LUIZ FELIPE MARCHETTI DO COUTO

ARQUITETURA DE COMPUTAÇÃO PARALELA PARA RESOLUÇÃO DE PROBLEMAS DE DINÂMICA DOS FLUIDOS E INTERAÇÃO FLUIDO-ESTRUTURA

São Paulo

LUIZ FELIPE MARCHETTI DO COUTO

ARQUITETURA DE COMPUTAÇÃO PARALELA PARA RESOLUÇÃO DE PROBLEMAS DE DINÂMICA DOS FLUIDOS E INTERAÇÃO FLUIDO-ESTRUTURA

Dissertação apresentada à Escola Politécnica da Universidade de São Paulo para obtenção do título de Mestre em Engenharia Civil

Área de Concentração: Engenharia Civil

Orientador: Prof. Dr. Paulo de Mattos Pimenta

Catalogação-na-publicação

Couto, Luiz Felipe Marchetti do Arquitetura de computação paralela para resolução de problemas de dinâmica dos fluidos e interação fluido-estrutura / L. F. M. Couto -- São Paulo, 2016.

238 p.

Dissertação (Mestrado) - Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Estruturas e Geotécnica.

1.Multiprogramação e multiprocessamento 2.Computação gráfica 3.Interação fluido-estrutura 4.Dinâmica dos fluidos 5.Método dos elementos finitos I.Universidade de São Paulo. Escola Politécnica. Departamento de Engenharia de Estruturas e Geotécnica II.t.

LUIZ FELIPE MARCHETTI DO COUTO

ARQUITETURA DE COMPUTAÇÃO PARALELA PARA RESOLUÇÃO DE PROBLEMAS DE DINÂMICA DOS FLUIDOS E INTERAÇÃO FLUIDO-ESTRUTURA

Dissertação apresentada à Escola Politécnica da Universidade de São Paulo para obtenção do título de Mestre em Engenharia Civil

Banca examinadora:

Prof. Dr. Paulo de Mattos Pimenta Orientador Escola Politécnica da Universidade de São Paulo

Prof. Dr. Henrique Campelo Gomes Escola Politécnica da Universidade de São Paulo

Prof. Dr. José Luis Drummond Alves Universidade Federal do Rio de Janeiro

São Paulo, 02 de Junho de 2016.

À minha amada esposa Roberta, pela paciência e incentivo por todos estes anos. Ao meu filho Felipe, o grande amor da minha vida. Aos meus pais Celso e Marcia, pelo apoio incondicional.

AGRADECIMENTOS

Aos familiares, pelo apoio incondicional, compreensão e carinho.

Ao Prof. Dr. Paulo de Mattos Pimenta pelo apoio e confiança desde o início deste trabalho, pela amizade, pelas produtivas reuniões, pelos grandes ensinamentos nestes anos e por me apresentar ao mundo maravilhoso da Mecânica Computacional.

Ao Prof. Dr. Henrique Campelo Gomes pela amizade conquistada, pelas excelentes conversas e reuniões e "co-orientação", sempre trazendo novas ideias para este e futuros trabalhos e sem o qual nada disso seria possível.

Ao Prof. Dr. Alfredo Gay Neto pelas excelentes contribuições a este trabalho, pelo fornecimento do código do GIRAFFE, possibilitando a realização da co-simulação e proporcionado com isso a apresentação no Congresso de Mecânica Computacional (USNCCM) em San Diego, EUA.

Ao grupo do Laboratório de Mecânica Computacional, Campello, Edu, Paulo, Yuri, Jorginho, pelas sempre produtivas conversas, tornando cada dia neste Laboratório um grande aprendizado.

Ao Prof. Januário Pellegrino Neto pela amizade, confiança e principalmente pela indicação na pós-graduação da Escola Politécnica da Universidade de São Paulo, possibilitando conhecer o Laboratório de Mecânica Computacional e o excelente corpo técnico que o mesmo possui.

RESUMO

Um dos grandes desafios da engenharia atualmente é viabilizar soluções computacionais que reduzam o tempo de processamento e forneçam respostas ainda mais precisas. Frequentemente surgem propostas com as mais diversas abordagens que exploram novas formas de resolver tais problemas ou tentam, ainda, melhorar as soluções existentes. Uma das áreas que se dedica a propor tais melhorias é a computação paralela e de alto desempenho – HPC (*High Performance Computing*). Técnicas que otimizem o tempo de processamento, algoritmos mais eficientes e computadores mais rápidos abrem novos horizontes possibilitando realizar tarefas que antes eram inviáveis ou levariam muito tempo para serem concluídas. Neste projeto propõe-se a implementação computacional de uma arquitetura de computação paralela com o intuito de resolver, de forma mais eficiente, em comparação com a arquitetura sequencial, problemas de Dinâmica dos Fluidos e Interação Fluido-Estrutura e que também seja possível estender esta arquitetura para a resolução de outros problemas relacionados com o Método dos Elementos Finitos. O objetivo deste trabalho é desenvolver um algoritmo computacional eficiente em linguagem de programação científica C++ e CUDA – de propriedade da NVIDIA® – tendo como base trabalhos anteriores desenvolvidos no LMC (Laboratório de Mecânica Computacional) e, posteriormente, com a arquitetura desenvolvida, executar e investigar problemas de Dinâmica dos Fluidos e Interação Fluido-Estrutura (aplicando o método dos Elementos Finitos com Fronteiras Imersas e a solução direta do sistema de equações lineares com PARDISO) com o auxílio dos computadores do LMC. Uma análise de sensibilidade para cada problema é realizada de forma a encontrar a melhor combinação entre o número de elementos da malha de elementos finitos e o *speedup*, e posteriormente é feita uma análise comparativa de desempenho entre a arquitetura paralela a sequencial. Com uma única GPU conseguiu-se uma considerável redução no tempo para o *assembly* das matrizes globais e no tempo total da simulação.

Palavras-chaves: Interação Fluido-Estrutura, Elementos Finitos, High Performance Computing, CUDA.

ABSTRACT

One of the biggest challenges of engineering is enable computational solutions that reduce processing time and provide more accurate numerical solutions. Proposals with several approaches that explore new ways of solving such problems or improve existing solutions emerge. One of the biggest areas dedicated to propose such improvements is the parallel and high performance computing. Techniques that improve the processing time, more efficient algorithms and faster computers open up new horizons allowing to perform tasks that were previously unfeasible or would take too long to complete. We can point out, among several areas of interest, Fluid Dynamics and Interaction Fluid-Structure. In this work it is developed a parallel computing architecture in order to solve numerical problems more efficiently, compared to sequential architecture (e.g. Fluid Dynamics and Fluid-Structure Interaction problems) and it is also possible to extend this architecture to solve different problems (e.g. Structural problems). The objective is to develop an efficient computational algorithm in scientific programming language C + +, based on previous work carried out in Computational Mechanics Laboratory (CML) at Polytechnic School at University of São Paulo, and later with the developed architecture, execute and investigate Fluid Dynamics and Fluid-Structure Interaction problems with the aid of CML computers. A sensitivity analysis is executed for different problems in order to assess the best combination of elements quantity and speedup, and then a performance comparison. Using only one GPU, we could get a 10 times speedup compared to a sequential software, using the Finite Element with Immersed Boundary Method and a direct solver (PARDISO).

Key-words: Fluid-Structure Interaction, Finite Elements, High Performance Computing, CUDA.

LISTA DE FIGURAS

Figura 1.1 – Exemplos de problemas de interação fluido-estrutura	22
Figura 2.1 – Microprocessador.	24
Figura 2.2 – Funcionamento de um microprocessador	25
Figura 2.3 – Lei de Moore.	25
Figura 2.4 – Gráfico do <i>speedup</i> teórico pelo número de processadores ou <i>thre</i>	eads
utilizadas em um sistema em função da fração do código-fonte que p	ode
ser efetivamente paralelizado.	28
Figura $2.5 - Grid$ da GPU	30
Figura 2.6 – Diagrama esquemático das memórias internas da GPU e as transferên	ncia
de dados entre elas	32
Figura 2.7 – Utilização da memória compartilhada para aumento do speedup	de
execução em paralelo.	33
Figura 2.8 – Dados nodais para um problema tridimensional	34
Figura 2.9 – Acesso sequencial e alinhado.	34
Figura 2.10–Acesso alinhado mas não sequencial.	35
Figura 2.11–Acesso desalinhado	35
Figura 2.12–Acesso contíguo aos dados nodais	36
Figura 2.13–Assembly das matrizes locais na GPU e posteriormente na CPU	37
Figura 2.14–Quantidade de bytes necessários para um elemento triangular do t	ipo
Taylor-Hood P2P1	38
Figura 2.15–Quantidade de bytes necessários para um elemento quadrilateral	do
tipo Taylor-Hood Q2Q1	38
Figura 2.16–Quantidade de bytes necessários para um elemento do tipo tetraéd	rico
de 10 nós	38
Figura 2.17–Quantidade de bytes necessários para um elemento do tipo hexaéd	rico
de 27 nós	38
Figura $3.1-{\rm Elementos}$ finitos utilizados na discretização do domínio do fluido.	42
Figura 3.2 – Malhas de fluidos típica para o método das fronteiras imersas. $\ .$	43
Figura 3.3 – Domínios do fluido e da estrutura. $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	44
Figura 3.4 – Discretização da interface entre o fluido e a estrutura	45
Figura 3.5 – Integração nos elementos "cortados". Os pontos de Gauss são repre	sen-
tados pelo símbolo "x"	46
Figura 3.6 – Passos necessários para integrar um polígono	48
Figura 3.7 – Polígono resultado do "corte" entre a superfície molhada e a malha	ı de
elementos finitos. Unidades: adimensional	49
Figura 3.8 – Linha de referência	49

Figura 3.9 – Distribuição dos pontos de Gauss principais sobre os lados do polígono	
com componente normal diferente de zero	50
Figura 3.10–Linhas projetadas sobre a linha de referência partindo de cada ponto	
de Gauss principal	50
Figura 3.11–Distribuição dos pontos de Gauss internos sobre a linha projetada	51
Figura 3.12–Cálculo de $\mathcal{G}(\mathbf{X}_i)$ para o ponto de Gauss principal 1	51
Figura 3.13–Resultado do software comercial Autodesk AutoCAD 2016 $^{\ensuremath{\mathbb{R}}}$	54
Figura 3.14–Coeficiente de arrasto para um cilindro circular oscilante no tempo	55
Figura 3.15–Oscilações na pressão com o tempo e a solução apresentada no artigo	56
Figura 3.16–Nós gerados na interface quando da intersecção entre a estrutura e	
a malha de fluido eliminados utilizando as condições de contorno de	
Dirichlet para a velocidade e a condensação estática para a pressão. $\ .$	57
Figura $4.1 - \text{Diferentes concepções de configurações dos risers}$ (a) vertical, (b) cate-	
nária (c) Steep-wave (d) Lazy-wave (Gay Neto et al., 2013)	58
Figura 4.2 – Formulação de vigas utilizando uma descrição lagrangiana atualizada	
(Gay Neto et al., 2013)	60
Figura 5.1 – Arquitetura dividida em pacotes ou módulos. $\ldots \ldots \ldots \ldots \ldots \ldots$	63
Figura 5.2 – Classe <i>Coordinates</i>	64
Figura 5.3 – Classe <i>Node</i>	65
Figura 5.4 – Classe NodeSupport.	66
Figura 5.5 – Classe $Edge$	67
Figura 5.6 – Classe <i>Face</i>	68
Figura 5.7 – Classe Mesh.	69
Figura 5.8 – Classe Material.	70
Figura 5.9 – Classe <i>ConcentratedLoad</i> .	70
Figura 5.10–Classe <i>SurfaceTraction</i>	71
Figura 5.11–Classe <i>BodyForce</i>	71
Figura 5.12–Classe <i>DOFMap</i>	72
Figura 5.13–Classe <i>Field</i>	72
Figura 5.14–Classe <i>GaussPoint</i>	73
Figura 5.15–Classe NumericalIntegration.	73
Figura 5.16–Classe <i>GaussIntegration</i> .	74
Figura 5.17–Hierarquia da classe <i>GaussIntegration</i> .	74
Figura 5.18–Classe <i>NeutralFile</i>	75
Figura 5.19–Classe <i>FEM</i> .	76
Figura 5.20–Classe <i>IOBase</i> .	77
Figura 5.21–Classes MaterialIsotropic e MaterialNeoHookean.	78
Figura 5.22–Classe MeshStructural	79
Figura 5.23–Classes MeshT3, MeshQ4, MeshQ9, MeshTet10 e MeshHex27	80

Figura 5.24–Hierarquia de classes dos diferentes elementos finitos de uma estrutura.	80
Figura 5.25–Classe WetSurface.	81
Figura 5.26–Classes WetSurfaceCircle, WetSurfaceEllipse e WetSurfaceMesh	82
Figura 5.27–Hierarquia de classes da superfície molhada	82
Figura 5.28–Classe IntersectionPolygon.	83
Figura 5.29–Classe LagrangeMultiplier.	83
Figura 5.30–Classe <i>NeutralFileStructural</i>	84
Figura 5.31–Classe <i>FEM_Structural</i>	85
Figura 5.32–Classe <i>IOGiDStructural</i>	85
Figura 5.33–Classe <i>MaterialCFD</i>	86
Figura 5.34–Classe MeshCFD.	87
Figura 5.35–Classes $MeshP2P1$, $MeshQ2Q1$, $MeshTet10TaylorHood$ e	
MeshHex27TaylorHood	88
Figura 5.36–Hierarquia de classes dos elementos finitos de fluido.	88
Figura 5.37–Classe <i>Cell.</i>	89
Figura 5.38–Classe <i>NeutralFileCFD</i>	89
Figura 5.39–Classe <i>FEM_CFD</i>	90
Figura 5.40–Classes <i>IOGiDCFD</i> e <i>IOVTKCFD</i>	91
Figura 5.41–Classe FEM_FSI.	97
Figura 5.42–Diagrama de sequência principal.	98
Figura 5.43–Diagrama de sequência do método sove da classe FEM_FSI	99
Figura 5.44–Diagrama de sequência do método decomposeDomain da classe FEM_FSI.1	00
Figura 5.45–Diagrama de sequência do método solve da classe FEM_CFD 1	02
Figura 6.1 – Descrição dos modelos (a) bidimensional e (b) tridimensional 1	04
Figura 6.2 – Comparativo do tempo total para o $assembly$ das matrizes globais e o	
speedup alcançado	09
Figura 6.3 – Comparativo do tempo total da simulação e o $speedup$ alcançado. \ldots . 1	09
Figura 6.4 – Malha de elementos finitos com 24143 elementos finitos do tipo P2P1 e	
48966 nós	11
Figura 6.5 – Perfis de velocidade (a) e linhas de corrente (b) para $Re = 11$	11
Figura 6.6 – Perfis de velocidade (a) e linhas de corrente (b) para $Re = 10. \ldots 1$	12
Figura 6.7 – Perfis de velocidade (a) e linhas de corrente (b) para $Re = 100.$ 1	12
Figura 6.8 – Perfis de velocidade (a) e linhas de corrente (b) para $Re = 400.$ 1	12
Figura 6.9 – Velocidade u ao longo da linha vertical sobre o centro geométrico da	
cavidade. \ldots	13
Figura 6.10–Comparativo do tempo total para o $assembly$ das matrizes globais e da	
simulação e o speedup alcançado para $Re = 1. \ldots \ldots \ldots \ldots 1$	16
Figura 6.11–Comparativo do tempo total para o $assembly$ das matrizes globais e da	
simulação e o speedup alcançado para $Re = 10.$	16

simulação e o speedup alcançado para $Re = 100.$	Figura 6.12-	-Comparativo do tempo total para o <i>assembly</i> das matrizes globais e da	
Figura 6.13 Comparativo do tempo total para $a c$ assembly das matrizes globais e da simulação e o speedup alcançado para $Re = 400$. 11 Figura 6.14 Comparativo do tempo total para o assembly das matrizes globais e o speedup alcançado. 12 Figura 6.15 Comparativo do tempo total da simulação e o speedup alcançado. 12 Figura 6.16 Malha de elementos finitos com 23453 elementos do tipo P2P1 e 47758 n. 12 Figura 6.17 Perfis de velocidade (a) e linhas de corrente (b) para $Re = 400$ em uma cavidade com malha conforme. 12 Figura 6.18 Comparativo do tempo total do assembly das matrizes globais e da simulação e o speedup alcançado. 12 Figura 6.19 Comparativo do tempo total da simulação e o speedup alcançado. 12 Figura 6.20 Comparativo do tempo total da simulação e o speedup alcançado. 12 Figura 6.21 (a) Malha de elementos finitos do fluido com 41228 elementos do tipo P2P1 e 83341 nós e (b) malha de elementos finitos da estrutura com 408 elementos quadrangulares e 1735 nós. 15 Figura 6.22 Perfis de velocidade (a) e linhas de corrente (b) para $Re = 400$ em uma cavidade com malha não-conforme utilizando o método das Fronteiras Imersas. 13 Figura 6.23 Velocidade (a) e linhas de corrente (b) para $Re = 400$ em uma cavidade com malha não-conforme utilizando o método das Fronteiras Imersas. 13 Figura 6.24		simulação e o speedup alcançado para $Re = 100. \ldots \ldots \ldots$	117
$\begin{aligned} & simulação e o speedup alcançado para $Re = 400. \dots \dots \dots \dots 11 \\ Figura 6.14-Comparativo do tempo total para o assembly das matrizes globais e o speedup alcançado$	Figura 6.13-	-Comparativo do tempo total para o <i>assembly</i> das matrizes globais e da	
Figura 6.14-Comparativo do tempo total para o assembly das matrizes globais e o speedup alcançado.12Figura 6.15Comparativo do tempo total da simulação e o speedup alcançado.12Figura 6.16-Malha de elementos finitos com 23453 elementos do tipo P2P1 e 47758 nós.12Figura 6.17-Perfis de velocidade (a) e linhas de corrente (b) para $Re = 400$ em uma cavidade com malha conforme.12Figura 6.18Comparativo do tempo total do assembly das matrizes globais e da simulação e o speedup alcançado.12Figura 6.19-Comparativo do tempo total para o assembly das matrizes globais e o speedup alcançado.12Figura 6.20Comparativo do tempo total da simulação e o speedup alcançado.13Figura 6.21(a) Malha de elementos finitos do fluido com 41228 elementos do tipo P2P1 e 83341 nós e (b) malha de elementos finitos da estrutura com 408 elementos quadrangulares e 1735 nós.13Figura 6.22-Perfis de velocidade (a) e linhas de corrente (b) para $Re = 400$ em uma cavidade com malha não-conforme utilizando o método das Fronteiras Imersas.13Figura 6.23- Velocidade u ao longo da linha vertical sobre o centro geométrico da cavidade.13Figura 6.24-Multiplicadores de Lagrange ao longo da linha da estrutura.13Figura 6.26-Geometria do modelo.13Figura 6.27-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.28-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.29-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.29-Comparativo do tempo total para o assembly		simulação e o speedup alcançado para $Re = 400. \dots \dots \dots \dots \dots$	117
speedup alcançado.12Figura 6.15-Comparativo do tempo total da simulação e o speedup alcançado.12Figura 6.16-Malha de elementos finitos com 23453 elementos do tipo P2P1 e 47758nós.nós.12Figura 6.17-Perfis de velocidade (a) e linhas de corrente (b) para $Re = 400$ em uma12rigura 6.18-Comparativo do tempo total do assembly das matrizes globais e da12Figura 6.19-Comparativo do tempo total para o assembly das matrizes globais e o12Figura 6.20-Comparativo do tempo total para o assembly das matrizes globais e o12Figura 6.21-(a) Malha de elementos finitos do fluido com 41228 elementos do tipoP2P1 e 83341 nós e (b) malha de elementos finitos da estrutura com 408 elementos quadrangulares e 1735 nós.13Figura 6.22-Perfis de velocidade (a) e linhas de corrente (b) para $Re = 400$ em uma cavidade com malha não-conforme utilizando o método das Fronteiras Imersas.13Figura 6.23-Velocidade u ao longo da linha vertical sobre o centro geométrico da cavidade.13Figura 6.24-Multiplicadores de Lagrange ao longo da linha da estrutura.13Figura 6.25-Comparativo do tempo total para o assembly das matrizes globais e da simulação e o speedup alcançado.13Figura 6.26-Geometria do modelo.13Figura 6.27-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.28-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.29-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.29-Comparativo do tempo total para o assembly das matrizes glo	Figura 6.14-	-Comparativo do tempo total para o <i>assembly</i> das matrizes globais e o	
Figura 6.15-Comparativo do tempo total da simulação e o speedup alcançado. 12 Figura 6.16-Malha de elementos finitos com 23453 elementos do tipo P2P1 e 47758 12 Figura 6.17-Perfis de velocidade (a) e linhas de corrente (b) para $Re = 400$ em uma cavidade com malha conforme. 12 Figura 6.18-Comparativo do tempo total do assembly das matrizes globais e da simulação e o speedup alcançado. 12 Figura 6.19-Comparativo do tempo total da simulação e o speedup alcançado. 12 Figura 6.20-Comparativo do tempo total da simulação e o speedup alcançado. 13 Figura 6.21-(a) Malha de elementos finitos do fluido com 41228 elementos do tipo P2P1 e 83341 nós e (b) malha de elementos finitos da estrutura com 408 elementos quadrangulares e 1735 nós. 15 Figura 6.22-Perfis de velocidade (a) e linhas de corrente (b) para $Re = 400$ em uma cavidade com malha não-conforme utilizando o método das Fronteiras Imersas. 13 Figura 6.23-Velocidade u ao longo da linha vertical sobre o centro geométrico da cavidade. 13 Figura 6.24-Multiplicadores de Lagrange ao longo da linha da estrutura. 13 Figura 6.26-Geometria do modelo. 13 Figura 6.27-Comparativo do tempo total para o assembly das matrizes globais e o speedup. 14 Figura 6.26-Geometria do modelo. 13 Figura 6.27-Comparativo do tempo total para o assembly das matrizes globais e o speedup. 14	0	speedup alcancado.	122
Figura 6.16 - Malha de elementos finitos com 23453 elementos do tipo P2P1 e 47758 nós. 12 Figura 6.17 - Perfis de velocidade (a) e linhas de corrente (b) para $Re = 400$ em uma cavidade com malha conforme. 12 Figura 6.18 - Comparativo do tempo total do assembly das matrizes globais e da simulação e o speedup alcançado. 12 Figura 6.19 - Comparativo do tempo total da simulação e o speedup alcançado. 12 Figura 6.20 - Comparativo do tempo total da simulação e o speedup alcançado. 13 Figura 6.21 - (a) Malha de elementos finitos do fluido com 41228 elementos do tipo P2P1 e 83341 nós e (b) malha de elementos finitos da estrutura com 408 elementos quadragulares e 1735 nós. 15 Figura 6.22 - Perfis de velocidade (a) e linhas de corrente (b) para $Re = 400$ em uma cavidade com malha não-conforme utilizando o método das Fronteiras Imersas. 13 Figura 6.23 - Velocidade u ao longo da linha vertical sobre o centro geométrico da cavidade. 13 Figura 6.24 Multiplicadores de Lagrange ao longo da linha da estrutura. 13 Figura 6.26 - Geometria do modelo. 13 Figura 6.30 - Comparativo do tempo total para o assembly das matrizes globais e o speedup. 14 Figura 6.26 - Geometria do modelo. 13 Figura 6.27 - Comparativo do tempo total para o assembly das matrizes globais e o speedup. 14 Figura 6.30 - Comparativo do tempo total para o assembly das matr	Figura 6 15-	-Comparativo do tempo total da simulação e o <i>speedup</i> alcançado	122
righta 6.10-Wallia de elementos inflos con 25-55 ciententos do 400 121 r e 47-35 nós. 12 Figura 6.17-Perfis de velocidade (a) e linhas de corrente (b) para $Re = 400$ em uma cavidade com malha conforme. 12 Figura 6.18-Comparativo do tempo total do assembly das matrizes globais e da simulação e o speedup alcançado. 12 Figura 6.19-Comparativo do tempo total da simulação e o speedup alcançado. 12 Figura 6.19-Comparativo do tempo total da simulação e o speedup alcançado. 12 Figura 6.20-Comparativo do tempo total da simulação e o speedup alcançado. 13 Figura 6.21-(a) Malha de elementos finitos do fluido com 41228 elementos do tipo P2P1 e 83341 nós e (b) malha de elementos finitos da estrutura com 408 elementos quadrangulares e 1735 nós. 16 Figura 6.22-Perfis de velocidade (a) e linhas de corrente (b) para $Re = 400$ em uma cavidade com malha não-conforme utilizando o método das Fronteiras Imersas. 13 Figura 6.23-Velocidade u ao longo da linha vertical sobre o centro geométrico da cavidade. 13 Figura 6.24-Multiplicadores de Lagrange ao longo da linha da estrutura. 13 Figura 6.26-Comparativo do tempo total do assembly das matrizes globais e da simulação e o speedup alcançado. 13 Figura 6.26-Comparativo do tempo total do assembly das matrizes globais e o speedup. 14 Figura 6.27-Comparativo do tempo total para o assembly das matrizes globais e o speedup. 14	Figure 6.16	Malha de alementos finitos com 23453 alementos de tipo P2P1 e 47758	122
rigura 6.17–Perfis de velocidade (a) e linhas de corrente (b) para $Re = 400$ em uma cavidade com malha conforme. 12 Figura 6.18–Comparativo do tempo total do assembly das matrizes globais e da simulação e o speedup alcançado. 12 Figura 6.19–Comparativo do tempo total para o assembly das matrizes globais e o speedup alcançado. 12 Figura 6.20–Comparativo do tempo total da simulação e o speedup alcançado. 13 Figura 6.21–(a) Malha de elementos finitos do fluido com 41228 elementos do tipo P2P1 e 83341 nós e (b) malha de elementos finitos da estrutura com 408 elementos quadrangulares e 1735 nós. 16 Figura 6.22–Perfis de velocidade (a) e linhas de corrente (b) para $Re = 400$ em uma cavidade com malha não-conforme utilizando o método das Fronteiras Imersas. 13 Figura 6.23–Velocidade u ao longo da linha vertical sobre o centro geométrico da cavidade. 13 Figura 6.24–Multiplicadores de Lagrange ao longo da linha da estrutura. 13 Figura 6.26–Geometria do modelo. 13 Figura 6.27 Comparativo do tempo total para o assembly das matrizes globais e o speedup. 14 Figura 6.28–Comparativo do tempo total para o assembly das matrizes globais e o speedup. 14 Figura 6.26–Geometria do modelo. 13 Figura 6.27 Comparativo do tempo total para o assembly das matrizes globais e o speedup. 14 Figura 6.29–Camparativo do tempo total para o assembly das matrizes globais e o speedup.	riguia 0.10	-Maina de elementos mintos com 25455 elementos do tipo 1 21 1 e 47756	109
Figura 6.17 - Peris de velocidade (a) e linnas de corrente (b) para $Re = 400$ em uma cavidade com malha conforme. 12 Figura 6.18-Comparativo do tempo total do assembly das matrizes globais e da simulação e o speedup alcançado. 12 Figura 6.19 Comparativo do tempo total para o assembly das matrizes globais e o speedup alcançado. 12 Figura 6.20 Comparativo do tempo total da simulação e o speedup alcançado. 13 Figura 6.21 - (a) Malha de elementos finitos do fluido com 41228 elementos do tipo P2P1 e 83341 nós e (b) malha de elementos finitos da estrutura com 408 elementos quadrangulares e 1735 nós. 13 Figura 6.22-Perfis de velocidade (a) e linhas de corrente (b) para $Re = 400$ em uma cavidade com malha não-conforme utilizando o método das Fronteiras Imersas. 13 Figura 6.23 Velocidade u ao longo da linha vertical sobre o centro geométrico da cavidade. 13 Figura 6.24-Multiplicadores de Lagrange ao longo da linha da estrutura. 13 Figura 6.25 Comparativo do tempo total do assembly das matrizes globais e da simulação e o speedup alcançado. 13 Figura 6.26-Geometria do modelo. 13 Figura 6.27-Comparativo do tempo total para o assembly das matrizes globais e o speedup. 14 Figura 6.26-Geometria do modelo. 13 Figura 6.27-Comparativo do tempo total para o assembly das matrizes globais e o speedup. 14 Figura 6.30-Campo de velocidades (a) e de pressão (b) para $Re = 20.$	D: 0.17	$100S. \dots \dots$	123
cavidade com malha conforme.12Figura 6.18 Comparativo do tempo total do assembly das matrizes globais e da simulação e o speedup alcançado.12Figura 6.19-Comparativo do tempo total para o assembly das matrizes globais e o speedup alcançado.12Figura 6.20 Comparativo do tempo total da simulação e o speedup alcançado.13Figura 6.20 Comparativo do tempo total da simulação e o speedup alcançado.13Figura 6.21-(a) Malha de elementos finitos do fluido com 41228 elementos do tipo P2P1 e 83341 nós e (b) malha de elementos finitos da estrutura com 408 elementos quadrangulares e 1735 nós.15Figura 6.22 Perfis de velocidade (a) e linhas de corrente (b) para $Re = 400$ em una cavidade com malha não-conforme utilizando o método das Fronteiras Imersas.13Figura 6.23 Velocidade u ao longo da linha vertical sobre o centro geométrico da cavidade.13Figura 6.24-Multiplicadores de Lagrange ao longo da linha de estrutura.13Figura 6.25-Comparativo do tempo total do assembly das matrizes globais e da simulação e o speedup alcançado.13Figura 6.26-Geometria do modelo.13Figura 6.27-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.28-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.29-Malha com 10138 elementos finitos do P2P1 e 20834 nós.14Figura 6.30-Campo de velocidades (a) e pressão (b) para $Re = 20$.14Figura 6.32-Campo de velocidades (a) e pressão (b) para $t = 3, 5s$.14Figura 6.33-Campo de velocidades (a) e pressão (b) para $t = 6, 0s$.14Figura 6.34-Campo d	Figura 6.17-	-Perfis de velocidade (a) e linhas de corrente (b) para $Re = 400$ em uma	
Figura 6.18-Comparativo do tempo total do assembly das matrizes globais e da simulação e o speedup alcançado. 12 Figura 6.19-Comparativo do tempo total para o assembly das matrizes globais e o speedup alcançado. 12 Figura 6.20-Comparativo do tempo total da simulação e o speedup alcançado. 13 Figura 6.20-Comparativo do tempo total da simulação e o speedup alcançado. 13 Figura 6.20-Comparativo do tempo total da simulação e o speedup alcançado. 13 Figura 6.21-(a) Malha de elementos finitos do fluido com 41228 elementos do tipo P2P1 e 83341 nós e (b) malha de elementos finitos da estrutura com 408 elementos quadrangulares e 1735 nós. 13 Figura 6.22-Perfis de velocidade (a) e linhas de corrente (b) para $Re = 400$ em uma cavidade com malha não-conforme utilizando o método das Fronteiras Imersas. 13 Figura 6.23-Velocidade u ao longo da linha vertical sobre o centro geométrico da cavidade. 13 Figura 6.24-Multiplicadores de Lagrange ao longo da linha da estrutura. 13 Figura 6.25-Comparativo do tempo total do assembly das matrizes globais e da simulação e o speedup alcançado. 13 Figura 6.26-Geometria do modelo. 13 Figura 6.28-Comparativo do tempo total para o assembly das matrizes globais e o speedup. 14 Figura 6.28-Comparativo do tempo total para o assembly das matrizes globais e o speedup. 14 Figura 6.28-Comparativo do tempo total para o assembly das matrizes gl		cavidade com malha conforme	124
simulação e o speedup alcançado.12Figura 6.19-Comparativo do tempo total para o assembly das matrizes globais e o speedup alcançado.12Figura 6.20-Comparativo do tempo total da simulação e o speedup alcançado.13Figura 6.21-(a) Malha de elementos finitos do fluido com 41228 elementos do tipo P2P1 e 83341 nós e (b) malha de elementos finitos da estrutura com 408 elementos quadrangulares e 1735 nós.15Figura 6.22-Perfis de velocidade (a) e linhas de corrente (b) para $Re = 400$ em uma cavidade com malha não-conforme utilizando o método das Fronteiras Imersas.13Figura 6.23-Velocidade u ao longo da linha vertical sobre o centro geométrico da cavidade.13Figura 6.24-Multiplicadores de Lagrange ao longo da linha da estrutura.13Figura 6.25-Comparativo do tempo total do assembly das matrizes globais e da simulação e o speedup alcançado.13Figura 6.26-Geometria do modelo.13Figura 6.27-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.28-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.29-Malha com 10138 elementos finitos do P2P1 e 20834 nós.14Figura 6.30-Campo de velocidades (a) e de pressão (b) para $Re = 20.$ 14Figura 6.31-Campo de velocidades (a) e pressão (b) para $t = 3, 5s.$ 14Figura 6.32-Campo de velocidades (a) e pressão (b) para $t = 3, 5s.$ 14Figura 6.33-Campo de velocidades (a) e pressão (b) para $t = 8, 0s.$ 14Figura 6.34-Campo de velocidades (a) e pressão (b) para $t = 8, 0s.$ 14Figura 6.35-Coeficientes de arrasto e de sustentação no tempo.<	Figura 6.18-	-Comparativo do tempo total do <i>assembly</i> das matrizes globais e da	
Figura 6.19–Comparativo do tempo total para o assembly das matrizes globais e o speedup alcançado.12Figura 6.20–Comparativo do tempo total da simulação e o speedup alcançado.13Figura 6.21–(a) Malha de elementos finitos do fluido com 41228 elementos do tipo P2P1 e 83341 nós e (b) malha de elementos finitos da estrutura com 408 elementos quadrangulares e 1735 nós.13Figura 6.22–Perfis de velocidade (a) e linhas de corrente (b) para $Re = 400$ em uma cavidade com malha não-conforme utilizando o método das Fronteiras Imersas.13Figura 6.23–Velocidade u ao longo da linha vertical sobre o centro geométrico da cavidade.13Figura 6.24–Multiplicadores de Lagrange ao longo da linha da estrutura.13Figura 6.25–Comparativo do tempo total do assembly das matrizes globais e da simulação e o speedup alcançado.13Figura 6.26–Geometria do modelo.13Figura 6.27–Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.28–Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.29–Malha com 10138 elementos finitos do P2P1 e 20834 nós.14Figura 6.30–Campo de velocidades (a) e de pressão (b) para $t = 2, 5s.$ 14Figura 6.32–Campo de velocidades (a) e pressão (b) para $t = 3, 5s.$ 14Figura 6.32–Compo de velocidades (a) e pressão (b) para $t = 8, 0s.$ 14Figura 6.33–Campo de velocidades (a) e pressão (b) para $t = 8, 0s.$ 14Figura 6.33–Campo de velocidades (a) e pressão (b) para $t = 8, 0s.$ 14Figura 6.33–Compo de velocidades (a) e pressão (b) para $t = 8, 0s.$ 14Figura 6.33–Campo de velo		simulação e o <i>speedup</i> alcançado.	125
speedup alcançado.12Figura 6.20-Comparativo do tempo total da simulação e o speedup alcançado.13Figura 6.21-(a) Malha de elementos finitos do fluido com 41228 elementos do tipo P2P1 e 83341 nós e (b) malha de elementos finitos da estrutura com 408 elementos quadrangulares e 1735 nós.13Figura 6.22-Perfis de velocidade (a) e linhas de corrente (b) para $Re = 400$ em uma cavidade com malha não-conforme utilizando o método das Fronteiras Imersas.13Figura 6.22-Velocidade u ao longo da linha vertical sobre o centro geométrico da cavidade.13Figura 6.23-Velocidade u ao longo da linha vertical sobre o centro geométrico da cavidade.13Figura 6.24-Multiplicadores de Lagrange ao longo da linha da estrutura.13Figura 6.25-Comparativo do tempo total do assembly das matrizes globais e da simulação e o speedup alcançado.13Figura 6.26-Geometria do modelo.13Figura 6.26-Geometria do modelo.14Figura 6.28-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.28-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.28-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.28-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.28-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.28-Comparativo do tempo total para o asse	Figura 6.19-	-Comparativo do tempo total para o <i>assembly</i> das matrizes globais e o	
Figura 6.20-Comparativo do tempo total da simulação e o speedup alcançado.13Figura 6.21-(a) Malha de elementos finitos do fluido com 41228 elementos do tipo P2P1 e 83341 nós e (b) malha de elementos finitos da estrutura com 408 elementos quadrangulares e 1735 nós.13Figura 6.22-Perfis de velocidade (a) e linhas de corrente (b) para $Re = 400$ em uma cavidade com malha não-conforme utilizando o método das Fronteiras Imersas.13Figura 6.23-Velocidade u ao longo da linha vertical sobre o centro geométrico da cavidade.13Figura 6.24-Multiplicadores de Lagrange ao longo da linha da estrutura.13Figura 6.25-Comparativo do tempo total do assembly das matrizes globais e da simulação e o speedup alcançado.13Figura 6.26-Geometria do modelo.13Figura 6.28-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.28-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.29-Malha com 10138 elementos finitos do P2P1 e 20834 nós.14Figura 6.30-Campo de velocidades (a) e de pressão (b) para $Re = 20.$ 14Figura 6.31-Campo de velocidades (a) e pressão (b) para $t = 3, 5s.$ 14Figura 6.32-Campo de velocidades (a) e pressão (b) para $t = 3, 5s.$ 14Figura 6.33-Campo de velocidades (a) e pressão (b) para $t = 8, 0s.$ 14Figura 6.34-Campo de velocidades (a) e pressão (b) para $t = 8, 0s.$ 14Figura 6.35-Coeficientes de arrasto e de sustentação no tempo.14		speedup alcançado.	129
Figura 6.21-(a) Malha de elementos finitos do fluido com 41228 elementos do tipo P2P1 e 83341 nós e (b) malha de elementos finitos da estrutura com 408 elementos quadrangulares e 1735 nós.13Figura 6.22-Perfis de velocidade (a) e linhas de corrente (b) para $Re = 400$ em uma cavidade com malha não-conforme utilizando o método das Fronteiras Imersas.13Figura 6.23-Velocidade u ao longo da linha vertical sobre o centro geométrico da cavidade.13Figura 6.23-Velocidade u ao longo da linha vertical sobre o centro geométrico da cavidade.13Figura 6.24-Multiplicadores de Lagrange ao longo da linha da estrutura.13Figura 6.25-Comparativo do tempo total do assembly das matrizes globais e da simulação e o speedup alcançado.13Figura 6.26-Geometria do modelo.13Figura 6.27-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.28-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.29-Malha com 10138 elementos finitos do P2P1 e 20834 nós.14Figura 6.30-Campo de velocidades (a) e de pressão (b) para $Re = 20$.14Figura 6.32-Campo de velocidades (a) e pressão (b) para $t = 2, 5s$.14Figura 6.32-Campo de velocidades (a) e pressão (b) para $t = 3, 5s$.14Figura 6.33-Campo de velocidades (a) e pressão (b) para $t = 6, 0s$.14Figura 6.34-Campo de velocidades (a) e pressão (b) para $t = 8, 0s$.14Figura 6.35-Coeficientes de arrasto e de sustentação no tempo.14	Figura 6.20-	-Comparativo do tempo total da simulação e o <i>speedup</i> alcançado	130
P2P1 e 83341 nós e (b) malha de elementos finitos da estrutura com 408 elementos quadrangulares e 1735 nós.15Figura 6.22-Perfis de velocidade (a) e linhas de corrente (b) para $Re = 400$ em uma cavidade com malha não-conforme utilizando o método das Fronteiras Imersas.13Figura 6.23-Velocidade u ao longo da linha vertical sobre o centro geométrico da cavidade.13Figura 6.24-Multiplicadores de Lagrange ao longo da linha da estrutura.13Figura 6.25-Comparativo do tempo total do assembly das matrizes globais e da simulação e o speedup alcançado.13Figura 6.26-Geometria do modelo.13Figura 6.27-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.28-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.29-Malha com 10138 elementos finitos do P2P1 e 20834 nós.14Figura 6.30-Campo de velocidades (a) e de pressão (b) para $t = 2, 5s$.14Figura 6.32-Campo de velocidades (a) e pressão (b) para $t = 3, 5s$.14Figura 6.33-Campo de velocidades (a) e pressão (b) para $t = 6, 0s$.14Figura 6.33-Campo de velocidades (a) e pressão (b) para $t = 8, 0s$.14Figura 6.34-Campo de velocidades (a) e pressão (b) para $t = 8, 0s$.14Figura 6.35-Coeficientes de arrasto e de sustentação no tempo.14	Figura 6.21-	-(a) Malha de elementos finitos do fluido com 41228 elementos do tipo	
408 elementos quadrangulares e 1735 nós. 13 Figura 6.22–Perfis de velocidade (a) e linhas de corrente (b) para $Re = 400$ em uma cavidade com malha não-conforme utilizando o método das Fronteiras Imersas. 13 Figura 6.23–Velocidade u ao longo da linha vertical sobre o centro geométrico da cavidade. 13 Figura 6.24–Multiplicadores de Lagrange ao longo da linha da estrutura. 13 Figura 6.25–Comparativo do tempo total do assembly das matrizes globais e da simulação e o speedup alcançado. 13 Figura 6.26–Geometria do modelo. 13 Figura 6.27–Comparativo do tempo total para o assembly das matrizes globais e o speedup. 14 Figura 6.28–Comparativo do tempo total para o assembly das matrizes globais e o speedup. 14 Figura 6.28–Comparativo do tempo total para o assembly das matrizes globais e o speedup. 14 Figura 6.32–Comparativo do tempo total para o assembly das matrizes globais e o speedup. 14 Figura 6.32–Comparativo do tempo total para o assembly das matrizes globais e o speedup. 14 Figura 6.30–Campo de velocidades (a) e de pressão (b) para $Re = 20$	0	P2P1 e 83341 nós e (b) malha de elementos finitos da estrutura com	
Figura 6.22–Perfis de velocidade (a) e linhas de corrente (b) para $Re = 400$ em uma cavidade com malha não-conforme utilizando o método das Fronteiras Imersas.13Figura 6.23–Velocidade u ao longo da linha vertical sobre o centro geométrico da cavidade.13Figura 6.24–Multiplicadores de Lagrange ao longo da linha da estrutura.13Figura 6.25–Comparativo do tempo total do assembly das matrizes globais e da simulação e o speedup alcançado.13Figura 6.26–Geometria do modelo.13Figura 6.27–Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.28–Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.29–Malha com 10138 elementos finitos do P2P1 e 20834 nós.14Figura 6.30–Campo de velocidades (a) e de pressão (b) para $t = 2, 5s.$ 14Figura 6.32–Campo de velocidades (a) e pressão (b) para $t = 3, 5s.$ 14Figura 6.33–Campo de velocidades (a) e pressão (b) para $t = 8, 0s.$ 14Figura 6.34–Campo de velocidades (a) e pressão (b) para $t = 8, 0s.$ 14Figura 6.34–Campo de velocidades (a) e pressão (b) para $t = 8, 0s.$ 14Figura 6.35–Coeficientes de arrasto e de sustentação no tempo.14Figura 6.35–Coeficientes de arrasto e de sustentação no tempo.		408 elementos quadrangulares e 1735 nós	131
Figure 0.22Feins de velocidade (a) e minus de corrente (b) para 1e = 160 cm ana cavidade com malha não-conforme utilizando o método das Fronteiras Imersas.Figura 6.23-Velocidade u ao longo da linha vertical sobre o centro geométrico da cavidade.13Figura 6.24-Multiplicadores de Lagrange ao longo da linha da estrutura.13Figura 6.25-Comparativo do tempo total do assembly das matrizes globais e da simulação e o speedup alcançado.13Figura 6.26-Geometria do modelo.13Figura 6.27-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.28-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.29-Malha com 10138 elementos finitos do P2P1 e 20834 nós.14Figura 6.30-Campo de velocidades (a) e pressão (b) para $t = 2, 5s.$ 14Figura 6.32-Campo de velocidades (a) e pressão (b) para $t = 3, 5s.$ 14Figura 6.34-Campo de velocidades (a) e pressão (b) para $t = 8, 0s.$ 14Figura 6.35-Coeficientes de arrasto e de sustentação no tempo.14	Figura 6 22-	-Perfis de velocidade (a) e linhas de corrente (b) para $Re = 400$ em uma	101
Imersas.13Figura 6.23-Velocidade u ao longo da linha vertical sobre o centro geométrico da cavidade.13Figura 6.24-Multiplicadores de Lagrange ao longo da linha da estrutura.13Figura 6.25-Comparativo do tempo total do assembly das matrizes globais e da simulação e o speedup alcançado.13Figura 6.26-Geometria do modelo.13Figura 6.27-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.28-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.28-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.29-Malha com 10138 elementos finitos do P2P1 e 20834 nós.14Figura 6.30-Campo de velocidades (a) e de pressão (b) para $t = 2, 5s.$ 14Figura 6.32-Campo de velocidades (a) e pressão (b) para $t = 3, 5s.$ 14Figura 6.32-Campo de velocidades (a) e pressão (b) para $t = 8, 0s.$ 14Figura 6.34-Campo de velocidades (a) e pressão (b) para $t = 8, 0s.$ 14Figura 6.35-Coeficientes de arrasto e de sustentação no tempo.14	1 18a1a 0.22	cavidade com malha não-conforme utilizando o método das Fronteiras	
Figura 6.23-Velocidade u ao longo da linha vertical sobre o centro geométrico da cavidade.13Figura 6.24-Multiplicadores de Lagrange ao longo da linha da estrutura.13Figura 6.25-Comparativo do tempo total do assembly das matrizes globais e da simulação e o speedup alcançado.13Figura 6.26-Geometria do modelo.13Figura 6.27-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.28-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.29-Malha com 10138 elementos finitos do P2P1 e 20834 nós.14Figura 6.30-Campo de velocidades (a) e de pressão (b) para $t = 2, 5s.$ 14Figura 6.32-Campo de velocidades (a) e pressão (b) para $t = 3, 5s.$ 14Figura 6.33-Campo de velocidades (a) e pressão (b) para $t = 6, 0s.$ 14Figura 6.34-Campo de velocidades (a) e pressão (b) para $t = 8, 0s.$ 14Figura 6.35-Coeficientes de arrasto e de sustentação no tempo.14		Imoreas	129
Figura 6.25-Velocidade u ao longo da linha vertical sobre o centro geometrico da cavidade.13Figura 6.24-Multiplicadores de Lagrange ao longo da linha da estrutura.13Figura 6.25-Comparativo do tempo total do assembly das matrizes globais e da simulação e o speedup alcançado.13Figura 6.26-Geometria do modelo.13Figura 6.27-Comparativo do tempo total para o assembly das matrizes globais e o speedup.13Figura 6.28-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.28-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.29-Malha com 10138 elementos finitos do P2P1 e 20834 nós.14Figura 6.30-Campo de velocidades (a) e de pressão (b) para $t = 2, 5s.$ 14Figura 6.32-Campo de velocidades (a) e pressão (b) para $t = 3, 5s.$ 14Figura 6.33-Campo de velocidades (a) e pressão (b) para $t = 8, 0s.$ 14Figura 6.34-Campo de velocidades (a) e pressão (b) para $t = 8, 0s.$ 14Figura 6.35-Coeficientes de arrasto e de sustentação no tempo.14	E:		102
cavidade.13Figura 6.24-Multiplicadores de Lagrange ao longo da linha da estrutura.13Figura 6.25-Comparativo do tempo total do assembly das matrizes globais e da simulação e o speedup alcançado.13Figura 6.26-Geometria do modelo.13Figura 6.27-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.28-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.28-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.29-Malha com 10138 elementos finitos do P2P1 e 20834 nós.14Figura 6.30-Campo de velocidades (a) e de pressão (b) para $Re = 20.$ 14Figura 6.31-Campo de velocidades (a) e pressão (b) para $t = 3, 5s.$ 14Figura 6.32-Campo de velocidades (a) e pressão (b) para $t = 6, 0s.$ 14Figura 6.33-Campo de velocidades (a) e pressão (b) para $t = 8, 0s.$ 14Figura 6.34-Campo de velocidades (a) e pressão (b) para $t = 8, 0s.$ 14Figura 6.35-Coeficientes de arrasto e de sustentação no tempo.14	r igura 0.25-	-velocidade u ao longo da inina vertical sobre o centro geometrico da	100
Figura 6.24–Multiplicadores de Lagrange ao longo da linha da estrutura			132
Figura 6.25–Comparativo do tempo total do assembly das matrizes globais e da simulação e o speedup alcançado.13Figura 6.26–Geometria do modelo.13Figura 6.27–Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.28–Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.28–Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.28–Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.29–Malha com 10138 elementos finitos do P2P1 e 20834 nós.14Figura 6.30–Campo de velocidades (a) e de pressão (b) para $Re = 20$.14Figura 6.31–Campo de velocidades (a) e pressão (b) para $t = 2, 5s$.14Figura 6.32–Campo de velocidades (a) e pressão (b) para $t = 3, 5s$.14Figura 6.33–Campo de velocidades (a) e pressão (b) para $t = 6, 0s$.14Figura 6.34–Campo de velocidades (a) e pressão (b) para $t = 8, 0s$.14Figura 6.35–Coeficientes de arrasto e de sustentação no tempo.14	Figura 6.24-	-Multiplicadores de Lagrange ao longo da linha da estrutura	133
simulação e o speedup alcançado	Figura 6.25-	-Comparativo do tempo total do <i>assembly</i> das matrizes globais e da	
 Figura 6.26–Geometria do modelo		simulação e o <i>speedup</i> alcançado.	134
Figura 6.27-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.28-Comparativo do tempo total para o assembly das matrizes globais e o speedup.14Figura 6.29-Malha com 10138 elementos finitos do P2P1 e 20834 nós.14Figura 6.30-Campo de velocidades (a) e de pressão (b) para $Re = 20.$ 14Figura 6.31-Campo de velocidades (a) e pressão (b) para $t = 2, 5s.$ 14Figura 6.32-Campo de velocidades (a) e pressão (b) para $t = 3, 5s.$ 14Figura 6.32-Campo de velocidades (a) e pressão (b) para $t = 6, 0s.$ 14Figura 6.33-Campo de velocidades (a) e pressão (b) para $t = 8, 0s.$ 14Figura 6.34-Campo de velocidades (a) e pressão (b) para $t = 8, 0s.$ 14Figura 6.35-Coeficientes de arrasto e de sustentação no tempo.14	Figura 6.26-	-Geometria do modelo.	136
 speedup	Figura 6.27-	-Comparativo do tempo total para o <i>assembly</i> das matrizes globais e o	
 Figura 6.28–Comparativo do tempo total para o assembly das matrizes globais e o speedup		speedup.	140
speedup.14Figura 6.29–Malha com 10138 elementos finitos do P2P1 e 20834 nós.14Figura 6.30–Campo de velocidades (a) e de pressão (b) para $Re = 20.$ 14Figura 6.31–Campo de velocidades (a) e pressão (b) para $t = 2, 5s.$ 14Figura 6.32–Campo de velocidades (a) e pressão (b) para $t = 3, 5s.$ 14Figura 6.33–Campo de velocidades (a) e pressão (b) para $t = 6, 0s.$ 14Figura 6.34–Campo de velocidades (a) e pressão (b) para $t = 8, 0s.$ 14Figura 6.34–Campo de velocidades (a) e pressão (b) para $t = 8, 0s.$ 14Figura 6.35–Coeficientes de arrasto e de sustentação no tempo.14	Figura 6.28-	-Comparativo do tempo total para o <i>assembly</i> das matrizes globais e o	
Figura 6.29–Malha com 10138 elementos finitos do P2P1 e 20834 nós		speedup.	141
Figura 6.30-Campo de velocidades (a) e de pressão (b) para $Re = 20. \ldots \ldots 14$ Figura 6.31-Campo de velocidades (a) e pressão (b) para $t = 2, 5s. \ldots \ldots 14$ Figura 6.32-Campo de velocidades (a) e pressão (b) para $t = 3, 5s. \ldots \ldots 14$ Figura 6.33-Campo de velocidades (a) e pressão (b) para $t = 6, 0s. \ldots \ldots 14$ Figura 6.34-Campo de velocidades (a) e pressão (b) para $t = 8, 0s. \ldots \ldots 14$ Figura 6.35-Coeficientes de arrasto e de sustentação no tempo. $\ldots \ldots 14$	Figura 6.29-	-Malha com 10138 elementos finitos do P2P1 e 20834 nós	142
Figura 6.31–Campo de velocidades (a) e pressão (b) para $t = 2, 5s.$	Figura 6.30-	-Campo de velocidades (a) e de pressão (b) para $Re = 20$	142
Figura 6.32–Campo de velocidades (a) e pressão (b) para $t = 3, 5s$	Figura 6.31-	-Campo de velocidades (a) e pressão (b) para $t = 2.5s$.	143
Figura 6.33–Campo de velocidades (a) e pressão (b) para $t = 6, 0s.$	Figura 6.32-	-Campo de velocidades (a) e pressão (b) para $t = 3.5s$	144
Figura 6.34–Campo de velocidades (a) e pressão (b) para $t = 0, 0s.$	Figura 6 22	-Campo de velocidades (a) e pressão (b) para $t = 6.0$ s	144
Figura 6.35–Coeficientes de arrasto e de sustentação no tempo. $\dots \dots \dots$	Figure 6.24	-Campo de velocidades (a) o pressão (b) para $t = 0,05$	1/5
rigura 0.55–Coencientes de arrasto e de sustentação no tempo.	Figure 6.25	Campo de velocidades (a) e pressao (b) para $i = 0, 0s. \ldots$	140
	гıgura б.35-	-Obencientes de arrasto e de sustentação no tempo	140

Figura 6.36–Comparativo do tempo total do $assembly$ das matrizes globais e da	
simulação e o <i>speedup</i> alcançado.	147
Figura 6.37–Comparativo do tempo total para o $assembly$ das matrizes globais e da	
simulação e o <i>speedup</i> alcançado.	148
Figura 6.38–Comparativo do tempo total para o $assembly$ das matrizes globais e o	
speedup alcançado	152
Figura 6.39–Comparativo do tempo total da simulação e o $speedup$ alcançado. $\ .\ .$	153
Figura 6.40–Malha com 42176 elementos finitos do P2P1 e 84973 nós	154
Figura 6.41–Circunferência.	154
Figura 6.42–Campo de velocidades (a) e de pressão (b) para $Re=20.\ .\ .\ .$.	156
Figura 6.43–Comparativo do tempo total para o $assembly$ das matrizes globais e da	
simulação e o speedup alcançado. $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	157
Figura 6.44–Campo de velocidades (a) e pressão (b) para $t=2,5s.\ldots\ldots\ldots$	158
Figura 6.45–Campo de velocidades (a) e pressão (b) para $t=3,5s.$	159
Figura 6.46–Campo de velocidades (a) e pressão (b) para $t=6,0s.\ldots\ldots\ldots$	159
Figura 6.47–Campo de velocidades (a) e pressão (b) para $t = 8, 0s.$	160
Figura 6.48–Coeficientes de arrasto e de sustentação no tempo.	160
Figura 6.49–Comparativo do tempo total para o $assembly$ das matrizes globais e da	
simulação e o <i>speedup</i> alcançado.	161
Figura 6.50–Interação entre os dois $softwares$ – HPC_LMC e GIRAFFE	162
Figura 6.51–Passos utilizados para resolver o problema de interação fluido-estrutura	
(a), (b) e (c) de forma a obter a catenária do $riser$ e (d) a configuração	
final após a imposição da corrente do mar (Gay Neto et al., 2013)	163
Figura 6.52–Geometria de um plano horizontal qualquer	164
Figura 6.53–Seção de corte.	165
Figura 6.54–Vetor tangente e parâmetros da elipse	165
Figura 6.55–Elipse e elipse rotacionada.	166
Figura 6.56–Elipse e superfície molhada	167
Figura 6.57–Vetor de forças resultantes e momento gerados pelos multiplicadores de	
Lagrange e enviados ao GIRAFFE	168
Figura 6.58–Escoamento em torno de uma elipse rígida; Campo de velocidade (es-	
querda) e pressão (direita) com $Re = 40. \dots \dots \dots \dots \dots \dots$	168
Figura 6.59–Campo de velocidade em $t = 2.00$ s e $Z = 100.00$ m	169
Figura 6.60–Escoamento em torno de uma seção de corte; Campo de velocidade	
(esquerda) e pressão (direita) com $Re = 100$ e $t = 6.00$ s; Profundidades	
$Z = 100.00 \mathrm{m}$ (superior) e $Z = 400.00 \mathrm{m}$ (inferior)	170
Figura 6.61–Escoamento em torno de uma seção de corte; Campo de velocidade	
(esquerda) e pressão (direita) com $Re = 100, t = 7.50$ s; Profundidades	
$Z = 100.00 \mathrm{m}$ (superior) e $Z = 400.00 \mathrm{m}$ (inferior)	170

Figura 6.62–Escoamento em torno de uma seção de corte; Campo de velocidade	
(esquerda) e pressão (direita) com $Re = 100, t = 9.00 \mathrm{s}$; Profundidades	
$Z = 100.00 \mathrm{m}$ (superior) e $Z = 400.00 \mathrm{m}$ (inferior)	171

LISTA DE TABELAS

Tabela $2.1-Bandwidth$ das diferentes memórias disponíveis na GPU (FARBER, 2011). 31
Tabela 2.2 – Tipos de memórias disponíveis na GPU e suas características (FARBER,
$2011). \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $
Tabela 2.3 – Algoritmo de <i>assembly</i> das matrizes globais
Tabela 3.1 – Algoritmo de integração no polígono
Tabela 3.2 – Cálculo do $\mathcal{G}(\mathbf{X}_i)$ para o ponto de Gauss principal 1
Tabela 3.3 – Cálculo de $I_{\mathcal{R}}$ para o polígono
Tabela 3.3 – Cálculo de $I_{\mathcal{R}}$ para o polígono
Tabela 5.1 – Algoritmo da sequência principal
Tabela 5.2 – Algoritmo do método <i>solve</i> da classe <i>FEM_FSI</i>
Tabela 5.3 – Algoritmo do método $decomposeDomain$ da classe FEM_FSI 99
Tabela 5.4 – Algoritmo do método solve da classe FEM_CFD 101
Tabela 6.1 – Tempo total para o $assembly$ das matrizes globais, solução do sistema
de equações e simulação para uma malha com 98 elementos 105
Tabela 6.2 – Tempo total para o $assembly$ das matrizes globais, solução do sistema
de equações e simulação para uma malha com 510 elementos. \ldots . 106
Tabela 6.3 – Tempo total para o $assembly$ das matrizes globais, solução do sistema
de equações e simulação para uma malha com 1102 elementos 106
Tabela 6.4 – Tempo total para o $assembly$ das matrizes globais, solução do sistema
de equações e simulação para uma malha com 5678 elementos 107
Tabela 6.5 – Tempo total para o $\ assembly$ das matrizes globais, solução do sistema
de equações e simulação para uma malha com 10210 elementos 107
Tabela 6.6 – Tempo total para o $\ assembly$ das matrizes globais, solução do sistema
de equações e simulação para uma malha com 22804 elementos 108
Tabela 6.7 – Tempo total para o $\ assembly$ das matrizes globais, solução do sistema
de equações e simulação para uma malha com 40920 elementos 108
Tabela 6.8 – Tempo total para o $assembly$ das matrizes globais, solução do sistema
de equações e simulação para uma malha com 24143 elementos e $Re=1.114$
Tabela 6.9 – Tempo total para o $\ assembly$ das matrizes globais, solução do sistema
de equações e simulação para uma malha com 24143 elementos e $Re=10.114$
Tabela 6.10–Tempo total para o $assembly$ das matrizes globais, solução do sistema de
equações e simulação para uma malha com 24143 elementos e $Re=100.115$
Tabela 6.11–Tempo total para o $assembly$ das matrizes globais, solução do sistema de
equações e simulação para uma malha com 24143 elementos e $Re=400.115$
Tabela 6.12–Tempo total para o $\ assembly$ das matrizes globais, solução do sistema
de equações e simulação para uma malha com 98 elementos 118

Tabela 6.13–Tempo total para o $assembly$ das matrizes globais, solução do sistema
de equações e simulação para uma malha com 512 elementos 119
Tabela 6.14–Tempo total para o $assembly$ das matrizes globais, solução do sistema
de equações e simulação para uma malha com 1024 elementos 119
Tabela 6.15–Tempo total para o $assembly$ das matrizes globais, solução do sistema
de equações e simulação para uma malha com 5283 elementos 120
Tabela 6.16–Tempo total para o $assembly$ das matrizes globais, solução do sistema
de equações e simulação para uma malha com 11667 elementos. \ldots 120
Tabela 6.17–Tempo total para o $assembly$ das matrizes globais, solução do sistema
de equações e simulação para uma malha com 21981 elementos 121
Tabela 6.18–Tempo total para o $assembly$ das matrizes globais, solução do sistema
de equações e simulação para uma malha com 40285 elementos 121
Tabela 6.19–Tempo total para o $assembly$ das matrizes globais, solução do sistema
de equações e simulação para uma malha com 23453 elementos 124
Tabela 6.20–Tempo total para o $assembly$ das matrizes globais, solução do sistema
de equações e simulação para uma malha com 98 elementos 126
Tabela 6.21–Tempo total para o $assembly$ das matrizes globais, solução do sistema
de equações e simulação para uma malha com 512 elementos 126
Tabela 6.22–Tempo total para o $assembly$ das matrizes globais, solução do sistema
de equações e simulação para uma malha com 1058 elementos 127
Tabela 6.23–Tempo total para o $assembly$ das matrizes globais, solução do sistema
de equações e simulação para uma malha com 5618 elementos 127
Tabela 6.24–Tempo total para o $\ assembly$ das matrizes globais, solução do sistema
de equações e simulação para uma malha com 11858 elementos 128
Tabela 6.25–Tempo total para o $assembly$ das matrizes globais, solução do sistema
de equações e simulação para uma malha com 20000 elementos 128
Tabela 6.26–Tempo total para o $assembly$ das matrizes globais, solução do sistema
de equações e simulação para uma malha com 40328 elementos 129
Tabela 6.27–Tempo total para o $assembly$ das matrizes globais, solução do sistema
de equações e simulação para uma malha com 41228 elementos 134
Tabela 6.28–Tempo total para o $assembly$ das matrizes globais, solução do sistema
de equações e simulação para uma malha com 100 elementos. $\dots \dots 137$
Tabela 6.29–Tempo total para o $assembly$ das matrizes globais, solução do sistema
de equações e simulação para uma malha com 596 elementos 137
Tabela 6.30–Tempo total para o $assembly$ das matrizes globais, solução do sistema
de equações e simulação para uma malha com 1056 elementos 138
Tabela 6.31–Tempo total para o $assembly$ das matrizes globais, solução do sistema
de equações e simulação para uma malha com 5200 elementos 138

Tabela 6.32-	-Tempo total para o assembly das matrizes globais, solução do sistema	
	de equações e simulação para uma malha com 10406 elementos	139
Tabela 6.33-	-Tempo total para o assembly das matrizes globais, solução do sistema	
	de equações e simulação para uma malha com 20322 elementos	139
Tabela 6.34-	-Tempo total para o <i>assembly</i> das matrizes globais, solução do sistema	
	de equações e simulação para uma malha com 41612 elementos	140
Tabela 6.35-	-Comparação dos coeficientes de sustentação e arrasto para o caso	
	estacionário	143
Tabela 6.36-	-Comparação dos coeficientes de sustentação e arrasto máximos para o	
	caso transiente	145
Tabela 6.37-	-Tempo total para o $assembly$ das matrizes globais, solução do sistema	
	de equações e simulação para uma malha com 10138 elementos. \ldots .	146
Tabela 6.38-	-Tempo total para o $assembly$ das matrizes globais, solução do sistema	
	de equações e simulação para uma malha com 10138 elementos. \ldots .	147
Tabela 6.39-	-Tempo total para o $assembly$ das matrizes globais, solução do sistema	
	de equações e simulação para uma malha com 108 elementos. $\ .$	149
Tabela 6.40-	-Tempo total para o $assembly$ das matrizes globais, solução do sistema	
	de equações e simulação para uma malha com 518 elementos. $\ .\ .$.	149
Tabela 6.41-	-Tempo total para o $assembly$ das matrizes globais, solução do sistema	
	de equações e simulação para uma malha com 1040 elementos	150
Tabela 6.42-	-Tempo total para o $assembly$ das matrizes globais, solução do sistema	
	de equações e simulação para uma malha com 5104 elementos	150
Tabela 6.43-	-Tempo total para o $assembly$ das matrizes globais, solução do sistema	
	de equações e simulação para uma malha com 10816 elementos. \ldots .	151
Tabela 6.44-	-Tempo total para o $assembly$ das matrizes globais, solução do sistema	
	de equações e simulação para uma malha com 20856 elementos. \ldots .	151
Tabela 6.45-	-Tempo total para o $assembly$ das matrizes globais, solução do sistema	
	de equações e simulação para uma malha com 41292 elementos	152
Tabela 6.46-	-Comparação dos coeficientes de sustentação e arrasto para o caso	
	estacionário	156
Tabela 6.47-	-Tempo total para o $assembly$ das matrizes globais, solução do sistema	
	de equações e simulação para uma malha com 1724 elementos	157
Tabela 6.48-	-Comparação dos coeficientes de sustentação e arrasto máximos para o	
	caso transiente.	160
Tabela 6.49-	-Tempo total para o $assembly$ das matrizes globais, solução do sistema	
	de equações e simulação para uma malha com 1724 elementos	161
Tabela 6.50-	-Algoritmo da interação entre os dois $softares - HPC_LMC$ e GIRAFFE	
	– para resolução do problema de interação fluido-estrutura	163
Tabela 6.51-	-Propriedades físicas do <i>riser</i> e do mar (Gay Neto et al., 2013)	164

Tabela 6.52–Propriedades do fluido e os parâmetros utilizados na simulação. \ldots .	164
Tabela 6.53–Discretização da malha de elementos finitos	164
Tabela 6.54–Parâmetros utilizados no caso estacionário	168

SUMÁRIO

1	ΙΝΤ	RODU	ÇÃO	21				
	1.1	Organ	ização do trabalho	22				
2	CO	МРИТИ	AÇÃO PARALELA	24				
	2.1	Comp	utação sequencial	24				
		2.1.1	Gordon E. Moore	25				
	2.2	Comp	utação paralela	26				
		2.2.1	Lei de Amdahl	26				
			2.2.1.1 Latency vs. Throughput $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	26				
			$2.2.1.2 Speedup \dots \dots \dots \dots \dots \dots \dots \dots \dots $	27				
			$2.2.1.3 Gene \ M. \ Amdahl \ \ldots \ $	27				
		2.2.2	GPU	28				
			2.2.2.1 Memória da GPU	30				
			2.2.2.2 Tipos de memórias	31				
3	ΙΝΤ	ERAÇ <i>İ</i>	ÃO FLUIDO-ESTRUTURA	40				
	3.1	Equaç	ões de Navier Stokes	40				
	3.2	Condi	ções de contorno	40				
	3.3	Forma	\mathfrak{n} fraca \ldots	41				
	3.4	4 Integração no tempo						
	3.5	Discre	tização em Elementos Finitos	41				
	ace	43						
	3.7	3.7 Discretização da interface						
	3.8 Células de integração							
	3.9	3.9 Integração no polígono						
	3.10	Conse	rvação de massa nos métodos de Fronteiras Imersas	54				
4	RIS	ERS .		58				
	4.1	Model	o de vigas 3D cinematicamente exatas	58				
		4.1.1	Premissas do modelo	58				
		4.1.2	Parametrização de rotações	58				
		4.1.3	Cinemática da viga	59				
		4.1.4	Deformações	61				
		4.1.5	Tensões	61				
		4.1.6	Contato	61				
5	IMF	PLEME	ΝΤΑÇÃO COMPUTACIONAL	63				
	5.1	Arquit	tetura	63				
		5.1.1	Diagrama de classes UML	64				
			5.1.1.1 Pacote FEM_Core	64				

			5.1.1.2	Pacote FEM_Structural	77
			5.1.1.3	Pacote FEM_CFD	86
			5.1.1.4	Pacote FEM_CUDA	. 91
			5.1.1.5	Pacote FEM_FSI	96
		5.1.2	Diagram	nas de sequência	97
6	RES	SULTAI	DOS E A	NÁLISES	103
	6.1	Escoar	mento em	uma cavidade	104
		6.1.1	Cavidad	le com paredes retas	105
			6.1.1.1	Análise de sensibilidade	105
			6.1.1.2	Resultados	110
			6.1.1.3	Análise de desempenho	113
		6.1.2	Cavidad	le com parede inferior em formato ondular	118
			6.1.2.1	Dinâmica dos fluidos	118
			6.1.2.2	Interação fluido-estrutura pelo método das Fronteiras Imersa	1111 s 125
	6.2	Escoar	mento em	torno de um cilindro	135
		6.2.1	Dinâmio	a dos fluidos	136
			6.2.1.1	Análise de sensibilidade	136
		6.2.2	Resulta	los	142
			6.2.2.1	Caso estacionário	142
			6.2.2.2	Caso transiente	143
		6.2.3	Análise	de desempenho	146
			6.2.3.1	Caso estacionário	146
			6.2.3.2	Caso transiente	147
		6.2.4	Interaçã	o fluido-estrutura pelo método das Fronteiras Imersas	148
			6.2.4.1	Análise de sensibilidade	148
			6.2.4.2	Resultados	154
			6.2.4.3	Caso estacionário	155
			6.2.4.4	Caso transiente	158
	6.3	Co-sin	nulação pa	ara análise de VIV (Vortex Induced Vibration) – HPC_LMC	1.00
		e GIR	AFFE .		162
		6.3.1	Metodol	\log_{10}	162
		6.3.2	Simulaç	ao numérica	163
		6.3.3	Geomet	$\operatorname{rla} \ldots	164
		6.3.4	Soluçao	analitica – Elipse	165
		0.3.5	Equação	o da elipse rotacionada	166
		6.3.6	Intersec	çao entre a elipse e a malha de fluido	166
		0.3.7	Forças r	esuitantes – Multiplicadores de Lagrange	167
		0.3.8	Caso est		168
			0.3.8.1		108

		6.3.9	Caso transiente	169
			$6.3.9.1 \text{Resultados} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	169
7	CON		ÃO	172
	7.1	Trabal	hos futuros	173
RF	FFR	ÊNCIA	S 1	174
	DÊNI			178
	PÊNI	DICE F		224
	R 1	Forma	to do arquivo	224
	D.1	R 1 1	Informações de controle	221
		B12	Integração numérica	225
		B13	Saída de dados	226
		B.1.4	Campos escalares ou vetoriais	227
		B.1.5	Material	· 227
		B.1.6	Tipo de tensão no contorno	228
		B17	Análise não-linear	228
		B.1.8	Informações da análise	228
		B.1.9	Informações da malha de elementos finitos	229
		2.110	B.1.9.1 Nós	229
			B.1.9.2 Forcas	230
			B193 Elemento	231
			B 1 9 4 Superfície molhada	233
			B.1.9.5 Multiplicadores de Lagrange	234
	B.2	Exem		235
	_	B.2.1	Arquivo neutro da estrutura	235
		B 2 2	Arquivo neutro do fluido	236
		2.2.2	inquite neutre de nuide :	-00

1 INTRODUÇÃO

Tem-se como paradigma da engenharia nos tempos atuais a viabilização de soluções computacionais que otimizem o tempo de processamento e resultem em soluções mais precisas. Constantemente surgem propostas com as mais diversas abordagens que exploram novas formas de resolver tais problemas ou tentam, ainda, melhorar as soluções existentes. Uma das grandes áreas que se dedica a propor tais melhorias é a computação paralela e de alto desempenho – HPC (*High Performance Computing*).

Técnicas que otimizem o tempo de processamento como algoritmos mais eficientes e computadores mais rápidos abrem novas possibilidades a realizar tarefas que antes eram inviáveis. Podemos citar, por exemplo, a dinâmica de fluidos e interação fluido-estrutura.

Segundo Gomes (2013), a interação fluido-estrutura (IFE) é um problema que envolve a Mecânica dos Fluidos e das Estruturas sendo que a solução de um domínio depende da solução do outro. Caracterizando-se, assim, um sistema acoplado. Se resolver um problema de mecânica dos fluidos com condições de contorno diversas já é uma tarefa difícil, um problema de IFE acrescenta como desafio a solução simultânea do sistema acoplado onde as condições de contorno na interface entre o fluido e a estrutura são desconhecidas a priori, pois dependem da solução do problema. Além disso, grande parte dos problemas de interesse para a engenharia envolve grandes deslocamentos da estrutura e convecção do fluido, sendo a IFE, por natureza, um problema fortemente não linear.

Ainda de acordo com Gomes (2013), uma dificuldade em simular computacionalmente problemas desta natureza está na alta velocidade do escoamento do fluido, que normalmente requer modelos complexos de turbulência (GAMNITZER, 2010). Adicione também o fato de que o tempo de simulação, em geral, precisa ser grande para despertar o fenômeno físico e, a incrementos de tempo pequenos, exigência de qualquer simulação numérica de escoamento de fluidos.

Esta combinação, naturalmente, demanda computação de alto desempenho que, muitas vezes, favorece a utilização de métodos para redução da ordem do problema (LIEU et al., 2006) e a utilização de computação paralela. As Figuras 1 (a), (b), (c), (d) e (e) mostram os resultados da simulação computacional de problemas de dinâmica dos fluidos e interação fluido-estrutura utilizando o método das Fronteiras Imersas e paralelizado na GPU.

Figura 1.1 – Exemplos de problemas de interação fluido-estrutura.

Fonte: (a) Análise da deformação de um riser (ACUSIM *software*) (b) Análise de turbulência de um aerofólio NACA 0012 (Cardiff *University Hydraulics*) (c) (GASCHE et al., 2012) (d) Aerodinâmica de edifícios (MANTIUM CAE) (e) (KANG et al., 2009)

1.1 Organização do trabalho

Este trabalho encontra-se organizado da seguinte forma:

No Cap. 2 é apresentado um breve resumo histórico da computação sequencial, evoluindo para a computação paralela e a utilização de placas gráficas para resolução de problemas numéricos. É apresentado os tipos de memórias disponíveis na GPU e suas características, o funcionamento da memória do tipo *shared* e como é realizado o *assembly* das matrizes globais utilizando a linguagem de programação CUDA.

O Cap. 3 apresenta a teoria da interação fluido-estrutura utilizando elementos finitos e o método das Fronteiras Imersas. Um novo método de integração para os elementos "cortados", como uma opção ao método do *Tessellation* é abordado.

O Cap. 4 aborda a teoria de vigas tridimensionais cinematicamente exatas para a solução de problemas que envolvem *risers*, sendo posteriormente utilizado para a co-simulação envolvendo dois *softwares* desenvolvidos no Laboratório de Mecânica Computacional da Escola Politécnica da Universidade de São Paulo, HPC_LMC e GIRAFFE.

No Cap. 5 é apresentado a implementação computacional do software desenvolvido

neste trabalho, apresentando os principais pacotes e classes, e uma breve apresentação do código paralelizado na GPU (No Apêndice A, encontra-se o código completo da paralelização utilizando a linguagem de programação CUDA).

O Cap. 6 trata de experimentos realizados por meio da simulação numérica de diferentes problemas de dinâmica dos fluidos e interação fluido-estrutura utilizando o método das Fronteiras Imersas, uma análise de sensibilidade para cada problema de modo a encontrar o melhor custo benefício em relação ao número de elementos em uma malha de elementos finitos e o *speedup*, e posteriormente uma comparação dos resultados com a literatura, e uma análise de desempenho.

Finalmente, o Cap. 7 apresenta as conclusões deste trabalho, e possíveis trabalhos futuros que podem ser realizados a partir deste.

2 COMPUTAÇÃO PARALELA

Este capítulo apresenta uma breve história da computação sequencial e como foi possível utilizar diversas CPUs para a execução em paralelo. Apresenta o funcionamento básico dos diferentes tipos de memória disponíveis na GPU, o *assembly* das matrizes locais utilizando a tecnologia CUDA de propriedade da NVIDIA e o formato adequado para envio dos dados da CPU para a GPU, como os dados nodais, graus de liberdade, entre outros.

2.1 Computação sequencial

A computação sequencial tem sido utilizada por mais de 60 anos, desde John Von Neumann quando criou a computação digital nos anos 50. Ela é definida como um sistema que possui uma unidade de processamento chamada de CPU (*Central Processing Unit*¹) e uma unidade de memória (Fig. 2.1 e Fig. 2.2). A velocidade de processamento de qualquer aplicação depende principalmente da taxa de execução das instruções, em ciclos por segundo (*clock*), e a taxa de transferência (*bandwidth*) entre a memória e a CPU.

Figura 2.1 – Microprocessador.

Fonte: Disponível em: <http://www.csb.uncw.edu>.

¹A CPU (*Central Processing Unit*) ou Unidade Central de Processamento, mais conhecido como processador, é composta pela ALU (*Arithmetic Logic Unit*), ou Unidade Lógica de Aritmética responsável pela operações matemáticas, lógicas e operações de decisão, e a CU (*Control Unit*), ou Unidade de Controle, que direciona todas as operações do processador.

Figura 2.2 – Funcionamento de um microprocessador.

Fonte: Disponível em: <http://www.csb.uncw.edu>.

2.1.1 Gordon E. Moore

A Lei de Moore foi estabelecida por Gordon Earl Moore e diz que o número de transístores em um chip de um microprocessador dobrará a cada dois anos.

"The complexity for minimum component costs has increased at a rate of roughly a fator of two per year. Certainly over the short term this rate can be expected to continue."

A Fig. 2.3 mostra a linha de tendência dos computadores ao longo dos anos (1970 a 2005).

Fonte: Disponível em: ">http://www.bbc.co.uk/education/guides/z46s4wx/revision/6>.

Os microprocessadores baseados em um único CPU (i.e. família Intel Pentium e AMD) obtiveram um crescimento exponencial em velocidade de processamento e redução de custos nas últimas décadas. As CPUs chegaram a GFLOPs (*Giga Floating-point Operations per Second*) em desktops comuns e a centenas de GFLOPs em servidores em *cluster*².

2.2 Computação paralela

Os desenvolvedores acreditavam que o avanço em hardware levariam a um aumento de velocidade de processamento e execução dos softwares. Entretanto este crescimento tem diminuído desde 2003 devido ao alto consumo de energia e problemas de dissipação de calor nos processadores, limitando assim o aumento da frequência de clock e a eficiência em cada período de clock em uma única CPU.

Desta forma os fabricantes e produtores de microprocessadores mudaram a tecnologia interna da CPU para que pudessem ser utilizadas unidades de múltiplo processamento (*Multi-core processors*³). Esta mudança no *hardware* teve um grande impacto na comunidade de desenvolvedores de *softwares*. Isto porque tradicionalmente os aplicativos são desenvolvidos como programas sequenciais, como descrito por Von Neumann em 1945, e historicamente os usuários estão acostumados a esperar destes programas um avanço em performance com cada geração nova de *hardware* lançada no mercado.

2.2.1 Lei de Amdahl

Para que se possa compreender melhor esta lei é necessário apresentar alguns conceitos relativos a análise e métricas de *performance* ou desempenho de um *hardware* ou *software*.

2.2.1.1 Latency vs. Throughput

Os seguintes conceitos são importantes e muitas vezes contraditórios e são utilizados para decidir qual a melhor abordagem a ser aplicada a um determinado *hardware* ou *software*:

- *Latency* ou tempo de execução é o tempo necessário para que uma determinada tarefa leva para ser concluída. É medido em unidades de tempo ou períodos de *clock*.
- Throughput ou bandwidth é o número de tarefas que podem ser executadas em um determinado tempo. É medido em unidades de algo que está sendo produzido (I/O⁴,

²O *cluster* consiste na interligação de diversos computadores para que juntos possam executar processamentos em paralelo. Foi desenvolvido na década de 60 pela IBM como uma forma de interligar mainframes e fornecer aos clientes uma solução viável comercialmente para processamentos paralelizados.

³Uma unidade de múltiplo processamento é um componente com duas ou mais unidades de processamento independentes.

⁴*Inputs* ou *outputs*.

iterações, memória transferida) por unidade de tempo.

Alguns exemplos:

- Frequência de *clock*: 100 MHz
- Throughput de um dispositivo: 640 Mbits/second

2.2.1.2 Speedup

Speedup é uma métrica de desempenho para analisar o quanto um determinado sistema obteve de *performance*, superior ou inferior, em relação a outro determinado sistema.

Exemplo:

- Sistema A executa determinada tarefa em 200 ciclos;
- Sistema B executa determinada tarefa em 350 ciclos;
- 350/200 = 1.75, ou seja, o sistema B é 1.75 vezes mais rápido que o sistema A.

Em Molyneaux (2009) pode ser encontrada uma análise extensa de uma série de métricas de desempenho que podem ser utilizadas tanto em *hardware* como em *software*, como também em redes de computadores, entre outras aplicações.

2.2.1.3 Gene M. Amdahl

Em Amdahl (1967), Gene M. Amdahl diz:

"For over a decade prophets have voiced the contention that the organization of a single computer has reached its limits and that truly signicant advences can be made only by interconnection of a multiplicity of computers in such a manner as to permit cooperative solution. Variously the proper direction has been pointed out as general purpose computers with a generalized interconnection of memories or as specialized computers with geometrically related memory interconnections and controlled by one or more instruction streams.

Demonstration is made of the continued validity of the single processor approach and of the weaknesses of the multiple processor approach in terms of application to real problems and their attendant irregularities."

Esta citação, que tornou-se conhecida como "Lei de Amdahl", é frequentemente utilizada na computação paralela para prever o máximo *speedup* teórico que é obtido quando utiliza-se múltiplos processadores. Esta lei mostra que, a não ser que o *software* (ou parte do *software*) seja 100% eficiente na utilização de múltiplos processadores, o sistema se beneficiará cada vez menos quando adiciona-se mais processadores. A seguinte equação mostra o *speedup* global do sistema utilizando-se a "Lei de Amdahl":

$$S(n) = \frac{1}{(1-P) + \frac{P}{n}}$$
(2.1)

onde:

- S(n) é o speedup teórico;
- *P* é a fração do algoritmo que pode ser paralelizado;
- $n \in o$ número de processadores ou $threads^5$ utilizadas no processamento.

A Fig. 2.4 mostra o *speedup* teórico de um sistema paralelizado com relação ao número de processadores ou *threads* utilizadas neste sistema. Pode-se perceber claramente que mesmo que haja um aumento do número de processadores ou *threads* que serão teoricamente direcionadas para o sistema, o *speedup* teórico não aumenta, limitando assim este sistema.

Fonte: Disponível em <http://www.rtcmagazine.com/articles/view/103209>.

2.2.2 GPU

Nesta seção é apresentado um resumo dos diferentes tipos de memórias disponíveis na GPU. Na seção 2.2.2.2.3 é descrito o funcionamento do *assembly* das matrizes globais

 $^{^5} Thread$ é um processo que pode ser dividido em tarefas que são executadas concorrencialmente ou pelo sistema operacional (neste caso o processo é considerado como virtual) ou pelo hardware (neste caso o processo é físico).

utilizadas no *software* desenvolvido neste trabalho. Em Farber (2011) pode-se encontrar uma completa descrição de todas as memórias disponíveis na GPU, como utilizá-las da melhor forma e alcançar o melhor desempenho nas aplicações GPGPU⁶ e alguns exemplos que utilizam a linguagem de programação CUDA.

A Fig. 2.5 ilustra o funcionamento de um *kernel* e um exemplo de chamada na linguagem de programação CUDA, onde:

- *Kernel*: Processo a ser executado na GPU;
- *Host*: CPU;
- Device: GPU;
- *Grid*: Conjunto de blocos de *threads*;
- *Blocks*: Conjunto de *threads*;
- Threads: Execução de um kernel em paralelo.

 $^{^6\}mathrm{GPGPU}$ (General Purpose Graphics Processing Unit): é a utilização de uma GPU (Graphics Processing Unit) ou placa gráfica não apenas para realizar tarefas de renderização gráfica, mas também para processamento de imagem, inteligência artificial, cálculo numérico, entre outras aplicações – normalmente executadas na CPU.

Figura 2.5 – Grid da GPU.

Fonte: O autor

2.2.2.1 Memória da GPU

As aplicações GPGPU têm disponíveis tanto memórias internas ao microprocessador da placa gráfica, como na própria placa. As memórias mais rápidas e mais escaláveis são as memórias do tipo *shared*. Sua única limitação é o tamanho disponível para armazenamento de informação (alguns KB) e somente as *threads* dentro de um bloco podem acessá-la.

A memória global é um sistema de memórias compartilhadas que podem ser acessadas por todas as *threads* da GPU. O tamanho disponível para armazenamento de informação, normalmente, é medido em GB, o que a torna a maior memória da GPU, mais utilizada, mas a mais lenta.

A Tab. 2.1 mostra o *bandwidth* de diferentes memórias disponíveis na GPU.

Tabela 2.1 – Bandwidth das diferentes memórias disponíveis na GPU (FARBER, 2011).

Register Memory	$\approx 8000 \text{GB/s}$
Shared Memory	$\approx 1600 \text{GB/s}$
Global Memory	$170\mathrm{GB/s}$
Mapped Memory	$\approx 8 \text{GB/s} \text{ (unidirecional)}$

Pela Tab. 2.1 pode-se observar que a memória global deve ser muito bem utilizada para que se obtenha a máxima performance da aplicação GPGPU. Da mesma forma, as informações que serão armazenadas na memória compartilhada devem ser bem dimensionadas para que caibam nos poucos KB disponíveis.

2.2.2.2 Tipos de memórias

A Tab. 2.2 apresenta os diferentes tipos de memórias disponíveis na GPU e suas características.

Tabela 2.2 – Tipos de memórias disponíveis na GPU e suas características (FARBER, 2011).

Memória	Localização ⁷ , ⁸	Acesso	Escopo
Register	On-chip	Leitura/Escrita	Uma thread
Local	On- $chip$	Leitura/Escrita	Uma thread
Shared	On- $chip$	Leitura/Escrita	Todas as <i>threads</i> de um bloco
Global	Off- $chip$	Leitura/Escrita	Todas as $threads + host^9$
Constant	Off- $chip$	Leitura	Todas as $threads + host$
Texture	$O\!f\!f$ - $chip$	Leitura/Escrita	Todas as $threads + host$

A Fig. 2.6 mostra um diagrama esquemático dos diferentes tipos de memórias e a forma de transferência entre elas.

⁷On-chip: Interna ao microprocessador da placa gráfica.
⁸Off-chip: Placa gráfica.
⁹CPU.

Figura 2.6 – Diagrama esquemático das memórias internas da GPU e as transferência de dados entre elas.

Fonte: O autor

2.2.2.2.1 Registers

As memórias do tipo *registers* são as mais rápidas da GPU e são as únicas que possuem *bandwidth* e *latency* capazes de fornecer a máxima performance às aplicações GPGPU. Cada *kernel*¹⁰ pode acessar somente 63 memórias do tipo *registers*, limitando assim a sua utilização por aplicações GPGPU. Este valor pode variar de 63 a 21 dependendo do número de *threads* executadas em paralelo.

2.2.2.2.2 Local

A memória do tipo *local* é utilizada quando a informação que se deseja armazenar não cabe em uma memória do tipo *register*.

2.2.2.2.3 Shared

A memória do tipo *shared* pode armazenar tanto 16 KB quanto 48 KB por bloco de *threads* e são organizadas em 32 grupos de 32 bits. Idealmente, 32 *threads* poderão acessar a memória compartilhada em paralelo sem perda de desempenho. Mas infelizmente,

 $^{^{10} \}mathit{Kernel}$ é um programa executado dentro da GPU.

podem ocorrer conflitos de acesso quando múltiplas requisições são feitas por diferentes threads do mesmo bloco. Estas requisições podem ser tanto para o mesmo endereço ou para múltiplos endereços do mesmo grupo. Quando isto acontece, o hardware serializa as operações de memória, ou seja, se n threads acessam ao mesmo tempo o mesmo endereço de memória, então as n requisições serão realizadas sequencialmente, tornando o processo n vezes mais lento.

O grande desafio na utilização das memórias do tipo *shared* está no seu acesso. É necessário que as requisições sejam bem dimensionadas para que cada *thread* acesse o seu bloco de informação sem causar conflito de acesso e em uma única transação.

A Fig. 2.7 ilustra o acesso a esta memória a partir da CPU.

Figura 2.7 – Utilização da memória compartilhada para aumento do speedup de execução em paralelo.

Neste trabalho utilizou-se este tipo de memória. Para que fosse evitado qualquer conflito de acesso, como descrito anteriormente, foi necessário definir as informações que seriam utilizadas pelo *assembly* das matrizes globais e de que forma cada *thread* iria acessar essas informações.

Para o *assembly* das matrizes globais são necessárias as seguintes informações para um problema tridimensional¹¹ (Fig. 2.8):

¹¹Para um problema bidimensional é necessário retirar a coordenada z, os graus de liberdade globais e

- $x, y \in z$: As coordenadas de cada nó da malha de elementos finitos;
- G, L: Os graus de liberdade globais e locais de cada nó da malha de elementos finitos;
- u, v, w: As velocidades dos nós da malha de elementos finitos nas direção $x, y \in z$;
- p: A pressão dos nós da malha de elementos finitos.

Figura 2.8 – Dados nodais para um problema tridimensional.

Fonte: O autor

Os dados nodais são enviados a memória compartilhada de forma contígua, assim, somente uma transação é necessária para que as 32 *threads* acessem as informações da memória compartilhada. Isto chama-se *memory coalescing*¹². As Fig. 2.9, 2.10 e 2.11 ilustram estes acessos. O único acesso que será realizado em uma única transação é o sequencial e alinhado, e portanto, é o acesso que fornecerá o máximo desempenho.

Figura 2.9 – Acesso sequencial e alinhado.

Fonte: Disponível em <https://cvw.cac.cornell.edu/gpu/coalesced?AspxAutoDetectCookieSupport=1>

locais e a velocidade na direção z.

 $^{^{12}} Memory\ coalescing:$ combinar múltiplos acessos a memória em uma única transação.

Figura 2.10 – Acesso alinhado mas não sequencial.

 $Fonte: Disponível \ em \ < https://cvw.cac.cornell.edu/gpu/coalesced? AspxAutoDetectCookieSupport=1 > 0.000 \ employed

A Fig. 2.12 ilustra a forma como os dados nodais são enviados para a memória compartilhada para posterior acesso contíguo.

Figura 2.12 – Acesso contíguo aos dados nodais.

Fonte: O autor

A Fig. 2.13 apresenta um diagrama esquemático (adaptado de Cecka et al. (2011) para utilização neste trabalho) de como o *assembly* é realizado na GPU e posteriormente na CPU.

Figura 2.13 – Assembly das matrizes locais na GPU e posteriormente na CPU.

Fonte: O autor (adaptado de Cecka et al. (2011) para utilização neste trabalho)

O diagrama da Fig. 2.13 é executado da seguinte forma:

Tabela 2.3 – Algoritmo de assembly das matrizes globais.

Alg	Algoritmo Assembly das matrizes globais				
1:	Shared Nodal Data, Scatter e Local Nodal Data: Primeiramente o kernel separa as infor-				
	mações da memória do tipo <i>shared</i> em um <i>array</i> local de forma que cada thread tenha acesso a				
	sua informação de forma contígua;				
2:	Thread Sync: Realiza-se uma operação de sincronização ¹³ ;				
3:	<i>Element subroutine</i> : Executam-se as subrotinas de cálculo dos elementos finitos (Cap. 3);				
$4 \cdot$	Element Data Reduction e Sustem of Equations: Altera os dados da memória do tipo				

4: Element Data, Reduction e System of Equations: Altera os dados da memória do tipo shared (valores dos graus de liberdade globais para as velocidades nas direções x, y e z e pressão) para que possa ser enviada para a memória do tipo global e posteriormente para a CPU para finalização do assembly das matrizes globais.

Para que se possa utilizar a memória compartilhada é necessário que os dados nodais caibam em 16 ou 48 KB. Cada elemento finito possui uma certa quantidade de nós e com isso uma certa quantidade de *bytes*. Utilizando-se precisão dupla são necessários 336, 504, 720 e 1944 B para os elementos do tipo P2P1, Q2Q1, tetraédrico de 10 nós e hexaédrico de 27 nós, respectivamente, como mostram as Fig. 2.14, 2.15, 2.16 e 2.17.

 $^{^{13}}$ A sincronização das *threads* garante que cada *thread* acesse as informações da memória do tipo *shared* de forma alinhada e sequencial, garantindo assim, uma única transação de memória.

Figura 2.14 – Quantidade de bytes necessários para um elemento triangular do tipo Taylor-Hood P2P1.

Fonte: O autor

Figura 2.15 – Quantidade de bytes necessários para um elemento quadrilateral do tipo Taylor-Hood Q2Q1.

Fonte: O autor

Figura 2.16 – Quantidade de bytes necessários para um elemento do tipo tetraédrico de 10 nós.

Fonte: O autor

Figura 2.17 – Quantidade de bytes necessários para um elemento do tipo hexaédrico de 27 nós.

Como exemplo, o número máximo de elementos finitos do tipo P2P1 que podem ser armazenados na memória do tipo *shared* em um problema de dinâmica dos fluidos ou interação fluido-estrutura utilizando o método das Fronteiras Imersas são: 49 152 B/336 B = 146 elementos. Como cada transação é realizada em grupos de 32, a situação ideal é armazenar 128 elementos¹⁴.

2.2.2.2.4 Constant

A memória do tipo *constant* é excelente para armazenar informações que sejam somente leitura para e posteriormente enviar para todas as threads da GPU. A sua limitação é de 64 KB.

2.2.2.2.5 Global

A grande limitação da memória do tipo *global* está no seu *bandwidth*. É muito importante que se tenha em mente esta limitação para que se desenvolva aplicações GPGPU que utilizem a memória global somente quando for estritamente necessário, evitando assim a troca de informações entre a CPU e a GPU.

Algumas regras da memória do tipo global:

- 1. Envie as informações a mantenha na memória, sem enviar novamente para a CPU, o maior tempo possível;
- 2. Execute todos os kernels;
- 3. Tente reutilizar as informações armazenadas evitando as limitações de bandwidth.

Certamente não há como evitar o acesso a esta memória, mas é essencial que se tenha em mente as suas limitações.

Em Farber (2011) o autor apresenta diversas formas interessantes de evitar a limitação de bandwidth e outras técnicas para aumentar o desempenho das aplicações GPGPU.

 $^{^{14}\}mathrm{A}$ mesma lógica pode ser aplicada aos outros elementos.

3 INTERAÇÃO FLUIDO-ESTRUTURA

Este capítulo apresenta as equações de Navier-Stokes e a teoria da interação fluido-estrutura utilizando o método das fronteiras imersas. A teoria completa pode ser encontrada em Gomes (2013).

3.1 Equações de Navier Stokes

Seja Ω_t em $\mathbb{R}^{n_{sd}}$ o domínio do espaço com contorno Γ_t no instante de tempo $t \in (0,T)$, onde T é o instante de tempo final do domínio. O subscrito t indica a dependência do domínio com o tempo. As equações de Navier-Stokes para escoamentos incompressíveis podem ser escritas em $\Omega \in \forall t \in (0,T)$ como

$$\rho\left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u}\right) = \nabla \cdot \boldsymbol{T} + \rho \boldsymbol{b}, \qquad (3.1)$$

$$\nabla \cdot \boldsymbol{u} = 0, \qquad (3.2)$$

onde ρ , $\boldsymbol{u} \in \boldsymbol{b}$ são a densidade, velocidade e vetor de forças externas respectivamente. Para fluidos Newtonianos os tensores de tensão \boldsymbol{T} e deformação $\epsilon(\boldsymbol{u})$ são definidos como

$$\boldsymbol{T} = -p\boldsymbol{I} + 2\mu\boldsymbol{\epsilon}\left(\boldsymbol{u}\right) \tag{3.3}$$

$$\boldsymbol{\epsilon}(\boldsymbol{u}) = \frac{1}{2} \left[\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^{\mathsf{T}} \right]$$
(3.4)

sendo a variável p a pressão, I o tensor identidade e μ a viscosidade dinâmica do fluido.

O divergente do tensor das tensões é dado por

$$\nabla \cdot \boldsymbol{T} = -\nabla p + \mu \nabla^2 \boldsymbol{u} + \mu \nabla (\nabla \cdot \boldsymbol{u})$$
(3.5)

Como o escoamento é incompressível, o último termo é zero. Portanto

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla p + \nu \nabla^2 \boldsymbol{u} + \boldsymbol{b}.$$
(3.6)

Note que todos os termos são divididos por ρ na Eq. 3.6, originando a viscosidade cinemática do fluido ν e a pressão cinemática p.

3.2 Condições de contorno

As condições de contorno essenciais de Dirichlet e naturais de Newmann da Eq. 3.1 são representadas como

$$\boldsymbol{u} = \overline{\boldsymbol{u}} \quad \text{em} \quad \Gamma_u, \tag{3.7}$$

$$(2\nu\nabla^{s}\boldsymbol{u} - p\boldsymbol{I})\boldsymbol{n} = \bar{\boldsymbol{t}} \quad \text{em} \quad \Gamma_{t}, \tag{3.8}$$

 $\boldsymbol{u} = \boldsymbol{u}_0 \quad \text{em} \quad \boldsymbol{\Omega} \quad \text{e} \quad t = 0. \tag{3.9}$

3.3 Forma fraca

Definindo-se funções teste arbitrárias $\boldsymbol{w} \in \mathcal{H}_0^1(\Omega)$ e $q \in \mathcal{L}_2(\Omega)$ para a velocidade e pressão respectivamente, pode-se escrever o sistema de equações diferenciais parciais descritas pela Eq. (3.6) na forma integral equivalente como

$$(\boldsymbol{w}, \dot{\boldsymbol{u}})_{\Omega} + (\boldsymbol{w}, \boldsymbol{u} \cdot \nabla \boldsymbol{u})_{\Omega} = -(\boldsymbol{w}, \nabla p)_{\Omega} + (\boldsymbol{w}, \nabla \cdot (2\nu\nabla^{s}\boldsymbol{u}))_{\Omega} + (q, \nabla \cdot \mathbf{u})_{\Omega} + (\boldsymbol{w}, \boldsymbol{b})_{\Omega} \quad (3.10)$$

 $\forall (\boldsymbol{w}, q)$. Integrando por partes os termos viscoso e pressão, a forma fraca da equação de Navier-Stokes para escoamentos incompressíveis pode ser definido como

$$(\boldsymbol{w}, \dot{\boldsymbol{u}})_{\Omega} + c (\boldsymbol{u}; \boldsymbol{w}, \boldsymbol{u})_{\Omega} = (p, \nabla \cdot \boldsymbol{w})_{\Omega} - a (\boldsymbol{w}, \boldsymbol{u})_{\Omega} - (q, \nabla \cdot \boldsymbol{u})_{\Omega} + (\boldsymbol{w}, \bar{\boldsymbol{t}})_{\Gamma_{t}} + (\boldsymbol{w}, \boldsymbol{b})_{\Omega} \quad (3.11)$$

 $\forall (\boldsymbol{w}, q)$. Note que o termo do contorno em Γ desaparece em Γ_u devido a função teste. Os termos convectivos e viscosos foram escritos em uma notação compacta definidos pelas formas bilinear e trilinear:

$$a(\boldsymbol{w},\boldsymbol{u})_{\Omega} = \int_{\Omega} 2\nu \nabla^{s} \boldsymbol{w} \colon \nabla^{s} \boldsymbol{u} \,\mathrm{d}\Omega$$
 (3.12)

$$c(\boldsymbol{u};\boldsymbol{w},\boldsymbol{u})_{\Omega} = \int_{\Omega} \boldsymbol{w} \cdot (\boldsymbol{u} \cdot \nabla \boldsymbol{u}) \, \mathrm{d}\Omega$$
 (3.13)

3.4 Integração no tempo

O método de integração no tempo adotado para solucionar as equações de Navier-Stokes não estacionárias deste trabalho foi o método de Newmark, onde a derivada da velocidade em relação ao instante de tempo n + 1 pode ser escrito como

$$\dot{\boldsymbol{u}}^{n+1} = \frac{1}{\gamma} \frac{(\boldsymbol{u}^{n+1} - \boldsymbol{u}^n)}{\Delta t} - \frac{(1-\gamma)}{\gamma} \dot{\boldsymbol{u}}^n, \qquad (3.14)$$

onde $\gamma = 1/2$ foi adotado como parâmetro de Newmark de forma a obter precisão de segunda ordem no tempo. Reescrevendo a forma fraca da equação de Navier-Stokes (Eq. 3.11),

$$\left\{ \left(\boldsymbol{w},\boldsymbol{u}\right)_{\Omega} + \gamma \Delta t \left[c\left(\boldsymbol{u};\boldsymbol{w},\boldsymbol{u}\right)_{\Omega} + a\left(\boldsymbol{w},\boldsymbol{u}\right)_{\Omega} - \left(\nabla \cdot \boldsymbol{w},p\right)_{\Omega} + \left(q,\nabla \cdot \boldsymbol{u}\right)_{\Omega} - \left(\boldsymbol{w},\bar{\boldsymbol{t}}\right)_{\Gamma_{t}} - \left(\boldsymbol{w},\boldsymbol{b}\right)_{\Omega} \right] \right\}^{n+1} = \left(\boldsymbol{w},\boldsymbol{u}^{n}\right)_{\Omega} + \left(1-\gamma\right)\Delta t\left(\boldsymbol{w},\dot{\boldsymbol{u}}^{n}\right)_{\Omega}, \,\forall\left(\boldsymbol{w},q\right).$$
(3.15)

3.5 Discretização em Elementos Finitos

Este trabalho adotou uma formulação mista para os elementos do fluido onde duas incógnitas (velocidade e pressão) são descritas como variáveis primitivas e os multiplicadores de Lagrange, incógnitas adicionais que precisam ser discretizadas ao longo da interface entre o fluido e a estrutura. As funções de aproximação para as velocidades e pressão, definidas localmente no interior do domínio Ω_e , podem ser definidas como

$$\boldsymbol{u}^{h}(\boldsymbol{x})\Big|_{\boldsymbol{x}\in\Omega_{e}} = \mathbf{N}_{u}\mathbf{u}_{e} \text{ and } p^{h}(\boldsymbol{x})\Big|_{\boldsymbol{x}\in\Omega_{e}} = \mathbf{N}_{p}\mathbf{p}_{e}$$
 (3.16)

respectivamente. $\mathbf{N}_u \in \mathbf{N}_p$ são as funções de forma da velocidade e pressão respectivamente, e $\mathbf{u}_e \in \mathbf{p}_e$ seus valores nodais. As funções teste são definidas de forma similar da seguinte maneira:

$$\boldsymbol{w}^{h}(\boldsymbol{x})\Big|_{\boldsymbol{x}\in\Omega_{e}} = \mathbf{N}_{u}\mathbf{w}_{e} \text{ and } q^{h}(\boldsymbol{x})\Big|_{\boldsymbol{x}\in\Omega_{e}} = \mathbf{N}_{p}\mathbf{q}_{e}$$
 (3.17)

Neste trabalho, de forma a não violar a condição de compatibilidade LBB¹ para problemas mistos, foram utilizados os elementos de Taylor-Hood P2P1 e Q2Q1 (interpolação quadrática na velocidade e linear na pressão) para problemas bidimensionais e o elemento tetraédrico de 10 nós (sendo 10 nós para a velocidade e 4 para a pressão) para problemas tridimensionais, como ilustrado na Fig. 3.1.

Após algumas manipulações algébricas das equações apresentadas nas seções anteriores e utilizando a discretização em Elementos Finitos apresentada anteriormente, definem-se

$$\begin{cases} \frac{\mathbf{M}}{\gamma\Delta t}\mathbf{u}^{n+1} + \left[\mathbf{C}\left(\mathbf{u}^{n+1}\right) + \mathbf{K}\right]\mathbf{u}^{n+1} + \mathbf{G}\mathbf{p}^{n+1} &= \mathbf{f}^{n+1} + \frac{\mathbf{M}}{\gamma\Delta t}\mathbf{u}^{n} + \frac{1-\gamma}{\gamma}\mathbf{M}\dot{\mathbf{u}}^{n} \\ \mathbf{G}^{\mathsf{T}}\mathbf{u}^{n+1} &= \mathbf{0} \end{cases}$$
(3.18)

¹A condição de compatibilidade LBB - Ladyzhenskaya-Babuška-Brezzi, ou condição inf-sup, necessita que um par de velocidade e pressão sejam escolhidos de forma a satisfazer e garantir a unicidade e existência dos espaços de interpolação para a velocidade e pressão. Uma extensa discussão sobre a condição LBB pode ser encontrada em Brezzi e Fortin (1991).

onde as matrizes locais são definidas como

$$\begin{split} \mathbf{K}_{e} &= \int_{\Omega_{e}} \mathbf{B}_{u}^{\mathsf{T}} \boldsymbol{\nu} \mathbf{B}_{u} \mathrm{d}\Omega_{e} & \text{Matriz viscosa} \\ \mathbf{G}_{e} &= -\int_{\Omega_{e}} \left(\nabla \cdot \mathbf{N}_{u} \right)^{\mathsf{T}} \mathbf{N}_{p} \mathrm{d}\Omega_{e} & \text{Operador gradiente} \\ \mathbf{G}_{e}^{\mathsf{T}} & \text{Operador divergente} \\ \mathbf{M}_{e} &= \int_{\Omega_{e}} \mathbf{N}_{u}^{\mathsf{T}} \mathbf{N}_{u} \mathrm{d}\Omega_{e} & \text{Matriz de massa} \\ \mathbf{C}_{e} &= \int_{\Omega_{e}} \mathbf{N}_{u}^{\mathsf{T}} \left[(\mathbf{N}_{u,i} \mathbf{u}_{e}) \otimes \mathbf{e}_{i} \right] \mathbf{N}_{u} \mathrm{d}\Omega_{e} & \text{Matriz convectiva} \\ \mathbf{f}_{e} &= \int_{\Gamma_{te}} \mathbf{N}_{u}^{\mathsf{T}} \mathbf{\bar{t}} \mathrm{d}\Gamma_{te} + \int_{\Omega_{e}} \mathbf{N}_{u}^{\mathsf{T}} \mathbf{b} \mathrm{d}\Omega_{e} & \text{Condições de contorno e forças de campo} \end{split}$$

3.6 Interface

A estratégia adotada neste trabalho foi utilizar fronteiras imersas para as simulações de interação fluido-estrutura para calcular as variáveis do escoamento do fluido em uma malha de elementos finitos Euleriana fixa. A malha do fluido é definida sobre o domínio do fluido e estende-se totalmente sobre o interior do domínio da estrutura, ou sobre uma parte deste domínio, como mostrado na Fig. 3.2.

Figura 3.2 – Malhas de fluidos típica para o método das fronteiras imersas.

Fonte: O autor

Por esta razão, a superfície molhada da estrutura, geralmente, não é conforme com os nós da malha do fluido, desta forma as velocidades da interface precisam ser definidas de forma fraca. Define-se o domínio que contém o fluido como Ω^f e a estrutura como Ω^s (Fig. 3.3). Γ^i é a interface entre os domínios do fluido e da estrutura, \boldsymbol{n}^f e \boldsymbol{n}^s seus respectivos vetores normais e unitários à superfície externa da estrutura.

Figura 3.3 – Domínios do fluido e da estrutura.

Fonte: (GOMES, 2013)

De forma a garantir a compatibilidade da velocidade do fluido na interface, precisase, para uma interface sem escorregamento (*no-slip condition*)

$$\boldsymbol{u}^{f} = \dot{\boldsymbol{d}}^{s} = \overline{\boldsymbol{u}}^{i} \qquad \forall \boldsymbol{x} \in \Gamma^{i}, \tag{3.19}$$

$$\boldsymbol{T}^{f}\boldsymbol{n}^{f} = -\boldsymbol{T}^{s}\boldsymbol{n}^{s} \qquad \forall \boldsymbol{x} \in \Gamma^{i}$$

$$(3.20)$$

onde a Eq. 3.19 é a condição cinemática da interface, \dot{d} é a velocidade da estrutura e Eq. 3.20 representa a condição dinâmica. Os sobrescritos nestas equações diferenciam as variáveis dos diferentes domínios (fluido e estrutura).

A imposição da Eq. 3.19 no problema do fluido pode ser realizada com multiplicadores de Lagrange. Portanto, é possível definir um funcional por

$$\Pi = \left(\boldsymbol{\lambda}, \boldsymbol{u}^f - \dot{\boldsymbol{d}}^s\right)_{\Gamma^i} \tag{3.21}$$

onde λ representa o multiplicador de Lagrange da condição Eq. 3.19 e constitui-se de uma variável adicional do problema. O multiplicador de Lagrange pode ser identificado como uma força ao longo de Γ^i . A forma variacional desta função, considerando o movimento da estrutura conhecido *a priori* no momento da solução do problema do fluido, é

$$\delta \Pi = \left(\delta \boldsymbol{\lambda}, \boldsymbol{u}^{f} - \dot{\boldsymbol{d}}^{s} \right)_{\Gamma^{i}} + \left(\boldsymbol{\lambda}, \delta \boldsymbol{u}^{f} \right)_{\Gamma^{i}}.$$
(3.22)

Estes termos podem ser adicionados na forma fraca apresentada em 3.15. Desta forma

$$\left\{ \left(\boldsymbol{w}, \boldsymbol{u} \right)_{\Omega^{f}} + \gamma \Delta t \left[c \left(\boldsymbol{u}; \boldsymbol{w}, \boldsymbol{u} \right)_{\Omega^{f}} + a \left(\boldsymbol{w}, \boldsymbol{u} \right)_{\Omega^{f}} - \left(\nabla \cdot \boldsymbol{w}, p \right)_{\Omega^{f}} + \left(q, \nabla \cdot \boldsymbol{u} \right)_{\Omega^{f}} - \left(\boldsymbol{w}, \overline{\boldsymbol{t}} \right)_{\Gamma_{t}} - \left(\delta \boldsymbol{\lambda}, \boldsymbol{u} - \overline{\boldsymbol{u}}^{i} \right)_{\Gamma^{i}} - \left(\boldsymbol{w}, \boldsymbol{\lambda} \right)_{\Gamma^{i}} - \left(\boldsymbol{w}, \boldsymbol{b} \right)_{\Omega^{f}} \right] \right\}^{n+1} = (3.23)$$
$$= \left(\boldsymbol{w}, \boldsymbol{u}^{n} \right)_{\Omega^{f}} + (1 - \gamma) \Delta t \left(\boldsymbol{w}, \dot{\boldsymbol{u}}^{n} \right)_{\Omega^{f}}, \forall \left(\delta \boldsymbol{\lambda}, \boldsymbol{w}, q \right)$$

3.7 Discretização da interface

A discretização da interface pode ser realizada de diferentes formas. A técnica mais intuitiva e adotada é definir os nós da intersecção entre a interface e os elementos de

fluido. Estes nós são então utilizados para definir os valores nodais dos multiplicadores de Lagrange, e uma função de aproximação é utilizada para interpolar os valores ao longo da interface. Nas simulações realizadas em Gomes (2013), a adoção de elementos finitos de baixa ordem mostraram alta sensibilidade a instabilidades numéricas nos resultados dos multiplicadores de Lagrange.

De forma a resolver este problema, foi proposto em Gomes (2013) uma técnica alternativa de discretizar a interface de forma independente da malha do fluido. Adicionalmente, funções de forma descontínuas e constantes foram adotadas para simplificar a implementação. O esquema geral da discretização da interface é apresentada na Fig. 3.4.

Figura 3.4 – Discretização da interface entre o fluido e a estrutura.

Fonte: (GOMES, 2013)

As funções teste e de aproximação dos multiplicadores de Lagrange podem ser definidos como:

$$\boldsymbol{\lambda}^{h}\left(\boldsymbol{x}\right)\Big|_{\boldsymbol{x}\in\Gamma_{e}^{i}}=\mathbf{N}_{\lambda}\boldsymbol{\lambda}_{e} \quad \text{and} \quad \delta\boldsymbol{\lambda}^{h}\left(\boldsymbol{x}\right)\Big|_{\boldsymbol{x}\in\Gamma_{e}^{i}}=\mathbf{N}_{\lambda}\delta\boldsymbol{\lambda}_{e} \tag{3.24}$$

 \mathbf{N}_{λ} é a função de forma dos multiplicadores de Lagrange.

3.8 Células de integração

De forma a calcular as integrais dos elementos de fluido "cortados" pela estrutura, em Gomes (2013) o elemento que pertence tanto ao domínio da estrutura como do fluido é subdividido em células triangulares de integração, utilizando uma técnica chamada *Tessellation*.

Dentro do elemento de fluido a interface é aproximada por uma linha reta. Esta aproximação é muito comum nos Métodos dos Elementos Finitos onde o erro converge para zero com a diminuição do tamanho do elemento.

¹ Tessellation é uma técnica de recobrimento de superfícies que utiliza um padrão de formatos geométricos (polígonos regulares) de forma a não possuir espaços nem sobreposição entre eles.

Figura 3.5 – Integração nos elementos "cortados". Os pontos de Gauss são representados pelo símbolo "x".

Fonte: (GOMES, 2013)

Neste trabalho adotou-se, além da técnica de *Tessellation*, uma técnica de integração onde não é necessário subdividir o elemento "cortado" em células de integração. A integração é realizada no domínio do polígono resultante do "corte". Esta técnica facilita a integração em problemas bidimensionais, mas principalmente em problemas tridimensionais (SUDHAKAR et al., 2014), e é apresentada na próxima seção.

3.9 Integração no polígono

Nesta seção são apresentados os principais tópicos da teoria da integração no polígono aplicada no presente trabalho. A teoria completa encontra-se em Sudhakar et al. (2014).

Considere a integração da função polinomial ${\mathcal F}$ no domínio ${\mathcal R}\subset {\mathbb R}^n$ da seguinte forma

$$I_{\mathcal{R}} = \int_{\mathcal{R}} \mathcal{F} \mathrm{d}\mathcal{R} \tag{3.25}$$

Seja \mathcal{R} a região em \mathbb{R}^n delimitado pela superfície fechada \mathcal{S} (no caso do presente trabalho Ω_s como apresentado na Fig. 3.3). Seja $\hat{\mathbf{n}}$ o vetor normal a superfície externa de \mathcal{R} em \mathcal{S} , então o teorema do divergente define que para qualquer vetor \mathbf{F} definido em \mathcal{R} , como

$$\int_{\mathcal{R}} \nabla \cdot \mathbf{F} d\mathcal{R} = \int_{\mathcal{S}} \mathbf{F} \cdot \hat{\mathbf{n}} d\mathcal{S}$$
(3.26)

Pode-se definir o vetor \mathbf{F} como sendo²

$$\mathbf{F} = \mathcal{G}\left(\mathbf{x}\right)\hat{i} + 0\hat{j} + 0\hat{k} \tag{3.27}$$

onde $\hat{i}, \hat{j} \in \hat{k}$ são os vetores normais nas direções $x, y \in z$, respectivamente.

Portanto

$$\mathcal{G}\left(\mathbf{x}\right) = \int_{\kappa}^{\mathbf{x}} \mathcal{F} \mathrm{d}x \tag{3.28}$$

²O objetivo é encontrar **F** que satisfaça a equação $\nabla \cdot \mathbf{F} = \mathcal{F}$, sendo \mathcal{F} uma função polinomial escalar. Existe mais de uma solução para esta equação e pode ser escolhida qualquer um dos vetores **F** sem perda de generalidade. No exemplo e em Sudhakar et al. (2014) escolheu-se trabalhar com valores não nulos da componente x, mas poderia ter sido escolhido tanto y quanto z e os resultados seriam os mesmos.

onde κ é um ponto de referência sobre a linha de integração.

Substituindo as Eq. 3.26 e 3.27 em 3.28, tem-se

$$\int_{\mathcal{R}} \mathcal{F} d\mathcal{R} = \int_{\mathcal{S}} \mathcal{G}(\mathbf{x}) n_x d\mathcal{S}$$
(3.29)

onde n_x é a componente do vetor $\hat{\mathbf{n}}$ na direção x.

A integração no polígono "cortado" é, portanto, realizado da seguinte forma (a Fig. 3.6 mostra os passos necessários para integrar um polígono)

Tabela 3.1 – Algoritmo de integração no polígono

A 1 • /	T / ~	(1/)	. [1. 1]
Algoritmo	Integração em	<pre>{poligono</pre>	Elpoliedro
1 ingoi iumo	mogradao om	1 poingoino	ponouro

^{1:} Identificar e armazenar os {lados} [faces] do polígono "cortado";

- 2: Definir a {linha} [plano] de referência;
- 3: Excluir os {lados} [faces] que estejam sobre a {linha} [plano] de referência;
- 4: Distribuir os pontos principais de Gauss sobre cada {lado} [face] do polígono que possua a componente da normal diferente de zero;

5: Para cada ponto principal de Gauss sobre {lado} [face] projetar o vetor de coordenadas \mathbf{X}_i na {linha} [plano] de referência

- 5.1: Distribuir os pontos internos de Gauss entre \mathbf{X}_i e κ_i
- 5.2: Para cada ponto de Gauss interno $\boldsymbol{\chi}_{i}$ calcular $\mathcal{G}(\mathbf{X}_{i}) = \mathcal{G}(\mathbf{X}_{i}) + |\mathbf{J}|\mathcal{F}(\boldsymbol{\chi}_{i,j}) \mathbf{w}_{i,j}$, sendo $|\mathbf{J}|$ o Jacobiano da linha projetada;
- 6: Calcular $I_{\mathcal{R}} = I_{\mathcal{R}} + |\mathbf{J}|\mathcal{G}(\mathbf{X}_i) \mathbf{n}_x(\mathbf{X}_i) \mathbf{W}_i$, sendo $|\mathbf{J}|$ o Jacobiano do lado do polígono com componente normal diferente de zero.

Figura 3.6 – Passos necessários para integrar um polígono.

A seguir é apresentado um exemplo para melhor entendimento do método desenvolvido por Sudhakar et al. (2014).

Considere o polígono apresentado na Fig. 3.7 como resultado do "corte" entre a superfície molhada e a malha de elementos finitos. Utilizando-se da teoria apresentada anteriormente será calculada a área deste polígono.

Figura 3.7 – Polígono resultado do "corte" entre a superfície molhada e a malha de elementos finitos. Unidades: adimensional

Fonte: O autor

Primeiramente define-se a linha de referência. Esta linha de referência pode ser qualquer um dos lados do polígono, mas também pode ser uma linha que passe verticalmente no centro geométrico da seção. Esta linha é apresentada na Fig. 3.8.

Figura 3.8 – Linha de referência.

Exclui-se os lados do polígono que estejam sob a linha de referência definida no passo anterior. Como não há nenhum lado sob esta linha mantém-se o polígono na sua forma original. Distribuem-se os pontos de Gauss sobre cada lado do polígono onde sua componente normal seja diferente de zero (Fig. 3.9). Na teoria apresentada em Sudhakar et al. (2014) utilizou-se 4 pontos de Gauss³.

Figura 3.9 – Distribuição dos pontos de Gauss principais sobre os lados do polígono com componente normal diferente de zero.

Para cada ponto de Gauss principal projeta-se o vetor de coordenadas \mathbf{X}_i na linha de referência como apresentado na Fig. 3.10.

Figura 3.10 – Linhas projetadas sobre a linha de referência partindo de cada ponto de Gauss principal.

Esta nova linha projetada será a base para posicionamento dos pontos de Gauss internos. Distribuem-se nesta linha os pontos de Gauss internos, neste caso 3. A Fig. 3.11

³Os pontos de Gauss internos são utilizados para integrar \mathcal{F} e os pontos de Gauss principais são utilizados para integrar $\mathcal{G}(\mathbf{x})$. Como $\mathcal{G}(\mathbf{x})$ é calculado integrando \mathcal{F} , a ordem do polinômio de $\mathcal{G}(\mathbf{x})$ é acrescido de um. Portanto a ordem dos pontos de Gauss principais devem ser suficientes para integrar $\mathcal{G}(\mathbf{x})$. Para integrar um polinômio de ordem 5, foram utilizados 3 pontos de Gauss para os pontos internos e 4 para os pontos principais neste exemplo e em Sudhakar et al. (2014).

mostra os pontos de Gauss principais e internos posicionados sobre os lados do polígono com componente normal diferente de zero e sobre as linhas projetadas, respectivamente.

Figura 3.11 – Distribuição dos pontos de Gauss internos sobre a linha projetada.

Fonte: O autor

Para cada ponto de Gauss interno, calcula-se $\mathcal{G}(\mathbf{X}_i) = \mathcal{G}(\mathbf{X}_i) + |\mathbf{J}| \mathcal{F}(\boldsymbol{\chi}_{i,j}) \mathbf{w}_{i,j}$. A Fig. 3.12 mostra a numeração do ponto de Gauss principal 1 e os pontos de Gauss internos sobre a linha projetada. A Tab. 3.2 apresenta os resultados para este ponto de Gauss principal.

Figura 3.12 – Cálculo de $\mathcal{G}(\mathbf{X}_i)$ para o ponto de Gauss principal 1.

Tabela 3.2 – Cálculo do $\mathcal{G}(\mathbf{X}_i)$ para o ponto de Gauss principal 1.

Ponto de Gauss	Ponto de Gauss	$ \mathbf{J} $	$\mathbf{W}_{i,j}$	$ \mathbf{J} \mathcal{F}\left(oldsymbol{\chi}_{i,j} ight)\mathrm{w}_{i,j}$
Principal (i)	Interno (j)			
1	1	2.0732	0.5556	1.1518
	2	2.0732	0.8889	1.8428
	3	2.0732	0.5556	1.1518
			$\mathcal{G}\left(\mathbf{X}_{1} ight)$	4.1463

Calcula-se finalmente $I_{\mathcal{R}} = I_{\mathcal{R}} + |\mathbf{J}|\mathcal{G}(\mathbf{X}_i) \mathbf{n}_x(\mathbf{X}_i) \mathbf{W}_i$. A Tab. 3.3 apresenta os resultados para cada ponto e a área do polígono.

i	j	$ \mathbf{J} $	$\mathbf{w}_{i,j}$	$ \mathbf{J} \mathcal{F}\left(oldsymbol{\chi}_{i,j} ight)\mathrm{w}_{i,j}$	$ \mathbf{J} $	$n_x(\mathbf{X}_i)$	\mathbf{W}_i	$ \mathbf{J} \mathcal{G}(\mathbf{X}_{i}) \mathbf{n}_{x}(\mathbf{X}_{i}) \mathbf{W}_{i}$
1	1	2.0732	0.5556	1.1518				
	2	2.0732	0.8889	1.8428				
	3	2.0732	0.5556	1.1518				
			$\mathcal{G}\left(\mathbf{X}_{1} ight)$	4.1463	1.7196	0.3479	1.0000	2.4802
2	1	2.0732	0.5556	1.1518				
	2	2.0732	0.8889	1.8428				
	3	2.0732	0.5556	1.1518				
			$\mathcal{G}\left(\mathbf{X}_{2} ight)$	4.1463	1.7196	0.6521	1.0000	4.6498
3	1	2.0732	0.5556	1.1518				
	2	2.0732	0.8889	1.8428				
	3	2.0732	0.5556	1.1518				
			$\mathcal{G}\left(\mathbf{X}_{3} ight)$	4.1463	1.7196	0.6521	1.0000	4.6498
4	1	2.0732	0.5556	1.1518				
	2	2.0732	0.8889	1.8428				
	3	2.0732	0.5556	1.1518				
			$\mathcal{G}\left(\mathbf{X}_{4} ight)$	4.1463	1.7196	0.3479	1.0000	2.4802
5	1	1.9830	0.5556	1.1017				
	2	1.9830	0.8889	1.7627				
	3	1.9830	0.5556	1.1017				
			$\mathcal{G}\left(\mathbf{X}_{5} ight)$	3.9660	1.5000	0.3479	0.5000	1.0347
6	1	1.6445	0.5556	0.9136				
	2	1.6445	0.8889	1.4617				
	3	1.6445	0.5556	0.9136				
			$\mathcal{G}\left(\mathbf{X}_{6} ight)$	3.2889	1.5000	0.6521	0.5000	1.6086
7	1	1.2028	0.5556	0.6682				
	2	1.2028	0.8889	1.0692				
	3	1.2028	0.5556	0.6682				
		1	$\mathcal{G}\left(\mathbf{X}_{7} ight)$	2.4056	1.5000	0.6521	0.5000	1.1766
8	1	0.8643	0.5556	0.4802				
	2	0.8643	0.8889	0.7683				
	3	0.8643	0.5556	0.4802				
			$\mathcal{G}\left(\mathbf{X}_{8} ight)$	1.7286	1.5000	0.3479	0.5000	0.4510
9	1	2.0491	0.5556	1.1384				
	2	2.0491	0.8889	1.8214				
	3	2.0491	0.5556	1.1384				
		1	$\mathcal{G}\left(\mathbf{X}_{9} ight)$	4.0981	2.0000	0.3479	0.9848	2.8078
10	1	1.9586	0.5556	1.0881				
	2	1.9586	0.8889	1.7409				
	3	1.9586	0.5556	1.0881				
			$\mathcal{G}\left(\mathbf{X}_{10} ight)$	3.9171	2.0000	0.6521	0.9848	5.0314

Tabela 3.3 – Cálculo de $I_{\mathcal{R}}$ para o polígono.

i	j	$ \mathbf{J} $	$\mathbf{W}_{i,j}$	$ \mathbf{J} \mathcal{F}\left(oldsymbol{\chi}_{i,j} ight)\mathrm{w}_{i,j}$	$ \mathbf{J} $	$n_x(\mathbf{X}_i)$	\mathbf{W}_i	$ \mathbf{J} \mathcal{G}\left(\mathbf{X}_{i} ight)\mathrm{n}_{x}\left(\mathbf{X}_{i} ight)\mathrm{W}_{i}$
11	1	1.8405	0.5556	1.0225				
	2	1.8405	0.8889	1.6360				
	3	1.8405	0.5556	1.0225				
-			$\mathcal{G}\left(\mathbf{X}_{11} ight)$	3.6810	2.0000	0.6521	0.9848	4.7281
12	1	1.7500	0.5556	0.9722				
	2	1.7500	0.8889	1.5556				
	3	1.7500	0.5556	0.9722				
-			$\mathcal{G}\left(\mathbf{X}_{12} ight)$	3.5000	2.0000	0.3479	0.9848	2.3980
13	1	1.2673	0.5556	0.7040				
	2	1.2673	0.8889	1.1264				
	3	1.2673	0.5556	0.7040				
			$\mathcal{G}\left(\mathbf{X}_{13} ight)$	2.5345	1.0000	0.3479	0.5000	0.4408
14	1	1.4930	0.5556	0.8294				
	2	1.4930	0.8889	1.3271				
	3	1.4930	0.5556	0.8294				
			$\mathcal{G}\left(\mathbf{X}_{14} ight)$	2.9859	1.0000	0.6521	0.5000	0.9736
15	1	1.7874	0.5556	0.9930				
	2	1.7874	0.8889	1.5888				
	3	1.7874	0.5556	0.9930				
			$\mathcal{G}\left(\mathbf{X}_{15} ight)$	3.5747	1.0000	0.6521	0.5000	1.1656
16	1	2.0131	0.5556	1.1184				
	2	2.0131	0.8889	1.7894				
	3	2.0131	0.5556	1.1184				
			$\mathcal{G}\left(\mathbf{X}_{16} ight)$	4.0261	1.0000	0.3479	0.5000	0.7002
							$I_{\mathcal{R}}$	36.7764
								Conclusão

Tabela 3.3 – Cálculo de $I_{\mathcal{R}}$ para o polígono.

Como base de verificação do algoritmo desenvolvido, utilizou-se a ferramenta MASSPROP do software comercial Autodesk AutoCAD 2016[®] para comparar a área com a integração calculada para o polígono. A Fig. 3.13 mostra a janela com o resultado.

Figura 3.13 – Resultado do software comercial Autodesk AutoCAD 2016[®].

Fonte: O autor

3.10 Conservação de massa nos métodos de Fronteiras Imersas

Os métodos de Fronteiras Imersas são muito versáteis para a simulação de escoamentos em torno de estruturas que se movimentam e deformam com formas geometricamente complexas. Uma propriedade indesejável dos métodos de fronteiras imersas que tem sido reportados por pesquisadores é a oscilação temporal dos campos de pressão. Estas oscilações são observadas virtualmente para todos os tipos de fronteiras imersas. A maior fonte de erro destas oscilações é devido ao fato que alguns nós da malha ou são "gerados" com o tempo (nós do domínio do fluido que estavam no interior da estrutura, mas com o movimento e deformação desta estrutura, eles "aparecem") ou "desaparecem" com o tempo (nós do domínio do fluido que estavam fora da estrutura, mas com o tempo (nós do domínio do fluido que estavam fora da estrutura, mas com o tempo (nós do domínio do fluido que estavam fora da estrutura, mas com o movimento e deformação desta estrutura, eles "aparecem") ou "desaparecem" com o tempo (nós do domínio do fluido que estavam fora da estrutura, mas com o movimento e deformação desta estrutura, eles passam a estar no interior da estrutura) (SEO; MITTAL, 2011).

As teorias para garantir a conservação de massa baseiam-se principalmente nas leis de conservação geométricas (LESOINNE; FARHAT, 1996). Em Seo e Mittal (2011) é discutido com profundidade este tema e é apresentada uma solução para diminuir estas oscilações utilizando o método *cut-cell* aplicado ao método das diferenças finitas e volumes finitos, mas expansível ao Método dos Elementos Finitos. A Fig. 3.14 mostra o coeficiente de arrasto para um cilindro circular oscilante no tempo, em (a) diferentes resoluções de malha para o mesmo intervalo de tempo $\Delta_t = 0.002$ e em (b) para a mesma resolução de malha e diferentes intervalos de tempo. A linha sólida: método da diferença finita original e a linha traço-ponto: resultado do trabalho apresentado no artigo.

Figura 3.14 – Coeficiente de arrasto para um cilindro circular oscilante no tempo.

A Fig. 3.15 apresenta os resultados do método para redução das oscilações da pressão com o tempo.

Figura 3.15 – Oscilações na pressão com o tempo e a solução apresentada no artigo.

Fonte: (SEO; MITTAL, 2011)

Outra forma discutida em Ilinca e Hetu (2010) utiliza a condensação estática de forma a eliminar os graus de liberdade da pressão definidos nos nós da intersecção entre a interface a malha de fluidos. A Fig. 3.16 mostra os nós gerados na interface quando da intersecção entre a estrutura e a malha de fluido e que são eliminados utilizando as condições de contorno de Dirichlet para a velocidade e a condensação estática para a pressão.

Figura 3.16 – Nós gerados na interface quando da intersecção entre a estrutura e a malha de fluido eliminados utilizando as condições de contorno de Dirichlet para a velocidade e a condensação estática para a pressão.

A conservação de massa nos métodos de fronteiras imersas é amplamente discutida pela comunidade científica e diversas abordagens são utilizadas. Neste trabalho não foi implementada a conservação de massa sendo uma melhoria a ser analisada em trabalhos futuros.

4 RISERS

Uma das simulações numéricas realizadas neste trabalho é a interação fluidoestrutura entre um *riser* (com contatos entre o fundo do oceano e a própria estrutura), e a malha de elementos de fluido simulando a corrente do mar. Este capítulo demonstrará os principais tópicos da teoria para melhor entendimento dos exemplos deste trabalho. A teoria completa para o modelo de vigas 3D cinematicamente exatas pode ser encontrada em Gay Neto et al. (2013).

4.1 Modelo de vigas 3D cinematicamente exatas

Os *riser*s podem ser considerados como vigas longas, como por exemplo os cabos umbilicais, tubos flexíveis ou rígidos e mangueiras, imersos no oceano, suspensos desde o fundo até as unidades flutuantes, como pode ser visto na Fig. 4.1 (Gay Neto et al., 2013). Estes tubos rígidos ou flexíveis ou cabos umbilicais submersos possuem vínculos fixos nas duas extremidades (fundo do oceano e unidade flutuante). Eles estão sujeitos a carregamentos como por exemplo o peso próprio da estrutura, efeitos inerciais, arrastamento pela corrente do mar, como também excitações sofridas pelas ondas.

Figura 4.1 – Diferentes concepções de configurações dos *risers* (a) vertical, (b) catenária (c) *Steep-wave* (d) *Lazy-wave* (Gay Neto et al., 2013)

4.1.1 Premissas do modelo

Um modelo de vigas de Timoshenko é assumido para representar a estrutura 3D do *riser*. Portanto é possível considerar tensões, compressões e carregamentos cisalhantes, como também momentos fletores e de torção.

4.1.2 Parametrização de rotações

Os parâmetros de Rodrigues foram escolhidos para escrever o tensor de rotação (\mathbf{Q}) na teoria encontrada em Gay Neto et al. (2013). Entretanto, a interpretação física

deste tensor não é trivial sendo interessante apresentar os parâmetros de Euler para a rotação e compará-los. O ângulo de rotação de Euler θ é utilizado para construir o vetor rotação $\boldsymbol{\theta} = \theta \boldsymbol{e}$, onde \boldsymbol{e} é o vetor unitário e representa o eixo de rotação.

É possível obter a seguinte expressão para o tensor rotação utilizando os parâmetros de Rodrigues da seguinte forma

$$\boldsymbol{Q} = \boldsymbol{I} + \frac{4}{4+\alpha^2} \left(\boldsymbol{A} + \frac{1}{2} \boldsymbol{A}^2 \right)$$
(4.1)

onde:

- $\boldsymbol{A} = \operatorname{skew}(\boldsymbol{\alpha});$
- α : Vetor de rotação de Rodrigues, definido por $\alpha = \alpha e \operatorname{com} \alpha = 2 \tan(\theta/2)$.

A velocidade angular utilizando os parâmetros de Rodrigues é:

$$\boldsymbol{\omega} = \boldsymbol{\Xi} \dot{\boldsymbol{\alpha}} \tag{4.2}$$

onde

$$\boldsymbol{\Xi} = \frac{4}{4+\alpha^2} \left(\boldsymbol{I} + \frac{1}{2} \boldsymbol{A} \right) \tag{4.3}$$

A aceleração angular pode ser definida como

$$\dot{\boldsymbol{\omega}} = \dot{\boldsymbol{\Xi}} \dot{\boldsymbol{\alpha}} + \boldsymbol{\Xi} \ddot{\boldsymbol{\alpha}} \tag{4.4}$$

onde

$$\dot{\mathbf{\Xi}} = -\frac{1}{2} \frac{4}{4 + \alpha^2} \left[(\boldsymbol{\alpha} \cdot \dot{\boldsymbol{\alpha}}) \, \mathbf{\Xi} - \dot{\boldsymbol{A}} \right] \tag{4.5}$$

4.1.3 Cinemática da viga

Para permitir deslocamentos e rotações ilimitadas, abrangendo uma ordem maior de problemas, como por exemplo a formação de *loops* nos *risers*, a formulação cinematicamente exata mostrou ser a forma mais eficiente e natural para atingir este objetivo. Dependendo da magnitude das rotações é necessário utilizar uma descrição lagrangiana atualizada devido às singularidades presentes no tensor rotação associado a alguns valores dos parâmetros de Rodrigues (ou Euler). A Fig. 4.2 mostra esta descrição.

Figura 4.2 – Formulação de vigas utilizando uma descrição lagrangiana atualizada (Gay Neto et al., 2013).

onde

- $\boldsymbol{\zeta}$ é o vetor posição do ponto \boldsymbol{A} , definido pela intersecção entre o eixo da viga e a seção transversal que está sendo analisada (em sua configuração de referência);
- $\boldsymbol{\xi}$ é o vetor posição de um ponto genérico da seção transversal considerada da viga em sua configuração de referência;
- a^r é a diferença entre os vetores $\boldsymbol{\xi} \in \boldsymbol{\zeta}$. Após o movimento da estrutura se transforma em a^i na configuração "i" e a^{i+1} na configuração "i + 1";
- zⁱ e zⁱ⁺¹ são os vetores posição dos pontos Bⁱ e Bⁱ⁺¹, definidos pela interseção entre o eixo da viga e a seção transversal que está sendo analisada, respectivamente nas configurações "i" e "i + 1";
- $\boldsymbol{x}^i \in \boldsymbol{x}^{i+1}$ são os vetores posição de um ponto genérico da seção transversal considerada da viga, respectivamente nas configurações "i" e "i + 1";
- u^{Δ} é o vetor deslocamento que vai do ponto B^{i} até o ponto B^{i+1} , origem dos referenciais locais "i" e "i + 1", respectivamente;

A relação entre os vetores $\boldsymbol{a}^r \in \boldsymbol{a}^i$ pode ser definida utilizando-se do tensor rotação \boldsymbol{Q}^i como $\boldsymbol{a}^i = \boldsymbol{Q}^i \boldsymbol{a}^r$, e a relação entre os vetores $\boldsymbol{a}^i \in \boldsymbol{a}^{i+1}$ pode ser definida utilizando-se do tensor \boldsymbol{Q}^{Δ} como $\boldsymbol{a}^{i+1} = \boldsymbol{Q}^{\Delta} \boldsymbol{a}^i$. Portanto é possível escrever uma relação que compõem sucessivas rotações, da seguinte forma

$$\boldsymbol{Q}^{i+1} = \boldsymbol{Q}^{\Delta} \boldsymbol{Q}^i \tag{4.6}$$

4.1.4 Deformações

As deformações podem ser definidas pelo vetor deformação translacional e pelo vetor rotação específico retro-rotacionados como:

$$\boldsymbol{\eta}^{i+i^r} = \boldsymbol{Q}^{i+1^\mathsf{T}} \boldsymbol{z}^{i+1'} - \boldsymbol{e}_3^r \tag{4.7}$$

$$\boldsymbol{\kappa}^{i+1^{r}} = \boldsymbol{Q}^{i^{\mathsf{T}}} \boldsymbol{\Xi}^{\Delta^{\mathsf{T}}} \boldsymbol{\alpha}^{\Delta'} + \boldsymbol{\kappa}^{i^{r}}$$
(4.8)

O vetor de deformação retro-rotacionado generalizado é definido por

$$\boldsymbol{\epsilon}^{i+1^r} = \begin{bmatrix} \boldsymbol{\eta}^{i+1^r} \\ \boldsymbol{\kappa}^{i+1^r} \end{bmatrix}$$
(4.9)

O desenvolvimento matemático destas equações pode ser encontrado em Gay Neto et al. (2013).

4.1.5 Tensões

A descrição das tensões em um modelo de vigas é feito utilizando-se do primeiro tensor de Piola-Kirchhoff de forma a escrever tudo na configuração de referência.

Os vetores de carregamento interno são dados por

$$\boldsymbol{n}^{i} = V_{1}^{i} \boldsymbol{e}_{1}^{i} + V_{2}^{i} \boldsymbol{e}_{2}^{i} + N_{3}^{i} \boldsymbol{e}_{3}^{i}$$

$$(4.10)$$

$$\boldsymbol{m}^{i} = M_{1}^{i} \boldsymbol{e}_{1}^{i} + M_{2}^{i} \boldsymbol{e}_{2}^{i} + T_{3}^{i} \boldsymbol{e}_{3}^{i}$$

$$(4.11)$$

onde os vetores $n^i \in m^i$ representam as forças resultantes internas atuando em uma dada seção transversal no instante "*i*" e o momento gerado pelo sistema de forças internas em uma dada seção transversal no mesmo instante, respectivamente.

Portanto o vetor de tensões generalizados é definido por

$$\boldsymbol{\sigma}^{i^{r}} = \begin{bmatrix} \boldsymbol{Q}^{i^{\mathsf{T}}} \boldsymbol{n}^{i} \\ \boldsymbol{Q}^{i^{\mathsf{T}}} \boldsymbol{m}^{i} \end{bmatrix}$$
(4.12)

Desejando-se retro-rotacionar, os vetores tornam-se

$$\boldsymbol{n}^{i^{r}} = \boldsymbol{Q}^{i^{T}} \boldsymbol{n}^{i} = V_{1}^{i} \boldsymbol{e}_{1}^{r} + V_{2}^{i} \boldsymbol{e}_{2}^{r} + N_{3}^{i} \boldsymbol{e}_{3}^{r}$$
(4.13)

$$\boldsymbol{m}^{i^{r}} = \boldsymbol{Q}^{i^{T}} \boldsymbol{m}^{i} = M_{1}^{i} \boldsymbol{e}_{1}^{r} + M_{2}^{i} \boldsymbol{e}_{2}^{r} + T_{3}^{i} \boldsymbol{e}_{3}^{r}$$
 (4.14)

(4.15)

4.1.6 Contato

A cinemática de contato foi desenvolvida utilizando uma descrição *master-slave*. O fundo do oceano é considerado como a superfície *master*. Os nós dos elementos finitos do *riser* utilizados na discretização do modelo de vigas são considerados como *slave points*.

A teoria completa desenvolvida para a descrição do modelo de contato pode ser encontrada em Gay Neto et al. (2013).

5 IMPLEMENTAÇÃO COMPUTACIONAL

Este capítulo apresenta a implementação computacional do *software* desenvolvido neste trabalho, junto com uma apresentação da arquitetura, as classes UML (*Unified Modeling Language*) e os respectivos diagramas de sequência. Em Fowler (2004) pode-se encontrar uma referência completa sobre UML.

5.1 Arquitetura

A arquitetura do *software* foi dividida em cinco pacotes como mostra a Fig. 5.1. O pacote *FEM_CUDA* foi criado para utilizar a plataforma de computação paralela CUDA quando o computador ou servidor que estiver executando o *software* possua uma placa de vídeo com GPU da NVIDIA. Neste trabalho somente a resolução dos problemas de dinâmica dos fluidos e interação fluido-estrutura utilizou a linguagem CUDA, mas pode ser facilmente estendido para a resolução de problemas estruturais.

Fonte: O autor

Desta forma pode-se separar o código-fonte em módulos reutilizáveis facilitando a extensão para novas funcionalidades, como por exemplo, dinâmica estrutural (um pacote ou módulo como extensão de *FEM_Structural*) ou turbulência (um pacote ou módulo como extensão de *FEM_CFD*), entre outros.

5.1.1 Diagrama de classes UML

Esta seção apresenta os diagramas de classes UML utilizados na arquitetura separados pelos diferentes pacotes (FEM_Core , $FEM_Structural$, FEM_CFD e FEM_FSI).

5.1.1.1 Pacote FEM_Core

Este pacote armazena as principais classes da arquitetura. Estas classes são chamadas de *cross classes*, ou seja, classes que são utilizadas por toda a arquitetura e normalmente são definidas como classes abstratas¹ ou possuem métodos virtuais².

As seguintes classes pertencem ao pacote *FEM_Core*:

• *Coordinates*: Esta classe é responsável por armazenar as coordenadas dos nós da malha de elementos finitos (Fig. 5.2).

Coord Class	linates	*
🗄 Fiel	ds	
⊟ Met	thods	
Ø	~Coordinates	
Ø	Coordinates (+ 1 overload)	
Ø	get_x	
Ø	get_y	
Ø	get_z	
Ø	getCoordinatesVector	
Ø	set_x	
Ø	set_y	
Ø	set_z	

Figura 5.2 – Classe Coordinates.

Fonte: O autor

 Node: Esta classe é responsável por armazenar os nós da malha de elementos finitos (Fig. 5.3). Os graus de liberdade da estrutura, tanto local quanto global, também são armazenados nesta classe.

 $^{^{1}}$ As classes abstratas são classes que não podem ser instanciadas, somente herdadas, sendo necessário que as classes filhas sobrescrevam os métodos da classe pai.

 $^{^{2}}$ Os métodos virtuais são métodos que podem ser sobrescritos pelas classes filhas.

Node Class	*
± Fiel	ds
⊟ Me	thods
Φ	~Node
Q	deactivateNode
Ø	getConcentratedLoad
Ø	getCoordinates
Ø	getDOFMaps
Ø	getNodeDomain
Ø	getNodeld
Ø	getNumberNode
Ø	isActivated
Ø	isNodeInterface
Ø	Node (+ 3 overloads)
Ø	reinitialize
Ø	setConcentratedLoad
Ø	setCoordinates
Ø	setNodeDomain
Ø	setNodeld
Ø	setNodeInterface
Ø	setNumberNode

Figura 5.3 – Classe Node.

Fonte: O autor

• *NodeSupport*: Esta classe é responsável por definir as restrições aplicadas ao nó da malha de elementos finitos (Fig. 5.3), equivalente às condições de contorno de *Dirichlet*.

Figura 5.4 – Classe NoaeSuppor	Figura	5.4 -	Classe	NodeSuppor	t
--------------------------------	--------	-------	--------	------------	---

Node Class	Support 🔦
± Fiel	ds
⊟ Me	thods
Ø	~NodeSupport
Ø	get_dx
Ø	get_dy
Ø	get_dz
Ø	get_rx
Ø	get_ry
Ø	get_rz
Ø	getNodeSupportVector
Ø	NodeSupport (+ 1 overload)

Fonte: O autor

Edge: Esta classe é responsável por armazenar os lados³ do elemento finito (Fig. 5.5).
 Esta classe também é responsável por armazenar os nós de intersecção entre a superfície molhada e a malha de fluido, e os pontos de Gauss para a integração no polígono como apresentado em capítulos anteriores.

 $^{^{3}\}mathrm{Para}$ as barras, a classe Edge armazena o próprio elemento finito. No caso de elementos bidimensionais, a classe Edge armazena os lados do elemento. Para elementos tridimensionais, a classe Edge armazena os lados das faces do elemento.

Figura 5.5 – Classe *Edge*.

Fonte: O autor

 Face: Esta classe é responsável por armazenar as faces do elemento finito (Fig. 5.6). Da mesma forma que a classe Edge, esta classe também é responsável por armazenar os nós de intersecção entre a superfície molhada e a malha de fluido, e os pontos de Gauss para a integração no polígono como apresentado em capítulos anteriores.

Figura 5.6 – Classe Face.

Fonte: O autor

Mesh: Esta classe é responsável por armazenar o elemento finito (Fig. 5.7). É a classe mais importante do pacote FEM_Core pois realiza os principais cálculos pelo método dos elementos finitos, como as funções de forma, suas derivadas, o Jacobiano da transformação quando utiliza-se elementos finitos isoparamétricos, como também é responsável pela contribuição local do elemento na matriz global da estrutura.

Figura 5.7 – Classe Mesh.

(~
Mesh		~
Class		
🗄 Field	ds	
🗆 Met	hods	
0	~ Mesh	
ă	addEdge	
ě	addEace	
ă	addField	
ø	addNode	
Ø,	calculate B	
Ø,	calculate divN	
Ø	calculate f b e int	
Ø	calculate_f_e	
Ø	calculate_F_e	
Ø	calculate_f_t_e_int	
Φ,	calculate_J_	
Ø	calculate_k_e_int	
Ø	calculate_m_e_int	
```@_	calculate_N_ (+ 1 overload)	
୍ଦ୍	calculate_NDerivatives_	
Φ,	${\tt calculate_NDerivativesTransformed_}$	
Ø	DOFLocalNumbering	
Ø	get_f_b_e	
Ø	get_F_e	
Ø	get_f_t_e	
Ø	get_k_e	
Ŷ	get_m_e	
8	getCornerNodes	
9	getEdge	
Å	getEages	
Ř	getrace	
ă	getraces	
Ø	getMeshld	
Ø	getMeshType	
Ø	getNodes	
Ø	getNumberDimensions	
Ø	getNumberNodes (+ 1 overload)	
Ø	getThickness	
Ø	initialize	
Ø	initializeMatrix	
Ø	isCornerNode	
Ø	isFSIAnalysis	
Ø	Mesh	
Ø	set_f_b_e	
Ø	set_F_e	
φ	set_f_t_e	
Ø	set_k_e	
Q	set_m_e	
Q	setFields	
Q	setFSIAnalysis	
Ŷ	setWeshid	
0	setThickness	
( ^w	SecondCKness	

Fonte: O autor

• *Material*: Esta classe é responsável por armazenar o material do elemento finito (Fig. 5.8). As classes dos pacotes *FEM_Strutural* e *FEM_CFD* herdam esta classe para especializá-las para os materiais estruturais e de fluido.

Mate Class	rial 🛸
🗄 Fiel	ds
🗏 Me	thods
Ø	~Material
Ø	calculate_C
Ø	Material
Ø	setNumberDimensions

Figura 5.8 – Classe Material.

Fonte: O autor

• *ConcentratedLoad*: Esta classe é responsável por armazenar a força concentrada aplicada ao nó da malha de elementos finitos (Fig. 5.9).

Class	entratedLoad 😞
🗄 Fiel	ds
⊟ Me	thods
Ø	~ConcentratedLoad
Ø	ConcentratedLoad (+ 1 overload)
Ø	get_F_x
Ø	get_F_y
Ø	get_F_z
Ø	get_M_x
Ø	get_M_y
Ø	get_M_z
Ø	getConcentratedLoadVector

Figura 5.9 – Classe ConcentratedLoad.

Fonte: O autor

• *Surface Traction*: Esta classe é responsável por armazenar a força distribuída aplicada a um lado ou a uma face de um elemento finito (Fig. 5.10).

Surfa Class	ceTraction 🔦	
Methods		
Ø	~SurfaceTraction	
Ø	get_t1_x	
Ø	get_t1_y	
Ø	get_t1_z	
Ø	get_t2_x	
Ø	get_t2_y	
Ø	get_t2_z	
Ø	getSurfaceTractionVector	
Ø	SurfaceTraction (+ 1 overload)	

Figura 5.10 – Classe SurfaceTraction.

Fonte: O autor

• *BodyForce*: Esta classe é responsável por armazenar a força de campo aplicada a um elemento finito (Fig. 5.11).



Body Class	Force 🔦
Fields	
□ Methods	
Ø	~BodyForce
Ø	BodyForce (+ 1 overload)
Ø	get_b_x
Ø	get_b_y
Ø	get_b_z
Ø	getBodyForceVector

Fonte: O autor

• *DOFMap*: Esta classe é responsável por mapear os graus de liberdade locais para os graus de liberdade globais da estrutura (Fig. 5.12).
DOFN Class	Map ♠
± Fiel	ds
⊟ Me	thods
Ø	~DOFMap
Ø	DOFMap (+ 2 overloads)
Ø	getDOFGlobalNumber
Ø	getDOFLocalNumber
Ø	getDOFType
Ø	getDOFValue
Ø	getField
Ø	hasField
Ø	setDOFGlobalNumber
Ø	setDOFLocalNumber
Ø	setDOFType
Ø	setDOFValue

Figura 5.12 – Classe DOFMap.

Fonte: O autor

 Field: Esta classe é responsável por armazenar os diversos campos⁴ que estão atuando em um elemento finito (Fig. 5.13). No caso do CFD, como utiliza-se elementos finitos mistos é necessário diferenciar o mesmo nó de um elemento como ele sendo um nó que possui informações de velocidade como também de pressão (Cap. 3).

Figura	5.13	- Classe	Field
--------	------	----------	-------

Field Class	*
🗄 Fiel	ds
⊟ Me	thods
Φ	~Field
Ø	Field (+ 1 overload)
Ø	getField
Q	getFieldGroup
Ø	getNumberField

Fonte: O autor

• *GaussPoint*: Esta classe é responsável por armazenar os pontos de Gauss utilizados na integração no polígono como apresentado em capítulos anteriores (Fig. 5.14).

 $^{^4\}mathrm{Estes}$  campos podem ser tanto escalares como vetoriais.

Figura 5.14 – Classe GaussPoint.

Gause Class	sPoint 🔌
🗄 Fiel	ds
🗆 Me	thods
Ø	~GaussPoint
Ø	GaussPoint
Ø	getCoordinates
Ø	getWeight

Fonte: O autor

• NumericalIntegration: Esta classe é responsável por realizar a integração numérica utilizada pelo método dos elementos finitos (Fig. 5.15). Pode ser herdada e especializada para realizar não somente integração utilizando as quadraturas de Gauss como também outras quadraturas ou mesmo outros métodos de integração.

 $\label{eq:Figura} Figura~5.15-Classe~Numerical Integration.$ 

Num Templa	ericalIntegration <t></t>
🗄 Fiel	ds
⊟ Me	thods
Ŷ	~NumericalIntegration
Ø	getIntegrationOrder_ETA
Ø	getIntegrationOrder_XSI
Ø	getIntegrationOrder_ZETA
Ø	getIntegrationRules
Ø	integrateEdge
Ø	integrateFace
Ø	integrateMesh
Φ	integratePolygon
Ø	integrateValue
Ø	NumericalIntegration

Fonte: O autor

• *GaussIntegration*: Esta classe é responsável por realizar a integração numérica utilizando a quadratura de Gauss (Fig. 5.16 e 5.17). Esta classe herda a classe pai *NumericalIntegration*.

Figura 5.16 – Classe GaussIntegration.



Fonte: O autor

Figura 5.17 – Hierarquia da classe GaussIntegration.



Fonte: O autor

 NeutralFile: Esta classe é responsável por realizar a leitura do arquivo neutro onde são definidas as configurações de execução (coordenadas dos nós, elementos finitos, tipo de execução, entre outras) (Fig. 5.18). No Apêndice B é apresentado um arquivo neutro como exemplo e uma explicação de cada seção deste arquivo.

Neuti Templa	ralFile < T > 3 ite Class	*
± Fiel	ds	
⊟ Met	thods	
☐	~NeutralFile addField_ addNodeDOFMap_ createAnalysisType_ createIntegration_ createIntegration_ createMaterial_ createMaterial_ createMode_ createNode_ createThickness_ DOFLocalNumbering_ getNode_ getNumericalIntegration getThickness_ NeutralFile readFile readFile readParams_ setEquation_ setIO_ setNodalForce_ setNodeDOFTypes_ setPrescribedValue_ setSpaceDimensions_ cetTimeIntegration	
@_	setTimeIntegrationMethod_	
© _∗ ⊞ Nor	setTimeRecorder_	
ives	sted types	

Figura 5.18 – Classe NeutralFile.

Fonte: O autor

• *FEM*: Esta classe é responsável por realizar o cálculo pelo método dos elementos finitos tanto linear como não-linear (Fig. 5.19).

Figura	5.19	– Classe	FEM.

_		_
FEM < Templa	T> te Class	*
🗄 Field	ds	
🗆 Met	hods	
0	EEM	
Å	addEiald	
ă	addMech	
ă	addNode	
ă	assembly F	
0	assembly K	
Ø	assembly M	
Ø,	assemblyGlobalMatrix	
Ø,	assemblyGlobalVector	
Ø,	assemblyPrescribedValues	
Ø	DOFGlobalNumbering	
Ø	FEM	
Ø	findNodeByCoordinates	
Ø	get_DELTA_t	
Ø	getMeshes	
Ø	getNodes	
Ø	getNumberDimensions	
Ø	getNumberDOF	
Ø	getNumberFreeDOF	
Ø	getNumberPrescribedDOF	
Ø	getTEnd	
Ø	getTimeStep	
Ø	getTStart	
Ø	initialize	
Ø	isFSIAnalysis	
Ø	set_ALPHA	
Ø	set_BETA	
Ø	set_DELTA_t	
Ø	set_GAMMA	
Ŷ	setAnalysisType	
9	setError	
Q A	setErrorTolerance	
Ŷ	setFSIAnalysis	
l 炎	setIO	
^o	setNumberDimensions	
e e	setNumberDOF	
, where the second seco	setNumberFreeDOF	
0	setTend	
6	setTimeIntegrationMathed	
e e	setTimeRecorder	
Ř	setTimeSten	
õ	setTStart	
ő	solve	
Ø.	update U Values	
(*	space_o_values_	

Fonte: O autor

 IOBase: Esta classe é responsável por salvar os resultados para pós-processamento em um formato adequado (Fig. 5.20). Neste trabalho dois formatos foram utilizados, um formato pré-definido pelo GiD (MELENDO et al., 2015) a ser utilizado pelo seu pós-processador, de mesmo nome, e um outro formato pré-definido pelo VTK (SCHROEDER et al., 2006) para ser visualizado no pós-processador ParaView (AHRENS et al., 2005).



IOBas Templa	se <t></t>
🗄 Fiel	ds
🗆 Me	thods
Ø	~IOBase
Ø	IOBase (+ 1 overload)
Ø	printResults
Ø	setOutputResultsFile

Fonte: O autor

### 5.1.1.2 Pacote FEM_Structural

Este pacote possui as classes responsáveis pela análise pelo método dos elementos finitos de uma estrutura qualquer. Elas herdam algumas classes do pacote ou módulo *FEM_Core* e sobrescrevem seus métodos especializando-os.

No caso da interação fluido-estrutura pelo método das Fronteiras Imersas, o pacote  $FEM_Structural$  é responsável por armazenar informações como a superfície molhada e o polígono de intersecção, resultado da intersecção entre a estrutura e a malha de fluido, entre outras.

As seguintes classes pertencem ao pacote *FEM_Structural*:

• *MaterialIsotropic* e *MaterialNeoHookean*: Estas classes são responsáveis por armazenar os materiais isotrópicos e neo-hookeanos de uma estrutura (Fig. 5.21). Elas herdam a classe pai *Material* do pacote *FEM_Core*.

Materiallsotropic Class → Material	MaterialNeoHookean Class → Material
± Fields	⊕ Fields
□ Methods	Methods
<ul> <li>         ~Materiallsotropic         <ul> <li>calculate_C</li> <li>get_E</li> <li>get_NI</li> <li>Materiallsotropic (+ 1 overload)</li> </ul> </li> </ul>	<ul> <li>~MaterialNeoHookean</li> <li>calculate_C</li> <li>get_E</li> <li>get_NI</li> <li>MaterialNeoHookean (+ 1 overload)</li> </ul>

Figura 5.21 – Classes MaterialIsotropic e MaterialNeoHookean.



• *MeshStructural*: Esta classe é responsável por armazenar o elemento finito de uma estrutura (Fig. 5.22). Esta classe herda a classe pai *Mesh* do pacote *FEM_Core*.

Mesh Class → Mes	Structural 🛸
🗄 Fiel	ds
⊟ Me	thods
Ø	~MeshStructural
Ø	addNumericalIntegration
Φ,	calculate_B_
Ø	calculate_f_b_e_int
Ø	calculate_f_e
Φ	calculate_F_e
Ø	calculate_f_t_e_int
Ø	calculate_k_e_int
Ø	calculate_k_t_e_int
Ø	calculate_m_e_int
Ø	calculate_r_int_e_int
Ø	get_k_t_e
Ø	get_r_int_e
Ø	getMaterial
Ø	getNumericalIntegration
Ø	getNumericalIntegrations
Ø	initializeMatrix
Ø	MeshStructural
Ø	set_k_t_e
Ø	set_m_e
Ø	set_r_int_e
Ø	setMaterial
Ø	setNumericalIntegrations

Figura 5.22 – Classe MeshStructural.

Fonte: O autor

MeshT3, MeshQ4, MeshQ9, MeshTet10 e MeshHex27: Estas classes são responsáveis por armazenar elementos finitos de uma estrutura dos tipos, triangular de 3 nós, quadrangular de 4 e de 9 nós, tetraédrico de 10 nós e hexaédrico de 27 nós (Fig. 5.23 e 5.24). Elas herdam a classe pai MeshStructural.



Figura 5.23 - Classes MeshT3, MeshQ4, MeshQ9, MeshTet10 e MeshHex27.

Figura 5.24 – Hierarquia de classes dos diferentes elementos finitos de uma estrutura.





 WetSurface: Esta classe é responsável por armazenar a superfície molhada da estrutura, como resultado da intersecção da malha da estrutura com a malha do fluido (Fig. 5.25). Nesta classe armazena-se os multiplicadores de Lagrange (método da Fronteira Imersa) como discutido em capítulos anteriores.

WetS	ourface	~
Class		
_		
🛎 Fie	ds	
🗏 Me	thods	
Ø	~WetSurface	
Ø	addEdgeWetSurface	
Ø	addFaceWetSurface	
Ø	associateLagrangeMultipliersMeshes	
Φ	distributeLagrangeMultipliers	
Ø	findIntersectionNodes	
Ø	findIntersectionPolygon	
Ø	findLagrangeMultiplier (+ 1 overload)	
Ø	getEdgesWetSurface	
Ø	getFacesWetSurface	
Ø	getLagrangeMultipliers (+ 1 overload)	
Ø	getNodesWetSurface	
Ø	getNumber_ENHANCED_ELEMENTS	
Ø	getNumberDimensions	
Ø	getNumberLagrangeMultipliersDivisions	
Ø	getNumberMeshes_OMEGA_MINUS	
Ø	getNumberMeshes_OMEGA_PLUS	
Ø	getVelocity (+ 1 overload)	
Φ	getWetSurfaceType	
Ø	orderNodesWetSurface	
Φ	reinitialize	
Ø	setLagrangeMultiplierDivisionType	
Ø	setNumberDimensions	
Ø	setNumberLagrangeMultipliersDivisions	
Ø	setVelocity	
Ø	WetSurface	

Figura	5.25	- Classe	WetSurface.
--------	------	----------	-------------

Fonte: O autor

• WetSurfaceCircle, WetSurfaceEllipse, WetSurfaceMesh: Estas classes são responsáveis por armazenar a superfície molhada para os seguintes tipos: círculo e elipse, ou uma malha de elementos finitos qualquer (Fig. 5.26 e 5.27). Elas herdam a classe pai WetSurface.



WetS Class → Wet	SurfaceEllipse 🔊
🗄 Fiel	ds
🗆 Me	thods
Ø	~WetSurfaceEllipse
Ø	calculateResultantForce
Ø	distributeLagrangeMultipliers
Q	findIntersectionNodes
Ø	findLagrangeMultiplier (+ 1 overload)
Ø	get_ALPHA
Ø	get_h
Ŷ	get_v
Ø	getCenter
Ŷ	getVelocity
Ø	set_ALPHA
Ø	set_h
Ø	set_v
Ø	setCenter
Ø	WetSurfaceEllipse

WetSurfaceMesh ~ Class → WetSurface Methods distributeLagrangeMultipliers
 IndlntersectionNodes findLagrangeMultiplier (+ 1 overload) ♀_a geoCrossProd_ ♀ geoDotProd_ ଡ_ଇ geoMultVec_ ଦ୍ଧ୍ୱ geoPolyNormal_ ଙ₄ geoSubVec_ ©_a geoTripleProd_ ଡି_ଛ geoVecLen_ ☺a geoZeroVec_ getNumberLagrangeMultipliersDivisions Ø getVelocity ◎ linePlaneIntersection_ ♀ pointInPolygon3D_ ♀ pointInPolyhedron_ ♀ segmentsIntersection_ WetSurfaceMesh

Fonte: O autor

Figura 5.27 – Hierarquia de classes da superfície molhada.



• IntersectionPolygon: Esta classe é responsável por armazenar o polígono de intersecção a ser utilizado pela integração no polígono como discutido em capítulos anteriores (Fig. 5.28).

Figura 5.26 - Classes WetSurfaceCircle, WetSurfaceEllipse e WetSurfaceMesh.

Figura 5.	28 - Classe	IntersectionP	Polygon.
-----------	-------------	---------------	----------

IntersectionPolygon R		
🗄 Fiel	ds	
⊟ Me	thods	
Ø	~IntersectionPolygon	
Ø	addEdge	
Ø	addNode	
Ø	getEdges (+ 1 overload)	
Ø	getNodes (+ 1 overload)	
Ø	getReferenceLine	
Ø	IntersectionPolygon	
Ø	setReferenceLine	

Fonte: O autor

• LagrangeMultiplier: Esta classe é responsável por armazenar o multiplicador de Lagrange a ser utilizado pelo método da Fronteira Imersa como discutido em capítulos anteriores (Fig. 5.29).





Fonte: O autor

NeutralFileStructural: Esta classe é responsável por realizar a leitura do arquivo neutro onde são definidas as configurações de execução (coordenadas dos nós, elementos finitos, tipo de execução, entre outras) (Fig. 5.30). No Apêndice B é apresentado um arquivo neutro como exemplo e uma explicação de cada seção deste arquivo. Esta classe herda e especializa a classe pai NeutralFile do pacote FEM_Core.



Figura 5.30 – Classe NeutralFileStructural.

Fonte: O autor

*FEM_Structural*: Esta classe é responsável por realizar o cálculo pelo método dos elementos finitos de uma estrutura qualquer tanto linear como não-linear (Fig. 5.31). Esta classe herda e especializa a classe pai *FEM* do pacote *FEM_Core*.

FEM_Structural <t>     ♠       Template Class     → FEM<t></t></t>		
🙂 Fiel	ds	
⊟ Met	thods	
Ø	~FEM_Structural	
Φ	assembly_F	
Ø	assembly_K	
Ø	assembly_K_t	
Φ	assembly_M	
Φ	assembly_R_int	
Φ,	assemblyGlobalMatrix_	
Φ	FEM_Structural	
Ø	getWetSurface	
Ø	initialize	
Ø	setProblemType	
Ø	setWetSurface	
Ø	solve	

Figura 5.31 – Classe *FEM_Structural*.

Fonte: O autor

 IOGiDStructural: Esta classe é responsável por salvar os resultados para pósprocessamento em um formato adequado (Fig. 5.32). Neste trabalho dois formatos foram utilizados, um formato pré-definido pelo GiD (MELENDO et al., 2015) a ser utilizado pelo seu pós-processador, de mesmo nome, e um outro formato pré-definido pelo VTK (SCHROEDER et al., 2006) para ser visualizado no pós-processador ParaView (AHRENS et al., 2005). Esta classe herda e especializa a classe pai IOBase do pacote FEM_Core.

Figura 5.32 – Classe *IOGiDStructural*.

IOGiDStructural <t> ♠ Template Class → IOBase<t></t></t>		
🗏 Me	thods	
Ø	~IOGiDStructural	
Ø	IOGiDStructural	
Ø	printResults	J

Fonte: O autor

## 5.1.1.3 Pacote FEM_CFD

Este pacote possui as classes responsáveis pela análise pelo método dos elementos finitos de uma malha de fluido. Elas herdam algumas classes do pacote ou módulo *FEM_Core* e sobrescrevem seus métodos especializando-os.

As seguintes classes pertencem ao pacote *FEM_CFD*:

• *MaterialCFD*: Esta classe é responsável por armazenar o material de um fluido (Fig. 5.33). Ela herda da classe pai *Material* do pacote *FEM_Core*.



Figura 5.33 – Classe MaterialCFD.

Fonte: O autor

• *MeshCFD*: Esta classe é responsável por armazenar o elemento finito de fluido (Fig. 5.34). Ela herda a classe pai *Mesh* do pacote *FEM_Core*.

Figura	5.34 -	Classe	MeshCFD.

Mesh Class → Mesi	CFD	~
🗄 Field	ds	
□ Met	thods	
Ø	~MeshCFD	
Ø	addCell	
Ø	addIntersectionPolygon	
Ø	addNode	
Ø	addNumericalIntegration	
ଡ୍	calculate_B_	
Ø	calculate_c_e_int	
Ø	calculate_c_t_e_int	
Ø	calculate_d_LAMBDA_e_int	
ଙ୍କ	calculate_e_dot_u	
Ø	calculate_f_b_e_int	
Φ	calculate_f_e	
Ø	calculate_F_e	
Ø	calculate_f_t_e_int	
Ŷ	calculate_g_e_int	
φ _e	calculate_gradu	
Ø	calculate_k_e_int	
Q Q	calculate_m_e_int	
Ŷ	calculate_m_LAMBDA_e_int	
Ŷ	evaluate_p_int	
Ŷ	evaluate_u_int	
Q Q	get_c_e	
e e	get_c_t_e	
Ř	get a e	
ă	get_g_e get m IAMBDA e	
ø,	get n e	
୍ଦ୍	get u e	
Ø	getCells	
Ø	getDOFMapsLagrangeMultiplier	
Ø	getIntersectionNodes	
Ø	getIntersectionPolygons	
Ø	getLagrangeMulitplier	
Ø	getMaterial	
Ø	getMeshDomain	
Ø	getNumericalIntegration	
Ø	getNumericalIntegrations	
Ø	initializeMatrix	
Ø	MeshCFD	
Ø	reinitialize	
Q	set_c_e	
Ŷ	set_c_t_e	
Ŷ	set_d_LAMBDA_e	
8	set_g_e	
9	set m LAMPDA -	
Ø	set_m_LAWDUA_8	
ø	second and second se	
Ř	setMeshDomain	
Ř	setNumericalIntegrations	
÷	sea tomeneountegrations	

Fonte: O autor

MeshP2P1, MeshQ2Q1, MeshTet10TaylorHood e MeshHex27TaylorHood: Estas classes são responsáveis por armazenar elementos finitos de fluido dos tipos, triangular híbrido de 6 nós (6 nós para velocidade e 3 nós para pressão), quadrangular híbrido 9 nós (9 nós para velocidade e 4 nós para pressão), tetraédrico de 10 nós (10 nós para velocidade e 4 nós para pressão) e hexaédrico de 27 nós (27 nós para velocidade e 8 nós para pressão) (Fig. 5.35 e 5.36). Elas herdam a classe pai MeshCFD.

Figura 5.35 - Classes MeshP2P1, MeshQ2Q1, MeshTet10TaylorHood e MeshHex27TaylorHood.



Fonte: O autor

Figura 5.36 – Hierarquia de classes dos elementos finitos de fluido.



Fonte: O autor

• *Cell*: Esta classe é responsável por armazenar a célula de integração quando utilza-se a integração pelo método *Tessellation* (Fig. 5.37).

Cell Class	*
🗄 Fiel	ds
🗏 Me	thods
Ø	~Cell
Ø	addNode
Ø	Cell (+ 1 overload)
Ø	getCellId
Ø	getNodes (+ 1 overload)

Figura 5.37 – Classe Cell.



 NeutralFileCFD: Esta classe é responsável por realizar a leitura do arquivo neutro onde são definidas as configurações de execução (coordenadas dos nós, elementos finitos, tipo de execução, entre outras) (Fig. 5.38). No Apêndice B é apresentado um arquivo neutro como exemplo e uma explicação de cada seção deste arquivo. Esta classe herda e especializa a classe pai NeutralFile do pacote FEM_Core.

Figura 5.38 – Classe NeutralFileCFD.



Fonte: O autor

• FEM_CFD: Esta classe é responsável por realizar o cálculo pelo método dos elementos

finitos de um fluido (Fig. 5.39). Esta classe herda e especializa a classe pai FEM do pacote  $FEM_Core$ .

FEM_CFD <t> ♠ Template Class → FEM<t></t></t>		
± Fiel	ds	
⊟ Met	thods	
Ø	~FEM_CFD	
Ø	addNode	
Ø	assembly_C_C_t	
Ø	assembly_C_C_t_CUDA	
Ø	assembly_D_LAMBDA	
Φ	assembly_F	
Φ	assembly_G	
Ø	assembly_K	
Ø	assembly_K_G_M_CUDA	
Ø	assembly_M	
Ø	assembly_M_LAMBDA	
Φ,	assemblyGlobalMatrix_	
Ø	copyNodes	
Ø	DOFGlobalNumbering	
Φ	FEM_CFD	
Φ	getWetSurface	
Ø	initialize	
ଦ୍ଧ	initializeSupportMatrices	
Ø	reinitialize	
Ø	setFlowType	
Φ	setIntegrationType	
Ø	setNodalData	
Ø	setNumberLagrangeMultipliersDOF	
φ	setNumberNodes_p	
Ø	setNumberNodes_u	
φ	setWetSurface	
Ŷ	solve	
Φ.	update_U_Values_	

Figura 5.39 – Classe  $FEM_CFD.$ 

Fonte: O autor

IOGiDCFD e IOVTKCFD: Estas classes são responsáveis por salvar os resultados para pós-processamento em um formato adequado (Fig. 5.40). Neste trabalho dois formatos foram utilizados, um formato pré-definido pelo GiD (MELENDO et al., 2015) a ser utilizado pelo seu pós-processador, de mesmo nome, e um outro formato pré-definido pelo VTK (SCHROEDER et al., 2006) para ser visualizado no pós-

processador ParaView (AHRENS et al., 2005). Esta classe herda e especializa a classe pai *IOBase* do pacote *FEM_Core*.



Figura 5.40 – Classes IOGiDCFD e IOVTKCFD.



# 5.1.1.4 Pacote FEM_CUDA

Este pacote possui as classes responsáveis pelo *assembly* das matrizes locais na resoluçãop de problemas de dinâmica dos fluidos e interação fluido-estrutura. Os seguintes arquivos .cuh ao pacote  $FEM_CUDA^5$ :

• *CUDA_Macros.cuh*: Este arquivo possui funções para verificação de erros associados a utilização da GPU como a transformação da linha e coluna das matrizes para acesso serial e contíguo a memória da placa de vídeo.

```
#define IDX2C(i, j, ld) (((j) * (ld)) + (i))
```

```
static void checkCudaErrors(cudaError_t err,
2
3
 const char *file.
 int line) {
4
5
 if (err != cudaSuccess) {
 printf("%s in %s at line %d\n", cudaGetErrorString(err),
6
7
8
 file, line);
9
 }
 }
10
11
```

• *CUDA_MatrixOperation.cuh*: Este arquivo possui funções auxiliares para manipulação das matrizes, como soma, subtração, determinante, entre outras.



 $^5\mathrm{No}$  Apêndice B

2

3 ...

```
7
 const Precision*
 Β,
 8
 Precision*
 C)
 9
 {
 for (int m = 0; m < M; ++m)</pre>
10
11
 {
 for (int n = 0; n < N; ++n)
12
13
 {
 C[IDX2C(m, n, M)] = A[IDX2C(m, n, M)] + B[IDX2C(m, n, M)];
14
15
 }
16
 }
 }
18
19
 ----- subtract
 //---
20
 device
 void subtract(
 Μ,
21
 int
22
 int
 Ν,
23
 const Precision*
 Α,
 const Precision*
24
 Β,
 C)
25
 Precision*
26
 {
27
 for (int m = 0; m < M; ++m)
28
 {
 for (int n = 0; n < N; ++n)
29
30
 {
31
 C[IDX2C(m, n, M)] = A[IDX2C(m, n, M)] - B[IDX2C(m, n, M)];
32
 }
33
 }
34
 }
35
 ----- determinant -----
36
 //----
37
 device
 Precision determinant(int
 Μ,
38
39
 int
 Ν,
 Precision*
40
 A)
41
 {
42
 Precision determinant = 0.;
43
 if (M == 2 && N == 2)
44
45
 {
46
 determinant =
 A[IDX2C(0, 0, M)] * A[IDX2C(1, 1, M)] -
 A[IDX2C(1, 0, M)] * A[IDX2C(0, 1, M)];
47
48
 }
49
 else if (M == 3 && N == 3)
50
 {
 A[IDX2C(0, 0, M)] * A[IDX2C(1, 1, M)] * A[IDX2C(2, 2, M)] +
51
 determinant =
 A[IDX2C(0, 1, M)] * A[IDX2C(1, 2, M)] * A[IDX2C(2, 0, M)] +
A[IDX2C(0, 2, M)] * A[IDX2C(2, 1, M)] * A[IDX2C(2, 0, M)] +
(A[IDX2C(2, 0, M)] * A[IDX2C(2, 1, M)] * A[IDX2C(1, 0, M)] -
(A[IDX2C(2, 1, M)] * A[IDX2C(1, 1, M)] * A[IDX2C(0, 2, M)] +
A[IDX2C(2, 1, M)] * A[IDX2C(1, 2, M)] * A[IDX2C(0, 0, M)] +
A[IDX2C(2, 2, M)] * A[IDX2C(0, 1, M)] * A[IDX2C(1, 0, M)]);
52
53
54
55
56
 }
58
 return determinant;
59
60
 }
61
 . . .
```

• *CUDA_NumericalIntegration.cuh*: Este arquivo possui os pontos de Gauss necessários para a integração numérica no método dos elementos finitos.

```
1
2
 ----- initializeIntegrationRules ------
 //----
3
 device
 IntegrationElementType
 void getIntegrationRules(
 integrationElementType,
4
5
 size_t
 iIntegrationOrder,
6
 Precision*
 rules)
7
 {
 if (integrationElementType == TRIANGLE)
8
9
 {
10
 if (iIntegrationOrder == 1)
11
 {
 rules[IDX2C(0, 0, 12)] = 1.00000000000000;
 13
```

14	rules[IDX2C(0, 2, 12)] = 0.3333333333333333;
15	rules[IDX2C(0, 3, 12)] = 0.33333333333333333333333333333333333
16	}
17	<pre>else if (iIntegrationOrder == 3)</pre>
18	{
19	rules[IDX2C(0, 0, 12)] = 0.33333333333333333333333333333333333
20	rules[IDX2C(0, 1, 12)] = 0.666666666666666667;
21	rules[IDX2C(0, 2, 12)] = 0.16666666666666667;
22	rules[IDX2C(0, 3, 12)] = 0.000000000000000;
23	
24	rules[IDX2C(1, 0, 12)] = 0.33333333333333333;
25	rules[IDX2C(1, 1, 12)] = 0.166666666666666667;
26	rules[IDX2C(1, 2, 12)] = 0.666666666666666667;
27	rules[IDX2C(1, 3, 12)] = 0.000000000000000;
28	
29	rules[IDX2C(2, 0, 12)] = 0.33333333333333333;
30	rules[IDX2C(2, 1, 12)] = 0.166666666666666667;
31	rules[IDX2C(2, 2, 12)] = 0.166666666666666667;
32	rules[IDX2C(2, 3, 12)] = 0.00000000000000;
33	}
34	

• *CUDA_MeshCFD.cuh*: Este arquivo é o principal do pacote *FEM_CUDA*. Ele contém o cálculo das funções de forma e suas derivadas, o *assembly* das matrizes locais, a integração numérica dos elementos finitos, entre outras.

```
----- do_calculate_k_g_m_e --
2
 11-
3
 device
4
 void do_calculate_k_g_m_e(MeshCFDType meshCFDType,
5
 MatrixType
 matrixType,
 iNumberDimensions,
6
 size t
 iNumberNodes_u,
 size_t
 iNumberNodes_p,
8
 size_t
 nodesCoordinates,
9
 Precision*
 RHO,
10
 Precision
11
 Precision
 MI,
 Precision
 d_XSI,
12
 Precision
 d_ETA
13
 d_ZETA,
 Precision
15
 Precision*
 Nu,
16
 Precision*
 Np,
 Nu_DOF,
17
 Precision*
 Nu_DOF_T,
Nu_DOF_T_Nu_DOF,
18
 Precision*
19
 Precision*
 NuDerivatives,
20
 Precision*
21
 Precision*
 div_Nu,
 div_Nu_T
22
 Precision*
23
 Precision*
 div_Nu_T_Np,
24
 Precision*
 Ju,
25
 Precision*
 JuInverse.
26
 Precision*
 NuDerivativesTransformed,
27
 Precision*
 Bu,
28
 Precision*
 Bu_T,
29
 Precision*
 С,
 Bu_T_C,
30
 Precision*
 Precision*
 Bu_T_C_Bu,
 Precision
 JuDeterminant,
32
33
 Precision*
 k_e_int,
34
 Precision*
 g_e_int,
 Precision*
35
 m_e_int)
 {
36
 calculate_Nu(meshCFDType, d_XSI, d_ETA, d_ZETA, Nu);
calculate_Np(meshCFDType, d_XSI, d_ETA, d_ZETA, Np);
calculate_NuDerivatives(meshCFDType, d_XSI, d_ETA, d_ZETA, NuDerivatives);
37
38
39
40
 calculate_J(iNumberDimensions, iNumberNodes_u, nodesCoordinates, NuDerivatives, Ju);
 JuDeterminant = determinant(iNumberDimensions, iNumberDimensions, Ju);
41
42
 inverse(iNumberDimensions, JuDeterminant, Ju, JuInverse);
43
 calculate_NDerivativesTransformed(
 iNumberDimensions,
 iNumberNodes_u,
 Ju.
 JuInverse.
44
45
 NuDerivatives,
 NuDerivativesTransformed);
```

```
46
47
 if (matrixType == MT_k_e)
48
 {
 do_calculate_k_e(
 iNumberDimensions,
 iNumberNodes_u,
49
50
 RHO
 MI,
 NuDerivativesTransformed,
51
 Bu,
 Bu_T,
 С,
 Bu_T_C
 Bu_T_C_Bu,
53
54
 JuDeterminant,
 k_e_int);
55
 else if (matrixType == MT_g_e)
56
 iNumberDimensions,
58
 do_calculate_q_e(
 iNumberNodes_u,
59
 iNumberNodes_p,
 Np,
 NuDerivatives.
60
 Ju,
 div_Nu,
61
 NuDerivativesTransformed,
 div_Nu_T,
 div_Nu_T_Np,
62
 JuDeterminant,
63
 q_e_int);
64
 else if (matrixType == MT_m_e)
65
66
 iNumberDimensions,
 do_calculate_m_e(
 iNumberNodes_u,
67
 RHO,
 Nu,
Nu_DOF_T,
68
 Nu_DOF
69
70
 Nu_DOF_T_Nu_DOF,
 JuDeterminant,
 m_e_int);
71
72
 }
 }
73
74
```

• *CUDA_Mesh.cuh*: Este arquivo contém o cálculo do Jacobiano da transformação quando se utiliza elementos finitos isoparamétricos, entre outras funções. Ele serve de base para outros elementos finitos, como por exemplo estruturais, facilitando assim a extensibilidade do *software*.

```
2
 //----
 -- calculate_J ---
3
 device
 calculate_J(
 iNumberDimensions,
 void
 size_t
4
5
 size_t
 iNumberNodes,
 Precision*
6
 nodesCoordinates,
7
 Precision*
 NDerivatives,
8
 Precision*
 J)
9
 {
10
 multiply(
 iNumberDimensions,
 iNumberDimensions,
 iNumberNodes,
 NDerivatives,
11
12
 nodesCoordinates.
 J);
13
 }
14
 . . .
```

 CUDA_Main.cu: Este arquivo é o principal do pacote FEM_CUDA no que se refere a paralelização utilizando CUDA. É neste arquivo que são definidos o tamanho do bloco de threads que serão executados em paralelo, as estruturas de dados nodais, o armazenamento das informações que são enviadas da CPU para a memória global da GPU e posteriormente para a memória compartilhada para maior desempenho ao acesso dos dados nodais pelas threads, a contribuição da matriz local para a matriz global, entre outras. 2 //!< Tamanho do bloco de threads a serem executados em paralelo 3 //!< Está relacionado com o tamanho da variável shared utilizada 4 #define BLOCK_SIZE 128 5 ...

```
1
 //! Estrutura de dados do vetor de dados nodais
2
3
 struct NodalData
4
 {
5
 Precision
 х;
 //!< Coordenada x do nó do elemento finito
6
 Precision
 //!< Coordenada y do nó do elemento finito</pre>
 у;
7
 //!< GL Global da velocidade na direção x do nó do elemento finito
8
 DOFGlobal_u;
9
 unsigned int
10
 //!< GL Local da velocidade na direção y do nó do elemento finito
 unsigned int
 DOFLocal_u;
11
 //!< Velocidade na direção x do nó do elemento finito (C e C_t)</pre>
12
13
 Precision
 u:
14
 //!< GL Global da velocidade na direção y do nó do elemento finito
15
 DOFGlobal_v;
16
 unsigned int
 //!< GL Local da velocidade na direção y do nó do elemento finito
17
 unsigned int
18
 DOFLocal_v;
 //!< Velocidade na direção y do nó do elemento finito (C e C_t)</pre>
19
20
 Precision
 v;
21
 //!< GL Global da pressão do nó do elemento finito
22
 DOFGlobal_p;
23
 unsigned int
24
 //!< GL Local da pressão do nó do elemento finito
 DOFLocal_p;
25
 unsigned int
26
 };
97
 . . .
```

```
1
 //----- do_assembly_K_G_M ------
2
3
 //! Realiza o assembly das matrizes K, G e M
 /*!
4
 * \param meshCFDType Tipo de elemento finito: P2P1 ou Q2Q1
5
 * \param inumberDimensions Número de dimensões do problema analisado
6
 * \param iNumberNodes_u Número de nós para velocidade
7
 * \param iNumberNodes_p Número de nós para pressão
8
 * \param N Número de elementos finitos do problema
9
10
 * \param RHO Massa específica do fluido
11
 * \param MI Coeficiente de viscosidade dinâmica do fluido
 */
12
 _global__
13
14
 void do_assembly_K_G_M(MeshCFDType meshCFDType,
15
 size_t
 iNumberDimensions,
 iNumberNodes_u,
16
 size t
17
 size t
 iNumberNodes_p,
18
 size_t
 Ν,
19
 Precision
 RHO,
20
 Precision
 MI)
21
 {
22
 23
 Variável do tipo shared a ser compartilhada com as threads do
 11
 11
 11
24
 bloco
 11
25
 extern __shared__ NodalData s_nodalData[];
26
27
 28
29
 Armazena os valores dos dados nodais global na variável
 11
 11
30
 11
 compartilhada
 11
 31
 size_t iContNodalData = 0;
32
33
 = blockDim.x * blockIdx.x * iNumberNodes_u,
34
 for (
 size_t i
 ilen
 = blockDim.x * blockIdx.x * iNumberNodes_u + blockDim.x * iNumberNodes_u;
35
36
 i < iLen;</pre>
37
 ++i)
38
 {
 if (i < N * iNumberNodes_u)</pre>
39
40
```



# 5.1.1.5 Pacote FEM_FSI

Este pacote possui as classes responsáveis pela análise pelo método dos elementos finitos de uma malha de fluido utilizando o método das Fronteiras Imersas como apresentado em capítulos anteriores. Elas utilizam algumas classes dos pacotes ou módulos *FEM_Core*, *FEM_Structural* e *FEM_CFD*.

As seguintes classes pertencem ao pacote *FEM_FSI*:

• *FEM_FSI*: Esta classe é responsável por realizar o cálculo pelo método dos elementos finitos de um fluido utilizando o método das Fronteiras Imersas como apresentado em capítulos anteriores (Fig. 5.41).

Figura 5.41 – Classe FEM_FSI.

97

FEM_ Class	FSI 🔦
🗄 Fiel	ds
🗏 Me	thods
Ø	~FEM_FSI
Ø	deactivateNodes_OMEGA_MINUS
Ø	decomposeDomain
Ø	FEM_FSI
Ø	getFEM_CFD
Ø	getFEM_Structural
Ø	getNumberDimensions
Ø	initializeMeshInterface
Ø	reinitializeDomain
Ø	setFEM_CFD
Ø	setFEM_Structural
Ø	setNumberDimensions
Ø	solve

Fonte: O autor

# 5.1.2 Diagramas de sequência

Nesta seção são apresentados os diagramas de sequência do *software* desenvolvido para que o leitor possa compreender a utilização das classes apresentadas nas seções anteriores e de que forma estas classes interagem entre si para realizar o cálculo pelo método das Fronteiras Imersas.

O diagrama da Fig. 5.42 é executado da seguinte forma:

Tabela 5.1 – Algoritmo da sequência principal.

Alg	Algoritmo Sequência principal					
1:	Cria-se uma instância da classe <i>FEM_Structural</i> ;					
2:	Cria-se uma instância da classe NeutralFileStructural;					
3:	Lê-se o arquivo de configurações da estrutura;					
4:	Cria-se uma instância da classe <i>FEM_CFD</i> ;					
5:	Cria-se uma instância da classe <i>NeutralFileCFD</i> ;					
6:	Lê-se o arquivo de configurações do fluido;					
7:	Cria-se uma instância da classe <i>FEM_FSI</i> ;					
8:	Envia as instâncias das classes criadas nos passos anteriores para a instância da classe FEM_FSI					
	de forma que os métodos dessas classes estejam disponíveis e acessíveis;					
9:	Resolve-se o problema pelo método das Fronteiras Imersas.					



Figura 5.42 – Diagrama de sequência principal.



O diagrama da Fig. 5.43 é executado da seguinte forma:

Tabela 5.2 – Algoritmo do método solve da classe  $FEM_FSI.$ 

Algoritmo Método solve da classe FEM_FSI

- 1: Decompõe-se o domínio em  $\Omega^-$  e  $\Omega^+$  como apresentado em capítulos anteriores;
- 2: Inicializa-se a interface como resultado da intersecção entre a malha de elementos finitos da estrutura e a malha de fluido;
- 3: Realiza-se a numeração dos graus de liberdade globais da estrutura;
- 4: Realiza-se a numeração dos graus de liberdade globais do fluido;
- 5: Resolve-se o problema pelo método dos elementos finitos.



Figura 5.43 – Diagrama de sequência do método sove da classe FEM_FSI.

### Fonte: O autor

O diagrama da Fig. 5.44 é executado da seguinte forma:

Tabela 5.3 – Algoritmo do método decomposeDomain da classe FEM_FSI.

Algoritmo Método decomposeDomain da classe FEM_FSI

- 1: Reinicializa-se o domínio tornando toda a malha de fluido como  $\Omega^+$  para que posteriormente possa ser dividido em  $\Omega^-$  e  $\Omega^+$ ;
- 2: Solicita-se à instância da classe *FEM_Structural* a superfície molhada, definida no arquivo de configuração da estrutura;
- 3: Encontra-se os nós de intersecção entre a malha da estrutura e a malha de fluido;
- 4: Distribui-se os multiplicadores de Lagrange como apresentado em capítulos anteriores;
- 5: Associa-se os multiplicadores de Lagrange do passo anterior a cada elemento finito interseccionado;
- 6: Encontra-se o polígono de intersecção para utilização na integração no polígono como apresentado em capítulos anteriores;
- 7: Desativa-se os nós que esteja sob a malha da estrutura. Desta forma estes nós não contribuirão para a matriz global.



Figura 5.44 – Diagrama de sequência do método decomposeDomain da classe FEM_FSI.

Fonte: O autor

O diagrama da Fig. 5.44 é executado da seguinte forma:

Tabela 5.4 – Algoritmo do método solve da classe  $FEM_CFD.$ 

Algorit	mo Método solve da classe FEM_CFD
1:	Inicializa-se as matrizes $\mathbf{K}, \mathbf{G}, \mathbf{M}, \mathbf{C}, \mathbf{C}_t, \mathbf{M}_{\lambda} \in \mathbf{D}_{\lambda}$ como apresentado em capítulos anteriores;
2:	Cria-se uma instância da classe Pardiso para solução pelo método direto da matriz principal;
3:	Como a classe $FEM_CFD$ é utilizada tanto para resolução de problemas de dinâmica dos
	fluidos como para interação fluido-estrutura utilizando o método das Fronteiras Imersas, é ne-
	cessário utilizar uma $flag^6$ para decidir em tempo de execução se será um problema de dinâmica
	de fluidos ou interação fluido-estrutura. Esta tomada de decisão ( <i>flag isFSIAnalysis</i> )pode
	ser observada no diagrama de sequências da Fig. 5.45;
3.1:	Caso seja um problema de interação fluido-estrutura é necessário realizar o $assembly^7$ das
	matrizes $\mathbf{M}_{\lambda} \in \mathbf{D}_{\lambda}$ ;
4:	Realiza-se o $assembly$ das matrizes $\mathbf{K}$ , $\mathbf{G} \in \mathbf{M}$ ;
5:	O problema a ser resolvido tanto pode ser um problema estático, quanto um problema
	dinâmico. Utiliza-se a variável $dT$ como controle;
5.1:	Enquanto a variável $dT$ for menor ou igual a variável $dTEnd_$ , ou seja, se for um problema
	estático, estas duas variáveis terão o mesmo valor de forma que este <i>loop</i> seja executado pelo
	menos uma vez. Se for um problema dinâmico, este <i>loop</i> será executado tantas vezes forem
	necessárias até que a variável $dTEnd_$ seja maior que a variável de controle $dT$ . Faça:
5.1.1:	Enquanto o erro analisado ⁸ for menor ou igual a tolerância definida para o problema, faça:
5.1.1.1:	Realiza-se o <i>assembly</i> das matrizes $\mathbf{C} \in \mathbf{C}_{\mathbf{t}}$ ;
5.1.1.2:	Analisa-se, fatora-se e resolve-se a matriz principal, retornando-se o $\Delta v$ (passo de velocidade
	e pressão a ser adicionado às matrizes de velocidade e pressão) da iteração.
5.2:	Imprima-se os resultados da iteração.

 $^{^{6}}$ Uma *flag* é uma variável utilizada em um código-fonte como tomada de decisão em tempo de execução.  7 O assembly é a contribuição local de cada nó para a matriz global.

⁸Este erro é controlado como convergência do problema.



Figura 5.45 – Diagrama de sequência do método solve da classe FEM_CFD.

# 6 RESULTADOS E ANÁLISES

Este capítulo apresenta os resultados de simulações numéricas realizadas e suas análises. Para isso, foi desenvolvido um código computacional implementando a teoria apresentada nos capítulos anteriores, bem como o método de *assembly* executado na GPU, descrito no Capítulo 2.

As simulações numéricas foram realizadas em duas fases, uma sequencial e uma paralelizada na GPU. Com isso pôde-se testar e validar o software de forma a abarcar tanto computadores sem o poder da GPU, quanto os computadores que possuam placas de vídeo com processamento paralelo utilizando a tecnologia CUDA.

A configuração utilizada para a análise de desempenho entre a implementação computacional sequencial e paralela é composta por um processador de vídeo NVIDIA GeForce GTX 750 (versão do *driver*: 364.72) instalada no barramento PCI *Express* 3.0 de um computador Intel Core i5 3.20 GHz com 16 GB de memória RAM e arquitetura 64 bits rodando em um sistema operacional Windows 10 *Professional*. A placa de vídeo possui 4 multiprocessadores, 512 *cores* CUDA, 1024 MB de memória DDR5 com um *bandwidth* de 80,16 GB/s. A versão CUDA utilizada é a 5.0.

Para todas as simulações realizadas neste capítulo foi feito primeiramente uma análise de sensibilidade do tempo total para execução do *assembly* das matrizes globais  $\mathbf{K}$ ,  $\mathbf{G}$ ,  $\mathbf{M}$ ,  $\mathbf{C} \in \mathbf{C}_{\mathbf{t}}$ , para resolução do sistema de equações e da simulação para diferentes malhas de elementos finitos. Desta forma é possível observar qual a quantidade de elementos finitos que fornece o melhor custo-benefício na utilização da GPU. Os tempos apresentados para o código paralelo incluem as chamadas aos *kernels* para *assembly* das matrizes globais, mas não incluem qualquer tempo gasto para a transferência de dados CPU-GPU.

Como apresentado no Cap. 2 é necessário encontrar a melhor combinação de blocos e *threads* que geram o menor custo computacional e o maior desempenho. Exaustivos experimentos foram realizados a fim de encontrar esta relação e a melhor configuração encontrada foi:

$$\#Blocos = \frac{(N + \#Threads - 1)}{\#Threads}$$
(6.1)

onde

- #Blocos: Número de blocos que serão executados em paralelo;
- N: Número de elementos finitos do problema;
- # Threads: Número de threads que serão executadas por bloco Este número está relacionado com o número de bytes que serão armazenados na memória compartilhada da GPU.

## 6.1 Escoamento em uma cavidade

Um problema clássico da literatura e um caso comum de validação para códigos CFD é o escoamento em uma cavidade. Este problema modela uma recirculação ideal com aplicações em modelagens ambientais, geofísicas e industriais. A razão para sua popularidade como caso de validação é devido a descrição simples do domínio do problema, mas que apesar de sua simplicidade apresenta comportamentos de natureza complexa mas de fácil determinação, como por exemplo, a contagem de vórtices.

Em um problema bidimensional o domínio é modelado como um quadrado de lados unitários onde uma das paredes (parede superior) possui velocidade imposta constante diferente de zero. Em Erturk (2009) é apresentada uma discussão extensa sobre este problema. Uma boa fonte de resultados para diferentes números de Reynolds pode ser encontrado em Gomes (2013) e Ghia et al. (1982).

Um outro exemplo interessante pode ser visto em Zhang et al. (2012) onde uma das paredes da cavidade (inferior) é hiperelástica. No presente trabalho utilizou-se uma parede rígida, com um formato ondular, similar ao apresentado neste artigo (após sua deformação) de forma a comparar os resultados de uma malha conforme com uma malha não-conforme utilizando o método das Fronteiras Imersas. A Fig. 6.1 ilustra estas geometrias.



Figura 6.1 – Descrição dos modelos (a) bidimensional e (b) tridimensional

Fonte: O autor

### O número de Reynolds para os dois problemas é dado por

$$Re = \frac{\rho u}{\mu} \tag{6.2}$$

onde:

• *ρ*: Densidade do fluido;

- *u*: Velocidade imposta na parede superior da cavidade correspondente ao próprio número de Reynolds do problema;
- $\mu$ : Viscosidade dinâmica do fluido.

A densidade e viscosidade dinâmica do fluido são considerados iguais à unidade.

### 6.1.1 Cavidade com paredes retas

#### 6.1.1.1Análise de sensibilidade

Para a análise de sensibilidade desta simulação foram utilizadas malhas com número crescente de elementos finitos do tipo P2P1 e  $Re = 400^1$ . As Tab. 6.1, 6.2, 6.3, 6.4, 6.5, 6.6 e 6.7 apresentam o tempo total para o assembly das matrizes globais, solução do sistema de equações e simulação para uma malha com 98, 510, 1102, 5678, 10210, 22804 e 40920 elementos tanto para o processamento sequencial quanto para o paralelizado na GPU.

Tabela 6.1 –	Tempo total para o <i>assembly</i> das matrizes globais, solução do sistema de equações e simulação
	para uma malha com 98 elementos.

#Elementos = 98							
Sequencial							
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)			
_	0.015	—	_	0.015			
1	—	0.015	0.100	0.115			
2	—	0.015	0.015	0.030			
3	—	0.038	0.000	0.038			
4	—	0.015	0.017	0.032			
5	—	0.031	0.000	0.031			
6	—	0.015	0.000	0.015			
7	—	0.022	0.000	0.022			
8	—	0.015	0.020	0.035			
	0.015	0.166	0.152	0.333			
		Paralelo	•				
_	0.015	—	_	0.015			
1	—	0.021	0.100	0.121			
2	—	0.000	0.015	0.015			
3	—	0.000	0.015	0.015			
4	—	0.015	0.000	0.015			
5	—	0.000	0.000	0.000			
6	—	0.000	0.000	0.000			
7	—	0.006	0.015	0.021			
8	-	0.015	0.000	0.015			
	0.015	0.057	0.145	0.217			

¹Com este número de Reynolds o problema é resolvido em 8 iterações aumentando o tempo total da simulação, facilitando assim a comparação entre os processamentos sequencial e paralelo.

#Elementos = 510							
	Sequencial						
#Iteração   Assembly $\mathbf{K} \in \mathbf{G}$ (s)   Assembly $\mathbf{C} \in \mathbf{C}_{\mathbf{t}}$ (s)   Solução (s)   $\mathbf{T}$							
_	0.077	—	_	0.077			
1	—	0.100	0.115	0.215			
2	—	0.115	0.031	0.146			
3	—	0.115	0.020	0.135			
4	—	0.115	0.021	0.136			
5	—	0.116	0.033	0.149			
6	—	0.100	0.037	0.137			
7	—	0.115	0.031	0.146			
8	8 – 0.116 0.015		0.131				
	0.077	0.892	0.303	1.272			
		Paralelo					
_	0.029	_	—	0.029			
1	—	0.025	0.130	0.155			
2	—	0.000	0.015	0.015			
3	—	0.015	0.015	0.030			
4	—	0.015	0.038	0.053			
5	—	0.000	0.037	0.037			
6	—	0.012	0.038	0.050			
7	—	0.012	0.038	0.050			
8	-	0.012	0.034	0.046			
	0.029	0.091	0.345	0.465			

Tabela 6.2 – Tempo total para oassemblydas matrizes globais, solução do sistema de equações e simulação para uma malha com 510 elementos.

Tabela 6.3 – Tempo total para o $assembl$	y das matrizes gl	lobais, solução d	lo sistema de	equações e	simulação
para uma malha com 1102	elementos.				

#Elementos = 1102							
Sequencial							
#Iteração Assembly $\mathbf{K} \in \mathbf{G}$ (s) Assembly $\mathbf{C} \in \mathbf{C}_{\mathbf{t}}$ (s) Solução (s)							
_	0.143	—	_	0.143			
1	—	0.232	0.138	0.370			
2	—	0.247	0.062	0.309			
3	—	0.234	0.068	0.302			
4	—	0.254	0.062	0.316			
5	—	0.238	0.053	0.291			
6	—	0.247	0.062	0.309			
7	—	0.235	0.053	0.288			
8 – 0.24		0.247	0.062	0.309			
	0.143	1.934	0.56	2.637			
		Paralelo	•				
_	0.031	—	—	0.031			
1	—	0.031	0.147	0.178			
2	—	0.022	0.100	0.122			
3	—	0.031	0.080	0.111			
4	—	0.024	0.120	0.144			
5	-	0.026	0.113	0.139			
6	—	0.026	0.075	0.101			
7	-	0.031	0.049	0.080			
8	-	0.027	0.041	0.068			
	0.031	0.218	0.725	0.974			

#Elementos = 5678							
Sequencial							
#Iteração	#Iteração   Assembly $\mathbf{K} \in \mathbf{G}$ (s)   Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)   Solução (s)						
_	0.821	—	_	0.821			
1	—	1.249	0.450	1.699			
2	—	1.252	0.370	1.622			
3	—	1.267	0.337	1.604			
4	—	1.262	0.369	1.631			
5	—	1.258	0.331	1.589			
6	_	1.262	0.347	1.609			
7	_	1.242	0.353	1.595			
8	_	1.256	0.351	1.607			
	0.821	10.048	2.908	13.777			
		Paralelo					
_	0.169	_	_	0.169			
1	—	0.115	0.398	0.513			
2	—	0.115	0.251	0.366			
3	_	0.100	0.248	0.348			
4	—	0.116	0.245	0.361			
5	—	0.116	0.257	0.373			
6	—	0.100	0.255	0.355			
7	—	0.115	0.239	0.354			
8	-	0.116	0.244	0.360			
	0.169	0.893	2.137	3.199			

Tabela 6.4 – Tempo total para oassemblydas matrizes globais, solução do sistema de equações e simulação para uma malha com 5678 elementos.

Tabela 6.5 – T	Гетро total para	a o <i>assembly</i> d	as matrizes	globais,	solução	do sistema	de equações	e simulação
I	para uma malha	10210 e	lementos.					

#Elementos = 10210							
Sequencial							
#Iteração	#Iteração   Assembly $\mathbf{K} \in \mathbf{G}$ (s)   Assembly $\mathbf{C} \in \mathbf{C}_{\mathbf{t}}$ (s)   Solução (s)						
_	1.397	_	—	1.397			
1	—	2.238	0.781	3.019			
2	—	2.247	0.719	2.966			
3	—	2.251	0.717	2.968			
4	—	2.260	0.720	2.980			
5	—	2.257	0.717	2.974			
6	—	2.233	0.731	2.964			
7	—	2.244	0.717	2.961			
8	8 – 2.255 0.718		0.718	2.973			
	1.397	17.985	5.820	25.202			
		Paralelo					
_	0.253	—	—	0.253			
1	—	0.216	0.569	0.785			
2	—	0.210	0.451	0.661			
3	—	0.207	0.466	0.673			
4	—	0.211	0.469	0.680			
5	-	0.214	0.468	0.682			
6	—	0.213	0.469	0.682			
7	-	0.214	0.469	0.683			
8	-	0.217	0.457	0.674			
	0.253	1.702	3.818	5.773			
#Elementos = 22084							
--------------------	------------------------------------------	--------------------------------------------	-------------	-----------	--	--	
Sequencial							
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)			
_	3.089	—	_	3.089			
1	—	4.998	1.905	6.903			
2	—	5.031	1.818	6.849			
3	—	5.017	1.905	6.922			
4	—	5.036	1.797	6.833			
5	—	5.028	1.856	6.884			
6	—	5.038	1.823	6.861			
7	—	5.058	1.778	6.836			
8	—	5.051	1.803	6.854			
	3.089	40.257	14.685	58.031			
		Paralelo					
_	0.57	—	_	0.570			
1	—	0.485	1.197	1.682			
2	—	0.470	1.132	1.602			
3	—	0.471	1.107	1.578			
4	—	0.469	1.111	1.580			
5	—	0.463	1.110	1.573			
6	—	0.463	1.092	1.555			
7	—	0.472	1.169	1.641			
8	—	0.464	1.101	1.565			
	0.570	3.757	9.019	13.346			

Tabela 6.6 – Tempo total para oassemblydas matrizes globais, solução do sistema de equações e simulação para uma malha com 22804 elementos.

Tabela 6.7 – Tempo total para o $assemb$	ly das matrizes	s globais, solução	do sistema	de equações	e simulação
para uma malha com 4092	0 elementos.				

#Elementos = 40920							
Sequencial							
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)			
_	5.563	_	_	5.563			
1	—	9.021	3.566	12.587			
2	—	9.064	3.576	12.640			
3	—	9.083	3.596	12.679			
4	—	9.084	3.685	12.769			
5	—	9.041	3.694	12.735			
6	—	9.050	3.716	12.766			
7	—	9.028	3.721	12.749			
8	—	9.040	3.702	12.742			
	5.563	72.411	29.256	107.230			
		Paralelo	•				
_	1.031	—	—	1.031			
1	—	0.844	2.340	3.184			
2	—	0.861	2.200	3.061			
3	—	0.828	2.199	3.027			
4	—	0.817	2.242	3.059			
5	—	0.829	2.202	3.031			
6	—	0.832	2.274	3.106			
7	-	0.841	2.338	3.179			
8	-	0.839	2.265	3.104			
	1.031	6.691	18.06	25.782			

A Fig. 6.2 mostra o comparativo entre o processamento sequencial e paralelo para o tempo total do *assembly* das matrizes globais e o *speedup* alcançado.



Figura 6.2 – Comparativo do tempo total para o assembly das matrizes globais e o speedup alcançado.

A Fig. 6.3 mostra o comparativo entre o processamento sequencial e paralelo para o tempo total da simulação e o *speedup* alcançado.



Figura 6.3 – Comparativo do tempo total da simulação e o speedup alcançado.

Os resultados comparativos mostram uma considerável diminuição no tempo de processamento, com um *speedup* de aproximadamente 10 para o *assembly* das matrizes

globais para a malha de elementos finitos mais refinada. A curva do *speedup*, como pode ser observado na Fig. 6.2, apresenta uma diminuição em sua inclinação e estabilização acima de 5000 elementos. Ou seja, acima deste valor, aumentando-se o número de elementos não obter-se-á um aumento significativo de *speedup*, como acontece para as malhas menos refinadas.

O tempo total para solução do problema mostra um *speedup* de aproximadamente 4.5 para a malha de elementos finitos mais refinada. Isto se deve ao fato de que a solução do sistema de equações lineares é realizada de forma sequencial utilizando o pacote PARDISO² (KUZMIN et al., 2013). A mesma observação anterior – aumento do número de elementos acima de 5000 elementos não obtém-se um considerável aumento de *speedup* – pode ser feita para o comparativo do tempo do total para solução do problema, inclusive, a partir de 22000 elementos, há uma diminuição do *speedup*.

Pode-se observar que em uma malha pouco refinada não há vantagem em se utilizar o processamento paralelo ao invés do sequencial (*speedup* de aproximadamente 1.5). A justificativa para tal fenômeno está relacionado com o tempo necessário para que a GPU inicie o processo de paralelização (inicialização dos blocos de *threads*, das *threads* e outros processos de inicializações internos da placa gráfica).

## 6.1.1.2 Resultados

O escoamento em uma cavidade bidimensional foi simulado e validado com os dados fornecidos em Ghia et al. (1982) para um escoamento laminar com Reynolds variando entre 1 e 400. Uma malha com 24143 elementos do tipo P2P1 e 48966 nós foi utilizada e é apresentada na Fig. 6.4.

 $^{^{2}}$ Existe a possibilidade de utilizar arquitetura de memória compartilhada e distribuída para paralelizar a solução do sistema com PARDISO. No caso deste trabalho, o máximo número de *cores* disponíveis na CPU é de 4 e não foi utilizado *cluster* de CPUs. Com isso, se comparar os 4 *cores* da CPU com as 512 *threads* da GPU, pode-se considerar a solução do sistema um processo sequencial.

Figura 6.4 – Malha de elementos finitos com 24143 elementos finitos do tipo P2P1 e 48966 nós.



Fonte: O autor

As Fig. 6.5, 6.6, 6.7 e 6.8 apresentam os perfis de velocidade e linhas de corrente no domínio.





Fonte: O autor



Figura 6.6 – Perfis de velocidade (a) e linhas de corrente (b) para Re = 10.

Fonte: O autor

Figura 6.7 – Perfis de velocidade (a) e linhas de corrente (b) para Re = 100.





Figura 6.8 – Perfis de velocidade (a) e linhas de corrente (b) para Re = 400.

Fonte: O autor

Pode-se observar que à medida em que o número de Reynolds aumenta, o vórtice principal desloca-se para a direita e há um aparecimento de vórtices secundários na parte inferior da cavidade.

A Fig. 6.9 mostra o perfil de velocidades (normalizada) pelo número de Reynolds para validação e comparação dos resultados entre este trabalho e Ghia et al. (1982) com números de Reynolds variando entre 1 e 400.



Figura 6.9 – Velocidade  $\boldsymbol{u}$ ao longo da linha vertical sobre o centro geométrico da cavidade.

## 6.1.1.3 Análise de desempenho

As Tab. 6.8, 6.9, 6.10, 6.11 apresentam o tempo total para o *assembly* das matrizes globais, solução do sistema de equações e simulação para uma malha com 24143 elementos do tipo P2P1 tanto para o processamento sequencial quanto para o paralelizado na GPU para números de Reynolds variando entre 1 e 400.

#Elementos = 24143								
	Sequencial							
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{K} \in \mathbf{G}$ (s)   Assembly $\mathbf{C} \in \mathbf{C}_{\mathbf{t}}$ (s)   Solução (s)   Tota						
_	2.860	—	—	2.860				
1	—	4.680	2.103	6.783				
2	—	4.769	2.020	6.789				
3	_	4.711	2.020	6.731				
	2.860	2.860 14.160		23.163				
		Paralelo						
_	0.611	—	—	0.611				
1	—	0.516	2.090	2.606				
2	—	0.487	2.012	2.499				
3	—	0.498	1.992	2.490				
	0.611	1.501	6.094	8.206				

Tabela 6.8 – Tempo total para o assembly das matrizes globais, solução do sistema de equações e simulação para uma malha com 24143 elementos e Re = 1.

Tabela 6.9 – Tempo total para o assembly das matrizes globais, solução do sistema de equações e simulação para uma malha com 24143 elementos e Re = 10.

#Elementos = 24143									
	Sequencial								
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)					
_	2.883	—	—	2.883					
1	-	4.627	2.105	6.732					
2	—	4.657	2.026	6.683					
3	—	4.665	2.051	6.716					
4	—	4.649	2.005	6.654					
	2.883	18.598	8.187	29.668					
	·	Paralelo							
_	0.601	—	_	0.601					
1	—	0.516	2.154	2.670					
2	—	0.498	1.982	2.480					
3	—	0.487	1.995	2.482					
4	—	0.495	1.976	2.471					
	0.601	1.996	8.107	10.704					

#Elementos = 24143								
Sequencial								
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)				
_	2.881	_	—	2.881				
1	—	4.686	2.089	6.775				
2	—	4.680	2.020	6.700				
3	—	4.696	2.047	6.743				
4	—	4.679	2.004	6.683				
5	—	4.690	2.036	6.726				
6	—	4.685	2.026	6.711				
	2.881	28.116	12.222	43.219				
		Paralelo	•					
_	0.601	—	_	0.601				
1	—	0.516	2.030	2.546				
2	—	0.486	1.984	2.470				
3	—	0.491	2.036	2.527				
4	—	0.498	1.994	2.492				
5	—	0.490	2.040	2.530				
6	—	0.501	2.055	2.556				
	0.601	2.982	12.139	15.722				

Tabela 6.10 – Tempo total para o assembly das matrizes globais, solução do sistema de equações e simulação para uma malha com 24143 elementos e Re = 100.

Tabela 6.11 – Tempo total para o assembly das matrizes globais, solução do sistema de equações e simulação para uma malha com 24143 elementos e Re = 400.

#Elementos = 24143							
$\frac{\text{Sequencial}}{\text{HIere}_{200}} = \frac{4eembly}{K_{20}} \frac{K_{20}}{K_{20}} \frac{K_{20}}{$							
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)			
_	2.859	-	_	2.859			
1	—	4.711	2.075	6.786			
2	—	4.730	2.001	6.731			
3	—	4.728	2.023	6.751			
4	—	4.711	2.004	6.715			
5	—	4.728	2.021	6.749			
6	—	4.723	2.054	6.777			
7	—	4.728	2.005	6.733			
8	—	4.712	2.043	6.755			
	2.859	37.771	16.226	56.856			
		Paralelo					
_	0.601	—	_	0.601			
1	—	0.535	2.108	2.643			
2	—	0.494	2.072	2.566			
3	—	0.498	2.027	2.525			
4	—	0.492	2.068	2.560			
5	—	0.481	2.012	2.493			
6	—	0.492	2.013	2.505			
7	—	0.502	2.051	2.553			
8	-	0.500	1.994	2.494			
-	0.601	3.994	16.345	20.940			

As Fig. 6.10, 6.11, 6.12 e 6.13 mostram o comparativo entre o processamento sequencial e paralelo para o tempo total do *assembly* e da simulação e o *speedup* alcançado para números de Reynolds variando entre 1 e 400.

Figura 6.10 – Comparativo do tempo total para <br/>oassemblydas matrizes globais e da simulação e <br/>ospeedupalcançado para Re=1.



Figura 6.11 – Comparativo do tempo total para <br/>oassemblydas matrizes globais e da simulação e <br/>ospeedupalcançado para Re=10.



Figura 6.12 – Comparativo do tempo total para o assembly das matrizes globais e da simulação e o speedup alcançado para Re = 100.



Figura 6.13 – Comparativo do tempo total para <br/>oassemblydas matrizes globais e da simulação e <br/>ospeedupalcançado para Re=400.



Os resultados comparativos mostram uma considerável diminuição no tempo de processamento, com um *speedup* de aproximadamente 8 para o *assembly* das matrizes globais e de aproximadamente 3 para o tempo total da simulação. Estes valores vão de encontro com a análise de sensibilidade, apesar de apresentar *speedups* abaixo do esperado. Isto se deve ao fato de a malha possuir um maior refinamento próximo aos nós das extremidades da parede superior, aumentando assim, o tempo de processamento.

# 6.1.2 Cavidade com parede inferior em formato ondular

O escoamento em uma cavidade com parede inferior em formato ondular (similar ao exemplo apresentado em Zhang et al. (2012)) foi simulado para um escoamento laminar com número de Reynolds igual a 400 em uma malha conforme e em uma malha não-conforme utilizando o método das Fronteiras Imersas.

## 6.1.2.1 Dinâmica dos fluidos

### 6.1.2.1.1 Análise de sensibilidade

Para a análise de sensibilidade desta simulação foram utilizadas malhas com número crescente de elementos finitos do tipo P2P1. As Tab. 6.12, 6.13, 6.14, 6.15, 6.16, 6.17 e 6.18 apresentam o tempo total para o *assembly* das matrizes globais, solução do sistema de equações e simulação para uma malha com 98, 512, 1024, 5283, 11667, 21981 e 40285 elementos tanto para o processamento sequencial quanto para o paralelizado na GPU.

Tabela 6.12 – Tempo total para oassemblydas matrizes globais, solução do sistema de equações e simulação para uma malha com 98 elementos.

#Elementos = 98								
	Sequencial							
#Iteração Assembly $\mathbf{K} \in \mathbf{G}$ (s) Assembly $\mathbf{C} \in \mathbf{C}_{\mathbf{t}}$ (s) Solução (s)								
_	0.025			0.025				
1	_	0.021	0.110	0.131				
2	_	0.027	0.007	0.034				
3	_	0.027	0.006	0.033				
4	_	0.021	0.006	0.027				
5	_	0.021	0.005	0.026				
6	_	0.020	0.006	0.026				
7	_	0.020	0.005	0.025				
	0.025	0.157	0.145	0.327				
		Paralelo	1					
_	0.015	_	_	0.015				
1	_	0.015	0.122	0.137				
2	_	0.015	0.000	0.015				
3	_	0.003	0.000	0.003				
4	_	0.015	0.000	0.015				
5	_	0.016	0.015	0.031				
6	—	0.015	0.015	0.030				
7	_	0.020	0.000	0.020				
	0.015	0.099	0.152	0.266				

#Elementos = 512							
	Sequencial						
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)			
—	0.065	—	—	0.065			
1	—	0.100	0.124	0.224			
2	—	0.099	0.026	0.125			
3	—	0.099	0.024	0.123			
4	—	0.101	0.025	0.126			
5	—	0.097	0.023	0.12			
6	—	0.098	0.024	0.122			
7	—	0.099	0.024	0.123			
8	—	0.100	0.025	0.125			
	0.065	0.793	0.295	1.148			
		Paralelo					
_	0.015	—	—	0.015			
1	—	0.033	0.115	0.148			
2	—	0.000	0.022	0.022			
3	—	0.015	0.015	0.030			
4	—	0.000	0.031	0.031			
5	—	0.006	0.031	0.037			
6	—	0.015	0.033	0.048			
7	—	0.012	0.037	0.049			
8	—	0.012	0.038	0.050			
	0.015	0.093	0.322	0.430			

Tabela 6.13 – Tempo total para oassemblydas matrizes globais, solução do sistema de equações e simulação para uma malha com 512 elementos.

Tabela 6.14	– Tempo	total	para	o a	is sembly	$\operatorname{das}$	matrizes	globais,	solução	do	$\operatorname{sistema}$	de	equações	$\mathbf{e}$
	simulaç	ão pa	ra ume	a ma	alha com	102	24 element	JOS.						

#Elementos = 1024							
Sequencial							
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)			
_	0.124	_	_	0.124			
1	—	0.192	0.148	0.34			
2	_	0.195	0.053	0.248			
3	—	0.192	0.053	0.245			
4	—	0.196	0.052	0.248			
5	—	0.195	0.053	0.248			
6	—	0.196	0.052	0.248			
7	—	0.193	0.054	0.247			
8	—	0.195	0.052	0.247			
	0.124	1.554	0.517	2.195			
		Paralelo	•				
_	0.037	-	—	0.037			
1	—	0.031	0.138	0.169			
2	_	0.033	0.080	0.113			
3	—	0.022	0.065	0.087			
4	—	0.023	0.067	0.090			
5	—	0.021	0.064	0.085			
6	—	0.021	0.066	0.087			
7	-	0.021	0.061	0.082			
8	-	0.011	0.046	0.057			
	0.037	0.183	0.587	0.807			

#Elementos = 5283							
Sequencial							
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)			
_	0.624	—	_	0.624			
1	—	1.000	0.429	1.429			
2	—	0.997	0.334	1.331			
3	—	1.000	0.338	1.338			
4	—	1.007	0.339	1.346			
5	—	1.002	0.334	1.336			
6	—	0.997	0.336	1.333			
7	—	1.004	0.339	1.343			
8	—	0.998	0.339	1.337			
	0.624	8.005	2.788	11.417			
		Paralelo					
_	0.147	_	—	0.147			
1	—	0.115	0.405	0.520			
2	—	0.100	0.223	0.323			
3	—	0.100	0.227	0.327			
4	—	0.100	0.220	0.320			
5	—	0.100	0.221	0.321			
6	—	0.100	0.225	0.325			
7	—	0.100	0.227	0.327			
8	-	0.100	0.235	0.335			
	0.147	0.815	1.983	2.945			

Tabela 6.15 – Tempo total para oassemblydas matrizes globais, solução do sistema de equações e simulação para uma malha com 5283 elementos.

Tabela 6.16 -	- Tempo	total	para	0	assembly	das	matrizes	globais,	solução	$\operatorname{do}$	sistema	de	equações	е
	simulaç	ão pa	ra uma	a n	nalha com	n 116	67 elemer	ntos.						

	#Elementos = 11667								
		Sequencial							
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)					
_	1.374	_	_	1.374					
1	—	2.209	0.93	3.139					
2	—	2.209	0.854	3.063					
3	—	2.214	0.839	3.053					
4	—	2.208	0.843	3.051					
5	—	2.222	0.843	3.065					
6	—	2.213	0.838	3.051					
7	—	2.212	0.838	3.05					
8	—	2.221	0.847	3.068					
	1.374	17.708	6.832	25.914					
		Paralelo							
_	0.285	—	—	0.285					
1	—	0.25	0.607	0.857					
2	—	0.245	0.544	0.789					
3	—	0.240	0.530	0.770					
4	—	0.249	0.518	0.767					
5	-	0.246	0.528	0.774					
6	—	0.239	0.530	0.769					
7	-	0.247	0.527	0.774					
8	-	0.246	0.525	0.771					
	0.285	1.962	4.309	6.556					

	#Elementos = 21981									
		Sequencial								
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)						
_	2.592	—	_	2.592						
1	—	4.242	1.996	6.238						
2	—	4.305	1.866	6.171						
3	—	4.266	1.783	6.049						
4	—	4.22	1.814	6.034						
5	—	4.218	1.791	6.009						
6	—	4.213	1.78	5.993						
7	—	4.207	1.783	5.99						
8	—	4.198	1.842	6.04						
	2.592	33.869	14.655	51.116						
		Paralelo								
_	0.552	_	—	0.552						
1	—	0.473	1.178	1.651						
2	—	0.450	1.052	1.502						
3	—	0.448	1.050	1.498						
4	—	0.448	1.051	1.499						
5	—	0.449	1.102	1.551						
6	—	0.452	1.103	1.555						
7	—	0.456	1.084	1.54						
8	-	0.451	1.062	1.513						
	0.552	3.627	8.682	12.861						

Tabela 6.17 – Tempo total para oassemblydas matrizes globais, solução do sistema de equações e simulação para uma malha com 21981 elementos.

Tabela 6.18 –	Tempo	total	para	$\circ$ assembly	das	matrizes	globais,	solução	do	sistema	de	equações	е
	simulaç	ão pa	ra uma	malha con	n 402	285 elemer	ntos.						

	#FI	#Elementes $= 40285$								
	#E1	$\frac{1}{2}$								
		Sequencial								
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)						
_	4.741	—	—	4.741						
1	—	7.631	3.610	11.241						
2	—	7.703	3.602	11.305						
3	—	7.700	3.700	11.400						
4	—	7.658	3.628	11.286						
5	_	7.691	3.692	11.383						
6	_	7.616	3.674	11.290						
7	_	7.664	3.937	11.601						
8	_	7.676	3.783	11.459						
	4.741	61.339	29.626	95.706						
		Paralelo								
_	1.01	_	_	1.01						
1	_	0.845	2.216	3.061						
2	—	0.811	2.349	3.16						
3	—	0.816	2.233	3.049						
4	_	0.835	2.377	3.212						
5	_	0.817	2.237	3.054						
6	-	0.821	2.265	3.086						
7	_	0.854	2.231	3.085						
8	_	0.818	2.209	3.027						
	1.01	6.617	18.117	25.744						

A Fig. 6.14 mostra o comparativo entre o processamento sequencial e paralelo para o tempo total do *assembly* das matrizes globais e o *speedup* alcançado.



Figura 6.14 – Comparativo do tempo total para o assembly das matrizes globais e o speedup alcançado.

A Fig. 6.15 mostra o comparativo entre o processamento sequencial e paralelo para o tempo total da simulação e o *speedup* alcançado.



Figura 6.15 – Comparativo do tempo total da simulação e o speedup alcançado.

Os resultados comparativos mostram uma considerável diminuição no tempo de processamento, com um *speedup* de aproximadamente 9 para o *assembly* das matrizes

globais para a malha de elementos finitos mais refinada. A curva do *speedup*, como pode ser observado na Fig. 6.14, apresenta uma diminuição em sua inclinação, acima de 5000 elementos. Ou seja, acima deste valor, aumentando-se o número de elementos não obter-se-á um aumento significativo de *speedup*, como acontece para as malhas menos refinadas.

O tempo total para solução do problema mostra um *speedup* de aproximadamente 3.5 para a malha de elementos finitos mais refinada. Isto se deve ao fato de que a solução do sistema de equações lineares é realizada de forma sequencial utilizando o pacote PARDISO. A mesma observação anterior – aumento do número de elementos acima de 5000 elementos não obtém-se um considerável aumento de *speedup* – pode ser feita para o comparativo do tempo do total para solução do problema, inclusive, a partir de 22000 elementos, há uma diminuição desse *speedup*.

Pode-se observar que em uma malha pouco refinada não há vantagem em se utilizar o processamento paralelo ao invés do sequencial (*speedup* de aproximadamente 1.5). A justificativa para tal fenômeno está relacionado com o tempo necessário para que a GPU inicie o processo de paralelização (inicialização dos blocos de *threads*, das *threads* e outros processos de inicializações internos da placa gráfica).

### 6.1.2.1.2 Resultados

Executou-se o problema de dinâmica dos fluidos com uma malha conforme com 23453 elementos do tipo P2P1 e 47758 nós como mostra a Fig. 6.16.



Figura 6.16 – Malha de elementos finitos com 23453 elementos do tipo P2P1 e 47758 nós.

Fonte: O autor

A Fig. 6.17 apresenta os perfis de velocidade e linhas de corrente no domínio.

Figura 6.17 – Perfis de velocidade (a) e linhas de corrente (b) para Re = 400 em uma cavidade com malha conforme.





# 6.1.2.1.3 Análise de desempenho

As Tab. 6.19 apresenta o tempo total para o *assembly* das matrizes globais, solução do sistema de equações e simulação para uma malha com 23453 elementos do tipo P2P1 tanto para o processamento sequencial quanto para o paralelizado na GPU.

	#E	lementos $= 23453$		
	11	Sequencial		
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)
_	2.806	_	—	2.806
1	_	4.511	1.873	6.384
2	_	4.538	1.889	6.427
3	_	4.541	1.842	6.383
4	_	4.542	1.842	6.384
5	_	4.526	1.856	6.382
6	_	4.549	1.851	6.400
7	_	4.543	1.842	6.385
8	_	4.558	1.858	6.416
	2.806	36.308	14.853	53.967
		Paralelo	1	1
_	0.586	_	_	0.586
1	_	0.523	2.087	2.61
2	_	0.472	2.025	2.497
3	_	0.482	1.827	2.309
4	_	0.477	1.888	2.365
5	_	0.487	1.94	2.427
6	_	0.48	1.857	2.337
7	-	0.476	1.947	2.423
8	_	0.476	1.939	2.415
	0.586	3.873	15.510	19.969

Tabela 6.19 – Tempo total para oassemblydas matrizes globais, solução do sistema de equações e simulação para uma malha com 23453 elementos.

A Fig. 6.18 mostra o comparativo entre o processamento sequencial e paralelo para o tempo total do *assembly* e da simulação e o *speedup* alcançado.

Figura 6.18 – Comparativo do tempo total do assembly das matrizes globais e da simulação e ospeedupalcançado.



Os resultados comparativos mostram uma considerável diminuição no tempo de processamento, com um *speedup* de aproximadamente 9 para o *assembly* das matrizes globais e de aproximadamente 3 para o tempo total da simulação. Estes valores vão de encontro com a análise de sensibilidade, apesar de apresentar *speedups* abaixo do esperado. Isto se deve ao fato de a malha possuir um maior refinamento tanto próximo aos nós das extremidades da parede superior como na parede inferior, aumentando assim, o tempo de processamento.

### 6.1.2.2 Interação fluido-estrutura pelo método das Fronteiras Imersas

### 6.1.2.2.1 Análise de sensibilidade

Da mesma forma que no problema de dinâmica dos fluidos, utilizou-se para a análise de sensibilidade malhas com número crescente de elementos finitos do tipo P2P1. As Tab. 6.20, 6.21, 6.22, 6.23, 6.24, 6.25 e 6.26 apresentam o tempo total para o *assembly* das matrizes globais, solução do sistema de equações e simulação para uma malha com 98, 512, 1058, 5618, 11858, 20000 e 40328 elementos tanto para o processamento sequencial quanto para o paralelizado na GPU.

	#Elementos = 98								
	Sequencial								
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)					
—	0.012	—	_	0.012					
1	—	0.017	0.105	0.122					
2	—	0.017	0.007	0.024					
3	—	0.017	0.005	0.022					
4	—	0.017	0.005	0.022					
5	—	0.016	0.005	0.021					
6	—	0.017	0.005	0.022					
7	—	0.017	0.006	0.023					
	0.012	0.118	0.138	0.268					
		Paralelo							
_	0.015	—	_	0.015					
1	—	0.022	0.100	0.122					
2	—	0.015	0.015	0.030					
3	—	0.015	0.020	0.035					
4	—	0.010	0.016	0.026					
5	—	0.011	0.018	0.029					
6	—	0.010	0.018	0.028					
7	—	0.010	0.018	0.028					
	0.015	0.093	0.205	0.313					

Tabela 6.20 – Tempo total para o assembly das matrizes globais, solução do sistema de equações e simulação para uma malha com 98 elementos.

Tabela 6.21 – Tempo total para o assembly das matrizes globais, solução do sistema de equações e simulação para uma malha com 512 elementos.

	#Elementos = 512								
		Sequencial							
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)					
_	0.045	—	_	0.045					
1	—	0.066	0.117	0.183					
2	—	0.067	0.019	0.086					
3	—	0.067	0.018	0.085					
4	—	0.067	0.017	0.084					
5	—	0.067	0.018	0.085					
6	—	0.067	0.017	0.084					
7	—	0.066	0.019	0.085					
8	—	0.069	0.018	0.087					
	0.045	0.536	0.243	0.824					
		Paralelo	•						
_	0.031	—	—	0.031					
1	—	0.031	0.169	0.200					
2	—	0.022	0.048	0.070					
3	—	0.024	0.060	0.084					
4	—	0.022	0.046	0.068					
5	—	0.022	0.047	0.069					
6	—	0.022	0.060	0.082					
7	—	0.015	0.015	0.030					
8	-	0.022	0.015	0.037					
	0.031	0.180	0.460	0.671					

#Elementos = 1058								
		Sequencial						
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)				
_	0.085	—	_	0.085				
1	—	0.131	0.141	0.272				
2	—	0.133	0.039	0.172				
3	—	0.130	0.037	0.167				
4	—	0.129	0.037	0.166				
5	—	0.132	0.037	0.169				
6	—	0.130	0.037	0.167				
7	—	0.129	0.037	0.166				
8	—	0.131	0.038	0.169				
	0.085	1.045	0.403	1.533				
		Paralelo						
_	0.046	_	—	0.046				
1	—	0.062	0.205	0.267				
2	—	0.039	0.106	0.145				
3	—	0.039	0.106	0.145				
4	—	0.039	0.046	0.085				
5	—	0.040	0.015	0.055				
6	—	0.046	0.031	0.077				
7	—	0.031	0.031	0.062				
8	-	0.046	0.037	0.083				
	0.046	0.342	0.577	0.965				

Tabela 6.22 – Tempo total para oassemblydas matrizes globais, solução do sistema de equações e simulação para uma malha com 1058 elementos.

Tabela 6.23 –	- Tempo	total	para	0 0	assembly	$\operatorname{das}$	matrizes	globais,	solução	do	$\operatorname{sistema}$	de	equações	$\mathbf{e}$
	simulaç	ão pai	ra uma	a m	alha com	ı 561	8 element	os.						

	#Elementos = 5618								
		Sequencial							
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)					
_	0.417	_	—	0.417					
1	—	0.666	0.351	1.017					
2	_	0.682	0.230	0.912					
3	—	0.687	0.255	0.942					
4	—	0.686	0.241	0.927					
5	—	0.677	0.249	0.926					
6	—	0.682	0.253	0.935					
7	—	0.679	0.260	0.939					
8	—	0.68	0.2420	0.922					
	0.417	5.439	2.081	7.937					
		Paralelo							
_	0.200	_	—	0.200					
1	—	0.168	0.278	0.446					
2	—	0.163	0.162	0.325					
3	—	0.147	0.216	0.363					
4	—	0.158	0.185	0.343					
5	—	0.163	0.188	0.351					
6	—	0.163	0.191	0.354					
7	—	0.162	0.181	0.343					
8	-	0.163	0.191	0.354					
	0.200	1.287	1.592	3.079					

	#Elementos = 11858									
		Sequencial								
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	ssembly $\mathbf{K} \in \mathbf{G}$ (s)   Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)								
_	0.863	—	—	0.863						
1	—	1.412	0.644	2.056						
2	—	1.418	0.522	1.940						
3	—	1.420	0.522	1.942						
4	—	1.425	0.496	1.921						
5	—	1.420	0.503	1.923						
6	—	1.420	0.498	1.918						
7	—	1.411	0.499	1.910						
8	—	1.412	0.495	1.907						
	0.863	11.338	4.179	16.380						
		Paralelo								
_	0.381	_	—	0.381						
1	—	0.331	0.459	0.790						
2	—	0.317	0.369	0.686						
3	—	0.320	0.353	0.673						
4	—	0.317	0.380	0.697						
5	—	0.321	0.354	0.675						
6	—	0.311	0.358	0.669						
7	—	0.321	0.364	0.685						
8	-	0.324	0.379	0.703						
	0.381	2.562	3.016	5.959						

Tabela 6.24 – Tempo total para oassemblydas matrizes globais, solução do sistema de equações e simulação para uma malha com 11858 elementos.

Tabela 6.25 -	- Tempo	total	$\operatorname{para}$	0	assembly	das	matrizes	globais,	solução	$\operatorname{do}$	$\operatorname{sistema}$	de	equações	$\mathbf{e}$
	simulaç	ão par	ra uma	a r	nalha com	n 200	000 elemer	ntos.						

	#Elementos = 20000						
	Sequencial						
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)			
_	1.479	—	_	1.479			
1	-	2.373	1.206	3.579			
2	-	2.390	0.984	3.374			
3	—	2.384	0.977	3.361			
4	_	2.404	0.961	3.365			
5	—	2.411	0.968	3.379			
6	-	2.400	0.963	3.363			
7	-	2.389	0.969	3.358			
8	—	2.403	0.970	3.373			
	1.479	19.154	7.998	28.631			
		Paralelo					
_	0.627	—	—	0.627			
1	_	0.539	0.791	1.330			
2	-	0.512	0.711	1.223			
3	—	0.512	0.733	1.245			
4	—	0.509	0.701	1.210			
5	—	0.517	0.827	1.344			
6	-	0.511	0.711	1.222			
7	-	0.520	0.736	1.256			
8	-	0.512	0.710	1.222			
	0.627	4.132	5.920	10.679			

#Elementos = 40328							
	Sequencial						
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)			
_	3.006	—	—	3.006			
1	—	4.791	2.349	7.140			
2	-	4.960	2.062	7.022			
3	—	4.842	2.155	6.997			
4	—	4.854	2.070	6.924			
5	—	4.866	2.107	6.973			
6	—	4.857	2.023	6.880			
7	—	4.835	2.036	6.871			
8	—	4.798	2.007	6.805			
	3.006	38.803	16.809	58.618			
		Paralelo					
_	4.507	—	_	4.507			
1	—	1.110	1.456	2.566			
2	—	1.060	1.353	2.413			
3	—	1.071	1.322	2.393			
4	—	1.066	1.578	2.644			
5	—	1.113	1.323	2.436			
6	—	1.049	1.315	2.364			
7	—	1.071	1.462	2.533			
8	-	1.090	1.352	2.442			
	4.507	8.630	11.161	24.298			

Tabela 6.26 – Tempo total para oassemblydas matrizes globais, solução do sistema de equações e simulação para uma malha com 40328 elementos.

A Fig. 6.19 mostra o comparativo entre o processamento sequencial e paralelo para o tempo total do *assembly* das matrizes globais e o *speedup* alcançado.

Figura 6.19 – Comparativo do tempo total para o assembly das matrizes globais e o speedup alcançado.



A Fig. 6.20 mostra o comparativo entre o processamento sequencial e paralelo para

o tempo total da simulação e o speedup alcançado.

3 Sequencial 60 Paralelo speedup 2.550 $\mathbf{2}$ 40 peedupt(s)1.530 1 200.5100 0 5129810585618 11858 20000 40328 #elementos Fonte: O autor



Figura 6.20 - Comparativo do tempo total da simulação e o speedup alcançado.

Os resultados comparativos mostram uma considerável diminuição no tempo de processamento, com um speedup de aproximadamente 4 para o assembly das matrizes globais para a malha com 20000 elementos. A curva do speedup, como pode ser observado na Fig. 6.19, apresenta uma diminuição em sua inclinação, acima de 20000 elementos.

O tempo total para solução do problema mostra um speedup de aproximadamente 2.5 para a malha de elementos finitos mais refinada. Isto se deve ao fato de que a solução do sistema de equações lineares é realizada de forma sequencial utilizando o pacote PARDISO. Acima de 12000 elementos a curva do *speedup* apresenta uma diminuição em sua inclinação.

Pode-se observar que em uma malha pouco refinada o processamento sequencial é mais vantajoso que o processamento paralelizado na GPU. A justificativa para tal fenômeno está relacionado com o tempo necessário para que a GPU inicie o processo de paralelização (inicialização dos blocos de threads, das threads e outros processos de inicializações internos da placa gráfica).

#### 6.1.2.2.2 Resultados

Executou-se o mesmo problema com o método das Fronteiras Imersas, utilizando-se uma malha para o fluido com 41228 elementos do tipo P2P1 e 83341 nós e uma malha para a estrutura constituída de 408 elementos quadrangulares de 9 nós e 1735 nós, sobreposta a essa, simulando a parede (Fig. 6.21).



Figura 6.21 – (a) Malha de elementos finitos do fluido com 41228 elementos do tipo P2P1 e 83341 nós e (b) malha de elementos finitos da estrutura com 408 elementos quadrangulares e 1735 nós.

Fonte: O autor

A Fig. 6.22 apresenta os perfis de velocidade e linhas de corrente no domínio.

Figura 6.22 – Perfis de velocidade (a) e linhas de corrente (b) para Re = 400 em uma cavidade com malha não-conforme utilizando o método das Fronteiras Imersas.



Fonte: O autor

A Fig. 6.23 mostra o perfil de velocidades para validação e comparação dos resultados entre as duas malhas apresentadas com números de Reynolds igual a 400.



Figura 6.23 – Velocidade u ao longo da linha vertical sobre o centro geométrico da cavidade.

A Fig. 6.24 mostra os multiplicadores de Lagrange ao longo da linha da estrutura.



Figura 6.24 – Multiplicadores de Lagrange ao longo da linha da estrutura.

## 6.1.2.2.3 Análise de desempenho

As Tab. 6.27 apresenta o tempo total para o *assembly* das matrizes globais, solução do sistema de equações e simulação para uma malha com 41228 elementos do tipo P2P1 tanto para o processamento sequencial quanto para o paralelizado na GPU.

#Elementos = 41228							
	Sequencial						
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)			
_	3.176	—	_	3.176			
1	—	5.059	2.336	7.395			
2	—	5.429	2.225	7.654			
3	—	5.061	2.203	7.264			
4	—	5.06	2.228	7.288			
5	—	5.042	2.242	7.284			
6	—	5.06	2.243	7.303			
7	—	5.029	2.252	7.281			
8	—	5.07	2.206	7.276			
	3.176	40.81	17.935	51.469			
		Paralelo					
_	1.271	_	—	1.271			
1	—	1.049	3.364	4.413			
2	—	0.992	3.283	4.275			
3	—	1.024	3.085	4.109			
4	—	0.997	2.867	3.864			
5	—	1.006	2.938	3.944			
6	—	1.033	3.107	4.14			
7	—	1.009	3.007	4.016			
8	—	1.007	3.088	4.095			
	1.271	8.117	24.739	28.761			

Tabela 6.27 – Tempo total para oassemblydas matrizes globais, solução do sistema de equações e simulação para uma malha com 41228 elementos.

A Fig. 6.25 mostra o comparativo entre o processamento sequencial e paralelo para o tempo total do *assembly* e da simulação e o *speedup* alcançado.

Figura 6.25 – Comparativo do tempo total do assembly das matrizes globais e da simulação e ospeedupalcançado.



Os resultados comparativos mostram uma considerável diminuição no tempo de

processamento, com um *speedup* de aproximadamente 5 para o *assembly* das matrizes globais e de aproximadamente 2 para o tempo total da simulação. Estes valores vão de encontro com a análise de sensibilidade, apesar de apresentar *speedups* abaixo do esperado. Isto se deve ao fato de a malha possuir um maior refinamento próximo aos nós das extremidades da parede superior, aumentando assim, o tempo de processamento.

# 6.2 Escoamento em torno de um cilindro

Este é outro exemplo clássico da literatura e muito utilizado como um caso de validação tanto para códigos CFD quanto para códigos de interação fluido-estrutura. Para fins de verificação e validação do código em GPU, os parâmetros encontrados em Schaffer et al. (1996) serão utilizados uma vez que esta referência apresenta resultados de simulações de diversos grupos de pesquisa em atividade.

Serão apresentados dois exemplos, um com malha conforme e outro com malha não conforme utilizando o método das Fronteiras Imersas. Os coeficientes de sustentação  $c_L$  e de arrasto  $c_D$  (Eq. 6.3) foram calculados para uma avaliação quantitativa, validação do *software* e comparação com resultados de outros grupos de pesquisa como Gomes (2013) e Schaffer et al. (1996) – dos grupos de pesquisa escolhidos para o *benchmark*, este trabalho utilizou os resultados do grupo de Bänsch, E. *et al.* da *Univ. Freiburg, Inst. für Angewandte Mathematik* pois resolveram o problema de dinâmica dos fluidos pelo método dos elementos finitos com malha não-estruturada e elementos do tipo P2P1.

Os coeficientes de arrasto e sustentação podem ser calculados da seguinte forma:

$$c_L = \frac{2F_v}{\rho \overline{U}D}$$
 e  $c_D = \frac{2F_h}{\rho \overline{U}D}$  (6.3)

onde:

- $F_v$ : Força resultante vertical;
- $F_h$ : Força resultante horizontal;
- $\rho$ : Densidade do fluido;
- $\overline{U}$ : Velocidade média do fluido  $\overline{U}(t) = 2U(0, H/2, t)/3;$
- *D*: Diâmetro do cilindro.

O escoamento se dá através de um canal estreito de comprimento L = 2, 2m e altura H = 0, 41m, com origem do sistema de referência no canto inferior esquerdo. A Fig. 6.26 descreve a geometria e as condições de contorno utilizadas nos exemplos a seguir.



# 6.2.1 Dinâmica dos fluidos

## 6.2.1.1 Análise de sensibilidade

Para a análise de sensibilidade desta simulação foram utilizadas malhas com número crescente de elementos finitos do tipo P2P1. As Tab. 6.28, 6.29, 6.30, 6.31, 6.32, 6.33 e 6.34 apresentam o tempo total para o *assembly* das matrizes globais, solução do sistema de equações e simulação para uma malha com 100, 596, 1056, 5200, 10406, 20322 e 41612 elementos tanto para o processamento sequencial quanto para o paralelizado na GPU.

	#Elementos = 100						
	Sequencial						
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)			
_	0.034	—	—	0.034			
1	—	0.015	0.100	0.115			
2	—	0.022	0.000	0.022			
3	—	0.037	0.000	0.037			
4	—	0.015	0.003	0.018			
5	—	0.031	0.000	0.031			
6	—	0.019	0.000	0.019			
	0.034	0.139	0.103	0.242			
		Paralelo					
_	0.015	—	_	0.015			
1	—	0.015	0.100	0.115			
2	—	0.003	0.015	0.018			
3	—	0.000	0.015	0.015			
4	—	0.000	0.015	0.015			
5	—	0.000	0.015	0.015			
6	—	0.000	0.000	0.000			
	0.015	0.018	0.160	0.178			

Tabela 6.28 – Tempo total para oassemblydas matrizes globais, solução do sistema de equações e simulação para uma malha com 100 elementos.

Tabela 6.29 – Tempo total para o assembly das matrizes globais, solução do sistema de equações e simulação para uma malha com 596 elementos.

	#Elementos = 596						
	Sequencial						
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)			
_	0.084	—	—	0.084			
1	—	0.131	0.115	0.246			
2	—	0.131	0.016	0.147			
3	—	0.116	0.031	0.147			
4	—	0.122	0.015	0.137			
5	—	0.135	0.031	0.166			
6	—	0.132	0.031	0.163			
	0.084	0.767	0.239	1.006			
		Paralelo	•				
_	0.017	—	—	0.017			
1	—	0.031	0.122	0.153			
2	—	0.015	0.015	0.03			
3	—	0.015	0.046	0.061			
4	—	0.015	0.046	0.061			
5	—	0.014	0.041	0.055			
6	—	0.014	0.041	0.055			
	0.017	0.104	0.311	0.415			

	#Elementos = 1056						
	Sequencial						
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)			
_	0.162	—	—	0.162			
1	—	0.238	0.147	0.385			
2	—	0.232	0.053	0.285			
3	—	0.231	0.046	0.277			
4	—	0.222	0.046	0.268			
5	—	0.232	0.053	0.285			
6	—	0.231	0.047	0.278			
	0.162	1.386	0.392	1.778			
		Paralelo					
_	0.031	—	_	0.031			
1	—	0.031	0.147	0.178			
2	—	0.022	0.046	0.068			
3	—	0.022	0.081	0.103			
4	—	0.023	0.065	0.088			
5	—	0.024	0.085	0.109			
6	—	0.024	0.066	0.09			
	0.031	0.146	0.490	0.636			

Tabela 6.30 – Tempo total para oassemblydas matrizes globais, solução do sistema de equações e simulação para uma malha com 1056 elementos.

Tabela 6.31 – Tempo total para o assembly das matrizes globais, solução do sistema de equações e simulação para uma malha com 5200 elementos.

	#Elementos = 5200						
	Sequencial						
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)			
_	0.736	—	—	0.736			
1	_	1.159	0.369	1.528			
2	—	1.164	0.285	1.449			
3	—	1.160	0.290	1.45			
4	—	1.164	0.300	1.464			
5	—	1.176	0.284	1.46			
6	—	1.156	0.300	1.456			
	0.736	6.979	1.828	8.807			
		Paralelo					
_	0.147	—	—	0.147			
1	—	0.105	0.406	0.511			
2	—	0.100	0.207	0.307			
3	—	0.100	0.216	0.316			
4	—	0.100	0.216	0.316			
5	—	0.100	0.199	0.299			
6	_	0.100	0.212	0.312			
	0.147	0.605	1.456	2.061			

	#Elementos = 10406					
		Sequencial				
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)		
_	1.418	_	_	1.418		
1	—	2.299	0.767	3.066		
2	—	2.323	0.691	3.014		
3	—	2.317	0.700	3.017		
4	—	2.306	0.694	3.000		
5	—	2.323	0.707	3.030		
6	—	2.322	0.716	3.038		
	1.418	13.89	4.275	18.165		
		Paralelo	•			
_	0.27	—	—	0.27		
1	—	0.215	0.531	0.746		
2	—	0.211	0.456	0.667		
3	—	0.211	0.458	0.669		
4	—	0.214	0.459	0.673		
5	—	0.215	0.460	0.675		
6	—	0.216	0.450	0.666		
	0.27	1.282	2.814	4.096		

Tabela 6.32 – Tempo total para oassemblydas matrizes globais, solução do sistema de equações e simulação para uma malha com 10406 elementos.

Tabela 6.33 – Tempo total para oassemblydas matrizes globais, solução do sistema de equações e simulação para uma malha com 20322 elementos.

	#Elementos = 20322						
	Sequencial						
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)			
_	2.739	—	—	2.739			
1	—	4.386	1.587	5.973			
2	—	4.429	1.441	5.87			
3	—	4.433	1.485	5.918			
4	—	4.410	1.495	5.905			
5	—	4.428	1.458	5.886			
6	—	4.427	1.492	5.919			
	2.739	26.513	8.958	35.471			
		Paralelo					
_	0.482	—	_	0.482			
1	—	0.430	1.055	1.485			
2	—	0.407	1.002	1.409			
3	—	0.418	0.946	1.364			
4	—	0.395	0.959	1.354			
5	—	0.414	0.985	1.399			
6	—	0.413	0.963	1.376			
	0.482	2.477	5.910	8.387			

	#Elementos = 41612						
	Sequencial						
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)			
_	5.696	_	—	5.696			
1	_	9.170	3.453	12.623			
2	_	9.217	3.404	12.621			
3	_	9.174	3.294	12.468			
4	_	9.197	3.413	12.610			
5	_	9.153	3.366	12.519			
6	—	9.166	3.363	12.529			
	5.696	55.077	20.293	75.370			
		Paralelo		·			
_	1.02	—	_	1.02			
1	—	0.852	2.178	3.03			
2	—	0.833	2.138	2.971			
3	—	0.832	2.079	2.911			
4	—	0.846	2.175	3.021			
5	—	0.827	2.051	2.878			
6	—	0.840	2.042	2.882			
	1.020	5.030	12.663	17.693			

Tabela 6.34 – Tempo total para o assembly das matrizes globais, solução do sistema de equações e simulação para uma malha com 41612 elementos.

A Fig. 6.2 mostra o comparativo entre o processamento sequencial e paralelo para o tempo total do *assembly* das matrizes globais e o *speedup* alcançado.

Figura 6.27 – Comparativo do tempo total para o assembly das matrizes globais e o speedup.



A Fig. 6.28 mostra o comparativo entre o processamento sequencial e paralelo para o tempo total da simulação e o speedup alcançado.



Figura 6.28 – Comparativo do tempo total para o assembly das matrizes globais e o speedup.

Os resultados comparativos mostram uma considerável diminuição no tempo de processamento, com um *speedup* de aproximadamente 10 para o *assembly* das matrizes globais para a malha de elementos finitos mais refinada. A curva do *speedup*, como pode ser observado na Fig. 6.2, apresenta uma diminuição em sua inclinação e estabilização acima de 5000 elementos. Ou seja, acima deste valor, aumentando-se o número de elementos não obter-se-á um aumento significativo de *speedup*, como acontece para as malhas menos refinadas.

O tempo total para solução do problema mostra um *speedup* de aproximadamente 4.5 para a malha de elementos finitos mais refinada. Isto se deve ao fato de que a solução do sistema de equações lineares é realizada de forma sequencial utilizando o pacote PARDISO (KUZMIN et al., 2013). Acima de 10000 elementos a curva do *speedup* apresenta leve uma diminuição em sua inclinação. Ou seja, a mesma observação anterior – aumento do número de elementos não obtém-se um aumento do *speedup* – pode ser feita no tempo total para solução do problema.

Pode-se observar que em uma malha pouco refinada não há vantagem em se utilizar o processamento paralelo ao invés do sequencial (*speedup* de aproximadamente 1.5). A justificativa para tal fenômeno está relacionado com o tempo necessário para que a GPU inicie o processo de paralelização (inicialização dos blocos de *threads*, das *threads* e outros processos de inicializações internos da placa gráfica).

# 6.2.2 Resultados

Para o exemplo com uma malha conforme em um problema de dinâmica dos fluidos foi utilizada uma malha com 10138 elementos do tipo P2P1 e 20834 nós e é apresentada na Fig. 6.29.

Figura 6.29 – Malha com 10138 elementos finitos do P2P1 e 20834 nós.



Fonte: O autor

### 6.2.2.1 Caso estacionário

A velocidade na entrada do canal é dada por:

$$U(0,y) = 4U_m y (H-y) / H^2, V = 0$$

com  $U_m = 0, 3m/s$ . O número de Reynolds, para esta velocidade e configuração de canal é dado por Re = 20.

A Fig. 6.30 apresenta os resultados do campo de velocidade em m/s e pressão em Pa para esta configuração.



Figura 6.30 – Campo de velocidades (a) e de pressão (b) para Re = 20.

Fonte: O autor

Os resultados quantitativos são apresentados na Tab. 6.35.

	$c_L$	$c_D$
Presente trabalho	0.0104	5.5837
Gomes $(2013)$	0.0102	5.5921
Bänsch, E. $et al.$ (1996)	0.0110	5.5760

Tabela 6.35 – Comparação dos coeficientes de sustentação e arrasto para o caso estacionário.

## 6.2.2.2 Caso transiente

A velocidade na entrada do canal é dada por:

$$U(0, y, t) = 4U_m y (H - y) / H^2, V = 0$$

com  $U_m = 1, 5m/s$ . O número de Reynolds, para esta velocidade e configuração de canal é dado por Re = 100.

As Fig. 6.31, 6.32, 6.33, 6.34 apresentam os resultados do campo de velocidades em m/s e pressão em Pa para diferentes instantes de tempo.

Figura 6.31 – Campo de velocidades (a) e pressão (b) para t = 2, 5s.



Fonte: O autor


Figura 6.32 – Campo de velocidades (a) e pressão (b) para t=3,5s.



Figura 6.33 – Campo de velocidades (a) e pressão (b) para t=6,0s.







Figura 6.34 – Campo de velocidades (a) e pressão (b) para t = 8, 0s.



A Fig. 6.35 apresenta os coeficientes de arrasto e sustentação para o caso transiente no tempo.



Figura 6.35 – Coeficientes de arrasto e de sustentação no tempo.

Os resultados quantitativos são apresentados na Tab. 6.36.

Tabela 6.36 – Comparação dos coeficientes de sustentação e arrasto máximos para o caso transiente.

	$c_{Lmax}$	$c_{Dmax}$
Presente trabalho	0.9635	3.4153
Gomes $(2013)$	1.0369	3.2450
Bänsch, E. et al. (1996)	1.0060	3.2240

## 6.2.3 Análise de desempenho

### 6.2.3.1 Caso estacionário

As Tab. 6.37 apresenta o tempo total para o *assembly* das matrizes globais, solução do sistema de equações e simulação para uma malha com 10138 elementos do tipo P2P1 tanto para o processamento sequencial quanto para o paralelizado na GPU para o caso estacionário.

	#E	lementos $= 10138$		
		Sequencial		
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)
_	1.219	_	—	1.219
1	—	1.946	0.747	2.693
2	—	1.958	0.653	2.611
3	—	1.959	0.658	2.617
4	—	1.959	0.663	2.622
5	—	1.958	0.662	2.620
6	—	1.961	0.662	2.623
	1.219	11.741	4.045	15.786
		Paralelo		
_	0.261	—	—	0.261
1	_	0.224	0.544	0.768
2	—	0.200	0.428	0.628
3	_	0.202	0.429	0.631
4	_	0.201	0.441	0.642
5	—	0.200	0.434	0.634
6	—	0.201	0.423	0.624
	0.261	1.228	2.699	3.927

Tabela 6.37 –	Tempo total	para o	assembly	das	matrizes	globais,	solução	do	sistema	de	equações	е
	simulação pa	ra uma i	malha con	n 101	38 elemer	ntos.						

A Fig. 6.36 mostra o comparativo entre o processamento sequencial e paralelo para o tempo total do assembly e da simulação e o speedup alcançado.

Figura 6.36 – Comparativo do tempo total do assembly das matrizes globais e da simulação e ospeedupalcançado.



Os resultados comparativos mostram uma considerável diminuição no tempo de processamento, com um *speedup* de aproximadamente 9 para o *assembly* das matrizes globais e de aproximadamente 4 para o tempo total da simulação. Estes valores vão de encontro com a análise de sensibilidade, apesar de apresentar *speedups* abaixo do esperado. Isto se deve ao fato de a malha possuir um maior refinamento próximo ao cilindro, aumentando assim, o tempo de processamento.

#### 6.2.3.2 Caso transiente

As Tab. 6.38 apresenta o tempo total para o *assembly* das matrizes globais, solução do sistema de equações e simulação para uma malha com 10138 elementos do tipo P2P1 tanto para o processamento sequencial quanto para o paralelizado na GPU para o caso transiente.

	#Elem	nentos = 10138			
	S	equencial			
#Time Step	Assembly $\mathbf{K}, \mathbf{G} \in \mathbf{M}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)	
_	1.987	—	_	1.987	
1 - 1001	_	7700.883	2636.213	10337.096	
	1.987	7700.883	2636.213	10339.083	
	Paralelo				
_	0.300	—	—	0.300	
1 - 1001	-	872.765	2366.080	3238.845	
	0.300	872.765	2366.080	3239.145	

Tabela 6.38 – Tempo total para o assembly das matrizes globais, solução do sistema de equações e simulação para uma malha com 10138 elementos.

A Fig. 6.37 mostra o comparativo entre o processamento sequencial e paralelo para o tempo total do *assembly* e da simulação e o *speedup* alcançado.



Figura 6.37 – Comparativo do tempo total para <br/>oassemblydas matrizes globais e da simulação e <br/>ospeedupalcançado.

Os resultados comparativos mostram uma considerável diminuição no tempo de processamento, com um *speedup* de aproximadamente 9 para o *assembly* das matrizes globais e de aproximadamente 3 para o tempo total da simulação. Estes valores vão de encontro com a análise de sensibilidade, apesar de apresentar *speedups* abaixo do esperado. Isto se deve ao fato de a malha possuir um maior refinamento próximo ao cilindro, aumentando assim, o tempo de processamento.

## 6.2.4 Interação fluido-estrutura pelo método das Fronteiras Imersas

Neste exemplo utiliza-se uma malha de fluido fixa e um cilindro é posicionado sobre esta malha. Da mesma forma que o exemplo anterior, este é um exemplo clássico da literatura como um caso de validação para códigos de interação fluido-estrutura.

#### 6.2.4.1 Análise de sensibilidade

Para a análise de sensibilidade desta simulação foram utilizadas malhas com número crescente de elementos finitos do tipo P2P1. As Tab. 6.39, 6.40, 6.41, 6.42, 6.43, 6.44 e 6.45 apresentam o tempo total para o *assembly* das matrizes globais, solução do sistema de equações e simulação para uma malha com 108, 518, 1040, 5104, 10816, 20856 e 41292 elementos tanto para o processamento sequencial quanto para o paralelizado na GPU.

	#Elementos = 108				
		Sequencial			
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)	
_	0.034	—	_	0.034	
1	—	0.031	0.115	0.146	
2	—	0.019	0.015	0.034	
3	—	0.037	0	0.037	
4	—	0.037	0.015	0.052	
5	_	0.032	0.015	0.047	
	0.034	0.156	0.16	0.35	
		Paralelo		·	
_	0.037	—	_	0.037	
1	—	0.031	0.1	0.131	
2	—	0.02	0.015	0.035	
3	—	0	0.022	0.022	
4	—	0	0.022	0.022	
5	—	0.006	0.022	0.028	
	0.037	0.057	0.181	0.275	

Tabela 6.39 – Tempo total para oassemblydas matrizes globais, solução do sistema de equações e simulação para uma malha com 108 elementos.

Tabela 6.40 – Tempo total para o assembly das matrizes globais, solução do sistema de equações e simulação para uma malha com 518 elementos.

	#I	Elementos = 518		
		Sequencial		
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)
_	0.083	_	_	0.083
1	-	0.115	0.116	0.231
2	_	0.115	0.021	0.136
3	-	0.115	0.021	0.136
4	-	0.115	0.037	0.152
5	-	0.115	0.021	0.136
6	0.083	0.116	0.036	0.152
	0.083	0.691	0.252	1.026
	1	Paralelo	I	1
_	0.046	—	—	0.046
1	_	0.037	0.131	0.168
2	-	0.02	0.046	0.066
3	-	0.03	0.039	0.069
4	-	0.019	0.032	0.051
5	-	0.019	0.033	0.052
6	_	0.019	0.039	0.058
	0.046	0.144	0.32	0.51

	#Elementos = 1040				
		Sequencial			
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)	
_	0.146	-	—	0.146	
1	—	0.232	0.147	0.379	
2	—	0.238	0.064	0.302	
3	—	0.232	0.053	0.285	
4	—	0.238	0.062	0.3	
5	—	0.231	0.053	0.284	
6	—	0.238	0.062	0.3	
	0.146	1.409	0.441	1.996	
		Paralelo			
_	0.037	—	_	0.037	
1	—	0.046	0.132	0.178	
2	—	0.037	0.079	0.116	
3	—	0.031	0.075	0.106	
4	—	0.032	0.08	0.112	
5	—	0.031	0.085	0.116	
6	—	0.031	0.046	0.077	
	0.037	0.208	0.497	0.742	

Tabela 6.41 – Tempo total para oassemblydas matrizes globais, solução do sistema de equações e simulação para uma malha com 1040 elementos.

Tabela 6.42 – Tempo total para o assembly das matrizes globais, solução do sistema de equações e simulação para uma malha com 5104 elementos.

	#Elementos = 5104				
		Sequencial			
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)	
_	0.808	—	—	0.808	
1	—	1.346	0.385	1.731	
2	—	1.366	0.307	1.673	
3	—	1.36	0.316	1.676	
4	—	1.35	0.316	1.666	
5	—	1.356	0.32	1.676	
6	—	1.362	0.316	1.678	
	0.808	8.14	1.96	10.908	
		Paralelo	•		
_	0.196	—	—	0.196	
1	—	0.137	0.345	0.482	
2	—	0.132	0.225	0.357	
3	—	0.132	0.253	0.385	
4	—	0.115	0.231	0.346	
5	—	0.132	0.249	0.381	
6	—	0.132	0.235	0.367	
	0.196	0.78	1.538	2.514	

#Elementos = 10816				
		Sequencial		
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)
_	1.509	—	_	1.509
1	—	2.376	0.794	3.17
2	—	2.385	0.679	3.064
3	—	2.406	0.686	3.092
4	—	2.386	0.688	3.074
5	—	2.403	0.716	3.119
6	—	2.396	0.696	3.092
	1.509	14.352	4.259	20.12
		Paralelo		
_	0.358	—	_	0.358
1	—	0.3	0.536	0.836
2	—	0.269	0.434	0.703
3	—	0.271	0.458	0.729
4	—	0.268	0.451	0.719
5	—	0.275	0.454	0.729
6	—	0.273	0.461	0.734
	0.358	1.656	2.794	4.808

Tabela 6.43 – Tempo total para oassemblydas matrizes globais, solução do sistema de equações e simulação para uma malha com 10816 elementos.

Tabela 6.44 – Tempo total para o assembly das matrizes globais, solução do sistema de equações e simulação para uma malha com 20856 elementos.

	#Elementos = 20856				
		Sequencial			
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)	
_	2.937	—	—	2.937	
1	—	4.666	1.601	6.267	
2	—	4.707	1.438	6.145	
3	—	4.681	1.448	6.129	
4	—	4.682	1.472	6.154	
5	—	4.719	1.702	6.421	
6	—	4.713	1.695	6.408	
	2.937	28.168	9.356	40.461	
		Paralelo	•		
_	0.657	—	_	0.657	
1	—	0.545	0.953	1.498	
2	—	0.519	0.94	1.459	
3	—	0.512	0.877	1.389	
4	—	0.525	0.872	1.397	
5	—	0.535	0.982	1.517	
6	—	0.526	0.973	1.499	
	0.657	3.162	5.597	9.416	

#Elementos = 41292				
		Sequencial		
#Iteração	Assembly $\mathbf{K} \in \mathbf{G}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)
_	5.708	_	_	5.708
1	_	9.077	3.65	12.727
2	_	9.146	3.848	12.994
3	_	9.138	3.561	12.699
4	_	9.142	3.659	12.801
5	_	9.101	3.635	12.736
6	—	9.13	3.653	12.783
	5.708	54.734	22.006	82.448
		Paralelo	•	
_	1.26	—	_	1.26
1	—	1.051	2.271	3.322
2	—	1.039	2.314	3.353
3	—	1.059	2.284	3.343
4	—	1.076	2.698	3.774
5	—	1.039	2.308	3.347
6	—	1.08	2.268	3.348
	1.26	6.344	14.143	21.747

Tabela 6.45 – Tempo total para oassemblydas matrizes globais, solução do sistema de equações e simulação para uma malha com 41292 elementos.

A Fig. 6.38 mostra o comparativo entre o processamento sequencial e paralelo para o tempo total do *assembly* das matrizes globais e o *speedup* alcançado.

Figura 6.38 – Comparativo do tempo total para o assembly das matrizes globais e o speedup alcançado.



A Fig. 6.39 mostra o comparativo entre o processamento sequencial e paralelo para o tempo total da simulação e o speedup alcançado.



Figura 6.39 – Comparativo do tempo total da simulação e o speedup alcançado.

Os resultados comparativos mostram uma considerável diminuição no tempo de processamento, com um *speedup* de aproximadamente 9 para o *assembly* das matrizes globais para a malha com 5104 elementos finitos. A curva do *speedup*, como pode ser observado na Fig. 6.2, apresenta uma diminuição em sua inclinação e estabilização acima de 5000 elementos. Ou seja, acima deste valor, aumentando-se o número de elementos não obter-se-á um aumento significativo de *speedup*, como acontece para as malhas menos refinadas.

O tempo total para solução do problema mostra um *speedup* de aproximadamente 4.5 para a malha com 5104 elementos finitos. Isto se deve ao fato de que a solução do sistema de equações lineares é realizada de forma sequencial utilizando o pacote PARDISO (KUZMIN et al., 2013). A mesma observação anterior – aumento do número de elementos acima de 5000 elementos não obtém-se um considerável aumento de *speedup* – pode ser feita para o comparativo do tempo do total para solução do problema, inclusive, a partir de 208000 elementos, há uma diminuição do *speedup*.

Pode-se observar que em uma malha pouco refinada não há vantagem em se utilizar o processamento paralelo ao invés do sequencial (*speedup* de aproximadamente 1.5). A justificativa para tal fenômeno está relacionado com o tempo necessário para que a GPU inicie o processo de paralelização (inicialização dos blocos de *threads*, das *threads* e outros processos de inicializações internos da placa gráfica).

#### 6.2.4.2 Resultados

Uma malha pra o fluido com 42176 elementos do tipo P2P1 e 84973 nós foram utilizadas e são apresentadas na Fig. 6.40.



Figura 6.40 – Malha com 42176 elementos finitos do P2P1 e 84973 nós.

## 6.2.4.2.1 Solução analítica – Circunferência

Existem duas formas que podem ser utilizadas para gerar o domínio da estrutura no formato de uma circunferência. Gera-se ou uma malha de elementos finitos ou utiliza-se uma equação analítica. A forma utilizada nesta simulação foi por meio de uma equação analítica.

#### 6.2.4.2.2 Equação da circunferência

Suponha-se uma circunferência com raio r posicionado a uma distância a na horizontal e b na vertical da origem conforme Fig. 6.41.





A equação da circunferência é:

$$(x-a)^2 + (y-b)^2 = r^2$$
(6.4)

onde  $x \in y$  são as coordenadas dos pontos sobre a circunferência.

#### 6.2.4.2.3 Intersecção entre a circunferência e a malha de fluido

É necessário encontrar os nós de intersecção entre a circunferência e a malha de fluido. Estes nós de intersecção definem a interface da superfície molhada. Para que se possa encontrar estes nós de intersecção, utiliza-se a seguinte equação:

$$x_{int} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
(6.5)

onde

$$a = m^2 + 1$$
 (6.6)

$$b = 2(mc - mb - a) \tag{6.7}$$

$$c = a^2 + b^2 + c^2 - 2bc - r^2 ag{6.8}$$

Substituindo na equação de uma reta:

$$y = mx + c \tag{6.9}$$

onde:

- *m*: Coeficiente angular da reta;
- c: Coeficiente linear da reta.

sendo assim possível encontrar os nós de intersecção entre a circunferência e a malha de fluido.

#### 6.2.4.3 Caso estacionário

A velocidade na entrada do canal é igual ao exemplo anterior e é dada por:

$$U(0,y) = 4U_m y (H-y) / H^2, V = 0$$

com  $U_m = 0, 3m/s$ . O número de Reynolds, para esta velocidade e configuração de canal é dado por Re = 20.

A Fig. 6.42 apresenta os resultados do campo de velocidade em m/s e pressão em Pa para esta configuração.



(b)

Figura 6.42 – Campo de velocidades (a) e de pressão (b) para Re = 20.

Os resultados quantitativos são apresentados na Tab. 6.46.

Tabela 6.46 – Comparação dos coeficientes de sustentação e arrasto para o caso estacionário.

	$c_L$	$c_D$
Presente trabalho com 180 Multiplicadores de Lagrange	0.0117	5.5790
Gomes (2013) com 170 Multiplicadores de Lagrange	0.0106	5.5867
Bänsch, E. et al. (1996)	0.0110	5.5760

## 6.2.4.3.1 Análise de desempenho

As Tab. 6.47 apresenta o tempo total para o *assembly* das matrizes globais, solução do sistema de equações e simulação para uma malha com 42176 elementos do tipo P2P1 tanto para o processamento sequencial quanto para o paralelizado na GPU.

#Elementos = 42176				
Sequencial				
#Iteração	Assembly $\mathbf{K}, \mathbf{G} \in \mathbf{M}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)
_	2.653	—	—	2.653
1	_	4.277	1.704	5.981
2	_	4.299	1.629	5.928
3	_	4.283	1.625	5.908
4	_	4.276	1.604	5.88
5	_	4.280	1.619	5.899
6	_	4.274	1.61	5.884
	2.653	25.689	9.791	38.133
		Paralelo	·	·
_	1.942	—	—	1.942
1	_	0.601	1.097	1.698
2	_	0.540	1.044	1.584
3	_	0.580	1.042	1.622
4	_	0.545	1.022	1.567
5	_	0.536	1.026	1.562
6	_	0.562	1.009	1.571
	1.942	3.364	6.24	11.546

Tabela 6.47 – Tempo total para oassemblydas matrizes globais, solução do sistema de equações e simulação para uma malha com 1724 elementos.

A Fig. 6.43 mostra o comparativo entre o processamento sequencial e paralelo para o tempo total do *assembly* e da simulação e o *speedup* alcançado.

Figura 6.43 – Comparativo do tempo total para <br/>oassemblydas matrizes globais e da simulação e <br/>ospeedupalcançado.



Os resultados comparativos mostram uma considerável diminuição no tempo de processamento, com um *speedup* de aproximadamente 5.5 para o *assembly* das matrizes globais e de aproximadamente 3.5 para o tempo total da simulação. Estes valores vão de encontro com a análise de sensibilidade, apesar de apresentar *speedups* abaixo do

esperado. Isto se deve ao fato de a malha possuir um maior refinamento próximo aos nós das extremidades da parede superior, aumentando assim, o tempo de processamento.

#### 6.2.4.4 Caso transiente

A velocidade na entrada do canal é igual ao exemplo anterior e é dada por:

$$U(0, y, t) = 4U_m y (H - y) / H^2, V = 0$$

com  $U_m = 1, 5m/s$ . O número de Reynolds, para esta velocidade e configuração de canal é dado por Re = 100.

As Fig. 6.44, 6.45, 6.46, 6.47 apresentam os resultados do campo de velocidades em m/s e pressão em Pa para diferentes instantes de tempo.



Figura 6.44 – Campo de velocidades (a) e pressão (b) para t = 2, 5s.



Figura 6.45 – Campo de velocidades (a) e pressão (b) para t = 3, 5s.



Figura 6.46 – Campo de velocidades (a) e pressão (b) para t = 6, 0s.



Figura 6.47 – Campo de velocidades (a) e pressão (b) para t = 8, 0s.

A Fig. 6.48 apresenta os coeficientes de arrasto e sustentação para o caso transiente no tempo.



Figura 6.48 – Coeficientes de arrasto e de sustentação no tempo.

Os resultados quantitativos são apresentados na Tab. 6.48.

Tabela 6.48 – Comparação dos coeficientes de sustentação e arrasto máximos para o caso transiente.

	$c_{Lmax}$	$c_{Dmax}$
Presente trabalho com 180 Multiplicadores de Lagrange	0.9103	3.2267
Gomes $(2013)$ com 170 Multiplicadores de Lagrange	1.0369	3.2450
Bänsch, E. <i>et al.</i> (1996)	1.0060	3.2240

#### 6.2.4.4.1 Análise de desempenho

As Tab. 6.49 apresenta o tempo total para o *assembly* das matrizes globais, solução do sistema de equações e simulação para uma malha com 1724 elementos do tipo P2P1 tanto para o processamento sequencial quanto para o paralelizado na GPU.

#Elementos = 42176				
	S	Sequencial		
#Time Step	Assembly $\mathbf{K}, \mathbf{G} \in \mathbf{M}$ (s)	Assembly $\mathbf{C} \in \mathbf{C_t}$ (s)	Solução (s)	Total (s)
_	4.162	-	—	4.162
1-1001	—	17600.316	6809.306	24409.622
	4.162	17600.316	6809.306	24413.784
Paralelo				
_	0.786	-	—	0.786
1-1001	_	2277.106	6092.685	8319.791
	0.786	2277.106	6092.685	8320.577

Tabela 6.49 – Tempo total para o assembly das matrizes globais, solução do sistema de equações e simulação para uma malha com 1724 elementos.

A Fig. 6.49 mostra o comparativo entre o processamento sequencial e paralelo para o tempo total do *assembly* e da simulação e o *speedup* alcançado.

Figura 6.49 – Comparativo do tempo total para <br/>oassemblydas matrizes globais e da simulação e <br/>ospeedupalcançado.



Os resultados comparativos mostram uma considerável diminuição no tempo de processamento, com um *speedup* de aproximadamente 8 para o *assembly* das matrizes globais e de aproximadamente 3 para o tempo total da simulação. Estes valores vão de encontro com a análise de sensibilidade, apesar de apresentar *speedups* abaixo do esperado. Isto se deve ao fato de a malha possuir um maior refinamento próximo aos nós das extremidades da parede superior, aumentando assim, o tempo de processamento.

## 6.3 Co-simulação para análise de VIV (*Vortex Induced Vibration*) – HPC_LMC e GIRAFFE

Esta seção descreve a metodologia utilizada para investigar a hidrodinâmica de um *riser* e a interação solo-estrutura no contato do *riser* com o fundo do mar. As simulações foram realizadas utilizando dois softwares desenvolvidos no Laboratório de Mecânica Computacional da Universidade de São Paulo.

## 6.3.1 Metodologia

Para a solução da interação fluido-estrutura utilizou-se o *software* desenvolvido neste trabalho, aqui chamado de HPC_LMC (*High Performance Computing* do Laboratório de Mecânica Computacional da Universidade de São Paulo) e para a solução do *riser* utilizou-se um *software* chamado de GIRAFFE (*Generic Interface Readily Accessible for Finite Elements* (Gay Neto, 2016)). A Fig 6.50 mostra a interação entre os dois *softwares*.





Os passos necessários para que o problema de interação fluido-estrutura seja resolvido são descritos na Tab. 6.50.

Tabela 6.50 – Algoritmo da interação entre os dois *softares* – HPC_LMC e GIRAFFE – para resolução do problema de interação fluido-estrutura.

Algo	ritmo
1:	Executa-se o GIRAFFE utilizando-se o arquivo neutro com as informações do <i>riser</i> ;
2:	O GIRAFFE irá resolver o problema estático e fornecer a catenária do riser como ilustrado na
	Fig. 6.51;
3:	Executa-se o HPC_LMC utilizando-se o arquivo neutro com as informações do fluido. O
	HPC_LMC irá resolver o problema transiente até que a velocidade do fluido estabilize-se ³ ;
4:	Para cada passo de tempo:
4.1:	De forma a simular o problema tridimensional, utilizou-se o código de interação fluido-estrutura
	bidimensional ⁴ , executando de forma paralelizada, diversos planos horizontais pré-definidos.
	Cada plano é responsável por encontrar as forças geradas sobre o <i>riser</i> em uma profundidade
	específica e posteriormente enviar estes dados para o GIRAFFE. Executa-se o HPC_LMC até
	que todos os planos tenham a solução do problema com a convergência esperada;
4.2:	Executa-se o GIRAFFE para resolver a estrutura do <i>riser</i> com as forças nodais geradas em cada
	plano – a partir do passo anterior – até que tenha a solução do problema com a convergência
	esperada;
4.3:	Incrementa-se o passo de tempo com o intervalo definido no arquivo neutro e reexecuta-se o
	passo 4.

- 5: A configuração final após um certo tempo é apresentado na Fig. 6.51.
- Figura 6.51 Passos utilizados para resolver o problema de interação fluido-estrutura (a), (b) e (c) de forma a obter a catenária do *riser* e (d) a configuração final após a imposição da corrente do mar (Gay Neto et al., 2013).



Fonte: O autor

## 6.3.2 Simulação numérica

As seguintes propriedades forma utilizadas para a simulação numérica:

³A velocidade do fluido inicia-se em zero e cresce segundo a equação:  $U(t) = 0.5(1 - \cos(0.5\pi t))$  (de forma a obter uma velocidade de entrada suave e não gerar picos de pressão) até a velocidade definida no arquivo neutro.

⁴Desta forma pode-se reduzir o número de variáveis do problema, consequentemente reduzindo o tempo de processamento.

Comprimento do riser	5000.00	m
Rigidez axial	6.08	GN
Rigidez a flexão	110.80	${ m MN} \cdot { m m}^2$
Rigidez a torção	85.20	${ m MN} \cdot { m m}^2$
Rigidez ao cisalhamento	2.34	GN
Profundidade do mar	1709.00	m
Densidade da água do mar	1000.00	$ m kg/m^3$
Velocidade da corrente do mar	0.50	m/s

Tabela 6.51 – Propriedades físicas do *riser* e do mar (Gay Neto et al., 2013).

As propriedades do fluido e os parâmetros utilizados na simulação são:

Tabela6.52– Propriedades do fluido e os parâmetros utilizados na simulação.

Densidade	1.00	$\rm kg/m^3$
Viscosidade dinâmica	$2.00 \times 10^{-4}$	$\mathrm{Pa}\cdot\mathrm{s}$
Velocidade na entrada	0.50	m/s
Reynolds	100	
Passo de tempo	0.05	s
Tempo máximo de simulação	10.00	s

## 6.3.3 Geometria

A geometria utilizada na simulação é apresentada na Fig. 6.52



Figura 6.52 – Geometria de um plano horizontal qualquer.

Fonte: O autor

Os parâmetros de discretização é apresentado na Tab. 6.53.

Tabela6.53 – Discretização da malha de elementos finitos.

Tamanho base do elemento	0.015	m
Número de elementos	57230	
Número de nós	115161	

## 6.3.4 Solução analítica – Elipse

De forma a simular a corrente do mar aplicada ao *riser* foi criado um plano horizontal em diferentes profundidades. Cada plano é posicionado de acordo com a posição do *riser* em uma determinada profundidade e é responsável por resolver a interação fluido-estrutura e enviar as forças e momentos resultantes para o GIRAFFE. Como cada plano é horizontal a seção de corte entre o plano e o *riser* resulta em uma elipse (Fig. 6.53).

Figura 6.53 – Seção de corte.



Fonte: O autor

O GIRAFFE retorna (em um determinado instante de tempo) o vetor tangente para um nó específico (Fig. 6.54a). Com este vetor é possível encontrar todos os parâmetros da elipse rotacionada como é apresentado na Fig. 6.54b.



Existem duas formas que podem ser utilizadas para gerar o domínio da estrutura no formato de uma elipse. Gera-se ou uma malha de elementos finitos ou utiliza-se uma equação analítica. Como não é possível conhecer *a priori* a posição do riser em uma

Figura 6.54 – Vetor tangente e parâmetros da elipse.

determinada profundidade – dificultando assim a geração da malha – a melhor forma é por meio de uma equação analítica.

## 6.3.5 Equação da elipse rotacionada

Suponha-se uma elipse com raio horizontal h e raio vertical v centrado na origem (Fig. 6.55a).

Figura 6.55 – Elipse e elipse rotacionada.



Fonte: O autor

A equação da elipse não-rotacionada é:

$$\frac{x^2}{h^2} + \frac{y^2}{v^2} = 1 \tag{6.10}$$

onde  $x \in y$  são as coordenadas dos pontos sobre a elipse.

As equações que rotacionam um ponto em relação a origem de um ângulo  $\alpha$  (anti-horário) são:

$$x_r = x\cos\alpha + y\sin\alpha \tag{6.11}$$

$$y_r = y \cos \alpha - x \sin \alpha \tag{6.12}$$

Substituindo estas equações na Eq. 6.10, tem-se a equação da elipse rotacionada (Fig. 6.55b):

$$\frac{\left(x\cos\alpha + y\sin\alpha\right)^2}{h^2} + \frac{\left(y\cos\alpha - x\sin\alpha\right)^2}{v^2} = 1$$
(6.13)

## 6.3.6 Intersecção entre a elipse e a malha de fluido

É necessário encontrar os nós de intersecção entre a elipse rotacionada e a malha de fluido. Estes nós de intersecção definem a interface da superfície molhada. Para que se possa encontrar estes nós de intersecção, utiliza-se a seguinte equação:

$$x_{int} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{6.14}$$

onde

$$a = v^2 \left(\cos^2 \alpha + 2m \cos \alpha \sin \alpha + m^2 \sin^2 \alpha\right) + h^2 \left(m^2 \cos^2 \alpha - 2m \cos \alpha \sin \alpha + \sin^2 \alpha\right)$$
(6.15)

$$b = 2v^2 b_1 \left( \cos \alpha \sin \alpha + m \sin^2 \alpha \right) + 2h^2 b_1 \left( m \cos^2 \alpha - \cos \alpha \sin \alpha \right)$$
(6.16)

$$c = b_1^2 \left( v^2 \sin^2 \alpha + h^2 \cos^2 \alpha \right) - h^2 v^2$$
(6.17)

Substituindo na equação de uma reta:

$$y = mx + b_1 \tag{6.18}$$

onde:

- *m*: Coeficiente angular da reta;
- $b_1$ : Coeficiente linear da reta.

sendo assim possível encontrar os nós de intersecção entre a elipse e a malha de fluido.

As Fig. 6.56a e 6.56b mostram a elipse e a superfície molhada após encontrar os nós de intersecção e ocultando os elementos de fluido que estejam sob a estrutura.

Figura 6.56 – Elipse e superfície molhada



Fonte: O autor

## 6.3.7 Forças resultantes – Multiplicadores de Lagrange

As forças resultantes aplicadas ao *riser* são dadas pelos multiplicadores de Lagrange. A Fig. 6.57 ilusta como os vetores das forças resultantes e o momento são calculados. Figura 6.57 – Vetor de forças resultantes e momento gerados pelos multiplicadores de Lagrange e enviados ao GIRAFFE.



## 6.3.8 Caso estacionário

De forma a testar a solução analítica da elipse no HPC_LMC, foi simulado um escoamento em torno de uma elipse rígida (simulando a seção gerada pela intersecção entre o plano horizontal e o riser) em um problema estacionário.

Os parâmetros utilizados são:

Tabela 6.54 – Parâmetros utilizados no caso estacionário.

Velocidade na entrada	0.20	m/s
Reynolds	40	

## 6.3.8.1 Resultados

A Fig. 6.58 mostra os resultados (campo de velocidade e pressão) para o caso estacionário.

Figura 6.58 – Escoamento em torno de uma elipse rígida; Campo de velocidade (esquerda) e pressão (direita) com Re = 40.



Fonte: O autor

## 6.3.9 Caso transiente

Para o caso transiente foi utilizada a mesma geometria, propriedades do fluido, parâmetros da simulação e metodologia de análise como descrito nas seções anteriores. Utilizou-se uma velocidade crescente na entrada de 0.00 a 0.50 m/s nos primeiros dois segundos e posteriormente uma velocidade constante na entrada de 0.50 m/s até o fim da simulação.

## 6.3.9.1 Resultados

Primeiramente é apresentado o campo de velocidades em t = 2.00 s com uma velocidade constante na entrada de 0.50 m/s. Posteriormente, para cada plano horizontal, são ilustrados os campos de velocidades e pressões em diferentes instantes de tempo (t = 6.00 s, t = 7.50 s e t = 9.00 s) nas profundidades Z = 100.00 m e Z = 400.00 m.





0.00 0.12 0.24 0.36 0.48 0.60 (m/s) Fonte: O autor

Figura 6.60 – Escoamento em torno de uma seção de corte; Campo de velocidade (esquerda) e pressão (direita) com Re = 100 e t = 6.00 s; Profundidades Z = 100.00 m (superior) e Z = 400.00 m (inferior).



Fonte: O autor

Figura 6.61 – Escoamento em torno de uma seção de corte; Campo de velocidade (esquerda) e pressão (direita) com Re = 100, t = 7.50s; Profundidades Z = 100.00 m (superior) e Z = 400.00 m (inferior).



Fonte: O autor

Figura 6.62 – Escoamento em torno de uma seção de corte; Campo de velocidade (esquerda) e pressão (direita) com Re = 100, t = 9.00 s; Profundidades Z = 100.00 m (superior) e Z = 400.00 m (inferior).



0.00 0.14 0.28 0.42 0.56 0.70 (m/s)

0.00 0.04 0.08 0.12 0.16 0.20 (Pa)

Fonte: O autor

# 7 CONCLUSÃO

Este trabalho apresentou uma implementação computacional para a solução da equação de Navier-Stokes para problemas bidimensionais e tridimensionais, tanto estacionários como transientes, utilizando o Método dos Elementos Finitos. Os elementos de Taylor-Hood P2P1 estabilizados para a condição LBB para problemas bidimensionais foram utilizados para a malha de elementos finitos. Foi desenvolvido um algoritmo em C++ para execução sequencial e um para execução em paralelo de forma a resolver os problemas de dinâmica dos fluidos e interação fluido-estrutura tanto em computadores sem placas de vídeo NVIDIA[®], tanto em computadores que possuem o poder da GPU e podem aproveitar o máximo de sua performance. Alguns exemplos foram realizados para validação da implementação computacional e para análise da performance entre o código sequencial e paralelo. As seguintes conclusões podem ser destacadas:

- O código computacional desenvolvido é robusto para escoamentos laminares até valores de Reynolds próximos de 500 (problema do escoamento em uma cavidade) e facilmente extensível para outros problemas;
- Há um speedup considerável de cerca de 10 para o assembly das matrizes globais e 4 para a solução total do problema em comparação com o mesmo código sequencial (todos os problemas);
- O maior gargalo (para que não se obtenha maiores speedups) está na solução do sistema de equações lineares, dependente da quantidade de memória RAM disponível e do poder de processamento da CPU. Até a escrita deste trabalho, o método direto para a solução do sistemas de equações lineares (PARDISO) não permitia a sua paralelização na GPU. Uma possibilidade e muito utilizada na literatura, é a utilização do método iterativo e multigrid;
- Um gargalo muito comum na utilização de GPUs para solução de problemas científicos é a transferência de dados entre o *host* (CPU) e o *device* (GPU). Neste trabalho é apresentado uma forma de evitar este gargalo utilizando a memória compartilhada da GPU como também o acesso contíguo aos dados nodais dos elementos para o *assembly* das matrizes locais e globais, como apresentado no Cap. 2;
- Não foi discutido neste trabalho a utilização de *clusters* de GPUs. Muito comum nos dias de hoje, o *cluster* de GPUs possibilita a execução de problemas científicos que utilizem uma quantidade de dados massiva, como por exemplo análise tridimensional com um grande refinamento da malha de elementos finitos, e a turbulência sem a utilização de modelos numéricos como o DNS (*Direct Numerical Simulation*).

## 7.1 Trabalhos futuros

Dando prosseguimento ao trabalho aqui iniciado, são sugeridos os seguintes estudos futuros:

- Implementar a estabilização numérica para altos Reynolds aumentando o leque de problemas que podem ser resolvidos com o código computacional implementado;
- Implementar a solução do sistema de equações lineares pelo método iterativo (por exemplo, GMRES com pré-condicionadores);
- Utilizar o poder do *cluster* de GPUs possibilitando o estudo de problemas científicos que utilizem uma quantidade massiva de dados, como por exemplo o DNS;
- Implementar a interação fluido-estrutura tridimensional.

# REFERÊNCIAS

AHRENS, J.; GEVECI, B.; LAW, C. ParaView: An End-User Tool for Large Data Visualization. [S.1.]: Elsevier, 2005.

AMDAHL, G. M. Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities. In: *AFIPS spring joint computer conference*. [S.l.: s.n.], 1967.

BAIGES, J.; CODINA, R.; HENKE, F.; SHAHMIRI, S.; WALL, W. A symmetric method for weakly imposing Dirichlet boundary conditions in embedded Finite Element meshes. *International Journal for Numerical Methods in Engineering*, v. 90, p. 636–658, 2012.

BREZZI, F.; FORTIN, M. Mixed and hybrid finite element methods. [S.l.]: Springer-Verlag, 1991.

CECKA, C.; LEW, A. J.; DARVE, E. Assembly of Finite Element Methods on graphics processors. *International Journal for Numerical Methods in Engineering*, v. 85, n. 5, p. 640–669, 2011.

CONTI, T. d. N. Aplicação do método da expansão em funções hierárquicas na solução das equações de Navier-Stokes em duas dimensões para fluidos compressíveis em alta velocidade. Tese (Doutorado) — Universidade de São Paulo, 2006.

ERTURK, E. Discussions on driver cavity flow. International Journal for Numerical Methods in Fluids, v. 60, p. 275–294, 2009.

FARBER, R. CUDA application design and development. [S.l.]: Elsevier, 2011.

FORSTER, C.; WALL, W. A.; RAMM, E. Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. *Computer Methods in Applied Mechanics and Engineering*, v. 196, p. 1278–1293, 2007.

FOWLER, M. UML Distilled: A Brief Guide to the Standard Object Modeling Language. [S.l.]: Addison-Wesley, 2004.

GAMNITZER, P. Residual-based variational multiscale methods for turbulent flows and fluid-structure interaction. Tese (Doutorado) — Technischen Universitat Munchen, 2010.

GAO, G. R.; SATO, M.; AYGUADÉ, E. Guest editors introduction: Special issue on OpenMP. *International Journal of Parallel Programming*, v. 36, n. 3, p. 287–288, 2008.

GASCHE, J. L.; BARBI, F.; VILLAR, M. M. An Efficient Immersed Boundary Method for Solving the Unsteady Flow through Actual Geometries of Reed Valves. In: *International Compressor Engineering Conference*. [S.l.: s.n.], 2012.

GAWLIK, E. S.; KABARIA, H.; LEW, A. J. High-order methods for low Reynolds number flows around moving obstacles based on universal meshes. *International Journal for Numerical Methods in Engineering*, 2015.

Gay Neto, A. *Giraffe User's Manual v.1.0.115.* [S.l.], 2016. Disponível em: <http://sites.poli.usp.br/p/alfredo.gay/GIRAFFE%20User's%20Manual%20v1.0.115.pdf>.

Gay Neto, A.; MALTA, E. R.; PIMENTA, P. M. Catenary riser sliding and rolling on seabed during induced lateral movement. *Marine Structures*, v. 41, p. 223–243, 2015.

Gay Neto, A.; MARTINS, C. A.; PIMENTA, P. M. Static analysis of offshore risers with a geometrically-exact 3D beam model subjected to unilateral contact. *Computational Mechanics*, v. 53, p. 125–145, 2013.

Gay Neto, A.; PIMENTA, P. M.; WRIGGERS, P. Contact between rolling beams and flat surfaces. *International Journal for Numerical Methods in Engineering*, v. 97, p. 683–706, 2014.

GERSTENBERGER, A. An XFEM based fixed-grid approach to fluid-structure interaction. Tese (Doutorado) — Technischen Universistat Munchen, 2010.

GERSTENBERGER, A.; WALL, W. A. Enhancement of fixed-grid methods towards complex fluid-structure interaction applications. *International Journal for Numerical Methods in Fluids*, v. 57, p. 1227–1248, 2008.

GERSTENBERGER, A.; WALL, W. A. An embedded Dirichlet formulation for 3D continua. *International Journal for Numerical Methods in Engineering*, v. 82, p. 537–563, 2010.

GHIA, U.; GHIA, K. N.; SHIN, C. T. High-Re solutions for incompressible flow using Navier-Stokes equations and a multigrid method. *Journal of Computational Physics*, v. 48, p. 387–411, 1982.

GöDDEKE, D. Fast and accurate Finite-Element multigrid solvers for PDE simulations on GPU clusters. Tese (Doutorado) — Technischen Universitat Dortmund, 2011.

GODDEKE, D.; BUIJSSEN, S. H. M.; WOBKER, H.; TUREK, S. GPU acceleration of an unmodified parallel finite element Navier-Stokes solver. In: 2009 International Conference on High Performance Computing & Simulation. [S.l.: s.n.], 2009.

GOMES, H. C. Método dos Elementos Finitos com Fronteiras Imersas aplicado a problemas de dinâmica dos fluidos e interação fluido-estrutura. Tese (Doutorado) — Universidade de São Paulo, 2013.

GOMES, H. C.; PIMENTA, P. M. Embedded interface with discontinuous Lagrange multipliers for fluid-structure interaction analysis. *International Journal for Computational Methods in Engineering Science and Mechanics*, v. 16, p. 98–111, 2015.

HEISTER, T.; KRONBICHLER, M.; BANGERTH, W. Generic Finite Element programming for massively parallel flow simulations. In: *V European Conference on Computational Fluid Dynamics*. Lisboa, Portugal: [s.n.], 2010.

HEISTER, T.; KRONBICHLER, M.; BANGERTH, W. Massively parallel finite element programming. *Lecture Notes in Computer Science*, v. 6305, p. 122–131, 2010.

HSIEH, S.-H.; YANG, Y.-S.; TSAI, P.-L. Improved mesh partitioning for parallel substructure Finite Element computations. In: *The 7th East Asia-Pacific Conference on Structural Engineering and Construction*. Kochi, Japan: [s.n.], 1999.

ILINCA, F.; HETU, J.-F. A finite element immersed boundary method for fluid flow around rigid objects. *International Journal for Numerical Methods in Fluids*, 2010.

JOHN, V. A comparison of parallel solvers for the incompressible Navier-Stokes equations. Computing and Visualization in Science, v. 1, n. 4, p. 193–200, 1999.

KANG, S.; IACCARINO, G.; HAM, F. Dns of buoyancy-dominated turbulent flows on a bluff body using the immersed boundary method. *Journal of Computational Physics*, v. 228, p. 3189–3208, 2009.

KARLSSON, N. An incompressible Navier-Stokes equations solver on the GPU using CUDA. Tese (Doutorado) — Chalmers University of Technology, 2013.

KINDRATENKO, V. Numerical computations with GPUs. [S.I.]: Springer, 2014.

KOLLMANNSBERGER, S.; OZCAN, A.; BAIGES, J.; RUESS, M.; RANK, E.; REALI, A. Parameter-free, weak imposition of Dirichlet boundary conditions and coupling of trimmed and non-conforming patches. *International Journal for Numerical Methods in Engineering*, v. 101, p. 670–699, 2015.

KUTTLER, U.; WALL, W. A. Fixed-point fluid-structure interaction solvers with dynamic relaxation. *Computational Mechanics*, v. 43, p. 61–72, 2008.

KUZMIN, A.; LUISIER, M.; SCHENK, O. Fast methods for computing selected elements of the greens function in massively parallel nanoelectronic device simulations. In: WOLF, F.; MOHR, B.; MEY, D. (Ed.). *Euro-Par 2013 Parallel Processing.* Springer Berlin Heidelberg, 2013, (Lecture Notes in Computer Science, v. 8097). p. 533–544. ISBN 978-3-642-40046-9. Disponível em: <a href="http://dx.doi.org/10.1007/978-3-642-40047-6_54">http://dx.doi.org/10.1007/978-3-642-40047-6_54</a>.

LESOINNE, M.; FARHAT, C. Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations. *Computational Methods Applied to Mechanical Engineering*, v. 134, p. 71–90, 1996.

LIEU, T.; FARHAT, C.; LESOINNE, M. Reduced-order fluid/structure modeling of a complete aircraft configuration. *Computer Methods in Applied Mechanics and Engineering*, v. 195, n. 41-43, p. 5730–5742, 2006.

LIRKOV, I.; MARGENOV, S.; WASNIEWSKI, J. Large-Scale scientific computing. In: 8th International Conferente, LSSC 2011. Sozopol, Bulgaria: [s.n.], 2011.

MELENDO, A.; COLL, A.; PASENAU, M.; ESCOLANO, E.; MONROS, A. *www.gidhome.com.* 2015. [Online; accessed Nov-2015]. Disponível em: <a href="http://www.gidhome.com">http://www.gidhome.com</a>.

MITTAL, S.; TEZDUYAR, T. E. Massively parallel Finite Element computation of incompressible flows involving fluid-body interactions. *Computer Methods in Applied Mechanics and Engineering*, v. 112, n. 1-4, p. 253–282, 1994. ISSN 00457825.

MOLYNEAUX, I. The Art of Application Performance Testing. [S.I.]: O'Reilly, 2009.

MORAES, S. R. d. S. Computação paralela em cluster de GPU aplicado a problema da Engenharia Nuclear. Tese (Doutorado) — Instituto de Engenharia Nuclear, 2012.

PADUA, D. Encyclopedia of parallel computing. [S.l.]: Springer, 2011.

PIMENTA, P. M.; CAMPELLO, E. M. B.; WRIGGERS, P. A fully nonlinear multiparameter shell model with thickness variation and a triangular shell Finite Element. *Computational Mechanics*, v. 34, p. 181–193, 2004. SANDERS, J.; KANDROT, E. CUDA by example: An introduction to General-Purpose programming. [S.l.]: Addison-Wesley, 2011.

SCHAFFER, M.; TUREK, S.; DURST, F.; KRAUSE, E.; RANNACHER, R. Benchmark computations of laminar flow around a cylinder. *Flow Simulation with High-Performance Computers II*, v. 48, p. 547–566, 1996.

SCHROEDER, W.; MARTIN, K.; LORENSEN, B. *The Visualization Toolkit.* [S.1.]: Kitware, 2006.

SEO, J. H.; MITTAL, R. A sharp-interface immersed boundary method with improved mass conservation and reduced pressure oscillations. *Journal of Computational Physics*, v. 230, p. 7347–7363, 2011.

SHAHMIRI, S. A hybrid ALE-fixed-grid approach for fluid-structure interaction. Tese (Doutorado) — Technischen Universistat Munchen, 2014.

SUDHAKAR, Y.; ALMEIDA, J. P. M. de; WALL, W. A. An accurate, robust, and easy-to-implement method for integration over arbitrary polyhedra: Application to embedded interface methods. *Journal of Computational Physics*, v. 273, p. 393–415, 2014.

TEZDUYAR, T. E.; SATHE, S.; SENGA, M.; AURELI, L. Finite element modeling of fluidstructure interactions with spacetime and advanced mesh update techniques. In: 10th International Conference on Numerical Methods in Continuum Mechanics. Zilina, Slovakia: [s.n.], 2005.

WALL, W. A.; GERSTENBERGER, A.; GAMNITZER, P.; FÖRSTER, C.; RAMM, E. Large deformation fluid-structure interaction - Advances in ALE methods and new fixed grid approaches. *Fluid-Structure Interaction: Modelling, Simulation, Optimisation*, v. 53, p. 195–232, 2006.

WALL, W. A.; KUTTLER, U.; GERSTENBERGER, A.; GEE, M.; FORSTER, C. Advances in computational fluid-thin-walled-structure interaction - Formulations and Solvers. New Trends in Thin Structures: Formulation, Optimization and Coupled Problems, v. 519, n. 2001, p. 175–203, 2010.

WANG, C. Y. Exact solutions of the steady-state Navier-Stokes equations. Annual Review of Fluid Mechanics, v. 23, p. 159–177, 1991.

YAO, J.; LIU, G. R.; NARMONEVA, D. A.; HINTON, R. B.; ZHANG, Z. Q. Immersed smoothed finite element method for fluid-structure interaction simulation of aortic valves. *Computational Mechanics*, v. 50, n. 6, p. 789–804, 2012.

YILDIRIM, B.; LIN, S.; MATHUR, S.; MURTHY, J. Y. A parallel implementation of fluid-solid interaction solver using an Immersed Boundary Method. *Computers and Fluids*, Elsevier Ltd., v. 86, p. 251–274, 2013.

ZHANG, Z.-Q.; LIU, G. R.; KHOO, B. C. Immersed smoothed finite element method fot two dimensional fluid-structure interaction. *International Journal for Numerical Methods in Engineering*, v. 90, p. 1292–1320, 2012.

ZHANG, Z. Q.; LIU, G. R.; KHOO, B. C. A three dimensional immersed smoothed finite element method (3D IS-FEM) for fluid-structure interaction problems. *Computational Mechanics*, v. 51, n. 2, p. 129–150, 2013.

# **APÊNDICE A – CUDA**

Neste apêndice é apresentado o código-fonte da implementação computacional em CUDA e todas as funções auxiliares como manipulação de matrizes, verificação de erros associados ao CUDA e o *assembly* das matrizes.

• CUDA_Macros.cuh

```
1
 HPC - LMC
2
 11
 11
3
 //--

 -----//
4
 /*!
 * \brief CUDA_Macros
5
6
 * Esta classe armazena as macros do projeto CUDA
7
8
 * \author Luiz Felipe Couto
9
10
 */
11
 12
 #ifndef HPC_LMC_FEM_CUDA_CORE_CUDA_MACROS_H
13
14
 #define HPC_LMC_FEM_CUDA_CORE_CUDA_MACROS_H
15
16
17
 //-----
 // Include and Forward declaration
18
 //--
19
 #include <cuda_runtime.h>
20
21
 #include <math.h>
22
 #include <stdio.h>
23
 #define IDX2C(i, j, ld) (((j) * (ld)) + (i))
24
25
26
 static void checkCudaErrors(cudaError_t err,
27
 const char *file,
 int line) {
28
29
30
 if (err != cudaSuccess) {
 printf("%s in %s at line %d\n", cudaGetErrorString(err), file, line);
31
32
 }
 }
33
34
 #define HANDLE_ERROR(err) (checkCudaErrors(err, __FILE_, __LINE_))
35
36
 #if defined(USE_SINGLE_PRECISION)
37
 #define Precision float
38
 #elif defined(USE_DOUBLE_PRECISION)
39
40
 #define Precision double
 #endif
41
42
 #endif
43
```

• CUDA_MatrixOperation.cuh

2 11 HPC - LMC 11 //--3 ------// 4/*! 5Header MatrixOperation * ∖brief 6 * Este arquivo é responsável pelas operações com matrizes pequenas na GPU 78 *

```
* \author Luiz Felipe Couto
9
10
 */
 11
 #ifndef HPC_LMC_FEM_CUDA_CORE_MATRIXOPERATION_H
13
 #define HPC_LMC_FEM_CUDA_CORE_MATRIXOPERATION_H
14
15
16
 // Include and Forward declaration
17
 //---
18
 #include "CUDA_Macros.cuh"
19
20
 //-----
21
 22
 // Prototype definition
 //-----
23
24
25
 //! Este método realiza a soma de duas matrizes
26
 /*!
 * \param M Número de linhas
27
 * \param N Número de colunas
28
29
 * \param A Matriz A
 * \param B Matriz B
30
 * \param C Matriz C
31
 */
32
33
 device
 void sum(
 int
 Μ,
34
35
 int
 Ν,
36
 const Precision*
 Α,
 const Precision*
37
 Β.
 Precision*
38
 C);
39
40
 //! Este método realiza a subtração de duas matrizes
 /*!
41
 * \param M Número de linhas
42
 * \param N Número de colunas
43
44
 * \param A Matriz A
 * \param B Matriz B
45
 * \param C Matriz C
46
47
 */
48
 __device__
49
 void subtract(
 int
 Μ.
50
 int
 Ν,
51
 const Precision*
 Α,
 const Precision*
 Β,
52
 Precision*
53
 C);
54
55
 //! Este método realiza a multiplicação de duas matrizes
 /*!
56
 * Operação: A(M \times K) * B(K \times N) = C(M \times N)
58
59
 * \param M Número de linhas da matriz A ou C
60
 * \param N Número de colunas da matriz B ou C
 * \param K Número de colunas de A ou linhas de B
61
62
 * \param A Matriz A
63
 * \param B Matriz B
 * \param C Matriz C
64
 */
65
66
 device
 void multiply(
67
 int
 Μ,
 Ν,
68
 int
69
 int
 Κ,
70
 const Precision*
 Α,
 const Precision*
71
 Β,
 Precision*
 C);
72
73
74
 //! Este método realiza a multiplicação de matriz por escalar
 /*!
75
 * \param M Número de linhas da matriz A ou C
76
 * \param N Número de colunas da matriz B ou C
77
78
 * \param scalar Escalar
79
 * \param A Matriz A
 ∗ \param B Matriz B
80
 */
81
82
 device
 void multiplyScalar(int
 Μ,
83
84
 int
 Ν,
```
```
85
 Precision
 scalar,
86
 const Precision*
 Α,
87
 Precision*
 B);
88
 //! Este método realiza a transposição da matriz
89
90
 /*!
 * \param M Número de linhas
91
 * \param N Número de colunas
92
93
 * \param A Matriz A
 * \param A_T Matriz transposta de A
94
95
 */
96
 _device__
97
 void transpose(int
 Μ,
98
 Ν,
 int
 const Precision*
99
 Α,
100
 Precision*
 A_T);
101
 //! Este método realiza o cálculo do determinante da matriz
102
 /*!
103
 * \param M Número de linhas
104
 * \param N Número de colunas
105
106
 * \param A Matriz A
 * \result
107
 */
108
109
 _device__
 Precision determinant(int
 Μ,
110
111
 int
 Ν,
112
 Precision* A);
113
 //! Este método realiza o cálculo da inversa da matriz
114
115
 /*!
 * \param M Número de linhas
116
 * \param determinant Determinante da matriz A
117
 * \param A Matriz A
118
 * \param AInverse Inversa da matriz A
119
 */
120
121
 device
 void inverse(
122
 size t
 Μ.
123
 Precision
 determinant,
124
 const Precision*
 Α.
 Precision*
125
 AInverse):
126
127
 //! Este método realiza retira um bloco de uma matriz
 /*!
128
129
 * \param iStartRow Linha inicial
 * \param iStartCol Coluna inicial
130
131
 * \param iNumberRows Número de linhas do bloco
 * \param iNumberCols Número de colunas do bloco
132
 * \param A Matriz original
133
 * \param A_Block Bloco da matriz original
134
 * \param ldA_Block Leading do bloco
135
136
 */
 ___device_
138
 void block(size_t
 iStartRow,
 iStartCol,
139
 size_t
 iNumberRows.
140
 size_t
 iNumberCols,
141
 size_t
 const Precision*
 Α,
142
 A_Block,
 Precision*
143
 size_t
 ldA_Block);
144
145
146
 //====
147
 // Implementation
 148
149
 ----- Sum -----
150
 //----
 __device_
151
 Μ,
 void sum(
 int
152
153
 int
 Ν,
154
 const Precision*
 Α,
 const Precision*
 Β,
155
 Precision*
 C)
156
157
 {
 for (int m = 0; m < M; ++m)
158
159
 {
 for (int n = 0; n < N; ++n)
160
```

```
161
 {
162
 C[IDX2C(m, n, M)] = A[IDX2C(m, n, M)] + B[IDX2C(m, n, M)];
163
 }
 }
164
165
 }
166
 //----
167
 ----- subtract -----
 _device__
168
169
 void subtract(
 int
 Μ,
170
 int
 Ν,
 Α,
 const Precision*
171
 const Precision*
172
 Β.
173
 Precision*
 C)
174
 {
 for (int m = 0; m < M; ++m)
175
176
 {
177
 for (int n = 0; n < N; ++n)
178
 {
 C[IDX2C(m, n, M)] = A[IDX2C(m, n, M)] - B[IDX2C(m, n, M)];
179
180
 }
 }
181
 }
182
183
184
 ----- multiply ------
 //-

185
 device
 void multiply(
 Μ.
186
 int
187
 int
 Ν,
188
 int
 Κ,
 const Precision*
189
 Α,
 const Precision*
 Β.
190
191
 Precision*
 C)
192
 {
193
 for (int m = 0; m < M; ++m)
194
 {
195
 for (int n = 0; n < N; ++n)
196
 {
197
 C[IDX2C(m, n, M)] = 0.;
198
199
 for (int k = 0; k < K; ++k)
200
 {
 C[IDX2C(m, n, M)] += A[IDX2C(m, k, M)] * B[IDX2C(k, n, K)];
201
 }
202
203
 }
204
 }
205
 }
206
 //---
207
 ----- multiplyScalar -----
208
 device
 void multiplyScalar(int
 Μ,
209
210
 int
 Ν,
211
 Precision
 scalar,
212
 const Precision*
 Α.
 Precision*
213
 B)
214
 {
215
 for (int m = 0; m < M; ++m)
216
 {
 for (int n = 0; n < N; ++n)
217
218
 {
 B[IDX2C(m, n, M)] = scalar * A[IDX2C(m, n, M)];
219
220
 }
 }
221
222
 }
223
 //-----
224
 ----- transpose -----
225
 ___device__
226
 void transpose(int
 Μ,
 Ν,
227
 int
 const Precision*
228
 Α,
229
 Precision*
 A_T)
230
 {
231
 for (int m = 0; m < M; ++m)
232
 {
233
 for (int n = 0; n < N; ++n)
234
 {
 A_T[IDX2C(n, m, N)] = A[IDX2C(m, n, M)];
235
 }
236
```

237 } 238 } 239 240 //-------- determinant 241 _device__ Precision determinant( 242 int Μ. 243 int Ν, Precision* A) 244 245{ Precision determinant = 0.; 246247 if (M == 2 && N == 2) 248 249{ A[IDX2C(0, 0, M)] * A[IDX2C(1, 1, M)] -A[IDX2C(1, 0, M)] * A[IDX2C(0, 1, M)]; 250 determinant = 251252253 else if (M == 3 && N == 3) 254ł A[IDX2C(0, 0, M)] * A[IDX2C(1, 1, M)] * A[IDX2C(2, 2, M)] + A[IDX2C(0, 1, M)] * A[IDX2C(1, 2, M)] * A[IDX2C(2, 0, M)] + 255determinant = 256257 A[IDX2C(0, 2, M)] * A[IDX2C(2, 1, M)] * A[IDX2C(1, 0, M)] -A[IDX2C(2, 0, M)] * A[IDX2C(1, 1, M)] * A[IDX2C(0, 2, M)] + A[IDX2C(2, 1, M)] * A[IDX2C(1, 2, M)] * A[IDX2C(0, 0, M)] + 258 ( 259 260A[IDX2C(2, 2, M)] * A[IDX2C(0, 1, M)] * A[IDX2C(1, 0, M)]); 261 } 262 263 return determinant; 264 } 265//----- inverse -----266 267_device__ void inverse( 268 size_t Μ, determinant, 269 Precision 270const Precision* Α. 271Precision* AInverse) 272 { 273 if (M == 2)274{ AInverse[IDX2C(0, 0, M)] = (1. / determinant) * A[IDX2C(1, 1, M)]; 275276AInverse[IDX2C(0, 1, M)] = -(1. / determinant) * A[IDX2C(0, 1, M)]; AInverse[IDX2C(1, 0, M)] = -(1. / determinant) * A[IDX2C(1, 0, M)]; AInverse[IDX2C(1, 1, M)] = (1. / determinant) * A[IDX2C(0, 0, M)]; 277278279 } 280 } 281 //---------- block -----282 283 _device_ 284 void block( size_t iStartRow, 285 size t iStartCol. 286 size_t iNumberRows, 287 iNumberCols, size_t 288 const Precision* Α. A_Block. Precision* 289 290size_t ldA_Block) 291 { for (size_t i = 0; i < iNumberRows; ++i)</pre> 292 293 { 294 for (int j = 0; j < iNumberCols; ++j)</pre> 295ł 296 A_Block[IDX2C(iStartRow + i, iStartCol + j, ldA_Block)] = A[IDX2C(i, j, 297 iNumberRows)]; 298 } 299 } } 300 301 #endif 302

• CUDA_NumericalIntegration.cuh



```
5
 * \brief Classe CUDA_NumericalIntegration
6
7
 * Este header é responsável pela definição dos pontos de integração
8
9
 * \author Luiz Felipe Couto
10
 */
 11
12
 #ifndef HPC_LMC_FEM_CUDA_CORE_CUDA_NUMERICALINTEGRATION_H
13
 #define HPC_LMC_FEM_CUDA_CORE_CUDA_NUMERICALINTEGRATION_H
14
15
 //-----
16
 // Include and Forward declaration
17
 //-----
18
 #include "CUDA_Macros.cuh"
19
20
 //-----
21
22
 // Enumeration definition
 //-----
23
 //! Enumeration que define o tipo de integração utilizar.
24
25
 /*!
26
 * Se utilizada a integração de Gauss, utilizar a quadratura adequada ao tipo
27

 * de integração.

28
 */
29
 enum IntegrationElementType
30
 {
 TRIANGLE,
31
 //!< Triângulo
32
 QUADRILATERAL
 //!< Quadrilátero
 };
33
34
 //-----
35
 // Prototype definition
36
 //----
37

38
39
 //! Define as regras de integração
40
 /*!
 * \param integrationElementType Tipo de elemento de integração
41
 * \param iIntegrationOrder Ordem de integração
42
43
 * \param rules Regras de integração
44
 */
 device
45
 void getIntegrationRules(
 IntegrationElementType integrationElementType,
46
 size_t
 iIntegrationOrder,
47
48
 Precision*
 rules);
49
 //-----
50
51
 // Device Function
 //-----

53
 //-----
54
 ------ initializeIntegrationRules
55
 ___device_
56
 void getIntegrationRules(
 IntegrationElementType integrationElementType,
 iIntegrationOrder,
 size_t
58
 Precision*
 rules)
59
 {
 if (integrationElementType == TRIANGLE)
60
61
 {
 if (iIntegrationOrder == 1)
62
63
 {
 rules[IDX2C(0, 0, 12)] = 1.00000000000000;
rules[IDX2C(0, 1, 12)] = 0.33333333333333333;
64
65
 66
67
 }
68
69
 else if (iIntegrationOrder == 3)
70
 {
 71
 rules[IDX2C(0, 1, 12)] = 0.666666666666666667;
rules[IDX2C(0, 2, 12)] = 0.16666666666666667;
rules[IDX2C(0, 3, 12)] = 0.00000000000000000;
72
73
74
75
 76
 rules[IDX2C(1, 1, 12)] = 0.16666666666666667;
rules[IDX2C(1, 2, 12)] = 0.6666666666666666667;
rules[IDX2C(1, 3, 12)] = 0.0000000000000000;
77
78
79
80
```

	81
	82
	83
	84 07
	80 96
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98
	99
1	00
1	01
1	02
1	03
1	04
1	05
1	07
1	07
1	09
1	10
1	11
1	12
1	13
1	14
1	15
1	16
1	17
1	18
1	19
1	20
1	21
1	22
1	23 94
1	$\frac{24}{25}$
1	20 26
1	27
-	

	rules	[ IDX2C(2,	0, 12)	<pre>  = 0.333333333333333;</pre>
	rules	[ IDX2C(2,	1, 12)	= 0.166666666666667;
	rules	[ IDX2C(2,	2, 12)	= 0.1666666666666667;
	rules	[ IDX2C(2,	3, 12)	= 0.000000000000000;
} else	e if (:	iIntegrat	ion0rde	r == 4)
ĩ	rules	[IDX2C(0,	0, 12)	<pre>  = -0.562500000000000;</pre>
	rules	[IDX2C(0,	1, 12)	= 0.3333333333333;
	rules	[IDX2C(0,	2, 12)	= 0.33333333333333;
	rules	[IDX2C(0,	3, 12)	= 0.0000000000000;
	rules	[IDX2C(1,	0, 12)	] = 0.520833333333333;
	rules	[IDX2C(1,	1, 12)	] = 0.6000000000000;
	rules	[IDX2C(1,	2, 12)	] = 0.2000000000000;
	rules	[IDX2C(1,	3, 12)	] = 0.000000000000;
	rules	[IDX2C(2,	0, 12)	= 0.520833333333333;
	rules	[IDX2C(2,	1, 12)	= 0.2000000000000;
	rules	[IDX2C(2,	2, 12)	= 0.6000000000000;
	rules	[IDX2C(2,	3, 12)	= 0.0000000000000;
ì	rules rules rules rules	[IDX2C(3, [IDX2C(3, [IDX2C(3, [IDX2C(3, [IDX2C(3,	0, 12) 1, 12) 2, 12) 3, 12)	= 0.520833333333333;   = 0.2000000000000;   = 0.2000000000000;   = 0.0000000000000;
} else	e if (:	iIntegrat	ion0rde	r == 6)
t	rules	[IDX2C(0,	0, 12)	<pre>  = 0.109951743655322;</pre>
	rules	[IDX2C(0,	1, 12)	= 0.816847572980459;
	rules	[IDX2C(0,	2, 12)	= 0.091576213509771;
	rules	[IDX2C(0,	3, 12)	= 0.0000000000000;
	rules	[IDX2C(1,	0, 12)	<pre>  = 0.109951743655322;</pre>
	rules	[IDX2C(1,	1, 12)	= 0.091576213509771;
	rules	[IDX2C(1,	2, 12)	= 0.816847572980459;
	rules	[IDX2C(1,	3, 12)	= 0.0000000000000;
	rules rules rules rules	[IDX2C(2, [IDX2C(2, [IDX2C(2, [IDX2C(2, [IDX2C(2,	0, 12) 1, 12) 2, 12) 3, 12)	<pre>  = 0.109951743655322;   = 0.091576213509771;   = 0.091576213509771;   = 0.00000000000000;</pre>
	rules rules rules rules	[IDX2C(3, [IDX2C(3, [IDX2C(3, [IDX2C(3, [IDX2C(3,	0, 12) 1, 12) 2, 12) 3, 12)	<pre>  = 0.223381589678011;   = 0.108103018168070;   = 0.445948490915965;   = 0.00000000000000;</pre>
	rules	[IDX2C(4,	0, 12)	<pre>  = 0.223381589678011;</pre>
	rules	[IDX2C(4,	1, 12)	= 0.445948490915965;
	rules	[IDX2C(4,	2, 12)	= 0.108103018168070;
	rules	[IDX2C(4,	3, 12)	= 0.0000000000000;
3	rules	[IDX2C(5,	0, 12)	<pre>  = 0.223381589678011;</pre>
	rules	[IDX2C(5,	1, 12)	= 0.445948490915965;
	rules	[IDX2C(5,	2, 12)	= 0.445948490915965;
	rules	[IDX2C(5,	3, 12)	= 0.00000000000000;
else	e if (:	iIntegrat	ion0rde	r == 7)
,	rules	[IDX2C(0,	0, 12)	] = 0.225000000000000;
	rules	[IDX2C(0,	1, 12)	] = 0.33333333333333;
	rules	[IDX2C(0,	2, 12)	] = 0.33333333333333;
	rules	[IDX2C(0,	3, 12)	] = 0.0000000000000;
	rules	[IDX2C(1,	0, 12)	] = 0.125939180544827;
	rules	[IDX2C(1,	1, 12)	] = 0.797426985353087;
	rules	[IDX2C(1,	2, 12)	] = 0.101286507323456;
	rules	[IDX2C(1,	3, 12)	] = 0.0000000000000;
	rules	[ IDX2C (2,	0, 12)	<pre>  = 0.125939180544827;</pre>
	rules	[ IDX2C (2,	1, 12)	= 0.101286507323456;
	rules	[ IDX2C (2,	2, 12)	= 0.797426985353087;
	rules	[ IDX2C (2,	3, 12)	= 0.00000000000000;

157	rules[IDX2C(3, 0,	12)] = 0.125939180544827;
158	rules[IDX2C(3, 1,	[12)] = 0.101286507323456;
160	rules[IDX2C(3, 2, rules[IDX2C(3, 3, 3)]]	12) = 0.101280507525450; 12) = 0.0000000000000000000000000000000000
161		12)] = 0.0000000000000000000000000000000000
162	rules[IDX2C(4, 0,	12)] = 0.132394152788506;
163	rules[IDX2C(4, 1,	12)] = 0.059715871789770;
164	rules[IDX2C(4, 2,	12)] = 0.470142064105115;
165	rules[IDX2C(4, 3,	12)] = 0.0000000000000;
166		1211 0 12220 4152700506
167	rules[IDX2C(5, 0,	[12)] = 0.132394152788506;
160	rulos[IDX2C(5, 1, rulos[IDX2C(5, 2, 1)]]	12) = 0.470142004105115; 12) = 0.050715871780770.
170	rules[IDX2C(5, 2, rules]]	12)] = 0.0000000000000000000000000000000000
171		12/] = 0.0000000000000000000000000000000000
172	rules[IDX2C(6, 0.	12)1 = 0.132394152788506:
173	rules[IDX2C(6, 1,	12)] = 0.470142064105115;
174	rules[IDX2C(6, 2,	12)] = 0.470142064105115;
175	rules[IDX2C(6, 3,	12)] = 0.0000000000000;
176	}	
177	else if (iIntegration(	Jrder == 9)
178		12)1 = 0.205050504760997
180	rules[IDX2C(0, 0, 1)]	12) = 0.205950504700887, 12) = 0.124949503233232.
181	rules[IDX2C(0, 2)]	12)] = 0.12+5+5505255252, 12)] = 0.437525248383384:
182	rules[IDX2C(0, 3,	12)1 = 0.0000000000000000000000000000000000
183		,
184	rules[IDX2C(1, 0,	12)] = 0.205950504760887;
185	rules[IDX2C(1, 1,	12)] = 0.437525248383384;
186	rules[IDX2C(1, 2,	[12)] = 0.124949503233232;
187	rules[IDX2C(1, 3,	12)] = 0.0000000000000;
188		12)1 0 205050504760007.
100	rulos[IDX2C(2, 0, rulos]]	12) = 0.205950504/00007; 12) = 0.437525249393394.
190	rules[IDX2C(2, 1, rules[IDX2C(2, 2, 2)]]	12)] = 0.4375252465655564, 12)] = 0.437525248383384.
192	rules[IDX2C(2, 3,	12) = 0.0000000000000000000000000000000000
193		,] 0.000000000000000,
194	rules[IDX2C(3, 0,	12)] = 0.063691414286223;
195	rules[IDX2C(3, 1,	12)] = 0.797112651860071;
196	rules[IDX2C(3, 2,	12)] = 0.165409927389841;
197	rules[IDX2C(3, 3,	12)] = 0.0000000000000;
198		12)1 0.062601414206222.
200	rules[IDX2C(4, 0, rules[IDX2C(4, 1, 1)]]	12) = 0.005091414200225; 12) = 0.707112651860071.
200	rules[IDX2C(4, 1, 1)]	12)] = 0.797112051000071, 12)] = 0.037477420750088.
201	rules[IDX2C(4, 2,	12) = 0.0000000000000000000000000000000000
203		,
204	rules[IDX2C(5, 0,	12)] = 0.063691414286223;
205	rules[IDX2C(5, 1,	12)] = 0.165409927389841;
206	rules[IDX2C(5, 2,	[12)] = 0.797112651860071;
207	rules[1DX2C(5, 3,	[12)] = 0.00000000000000;
208	rulos[TDY2C/6_0	1211 - 0.063601414286223
209	rules[IDX2C(0, 0, 1)]	12)] = 0.003031414200223, 12)] = 0.165409927389841.
210	rules[IDX2C(6, 2,	12) = 0.037477420750088:
212	rules[IDX2C(6, 3,	12)] = 0.000000000000000000;
213		
214	rules[IDX2C(7, 0,	12)] = 0.063691414286223;
215	rules[IDX2C(7, 1,	12)] = 0.037477420750088;
216	rules[IDX2C(7, 2,	[12)] = 0.797112651860071;
217	rules[IDX2C(7, 3,	12)] = 0.0000000000000;
218		1211 - 0.063601414396333.
∠19 220		12/1 = 0.000091414200223; 12)1 = 0.037477420750099.
221	rules[TDX2C(0, 1,	12)] = 0.165409927389841
222	rules[TDX2C(8, 3	12)] = 0.0000000000000000000000000000000000
223	}	,
224	else if (iIntegration	Order == 12)
225	{	
226	rules[IDX2C(0, 0,	[12)] = 0.050844906370207;
227	rules[IDX2C(0, 1,	12) = 0.8/3821971016996;
228	rules[IDX2C(0, 2,	12) = 0.003089014491502;
229 930		12/] - 0.000000000000000000;
231	rules[IDX2C(1. 0.	12)] = 0.050844906370207:
		,

rules[IDX2C(1, 1, 12)] = 0.063089014491502;

233	rules[IDX2C(1, 2, 12)] = 0.873821971016996;
234	rules[IDX2C(1, 3, 12)] = 0.00000000000000;
235	rulec[TDY2C(2 = 0, 12)] = 0,050844006370207
230	rules[IDX2C(2, 0, 12)] = 0.050044500570207, rules[IDX2C(2, 1, 12)] = 0.063089014491502.
238	rules[IDX2C(2, 2, 12)] = 0.063089014491502;
239	rules[IDX2C(2, 3, 12)] = 0.00000000000000;
240	
241	rules[IDX2C(3, 0, 12)] = 0.116786275726379;
242	rules[IDX2C(3, 1, 12)] = 0.501426509658179;
243	rules[IDX2C(3, 2, 12)] = 0.249286745170910;
244	rules[IDX2C(3, 3, 12)] = 0.00000000000000;
245	
246	rules[IDX2C(4, 0, 12)] = 0.116786275726379;
247	rules[IDX2C(4, 1, 12)] = 0.249286745170910;
248	rules[IDX2C(4, 2, 12)] = 0.301420309030179;
250	$[u(e_3[10x2c(4, 5, 12)] = 0.0000000000000000000000000000000000$
251	rules[IDX2C(5. 0. 12)] = 0.116786275726379:
252	rules[IDX2C(5, 1, 12)] = 0.249286745170910;
253	rules[IDX2C(5, 2, 12)] = 0.249286745170910;
254	rules[IDX2C(5, 3, 12)] = 0.00000000000000;
255	
256	rules[IDX2C(6, 0, 12)] = 0.082851075618374;
257	rules[IDX2C(6, 1, 12)] = 0.636502499121399;
258	rules[IDX2C(6, 2, 12)] = 0.310352451033785;
259	fulles[IDX2C(6, 3, I2)] = 0.0000000000000000;
200	rules[TDX2C(7 = 0, 12)] = 0.082851075618374
262	rules[IDX2C(7, 0, 12)] = 0.002051075010574;
263	rules[IDX2C(7, 2, 12)] = 0.053145049844816:
264	rules[IDX2C(7, 3, 12)] = 0.0000000000000000000000000000000000
265	
266	rules[IDX2C(8, 0, 12)] = 0.082851075618374;
267	rules[IDX2C(8, 1, 12)] = 0.310352451033785;
268	rules[IDX2C(8, 2, 12)] = 0.636502499121399;
269	rules[IDX2C(8, 3, I2)] = 0.00000000000000;
270	ruloc[TDV2C(0, 0, 12)] = 0.002051075610274
271	[ULCS[IDX2C(9, 0, 12)] = 0.082851075018374; rulos[IDX2C(9, 1, 12)] = 0.310352451033785;
212	rules[IDX2C(9, 1, 12)] = 0.053145049844816
274	rules[IDX2C(9, 2, 12)] = 0.0000000000000000000000000000000000
275	
276	rules[IDX2C(10, 0, 12)] = 0.082851075618374;
277	rules[IDX2C(10, 1, 12)] = 0.053145049844816;
278	rules[IDX2C(10, 2, 12)] = 0.636502499121399;
279	rules[IDX2C(10, 3, 12)] = 0.00000000000000;
280	ruloc[TDV2C(11 0 12)] = 0.0020E107E610274
201	rules[IDX2C(11, 0, 12)] = 0.002051075010574, $rules[IDX2C(11, 1, 12)] = 0.053145040844816$
283	rules[IDX2C(11, 1, 12)] = 0.00014004004010, rules[IDX2C(11, 2, 12)] = 0.310352451033785;
284	rules[IDX2C(11, 3, 12)] = 0.0000000000000000000000000000000000
285	}
286	}
287	<pre>else if (integrationElementType == QUADRILATERAL)</pre>
288	
289	<pre>1T (lintegrationurder == 1) </pre>
29U 201	$\begin{bmatrix} 1 \\ rules [TDY2C(0 0 12)] = 2 0000000000000000000000000000000000$
291 202	$r_{11} = r_{12} = r$
293	}
294	else if (iIntegrationOrder == 2)
295	{
296	rules[IDX2C(0, 0, 12)] = 1.00000000000000;
297	rules[IDX2C(0, 1, 12)] = -0.577350269189626;
298	
299	rules[ $IDX2C(1, 0, 12)$ ] = 1.00000000000000;
300	rules[IDX2C(1, 1, 12)] = 0.5//350269189626;
202	} else if (iIntegrationOrder 2)
302	
304	rules[IDX2C(0. 0. 12)] = 0.88888888888888888888888888888888888
305	rules[IDX2C(0, 1, 12)] = 0.000000000000000;
306	
307	rules[IDX2C(1, 0, 12)] = 0.55555555555555;
308	rules[IDX2C(1, 1, 12)] = -0.774596669241483;

	rules rules	[IDX [IDX	2C(2, 2C(2,	0, 1,	12)] 12)]	=	0.55555555555555; 0.774596669241483;
} else {	if (	iInt	egrati	lon0	rder	==	= 4)
L	rules	[IDX	2C(0,	0,	12)]	=	0.652145154862546;
	rules	[IDX	2C(0,	1,	12)]	=	-0.339981043584856;
	rules rules	[IDX [IDX	2C(1, 2C(1,	0, 1,	12)] 12)]	=	0.652145154862546; 0.339981043584856;
	rules	[IDX	2C(2,	0,	12)]	=	0.347854845137454;
	rules	[IDX	2C(2,	1,	12)]	=	-0.861136311594053;
	rules	[IDX	2C(3,	0,	12)]	=	0.347854845137454;
	rules	[IDX	2C(3,	1,	12)]	=	0.861136311594053;
} else r	e if (	iInt	egrati	lon0	rder	==	= 5)
i.	rules	[IDX	2C(0,	0,	12)]	=	0.5688888888888888;
	rules	[IDX	2C(0,	1,	12)]	=	0.000000000000000;
	rules	[IDX	2C(1,	0,	12)]	=	0.478628670499366;
	rules	[IDX	2C(1,	1,	12)]	=	-0.538469310105683;
	rules	[IDX	2C(2,	0,	12)]	=	0.478628670499366;
	rules	[IDX	2C(2,	1,	12)]	=	0.538469310105683;
	rules	[IDX	2C(3,	0,	12)]	=	0.236926885056189;
	rules	[IDX	2C(3,	1,	12)]	=	-0.906179845938664;
	rules	[IDX	2C(4,	0,	12)]	=	0.236926885056189;
	rules	[IDX	2C(4,	1,	12)]	=	0.906179845938664;
} else r	if (	iInt	egrati	Lon0	rder	==	= 6)
í	rules rules	[IDX [IDX	2C(0, 2C(0,	0, 1,	12)] 12)]	=	0.467913934572691; -0.238619186083197;
	rules rules	[IDX [IDX	2C(1, 2C(1,	0, 1,	12)] 12)]	=	0.467913934572691; 0.238619186083197;
	rules rules	[IDX [IDX	2C(2, 2C(2,	0, 1,	12)] 12)]	=	0.360761573048139; -0.661209386466265;
	rules rules	[IDX [IDX	2C(3, 2C(3,	0, 1,	12)] 12)]	=	0.360761573048139; 0.661209386466265;
	rules rules	[IDX [IDX	2C(4, 2C(4,	0, 1,	12)] 12)]	=	0.171324492379170; -0.932469514203152;
1	rules	[IDX	2C(5,	0,	12)]	=	0.171324492379170;
	rules	[IDX	2C(5,	1,	12)]	=	0.932469514203152;
} else r	if (	iInt	egrati	lon0	rder	==	= 7)
ι	rules	[IDX	2C(0,	0,	12)]	=	0.417959183673469;
	rules	[IDX	2C(0,	1,	12)]	=	0.000000000000000;
	rules	[IDX	2C(1,	0,	12)]	=	0.381830050505119;
	rules	[IDX	2C(1,	1,	12)]	=	-0.405845151377397;
	rules	[IDX	2C(2,	0,	12)]	=	0.381830050505119;
	rules	[IDX	2C(2,	1,	12)]	=	0.405845151377397;
	rules	[IDX	2C(3,	0,	12)]	=	0.279705391489277;
	rules	[IDX	2C(3,	1,	12)]	=	-0.741531185599394;
	rules	[IDX	2C(4,	0,	12)]	=	0.279705391489277;
	rules	[IDX	2C(4,	1,	12)]	=	0.741531185599394;
	rules	[IDX	2C(5,	0,	12)]	=	0.129484966168870;
	rules	[IDX	2C(5,	1,	12)]	=	-0.949107912342759;
	rules	[IDX	2C(6,	0,	12)]	=	0.129484966168870;

385	rules[IDX2C(6, 1, 12)] =	0.949107912342759;
386 387	} else if (iIntegrationOrder ==	= 8)
388	{	- 0)
389	rules[IDX2C(0, 0, 12)] =	0.362683783378362;
390	rules[IDX2C(0, 1, 12)] =	-0.183434642495650;
391	$rules[TDY2C(1 \cap 12)] =$	0 362683783378362.
393	rules[IDX2C(1, 0, 12)] =	0.183434642495650;
394		· · · · · · · · · · · · · · · · · · ·
395	rules[IDX2C(2, 0, 12)] =	0.313706645877887;
396 207	rules[IDX2C(2, 1, 12)] =	-0.525532409916329;
398	rules[TDX2C(3, 0, 12)] =	0.313706645877887:
399	rules[IDX2C(3, 1, 12)] =	0.525532409916329;
400		
401	rules[IDX2C(4, 0, 12)] =	0.222381034453374;
402		0.750000477415027,
404	rules[IDX2C(5, 0, 12)] =	0.222381034453374;
405	rules[IDX2C(5, 1, 12)] =	0.796666477413627;
406 407	$rules[TDX2C(6 \ 0 \ 12)] =$	0 101228536290376
408	rules[IDX2C(6, 1, 12)] =	-0.960289856497536;
409		
410	rules[IDX2C(7, 0, 12)] =	0.101228536290376;
411 412	<pre>intes[IDA2C(7, 1, 12)] = }</pre>	0.900289850497550;
413	else if (iIntegrationOrder ==	= 9)
414	{ 	0.220220255001260.
415 416	rules[IDX2C(0, 0, 12)] = rules[IDX2C(0, 1, 12)] =	0.330239355001260;
417		0.000000000000000000,
418	rules[IDX2C(1, 0, 12)] =	0.312347077040003;
419	rules[IDX2C(1, 1, 12)] =	-0.324253423403809;
420 421	rules[IDX2C(2, 0, 12)] =	0.312347077040003:
422	rules[IDX2C(2, 1, 12)] =	0.324253423403809;
423		0.00010000400005
424 425	rules[IDX2C(3, 0, 12)] = rules[IDX2C(3, 1, 12)] =	0.200010090402935;
426		0.013371432700330,
427	rules[IDX2C(4, 0, 12)] =	0.260610696402935;
428	rules[IDX2C(4, 1, 12)] =	0.6133/1432/00590;
430	rules[IDX2C(5, 0, 12)] =	0.180648160694857;
431	rules[IDX2C(5, 1, 12)] =	-0.836031107326636;
432	rulos[TDY2C(6, 0, 12)] =	0 1806/816060/857
434	rules[IDX2C(6, 0, 12)] =	0.836031107326636;
435		
436	rules[IDX2C(7, 0, 12)] =	0.081274388361574;
437 438	Tutes[IDA2C(7, 1, 12)] =	-0.908100239307020,
439	rules[IDX2C(8, 0, 12)] =	0.081274388361574;
440	rules[IDX2C(8, 1, 12)] =	0.968160239507626;
441 442	} else if (iIntegrationOrder ==	= 10)
443	{	10,
444	rules[IDX2C(0, 0, 12)] =	0.295524224714753;
445 446	rules[IDX2C(0, 1, 12)] =	-0.1488/4338981631;
447	rules[IDX2C(1, 0, 12)] =	0.295524224714753;
448	rules[IDX2C(1, 1, 12)] =	0.148874338981631;
449	ruloc[TDY2C(2 - 0, 12)] =	0 260266710200006.
450 451	rules[IDX2C(2, 0, 12)] = rules[IDX2C(2, 1, 12)] =	-0.433395394129247:
452		
453	rules[IDX2C(3, 0, 12)] =	0.269266719309996;
454 455	rules[IDX2C(3, 1, 12)] =	v.43339339412924/;
456	rules[IDX2C(4, 0, 12)] =	0.219086362515982;
457	rules[IDX2C(4, 1, 12)] =	-0.679409568299024;
458 450	rules[TDX2C(5 0 12)] -	0.219086362515982.
460	rules[IDX2C(5, 1, 12)] =	0.679409568299024;
		-

101	1	
401		
462		rules[1DX2C(6, 0, 12)] = 0.149451349150581;
463		rules[IDX2C(6, 1, 12)] = -0.865063366688985;
464		
465		rules[IDX2C(7, 0, 12)] = 0.149451349150581;
466		rules[IDX2C(7, 1, 12)] = 0.865063366688985;
467		
468		$rules[TDX2C(8 \ 0 \ 12)] = 0.066671344308688$
400		rulos[IDX2C(0, 0, 12)] = 0.000071949000000,
409		$[u(e_{2}[10,2c(0, 1, 12)] = -0.3/330032031/1/2,$
470		
471		rules[IDX2C(9, 0, 12)] = 0.0666/1344308688;
472		rules[IDX2C(9, 1, 12)] = 0.973906528517172;
473		}
474		<pre>else if (iIntegrationOrder == 12)</pre>
475		{
476		rules[IDX2C(0, 0, 12)] = 0.249147045813403;
477		rules[TDX2C(0, 1, 12)] = -0.125333408511469;
478		
170		$rules[TDX2C(1 \ 0 \ 12)] = 0 \ 249147045813403$
410		ruloc[IDX2C(1, 0, 12)] = 0.245147045015405;
400		$[u(e_3[1D,2c(1, 1, 12)] = 0.12555400511405],$
401		$mu = \left[ T \left[ T \left[ V \right] \right] \left( 2 - 1 \right) \right] = \left[ 0 - 2 - 2 \left[ 4 - 2 \right] \right] = \left[ 0 - 2 - 2 \left[ 2 - 2 \right] \right] = \left[ 0 - 2 - 2 \right] = \left[ 0 $
482		rules[IDX2C(2, 0, 12)] = 0.233492530538355;
483		rules[1DX2C(2, 1, 12)] = -0.36/831498918180;
484		
485		rules[IDX2C(3, 0, 12)] = 0.233492536538355;
486		rules[IDX2C(3, 1, 12)] = 0.367831498918180;
487		
488		rules[IDX2C(4, 0, 12)] = 0.203167426723066;
489		rules[IDX2C(4, 1, 12)] = -0.587317954286617;
490		
491		rules[TDX2C(5, 0, 12)] = 0.203167426723066:
492		rules[TDX2C(5, 1, 12)] = 0.587317954286617
402		Tutes[IbA20(5, 1, 12)] = 0.507517554200017,
404		ruloc[TDV2C/6 = 0 = 12)l = 0 = 160070220542246
494		rulos[IDX2C(0, 0, 12)] = 0.100070520545540,
495		$[u(e_{1})] = -0.709902074194505,$
496		
497		rules[1DX2C(7, 0, 12)] = 0.1600/8328543346;
498		rules[1DX2C(7, 1, 12)] = 0.769902674194305;
499		
500		rules[IDX2C(8, 0, 12)] = 0.106939325995318;
501		rules[IDX2C(8, 1, 12)] = -0.904117256370475;
502		
503		rules[IDX2C(9, 0, 12)] = 0.106939325995318;
504		rules[IDX2C(9, 1, 12)] = 0.904117256370475;
505		
506		$rules[TDX2C(10 \ 0 \ 12)] = 0.047175336386512$
507		rules[IDX2C(10, 0, 12)] = -0.081560634246719
502		[a(c)[10,2c(10, 1, 12)] = 0.001000004240/19]
500		ruloc[TDY2C/11 = 0.047175226206512.
509		$[U_{1}] = [U_{1}] = [U_{$
010		[ules[IDA2U(II, I, I2)] = 0.981300034240/19;
116		}
512	}	
513	}	
514		
515	<pre>#endif</pre>	

## • CUDA_MeshCFD.cuh

1	/**************************************
2	// HPC - LMC //
3	////
4	
5	* \Driet Classe CUDA_MeshCFD
6	* cta classa é recrearsával palas energaños com es alementos de tina CED
0	
9	* \author Luiz Felipe Couto
10	*/
11	
12	
13	#itndef HPC_LMC_FEM_CUDA_FEM_CFD_CUDA_MESHCFD_H
14	#detine HPC_LMC_FEM_CUDA_FEM_CFD_CUDA_MESHCFD_H
15	

```
//----

16
 // Include and Forward declaration
17
18
 11 -
 #include "../../core/cuda/CUDA_NumericalIntegration.cuh"
19
20
21
 #include "../../cuda/CUDA_Mesh.cuh"
22
 23
 //-----
 // Prototype definition
24
 //---
25

26
 __device__
 void calculate_k_g_m_e(MeshCFDType
27
 meshCFDType,
 iNumberDimensions,
28
 size_t
29
 Precision*
 nodesCoordinates,
 RHO,
30
 Precision
 MI,
31
 Precision
32
 unsigned int*
 integrationOrder_XSI,
 unsigned int*
 integrationOrder_ETA,
33
 integrationOrder_ZETA,
34
 unsigned int*
 Precision*
35
 k_e,
36
 Precision*
 g_e,
37
 Precision*
 m_e);
38
 _device__
39
40
 void calculate_c_c_t_e(MeshCFDType
 meshCFDType,
 iNumberDimensions,
 size_t
41
42
 Precision*
 nodesCoordinates,
43
 Precision*
 u_e,
 Precision*
44
 v_e,
 Precision*
45
 w_e.
 integrationOrder_XSI,
 unsigned int*
46
47
 unsigned int*
 integrationOrder_ETA,
 unsigned int*
 integrationOrder_ZETA,
48
 Precision*
49
 c_e,
50
 Precision*
 c_t_e);
51
 52
53
54
 _device__
 void integrateElement_k_g_m(
 MeshCFDType meshCFDType,
56
 MatrixType
 matrixType,
 size t
 iNumberDimensions.
58
 size_t
 iNumberNodes_u,
59
 size_t
 iNumberNodes_p,
 Precision*
 nodesCoordinates,
60
 RHO,
 Precision
61
62
 Precision
 MI,
 iIntegrationOrder_XSI,
63
 size_t
 iIntegrationOrder_ETA.
64
 size t
 iIntegrationOrder_ZETA,
65
 size_t
66
 Precision*
 Nu,
67
 Precision*
 Np,
 Nu_DOF,
 Precision*
68
 Nu_DOF_T,
Nu_DOF_T_Nu_DOF,
69
 Precision*
70
 Precision*
71
 Precision*
 NuDerivatives.
 div_Nu,
 Precision*
72
73
 Precision*
 div_Nu_T
 Precision*
 div_Nu_T_Np,
74
 Precision*
75
 Ju.
76
 Precision*
 JuInverse,
77
 Precision*
 NuDerivativesTransformed,
78
 Precision*
 Bu,
 Precision*
 Bu_T,
79
80
 Precision*
 С,
81
 Precision*
 Bu_T_C,
 Bu_T_C_Bu,
82
 Precision*
 Precision
 JuDeterminant,
83
84
 Precision*
 k_e_int,
85
 Precision*
 k_e_int_Temp,
86
 Precision*
 g_e_int,
 g_e_int_Temp,
87
 Precision*
88
 Precision*
 m_e_int,
89
 m_e_int_Temp);
 Precision*
90
 ___device__
91
```

92	<pre>void integrateElement_c_c_t(M</pre>	leshCFDType	<pre>meshCFDType,</pre>
93	M	latrixType	<pre>matrixType,</pre>
94	S	size_t	iNumberDimensions,
95	S	ize_t	iNumberNodes_u,
96	P	recision*	nodesCoordinates,
97	P	recision∗	u_e,
98	P	recision*	v_e,
99	P	recision*	w_e,
100	S	ize_t	iIntegrationOrder_XSI,
101	S	ize_t	iIntegrationOrder_ETA,
102	S	ize_t	lintegrationurder_ZETA,
103	P	recision*	NU, NuDorivativas
104	F		NUDELIVALIVES,
100			Ju, JuTnyorso
107	г С		NuDorivativosTransformod
107	P	Precision*	R
100	P	Precision*	NU DOF
110	P	Precision*	Nu DOF T
111	P	recision*	e dot u.
112	P	recision*	Nu DOF T e dot u.
113	P	Precision*	NuDerivatives_x_DOF,
114	P	recision∗	NuDerivatives_y_DOF,
115	P	<pre>Precision*</pre>	NuDerivatives_x_DOF_NuDerivatives_y_DOF,
116	P	recision∗	<pre>Nu_DOF_T_NuDerivatives_x_DOF_NuDerivatives_y_DOF,</pre>
117	P	recision∗	gradu,
118	P	recision∗	Nu_DOF_T_gradu,
119	P	<pre>recision*</pre>	Nu_DOF_T_gradu_Nu_DOF,
120	P	recision	JuDeterminant,
121	P	recision*	c_e_int,
122	Р	recision*	c_e_int_Temp,
123	P	recision*	c_t_e_int,
124	P	recision*	c_t_e_int_remp);
125	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
120	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	///////////////////////////////////////	
127	device		
120	void do calculate k g m e( M	leshCEDType	meshCEDTvpe.
130	Void do_catedtate_n_g_m_c(	latrixType	matrixType.
131	s	size_t	iNumberDimensions.
132	S	ize_t	iNumberNodes_u.
133	S	ize_t	iNumberNodes_p,
134	P	recision∗	nodesCoordinates,
135	P	recision	RHO,
136	P	recision	MI,
137	P	recision	d_XSI,
138	P	recision	d_ETA,
139	P	recision	O_ZEIA,
140	F	recision*	Nu ,
141 149	F		Νμ. DOE
142	г С		
144		recision*	NU DOF T NU DOF.
145	P	recision*	NuDerivatives.
146	P	Precision*	div_Nu,
147	P	<pre>recision*</pre>	div_Nu_T,
148	P	recision∗	div_Nu_T_Np,
149	P	recision∗	Ju,
150	P	<pre>recision*</pre>	JuInverse,
151	P	recision*	NuDerivativesTransformed,
152	P	recision*	Bu,
153	P	recision*	Bu_I,
154	P	recision*	
155	P	recision*	ВU_1_С, Du Т.С.Du
155	P	recision*	DU_I_C_BU,
159			Juperer mithant,
150	F	recision*	
160		recision*	у_С, ме):
161	F	· CCT3T0II*	···~//
162	device		
163	<pre>void do_calculate_c_c_t_e( M</pre>	leshCFDType	meshCFDType,
164	Ň	latrixType	matrixType,
165	s	ize_t	iNumberDimensions,
166	S	ize_t	iNumberNodes_u,
167	P	recision*	nodesCoordinates,

168		Precisi	on* u_e,
169		Precisi	on* v_e,
170		Precisi	
1/71		Drocici	
171		Precisi	$d_{-}$ ASI,
172		Precisi	on d_ETA,
173		Precisi	
174		Drocici	
174		Precisi	on* Nu,
175		Precisi	on* NuDerivatives,
176		Precisi	on* ]u
170		Duradia	
177		Precisi	on* Juinverse,
178		Precisi	on* NuDerivativesTransformed,
170		Precisi	on* B
100		Duradiai	
180		Precisi	on* Nu_DOF,
181		Precisi	on* Nu_DOF_T,
182		Precisi	
102		1100131	
183		Precisi	on* Nu_DOF_I_e_dot_u,
184		Precisi	on* NuDerivatives_x_DOF,
185		Precisi	on, NuDerivatives v DOF
100		Duradial	
186		Precisi	on* NuDerivatives_x_DOF_NUDerivatives_y_DOF,
187		Precisi	on* Nu_DOF_T_NuDerivatives_x_DOF_NuDerivatives_y_DOF,
188		Procisi	op* gradu
100		Duradad	
189		Precisi	on* Nu_DOF_I_gradu,
190		Precisi	on* Nu_DOF_T_gradu_Nu_DOF.
101		Procisi	on luDeterminant
191		TIECTST	Subecentininant,
192		Precisi	on* c_e_int,
193		Precisi	on* c_t_e_int);
10/			
194			
195	///////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////
196			
107	device		
100			i Number Dimensione
198	Vold do_calculate_k_e(	size_t	INUMDERDIMENSIONS,
199		size_t	iNumberNodes_u,
200		Precision	RHO
200		Duradiation	
201		Precision	MI,
202		Precision*	NuDerivativesTransformed,
203		Precision*	Bu .
200			
204		Precision*	Bu_ I ,
205		Precision*	С,
206		Drocicion*	
200		LIECT2TOU*	
207		Precision*	Bu_T_C_Bu,
208		Precision	luDeterminant
200		Drocicion	
209		FIECTSTON*	к_е),
210			
211	device		
010	void de calculate d o(	cizo t	iNumberDimonsions
212	Volu uo_catcutate_y_e(	SIZE_L	INUMBER DIMENSIONS,
213		size_t	1NumberNodes_u,
214		size t	iNumberNodes p
015		Drecicion	
210		Precision*	мр,
216		Precision*	NuDerivatives,
217		Precision*	Ju.
010		Drocicion	NuDerivetivesTransformed
218		Precision*	Nuber ivacives in ansion med,
219		Precision*	div_Nu,
220		Precision*	div Nu T.
001		Dresision	
221		Precision*	alv_Nu_l_Np,
222		Precision	JuDeterminant,
223		Precision*	d e):
220		TTCCIDION.	g,
224			
225	device		
226	void do calculate m e(	size t	iNumberDimensions
007		5120_t	iNumberNedec u
227		SIZE_L	INUMBERNODES_U,
228		Precision	RHO,
229		Precision*	Nu
223			
230		Precision*	NU_DOF,
231		Precision*	Nu_DOF_T,
		Drocicion*	
232		FIECISION*	NU_DUF_I_NU_DUF,
233		Precision	JUDeterminant,
234		Precision*	m e):
-01 -01			
230			
236	device		
237	<pre>void do_calculate_c_e(</pre>	size_t	iNumberDimensions,
238		size t	iNumberNodes u
200			
239		Precision*	u_e,
240		Precision*	v_e,
9/1		Precision	WA
2/11		LICCTSTOII*	W_C,
242		Precision*	NU,
		<b>Drocicion</b> *	NuDorivativosTransformod

244		Precision*	B,
245		Precision*	Nu_DOF,
246		Precision*	NU_DOF_T,
247		Precision*	e_dot_u,
248		Precision*	NU_DUF_I_e_dot_u,
249		Precision	Jupeterminant,
250		Precision*	c_e_int);
251	douring		
252	Oevice	- ( +	i Number a Dimensione
253	Vold do_calculate_c_t	_e(size_t	iNumberDimensions,
254		SIZE_L	INUMBERNOOES_U,
255		Precision*	u_e,
250		Precision*	v_e,
257		Precision*	W_e,
208		Precision*	Nu, NuDerivativesTransformed
209		Precision*	NUDELIVALIVESTLAISTOLINEU,
200		Precision*	
201		Procision*	
202		Precision*	NuDerivatives x DOF
200		Procision*	NuDerivatives v DOF
204		Precision*	NuDerivatives x DOF NuDerivatives v DOF
200		Precision*	Nu DOF T NuDerivatives x DOF NuDerivatives y DOF
267		Precision*	aradu.
268		Precision*	Nu DOF T gradu.
269		Precision*	Nu DOF T gradu Nu DOF.
270		Precision	JuDeterminant.
271		Precision*	cteint):
272			
273	device		
274	void calculate_Nu( M	eshCFDTvpe me	shCFDTvpe.
275	Р	recision d_	XSI.
276	P	recision d_	ETA,
277	P	recision d_	ZETÁ,
278	P	recision* N	u);
279			
280	device		
281	void calculate_Np( M	eshCFDType me	shCFDType ,
282	P	recision d_	XSI,
283	P	recision d_	ETA,
284	P	recision d_	ZETA ,
285	P	recision* Np	);
286			
287	device		
288	void calculate_NuDeri	vatives( Me	shCFDType meshCFDType,
289		Pr	ecision d_XSI,
290		Pr	ecision d_ETA,
291		Pr	ecision d_ZETA,
292		Pr	ecision* NuDerivatives);
293			
294	device		
295	void calculate_divNu(	size_t	iNumberDimensions,
296		size_t	iNumberNodes_u,
297		Precision*	NuDerivatives,
298		Precision*	alvnu);
299			
300		///////////////////////////////////////	
301			
302	Oevice		Dimension -
303	Vold calculate_( s	ize_t iNumber	Dimensions,
304	P	recision RHU,	
305	P	recision MI,	
300	P P	recision* ();	
300		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
300		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
310	device		
311	void calculate e dot	u( size t	iNumberDimensions
312		size t	iNumberNodes u
313		Precision*	u e.
314		Precision*	v_e.
315		Precision*	w_e.
316		Precision*	Nu ,
317		Precision*	e_dot_u);
318			· ·
319			
	1		

```
320
 device
321
 void calculate_gradu(
 size_t
 iNumberDimensions,
322
 size_t
 iNumberNodes_u,
323
 Precision*
 u_e.
324
 Precision*
 v_e,
325
 Precision*
 w_e,
326
 Precision*
 NuDerivativesTransformed,
 Precision*
327
 gradu);
328
329
 //-----
 // Device Function
330
 //-----
331
332
333
 //---
 ----- calculate_k_g_m_e ------
 device
334
335
 void calculate_k_g_m_e(MeshCFDType
 meshCFDType,
 iNumberDimensions,
336
 size_t
337
 Precision*
 nodesCoordinates,
 RHO.
338
 Precision
339
 Precision
 MI,
 integrationOrder_XSI,
340
 unsigned int*
 unsigned int*
 integrationOrder_ETA,
341
 unsigned int*
342
 integrationOrder_ZETA,
343
 Precision*
 k_e,
344
 Precision*
 q_e,
 Precision*
345
 m_e)
346
 {
 if (meshCFDType == MCFDT_P2P1)
347
348
 ł
 if (iNumberDimensions == 2)
349
 {
350
 const size_t NBR_DIMENSIONS = 2;
351
 const size_t NBR_NODES_U
352
 = 6;
 const size_t NBR_NODES_P
 = 3:
353
354
 { 0. };
355
 Precision Nu[1 * NBR_NODES_U]
 =
 = \{ 0. \}; \\ = \{ 0. \}; \\ = \{ 0. \}; \\
 Precision Np[1 * NBR_NODES_P]
356
 Precision Nu_DOF[NBR_DIMENSIONS * NBR_DIMENSIONS * NBR_NODES_U]
Precision Nu_DOF_T[NBR_DIMENSIONS * NBR_NODES_U * NBR_DIMENSIONS]
357
358
 =
 { 0. };
359
 Precision Nu_DOF_T_Nu_DOF[NBR_DIMENSIONS * NBR_NODES_U *
 NBR_DIMENSIONS * NBR_NODES_U] = { 0. };
360
 Precision NuDerivatives[NBR_DIMENSIONS * NBR_NODES_U]
 = { 0. };
361
 = \{ 0. \}; \\ = \{ 0. \}; \\
362
 Precision div_Nu[1 * NBR_DIMENSIONS * NBR_NODES_U]
 Precision div_Nu_T[NBR_DIMENSIONS * NBR_NODES_U * 1]
363
 Precision div_Nu_T_Np[NBR_DIMENSIONS * NBR_NODES_U * NBR_NODES_P]
 = { 0. };
364
365
366
 Precision Ju[NBR_DIMENSIONS * NBR_DIMENSIONS]
 =
 { 0. };
 = 0.;
367
 Precision JuDeterminant
 = { 0. };
= { 0. };
 Precision JuInverse[NBR_DIMENSIONS * NBR_DIMENSIONS]
368
 Precision NuDerivativesTransformed[NBR_DIMENSIONS * NBR_NODES_U]
369
370
 = { 0. };
= { 0. };
371
 Precision Bu[3 * NBR_DIMENSIONS * NBR_NODES_U]
 Precision Bu_T[NBR_DIMENSIONS * NBR_NODES_U * 3]
372
373
 Precision C[3 * 3]
 = { 0. };
 Precision Bu_T_C[NBR_DIMENSIONS * NBR_NODES_U * 3]
 { 0. };
374
 =
 Precision Bu_T_C_Bu[NBR_DIMENSIONS * NBR_NODES_U * NBR_DIMENSIONS *
375
 NBR_NODES_U] = { 0. };
376
377
 Precision k_e_int[NBR_DIMENSIONS * NBR_NODES_U * NBR_DIMENSIONS *
378
 NBR_NODES_U] = { 0. };
379
 Precision g_e_int[NBR_DIMENSIONS * NBR_NODES_U * NBR_NODES_P]
 = { 0. };
380
 Precision g_e_int_T[NBR_NODES_P * NBR_DIMENSIONS * NBR_NODES_U]
381
 = \{ 0. \};
 Precision m_e_int[NBR_DIMENSIONS * NBR_NODES_U * NBR_DIMENSIONS *
382
 NBR_NODES_U] = { 0. };
383
384
385
 Precision k_e_int_Temp[NBR_DIMENSIONS * NBR_NODES_U * NBR_DIMENSIONS *
 NBR_NODES_U = { 0. };
386
 Precision g_e_int_Temp[NBR_DIMENSIONS * NBR_NODES_U * NBR_NODES_P] = { 0. };
Precision m_e_int_Temp[NBR_DIMENSIONS * NBR_NODES_U * NBR_DIMENSIONS *
387
388
389
 NBR_NODES_U] = { 0. };
390
 integrateElement_k_g_m(meshCFDType
 MT_k_e
391
 NBR_DIMENSIONS,
 NBR_NODES_U,
392
 NBR_NODES_P,
393
 nodesCoordinates,
 MI,
 RHO.
394
 integrationOrder_XSI[0],
 integrationOrder_ETA[0],
395
```

396 397 398 399 400 401 402 403 404 405 406 407 408			<pre>integrationOrder Np, Nu_DOF_T, NuDerivatives, div_Nu_T, Ju, NuDerivativesTra Bu_T, Bu_T_C, JuDeterminant, k_e_int_Temp, g_e_int_Temp, m_e_int_Temp);</pre>	ZETA[0],	Nu, Nu_DOF, Nu_DOF_T_Nu_DOF, div_Nu, div_Nu_T_Np, JuInverse, Bu, C, Bu_T_C_Bu, k_e_int, g_e_int, m_e_int,
409 410 411 412	bl	lock( 0, NBR_DIMENSIONS * k_e_int, NBR_DIMENSIONS *	NBR_NODES_U,	0, NBR_DIMENSIC k_e, NBR_NODES_P);	DNS * NBR_NODES_U,
<ul> <li>413</li> <li>414</li> <li>415</li> <li>416</li> <li>417</li> <li>418</li> <li>419</li> <li>420</li> <li>421</li> <li>422</li> <li>423</li> <li>424</li> <li>425</li> <li>426</li> <li>427</li> <li>428</li> <li>429</li> <li>430</li> <li>431</li> <li>432</li> <li>433</li> <li>434</li> <li>435</li> <li>436</li> <li>437</li> <li>438</li> <li>440</li> </ul>	ir tr bl	ranspose(NBR_DIMENSIONS lock( 0, NBR_DIMENSIONS * g_e_int, NBR_DIMENSIONS * lock( NBR_DIMENSIONS * lock( NBR_DIMENSIONS * NBR_NODES_P, g_e_int_T, NBR_DIMENSIONS *	<pre>meshCFDType, NBR_DIMENSIONS, NBR_NODES_P, RH0, integrationOrder integrationOrder Np, Nu_DOF_T, NuDerivatives, div_Nu_T, Ju, NuDerivativesTra Bu_T, Bu_T_C, JuDeterminant, k_e_int_Temp, g_e_int_Temp, m_e_int_Temp); 5 * NBR_NODES_U, NBR_NODES_U + N NBR_NODES_U, NBR_NODES_U, NBR_NODES_U, NBR_NODES_U,</pre>	XSI[1], ZETA[1], nsformed, NBR_DIMENSIC NBR_NODES_P, g_e, IBR_NODES_P); 0, NBR_DIMENSIC g_e, IBR_DIMENSIC g_e, IBR_NODES_P);	<pre>MT_g_e, NBR_NODES_U, nodesCoordinates, MI, integrationOrder_ETA[1], Nu, Nu_DOF, Nu_DOF, iv_Nu, div_Nu, div_Nu_T_Np, JuInverse, Bu, C, Bu,T_C_Bu, k_e_int, g_e_int, m_e_int, , g_e_int, g_e_int_T); NS * NBR_NODES_U, </pre>
440 441 442 443 444 445 446 447 448 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467	ir b1 } }	<pre>http://www.ntegrateElement_k_g_m( http://www.stor.jointensions * http://www.stor.jointensions* http://wwww.stor.jointensions* http://www.stor.jointensions* http://wwww.stor.jointensions* http://www.stor.jointensions* http://wwww.stor.jo</pre>	<pre>meshCFDType, NBR_DIMENSIONS, NBR_NODES_P, RH0, integrationOrder integrationOrder Np, NuDerivatives, div_Nu_T, Ju, NuDerivativesTra Bu_T, Bu_T_C, JuDeterminant, k_e_int_Temp, g_e_int_Temp, m_e_int_Temp); NBR_NODES_U + N</pre>	<pre>O, O, NBR_DIMENSIC MR_NODES_P);</pre>	<pre>MT_m_e, NBR_NODES_U, nodesCoordinates, MI, integrationOrder_ETA[2], Nu, Nu_DOF, Nu_DOF, Nu_DOF,T_Nu_DOF, div_Nu, div_Nu,T_Np, JuInverse, Bu, C, Bu_T_C_Bu, k_e_int, g_e_int, m_e_int, DNS * NBR_NODES_U,</pre>
469 470 471	<pre>device void calculate</pre>	e_c_c_t_e( MeshCFDType size_t	meshCFDType, iNumberDimen	isions,	

472 Precision* nodesCoordinates, 473 **Precision*** u_e, 474 Precision* v_e. 475Precision* w_e. 476 unsigned int* integrationOrder_XSI, unsigned int* integrationOrder_ETA, 477 unsigned int* 478 integrationOrder_ZETA, 479Precision* c_e, 480 **Precision***  $c_t_e$ ) 481 { if (meshCFDType == MCFDT_P2P1) 482 483 { 484 if (iNumberDimensions == 2) 485 { const size_t NBR_DIMENSIONS = 2; 486 const size_t NBR_NODES_U 487 = 6; const size_t NBR_NODES_P = 3; 488 489 Precision Nu[1 * NBR_NODES_U] = { 0. };
Precision Nu_DOF[NBR_DIMENSIONS * NBR_DIMENSIONS * NBR_NODES_U] 490 = { 0. }; 491 Precision Nu_DOF_T[NBR_DIMENSIONS * NBR_NODES_U * NBR_DIMENSIONS]  $= \{ 0. \};$ 492 { 0. }; 493 Precision NuDerivatives[NBR_DIMENSIONS * NBR_NODES_U] 494Precision Ju[NBR_DIMENSIONS * NBR_DIMENSIONS] { 0. }; 495 = 496 Precision JuDeterminant = 0.;  $= \{ 0. \};$ Precision JuInverse[NBR_DIMENSIONS * NBR_DIMENSIONS] 497 Precision NuDerivativesTransformed[NBR_DIMENSIONS * NBR_NODES_U] 498 = { 0. }; 499 Precision B[NBR_DIMENSIONS * NBR_DIMENSIONS * NBR_DIMENSIONS * 500 $NBR_NODES_U$ ] = { 0. }; 501 502 Precision e_dot_u[NBR_DIMENSIONS * NBR_DIMENSIONS * NBR_DIMENSIONS] = { 0. }; 503 Precision Nu_DOF_T_e_dot_u[NBR_DIMENSIONS * NBR_NODES_U * NBR_DIMENSIONS * 504 NBR_DIMENSIONS] = { 0. }; 505 506 507 Precision NuDerivatives_x_DOF[NBR_DIMENSIONS * NBR_DIMENSIONS * NBR_NODES_U] = { 0. };
Precision NuDerivatives_y_DOF[NBR_DIMENSIONS * NBR_DIMENSIONS * 508 509 $NBR_NODES_U$ ] = { 0. }; 510511 Precision NuDerivatives_x_DOF_NuDerivatives_y_DOF[NBR_DIMENSIONS * NBR_DIMENSIONS * NBR_NODES_U] = { 0. }; 512 Precision Nu_DOF_T_NuDerivatives_x_DOF_NuDerivatives_y_DOF[NBR_DIMENSIONS * 514NBR_NODES_U * NBR_DIMENSIONS * NBR_NODES_U] = { 0. }; 515Precision gradu[NBR_DIMENSIONS * NBR_DIMENSIONS] = { 0. }; 516 Precision Nu_DOF_T_gradu[NBR_DIMENSIONS * NBR_NODES_U * 517 NBR_DIMENSIONS] = { 0. }; 518 Precision Nu_DOF_T_gradu_Nu_DOF[NBR_DIMENSIONS * NBR_NODES_U *
 NBR_DIMENSIONS * NBR_NODES_U] = { 0. }; 519520 521 Precision c_e_int[NBR_DIMENSIONS * NBR_NODES_U * NBR_DIMENSIONS * 522 523  $NBR_NODES_U$ ] = { 0. }; Precision c_e_int_Temp[NBR_DIMENSIONS * NBR_NODES_U * NBR_DIMENSIONS * 524  $NBR_NODES_U = \{ 0. \}$ 525Precision c_t_e_int[NBR_DIMENSIONS * NBR_NODES_U * NBR_DIMENSIONS * 526 NBR_NODES_U] =  $\{0, \}$ 527 Precision c_t_e_int_Temp[NBR_DIMENSIONS * NBR_NODES_U * NBR_DIMENSIONS * 528 529  $NBR_NODES_U$ ] = { 0. }; 530MT_c_e, integrateElement_c_c_t( meshCFDType 531 NBR_DIMENSIONS, NBR_NODES_U, 532 533 nodesCoordinates, u_e. 534v_e, w_e, integrationOrder_XSI[3], integrationOrder_ETA[3], 535 536 integrationOrder_ZETA[3], Nu, NuDerivatives, 537 Ju. JuInverse, NuDerivativesTransformed, 538 Β, Nu DOF. Nu_DOF_T, 540 e_dot_u, 541 Nu_DOF_T_e_dot_u, NuDerivatives_x_DOF, NuDerivatives_y_DOF, 542 NuDerivatives_x_DOF_NuDerivatives_y_DOF, 543 544Nu_DOF_T_NuDerivatives_x_DOF_NuDerivatives_y_DOF, 545gradu, Nu_DOF_T_gradu, Nu_DOF_T_gradu_Nu_DOF, JuDeterminant. 546547c_e_int, c_e_int_Temp,



625

626

627

628

629

630

631 632

633 634

635 636

637

638 639

640

641

642 643

644

645 646

647

648

649 650

651

652

653

 $\begin{array}{c} 654 \\ 655 \\ 656 \end{array}$ 

657 658

659

660

661 662

663 664

665 666

667

668 669 670

671

672

673

674 675

676 677

678 679

680 681

682

683 684

685

686

687

688

689

690

691 692

693

694

695 696

697

698

```
integrationElementType = TRIANGLE;
}
else if (meshCFDType == MCFDT_Q2Q1)
{
 integrationElementType = QUADRILATERAL;
}
Precision integrationRules_XSI[12 * 4];
Precision integrationRules_ETA[12 * 4];
Precision integrationRules_ZETA[12 * 4];
if (iIntegrationOrder_XSI > 0)
{
 getIntegrationRules(integrationElementType,
 iIntegrationOrder_XSI,
 integrationRules_XSI);
}
if (iIntegrationOrder_ETA > 0)
{
 getIntegrationRules(integrationElementType,
 iIntegrationOrder_ETA,
 integrationRules_ETA);
}
if (iIntegrationOrder_ZETA > 0)
{
 getIntegrationRules(integrationElementType,
 iIntegrationOrder_ZETA,
 integrationRules_ZETA);
}
Precision d_XSI
 = 0.;
 = 0.;
Precision d_ETA
Precision d_ZETA
 = 0.;
 = 0.;
Precision d_W
Precision d_W_i = 0.;
Precision d_W_j = 0.;
Precision d_W_k = 0;
//Calcula a integral 1D
for (size_t i = 0; i < iIntegrationOrder_XSI; ++i)</pre>
{
 d_W_i = integrationRules_XSI[IDX2C(i, 0, 12)];
 if (integrationElementType == TRIANGLE)
 {
 = integrationRules_XSI[IDX2C(i, 1, 12)];
 d XST
 = integrationRules_XSI[IDX2C(i, 2, 12)];
 d_ETA
 d_ZETA = integrationRules_XSI[IDX2C(i, 3, 12)];
 }
 else if (integrationElementType == QUADRILATERAL)
 {
 d_XSI = integrationRules_XSI[IDX2C(i, 1, 12)];
 }
 d_W = d_W_i;
 do_calculate_k_g_m_e(
 meshCFDType,
 matrixType,
 iNumberDimensions,
 iNumberNodes_u,
 iNumberNodes_p,
 nodesCoordinates,
 RHO,
 MI,
 d_XSI
 d_ETA,
 d_ZETA,
 Nu,
 Νp,
 Nu_DOF,
 Nu_DOF_T_Nu_DOF,
 Nu_DOF_T,
 NuDerivatives,
 div Nu.
 div_Nu_T_Np,
 div_Nu_T,
 Ju,
 JuInverse,
 NuDerivativesTransformed,
 Bu,
 Bu_T,
 С.
 Bu_T_C,
 Bu_T_C_Bu,
 JuDeterminant,
 k_e_int_Temp,
 g_e_int_Temp,
 m_e_int_Temp);
 if (matrixType == MT_k_e)
```

```
700
 {
701
 multiplyScalar(iNumberDimensions * iNumberNodes_u,
702
 iNumberDimensions * iNumberNodes_u,
703
 d_₩,
704
 k_e_int_Temp,
705
 k_e_int_Temp);
 iNumberDimensions * iNumberNodes_u,
706
 sum(
 iNumberDimensions * iNumberNodes_u,
707
708
 k_e_int_Temp,
709
 k_e_int
 k_e_int);
710
711
712
 else if (matrixType == MT_g_e)
713
 {
 iNumberNodes_p,
 multiplyScalar(iNumberDimensions * iNumberNodes_u,
714
715
 d_₩,
 g_e_int_Temp,
716
 g_e_int_Temp);
 sum(iNumberDimensions * iNumberNodes_u,
 iNumberNodes_p,
717
 g_e_int_Temp,
 g_e_int,
718
719
 g_e_int);
720
 }
721
 else if (matrixType == MT_m_e)
 {
723
 multiplyScalar(iNumberDimensions * iNumberNodes_u,
724
 iNumberDimensions * iNumberNodes_u,
725
 d_₩,
726
 m_e_int_Temp,
727
 m_e_int_Temp);
 sum(iNumberDimensions * iNumberNodes_u,
728
729
 iNumberDimensions * iNumberNodes_u,
 m_e_int_Temp,
730
731
 m_e_int,
732
 m_e_int);
733
 }
734
 }
735
 if (meshCFDType == MCFDT_P2P1)
736
 {
738
 if (matrixType == MT_k_e)
739
 {
 multiplyScalar(iNumberDimensions * iNumberNodes_u,
740
 iNumberDimensions * iNumberNodes_u,
741
742
 .5,
 k_e_int,
743
744
 k_e_int);
745
 }
746
 else if (matrixType == MT_g_e)
747
 {
 multiplyScalar(iNumberDimensions * iNumberNodes_u,
748
749
 iNumberNodes_p,
 .5,
750
751
 g_e_int,
752
 g_e_int);
753
 else if (matrixType == MT_m_e)
754
755
 {
 multiplyScalar(iNumberDimensions * iNumberNodes_u,
756
757
 iNumberDimensions * iNumberNodes_u,
758
 .5,
 m_e_int,
759
760
 m_e_int);
761
 }
762
 }
 }
763
764
765
 11-
 ----- integrateElement_c_c_t ------
766
 device
 void integrateElement_c_c_t(MeshCFDType meshCFDType,
767
768
 MatrixType
 matrixType,
769
 size_t
 iNumberDimensions,
770
 iNumberNodes_u,
 size_t
 Precision*
 nodesCoordinates,
772
 Precision*
 u_e,
773
 Precision*
 v_e,
 Precision*
774
 w_e.
 iIntegrationOrder_XSI,
775
 size_t
```

777 778

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797 798

799

800

801 802 803

804

805 806

807

808

809 810

811

812 813

814

815

816 817

818

819

820 821

822 823

824

825

826

827

828 829

830 831

832 833

834

835 836 837

838

839 840

841

842

843 844

845 846

847 848

```
size_t
 iIntegrationOrder_ETA
 size_t
 iIntegrationOrder_ZETA,
 Precision*
 Nu .
 NuDerivatives,
 Precision*
 Precision*
 Ju,
 JuInverse,
 Precision*
 Precision*
 NuDerivativesTransformed,
 Precision*
 Β,
 Precision*
 Nu_DOF
 Precision*
 Nu_DOF_T,
 Precision*
 e dot u
 Nu_DOF_T_e_dot_u
 Precision*
 Precision*
 NuDerivatives_x_DOF,
 Precision*
 NuDerivatives_y_DOF,
 NuDerivatives_x_DOF_NuDerivatives_y_DOF,
 Precision*
 Precision*
 Nu_DOF_T_NuDerivatives_x_DOF_NuDerivatives_y_DOF,
 Precision*
 aradu
 Ňu_DOF_T_gradu,
 Precision*
 Nu_DOF_T_gradu_Nu_DOF,
 Precision*
 Precision
 JuDeterminant,
 Precision*
 c_e_int,
 Precision*
 c_e_int_Temp,
 Precision*
 c_t_e_int
 Precision*
 c_t_e_int_Temp)
{
 IntegrationElementType integrationElementType;
 if (meshCFDType == MCFDT_P2P1)
 {
 integrationElementType = TRIANGLE;
 }
 else if (meshCFDType == MCFDT_Q2Q1)
 {
 integrationElementType = QUADRILATERAL;
 }
 Precision integrationRules_XSI[12 * 4];
 Precision integrationRules_ETA[12 * 4];
 Precision integrationRules_ZETA[12 * 4];
 if (iIntegrationOrder_XSI > 0)
 {
 getIntegrationRules(integrationElementType,
 iIntegrationOrder_XSI,
 integrationRules_XSI);
 }
 if (iIntegrationOrder_ETA > 0)
 {
 getIntegrationRules(integrationElementType,
 iIntegrationOrder_ETA,
 integrationRules_ETA);
 }
 if (iIntegrationOrder_ZETA > 0)
 {
 getIntegrationRules(integrationElementType,
 iIntegrationOrder_ZETA,
 integrationRules_ZETA);
 }
 Precision d_XSI = 0.;
 Precision d_ETA = 0.;
 Precision d_ZETA = 0.;
 Precision d_W = 0.;
 Precision d_W_i = 0.;
 Precision d_W_j = 0.;
 Precision d_W_k = 0.;
 //Calcula a integral 1D
 for (size_t i = 0; i < iIntegrationOrder_XSI; ++i)</pre>
 {
 d_W_i = integrationRules_XSI[IDX2C(i, 0, 12)];
 if (integrationElementType == TRIANGLE)
```

920 921

922

923 924

925

```
{
 d_XSI = integrationRules_XSI[IDX2C(i, 1, 12)];
 d_ETA = integrationRules_XSI[IDX2C(i, 2, 12)];
d_ZETA = integrationRules_XSI[IDX2C(i, 3, 12)];
 else if (integrationElementType == QUADRILATERAL)
 {
 d_XSI = integrationRules_XSI[IDX2C(i, 1, 12)];
 }
 d_W = d_W_i;
 do_calculate_c_c_t_e(
 meshCFDType,
 matrixType,
 iNumberDimensions,
 iNumberNodes_u,
 nodesCoordinates,
 u_e,
 v_e,
 w_e,
 d_XSI
 d_ETA,
 d_ZETA,
 Nu,
 NuDerivatives,
 Ju,
 JuInverse,
 NuDerivativesTransformed,
 Nu_DOF,
 Β.
 Nu_DOF_T,
Nu_DOF_T_e_dot_u,
 e_dot_u
 NuDerivatives_x_DOF,
 NuDerivatives_y_DOF,
 NuDerivatives_x_DOF_NuDerivatives_y_DOF,
 Nu_DOF_T_NuDerivatives_x_DOF_NuDerivatives_y_DOF,
 gradu
 Nu_DOF_T_gradu,
 Nu_DOF_T_gradu_Nu_DOF,
 JuDeterminant,
 c_e_int_Temp,
 c_t_e_int_Temp);
 if (matrixType == MT_c_e)
 {
 multiplyScalar(iNumberDimensions * iNumberNodes_u,
 iNumberDimensions * iNumberNodes_u,
 d_₩,
 c_e_int_Temp
 c_e_int_Temp);
 sum(iNumberDimensions * iNumberNodes_u,
 iNumberDimensions * iNumberNodes_u,
 c_e_int_Temp,
 c_e_int
 c_e_int);
 }
 else if (matrixType == MT_c_t_e)
 {
 multiplyScalar(iNumberDimensions * iNumberNodes_u,
 iNumberDimensions * iNumberNodes_u,
 d_₩,
 c_t_e_int_Temp;
 c_t_e_int_Temp);
 sum(iNumberDimensions * iNumberNodes_u,
 iNumberDimensions * iNumberNodes_u,
 c_t_e_int_Temp,
 c_t_e_int
 c_t_e_int);
 }
}
 (meshCFDType == MCFDT_P2P1)
if
 if (matrixType == MT_c_e)
 {
 multiplyScalar(iNumberDimensions * iNumberNodes_u,
 iNumberDimensions * iNumberNodes_u,
 .5,
 c_e_int,
 c_e_int);
 }
 else if (matrixType == MT_c_t_e)
 {
 multiplyScalar(iNumberDimensions * iNumberNodes_u,
 iNumberDimensions * iNumberNodes_u,
 .5,
 c_t_e_int,
 c_t_e_int);
 }
```

	,									
928	}									
929	}									
930										
931	\//////////////////////////////////////									
932										
933	//	calcula	ate_k_e							
934	device									
935	void do calculate k g m e(	MeshCEDType	meshCFD	Type.						
936		MatrixTvne	matrixT	vne						
027		cizo t	iNumbor	Jpe, Dimoncio						
937		size_t	iNumber	DTILIEUSTO	15,					
938		size_t	iNumber	Nodes_u,						
939		size_t	iNumber	Nodes_p,						
940		Precision*	nodesCo	ordinates	5,					
941		Precision	RHO.							
942		Precision	MT							
042		Procision	d vet							
945		Precision	u,							
944		Precision	U_EIA,							
945		Precision	d_ZEIA,							
946		Precision*	Nu,							
947		Precision*	Np,							
948		Precision*	Nu DOF.							
0/0		Precision*	Nu DOF	т						
050		Drecision*								
950		Precision*			1					
951		Precision*	NuDeriv	atives,						
952		Precision*	div_Nu,							
953		Precision*	div_Nu_	Т,						
954		Precision*	div_Nu_	T_Np.						
955		Precision*	10	,						
056		Procision*	JuInvor	60						
057		Drecision.	NuDoriv	se, stivecTr	anafarmad					
957		Precision*	Nuberity	ativesii	ansionmed,					
958		Precision*	Bu,							
959		Precision*	Bu_T,							
960		Precision*	С,							
961		Precision*	Bu_T_C,							
962		Precision*	Bu T C	Bu.						
963		Precision	luDeter	minant						
064		Procision*	k o int	infinanc,						
904 0CF		Precision.	R_e_int	,						
965		Precision*	g_e_int	<u>,</u>						
966	_	Precision*	m_e_int	)						
967	{									
968	calculate_Nu(meshCFDTyp	e, d_XSI, d_l	ETA, d_Z	ETA, Nu)	;					
969	calculate_Np(meshCFDTyp	e, d_XSI, d_∣	ETA, d_Z	ETA, Np)	;					
970	calculate_NuDerivatives	(meshCFDTvpe	. d_XSI.	d_ETA.	d_ZETA. NuDerivatives):					
971	calculate J(iNumberDime	nsions. iNum	berNodes	u. node	sCoordinates. NuDerivatives. Ju):					
072	luDeterminant = determi	nant(iNumber	limensio	ns iNum	herDimensions lu):					
072	inverse (iNumberDimensio		inont 1		orco),					
915	TIMELSE(TIMUNDELDTINELSTO	ins, Jupererin.	inanit, J	u, Juliv	erse,					
974	calculate_NDerivatives	ranstormed(	iNumber	Dimensio	ns, iNumberNodes_u,					
975			Ju,		JuInverse,					
976			NuDeriv	atives,	<pre>NuDerivativesTransformed);</pre>					
977										
978	<pre>if (matrixType == MT_k_</pre>	e)								
979	{ {	- /								
080	do calculate k e(	iNumborDimo	ncionc		iNumberNodes u					
001	do_catcatate_k_e(		1310113,		MT					
981		KIU,	<del>.</del>		ML,					
982		Nuberivative	estranst	ormed,	Bu,					
983		Bu_T,			С,					
984		Bu_T_C,			Bu_T_C_Bu,					
985		JuDetermina	nt,		k_e_int);					
986	}									
987	else if (matrixType ==	MTae)								
088	s (main friday)	···-g_o,								
000	l	iNumborDimo	aciona		i Number Nedec u					
969	uu_catcutate_y_e(	TINUIIDELDTIIEI	1510115,		INUIIDET NOUES_U,					
990		iNumberNodes	5_р,		Np,					
991		NuDerivative	es,		Ju,					
992		NuDerivative	esTransf	ormed,	div_Nu,					
993		div_Nu_T,			div_Nu_T_Np,					
994		JuDetermina	nt,		<pre>q_e_int);</pre>					
995	}		-							
906	, else if (matrixType	MT m e)								
007										
000 991	l do colculato m c'	iNumborDime	aciona	iNumbor	Nodos u					
998	uu_cattutate_m_e(	TIANIIIDEL DTIJIEL	1510115,	Tinninpeti	NUUES_U,					
999		KHU,		NU,	_					
1000		Nu_DOF,		Nu_DOF_	L _y					
1001		NU DOF T NU	DOF .	JuDeter	minant,					
1001					•					
1001		<pre>m_e_int);</pre>								

1004	}			
1005				
1006	//	calcula	ate_m_e	
1007	device			
1008	<pre>void do_calculate_c_c_t_e(</pre>	MeshCFDType	<pre>meshCFDType,</pre>	
1009		MatrixType	<pre>matrixType,</pre>	
1010		size_t	iNumberDimensior	IS ,
1011		size t	iNumberNodes u.	
1012		Precision*	nodesCoordinates	
1012		Procision*		
1013		Procision.	u_e,	
1014		Precision*	v_e,	
1015		Precision*	w_e,	
1016		Precision	d_XSI,	
1017		Precision	d_ETA,	
1018		Precision	d_ZETA,	
1019		Precision*	Nu,	
1020		Precision*	NuDerivatives,	
1021		Precision*	Ju,	
1022		Precision*	JuInverse.	
1023		Precision*	NuDerivativesTra	ansformed.
1020		Precision*	B	
1024		Procision*		
1020		Precision*	NU_DOF T	
1020		Precision*	NU_DUF_1,	
1027		Precision*	e_dot_u,	
1028		Precision*	Nu_DUF_I_e_dot_L	l,
1029		Precision*	NuDerivatives_x_	DUF,
1030		Precision*	NuDerivatives_y_	DOF,
1031		Precision*	NuDerivatives_x_	_DOF_NuDerivatives_y_DOF,
1032		Precision*	Nu_DOF_T_NuDeriv	<pre>vatives_x_DOF_NuDerivatives_y_DOF,</pre>
1033		Precision*	gradu,	
1034		Precision*	Ňu_DOF_T_ɑradu.	
1035		Precision*	Nu DOF T gradu N	lu DOF.
1036		Precision	luDeterminant	
1037		Precision*	c e int	
1038		Procision*	$c \pm o \text{ int}$	
1020	ſ	1160131011*	$c_1 c_2 c_2 e_1 n c$	
1039	1 colculate Nu(machCEDTurk			
1040		2, 0_XSI, 0_1	EIA, U_ZEIA, NU);	
1041	calculate_NuDerivatives	(mesnCFDType	, d_XSI, d_EIA, d	_ZETA, NUDerivatives);
1042	calculate_J(iNumberDimer	nsions, iNum	perNodes_u, nodes	<pre>SCoordinates, NuDerivatives, Ju);</pre>
1043	JuDeterminant = determin	nant(iNumber[	Dimensions, iNumb	perDimensions, Ju);
1044	inverse(iNumberDimensior	ns, JuDeterm:	inant, Ju, JuInve	erse);
1045	calculate_NDerivativesT	ransformed(	iNumberDimensior	ns, iNumberNodes_u,
1046			Ju,	JuInverse,
1047			NuDerivatives.	NuDerivativesTransformed):
1048				
1049	if (matrixType == MT c e	-)		
1050		- /		
1050	do calculate c e(	iNumborDimor	sions	iNumberNodes u
1051	00_00100101010_0_0		1310113,	Y o
1052		u_e,		v_e,
1053		w_e,	<b>T</b> ( )	NU,
1054		NuDerivative	estransformed,	В,
1055		Nu_DOF,		Nu_DOF_T,
1056		e_dot_u,		Nu_DOF_T_e_dot_u,
1057		JuDeterminar	nt,	<pre>c_e_int);</pre>
1058	}			
1059	<pre>else if (matrixType == !</pre>	MT_c_t_e)		
1060	{			
1061	do calculate c t e(	iNumberDimer	sions	iNumberNodes u.
1062			,	V P
1063		w e		Nu
1064		W_C, NuDorivotiv	Transformed	D
1004				В,
1000		Nu_DUF, Nu_L	JUF_1,	NuDaniustius v DOF
1066		Nuberivative	es_x_DUF,	NUDerivatives_y_DUF,
1067		NuDerivative	es_x_DOF_NuDeriva	itives_y_DOF,
1068		Nu_DOF_T_Nul	Derivatives_x_DOF	_NuDerivatives_y_DOF,
1069		gradu,		Nu_DOF_T_gradu,
1070		Nu_DOF_T_gra	adu_Nu_DOF,	JuDeterminant,
1071		<pre>c_t_e_int);</pre>		
1072	}			
1073	}			
1074	,			
1075	///////////////////////////////////////	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	///////////////////////////////////////	
1076				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1075	11		ata k.c	
1077	//	calcula	ате_к_е	
1078	uevice			
1079	<pre>vold do_calculate_k_e( size</pre>	e_t iNur	nberDimensions,	

1080 size_t iNumberNodes_u, 1081 Precision RHO, 1082 Precision MI, Precision* NuDerivativesTransformed, 1083 1084 Precision* Bu, Bu_T, 1085 **Precision*** 1086 Precision* С, Precision*  $Bu_T_C$ , 1087 1088 Precision* Bu_T_C_Bu, JuDeterminant, 1089 Precision 1090 **Precision*** k e int) 1091 { 1092 calculate_B(iNumberDimensions, iNumberNodes_u, NuDerivativesTransformed, Bu); 1093 transpose(3, iNumberDimensions * iNumberNodes_u, Bu, Bu_T); calculate_C(iNumberDimensions, RHO, MI, C); 1094 multiply(iNumberDimensions * iNumberNodes_u, 3, 3, Bu_T, C, Bu_T_C); 1095 1096 multiply( iNumberDimensions * iNumberNodes_u, iNumberDimensions * iNumberNodes_u, 1097 3. Bu_T_C, Bu, 1098 Bu_T_C_Bu); multiplyScalar( iNumberDimensions * iNumberNodes_u, 1099 iNumberDimensions * iNumberNodes_u, 1100 1101 JuDeterminant, Bu_T_C_Bu, 1102 1103k_e_int); 1104 } 1105 1106 //-------- calculate_g_e -----1107 _device_ void do_calculate_g_e( size_t 1108 iNumberDimensions, iNumberNodes_u. 1109 size t 1110 size t iNumberNodes_p. **Precision*** 1111 Np, Precision* NuDerivatives, 1112 Precision* 1113 Ju. NuDerivativesTransformed, 1114Precision* 1115Precision* div_Nu, 1116 Precision* div_Nu_T div_Nu_T_Np, Precision* 1117 1118 Precision JuDeterminant, 1119 Precision* g_e_int) 1120 { calculate_divNu(iNumberDimensions, iNumberNodes_u, NuDerivativesTransformed, div_Nu); 1121 1122 transpose(1, iNumberDimensions * iNumberNodes_u, div_Nu, div_Nu_T); iNumberDimensions * iNumberNodes_u, 1123 multiply( iNumberNodes_p, 1124 1, 1125 1126 div_Nu_T, 1127 Np, div_Nu_T_Np); 1128 1129 multiplyScalar( iNumberDimensions * iNumberNodes_u, iNumberNodes_p, 1130 1131 JuDeterminant, div_Nu_T_Np. 1133g_e_int); multiplyScalar( iNumberDimensions * iNumberNodes_u, 1134 iNumberNodes_p, 1135 1136 -1., 1137 g_e_int 1138 g_e_int); 1139 } 1140 ----- calculate_m_e -----1141 //----1142 _device__ void do_calculate_m_e( size_t iNumberDimensions. 1143 1144size_t iNumberNodes_u, Precision RHO, 1145Precision* 1146 Nu. Nu_DOF Precision* 1147 Nu_DOF_T 1148 Precision* 1149 Precision* Nu_DOF_T_Nu_DOF, Precision JuDeterminant, 11501151 Precision* m_e_int) 1152{ 1153 for (size_t i = 0; i < iNumberNodes_u; ++i)</pre> 1154ł Nu_DOF[IDX2C(0, 2 * i, iNumberDimensions)] = Nu[IDX2C(0, i, 1)];1155

```
Nu_DOF[IDX2C(1, 2 * i + 1, iNumberDimensions)] = Nu[IDX2C(0, i, 1)];
1156
1157
 }
1158
 transpose(iNumberDimensions, iNumberDimensions* iNumberNodes_u, Nu_DOF, Nu_DOF_T);
1160
 multiply(
 iNumberDimensions * iNumberNodes_u,
 iNumberDimensions * iNumberNodes_u,
1161
1162
 iNumberDimensions,
 Nu_DOF_T,
1163
1164
 Nu_DOF,
 Nu_DOF_T_Nu_DOF);
1165
 multiplyScalar(iNumberDimensions * iNumberNodes_u,
1166
 iNumberDimensions * iNumberNodes_u,
1167
 RHO,
1168
1169
 Nu_DOF_T_Nu_DOF,
 m_e_int);
1170
1171
 multiplyScalar(iNumberDimensions * iNumberNodes_u,
 iNumberDimensions * iNumberNodes_u,
1172
1173
 JuDeterminant,
 m_e_int.
1174
1175
 m_e_int);
1176
 }
1177
 1178
1179
1180
 11 - - -
 ----- calculate_g_e -----
 ___device__
1181
1182
 void do_calculate_c_e(size_t
 iNumberDimensions,
1183
 iNumberNodes_u,
 size_t
 Precision*
1184
 u_e,
 Precision*
1185
 v_e.
1186
 Precision*
 w_e,
1187
 Precision*
 Nu,
1188
 Precision*
 NuDerivativesTransformed,
1189
 Precision*
 Β.
 Nu_DOF
1190
 Precision*
1191
 Precision*
 Nu_DOF_T,
 e_dot_u,
1192
 Precision*
 Nu_DOF_T_e_dot_u,
1193
 Precision*
1194
 Precision
 JuDeterminant,
1195
 Precision* c_e_int)
1196
 {
 for (size_t i = 0; i < iNumberNodes_u; ++i)</pre>
1197
1198
 {
 Nu_DOF[IDX2C(0, 2 * i, iNumberDimensions)] = Nu[IDX2C(0, i, 1)];
Nu_DOF[IDX2C(1, 2 * i + 1, iNumberDimensions)] = Nu[IDX2C(0, i, 1)];
1199
1200
1201
 }
1202
1203
 if (iNumberDimensions == 2)
1204
 {
 for (size_t i = 0; i < iNumberDimensions; ++i)</pre>
1205
1206
 {
1207
 for (size_t j = 0; j < iNumberNodes_u; ++j)</pre>
1208
 {
1209
 B[IDX2C(2 * i, 2 * j + i, 4)] =
 NuDerivativesTransformed[IDX2C(0, j, iNumberDimensions)];
1210
 B[IDX2C(2 * i + 1, 2 * j + i, 4)] =
1211
 NuDerivativesTransformed[IDX2C(1, j, iNumberDimensions)];
1212
1213
 }
1214
 }
1215
 }
1216
1217
 transpose(iNumberDimensions, iNumberDimensions * iNumberNodes_u, Nu_DOF, Nu_DOF_T);
1218
 calculate_e_dot_u(iNumberDimensions, iNumberNodes_u, u_e, v_e, w_e, Nu, e_dot_u);
1219
 multiply(
 iNumberDimensions * iNumberNodes_u,
1220
 iNumberDimensions * iNumberDimensions,
1221
 iNumberDimensions,
 Nu_DOF_T,
1222
 e_dot_u,
1223
1224
 Nu_DOF_T_e_dot_u);
1225
 multiply(
 iNumberDimensions * iNumberNodes_u,
1226
 iNumberDimensions * iNumberNodes_u,
 iNumberDimensions * iNumberDimensions,
1227
1228
 Nu_DOF_T_e_dot_u,
1229
 Β,
1230
 c_e_int):
 multiplyScalar(iNumberDimensions * iNumberNodes_u,
1231
```

```
1232
 iNumberDimensions * iNumberNodes_u,
1233
 JuDeterminant,
1234
 c_e_int,
1235
 c_e_int);
1236
 }
1237
1238
 //----
 ----- calculate_c_t_e -----
 device
1239
1240
 void do_calculate_c_t_e(size_t
 iNumberDimensions,
1241
 size_t
 iNumberNodes_u,
 Precision*
1242
 u_e,
1243
 Precision*
 v_e.
1244
 Precision*
 w_e,
1245
 Precision*
 Nu,
1246
 Precision*
 NuDerivativesTransformed,
 Β,
1247
 Precision*
1248
 Precision*
 Nu_DOF
 Nu_DOF_T,
1249
 Precision*
 Precision*
 NuDerivatives_x_DOF,
1250
1251
 Precision*
 NuDerivatives_y_DOF
1252
 NuDerivatives_x_DOF_NuDerivatives_y_DOF,
 Precision*
1253
 Precision*
 Nu_DOF_T_NuDerivatives_x_DOF_NuDerivatives_y_DOF,
1254
 Precision*
 gradu
 Nu_DOF_T_gradu,
1255
 Precision*
1256
 Precision*
 Nu_DOF_T_gradu_Nu_DOF,
 JuDeterminant,
1257
 Precision
1258
 Precision*
 c_t_e_int)
1259
 {
 if (iNumberDimensions == 2)
1260
1261
 {
 for (size_t i = 0; i < iNumberNodes_u; ++i)</pre>
1262
1263
 {
 1264
1265
1266
1267
 NuDerivatives_x_DOF[IDX2C(0, 2 * i, iNumberDimensions)]
 = NuDerivativesTransformed[IDX2C(0, i, iNumberDimensions)];
1268
 NuDerivatives_x_DOF[IDX2C(1, 2 * i + 1, iNumberDimensions)] =
1269
1270
 NuDerivativesTransformed[IDX2C(0, i, iNumberDimensions)];
1271
 NuDerivatives_y_DOF[IDX2C(0, 2 * i, iNumberDimensions)] =
1272
 NuDerivativesTransformed[IDX2C(1, i, iNumberDimensions)];
1273
1274
 NuDerivatives_y_DOF[IDX2C(1, 2 * i + 1, iNumberDimensions)] =
 NuDerivativesTransformed[IDX2C(1, i, iNumberDimensions)];
1275
1276
 }
1277
 }
1278
1279
 Precision u[1];
 Precision v[1];
1280
1281
1282
 multiply(1, 1, iNumberNodes_u, Nu, u_e, u);
1283
 multiply(1, 1, iNumberNodes_u, Nu, v_e, v);
1284
1285
 transpose(iNumberDimensions, iNumberDimensions * iNumberNodes_u, Nu_DOF, Nu_DOF_T);
 multiplyScalar(iNumberDimensions,
1286
 iNumberDimensions * iNumberNodes_u.
1287
1288
 u[0],
1289
 NuDerivatives_x_DOF
1290
 NuDerivatives_x_DOF);
 multiplyScalar(iNumberDimensions,
1291
 iNumberDimensions * iNumberNodes_u,
1202
1293
 v[0],
1294
 NuDerivatives_y_DOF
 NuDerivatives_y_DOF);
1295
1296
 sum(iNumberDimensions,
 iNumberDimensions * iNumberNodes_u,
1297
 NuDerivatives_x_DOF,
 NuDerivatives_y_DOF,
 NuDerivatives_x_DOF_NuDerivatives_y_DOF);
1298
 iNumberDimensions * iNumberNodes_u,
iNumberDimensions * iNumberNodes_u,
1299
 multiply(
1300
1301
 iNumberDimensions,
1302
 Nu_DOF_T
 NuDerivatives_x_DOF_NuDerivatives_y_DOF,
1303
1304
 Nu_DOF_T_NuDerivatives_x_DOF_NuDerivatives_y_DOF);
1305
 calculate_gradu(iNumberDimensions, iNumberNodes_u,
1306
1307
 u_e,
 v_e,
```

1308 NuDerivativesTransformed, w_e, 1309 gradu); 1310 multiply( iNumberDimensions * iNumberNodes_u, iNumberDimensions, Nu_DOF_T, iNumberDimensions, 1312gradu, Nu_DOF_T_gradu); multiply( iNumberDimensions * iNumberNodes_u, 1313 1314 iNumberDimensions * iNumberNodes_u, iNumberDimensions, 1315 1316 Nu_DOF_T_gradu, Nu_DOF 1317 Nu_DOF_T_gradu_Nu_DOF); 1318 1319 1320 sum(iNumberDimensions * iNumberNodes_u, 1321 iNumberDimensions * iNumberNodes_u, Nu_DOF_T_NuDerivatives_x_DOF_NuDerivatives_y_DOF, 1322 1323 Nu_DOF_T_gradu_Nu_DOF, 1324 c_t_e_int); 1325 multiplyScalar( iNumberDimensions * iNumberNodes_u, 1326 1327 iNumberDimensions * iNumberNodes_u, 1328 JuDeterminant, 1329c_t_e_int, 1330 c_t_e_int); 1331 } 1332 1333 1334 //-----1335 ----- calculate_Nu -----1336 _device__ void calculate_Nu( MeshCFDType meshCFDType, 1337 d_XSI, 1338 Precision d_ETA, 1339 Precision Precision d_ZETA, 1340 1341 Precision* Nu) 1342{ 1343 if (meshCFDType == MCFDT_P2P1) 1344 { Precision d_ZETA = 1. - d_XSI - d_ETA; 13451346 Nu[IDX2C(0, 0, 1)] = 2. * d_ZETA * (d_ZETA - .5); 1347  $\begin{aligned} & \mathsf{Nu}[\mathsf{IDX2C}(0,\ 1,\ 1)] = 2. * \mathsf{d}_{\mathsf{L}}\mathsf{XSI} * (\mathsf{d}_{\mathsf{L}}\mathsf{XSI} - .5); \\ & \mathsf{Nu}[\mathsf{IDX2C}(0,\ 2,\ 1)] = 2. * \mathsf{d}_{\mathsf{E}}\mathsf{TA} * (\mathsf{d}_{\mathsf{E}}\mathsf{TA} - .5); \end{aligned}$ Nu[IDX2C(0, 3, 1)] = 4. * d_ZETA * d_XSI; Nu[IDX2C(0, 4, 1)] = 4. * d_XSI * d_ETA; Nu[IDX2C(0, 5, 1)] = 4. * d_ETA * d_ZETA; 1350 1351 135213531354 else if (meshCFDType == MCFDT_Q2Q1) 1355 Nu[IDX2C(0, 0, 1)] = .25 * (d_XSI * d_ETA) * (d_XSI - 1.) * (d_ETA - 1.); 1356 Nu[IDX2C(0, 1, 1)] = .25 * (d_XSI * d_ETA) * (d_XSI + 1.) * (d_ETA - 1.); 1357 Nu[IDX2C(0, 2, 1)] = .25 * (d_XSI * d_ETA) * (d_XSI + 1.) * (d_ETA + 1.); 1358 Nu[IDX2C(0, 3, 1)] = .25 * (d_XSI * d_ETA) * (d_XSI - 1.) * (d_ETA + 1.); Nu[IDX2C(0, 4, 1)] = .5 * d_ETA * (d_ETA - 1.) * (powf(d_XSI, 2.) - 1.); 1359 1360  $\begin{aligned} &\text{Nu}[\text{IDX2C}(0, 5, 1)] = -.5 * d_{-}\text{XSI} * (d_{-}\text{XSI} + 1.) * (powf(d_{-}\text{ETA}, 2.) - 1.); \\ &\text{Nu}[\text{IDX2C}(0, 6, 1)] = -.5 * d_{-}\text{ETA} * (d_{-}\text{ETA} + 1.) * (powf(d_{-}\text{XSI}, 2.) - 1.); \\ &\text{Nu}[\text{IDX2C}(0, 7, 1)] = -.5 * d_{-}\text{XSI} * (d_{-}\text{XSI} - 1.) * (powf(d_{-}\text{ETA}, 2.) - 1.); \\ &\text{Nu}[\text{IDX2C}(0, 7, 1)] = -.5 * d_{-}\text{XSI} * (d_{-}\text{XSI} - 1.) * (powf(d_{-}\text{ETA}, 2.) - 1.); \end{aligned}$ 1361 1362 1363 Nu[IDX2C(0, 8, 1)] = (powf(d_XSI, 2.) - 1.) * (powf(d_ETA, 2.) - 1.); 1364 } 1365 1366} 1367 ----- calculate_Np ------1368 _device_ 13691370 void calculate_Np( MeshCFDType meshCFDType, d_XSI, Precision 1372Precision d_ETA, 1373 Precision d_ZETA. 1374 Precision* Np) { 1376 if (meshCFDType == MCFDT_P2P1) 1377 { Np[IDX2C(0, 0, 1)] = 1. - d_XSI - d_ETA; Np[IDX2C(0, 1, 1)] = d_XSI; Np[IDX2C(0, 2, 1)] = d_ETA; 1378 1379 1380 1381 else if (meshCFDType == MCFDT_Q2Q1) 13821383{

Np[IDX2C(0, 0, 1)] =  $.25 * (1 - d_XSI) * (1 - d_ETA);$ 1384 $\begin{array}{l} \mathsf{Np}[\mathsf{IDX2C}(0,\ 1,\ 1)] = .25 * (1 + \mathsf{d}_\mathsf{-}\mathsf{XSI}) * (1 - \mathsf{d}_\mathsf{-}\mathsf{ETA}); \\ \mathsf{Np}[\mathsf{IDX2C}(0,\ 2,\ 1)] = .25 * (1 + \mathsf{d}_\mathsf{-}\mathsf{XSI}) * (1 + \mathsf{d}_\mathsf{-}\mathsf{ETA}); \\ \mathsf{Np}[\mathsf{IDX2C}(0,\ 3,\ 1)] = .25 * (1 - \mathsf{d}_\mathsf{-}\mathsf{XSI}) * (1 + \mathsf{d}_\mathsf{-}\mathsf{ETA}); \\ \end{array}$ 1385 1386 1387 1388 } } 1389 1390 ----- calculate_NDerivatives ------1391 //---1392 _device_ 1393 void calculate_NuDerivatives( MeshCFDType meshCFDType, 1394 Precision d XSI. 1395 Precision d FTA 1396 Precision d_ZETA, 1397 Precision* NuDerivatives) 1398 { 1399if (meshCFDType == MCFDT_P2P1) 1400{ 1401Precision d_dZETA_dXSI = -1.; Precision d_dXSI_dXSI = 1.; 1402 1403 Precision d_dETA_dXSI = 0.;1404 Precision  $d_dZETA_dETA = -1.;$ 1405= 0.; 1406 Precision d_dXSI_dETA = 1.; 1407 Precision d_dETA_dETA 1408 Precision d_ZETA = 1. - d_XSI - d_ETA; 14091410 NuDerivatives [IDX2C(0, 0, 2)] = (4. * d_ZETA - 1.) * d_dZETA_dXSI; 1411 NuDerivatives[IDX2C(0, 1, 2)] = (4. * d_XSI - 1.) * d_dXSI_dXSI; NuDerivatives[IDX2C(0, 2, 2)] = (4. * d_ETA - 1.) * d_dKI_dXSI; NuDerivatives[IDX2C(0, 3, 2)] = 4. * d_XSI * d_dZETA_dXSI + 1412 1413 1414 4. * d_ZETA * d_dXSI_dXSI; 1415 NuDerivatives[IDX2C(0, 4, 2)] = 4. * d_ETA * d_dXSI_dXSI + 1416 4. * d_XSI * d_dETA_dXSI; 1417 NuDerivatives[IDX2C(0, 5, 2)] = 4. * d_ETA * d_dZETA_dXSI + 14181419 4 * d_ZETA * d_dETA_dXSI; 1420 NuDerivatives[IDX2C(1, 0, 2)] = (4. * d_ZETA - 1.) * d_dZETA_dETA; 1421 NuDerivatives  $[IDX2C(1, 1, 2)] = (4. * d_XSI - 1.) * d_dXSI_dETA;$ NuDerivatives  $[IDX2C(1, 2, 2)] = (4. * d_ETA - 1.) * d_dETA_dETA;$ NuDerivatives  $[IDX2C(1, 2, 2)] = 4. * d_XSI_* d_dZSI_* d_dZSI_*$ 1422 1423 NuDerivatives [IDX2C(1, 3, 2)] = 4.  $* d_XSI * d_dZETA_dETA +$ 1424 4. * d_ZETA * d_dXSI_dETA; 1425 1426 NuDerivatives[IDX2C(1, 4, 2)] = 4. * d_ETA * d_dXSI_dETA + 4. * d_XSI * d_dETA_dETA; 1427 NuDerivatives[IDX2C(1, 5, 2)] = 4. * d_ETA * d_dZETA_dETA + 1428 1429 4 * d_ZETA * d_dETA_dETA; 1430 else if (meshCFDType == MCFDT_Q2Q1) 1431 1432 NuDerivatives[IDX2C(0, 0, 2)] = .25 * (2. * d_XSI * powf(d_ETA, 2.) -1433 2. * d_XSI * d_ETA - powf(d_ETA, 2.) + d_ETA); 1434 NuDerivatives[IDX2C(0, 1, 2)] = .25 * (2. * d_XSI * powf(d_ETA, 2.) - 2. * d_XSI * d_ETA + powf(d_ETA, 2.) - d_ETA); 1435 1436 NuDerivatives[IDX2C(0, 2, 2)] = .25 * (2. * d_XSI * powf(d_ETA, 2.) + 2. * d_XSI * d_ETA + powf(d_ETA, 2.) + d_ETA); 1437 1438 NuDerivatives[IDX2C(0, 3, 2)] = .25 * (2. * d_XSI * powf(d_ETA, 2.) + 14392. * d_XSI * d_ETA - powf(d_ETA, 2.) - d_ETA); 1440 NuDerivatives[IDX2C(0, 4, 2)] = -.5 * (2 * d_XSI * powf(d_ETA, 2.) -1441 2 * d_XSI * d_ETA); 1442 NuDerivatives[IDX2C(0, 5, 2)] = -.5 * (2 * d_XSI * powf(d_ETA, 2.) -2 * d_XSI + powf(d_ETA, 2.) - 1.); NuDerivatives[IDX2C(0, 6, 2)] = -.5 * (2 * d_XSI * powf(d_ETA, 2.) + 1443 1444 14452 * d_XSI * d_ETA); NuDerivatives[IDX2C(0, 7, 2)] = -.5 * (2 * d_XSI * powf(d_ETA, 2.) -1446 1447 14482 * d_XSI - powf(d_ETA, 2.) + 1.); NuDerivatives[IDX2C(0, 8, 2)] = 2 * d_XSI * powf(d_ETA, 2.) - 2 * d_XSI; 1449 1450 NuDerivatives[IDX2C(1, 0, 2)] = .25 * (2. * powf(d_XSI, 2.) * 14511452 d_ETA - powf(d_XSI, 2.) - 2. * d_XSI * d_ETA + d_XSI); 1453 NuDerivatives[IDX2C(1, 1, 2)] = .25 * (2. * powf(d_XSI, 2.) d_ETA - powf(d_XSI, 2.) + 2. * d_XSI * d_ETA - d_XSI); NuDerivatives[IDX2C(1, 2, 2)] = .25 * (2. * powf(d_XSI, 2.) * 14541455 d_ETA + powf(d_XSI, 2.) + 2. * d_XSI * d_ETA + d_XSI); 1456NuDerivatives[IDX2C(1, 3, 2)] = .25 * (2. * powf(d_XSI, 2. d_ETA + powf(d_XSI, 2.) - 2. * d_XSI * d_ETA - d_XSI); 1457 2.) * 14581459NuDerivatives[IDX2C(1, 4, 2)] = -.5 * (2 * powf(d_XSI, 2.) *

```
d_ETA - 2 * d_ETA - powf(d_XSI, 2.) + 1.);
1460
 NuDerivatives[IDX2C(1, 5, 2)] = -.5 * (2 * powf(d_XSI, 2.) *
1461
 d_ETA + 2 * d_XSI * d_ETA);
NuDerivatives[IDX2C(1, 6, 2)] = -.5 * (2 * powf(d_XSI, 2.) *
1462
1463
 d_ETA - 2 * d_ETA + powf(d_XSI, 2.) - 1.);
NuDerivatives[IDX2C(1, 7, 2)] = -.5 * (2 * powf(d_XSI, 2.) *
1464
1465
 d_ETA - 2 * d_XSI * d_ETA);
1466
 NuDerivatives[IDX2C(1, 8, 2)] = 2 * powf(d_XSI, 2.) * d_ETA - 2 * d_ETA;
1467
1468
 }
1469
 }
1470
 1471
1472
1473
 ----- calculate_divNu ------
 //---
 _device__
1474
1475
 void calculate_divNu(
 size_t
 iNumberDimensions,
 iNumberNodes_u,
1476
 size_t
1477
 Precision*
 NuDerivatives,
 Precision*
 divNu)
1478
1479
 {
1480
 for (size_t j = 0; j < iNumberNodes_u; ++j)</pre>
1481
 {
 for (size_t i = 0; i < iNumberDimensions; ++i)</pre>
1482
1483
 {
1484
 divNu[IDX2C(0, iNumberDimensions * j + i, 1)] =
 NuDerivatives[IDX2C(i, j, iNumberDimensions)];
1485
1486
 }
1487
 }
1488
 }
1489
 1490
1491
 //----- calculate_C
1492
 device__
1493
1494
 void calculate_C(
 size_t
 iNumberDimensions,
1495
 Precision
 RHO,
1496
 Precision
 MI,
 Precision*
1497
 C)
1498
 {
1499
 Precision d_NI = MI / RHO;
1500
 if (iNumberDimensions == 2)
1501
1502
 {
1503
 C[IDX2C(0, 0, 3)] = 2. * d_NI;
 C[IDX2C(0, 1, 3)] = 0. * d_NI;
1504
 C[IDX2C(0, 2, 3)] = 0. * d_NI;
1505
1506
 \begin{array}{l} {\sf C}[\,{\sf IDX2C}\,(1,\ 0,\ 3)\,] \ = \ 0.\ *\ d\_NI\,;\\ {\sf C}[\,{\sf IDX2C}\,(1,\ 1,\ 3)\,] \ = \ 2.\ *\ d\_NI\,;\\ {\sf C}[\,{\sf IDX2C}\,(1,\ 2,\ 3)\,] \ = \ 0.\ *\ d\_NI\,; \end{array}
1507
1508
1509
1510
 1511
 C[IDX2C(2, 2, 3)] = 1. * d_NI;
1513
1514
 }
1515
 }
1516
 1517
1518
 //-----
 ----- calculate_e_dot_u
1519
1520
 device
1521
 void calculate_e_dot_u(size_t
 iNumberDimensions,
1522
 size_t
 iNumberNodes_u,
 Precision*
1523
 u_e,
1524
 Precision*
 v_e,
 Precision*
1525
 w_e,
 Precision*
1526
 Nu.
 Precision*
 e_dot_u)
1527
1528
 {
1529
 if (iNumberDimensions == 2)
1530
 {
 Precision u[1];
1532
 Precision v[1];
1533
 multiply(1, 1, iNumberNodes_u, Nu, u_e, u);
1534
1535
 multiply(1, 1, iNumberNodes_u, Nu, v_e, v);
```

```
1536
1537
 e_dot_u[IDX2C(0, 0, iNumberDimensions)] = u[0];
 e_dot_u[IDX2C(0, 1, iNumberDimensions)] = v[0];
1538
 e_dot_u[IDX2C(1, 2, iNumberDimensions)] = u[0];
e_dot_u[IDX2C(1, 3, iNumberDimensions)] = v[0];
1540
1541
1542
 }
 else if (iNumberDimensions == 3)
1543
1544
1545
 Precision u[1];
 Precision v[1];
1546
1547
 Precision w[1];
1548
 multiply(1, 1, iNumberNodes_u, Nu, u_e, u);
multiply(1, 1, iNumberNodes_u, Nu, v_e, v);
1549
1550
1551
 multiply(1, 1, iNumberNodes_u, Nu, w_e, w);
1552
 e_dot_u[IDX2C(0, 0, iNumberDimensions)] = u[0];
1553
 e_dot_u[IDX2C(0, 1, iNumberDimensions)] = v[0];
e_dot_u[IDX2C(0, 2, iNumberDimensions)] = w[0];
1554
1555
1556
 e_dot_u[IDX2C(1, 3, iNumberDimensions)] = u[0];
e_dot_u[IDX2C(1, 4, iNumberDimensions)] = v[0];
1557
 e_dot_u[IDX2C(1, 5, iNumberDimensions)] = w[0];
1559
1560
 }
 }
1561
1562
 //-----
1563
 ----- calculate_gradu
1564
 __device__
 void calculate_gradu(
 iNumberDimensions.
1565
 size_t
 iNumberNodes_u,
1566
 size_t
 Precision*
1567
 u_e,
1568
 Precision*
 v_e,
1569
 Precision*
 w_e.
1570
 Precision* NuDerivativesTransformed,
1571
 Precision*
 gradu)
1572
 {
 if (iNumberDimensions == 2)
1574
 {
1575
 Precision NuDerivatives_u_e[2 * 1];
 Precision NuDerivatives_v_e[2 * 1];
1576
1577
1578
 multiply(
 iNumberDimensions,
 1.
 iNumberNodes_u,
 NuDerivativesTransformed,
1579
1580
 NuDerivatives_u_e);
 ue.
 iNumberDimensions,
1581
 multiply(
 1,
1582
 iNumberNodes_u,
 NuDerivativesTransformed,
1583
 NuDerivatives_v_e);
 v_e.
1584
 gradu[IDX2C(0, 0, iNumberDimensions)] =
1585
1586
 NuDerivatives_u_e[IDX2C(0, 0, iNumberDimensions)];
1587
 gradu[IDX2C(0, 1, iNumberDimensions)] =
 NuDerivatives_u_e[IDX2C(1, 0, iNumberDimensions)];
1589
 gradu[IDX2C(1, 0, iNumberDimensions)] =
1590
 NuDerivatives_v_e[IDX2C(0, 0, iNumberDimensions)];
1591
 gradu[IDX2C(1, 1, iNumberDimensions)] =
1592
1593
 NuDerivatives_v_e[IDX2C(1, 0, iNumberDimensions)];
1594
 }
1595
 }
1596
 #endif
1597
```

• CUDA_Mesh.cuh

2 11 HPC - LMC 11 3 11---// 4/*! * \brief Classe CUDA_Mesh 56 * 7 * Esta classe é responsável pelas operações com os elementos 8 *

```
* \author Luiz Felipe Couto
9
 */
10
 11
 #ifndef HPC_LMC_FEM_CUDA_FEM_CUDA_MESH_H
13
 #define HPC_LMC_FEM_CUDA_FEM_CUDA_MESH_H
14
15
16
 //-
 // Include and Forward declaration
17
18
 //--
 #include "../../core/cuda/CUDA_Macros.cuh"
#include "../../core/cuda/CUDA_MatrixOperation.cuh"
19
20
21
22

 11
23
 // Enumeration
24
 //--
25
 enum MeshCFDType
26
 {
 MCFDT_P2P1,
27
28
 MCFDT_Q2Q1
29
 };
30
 //! Enumeration que define o tipo de matriz.
31
32
 enum MatrixType
33
 {
 //Local
34
35
 MT_k_e,
 //!< Matriz k local - Rigidez, viscosa</pre>
36
 37
 //!< Matriz m local -- Massa
38
 MT_m_e,
 //!< Matriz g local -- Operador Gradiente</pre>
39
 MT_g_e,
40
 MT_c_e,
 //!< Matriz c local -- Convectiva
 //!< Matriz c_t local -- Tangente
41
 MT_c_t_e,
 42
43
44
 MT_f_t_e,
 //!< Matriz f_t local -- Forças de superfície
 MT_f_b_e,
 //!< Matriz f_b local -- Forcas de volume
45
 //!< Matriz F_e local -- Forças nodais
 MT_F_e,
46
 //!< Matriz F_e local -- Forças totais
47
 MT_f_e,
48
49
 //Global
 //!< Matriz K -- Rigidez, viscosa
50
 MT_K,
51
 52
 MT_M,
 //!< Matrix M global -- Massa
53
 MT_G,
 //!< Matriz G global -- Operador Gradiente
 //!< Matriz C global -- Convectiva
//!< Matriz C_T global -- Tangente</pre>
55
 MT_C,
 MT_C_T,
56
 58
59
 MT_f_t,
 //!< Matriz f_t -- Forças de superfície</pre>
60
 MT_f_b,
 //!< Matriz f_b -- Forças de volume
 MT_F,
 //!< Matriz F -- Forças nodais
61
 //!< Matriz f -- Forças
62
 MT_f
 };
63
64
 //----
65
66
 // Prototype definition
 //--
67
 __device__
68
 iNumberDimensions,
69
 void calculate_J(
 size_t
70
 size_t
 iNumberNodes,
 nodesCoordinates,
71
 Precision*
 Precision*
 nodalData.
72
73
 Precision*
 NDerivatives,
74
 Precision*
 J):
75
 device
76
77
 void calculate_NDerivativesTransformed(size_t
 iNumberDimensions,
78
 size_t
 iNumberNodes,
79
 Precision*
 J.
 Precision*
 JInverse.
80
81
 Precision*
 NDerivatives,
 Precision* NDerivativesTransformed);
82
83
 ___device__
84
```

```
void calculate_B(
 iNumberDimensions,
85
 size_t
86
 size_t
 iNumberNodes,
 NDerivativesTransformed,
87
 Precision*
88
 Precision*
 B):
89
 //-----
90
91
 // Device Function
92
 //-----
93
 //----- calculate_J
94
95
 __device__
 void calculate_J(size_t
 iNumberDimensions,
96
97
 size_t
 iNumberNodes,
98
 Precision*
 nodesCoordinates,
 NDerivatives,
 Precision*
99
100
 Precision*
 J)
101
 {
 iNumberDimensions,
 iNumberDimensions,
102
 multiply(
 iNumberNodes,
 NDerivatives,
103
104
 nodesCoordinates,
 J);
105
 }
106
 107
108
109
 //----
 ----- calculate_NDerivativesTransformed ------
 ___device__
110
111
 void calculate_NDerivativesTransformed(size_t
 iNumberDimensions,
 iNumberNodes,
 size_t
 Precision*
113
 J.
 Precision*
 JInverse.
114
 NDerivatives.
115
 Precision*
 Precision*
 NDerivativesTransformed)
116
117
 {
 multiply(
 iNumberDimensions,
 iNumberNodes,
118
119
 iNumberDimensions,
 JInverse
120
 NDerivatives,
 NDerivativesTransformed);
 }
121
122
 123
124
 ----- calculate_B
125
 //----
 _device__
126
127
 void calculate_B(
 size_t
 iNumberDimensions,
 iNumberNodes,
128
 size_t
 Precision* NDerivativesTransformed,
129
 Precision* B)
130
131
 {
 //Para análise 2D -- B[3, #DOF], 3D -- B[6, #DOF]
132
 if (iNumberDimensions == 2)
133
134
 {
 for (size_t i = 0; i < iNumberNodes; ++i)</pre>
135
136
 {
 B[IDX2C(0, 2 * i, 3)] =
138
 NDerivativesTransformed[IDX2C(0, i, iNumberDimensions)];
139
 B[IDX2C(1, 2 * i + 1, 3)] =
 NDerivativesTransformed[IDX2C(1, i, iNumberDimensions)];
140
 B[IDX2C(2, 2 * i, 3)] =
141
 NDerivativesTransformed[IDX2C(1, i, iNumberDimensions)];
142
143
 B[IDX2C(2, 2 * i + 1, 3)] =
 NDerivativesTransformed[IDX2C(0, i, iNumberDimensions)];
144
145
 }
146
 }
147
 }
148
149
 #endif
```

• CUDA_Main.cu

1	/********	******	********	***************************************	
2	11	HPC -	- LMC	11	,
3	//			//	r
4	/*!				
5	* ∖brief	CUDA_Main			

```
6
7
 * Arquivo responsável pela definição das funções principais de assembly no
8
 * device
9
10
 * \author Luiz Felipe Couto
11
 */
12
 13
14
15
 // Include and Forward declaration
 //-----
16
 #include "CUDA_MeshCFD.cuh"
17
18
19

 // Define declaration
20
21
 //-----
 //!< Tamanho do bloco de threads a serem executados em paralelo</pre>
22
 //!< Está relacionado com o tamanho da variável shared utilizada
23
 #define BLOCK_SIZE 128
24
25
26
 //-----
27
 // Struct definition
 //-----
28
 //! Estrutura de dados do vetor de dados nodais
29
30
 struct NodalData
31
 {
32
 Precision
 х;
 //!< Coordenada x do nó do elemento finito
33
 Precision
 //!< Coordenada y do nó do elemento finito
 у;
34
 //!< GL Global da velocidade na direção x do nó do elemento finito
35
 DOFGlobal_u;
36
 unsigned int
 //!< GL Local da velocidade na direção y do nó do elemento finito
37
38
 unsigned int
 DOFLocal_u;
 //!< Velocidade na direção x do nó do elemento finito (C e C_t)
39
40
 Precision
 u:
41
 //!< GL Global da velocidade na direção y do nó do elemento finito
42
 DOFGlobal_v;
43
 unsigned int
44
 //!< GL Local da velocidade na direção y do nó do elemento finito
 DOFLocal_v;
45
 unsigned int
 //!< Velocidade na direção y do nó do elemento finito (C e C_t)
46
 Precision
47
 v;
48
49
 //!< GL Global da pressão do nó do elemento finito
 unsigned int DOFGlobal_p;
50
 //!< GL Local da pressão do nó do elemento finito
51
 unsigned int
 DOFLocal_p;
 };
53
54
 //! Estrutura i, j e valor a ser armazenado na matriz esparsa global
 struct Triplets
56
57
 {
 unsigned int
 //!< Linha i da matriz esparsa global</pre>
58
 i;
59
 unsigned int
 //!< Linha j da matriz esparsa global
 j;
60
 //!< Valor a ser armazenado na posição i, j na matriz esparsa global</pre>
61
 Precision
 value:
62
 };
63
64
 //-----
65
 // Global variables in device
66
 //-----
67
68
 NodalData*
 dev_nodalData;
 //!< Vetor de dados nodais</pre>
69
70
 //!< Vetor de velocidades nos nós do elemento finito</pre>
 Precision*
 dev_u;
71
72
 dev_integrationOrder_XSI; //!< Pontos de integração na direção XSI</pre>
 unsigned int*
73
74
 unsigned int*
 dev_integrationOrder_ETA;
 //!< Pontos de integração na direção ETA</pre>
75
 unsigned int*
 dev_integrationOrder_ZETA; //!< Pontos de integração na direção ZETA
76
 Triplets*
 dev_K;
 //!< Matriz de rigidez
 //!< Matriz operador gradiente</pre>
78
 Triplets*
 dev_G;
 //!< Matriz de massa
79
 Triplets*
 dev_M;
80
81 Triplets*
 dev_C;
 //!< Matriz convectiva
```

```
82
 Triplets*
 dev_C_t;
 //!< Matriz convectiva tangente</pre>
83
84

 // Mapped global variables in device
85
86
 //--

 __device__ NodalData*
87
 d nodalData:
88
 __device__ Precision*
89
 d_u;
90
91
 __device__ unsigned int*
 d_integrationOrder_XSI;
 __device__ unsigned int*
 d_integrationOrder_ETA;
92
03
 __device__ unsigned int*
 d_integrationOrder_ZETA;
94
 __device__ Triplets*
__device__ Triplets*
__device__ Triplets*
95
 d_K;
 d_G;
96
97
 d_M:
98
 __device__ Triplets*
99
 d_C;
 ___device__ Triplets*
100
 d_C_t;
101
 //-----
102

103
 // Kernel implementation
 //-----
104
105
106
 //-
 -----do_assembly_K_G_M -----
 //! Realiza o assembly das matrizes K, G e M
107
108
 /*!
 * \param meshCFDType Tipo de elemento finito: P2P1 ou Q2Q1
109
 * \param inumberDimensions Número de dimensões do problema analisado
110
 * \param iNumberNodes_u Número de nós para velocidade
 * \param iNumberNodes_p Número de nós para pressão
112
 * \param N Número de elementos finitos do problema
113
 * \param RHO Massa específica do fluido
114
 * \param MI Coeficiente de viscosidade dinâmica do fluido
115
 */
116
117
 global
 void do_assembly_K_G_M(MeshCFDType meshCFDType,
118
 iNumberDimensions,
119
 size_t
120
 size_t
 iNumberNodes_u,
121
 size_t
 iNumberNodes_p,
122
 size t
 Ν.
 RHO.
123
 Precision
124
 Precision
 MI)
125
 {
126
 Variável do tipo shared a ser compartilhada com as threads do
127
 11
 //
128
 11
 bloco
 //
 129
 extern ___shared__ NodalData s_nodalData[];
130
131
 132
133
 11
 Armazena os valores dos dados nodais global na variável
 11
 11
 11
134
 compartilhada
135
 size_t iContNodalData = 0;
136
137
 = blockDim.x * blockIdx.x * iNumberNodes_u,
 size_t i
138
 for (
 iLen
 = blockDim.x * blockIdx.x * iNumberNodes_u + blockDim.x * iNumberNodes_u;
139
 i < iLen;</pre>
140
 ++i)
141
142
 {
 if (i < N * iNumberNodes_u)</pre>
143
144
 {
 s_nodalData[iContNodalData].x
 = d_nodalData[i].x;
145
146
 s_nodalData[iContNodalData].y
 = d_nodalData[i].y;
147
 s_nodalData[iContNodalData].DOFGlobal_u = d_nodalData[i].DOFGlobal_u;
148
 s_nodalData[iContNodalData].DOFLocal_u = d_nodalData[i].DOFLocal_u;
149
150
 s_nodalData[iContNodalData].u
 = d_nodalData[i].u;
151
 s_nodalData[iContNodalData].D0FGlobal_v = d_nodalData[i].D0FGlobal_v;
152
 s_nodalData[iContNodalData].DOFLocal_v = d_nodalData[i].DOFLocal_v;
154
 s_nodalData[iContNodalData].v
 = d_nodalData[i].v;
155
 s_nodalData[iContNodalData].D0FGlobal_p = d_nodalData[i].D0FGlobal_p;
156
157
 s_nodalData[iContNodalData].DOFLocal_p = d_nodalData[i].DOFLocal_p;
```

158} 159 160 ++iContNodalData; } 161 162163 Sincroniza as threads do bloco para início do assembly 11 16411 165 166 __syncthreads(); 167168 169 Início do processo de cálculo e assembly 170size_t tIdLocal = threadIdx.x; 171= blockDim.x * blockIdx.x + threadIdx.x; 172 size_t tIdGlobal 173if (tIdGlobal < N)</pre> 174175 {  $= \{ 0. \}; \\ = \{ 0 \};$ Precision nodesCoordinates[6 * 2] 177 unsigned int DOFMap[6 * 6] 178Precision k_e[(2 * 6 + 3) * (2 * 6 + 3)] = { 0. }; Precision g_e[(2 * 6 + 3) * (2 * 6 + 3)] = { 0. }; 179180 Precision  $m_e[(2 * 6 + 3) * (2 * 6 + 3)] = \{0, \};$ 181 182 183 // Armazena os graus de liberdade global e local do elemento // 184 185 for (size_t i = 0; i < iNumberNodes_u; ++i)</pre> 186 ł 187 nodesCoordinates[IDX2C(i, 0, 6)] = 188 s_nodalData[tIdLocal * iNumberNodes_u + i].x; nodesCoordinates[IDX2C(i, 1, 6)] = 189 190 191 s_nodalData[tIdLocal * iNumberNodes_u + i].y; 192 193 if (iNumberDimensions == 2) 194 { DOFMap[IDX2C(i, 0, iNumberNodes_u)] = 195 196 s_nodalData[tIdLocal * iNumberNodes_u + i].DOFGlobal_u; 197 DOFMap[IDX2C(i, 1, iNumberNodes_u)] = s_nodalData[tIdLocal * iNumberNodes_u + i].DOFLocal_u; 198 199 DOFMap[IDX2C(i, 2, iNumberNodes_u)] = 200 s_nodalData[tIdLocal * iNumberNodes_u + i].DOFGlobal_v; 201 DOFMap[IDX2C(i, 3, iNumberNodes_u)] = 202 203 s_nodalData[tIdLocal * iNumberNodes_u + i].DOFLocal_v; 204205 DOFMap[IDX2C(i, 4, iNumberNodes_u)] = s_nodalData[tIdLocal * iNumberNodes_u + i].DOFGlobal_p; 206 207 DOFMap[IDX2C(i, 5, iNumberNodes_u)] = s_nodalData[tIdLocal * iNumberNodes_u + i].DOFLocal_p; 208 209 else if (iNumberDimensions == 3) 211 { } 212 213 } 214 215216calculate_k_g_m_e( meshCFDType, 218 iNumberDimensions, 219 nodesCoordinates, RHO, 220 MI, d_integrationOrder_XSI, d_integrationOrder_ETA, d_integrationOrder_ZETA, 221 222 k_e, g_e, 223 m_e); 224 225 226 11 Realiza o assembly das matrizes locais nas matrizes globais 11 227 size_t iDOFLocalNumber_i = 0; 228 229 size_t iDOFLocalNumber_j = 0; 230 231 size_t iDOFGlobalNumber_i = 0; size_t iDOFGlobalNumber_j = 0; 232 233
```
234
 size_t iLine_K_G_M = 0;
235
 for (size_t i = 0; i < iNumberNodes_u; ++i)</pre>
236
238
 for (size_t j = 0; j < iNumberDimensions + 1; ++j)</pre>
239
 {
240
 iDOFGlobalNumber_i = DOFMap[IDX2C(i, (2 * j), iNumberNodes_u)];
 iDOFLocalNumber_i = DOFMap[IDX2C(i, (2 * j + 1), iNumberNodes_u)];
241
242
 for (size_t k = 0; k < iNumberNodes_u; ++k)</pre>
243
244
 for (size_t l = 0; l < iNumberDimensions + 1; ++l)</pre>
245
246
 {
 iDOFGlobalNumber_j = DOFMap[IDX2C(k, 2 * l, iNumberNodes_u)];
iDOFLocalNumber_j = DOFMap[IDX2C(k, 2 * l + 1, iNumberNodes_u)];
247
248
249
 if (iDOFLocalNumber_i > 0 && iDOFLocalNumber_j > 0)
250
251
 {
 d_K[tIdGlobal * (iNumberDimensions * iNumberNodes_u +
252
253
 iNumberNodes_p) * (iNumberDimensions * iNumberNodes_u +
 iNumberNodes_p) + iLine_K_G_M].i = iDOFGlobalNumber_i - 1;
254
 d_K[tIdGlobal * (iNumberDimensions * iNumberNodes_u +
255
 iNumberNodes_p) * (iNumberDimensions * iNumberNodes_u +
iNumberNodes_p) + iLine_K_G_M].j = iDOFGlobalNumber_j - 1;
256
257
258
 d_K[tIdGlobal * (iNumberDimensions * iNumberNodes_u +
 iNumberNodes_p) * (iNumberDimensions * iNumberNodes_u +
259
 iNumberNodes_p) + iLine_K_G_M].value =
 k_e[IDX2C(iD0FLocalNumber_i - 1,
260
261
 iDOFLocalNumber_j - 1,
262
263
 15)1:
264
 d_G[tIdGlobal * (iNumberDimensions * iNumberNodes_u +
265
 iNumberNodes_p) * (iNumberDimensions * iNumberNodes_u +
iNumberNodes_p) + iLine_K_G_M].i = iDOFGlobalNumber_i - 1;
266
267
 d_G[tIdGlobal * (iNumberDimensions * iNumberNodes_u +
268
 iNumberNodes_p) * (iNumberDimensions * iNumberNodes_u +
iNumberNodes_p) + iLine_K_G_M].j = iDOFGlobalNumber_j - 1;
269
270
 d_G[tIdGlobal * (iNumberDimensions * iNumberNodes_u +
271
 iNumberNodes_p) * (iNumberDimensions * iNumberNodes_u +
iNumberNodes_p) + iLine_K_G_M].value =
272
273
 g_e[IDX2C(iD0FLocalNumber_i - 1,
274
 iDOFLocalNumber_j - 1,
276
 15)];
277
 d_M[tIdGlobal * (iNumberDimensions * iNumberNodes_u +
278
279
 iNumberNodes_p) * (iNumberDimensions * iNumberNodes_u +
280
 iNumberNodes_p) + iLine_K_G_M].i = iDOFGlobalNumber_i - 1;
 d_M[tIdGlobal * (iNumberDimensions * iNumberNodes_u +
281
 iNumberNodes_p) * (iNumberDimensions * iNumberNodes_u +
iNumberNodes_p) + iLine_K_G_M].j = iDOFGlobalNumber_j - 1;
282
283
284
 d_M[tIdGlobal * (iNumberDimensions * iNumberNodes_u +
 iNumberNodes_p) * (iNumberDimensions * iNumberNodes_u +
iNumberNodes_p) + iLine_K_G_M].value =
285
286
 m_e[IDX2C(iD0FLocalNumber_i - 1,
287
288
 iDOFLocalNumber_j - 1,
289
 15)1;
290
291
 ++iLine_K_G_M;
292
 }
293
 }
 }
204
295
 }
296
 }
 }
297
298
 }
299
 ----- do_assembly_C_C_t ------
300
 //! Realiza o assembly das matrizes C e C_t
301
302
 /*!
303
 * \param meshCFDType Tipo de elemento finito: P2P1 ou Q2Q1
 * \param inumberDimensions Número de dimensões do problema analisado
304
 * \param iNumberNodes_u Número de nós para velocidade
305
306
 * \param iNumberNodes_p Número de nós para pressão
307
 * \param N Número de elementos finitos do problema
 */
308
309
 __global__
```

```
void do_assembly_C_C_t(MeshCFDType meshCFDType,
310
 iNumberDimensions,
311
 size_t
312
 size_t
 iNumberNodes_u,
 iNumberNodes_p,
 size_t
314
 size_t
 N)
315
 {
 316
 Variável do tipo shared a ser compartilhada com as threads do
317
 11
 11
318
 11
 bloco
 11
 319
 extern __shared__ NodalData s_nodalData[];
320
321
322
 323
 Armazena os valores dos dados nodais global na variável
 11
 11
 11
324
 compartilhada
 11
 325
 size_t iContNodalData = 0;
326
327
 size_t i = blockDim.x * blockIdx.x * iNumberNodes_u,
328
 for (
 iLen = blockDim.x * blockIdx.x * iNumberNodes_u + blockDim.x * iNumberNodes_u;
329
330
 i < iLen;</pre>
331
 ++i)
 {
332
333
 if (i < N * iNumberNodes_u)</pre>
334
 {
 s_nodalData[iContNodalData].x = d_nodalData[i].x;
335
336
 s_nodalData[iContNodalData].y = d_nodalData[i].y;
337
 s_nodalData[iContNodalData].D0FGlobal_u = d_nodalData[i].D0FGlobal_u;
338
 s_nodalData[iContNodalData].DOFLocal_u = d_nodalData[i].DOFLocal_u;
339
340
 s_nodalData[iContNodalData].u
 = d_nodalData[i].u;
341
342
 s_nodalData[iContNodalData].D0FGlobal_v = d_nodalData[i].D0FGlobal_v;
 s_nodalData[iContNodalData].DOFLocal_v = d_nodalData[i].DOFLocal_v;
343
344
 s_nodalData[iContNodalData].v
 = d_nodalData[i].v;
345
 s_nodalData[iContNodalData].D0FGlobal_p = d_nodalData[i].D0FGlobal_p;
346
 s_nodalData[iContNodalData].DOFLocal_p = d_nodalData[i].DOFLocal_p;
347
348
 }
349
 ++iContNodalData;
350
 }
351
352
353
 Sincroniza as threads do bloco para início do assembly
354
 11
 355
356
 __syncthreads();
357
 358
359
 Início do processo de cálculo e assembly
 11
 360
361
 size_t tIdLocal
 = threadIdx.x;
 size_t tIdGlobal
 = blockDim.x * blockIdx.x + threadIdx.x;
362
363
 if (tIdGlobal < N)</pre>
364
365
 {
 Precision nodesCoordinates[6 * 2] = { 0. };
366
 Precision u_e[6 * 1] = \{ 0. \};
367
 Precision v_e[6 * 1] = { 0. };
Precision w_e[6 * 1] = { 0. };
368
369
 unsigned int DOFMap[6 * 6] = { 0 };
370
371
372
 Precision c_e[(2 * 6 + 3) * (2 * 6 + 3)] = \{ 0. \};
 Precision c_t_e[(2 * 6 + 3) * (2 * 6 + 3)] = \{0, \};
374
 375
 Armazena os graus de liberdade global, local e velocidade
376
 11
 11
 //
 dos nós do elemento
377
 11
378
 379
 for (size_t i = 0; i < 6; ++i)</pre>
380
 ł
 nodesCoordinates[IDX2C(i, 0, 6)] =
381
382
 s_nodalData[tIdLocal * iNumberNodes_u + i].x;
 nodesCoordinates[IDX2C(i, 1, 6)] =
 s_nodalData[tIdLocal * iNumberNodes_u + i].y;
383
384
385
```

386

387

388

389 390

391

392

393 394 395

396

397 398

399

400 401

402

403

404 405

406

411 412

413

414

415 416

417

418

419

420

421

422 423 424

425

426 427

428 429

430 431

432 433

434

435

436

437 438 439

440 441

442 443

444

445 446 447

448

449 450

451

452

453

 $454 \\ 455$ 

 $456 \\ 457$ 

458 459

460 461

```
if (iNumberDimensions == 2)
 {
 DOFMap[IDX2C(i, 0, iNumberNodes_u)] =
 s_nodalData[tIdLocal * iNumberNodes_u + i].DOFGlobal_u;
 DOFMap[IDX2C(i, 1, iNumberNodes_u)] =
 s_nodalData[tIdLocal * iNumberNodes_u + i].DOFLocal_u;
 u_e[IDX2C(i, 0, iNumberNodes_u)] =
 s_nodalData[tIdLocal * iNumberNodes_u + i].u;
 DOFMap[IDX2C(i, 2, iNumberNodes_u)] =
 s_nodalData[tIdLocal * iNumberNodes_u + i].DOFGlobal_v;
 DOFMap[IDX2C(i, 3, iNumberNodes_u)] =
 s_nodalData[tIdLocal * iNumberNodes_u + i].DOFLocal_v;
 v_e[IDX2C(i, 0, iNumberNodes_u)] =
 s_nodalData[tIdLocal * iNumberNodes_u + i].v;
 DOFMap[IDX2C(i, 4, iNumberNodes_u)] =
 s_nodalData[tIdLocal * iNumberNodes_u + i].D0FGlobal_p;
 DOFMap[IDX2C(i, 5, iNumberNodes_u)] =
 s_nodalData[tIdLocal * iNumberNodes_u + i].DOFLocal_p;
 else if (iNumberDimensions == 3)
}
Calcula a contribuição de cada elemento das matrizes C e C_t
11
 11
calculate_c_c_t_e(meshCFDType,
 iNumberDimensions,
 nodesCoordinates.
 u_e,
 v_e,
 w_e,
 d_integrationOrder_XSI,
 d_integrationOrder_ETA,
 d_integrationOrder_ZETA,
 c_e,
 c_t_e);
size_t iDOFLocalNumber_i = 0;
size_t iDOFLocalNumber_j = 0;
size_t iDOFGlobalNumber_i = 0;
size_t iDOFGlobalNumber_j = 0;
size_t iLine_C_C_t = 0;
for (size_t i = 0; i < iNumberNodes_u; ++i)</pre>
ł
 for (size_t j = 0; j < iNumberDimensions + 1; ++j)</pre>
 ł
 iDOFGlobalNumber_i = DOFMap[IDX2C(i, (2 * j), iNumberNodes_u)];
iDOFLocalNumber_i = DOFMap[IDX2C(i, (2 * j + 1), iNumberNodes_u)];
 for (size_t k = 0; k < iNumberNodes_u; ++k)</pre>
 {
 for (size_t l = 0; l < iNumberDimensions + 1; ++l)</pre>
 {
 iDOFGlobalNumber_j
 = DOFMap[IDX2C(k, 2 * l, iNumberNodes_u)];
 iDOFLocalNumber_j
 = DOFMap[IDX2C(k, 2 * l + 1, iNumberNodes_u)];
 if (iDOFLocalNumber_i > 0 && iDOFLocalNumber_j > 0)
 {
 d_C[tIdGlobal * (iNumberDimensions * iNumberNodes_u +
 iNumberNodes_p) * (iNumberDimensions * iNumberNodes_u +
 iNumberNodes_p) + iLine_C_C_t].i = iDOFGlobalNumber_i - 1
 d_C[tIdGlobal * (iNumberDimensions * iNumberNodes_u +
 iNumberNodes_p) * (iNumberDimensions * iNumberNodes_u +
 iNumberNodes_p) + iLine_C_C_t].j = iDOFGlobalNumber_j - 1
 d_C[tIdGlobal * (iNumberDimensions * iNumberNodes_u +
 iNumberNodes_p) * (iNumberDimensions * iNumberNodes_u +
iNumberNodes_p) + iLine_C_C_t].value =
 c_e[IDX2C(iDOFLocalNumber_i - 1,
 iDOFLocalNumber_j - 1,
 15)];
```



	integra	ationOrder_ZETA,
	S * SI cudaMer	<pre>rect(unsigned int), ncpyHostToDevice));</pre>
	//////////////////////////////////////	<pre>////////////////////////////////////</pre>
	HANDLE_ERROR(cudaMemcpyToSymbol(	<pre>d_integrationOrder_XSI, &amp;dev_integrationOrder_XSI, sizeof(dev_integrationOrder_XSI),</pre>
	HANDLE_ERROR(cudaMemcpyToSymbol(	0, cudaMemcpyHostToDevice)); d_integrationOrder_ETA, &dev_integrationOrder_ETA, sizeof(dev_integrationOrder_ETA), 0
	HANDLE_ERROR(cudaMemcpyToSymbol(	<pre>cudaMemcpyHostToDevice)); d_integrationOrder_ZETA, &amp;dev_integrationOrder_ZETA, sizeof(dev_integrationOrder_ZETA), 0</pre>
}		<pre>cudaMemcpyHostToDevice));</pre>
//- //! /*! *	Inicializa as veriáveis no device \param inumberDimensions Número de o \param iNumberNodes_u Número de nós	alizeVariables_K_G_M dimensões do problema analisado para velocidade
* ext voi	<pre>_vparam N Numero de elementos finitos vern "C" d initializeVariables_K_G_M( size_t</pre>	iNumberDimensions, iNumberNodes_u, iNumberNodes_p, N)
1	//////////////////////////////////////	//////////////////////////////////////
	HANDLE_ERROR(cudaMalloc((void**)ⅆ (iNumberDin (iNumber N * siz	ev_G, mensions * iNumberNodes_u + iNumberNodes_p) * erDimensions * iNumberNodes_u + iNumberNodes_p) * zeof(Triplets)));
	HANDLE_ERROR(cudaMalloc((void**)&d (iNumberDir (iNumber N * siz	ev_M, mensions * iNumberNodes_u + iNumberNodes_p) * erDimensions * iNumberNodes_u + iNumberNodes_p) * zeof(Triplets)));
	//////////////////////////////////////	//////////////////////////////////////
	HANDLE_ERROR(cudaMemcpyToSymbol(d_( si;	G, &dev_G, zeof(dev_G), 0, daMemcpyHostToDevice));
ı	HANDLE_ERROR(cudaMemcpyToSymbol(d_N si: cud	M, &dev_M, zeof(dev_M), 0, daMemcpyHostToDevice));
3		

```
614
 /*!
 * \param meshCFDType Tipo de elemento finito a ser utilizado no problema analisado
615
616
 * \param inumberDimensions Número de dimensões do problema analisado
 * \param iNumberNodes_u Número de nós para velocidade
617
618
 * \param iNumberNodes_p Número de nós para pressão
 * \param N Número de elementos finitos do problema
619
620
 * \param RHO Massa espcífica do fluido
 * \param MI Coeficiente de viscosidade dinâmica do fluido
621
622
 * \param M Matriz de massa
623
 * \param K Matirz de rigidez
 * \param G Matriz operador gradiente
624
 */
625
626
 extern "C"
627
 void assembly_K_G_M(
 MeshCFDType meshCFDType,
 iNumberDimensions,
628
 size t
629
 size_t
 iNumberNodes_u,
 iNumberNodes_p,
630
 size_t
631
 size_t
 Ν.
 RHO,
 Precision
632
633
 Precision
 MI,
 Triplets*
634
 Κ,
635
 Triplets*
 G,
 Triplets*
636
 M)
637
 {
638
 11
 Executa o assembly no device
639
 11
 do_assembly_K_G_M<<<(N + BLOCK_SIZE - 1) / BLOCK_SIZE, BLOCK_SIZE, BLOCK_SIZE, BLOCK_SIZE *
iNumberNodes_u * sizeof(NodalData)>>>(meshCFDType, iNumberDimensions,
640
641
642
 iNumberNodes u.
643
644
 iNumberNodes_p.
645
 Ν,
 RHO,
646
 MI);
647
648
649
 650
 Copia os dados do device para o host
 11
 651
652
 HANDLE_ERROR(cudaMemcpy(K,
653
 dev_K.
 (iNumberDimensions * iNumberNodes_u + iNumberNodes_p) *
654
 (iNumberDimensions * iNumberNodes_u + iNumberNodes_p) *
655
656
 N * sizeof(Triplets),
657
 cudaMemcpyDeviceToHost));
 HANDLE_ERROR(cudaMemcpy(G,
658
659
 dev G.
660
 (iNumberDimensions * iNumberNodes_u + iNumberNodes_p) *
 (iNumberDimensions * iNumberNodes_u + iNumberNodes_p) *
661
 N * sizeof(Triplets), cudaMemcpyDeviceToHost));
662
663
 HANDLE_ERROR(cudaMemcpy(M,
 dev_M,
664
665
 (iNumberDimensions * iNumberNodes_u + iNumberNodes_p) *
 (iNumberDimensions * iNumberNodes_u + iNumberNodes_p) *
666
667
 N * sizeof(Triplets), cudaMemcpyDeviceToHost));
668
 }
669
 670
671
672
 ------ initializeVariables_C_C_t ------
 11-
 //! Inicializa as veriáveis no device das matrizes C e C_t
673
674
 /*!
 * \param meshCFDType Tipo de elemento finito a ser utilizado no problema analisado
675
 * \param inumberDimensions Número de dimensões do problema analisado
676
 * \param iNumberNodes_u Número de nós para velocidade
677
678
 * \param iNumberNodes_p Número de nós para pressão
 * \param N Número de elementos finitos do problema
679
 */
680
 extern "C"
681
682
 void initializeVariables_C_C_t(size_t
 iNumberDimensions,
683
 size_t
 iNumberNodes_u,
684
 iNumberNodes_p,
 size_t
685
 size_t
 N)
686
 {
 687
 11
 Aloca memória no device
688
 689
```

```
HANDLE_ERROR(cudaMalloc((void**)&dev_C,
690
691
 (iNumberDimensions * iNumberNodes_u + iNumberNodes_p) *
692
 (iNumberDimensions * iNumberNodes_u + iNumberNodes_p) *
693
 N * sizeof(Triplets)));
 HANDLE_ERROR(cudaMalloc((void**)&dev_C_t,
694
 (iNumberDimensions * iNumberNodes_u + iNumberNodes_p) *
695
 (iNumberDimensions * iNumberNodes_u + iNumberNodes_p) *
696
 N * sizeof(Triplets)));
697
698
699
 700
 Mapeais as variáveis no device para as variáveias mapeadas globais//
 11
 701
 HANDLE_ERROR(cudaMemcpyToSymbol(
 d_C,
 &dev_C,
702
703
 sizeof(dev_C),
 Θ.
 cudaMemcpyHostToDevice));
704
705
 HANDLE_ERROR(cudaMemcpyToSymbol(
 d_C_t,
 &dev_C_t,
 sizeof(dev_C_t),
 0,
706
 cudaMemcpyHostToDevice));
707
 }
708
709
 710
711
 //----- assembly_C_C_t ------
712
 //! Assembly das matrizes C e C_t
713
714
 /*!
 * \param meshCFDType Tipo de elemento finito a ser utilizado no problema analisado
715
716
 * \param inumberDimensions Número de dimensões do problema analisado
 * \param iNumberNodes_u Número de nós para velocidade
718
 \param iNumberNodes_p Número de nós para pressão
 * \param N Número de elementos finitos do problema
719
 * \param nodalData Vetor de dados nodais
720
 * \param C Matriz convectiva
721
722
 * \param C_t Matriz convectiva tangente
 */
723
 extern "C"
724
725
 void assembly_C_C_t(MeshCFDType meshCFDType,
726
 iNumberDimensions,
 size t
 iNumberNodes_u,
727
 size t
728
 size_t
 iNumberNodes_p,
729
 size_t
 Ν.
 NodalData*
 nodalData,
730
731
 Triplets*
 С,
 Triplets*
 C_t)
732
733
 {
 Copia os dados do host para o device
735
 11
736
 HANDLE_ERROR(cudaMemcpy(dev_nodalData,
737
 nodalData,
738
 1 * N * iNumberNodes_u * sizeof(NodalData),
739
 cudaMemcpyHostToDevice));
740
741
 742
 // Executa o assembly no device //
743
744
 do_assembly_C_C_t<<<(N + BLOCK_SIZE - 1) / BLOCK_SIZE, BLOCK_SIZE, BLOCK_SIZE *</pre>
745
 iNumberDimensions,
 iNumberNodes_u * sizeof(NodalData)>>>(meshCFDType,
746
 iNumberNodes_u, iNumberNodes_p, N);
747
748
749
 750
 Copia os dados do device para o host
 HANDLE_ERROR(cudaMemcpy(C,
752
753
 dev C.
754
 (iNumberDimensions * iNumberNodes_u + iNumberNodes_p) *
 (iNumberDimensions * iNumberNodes_u + iNumberNodes_p) *
 N * sizeof(Triplets), cudaMemcpyDeviceToHost));
756
 HANDLE\_ERROR(cudaMemcpy(C_t,
 dev_C_t,
758
759
 (iNumberDimensions * iNumberNodes_u + iNumberNodes_p) *
 (iNumberDimensions * iNumberNodes_u + iNumberNodes_p) *
760
761
 N * sizeof(Triplets), cudaMemcpyDeviceToHost));
762
 }
763
 764
765
```

```
//----- freeVariables ------
766
 //! Libera as variáveis da memória do device
767
768
 extern "C"
 void freeVariables()
769
770
 {
 HANDLE_ERROR(cudaFree(dev_nodalData));
771
772
 HANDLE_ERROR(cudaFree(dev_integrationOrder_XSI));
HANDLE_ERROR(cudaFree(dev_integrationOrder_ETA));
773
774
 HANDLE_ERROR(cudaFree(dev_integrationOrder_ZETA));
775
 }
776
777
 //----- freeVariables_K_G_M ------
778
779
 //! Libera as matrizes M, K e G da memória do device
 extern "C"
780
 void freeVariables_K_G_M()
781
782
 {
783
 HANDLE_ERROR(cudaFree(dev_K));
 HANDLE_ERROR(cudaFree(dev_G));
784
 HANDLE_ERROR(cudaFree(dev_M));
785
786
 }
787
 //----- freeVariablesC_C_t ------
788
 //! Libera as matrizes C e C_t da memória do device
789
790
 extern "C"
 void freeVariables_C_C_t()
791
792
 {
 HANDLE_ERROR(cudaFree(dev_C));
793
794
 HANDLE_ERROR(cudaFree(dev_C_t));
 }
795
```

# **APÊNDICE B – ARQUIVO NEUTRO**

O arquivo neutro é um arquivo ASCII¹ que possui as informações necessárias para importar ou exportar dados de elementos finitos, como informações de pré-processamento: malha de elementos finitos (coordenadas dos nós, conexão entre os nós, tipo de elemento finito, etc.), condições de contorno, como também informações de pós-processamento: resultados de velocidade e pressão em cada nó, entre outros.

Cada seção do arquivo neutro é separado por um cabeçalho seguido por linhas que representam os dados ou informações daquele cabeçalho. A próxima seção apresenta os cabeçalhos e as informações que podem conter em um arquivo neutro e um exemplo de utilização e resultados.

O arquivo neutro de pré-processamento é gerado pelo GiD, e o de resultados tanto pode ser gerado para leitura pelo GiD como pelo ParaView.

## B.1 Formato do arquivo

Esta seção contém as informações dos cabeçalhos utilizados em um arquivo neutro.

### B.1.1 Informações de controle

#### %SPACE.DIMENSIONS

Define o número de dimensões do problema analisado.

Formato: Variável numérica

Valor	Descrição
2	Problema bidimensional
3	Problema tridimensional

 $\underline{\%}FSI$  (Optional)

Define se o problema é de interação fluido-estrutura.

Formato: Variável numérica

Valor	Descrição
1	O problema é de interação fluido-estrutura

 $^{^{1}}$ O arquivo de texto ou arquivo ASCII (*American Standard for Computer Information Interchange*) contém apenas caracteres que representam letras, números e outros símbolos, segundo um padrão universalmente aceito.

# B.1.2 Integração numérica

### %INTEGRATION.TYPE

Define o tipo de integração que será executada no polígono.

Formato: Variável numérica

Valor	Descrição
$\frac{1}{2}$	Integração com <i>Tessellation</i> Integração no polígono

#### %QUADRATURE.GAUSS.EDGE (Opcional)

Define o número de pontos de Gauss em um lado do elemento finito por dimensão do problema.

Formato: Tabela

Coluna	Valor ou Tipo	Descrição
1	Valor inteiro	Código da quadratura
2	Valor inteiro	Número de pontos de Gauss em $\xi$
3	Valor inteiro	Número de pontos de Gauss em $\eta$
4	Valor inteiro	Número de pontos de Gauss em $\zeta$

### %QUADRATURE.GAUSS.FACE (Opcional)

Define o número de pontos de Gauss em uma face do elemento finito por dimensão do problema.

### Formato: Tabela

Coluna	Valor ou Tipo	Descrição
$\begin{array}{c}1\\2\\3\\4\end{array}$	Valor inteiro Valor inteiro Valor inteiro Valor inteiro	Código da quadratura Número de pontos de Gauss em $\xi$ Número de pontos de Gauss em $\eta$ Número de pontos de Gauss em $\zeta$

#### %QUADRATURE.GAUSS.TRIANGLE (Opcional)

Define o número de pontos de Gauss em um elemento finito do tipo triangular por dimensão do problema.

Coluna	Valor ou Tipo	Descrição
1	Valor inteiro	Código da quadratura
2	Valor inteiro	Número de pontos de Gauss em $\xi$
3	Valor inteiro	Número de pontos de Gauss em $\eta$
4	Valor inteiro	Número de pontos de Gauss em $\zeta$

### %QUADRATURE.GAUSS.QUADRILATERAL (Opcional)

Define o número de pontos de Gauss em um elemento finito do tipo quadrangular por dimensão do problema.

Formato: Tabela

Coluna	Valor ou Tipo	Descrição
1	Valor inteiro	Código da quadratura
2	Valor inteiro	Número de pontos de Gauss em $\xi$
3	Valor inteiro	Número de pontos de Gauss em $\eta$
4	Valor inteiro	Número de pontos de Gauss em $\zeta$

#### %QUADRATURE.GAUSS.TETRAHEDRON (Opcional)

Define o número de pontos de Gauss em um elemento finito do tipo tetraédrico por dimensão do problema.

### Formato: Tabela

Coluna	Valor ou Tipo	Descrição
$\begin{array}{c}1\\2\\3\\4\end{array}$	Valor inteiro Valor inteiro Valor inteiro Valor inteiro	Código da quadratura Número de pontos de Gauss em $\xi$ Número de pontos de Gauss em $\eta$ Número de pontos de Gauss em $\zeta$

### %QUADRATURE.GAUSS.HEXAHEDRON (Opcional)

Define o número de pontos de Gauss em um elemento finito do tipo hexaédrico por dimensão do problema.

#### Formato: Tabela

Coluna	Valor ou Tipo	Descrição
1	Valor inteiro	Código da quadratura
2	Valor inteiro	Número de pontos de Gauss em $\xi$
3	Valor inteiro	Número de pontos de Gauss em $\eta$
4	Valor inteiro	Número de pontos de Gauss em $\zeta$

# B.1.3 Saída de dados

%IO.GID (Opcional)

Define a saída dos resultados no formato aceito pelo GID.

%IO.VTK (Opcional)

Define a saída dos resultados no formato aceito pelo ParaView.

## B.1.4 Campos escalares ou vetoriais

### %FIELD

Define os campos escalares ou vetoriais que serão analisados no problema.

Formato: Tabela pré-definida de acordo com o número de dimensões do problema

Campo vetorial de velocidades (dinâmica dos fluidos e interação fluido-estrutura) ou deslocamentos (estruturas) para problemas bidimensionais:

Problemas bidimensionais – Campo vetorial de velocidade		
Coluna	Valor	Descrição
1	u	Campo vetorial de velocidade
2	2	Número de dimensões do problema
3	u	Nome da variável associado a direção 1
4	v	Nome da variável associado a direção 2

Campo vetorial de velocidades (dinâmica dos fluidos e interação fluido-estrutura) ou deslocamentos (estruturas) para problemas tridimensionais:

Problemas tridimensionais – Campo vetorial de velocidade		
Coluna	Valor	Descrição
1	u	Campo vetorial de velocidade
2	3	Número de dimensões do problema
3	u	Nome da variável associado a direção 1
4	v	Nome da variável associado a direção 2
5	W	Nome da variável associado a direção 3

Campo escalar de pressão (dinâmica dos fluidos e interação fluido-estrutura):

Campo escalar de pressão		
Coluna	Valor	Descrição
1	р	Campo escalar de pressão
2	1	Um único valor escalar
3	р	Nome da variável associado a este campo escalar

# B.1.5 Material

#### %MATERIAL.NEO-HOOKEAN

Define as propriedades do material da estrutura.

Coluna	Valor ou Tipo	Descrição
$\begin{array}{c}1\\2\\3\end{array}$	Valor inteiro Valor em ponto flutuante Valor em ponto flutuante	Código do material Módulo de Young Poisson

#### %MATERIAL.FLUID

Define as propriedades do material do fluido.

Formato: Tabela

Coluna	Valor ou Tipo	Descrição
1	Valor inteiro Valor em ponto flutuante	Código do material Densidade
$\frac{2}{3}$	Valor em ponto flutuante	Viscosidade cinemática

# B.1.6 Tipo de tensão no contorno

#### %ANALYSIS.TYPE

Define o tipo de tensão do contorno para problemas de dinâmica dos fluidos e interação fluido-estrutura.

#### Formato: Valor pré-definido

Valor	Descrição
CFD_REAL_TRACTION	Tensão no contorno
CFD_PSEUDO_TRACTION	Pseudotensão no contorno

## B.1.7 Análise não-linear

#### %EQUATION.TYPE.NONLINEAR

Define o erro e a tolerância na análise não-linear.

#### Formato: Tabela

Coluna	Valor ou Tipo	Descrição
$\begin{array}{c} 1\\ 2\end{array}$	Valor em ponto flutuante Valor em ponto flutuante	Erro Tolerância

# B.1.8 Informações da análise

#### %FLOW.TYPE

Define o tipo de análise para dinâmica dos fluidos e interação fluido-estrutura.

Formato: Variável numérica

Valor	Descrição
1	Análise estacionária
2	Análise transiente

### %PROBLEM.TYPE

Define o tipo de análise para estruturas.

### Formato: Variável numérica

Valor	Descrição
1	Análise estática
2	Análise dinâmica

#### %TIME.INTEGRATION

Define as informações da integração no tempo.

### Formato: Tabela

Coluna	Valor ou Tipo	Descrição
$\begin{array}{c}1\\2\\3\end{array}$	Valor em ponto flutuante Valor em ponto flutuante Valor em ponto flutuante	Tempo de início Tempo de fim Intervalo de tempo

### %TIME.INTEGRATION.NEWMARK (Opcional)

Define as informações da integração no tempo utilizando Newmark.

### Formato: Tabela

Coluna	Valor ou Tipo	Descrição
1	Valor em ponto flutuante	$\gamma$

### $\underline{\% TIME.RECORDER}$

Define o intervalo de tempo para gravação dos resultados.

#### Formato: Tabela

Coluna	Valor ou Tipo	Descrição
1	Valor em ponto flutuante	Intervalo de tempo para gravação dos resultados

# B.1.9 Informações da malha de elementos finitos

#### B.1.9.1 Nós

#### %NODE.COORD

Define as coordenadas dos nós da malha de elementos finitos.

Coluna	Valor ou Tipo	Descrição
1	Valor inteiro	Número do nó
2	Valor em ponto flutuante	Coordenada do nó na direção 1
3	Valor em ponto flutuante	Coordenada do nó na direção 2
4	Valor em ponto flutuante	Coordenada do nó na direção 3

#### %NODE.DOF.TYPES

Define as restrições aplicadas aos nós da malha de elementos finitos.

#### Formato: Tabela

Coluna	Valor ou Tipo	Descrição
1	Valor inteiro	Número do nó
2	[01]	Restrição da velocidade na direção 1 (0: livre e 1: bloqueado)
3	[01]	Restrição da velocidade na direção $2$ (0: livre e 1: bloqueado)
4	[01]	Restrição da velocidade na direção 3 $(0: livre e 1: bloqueado)$
5	[01]	Restrição da pressão (0: livre e 1: bloqueado)

#### %NODE.PRESCRIBED.VALUE

Define os valores prescritos aplicados aos nós da malha de elementos finitos.

#### Formato: Tabela

Coluna	Valor ou Tipo	Descrição
1	Valor inteiro	Número do nó
2	Valor em ponto flutuante	Valor da velocidade prescrita na direção 1
3	Valor em ponto flutuante	Valor da velocidade prescrita na direção 2
4	Valor em ponto flutuante	Valor da velocidade prescrita na direção 3
5	Valor em ponto flutuante	Valor da pressão prescrita

## B.1.9.2 Forças

#### %LOAD.CASE.NODAL.FORCE

Define as forças aplicadas aos nós da malha de elementos finitos.

### Formato: Tabela

Coluna	Valor ou Tipo	Descrição
1	Valor inteiro	Número do nó
2	Valor em ponto flutuante	Força aplicada na direção 1
3	Valor em ponto flutuante	Força aplicada na direção 2
4	Valor em ponto flutuante	Força aplicada na direção 3

### %LOAD.CASE.LINE.FORCE.UNIFORM

Define as forças distribuídas uniformemente aos lados do elemento finito.

Coluna	Valor ou Tipo	Descrição
1	Valor inteiro	Número do nó
2	Valor em ponto flutuante	Força aplicada na direção 1
3	Valor em ponto flutuante	Força aplicada na direção 1
4	Valor em ponto flutuante	Força aplicada na direção 1

### %LOAD.CASE.LINE.FORCE.VARIABLE

Define as forças distribuídas de forma variável aos lados do elemento finito.

### Formato: Tabela

Coluna	Valor ou Tipo	Descrição
1	Valor inteiro	Número do nó
2	Valor em ponto flutuante	Força aplicada na direção 1 no nó inicial
3	Valor em ponto flutuante	Força aplicada na direção 2 no nó inicial
4	Valor em ponto flutuante	Força aplicada na direção 3 no nó inicial
5	Valor em ponto flutuante	Força aplicada na direção 1 no nó final
6	Valor em ponto flutuante	Força aplicada na direção 2 no nó final
7	Valor em ponto flutuante	Força aplicada na direção 3 no nó final

# B.1.9.3 Elemento

#### <u>%ELEMENT.P2P1</u> (Opcional)

Define os elementos finitos híbridos do tipo triangular de 6 nós.

### Formato: Tabela

Coluna	Valor ou Tipo	Descrição
1	Valor inteiro	Número do elemento finito
2	Valor inteiro	Código do material deste elemento finito
3	1	-
4	Valor inteiro	Código da integração numérica
[510]	Valor inteiro	Número do nó

#### %ELEMENT.T3 (Opcional)

Define os elementos finitos do tipo triangular de 3 nós.

Coluna	Valor ou Tipo	Descrição
1	Valor inteiro	Número do elemento finito
2	Valor inteiro	Código do material deste elemento finito
3	1	-
4	Valor inteiro	Código da integração numérica
[57]	Valor inteiro	Número do nó

Define os elementos finitos do tipo triangular de 6 nós.

Coluna	Valor ou Tipo	Descrição
1	Valor inteiro	Número do elemento finito
2	Valor inteiro	Código do material deste elemento finito
3	1	-
4	Valor inteiro	Código da integração numérica
[510]	Valor inteiro	Número do nó

### Formato: Tabela

### %ELEMENT.Q2Q1 (Opcional)

Define os elementos finitos híbridos do tipo quadrangular de 9 nós.

### Formato: Tabela

Coluna	Valor ou Tipo	Descrição
1	Valor inteiro	Número do elemento finito
2	Valor inteiro	Código do material deste elemento finito
3	1	_
4	Valor inteiro	Código da integração numérica
[513]	Valor inteiro	Número do nó

## %ELEMENT.Q4 (Opcional)

Define os elementos finitos do tipo quadrangular de 4 nós.

#### Formato: Tabela

Coluna	Valor ou Tipo	Descrição
1	Valor inteiro	Número do elemento finito
2	Valor inteiro	Código do material deste elemento finito
3	1	_
4	Valor inteiro	Código da integração numérica
[58]	Valor inteiro	Número do nó

### %ELEMENT.Q9 (Opcional)

Define os elementos finitos do tipo quadrangular de 9 nós.

#### Formato: Tabela

Coluna	Valor ou Tipo	Descrição
1	Valor inteiro	Número do elemento finito
2	Valor inteiro	Código do material deste elemento finito
3	1	_
4	Valor inteiro	Código da integração numérica
[513]	Valor inteiro	Número do nó

### <u>%ELEMENT.TET10</u> (Opcional)

Define os elementos finitos híbridos do tipo tetraédrico de 10 nós.

Coluna	Valor ou Tipo	Descrição
1	Valor inteiro	Número do elemento finito
2	Valor inteiro	Código do material deste elemento finito
3	1	_
4	Valor inteiro	Código da integração numérica
[514]	Valor inteiro	Número do nó

### Formato: Tabela

# %ELEMENT.HEX27 (Opcional)

Define os elementos finitos híbridos do tipo hexaédrico de 27 nós.

Formato: Ta	bela
-------------	------

Coluna	Valor ou Tipo	Descrição
1	Valor inteiro	Número do elemento finito
2	Valor inteiro	Código do material deste elemento finito
3	1	_
4	Valor inteiro	Código da integração numérica
[531]	Valor inteiro	Número do nó

#### B.1.9.4 Superfície molhada

#### %WET.SURFACE.EDGES (Optional)

Define os lados da superfície molhada da estrutura.

#### Formato: Tabela

Coluna	Valor ou Tipo	Descrição
$\begin{array}{c} 1\\ 2 \end{array}$	Valor inteiro Valor inteiro	Número do elemento finito Número do lado do elemento finito

#### <u>%WET.SURFACE.FACES</u> (Optional)

Define as faces da superfície molhada da estrutura.

### Formato: Tabela

Coluna	Valor ou Tipo	Descrição
1	Valor inteiro	Número do elemento finito
2	Valor inteiro	Número da face do elemento finito

### %WET.SURFACE.MESH (Optional)

Define que a superfície molhada da estrutura é um elemento finito.

#### Formato: Variável numérica

Valor	Descrição
1	Superfície molhada é um elemento finito

### <u>%WET.SURFACE.CIRCLE</u> (Optional)

Define que a superfície molhada da estrutura é um círculo.

Formato: Tabela

Coluna	Valor ou Tipo	Descrição
$\begin{array}{c}1\\2\\3\\4\end{array}$	Valor em ponto flutuante Valor em ponto flutuante Valor em ponto flutuante Valor em ponto flutuante	Raio do círculo Posição do centro do círculo na direção 1 Posição do centro do círculo na direção 2 Posição do centro do círculo na direção 3

#### <u>%WET.SURFACE.ELLIPSE</u> (Opcional)

Define que a superfície molhada da estrutura é uma elipse.

#### Formato: Tabela

Coluna	Valor ou Tipo	Descrição
1	Valor em ponto flutuante	Raio da elipse na horizontal
2	Valor em ponto flutuante	Raio da elipse na vertical
3	Valor em ponto flutuante	Ângulo de rotação da elipse com relação a horizontal
4	Valor em ponto flutuante	Posição do centro da elipse na direção 1
5	Valor em ponto flutuante	Posição do centro da elipse na direção 2
6	Valor em ponto flutuante	Posição do centro da elipse na direção 3

### B.1.9.5 Multiplicadores de Lagrange

%LAGRANGE.MULTIPLIERS.TYPE (Opcional)

Define tipo de multiplicador de Lagrange.

Formato: Variável numérica

Valor	Descrição
1 2 3	Multiplicador de Lagrange posicionado no nó do meio do lado ou face do elemento finito Multiplicador de Lagrange posicionado em ângulos pré-definidos Multiplicador de Lagrange posicionado em arcos pré-definidos

### %LAGRANGE.MULTIPLIERS.DIVISIONS (Opcional)

Define o número de divisões dos multiplicadores de Lagrange.

Formato: Variável numérica

Valor ou Tipo	Descrição
Valor inteiro	Número de divisões dos multiplicadores de Lagrange

# B.2 Exemplo

A seguir um exemplo de um problema de interação fluido-estrutura com dois arquivos neutros, um para a estrutura e outro para o fluido.

# B.2.1 Arquivo neutro da estrutura

```
NEUTRAL FILE
2
 ###
 ###

3
4
5
 %SPACE.DIMENSIONS
6
7

8
9
 %FIELD
10
11
 u 2 u v
12

13
14
 %MATERIAL.NEO-HOOKEAN
15
16
 1
 0.000000
 0.000000
17
18
 19
20
 %THICKNESS
21
 1 0.1
22
23

24
25
 %EQUATION.TYPE.NONLINEAR
 0.0 0.0
26
27
28
 29
 %PROBLEM.TYPE
30
31
 1
32
 %TIME.INTEGRATION
33
 0. 0. 1.
34
35
 %TIME.RECORDER
36
 0.
37
38
39
 40
 %QUADRATURE.GAUSS.QUADRILATERAL
41
42
 1 0 0 0
43
 %QUADRATURE . GAUSS . EDGE
44
 1 0 0 0
45
46
 47
48
 %NODE.COORD
49
 0.617557
 0.000000
50
 1
 0.338197
 0.613638
 0.341044
 0.00000
51
 2
 3
52
 0.616060
 0.342803
 0.000000
 4
 0.000000
53
 0.612982
 0.344453
54
 5
 0.614564
 0.347410
 0.000000
 6
 0.00000
55
 0.609720
 0.343891
 7
 0.347863
 0.000000
56
 0.612325
 0.609903
 0.00000
 8
57
 0.346104
 9
58
 0.610086
 0.348317
 0.000000
```

59	10				0.60	95801		0.3	346738	3	0	.00000	90			
60 61	• • •	•														
62	###	###	###	##1	#####	#####	#####	#####	#####	#####	#####	#####	######	*###############	#########	###
63 64	%EI	LEM	ENT	Γ.(	29											
65	1	1	1 1	1	6	1	5	9	2	3	7	8	4			
66 67	2	1	1 1	L. 1. 1	1025	1751	1088	1732	1746	1096	1738	1028	1005			
68	4	1	1 1	1	1743	1750	1740	1733	1748	1747	1737	1739	1745			
69 70	5 6	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L. L	1085	6	1024	1038	1095	1073	1029	1003	1000			
71	7	1	1 1	1	18	17	9	5	16	14	7	11	12			
72 73	8	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L L :	913 1058	1025 977	1037	1088	954 1021	1028	1005	936 1072	984 1042			
74	10	1	1 1	1 :	1713	1741	1732	1718	1729	1736	1724	1716	1726			
75 76	• • •	•														
77	###	###	###	##1	#####	#####	#####	#####	#####	#####	#####	######	######	*###############	#########	###
78 79	%WE	ET.	SUF	RF/	ACE.E	DGES										
80	1			2												
81 82	2			1 2												
83	2			1												
84 85	3			2												
86	4			2												
87 88	5			1												
89	5			2												
90 91	7			4												
92 02	8			1												
93 94	10			1												
95 06	• • •	•														
90 97	%WE	ET.	SUF	RF	ACE.M	1ESH										
98 00	1															
99 100	###	###	###	##1	#####	#####	#####	#####	#####	#####	#####	######	######	*######################################	#########	###
101 102	81	AGR	ANC	ΞF	. MUL T	τρι τι	FRS . T	YPF								
103	1					1										

# B.2.2 Arquivo neutro do fluido

```
1
2
3
4
5
 %SPACE.DIMENSIONS
2
6
7
%FSI
8
9
1
10
11
12
%IO.GID
13
14
15
16
17
%FIELD
18
u 2 u v
19
20
p 1 p
21
22
23
24
 %MATERIAL.FLUID
25 1
 0.001000
 1.000000
```

## APÊNDICE B. ARQUIVO NEUTRO

26 27	#########	######	<i>\#######</i> #############################	##########	##########	***********	ŧ#							
28 29 30	%ANALYSIS CFD_REAL_	.TYPE TRACTIO	DN											
31 32	########	######	########	##########	#########	***************	ŧ#							
33 34 35 36	%THICKNES 1 0.1	%THICKNESS 1 0.1												
37 38	#########	######	########	#########	#########	*******	##							
39 40	%EQUATION.TYPE.NONLINEAR 1 1E-6													
41 42 42	#########	######	########	#########	#########	******	ŧ#							
45 44 45 46	%FLOW.TYPE 1	E												
40 47 48 49	%TIME.INTN 0. 0. 1.	EGRATI	ON											
50 51 52	%TIME.REC( 0.	ORDER												
53 54	#########	######	########	#########	#########	***************************************	##							
55 56 57 58 59 60	%QUADRATUR 1 k 3 0 0 1 m 6 0 0 1 g 6 0 0 1 c 6 0 0 1 c_t 6 0	RE . GAUS	5S.TRIAN	GLE										
61 62 63 64	%QUADRATU 1 G_Exter 1 F_Inter	RE.GAUS nal 4 ( nal 3 (	5S.EDGE 9 0 9 0											
65 66	#########	******												
67 68 69 70 71 72 73 74 75 76	%NODE.COOF 1 2 3 4 5 6 7 8	RD 2.2000 2.1670 2.2000 2.1670 2.1352 2.2000 2.1542 2.1218	000 547 000 547 294 000 231 378	0.4100 0.4100 0.3758 0.3758 0.4100 0.3416 0.3467 0.3808	00 00 33 33 00 67 16 83	$\begin{array}{c} 0.000000\\ 0.000000\\ 0.000000\\ 0.000000\\ 0.000000\\ 0.000000\\ 0.000000\\ 0.000000\\ 0.000000\\ 0.000000\\ 0.000000\\ 0.000000\end{array}$								
77 78	9 10	2.1678	395 941	0.3196	86 00	0.00000								
79 80				01.200										
81 82	########	######	########	#########	#########	******	##							
83 84	%NODE.DOF 1	. TYPES 1	1	0										
85 86	2 : 5 :	1 1	1 1	0 0										
87 88	10 17	1 1	1 1	0 0										
89 90	25 32	1 1	1	0										
91 92	44 57	1 1	1	0										
93 94	73 : 89 :	1 1	1 1	0 0										
95 96 97	···· ###########	######	#########	##########	##########	******	ŧ#							
98 99 100 101	%NODE . PRE 996 997	SCRIBE 0.00 0.09	D.VALUE 00000 0. 01667 0.	0 0										

102	998	3			Θ.	1666	567 0	. 0			
103	999	)			0.	2250	000 0	.0			
104	100	00			0.	2666	67 0	.0			
105	100	)2			0.	2916	67 0	.0			
106	100	)3			0.	3000	000 0	.0			
107	100	)4			0.	2916	67 0	.0			
108	100	)5			0.	2666	67 0	.0			
109	100	)6			0.	2256	000 0	.0			
110	100	)7			0.	1666	67 0	.0			
111	100	8(			0.	0916	67 0	.0			
112	100	)9			0.	0000	000 0	. 0			
113											
114	###	###	###	###	#####	#####	#####	#####	####	######	***************************************
115											
116	%EL	.EM	IENT	Γ.Ρ	2P1						
117	1	1	1 1	L 1	L009	989	1007	1001	995	1008	
118	2	1	1 1	L	157	146	112	151	128	133	
119	3	1	1 1	L	882	913	899	898	907	892	
120	4	1	1 1	L	555	526	531	541	529	542	
121	5	1	1 1	L	396	428	414	412	421	406	
122	6	1	1 1	L	789	759	769	774	762	777	
123	7	1	1 1	L	329	306	300	317	302	315	
124	8	1	1 1	L	127	169	153	149	161	138	
125	9	1	1 1	L	643	673	659	658	666	651	
126	10	1	1 1	L	904	875	883	890	879	894	
127											