used and easily

adaptable method have been used for many classes of problems. For the EFG method,

a comparison with Lagrange Multipliers is available [60]. We penalize the error on the

kinematic impositions with big enough constants βu and βi. The added penalty potentials

are

Πu
pen =

1

2

∫
Γ ru

βu
(
d − d̄

)2
dΓ r

u (4.18)

for the Dirichlet boundary and

Π i
pen =

1

2

∫
Γ ri

βi (d 1 − d 2)2 dΓ r
i (4.19)

for each interface. The variation of the previous potential yields the weak imposition,

through penalty, of

δW u
pen = βu

∫
Γ ru

δd ·
(
d − d̄

)
dΓ r

u = βu

∫
Γ ru

δd · [d ] dΓ r
u

= 0, ∀δd
(4.20)

the essential boundary conditions and

δW i
pen = βi

∫
Γ ri

(δd 1 − δd 2) · (d 1 − d 2) dΓ r
i = βi

∫
Γ ri

[δd ] · [d ] dΓ r
i

= 0,∀δd 1, δd 2.

(4.21)

As this form is already symmetric, there is no need to add the complementary virtual
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works. The reaction forces and interface stresses are then given by

qΓ
r
u = βu

(
d − d̄

)
, and (4.22a)

qΓ
r
i = βi (d 1 − d 2) . (4.22b)

The choice of βu and βi is important as to guarantee numerical stability. The di�erent

order of magnitude between displacement and rotation DOFs and their energy conjugated

stresses, along with their dependency on the shell thickness, suggests a split of the penalty

between these quantities, so

nΓ ru = βuu [u ], mΓ ru = βθu[θ] (4.23a)

nΓ ri = βui [u ], mΓ ri = βθi [θ], (4.23b)

or

δW u
pen = βuu

∫
Γ ru

δu · [u ] dΓ r
u + βθu

∫
Γ ru

δθ · [θ] dΓ r
u , and (4.24a)

δW i
pen = βui

∫
Γ ri

δu · [u ] dΓ r
i + βθi

∫
Γ ri

δθ · [θ] dΓ r
i (4.24b)

We collectively refer to these penalty constants as βu and βi for the essential boundary

and the interfaces respectively and as β for the whole set. Both this equations must be

introduced in (4.1) in order to obtain the �nal weak form for the penalty method.

δWpen =
∑
nreg

∫
Ωr
δεrα · σrα dΩr −

∑
nreg

∫
Ωr
δd · q̄Ωr dΩr −

∫
Γ rt

δd · q̄Γ rt dΓ r
t

+ βuu

∫
Γ ru

δu · [u ] dΓ r
u + βθu

∫
Γ ru

δθ · [θ] dΓ r
u

+ βui

∫
Γ ri

[δu ] · [u ] dΓ r
i + βθi

∫
Γ ri

[δθ] · [θ] dΓ r
i

= 0,∀δd

(4.25)

It's important to note that modifying the weak form with penalty terms don't introduce

new unknowns to the problem or require any new integration scheme, although, results are

highly dependent on the constants β. Actually, the original di�erential equations cannot

be recovered from the modi�ed weak form, as the addition of the penalty terms in fact

modify the strong formulation.

We can extract the Euler-Lagrange equations by substituting the last expression for

δWint in (4.12) into (4.25).
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δWpen =
∑
nreg

[
−
∫
Ωr
δu ·

(
nα,α + n̄Ωr

)
dΩr

−
∫
Ωr
δθ ·

(
Z o
,αnα + mα,α + m̄Ωr

)
dΩr

]
+

∫
Γ rt

δu ·
(
nn − n̄Γ rt

)
dΓ r

t +

∫
Γ rt

δθ ·
(
mn − m̄Γ rt

)
dΓ r

t

+

∫
Γ ru

δu · (nn + βuu [u ]) dΓ r
u +

∫
Γ ru

δθ ·
(
mn + βθu[θ]

)
dΓ r

u

+

∫
Γ ri

δu1 · (n1n + βui [u ]) dΓ r
i +

∫
Γ ri

δu2 · (n2n − βui [u ]) dΓ r
i

+

∫
Γ ri

δθ1 ·
(
m1n + βθi [θ]

)
dΓ r

i +

∫
Γ ri

δθ2 ·
(
m2n − βθi [θ]

)
dΓ r

i

= 0,∀δu1, δu2, δθ1, δθ2

(4.26)

and accounting for the arbitrarity of δd , the strong form related to the penalty weak form

is
nα,α + n̄Ωr = 0

mα,α + Z o
,αnα + mα,α = 0

}
in Ωr, (4.27)

nn = n̄Γ rt

mn = m̄Γ rt

}
on Γ r

t , (4.28)

as (4.14) and (4.28) for the equilibrium in the domain and on the natural boundary,

nn = −βuu [u ]

mn = −βθu[θ]

}
on Γ r

u , (4.29)

on the kinematic boundary, and

n1
n = −n2

n = −βui [u ]

m1
n = −m2

n = −βθi [θ]

}
on Γ r

i (4.30)

on the interfaces.

It can be noticed that the domain and natural boundary equilibrium is recovered, but

kinematic constraints are not exactly enforced. Eq. 4.29 shows a dependency between the

normal tractions on the kinematic boundary and the domain displacements that makes

the coherent imposition only as βu tends to in�nite.

Similarly on the interface equilibrium is kept only if the gap between approximations

is not null or if the constant assumes a very large value. Numerically, this is impossible, as

large values for β a�ects the condition of the discrete system of equations and consequently
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the quality of the solution.

Nevertheless, the Penalty method is easily adaptable for many classes of problems

and easily implemented in computer codes. The discretized version of (4.25) with nodal-

based functions as in (3.9) and (3.12) is a linear system of equations of the size of d, the

approximation �eld for the primary variables.

[K + Pu
pen + Pi

pen]d = fΩ
r

+ fΓ
r
t + qupen. (4.31)

Some observations must be made as to how the degrees of freedom are organized in

(4.31). If we assume

d =
[
uT1 θT1 uT2 θT2

]T
(4.32)

where un and θn respectively gather the degrees of freedom used to describe the displace-

ments and rotations in region n, we have

K =

[
K1 0

0 K2

]
(4.33)

for the global sti�ness matrix, with each region's sti�ness Kn given by Eq. (4.8)),

Pu
pen =


βuuPuu

pen 0 0 0

0 βθuP
uθ
pen 0 0

0 0 0 0

0 0 0 0

 (4.34)

for the penalty matrix on the essential boundary. The penalty matrix must be separated

by type of DOF because, as stated before, we use di�erent penalty parameters for dis-

placements and rotations. These matrices are respectively

Puu
pen =

∫
Γ ru

ΦuTΦu dΓ r
u (4.35)

Puθ
pen =

∫
Γ ru

ΦθTΦθ dΓ r
u (4.36)

For the interface penalty constraints, assuming the same arrangement and separation

of the DOFs, the penalty matrix is

Pi
pen =


βui Piu

11 0 βui Piu
12 0

0 βθi P
iθ
11 0 βθi P

iθ
12

βui Piu
21 0 βui Piu

22 0

0 βθi P
iθ
21 0 βθi P

iθ
22,

 (4.37)
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with each of the submatrices given by

Piu
ab = (2δab − 1)

∫
Γ ri

ΦuT
a Φu

b dΓ
r
i , (4.38a)

Piθ
ab = (2δab − 1)

∫
Γ ri

ΦθT
a Φθ

b dΓ
r
i , (4.38b)

(a, b) ∈ [1, 2]

and Φu
i and Φθ

i are the shape functions used to approximate respectively the displacements

and rotations in the domain Ωr
i . The force vectors fΩ

r

and fΓ
r
t are the same as in (4.11),

and the essential boundary equivalent force is

qupen =


∫
Γ ru

βuuΦuT ū dΓ r
u

∫
Γ ru

βθuΦ
θT θ̄ dΓ r

u

 . (4.39)

4.3 Nitsche's Method

The interior penalty method described by Nitsche [47] uses the internal variable to

describe the �ux across the essential boundary. In this model problem, the internal �elds

are the displacements and rotations gathered in d and used to describe the shell stresses

in the Dirichlet boundary σrn, which by their turn will be equal to the reaction forces.

Similar approaches have been used by Fernández-Méndez and Huerta [18] for imposing

EBCs in a meshless approximation to solve a uniform Poisson's problem and by Nguyen

et. al. [46] for 2-D and 3-D elasticity in the context of isogeometric analysis.

In our shell problem, we state that

r r = Pnr|Γ ru . (4.40)

In (4.40), r r is the normal reaction force back-rotated to the reference con�guration, P

is the �rst Piolla-Kirchho� stress tensor and nr is the unit outward normal to the essential

boundary at the reference con�guration. The integration of r r through the thickness yields

the generalized reaction resultants of (2.35c), which according to the method, are iden-

ti�ed with the tractions on the boundary given by the domain generalized displacement

approximation.

σΓ
r
u = σrn = nrασ

r
α (d) , (4.41)

where nrα are the components of nr in erα as this back-rotated normal has no component

perpendicular to the reference plane (nr · er3 = 0).
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The weak imposition of the displacements takes a form similar to (4.3):

δW u
nit =

∫
Γ ru

δσrn · [d ]dΓ r
u = 0,∀δσrn, (4.42)

but now the generalized reaction forces are not independently approximated, but derived

from the domain displacements.

Using (2.45) and (2.42), one can de�ne the back-rotated stress in a given direction

nr = nrαerα in the reference con�guration, due to a set of generalized displacements d as

σrn (d) = nrασ
r
α = nrαDαβ∆βd (4.43)

so that the complementary virtual work of the boundary reactions is

δW u
nit = nrα

∫
Γ ru

σrα (δd) · [d ]dΓ r
u = 0,∀δd . (4.44)

Nitsche's weak form comprised also a penalty-like stabilization parameter as to main-

tain the coercivity of the bilinear form, or the positive de�nite characteristic of the dis-

cretized problem. So Eq. 4.44 can be adapted to

δW u
nit =

∫
Γ ru

(σrn (δd)− βuδd) · [d ]dΓ r
u = 0,∀δd . (4.45)

In the same fashion as done for the Penalty Method in (4.23a), we divide the impo-

sitions into membrane and �exural stresses as to split their separate contributions to the

stability of the problem. The split imposition is then

δW u
nit =

∫
Γ ru

(nr
n (δd)− βuuδu) · [u ] dΓ r

u

+

∫
Γ ru

(
mr

n (δd)− βθuδθ
)
· [θ] dΓ r

u .

(4.46)

For the interface conditions, the tractions are taken any convex average of the stresses

from the intersecting regions

〈σrn〉 = γσrn (d 1) + (1− γ)σrn (d 2) . (4.47)

The weight γ can be any value between zero and unity [53, 1]. We make the trivial

choice of γ = 0.5.

The interface constrains are then imposed in as similar manner to the EBCs via the

weak statement

δW i
nit =

∫
Γ ri

(〈δσrn〉 − βi[δd ]) · [d ] dΓ r
i +

∫
Γ ri

〈σrn〉 · [δd ] dΓ r
i . (4.48)
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Once again, we divide the imposition between in-plane and out-of-plane stresses as

the behavior of the di�erent types of DOFs is highly dependent on the thickness of the

shell. Similar approach was carried out in [49], where the impositions for normal and

shear stresses were separated and the stabilization parameters for each kind of stress was

independently determined. The expanded weak contribution is then

δW i
nit =

∫
Γ ri

(〈δnr
n〉 − βui [δu ]) · [u ] dΓ r

i +

∫
Γ ri

(
〈δmr

n〉 − βθi [δθ]
)
· [θ] dΓ r

i

+

∫
Γ ri

〈nr
n〉 · [δu ] dΓ r

i +

∫
Γ ri

〈mr
n〉 · [δθ] dΓ r

i

(4.49)

The global weak form for the Nitsche's Method is then

δWnit =
∑
nreg

∫
Ωr
δεrα · σrα dΩr −

∑
nreg

∫
Ωr
δd · q̄Ωr dΩr −

∫
Γ rt

δd · q̄Γ rt dΓ r
t

−
∫
Γ ru

δu · nr
n dΓ

r
u −

∫
Γ ru

δnr
n · [u ] dΓ r

u + βuu

∫
Γ ru

δu · [u ] dΓ r
u

−
∫
Γ ru

δθ ·mr
n dΓ

r
u −

∫
Γ ru

δmr
n · [θ] dΓ r

u + βθu

∫
Γ ru

δθ · [θ] dΓ r
u

−
∫
Γ ri

〈δnr
n〉 · [u ] dΓ r

i −
∫
Γ ri

〈nr
n〉 · [δu ] dΓ r

i + βui

∫
Γ ri

[δu ] · [u ] dΓ r
i

−
∫
Γ ri

〈δmr
n〉 · [θ] dΓ r

i −
∫
Γ ri

〈mr
n〉 · [δθ] dΓ r

i + βθi

∫
Γ ri

δ[θ] · [θ] dΓ r
i ,

= 0,∀δu , δθ

(4.50)

where nr
n, mr

n and their variations are expressed as linearly dependents on the displace-

ments d . As has been pointed out by Tiago [58], Nitsche's weak form is a combination

between the modi�ed variational principle early developed [42] and a penalty enforcement.

It can also be derived from an Augmented Lagrangian formulation where the Lagrange

Multipliers are replaced by the boundary tractions.

After discretization of both trial and test spaces of generalized displacements with the

same shape functions, and taking into account the general characteristic of the variations,

the linear system of equations is obtained as

[K + Gu
nit + Pu

nit + Gi
nit + Pi

nit]d = fΩ
r

+ fΓ
r
t + qunit. (4.51)

The sti�ness matrix K is de�ned by Eq. (4.33) and the force vectors fΩ
r

and fΓ
r
t are

the given by (4.11). The penalty matrices Pu
nit and Pi

nit are the same as for the penalty

method Pu
pen and Pi

pen given by Eq. (4.34) and Eq. (4.37) respectively. The (symmetric)
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boundary imposition matrix is given by

Gu
nit = −nrα

∫
Γ ru

ΦTDαβBβ dΓ
r
u − nrα

∫
Γ ru

BT
βDT

αβΦ dΓ r
u . (4.52)

For the interfaces, some assembly is required, similarly to the penalty matrices,

Gi
nit =

1

2

[
Gi

11 Gi
12

Gi
21 Gi

22

]
+

1

2

[
Gi

11 Gi
12

Gi
21 Gi

22

]T
(4.53)

whose component matrices are

Gi
ab = (2δab − 1)

∫
Γ ri

nrαΦ
aTDb

αβB
b
β dΓ

r
i ,

a, b ∈ [1, 2].

(4.54)

Vector qunit accounts for the imposed generalized displacements. It involves both the

penalty imposition vector qupen (4.39) and an extra contribution

qunit = qupen −
∫
Γ ru

nrαDαβBβd̄ dΓ r
u . (4.55)

from Nitsche's terms.

Contrary to the Penalty Method, the constants β do not play a much signi�cant role

in the behavior of the system. The strong form can be recovered independently of the

choice of constants. We use the notation for the tractions calculated from the domain

approximation as

n1n = n1αn1 = n1αDη
αβ∆

η
βd 1 (4.56a)

n2n = n2αn2 = n2αDη
αβ∆

η
βd 2 (4.56b)

m1n = n1αm1 = n1αDκ
αβ∆

κ
βd 1 (4.56c)

m2n = n2αm2 = n2αDκ
αβ∆

κ
βd 2, (4.56d)

where n1α and n2α are the components for the normal vector of each region. We draw the

attention to the fact that, in this case, the normals are not opposing (n1α 6= −n2α) as the
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interface might be a kink where the midsurface changes plane. From (4.50), one can write

δWnit =
∑
nreg

[
−
∫
Ωr
δu ·

(
nα,α + n̄Ωr

)
dΩr

−
∫
Ωr
δθ ·

(
Z o
,αnα + mα,α + m̄Ωr

)
dΩr

]
+

∫
Γ rt

δu ·
(
nn − n̄Γ rt

)
dΓ r

t +

∫
Γ rt

δθ ·
(
mn − m̄Γ rt

)
dΓ r

t

+

∫
Γ ru

δu · (nn − n1n) dΓ r
u −

∫
Γ ru

(δn1n − βuuδu) · [u ] dΓ r
u

+

∫
Γ ru

δθ · (mn −m1n) dΓ r
u −

∫
Γ ru

(
δm1n − βθuδθ

)
· [θ] dΓ r

u

+

∫
Γ ri

δu1 · (n1n − 〈nn〉) dΓ r
i +

∫
Γ ri

δu2 · (n2n + 〈nn〉) dΓ r
i

+

∫
Γ ri

δθ1 · (m1n − 〈mn〉) dΓ r
i +

∫
Γ ri

δθ2 · (m2n + 〈mn〉) dΓ r
i

−
∫
Γ ri

(〈δnr
n〉 − βui [δu ]) · [u ] dΓ r

i

−
∫
Γ ri

(
〈δmr

n〉 − βθi [δθ]
)
· [θ] dΓ r

i

= 0,∀δu , δθ

(4.57)

A careful choice of the virtual �elds can present the strong formulation for the shell.

Equilibrium in the domain comes from the �rst two terms as

nα,α + n̄Ωr = 0

mα,α + Z o
,αnα + mα,α = 0

}
in Ωr. (4.58)

Appropriate election on the natural boundary provide

nn = n̄Γ rt

mn = m̄Γ rt

}
on Γ r

t , (4.59)

the equilibrium on Γ r
t . For the essential boundary we can obtain

if δu 6= 0 , nn = n1n

if δθ 6= 0 , mn = m1n

if δn1n − βuuδu 6= 0 , [u ] = u − ū = 0

if δm1n − βuuδu 6= 0 , [θ] = θ − θ̄ = 0


on Γ r

u , (4.60)

the identi�cation of the internal generalized stresses normal to the boundary with the

generalized reactions and the compatibility of displacements and rotations. If similar
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assumptions are made on the interface,

n1n = −n2n = 〈nn〉

m1n = −m2n = 〈mn〉

[u ] = u1 − u2 = 0

[θ] = θ1 − θ2 = 0


on Γ r

i . (4.61)

Eq. 4.61 expresses that the tractions on both regions at a point on the interface are

in balance and that the relative displacements and rotations are compatible.

An important issue with Nitsche's weak formulation is the determination of constants

β. Even though results are not so sensitive to this parameter as in a penalty framework,

a lower bound is necessary to keep the bilinear form coercivity and a upper bound to

refrain from ill-conditioning the system.

Some works ([46]) choose β empirically from the order of magnitude of the other ma-

trices involved. [52] presents a global eigenproblem whose solution yields a good estimate

for the parameter in an eXtended Finite Element (XFEM) framework, as do [20] for im-

posing EBCs for a Partition of Unity meshless method. This technique is cited by [18], but

the parameter is obtained from a "parametric tuning". A similar problem is assembled

element by element in [16] for B-splines-based Finite Elements. Those eigenproblems are

smaller than a global one for compactly support shape functions, but the stabilization

parameter varies along the boundary. [15, 1] reach analytical expressions for the parame-

ters for triangular and tetrahedral �nite elements, and [53] uses the largest of these (and

others) element wide estimators as a global constant.

An interesting approach is taken by [49] for enforcing EBCs, where the normal and

tangential stress components are taken separately and have di�erent parameters de�ned

in two separate local eigenproblems. Similar approach is taken in [50] for isogeometric

analysis of patched geometries, where the local eigenproblem is used to estimate the

stabilization over the interfaces.

If the local approach was to be adapted for a meshless framework, local eigenproblems

would have to be assembled for each integration point, as their connectivity are unique and

determined during the computation of the shape functions. It can be said that, although

compact, MLS shape functions support are larger than those of FEs and the connectivity

is more populated, especially for higher order polynomial bases. Since the size of the local

eigenvalue problem is related to this connectivity, it wouldn't be much smaller than a

global one when MLS shape functions are used, and we would have to solve many of

these eigenvalue problems. For that reason, and for local instabilities that can arise in a

local approach, this work makes use of global eigenproblems to determine the stabilization

parameters.

We start by expressing the virtual works as linear and bilinear forms. The internal
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virtual work translates into a bilinear form

aint (δd ,d) = δW int =

∫
Ωr
δεer · σr dΩr. (4.62)

and the external virtual work into a linear form

lext (δd) = −δW ext = −
∫
Ωr
δd · q̄Ωr dΩr −

∫
Γ rt

δd · q̄Γ rt dΓ r
t . (4.63)

The weak imposition of EBCs is expressed as the sum

aunit (δd ,d)− lunit (δd) = −δW u
nit, (4.64a)

aunit (δd ,d) = −
∫
Γ ru

δu · nr
n dΓ

r
u −

∫
Γ ru

δnr
n · u dΓ r

u +

∫
Γ ru

βuuδu · u dΓ r
u

−
∫
Γ ru

δθ ·mr
n dΓ

r
u −

∫
Γ ru

δmr
n · θ dΓ r

u +

∫
Γ ru

βθuδθ · θ dΓ r
u

(4.64b)

lunit (δd) =−
∫
Γ ru

δn · ū dΓ r
u +

∫
Γ ru

βuuδu · ū dΓ r
u

−
∫
Γ ru

δm · θ̄ dΓ r
u +

∫
Γ ru

βθuδθ · θ̄ dΓ r
u ,

(4.64c)

and so are the interface terms

ainit (δd ,d)− linit (δd) = −δW i
nit, (4.65a)

ainit (δd ,d) = −
∫
Γ ri

[δu ] · 〈nr
n〉 dΓ r

i −
∫
Γ ri

〈δnr
n〉 · [u ] dΓ r

i +

∫
Γ ri

βui [δu ] · [u ] dΓ r
i

−
∫
Γ ri

[δθ] · 〈mr
n〉 dΓ r

i −
∫
Γ ri

〈mr
n〉 · [δθ] dΓ r

i +

∫
Γ ri

βθi [δθ] · [θ] dΓ r
i .

(4.65b)

Those components can be gathered

anit (δd ,d) = aint (δd ,d) + aunit (δd ,d) + ainit (δd ,d) (4.66a)

lnit (δd) = lext (δd) + lunit (δd) + linit (δd) (4.66b)

and the equilibrium is expressed as

anit (δd ,d) = lnit (δd) . (4.67)
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We make use of the norms

‖a‖2
Ωr =

∫
Ωr

a · a dΩr in Ωr, (4.68a)

‖a‖2
Γ r =

∫
Γ r

a · a dΓ r on Γ r (4.68b)

and Young's inequality with ε

a · b ≤ a · a
2ε

+
εb · b

2
(4.69)

so that

aunit (δd , δd) =− 2

∫
Γ ru

δu · δnr
n dΓ

r
u + βuu

∫
Γ ru

δu · δu dΓ r
u

− 2

∫
Γ ru

δθ · δmr
n dΓ

r
u + βθu

∫
Γ ru

βθuδθ · θ dΓ r
u

aunit (δd , δd) ≥− εuu‖δu‖2
Γ ru
− 1

εuu
‖δnr

n‖2
Γ ru

+ βuu‖δu‖2
Γ ru

− εuθ‖δθ‖2
Γ ru
− 1

εuθ
‖δmr

n‖2
Γ ru

+ βθu‖δθ‖2
Γ ru
.

(4.70)

for the essential boundary and

ainit (δd , δd) =− 2

∫
Γ ri

[δu ] · 〈δnr
n〉 dΓ r

i + βui

∫
Γ ri

[δu ] · [δu ] dΓ r
i

− 2

∫
Γ ri

[δθ] · 〈δmr
n〉 dΓ r

i + βθi

∫
Γ ri

[δθ] · [δθ] dΓ r
i

ainit (δd , δd) ≥− εiu‖[δu ]‖2
Γ ri
− 1

εiu
‖〈δnr

n〉‖2
Γ ri

+ βui ‖[δu ]‖2
Γ ri

− εiθ‖[δθ]‖2
Γ ri
− 1

εiθ
‖〈δmr

n〉‖2
Γ ri

+ βθi ‖[δθ]‖2
Γ ri
.

(4.71)

We resort to distribution dependent relations (see [27] and [52]) between stains in the

domain and reactions on the boundaries:

‖δnr
n‖2

Γ ru
≤Cu

u a
int (δd , δd) (4.72a)

‖δmr
n‖2

Γ ru
≤Cu

θ a
int (δd , δd) (4.72b)

‖〈δnr
n〉‖

2
Γ ri
≤Ci

u a
int (δd , δd) (4.72c)

‖〈δmr
n〉‖

2
Γ ri
≤Ci

θ a
int (δd , δd) , (4.72d)

where the superscript u indicate evaluation on the essential boundary, i on an interface,

for the subscripts, u is related to displacements and θ to the rotations. Constants C are

positive and particular to each distribution.
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With these de�nitions,

aunit (δd , δd) ≥− 1

εuu
Cu
u a

int (δd , δd) + (βuu − εuu) ‖δu‖2
Γ ru

− 1

εuθ
Cu
θ a

int (δd , δd) +
(
βθu − εuθ

)
‖δθ‖2

Γ ru
,

(4.73)

and
ainit (δd , δd) ≥− 1

εiu
Ci
u a

int (δd , δd) +
(
βui − εiu

)
‖δu‖2

Γ ri

− 1

εiθ
Cu
θ a

int (δd , δd) +
(
βθi − εiθ

)
‖δθ‖2

Γ ri
.

(4.74)

It can be said for the total bilinear form then

anit (δd , δd) ≥
(

1− Cu
u

εuu
− Cu

θ

εuθ
− Ci

u

εiu
− Ci

θ

εiθ

)
aint (δd , δd)

+ (βuu − εuu) ‖δu‖2
Γ ru

+
(
βθu − εuθ

)
‖δθ‖2

Γ ru

+
(
βui − εiu

)
‖[δu ]‖2

Γ ri
+
(
βθi − εiθ

)
‖[δθ]‖2

Γ ri
.

(4.75)

In order to Nitsche's bilinear form anit (δd ,d) to remain positive, each of the constants

must obey relations in the form

β ≥ ε ≥ 4C. (4.76)

We can take lower bounds for parameters β from (4.76) as the distribution dependent

inequalities (4.72) provide a mean to estimate constants C. For each constant set, an

eigenproblem of the form

Aδ = λKδ (4.77)

is assembled. The largest eigenvalue is taken for C, and used for respective β according to

(4.76). Matrix K is the global sti�ness matrix and a di�erent matrix A must be assembled

for the each eigenproblem. They are quite straightforward for EBCs,

Au
u =

∫
Γ ru

(
nαD

η
αβB

η
β

)T (
nαD

η
αβB

η
β

)
dΓ r

u (4.78a)

Au
θ =

∫
Γ ru

(
nαD

κ
αβB

κ
β

)T (
nαD

κ
αβB

κ
β

)
dΓ r

u (4.78b)
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but require some assembling for the interfaces, as

Ai =

[
Ai

11 Ai
12

Ai
21 Ai

22

]
(4.79a)

Aiu
ab =

∫
Γ ri

(
nαD

ηa
αβB

ηa
β

)T (
nαD

ηb
αβB

ηb
β

)
dΓ r

i (4.79b)

Aiθ
ab =

∫
Γ ri

(
nαD

κa
αβB

κa
β

)T (
nαD

κb
αβB

κb
β

)
dΓ r

i , (4.79c)

(a, b) ∈ [1, 2], with no sum over a or b.

In fact, matrices Ai can be expressed the same way as Au if the global numbering for

the degrees of freedom are taken into account in matrices B. Since we use local numbering

for the DOFs, we are compelled to separate into submatrices.

Although the eigenvalue problem is called global, not all degrees of freedom are in-

volved in boundary approximation. Matrices A are only assembled for the DOFs related

to particles whose support intersect the essential boundary. Only the subset of matrix K

relating to these DOFs is used as the right-hand side of Eq. 4.77.

We propose the use of stabilization parameters in the form

β = αmax(λ), (4.80)

where max(λ) is the maximum eigenvalue of (4.77) and α ≥ 4 is a value in the same order

of magnitude as 4.



Chapter 5

Numerical Examples

The numerical examples presented here serve to illustrate the applicability of the

developed formulation for the analysis of shells of di�erent thicknesses. First, it is shown

that the eigenproblems (4.77) provide a good estimative for the stabilization parameters.

Than, more complex geometries are analyzed.

5.1 Stabilization for EBCs

Two simple problems are used to demonstrate that our methodology provide good

estimates for constants βu.

5.1.1 Displacement DOFs

We start by analyzing the in�uence of the essential boundary stabilization constant for

displacements βuu . The square 2×2 domain in Fig. 5.1 is discretized with 4×4 integration

cells depicted as the black squares. Approximation nodes, blue circles, are positioned on

the vertices of the integration cells. The plate is �xed on its left border and tractioned
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Figure 5.1: Plate under tension, single region.
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Figure 5.2: Plate under tension, single region. Displacement Error

by a unitary distributed load on the right boundary. Material parameters are E = 1×106

and ν = 0.3 and three thickness values (2×10−1, 2×10−2 and 2×10−3) are used

Di�erent values of βuu are employed for the Penalty and the Interior Penalty methods

and results are compared in Fig. 5.2. The displacement error is computed across the

domain as

εdisp =

∫
Ωr

(
d − d̄

)2
dΩr (5.1)

and d̄ is the analytical solution. Likewise, the boundary error is computed as

εbound =

∫
Γ ru

(
d − d̄

)2
dΓ r

u (5.2)

and shown in Fig. 5.3. The crossed marks in both �gures represent the eigenvalue obtained

from Eqs. 4.77 and 4.78a for each shell thickness and the respective error when using this

values as βuu (α = 1).

It is important to notice that the area of suitable constants for Nitsche's method,

where the boundary error is equivalent to the approximation error, is much broader than

that for the penalty method, as it is merely a stabilization parameter. For the penalty

method, the boundary error in Fig. 5.3 is inversely proportional to the parameter up to

values that render the system as ill-conditioned.

Also, the eigenvalue obtained is a good approximation for the frontier between the

stable and unstable responses. For this very simple example, any 1 ≤ α ≤ 1×1015 should

render good results.
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Figure 5.3: Plate under tension, single region. Essential Boundary Error
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Figure 5.4: Plate under pure bending, single region.

5.1.2 Rotation DOFs

A similar model is used for assessing the constant for rotational degrees of freedom.

A denser particle distribution is depicted in Fig. 5.4 so the domain approximation error

doesn't play a signi�cant role in the analysis.

The material parameters are E = 1×106 and ν = 0.0 and the same three thick-

nesses as in the �rst example are used. We keep the boundary stabilization parameter

for displacements �xed as eigenvalue obtained from (4.78a) with an ampli�cation value

of αuu = 10.

Domain displacement results for the bending parameter are shown in Fig. 5.5 and

boundary error in Fig. 5.6. The same observations made for the previous example can be

made for the rotational DOFs, but for a slightly narrower suitable range for stabilization

parameter. Nevertheless, the eigenvalue is still a good approximation.
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Figure 5.5: Plate under pure bending, single region. Displacement Error
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Figure 5.6: Plate under pure bending, single region. Essential Boundary Error
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Figure 5.7: Plate under tension, two regions.

5.2 Stabilization for Interfaces

Similar problems are used to analyze the imposition of continuity and equilibrium

across the interfaces. We start with simple models, analogous to the previous, whose

approximation error we compare for di�erent stabilization / penalty parameters. The

previous domain is divided in two contiguous regions and both penalty and Nitsche's

methods are employed on the interface.

The error on the interface is de�ned as

εintf =

∫
Γ ri

(d 1 − d 2)2 dΓ r
i , (5.3)

where dn is the approximation of the generalized displacements using the approximation

of region n.

5.2.1 Displacement DOFs

For the analysis of the displacement DOFs, once again a pure tension plate is analyzed.

The particle distribution is shown in Fig. 5.7, where the blue dots are the particles used

to approximate the DOFs of region 1, the yellow dots, for region 2 and the red dots are

actually the superposition of particles of regions 1 and 2, whose DOFs are independent.

The blue line is the interface. Material parameters are kept and shells of three di�erent

thicknesses are analyzed.

The objective is to analyze the interface constraints, so EBCs kept constant, imposed

with Nitsche's method, with stabilization parameters βuu and βθu as the maximum eigen-

value of (4.78a,4.78b) ampli�ed by αu = 10 and constant for each thickness.

βθi is also kept constant at the maximum eigenvalue of (4.79c), so that only βui , the

stabilization parameter for the displacement DOFs at the interface, in�uences the results.

The results are shown in Fig. 5.8 for the domain error and Fig. 5.9 for the error



5. Numerical Examples 46

β
u

i

100 105 1010 1015 1020

D
is

pl
ac

em
en

t E
rr

or

10-22

10-20

10-18

10-16

10-14

10-12

10-10

t=0.200, Nitsche
t=0.200, Penalty
t=0.020, Nitsche
t=0.020, Penalty
t=0.002, Nitsche
t=0.002, Penalty
Eigenproblem sol.

Figure 5.8: Plate under tension, two regions. Displacement Error

β
u

i

100 105 1010 1015 1020

In
te

rf
ac

e 
E

rr
or

10-35

10-30

10-25

10-20

10-15

10-10

t=0.200, Nitsche
t=0.200, Penalty
t=0.020, Nitsche
t=0.020, Penalty
t=0.002, Nitsche
t=0.002, Penalty
Eigenproblem sol.

Figure 5.9: Plate under tension, two regions. Interface Error



5. Numerical Examples 47

-0.5 0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

Gu

r
Gi

r

Gt

r

e
r

1

e
r

2

e
r

3

Figure 5.10: Plate under pure bending, two regions.
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Figure 5.11: Plate under pure bending, two regions. Displacement Error

on the interface. Once again, the maximum eigenvalue of the proposed system correctly

approximates the end of the unstable zone and the baselines of the error curves are wide

enough to accommodate values of 1 ≤ α ≤ 1×107 approximately.

5.2.2 Rotation DOFs

For the particle distribution in Fig. 5.10, several values of βθi where used as to assess

the error in the interface continuity. The values of βuu and βθu were taken according to

(4.80) with α = 10 and for βui , α = 1.

The results are presented in Figs. 5.11, 5.12 and similar conclusions can be drawn. The

solution of the proposed eigenproblem is clear of the perturbed region by a considerable

margin, still away of the numerical instabilities of a pure penalty approach.
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Figure 5.13: Pinched Cylinder. Discretization models A, B and C respectively
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5.3 Pinched Cylinder

The classical Pinched Cylinder [56] example is presented next. It consists of a cylindri-

cal shell with rigid diaphragms on each end subject to two opposing concentrated loads

pinching its center point inwards. For simplicity, we model only one eighth of the cylinder,

depicted in Fig. 5.13. The shell has a thickness of 0.01, Young modulus of 98 and Poisson

ratio of 0.3. The length of the full cylinder is 2.0 and its radius 1.0. The applied load is

1/1200 downwards.

The MLS shape functions were constructed using a �fth order polynomial base and a

support radius ampli�ed by 3. The use of a high-order base is demanding on the particle

distribution concerning linear dependencies. The particles are then moved from a straight

structured distribution by a small random perturbation. Particles may lay outside the

approximation domain, as long as their support covers at least part of it. In this case, the

particles don't coincide with the nodes of the integration cell discretization depicted in

Fig. 5.13.

Five di�erent models were developed and compared. Model A uses a single region with

almost uniform particle distribution and no interface. Model B divides the domain into

two regions through a interface at ξ1 = 0.5 with both regions approximated by similar

particle distributions. It serves to demonstrate that the present framework can reproduce

curved interfaces. Model C, also uses two discretization regions, but with the blue region

more re�ned than the yellow region. This illustrates the possibility of local re�nement,

equivalent to non conforming FE meshes. Models D and E have similar de�nitions as B

and C, but with a longitudinal interface. Particle distributions for models A, B, C, D and

E are all depicted in Fig. 5.13.

Kinematic constraints are enforced either with Lagrange Multipliers or with Nitsche's

Method using the eigenvalue problem solution and all α = 10. For the Lagrange Mul-

tipliers, the linear solver warned for badly scaled system matrix if the trivial choice of

discretization was chosen for the interface and the essential boundary. As results were

similar to the ones obtained with Nitsche's method for similar particle distributions, we

trust that the MATLAB solver could handle the badly scaled system.

Fig. 5.14 shows the vertical displacement of the loaded point. Results converge to

the reference solution −6.0829 × 10−8, with the same ratio for Nitsche's method as for

Lagrange multipliers.

It is noticeable that Model B converges with similar ratio as Model A, but requires

more DOFs to achieve the same error. This is expected as the use of two regions with same

approximation properties brings no signi�cant advantage in this case. The approximation

space is not enriched in this area.

As for Model C, convergence is kept at a similar ratio, but again we need too many

DOFs to achieve the same level of error. Even thought Nitsche's Method precludes the
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Figure 5.15: Pinched Cylinder. Deformed shape

introduction of interface DOFs, the separate approximations requires the nodes on the

interface to be doubled. These extra DOFs are also present in the Lagrange Multiplier

framework as it relates to the discretization rather then to the kinematic constraint.

Models D and E, with a shorter interface, don't need so many DOFs introduced. Model

E presents the best results for a same number of DOFs as re�nement is carried out in

the area with higher gradients. A representation of the displacements on the converged

solution is depicted in Fig. 5.15

5.4 T-beam

A balance T-beam under concentrated load is analyzed in [22] and reproduced in

Fig. 5.16. Young modulus was taken as 3×106 and Poisson's ratio 0.3. This example

presents a possibility to analyze a structure assembled from shells in di�erent planes. The

interface is the line on the intersection of the shells' midsurfaces.

The solution present in [22] and depicted in Fig. 5.16(a) includes a interface inside

the domain. Despite departing from the described framework, it presents no di�erence in

implementation and forms our 2-region model. Nevertheless, for the balance of moments

on the intersection between the �ange and the web to be kept, the moment acting on the
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�ange should be discontinuous on the junction, what cannot be represented by a single

region in the �ange. For that, a 3-region model is presented in Fig. 5.16(b), where region

1 is the web and each of regions 2 and 3 represent one side of the �ange.

A illustrative particle distribution is presented in 5.17 for the 2-region model, as the

3-region equivalent can be obtained by doubling the particles on the interface and di-

viding the set of particles on the �ange in two. A quadratic base was used for the MLS

approximant, with dilatation parameter 1.75.

We compare the displacements on the loaded point for di�erent particle distribution

similar to Fig. 5.17. Either Lagrange Multipliers or Nitsche's Method are used simul-

taneously on the essential boundary and the interface. For the latter, the stabilization

parameters are obtained from the global eigenvalue problem and magni�ed by α = 10.

Both models converge similarly and independent from the method of imposing kinematic

constraints.

An important objective for this model is to keep the right angle between the �ange and

the web. Normalized results are shown in Fig. 5.19 for Lagrange Multipliers and Nitsche's

Method using the particle distribution depicted in Fig. 5.17. The graph on top presents

the results for the 2-region model, the one below shows the angles between the pairs of

region in the 3-region model.

The angle is given by the di�erent values of θ1 obtained in each region. Despite a

signi�cant di�erence between models and solution strategy, the error is kept below 1×10−6
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Figure 5.20: T-beam, moments for 2-region model

for the worst situation.

The 2-region model emulates the overall behavior really well, with compatible results

for tip displacement, however cannot represent a sharp stress jump. Figs. 5.20-5.21 show

a top view of the twisting moment m21 for each approach and exempli�es how a 3-region

model can be useful. Fig. 5.22 shows the deformed model with ampli�ed displacements
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Figure 5.21: T-beam, moments for 3-region model

Figure 5.22: T-beam, displacements for 3-region model



Chapter 6

Conclusions

This work has presented an alternative for imposing kinematic conditions in the linear

analysis of shear deformable shells using the Element-Free Galerkin method: Nitsche's

method. The approach is adapted to the shear deformable shell model and suitable for

Element-free Galerkin analysis, accounting for rotation degrees of freedom and bending

tractions. It is compared to more usual Penalty and Lagrange Multiplier methods, and

consistency between weak and strong formulation is demonstrated. Numerical simulations

present similar rates of convergence for the three methods, with no addition of degrees of

freedom or loss of consistency for a wider range of stabilization parameters for Nitsche's

approach.

One of the setbacks of Nitsche's Method is the presence of a user de�ned stabilization

penalty-like parameter. The choice is not as fundamental as in a pure penalty parameter as

the range of suitable values is wider. Nevertheless, the use of rotational degrees of freedom

and bending sti�ness, which assume di�erent order of magnitude than the displacement

DOFs and di�erent dependency on the shell thickness, narrows the decision space if the

parameter were to be taken as the same for all �elds. We overcome this barrier proposing

di�erent parameters β for each set of DOFs and proposing eigenvalue problems to estimate

a lower bound. The matrices used for the eigenvalue problem are either already computed

during domain assembly or have components already calculated for boundary imposition.

Even more, only the higher eigenvalue is needed, so the assembly and solution of the

eigenvalue problem is not so demanding during computation.

Even so, some measures could be implemented as to speed the process. If the approx-

imations are similar (same material properties and similar particle spacing), the result

obtained for one boundary can be used on the others and the interfaces. A local approach

for the eigenvalue problem is available for Finite Elements [15], where the mesh dependent

inequalities are expressed in a single element's domain thus assembling and solving the

eigenproblem with only one element's degrees of freedom. The stabilization parameter

is then taken as the largest of the element-wise estimations or as variable on the inter-

face. The lack of elements makes the extension to meshless methods not straightforward,

56
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but possible via boundary integration cells. These alternatives are left as possibilities for

future research. Extension to nonlinear problems is another desired feature, as it would

emphasize the advantage of a smaller system of equations.

Numerical results show that the method is e�cient, with similar error and convergence

properties as Lagrange Multipliers and more stable than the Penalty method. Flexibil-

ity was demonstrated as curved interfaces, folded shells and discretization with di�erent

particle density were accurately represented.

The developed model proves suitable for shell analysis under small displacement and

rotations, keeping a neat formulation whose weak form correspond to the di�erential

statements with no need for a secondary approximation �eld or a hybrid formulation.

The extension of Nitsche's weak for to encompass rotational DOFs was successful and the

estimation procedure for stabilization parameters renders a proper lower bound and thus

a stable formulation.

These contributions were summarized and submitted for publication by Costa, Pi-

menta and Wriggers [11].
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