ANDRÉ DE CARVALHO PARO
Uma metodologia para gestão da eficiência energética de centrais de cogeração a biomassa: aplicação ao bagaço de cana
São Paulo

ANDRÉ DE CARVALHO PARO

Uma metodologia para gestão da eficiência energética de centrais de cogeração a biomassa: aplicação ao bagaço de cana

Tese apresentada à Escola Politécnica da Universidade de São Paulo para obtenção do Título de Doutor em Engenharia Elétrica

Área de Concentração: Sistemas de Potência

Orientadora: Prof^a. Dr^a. Eliane A. F. A. Fadigas

Este exemplar foi revisado e alterado em relação à versão original, sob responsabilidade única do autor e com a anuência de seu orientador.					
São Paulo, 26 de setembro de 2011.					
Assinatura do autor					
Assinatura do orientador					

FICHA CATALOGRÁFICA

Paro, André de Carvalho

Uma metodologia para gestão de eficiência energética em centrais de cogeração a biomassa: aplicação ao bagaço de cana / A.C. Paro. – ed.rev. -- São Paulo, 2011.

146 p.

Tese (Doutorado) - Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Energia e Automação Elétricas.

1. Cogeração de energia elétrica 2. Energia de biomassa 3. Energia (Eficiência; Administração; Metodologia) I. Universidade de São Paulo. Escola Politécnica. Departamento de Engenharia de Energia e Automação Elétricas II. t.

DEDICATÓRIA

À minha família: Viviane, Daniel e Tiago. Eu os amo.

AGRADECIMENTOS

Agradeço imensamente à Prof^a Eliane, minha orientadora, que durante todo este tempo tem me orientado com atenção e por sua gentileza em ter-me dado abrigo em sua ante sala para que este trabalho pudesse ser concluído.

Agradeço ao apoio dado pela empresa RAÍZEN para que este trabalho pudesse se concretizar.

Aos Professores Dr^{es}. José Roberto Simões Moreira e Marco Antônio Saidel, membros da banca de qualificação, pela paciência, desprendimento e pelos importantes comentários feitos para a melhoria do trabalho.

A todos os professores e colegas do GEPEA que direta ou indiretamente contribuíram para este trabalho.

Agradeço a minha família, que sempre me apoiou e permitiu muitas noites de trabalho intenso para que conseguisse cumprir os compromissos deste trabalho.

Agradeço aos meus demais familiares pelo apoio e ânimo que me deram.

Agradeço acima de tudo a Deus, no qual depositei e deposito a cada dia minha esperança, e do qual certamente recebo as forças que me fazem caminhar.

RESUMO

Em função do crescimento populacional e econômico brasileiro, o sistema elétrico nacional está sempre em modificação a fim de atender às necessidades do país. Na última década, ganhou destaque o aumento da geração termoelétrica na matriz elétrica nacional, primeiro proveniente do gás natural, e mais recentemente de fontes renováveis, como a cogeração termoelétrica proveniente do bagaço de cana. Em virtude desta realidade, é importante que, frente ao volume significativo e crescente de centrais de cogeração no país, seja pensada uma forma de administrar esta parcela da geração de maneira a se aprimorar de forma constante o desempenho destes sistemas. No entanto, verifica-se que os programas de eficiência energética no Brasil e no mundo estão geralmente associados aos usos finais de energia elétrica e praticamente inexiste uma ação estruturada de gestão da eficiência nas transformações energéticas para geração de eletricidade ao longo de sua operação. Portanto, este trabalho tem como objetivo, propor uma metodologia de gestão continuada da eficiência energética de centrais de cogeração a biomassa que operam em ciclo Rankine no Brasil. A metodologia está baseada no ciclo de melhoria contínua da qualidade, conhecido como PDCA. São estabelecidas as etapas para implementação da metodologia: enquadramento, cálculo, medição, verificação e ação. O parâmetro escolhido para cálculo e medição na metodologia é o fator de utilização de energia (FUE). A implementação da metodologia permite passar por cada fase do ciclo PDCA: planejamento, execução, verificação e ação. O ciclo Rankine foi o escolhido para o desenvolvimento do modelo de aplicação por representar a totalidade das centrais de cogeração a biomassa no Brasil. É apresentado um estudo de caso no qual a metodologia foi aplicada a duas centrais de cogeração enquadradas em classes semelhantes. Os resultados demonstram a validade da metodologia para o propósito de implementar um sistema de gestão continuada da eficiência energética global em centrais de cogeração a biomassa. São por fim recomendadas as ações de melhoria decorrentes da aplicação do ciclo nas centrais, e recomendações de desenvolvimento futuro complementares a este trabalho.

Palavras-chave: Cogeração de energia elétrica. Energia de biomassa. Energia (eficiência).

ABSTRACT

Due to the Brazilian population and economic growth, the national grid is in continuous change in order to meet the country needs. During the last decade, the highlights are the thermoelectric generation expansion, first by natural gas plants growth and recently by alternative renewable cogeneration sugarcane bagasse plants. Due to this situation, face to the significant growing number of biomass cogeneration plants in Brazil, it is important to think a way to manage this electric generation portion in order to have a continuous improvement of its performance. However, it is noticed that the energy efficiency policies either in Brazil or worldwide are usually connected to end uses of electricity and actually there is not any structured action towards the energy efficiency management for electricity generation along operation. Thus, this work proposes a methodology for energy efficiency management in Rankine cycle operated biomass cogeneration plants in Brazil. The methodology is based on the so called PDCA continual improvement cycle. The steps for implementation of the methodology: classification, calculation. measurement, verification and action, are established. The energy utilization factor (EUF) was chosen for calculation and measurement in the methodology. The implementation of it permits to pass through each phase of PDCA cycle: plan, do, check and act. The Rankine cycle was chosen for the application model development because it represents 100% of biomass cogeneration commercial plants operating in Brazil. A application of the methodology for two cogeneration plants with the same class is presented in the study case. The results show the validity of the application of the proposed methodology for establishment of an overall energy efficiency management system in biomass cogeneration plants. Improvement actions are recommended as results from the application of the cycle. Further development recommendations for this work are also presented.

Keywords: Electric energy cogeneration. Energy from biomass. Energy efficiency.

LISTA DE FIGURAS

- Figura 2.1 Ciclo de Carnot representado no diagrama Temperatura (T) x Entropia (S)
- Figura 2.2 Central termoelétrica em ciclo Rankine
- Figura 2.3 Ciclo de Cogeração Rankine Bottoming
- Figura 2.4 Ciclo de Cogeração Rankine Topping
- Figura 2.5 Ciclo de Cogeração Brayton
- Figura 2.6 Ciclo de Cogeração Combinado
- Figura 2.7 Ciclo de Cogeração Diesel
- Figura 2.8 Roteiro para o Planejamento da Qualidade. Fonte: JURAN (1991)
- Figura 2.9 Modelo de gestão energética da ISO/DIS 50001
- Figura 3.1 Evolução da Capacidade Instalada de Energia Elétrica por fonte de 1973 a 2009. Fonte: MME BEN 2004
- Figura 3.2 Capacidade Instalada de Energia Elétrica por fonte em 2010. Fonte: ANEEL BIG
- Figura 3.3 Perdas associadas às transformações energéticas desde a geração até o uso final
- Figura 5.1 Posicionamento da metodologia sobre o modelo de gestão energética da ISO/DIS 50001
- Figura 5.2 Fluxograma geral de cogeração ciclo Rankine
- Figura 5.3 Parâmetros de cálculo de projeto da eficiência energética global posicionados sobre o fluxograma de base.
- Figura 5.4 Diagrama unifilar geral típico de uma central de cogeração
- Figura 5.5 Fluxo de informações da leitura para obtenção da energia elétrica ativa (W) em um ramal da central
- Figura 5.6 Fluxogramas de engenharia representando a entrada de vapor de alta pressão VD (a), e a saída de vapor em média pressão VM (b), em um turbogerador
- Figura 5.7 Diagrama de leitura para obtenção do calor (Q) em um fluxo de vapor na central
- Figura 5.8 Vista lateral dos dosadores de bagaço de uma caldeira.

LISTA DE FIGURAS (continuação)

Figura 5.9 – Fluxo de informações da leitura para obtenção da energia do combustível (F) que entra na central – a partir da produção de vapor (a), e a partir da vazão volumétrica de bagaço em cada caldeira (b)

Figura 6.1 – Fluxograma básico – Central de Cogeração A

Figura 6.2 – Fluxograma básico – Central de Cogeração B

LISTA DE TABELAS

- Tabela 2.1 Valores máximos de Trabalho e Calor obtidos nos ciclos termodinâmicos
- Tabela 3.1 Usinas Termoelétricas e Cogeração Qualificada no Brasil em 2010
- Tabela 5.1 Formulário de enquadramento da central de cogeração
- Tabela 5.2 Parâmetros utilizados no cálculo da eficiência energética global da central de cogeração
- Tabela 5.3 Registro do mapeamento de pontos de medição da central
- Tabela 5.4 Parâmetros adicionais para preparação da medição de eficiência energética global da central de cogeração
- Tabela 5.5 Verificação dos resultados e comparação de metas
- Tabela 5.6 Planilha de ações propostas de melhoria do ciclo
- Tabela 6.1 Dados básicos Central de Cogeração A
- Tabela 6.2 Dados básicos Central de Cogeração B
- Tabela 6.3 Enquadramento das Cogerações A e B
- Tabela 6.4 Parâmetros de projeto da Cogeração A preparação para o cálculo
- Tabela 6.5 Cálculo do FUE de projeto Cogeração A
- Tabela 6.6 Parâmetros de projeto da Cogeração B preparação para o cálculo
- Tabela 6.7 Cálculo do FUE de projeto Cogeração B
- Tabela 6.8 Registro do mapeamento de pontos de medição da central Cogeração A
- Tabela 6.9 Registro do mapeamento de pontos de medição da central Cogeração B
- Tabela 6.10 Parâmetros adicionais para preparação da medição de eficiência energética global Cogeração A e Cogeração B
- Tabela 6.11 Medição e resultados de FUE Cogeração A
- Tabela 6.12 Medição e resultados de FUE Cogeração B
- Tabela 6.13 Verificação dos resultados e comparação Cogeração A
- Tabela 6.14 Verificação dos resultados e comparação Cogeração B
- Tabela 6.15 Planilha de ações propostas de melhoria do ciclo

LISTA DE SIGLAS

ANEEL Agência Nacional de Energia Elétrica

BEN Balanço Energético Nacional

BIG Banco de Informações de Geração (pertencente à ANEEL)

CCEE Câmara de Comercialização de Energia Elétrica

COGEN-SP Associação Paulista de Cogeração

EUA Estados Unidos da América

FUE Fator de Utilização de Energia

GD Geração Distribuída

GLD Gerenciamento pelo Lado da Demanda

HRSG Heat Recovery Steam Generator – Unidade de Recuperação de

Calor

MME Ministério de Minas e Energia

ONS Operador Nacional do Sistema Elétrico

PIE Produtor Independente de Energia Elétrica

PPT Programa Prioritário de Termoelétricas

PROCEL Programa Nacional de Conservação de Energia Elétrica

PROINFA Programa de Incentivo a Fontes Alternativas de Energia

P&D Pesquisa e Desenvolvimento

RESEB Reestruturação do Setor Elétrico Brasileiro

RSU Resíduos Sólidos Urbanos

SERHS-SP Secretaria de Energia e Recursos Hídricos do Estado de São

Paulo

SIN Sistema Interligado Nacional

UTE Usina Termoelétrica

SIMBOLOGIA

EUF Energy Utilisation Factor – Fator de Utilização de Energia

EUF_{VW} Energy Utilisation Factor – Value Weighted – Fator de Utilização

de Energia Ponderado em Custo

FESR Fuel Energy Saving Ratio – Taxa de economia de energia do

combustível

FUE Fator de Utilização de Energia

IHR Incremental Heat Rate – Taxa de calor incremental

η Rendimento ou Eficiência

Q Calor

RC Rational Criteria – Critério Racional por disponibilidade

RPM Rotações por Minuto

RTC Relação Trabalho Calor

T Temperatura

TB Toneladas de Bagaço

TV Toneladas de Vapor

W Trabalho

SUMÁRIO

1.	INTRODUÇÃO	15
2.	FUNDAMENTAÇÃO TEÓRICA	19
2.1.	A COGERAÇÃO TERMOELÉTRICA	19
2.1.1.	Conceito e breve histórico	19
2.1.2.	Eficiência energética na cogeração	
2.1.3.	Ciclos termodinâmicos de cogeração termoelétrica	24
2.1.4.	Principais equipamentos e sistemas de uma central de cogeração a biomas.	
2.1.5.	Parâmetros para análise de projetos de cogeração	
2.1.6.	Escolha da formulação para o trabalho proposto	31
2.2.	SISTEMAS DE GESTÃO VOLTADOS À ENGENHARIA	
2.2.1. 2.2.2.	A Engenharia de SistemasSistema de Avaliação de Projetos - PES®	33
2.2.2. 2.2.3.	Corpo de Conhecimento do Gerenciamento de Projetos - PMBoK®	
2.2.4.	Breve conclusão sobre os sistemas já apresentados	
2.2.5.	Sistemas de Gestão da qualidade	
3.	PANORAMA DA COGERAÇÃO E EFICIÊNCIA ENERGÉTICA NO	
	BRASIL E NO EXTERIOR	43
3.1.	COGERAÇÃO NO SETOR ELÉTRICO BRASILEIRO	13
3.1.1.	Panorama da cogeração do setor elétrico	
3.1.2.	Legislação sobre cogeração do setor elétrico	
3.2.	COGERAÇÃO NOS ESTADOS UNIDOS	
3.3.	COGERAÇÃO NA UNIÃO EUROPÉIA	
3.4.	EFICIÊNCIA ENERGÉTICA NO BRASIL	54
3.4.1.	Histórico e legislação	
3.4.2.	O INMETRO	
3.5.	EFICIÊNCIA ENERGÉTICA NO MUNDO	57
4.	REVISÃO BIBLIOGRÁFICA	60
4.1.1.	Trabalhos setoriais sobre cogeração a biomassa	60
4.1.2.	Trabalhos setoriais sobre eficiência energética	62
4.1.3.	Trabalhos de análise sobre centrais de cogeração a bagaço de cana	63
4.1.4.	Trabalhos de análise sobre centrais de cogeração a licor negro	
<i>4.1.5.</i>	Trabalhos sobre cogeração com outras fontes da biomassa	
4.1.6. 4.1.7.	Trabalhos sobre otimização de ciclos de geração ou cogeração Trabalhos sobre aplicação de ciclos de melhoria contínua na indústria	
4.1.7. 4.1.8.	Breve conclusão da revisão bibliográfica	
	A METODOLOGIA	
5.		
5.1.	INTRODUÇÃO	
5.2.	MODELO DE APLICAÇÃO	
5.3.	EQUACIONAMENTO	
5.4.	DESCRIÇÃO DAS ETAPAS	
<i>5.4.1.</i>	Enquadramento	
<i>5.4.2.</i>	Cálculo	
5.4.3. 5.4.4.	Medição	
5.4.4. 5.4.5.	VerificaçãoAção	
6.	ESTUDO DE CASO	
6.1.	DADOS BÁSICOS	
6.2.	ENQUADRAMENTO	
6.3.	CÁLCULO	110

6.4.	MEDIÇÃO	112
6.5.	MEDIÇÃO VERIFICAÇÃO	
6.6.	AÇÃO	
6.1.	RESUMO	
7.	CONCLUSÕES	128
8.	REFERÊNCIAS	131
9.	APÊNDICES	136

1. INTRODUÇÃO

O Sistema Elétrico Brasileiro está em constante transformação. Sua função básica é garantir o suprimento de energia elétrica à sociedade de forma suficiente e ao menor custo possível. Com o grande crescimento da geração hidrelétrica nas décadas de 60, 70 e 80, parecia não haver outra forma de geração que pudesse fazer frente a ela no Brasil. Com o passar do tempo, em virtude da necessidade de investimentos econômicos cada vez maiores, da sua característica de exigir ciclos de construção longos e da dificuldade na obtenção de licenças ambientais para o alagamento de áreas provocado pelos reservatórios, a geração hidrelétrica experimentou a partir da década de 90 um decréscimo percentual na matriz elétrica nacional. Em virtude disto, a geração termoelétrica foi uma das principais formas encontradas pelo país para suprir a crescente necessidade de energia elétrica. Naquela ocasião, o combustível que teve maior crescimento na geração termoelétrica foi o Gás Natural. No entanto, em função das recentes alterações na conjuntura regional na América do Sul, a adoção deste combustível de forma massiva na geração termoelétrica tem sofrido oscilações. Nos últimos anos, em paralelo à retomada de grandes empreendimentos hidrelétricos para os aproveitamentos da bacia do Amazonas, alguns incentivos deram impulso a fontes renováveis de energia termoelétrica associada à biomassa, como por exemplo: o bagaço de cana, entre outros. Independente das diferenças tecnológicas e do tratamento diferenciado que se dê entre a geração hidrelétrica e termoelétrica, é importante manter a complementação hidrotérmica do sistema elétrico equilibrada o suficiente para garantir a maior confiabilidade do suprimento de energia elétrica.

No entanto, ao se analisar cada tipo de geração de eletricidade sob o ponto de vista da eficiência energética, aqui representada pela relação entre a energia contida na água ou no combustível, e aquela efetivamente convertida em outra forma de energia - eletricidade ou calor – há diferenças qualitativas e quantitativas entre cada fonte. Enquanto na geração hidrelétrica, a eficiência é muito próxima de 100%, associada à vazão de água represada e altura da queda em cada usina, na geração termoelétrica fóssil ou renovável estes valores estão distantes disso, justificados principalmente por restrições associadas a limitações tecnológicas

teóricas dos ciclos termodinâmicos. Assim, se por um lado as termoelétricas trazem aumento da oferta de eletricidade, por outro trazem aproveitamentos energéticos menos eficientes.

Dentro desse contexto, a cogeração de eletricidade e calor ganha destaque como forma de geração termoelétrica. Quando associada ao aproveitamento do calor que já não serviria para geração de eletricidade, a cogeração eleva em muito o aproveitamento energético do combustível utilizado. Embora sua aplicação seja limitada a casos onde se necessite das duas formas de energia juntas: eletricidade e calor, há um potencial grande ainda não explorado, tanto para aumento da oferta como também para melhoria da eficiência destes ciclos onde já implantados. Verifica-se que, embora em muitos países incluindo o Brasil, haja leis e incentivos à implantação de centrais de cogeração, principalmente aquela proveniente de energia renovável, não foram encontrados programas efetivos no controle continuado da eficiência ou das condições em que operam estas centrais ano após ano. Desta maneira, não se sabe precisar em que patamar de eficiência energética global as mesmas se encontram.

Em virtude do cenário acima exposto, este trabalho tem como objetivo propor uma metodologia de gestão da eficiência energética em centrais de cogeração a biomassa que operam em ciclo Rankine. Aplica-se a qualquer agente cogerador interessado em implementar um sistema continuado de gestão de eficiência energética de uma central de cogeração a biomassa. O ciclo Rankine foi escolhido em virtude da verificação de que o mesmo representa a totalidade das centrais de cogeração a biomassa no Brasil. Embora as pesquisas tecnológicas mais recentes indiquem o uso futuro de outros ciclos com gaseificação da biomassa, o mercado alvo deste trabalho são as centrais novas ou existentes que adotam o ciclo predominante, e que certamente continuarão operando por muitos anos ainda. A metodologia é baseada na aplicação de ciclos de melhoria contínua. Para isto, é desenvolvido um modelo padrão, que possa ser aplicado para estas centrais, e são desenvolvidos os passos que o agente gerador deve implementar para por em prática a gestão da eficiência energética global da sua central de cogeração.

No Capítulo 2, é apresentada a fundamentação teórica a respeito de cogeração termoelétrica e de eficiência energética aplicada à cogeração de eletricidade e calor. São também descritos sistemas de gestão voltados à

engenharia, apresentados como ferramentas capazes de embasar a sistemática desenvolvida na metodologia proposta.

No Capítulo 3, é apresentado o atual estágio de desenvolvimento dos temas cogeração e eficiência energética no Brasil e no exterior. Apresenta-se a conjuntura atual do sistema elétrico brasileiro, os números da geração elétrica para as diversas fontes da matriz. Por fim, é feita uma revisão do panorama da cogeração e da eficiência energética aplicada à cogeração no Brasil, Estados Unidos e Comunidade Européia.

No Capítulo 4, é apresentada uma revisão bibliográfica de trabalhos publicados relacionando os temas cogeração e eficiência energética na cogeração a biomassa a fim de apresentar o estado da arte no tema e ressaltar a contribuição deste trabalho aos estudos já desenvolvidos. São mostrados estudos realizados em diversas áreas que envolvem cogeração, biomassa e eficiência energética, alguns dentre estes correlacionando os temas entre si.

No Capítulo 5, está descrita a metodologia proposta para gestão da eficiência energética nas centrais de cogeração, suas diretrizes e metas. Esta é baseada na teoria sobre cogeração e eficiência energética, e em sistemas de gestão da qualidade. A metodologia é apresentada então de forma diagramática estando inserida dentro do contexto de gestão para melhoria contínua. É apresentado o modelo para aplicação a biomassa com base no fluxograma de engenharia que representa a formação básica das centrais de cogeração a biomassa atuais do Brasil. O fluxograma permite elaborar as equações a serem utilizadas para o cálculo da eficiência energética de cada central e os métodos de medição a serem adotados. São descritos os processos de: enquadramento, cálculo, medição e verificação da evolução da eficiência energética neste tipo de instalação.

No Capítulo 6, é apresentado o estudo de caso da aplicação da metodologia para gestão da eficiência energética, a fim de demonstrar de forma qualitativa e quantitativa a aplicabilidade da mesma para uma central de cogeração, podendo ser extrapolada para um conjunto de centrais de cogeração a biomassa. O estudo de caso é baseado em centrais de cogeração de energia elétrica e calor de processo em usinas de açúcar e álcool. Ao final, são apresentados os resultados da aplicação da metodologia proposta e são indicadas as ações recomendadas para que se atue nos ciclos de cogeração estudados a fim de aperfeiçoar a eficiência energética global dos mesmos.

No Capítulo 7, são apresentadas as conclusões e recomendações a respeito da metodologia proposta. São apresentadas as conclusões sobre a validade e utilidade da metodologia para os fins a que se propõe. Os resultados demonstram sua validade. No entanto, em cada caso de aplicação devem ser avaliadas as melhorias necessárias para a implementação da metodologia a fim de que seus resultados levem de fato à efetivação de um processo de melhoria contínua da eficiência energética global da central em estudo.

2. FUNDAMENTAÇÃO TEÓRICA

2.1. A COGERAÇÃO TERMOELÉTRICA

2.1.1. Conceito e breve histórico

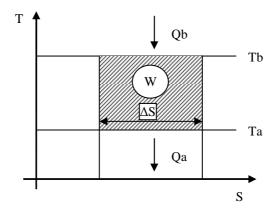
A Cogeração é a produção simultânea de duas ou mais formas de energia a partir de um único combustível, sendo uma delas a energia térmica. O processo mais comum é a produção de eletricidade e energia térmica (calor ou frio) a partir do uso de combustíveis fósseis ou renováveis.

O conceito básico de cogeração existe há muitos séculos. Ilustrações datadas do século XIV ilustram instalações que utilizavam elevadores mecânicos movidos a gases quentes provenientes de combustão . No entanto, os sistemas de cogeração no mundo mais próximos do que são hoje surgiram entre o final do século XIX e início do século XX, em cidades na Europa para geração de energia elétrica e calor para calefação residencial. Esta situação perdurou até a década de 40. Com o avanço da tecnologia surgiram novos conceitos de geração e de interligação de sistemas elétricos, que apontavam para otimização quando aplicados de forma centralizada, com geração e transmissão em grandes blocos. Com o apoio das grandes centrais (hidrelétricas e termoelétricas - nucleares, carvão, gás natural e óleo combustível), tais sistemas conseguiam fornecer energia abundante e de baixo custo. Os sistemas de cogeração ficaram então limitados a aplicações de menor porte para atender a uma indústria ou pequena região. Com a crescente preocupação da sociedade em relação à energia e meio ambiente a partir das décadas de 70 e 80, os sistemas de cogeração tiveram novo impulso, motivado pelo fato de que são sistemas que trazem maior aproveitamento da energia global quando comparados aos sistemas de geração termoelétrica pura e simples.

A base teórica científica para estudos de centrais de cogeração, bem como de centrais de geração termoelétrica está na termodinâmica clássica. Conforme se pode observar em VAN WYLEN (1995), os estudos dos ciclos termodinâmicos em centrais termoelétricas são aplicação direta dos conceitos da 1ª Lei da Termodinâmica, segundo a qual todo o calor transferido para um sistema é

equivalente ao trabalho realizado pelo mesmo somado à energia acumulada pelo sistema na mudança de estado; e da 2ª Lei da Termodinâmica, segundo a qual é impossível construir um ciclo que mude de um estado inicial para outro e retorne ao mesmo estado inicial sem sofrer perdas energéticas. É possível também observar os conceitos de irreversibilidade e disponibilidade, diretamente relacionados ao conceito de eficiência térmica de um determinado sistema.

Os conceitos de irreversibilidade, disponibilidade e exergia podem também ser estudados em HORLOCK (1997), que traz uma análise da termodinâmica aplicada aos ciclos de cogeração. A exergia representa o máximo trabalho que pode ser extraído de um fluido em determinado estado. Observa-se lá também que a 2ª Lei da Termodinâmica pode ser utilizada para demonstrar que uma máquina térmica atinge sua máxima eficiência quando operando em um ciclo reversível denominado Ciclo de Carnot, para uma dada (máxima) temperatura da fonte e uma dada (mínima) temperatura de rejeição de calor. Dentre os parâmetros técnicos envolvidos na escolha da melhor configuração e na otimização desta, aquele que resume a taxa de energia entregue por unidade de energia disponível no combustível ou fonte é a eficiência energética do sistema de cogeração. Há muitas formas de se mensurar a eficiência de um sistema de cogeração. Tal variedade está descrita a seguir.


Na correlação entre eficiência e eletricidade, o termo eficiência energética está hoje fortemente associado ao desempenho de sistemas consumidores de energia elétrica. No entanto, o olhar crítico sobre o setor de geração de energia elétrica, antes que esta seja gerada, transmitida, distribuída e consumida revela possibilidades de ganho importantes. DIAS (2006) afirma que dentre os desafios da humanidade, a redução das perdas nas transformações energéticas constitui uma atividade destinada à criação de novas tecnologias e procedimentos sociais (comportamento), não somente para o uso da energia como também na formação de cidadãos. Complemente-se ainda esta afirmação com a possibilidade de criação de novas tecnologias na geração de energia como fator de redução de perdas nas transformações energéticas.

Outro importante fator motivador da maior busca por energia termoelétrica renovável proveniente da biomassa é a questão ambiental. A energia termoelétrica proveniente da biomassa reduz e pode até mesmo equilibrar as emissões de carbono quando comparada àquela proveniente de combustíveis fósseis.

2.1.2. Eficiência energética na cogeração

Há muitas formas de se medir a eficiência de sistemas de cogeração, cada uma delas explicada pela finalidade proposta para o sistema e pela precisão a que se pretende chegar. Para se compreender a variedade de formas de cálculo da eficiência dos ciclos térmicos, sua evolução ao longo do tempo e as limitações que cada ciclo possui em função de sua configuração, é necessário que se revejam conceitos básicos de termodinâmica, iniciando-se pelo enunciado do Ciclo de Carnot.

Carnot definiu uma máquina térmica hipotética ideal a qual operando em um ciclo com algumas condições de contorno específicas, atinge o máximo da eficiência térmica possível, respeitando as leis da termodinâmica. A Figura 2.1 abaixo mostra o gráfico representativo do ciclo de Carnot.

Fonte: HORLOCK (1997).

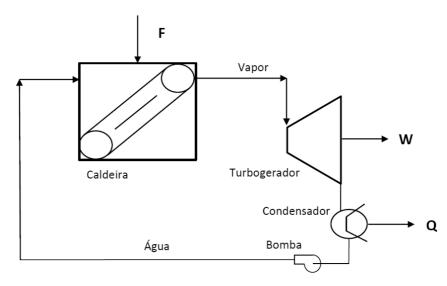
Figura 2.1 – Ciclo de Carnot representado no diagrama Temperatura (T) x Entropia (S).

Neste ciclo hipotético, o fluido é comprimido em processo adiabático reversível até atingir a temperatura alta Tb do reservatório. Inicia-se então a transferência isotérmica reversível de calor Qb, do reservatório de alta temperatura para o ciclo. Após a transferência de calor, o fluido se expande em uma turbina em processo adiabático reversível, reduzindo sua temperatura ao patamar Ta, do reservatório de temperatura baixa. Inicia-se a rejeição isotérmica reversível de calor Qa, do ciclo para o reservatório de temperatura baixa. A máxima energia então

obtida do ciclo é o trabalho W gerado no processo adiabático reversível de expansão do fluido. Utilizando-se a 2ª Lei da Termodinâmica, verifica-se que a máxima eficiência térmica que pode ser obtida neste ciclo é representada pela Equação 2.1, abaixo, conforme HORLOCK (1997).

$$\eta_{th} = \frac{W}{Q_b} = \frac{T_b - T_a}{T_b}$$
 (2.1)

Onde:


 η_{th} – Eficiência térmica do ciclo.

 T_b – Temperatura do reservatório de alta temp.

 T_a – Temperatura do reservatório de baixa temp.

Pode-se verificar que a máxima eficiência térmica de um ciclo termodinâmico está diretamente associada às temperaturas da fonte de calor e da rejeição de calor. No entanto, somam-se outras perdas a esta limitação da termodinâmica clássica, pois não é possível reproduzir em 100% as condições de reversibilidade das transformações isotérmicas e adiabáticas idealizadas por Carnot.

Exemplificando-se este ciclo através de uma central de geração termoelétrica operando em ciclo Rankine, seu diagrama simplificado está representado na Figura 2.2.

Fonte: Elaboração própria.

Figura 2.2 – Central termoelétrica em ciclo Rankine

Há uma quantidade considerável de energia Q rejeitada para o reservatório de temperatura baixa, que no caso prático é o meio ambiente. A evolução dos ciclos termodinâmicos de geração termoelétrica e de cogeração veio historicamente de encontro à busca pela maximização do aproveitamento energético dos ciclos termodinâmicos. Em uma central termoelétrica de ciclo combinado, o calor rejeitado no ciclo Brayton ou Diesel é reaproveitado em uma caldeira de recuperação e então transformado em trabalho no ciclo Rankine em cascata. Desta maneira, maximiza-se a entrega de trabalho útil. Em uma central de cogeração busca-se aproveitar o calor rejeitado no ciclo, qualquer que seja, não necessariamente para transformá-lo em trabalho, mas para atender alguma necessidade de calor, qualquer que seja o consumidor. Assim, a Equação 2.2 abaixo representa a primeira formulação para o cálculo da eficiência global de uma central de cogeração, conforme HORLOCK (1997).

$$EUF = \frac{W + Q_u}{F} \tag{2.2}$$

Onde:

EUF – Fator de Utilização de Energia (FUE)

W - Trabalho útil

Qu – Calor útil

F - Energia cedida pela fonte

A sigla EUF, encontrada nos trabalhos em idioma inglês representa a mesma grandeza do Fator de Utilização de Energia (FUE), termo conhecido em português e que é utilizado deste ponto em diante neste trabalho.

Para entender melhor o ganho energético obtido no aproveitamento máximo da soma entre trabalho (W) e calor (Q), a Tabela 2.1 abaixo mostra os máximos valores de W e Q obtidos para cada sistema térmico de geração de calor, eletricidade ou cogeração no qual a entrada de energia da fonte seja considerada como uma unidade (F = 1.0)

Tabela 2.1 – Valores máximos de Trabalho e Calor obtidos nos ciclos termodinâmicos.

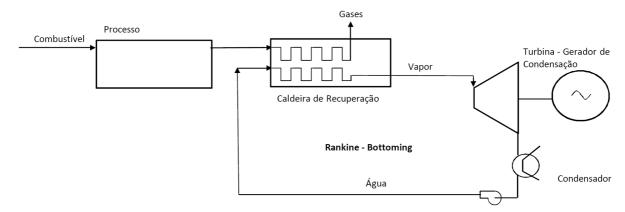
SISTEMA	TRABALHO (W)	CALOR (Qu)	SOMA (W+Qu)
Caldeira doméstica	0,0	0,5	0,5
Caldeira de distrito de aquecimento (industrial)	0,0	0,9	0,9
Central termoelétrica com turbina a gás	0,3	0,0	0,3
Central termoelétrica com turbina a vapor	0,4	0,0	0,4
Central termoelétrica de ciclo combinado gás / vapor	0,44	0,0	0,44
Central de cogeração com turbina de extração/condensação	0,38	0,1	0,48
Central de cogeração com turbina de contrapressão	0,25	0,6	0,85
Central de cogeração com turbina a gás e caldeira de recuperação	0,3	0,55	0,85
Central de cogeração de ciclo combinado com caldeira de recuperação	0,4	0,42	0,82
Bomba de calor movida por turbina a vapor de contrapressão (apenas calor)	0,0	1,74	1,74

Fonte: HORLOCK (1997).

2.1.3. Ciclos termodinâmicos de cogeração termoelétrica

Os principais ciclos termodinâmicos hoje utilizados para cogeração de energia elétrica e calor são:

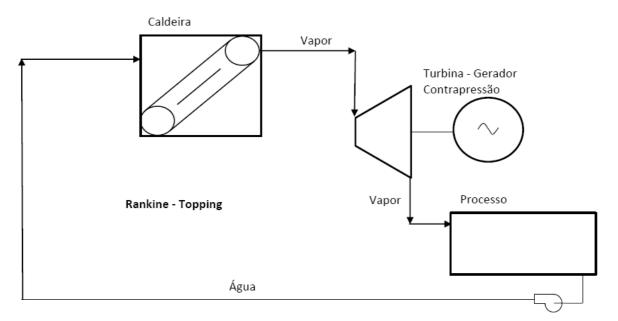
- Ciclo Rankine ciclo de vapor muito comumente utilizado na cogeração a partir da biomassa como bagaço de cana na indústria de açúcar e álcool, licor negro na indústria de papel e celulose, entre outras;
- Ciclo Brayton ciclo de gás predominante na cogeração a partir do gás natural ou outros combustíveis fósseis gasosos (gás de coqueria, gás de refinaria, etc.);


- Ciclo Combinado combinação do ciclo brayton ou diesel com o ciclo de vapor através de caldeiras de recuperação de calor dos gases de combustão na saída da turbina a gás ou motor de combustão, gerando vapor para turbinas e para o processo industrial;
- Ciclo Diesel predominante em sistemas de energia isolados e embarcações, no qual o calor para processo não chega a ser fornecido em forma de vapor, mas sim água quente.

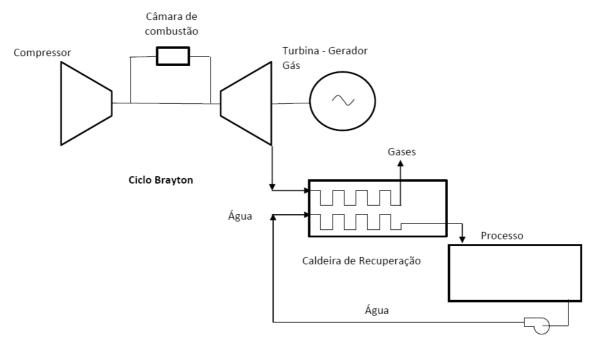
No que diz respeito ao ciclo de cogeração, o mesmo pode ser realizado em duas configurações diferentes:

- Ciclo Jusante ou Bottoming nesta configuração, o vapor de saída da caldeira (alta pressão) passa primeiramente pelo processo industrial para depois passar pela turbina de condensação. Desta maneira, a geração de trabalho está na base do ciclo do vapor;
- Ciclo Montante ou Topping nesta configuração, o vapor de saída da caldeira passa primeiramente pela turbina de contrapressão para depois ser encaminhado ao processo industrial. Desta maneira, a geração de trabalho está no topo do ciclo do vapor;

Na indústria em geral pode-se ver aplicações do ciclo Rankine nas duas configurações, mas a utilização predominante é no ciclo Topping em virtude de seu melhor rendimento em relação ao outro. A utilização de calor de processo na indústria em geral pode ser feita através do vapor a baixa pressão, que pode ser obtido após a passagem pela turbina de contrapressão. As Figuras 2.3 até 2.7 mostram os diagramas básicos de cada ciclo térmico aplicado à cogeração. Ressalta-se ainda que a utilização de determinado ciclo térmico e de cogeração em uma planta industrial não é uma escolha livre, mas depende do combustível, da disponibilidade de água e das exigências do processo industrial, que geralmente precedem a geração de excedente de eletricidade.


No ciclo Rankine Jusante ou Bottoming, mostrado na Figura 2.3, a caldeira aquece a água transformando-a em vapor. O vapor passa pelo processo industrial cedendo calor a este, e é então direcionado a um turbo gerador de condensação, gerando energia elétrica. Após passar pelo condensador, a água condensada é bombeada para retorno à caldeira.

Fonte: Elaboração própria com base em COGEN-EU (2001).


Figura 2.3 – Ciclo de Cogeração Rankine Jusante ou Bottoming

No ciclo Rankine Montante ou Topping, mostrado na Figura 2.4, a caldeira aquece a água transformando-a em vapor. O vapor passa por um turbo gerador de contrapressão, gerando energia elétrica. Após passar pelo turbo gerador, o vapor é enviado para o processo industrial cedendo calor a este. Após condensada, a água é bombeada para retorno à caldeira.

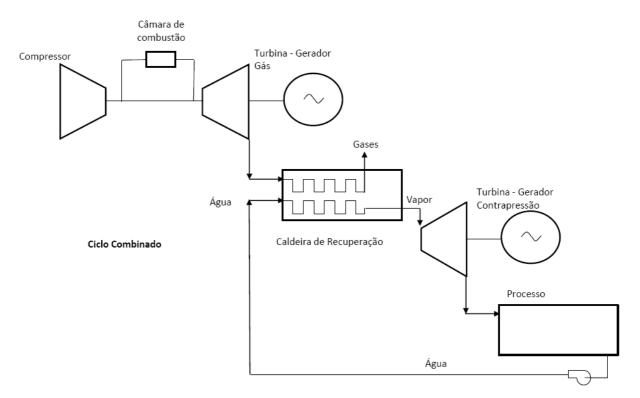

Fonte: Elaboração própria com base em BALESTIERI (2002).

Figura 2.4 – Ciclo de Cogeração Rankine Montante ou Topping

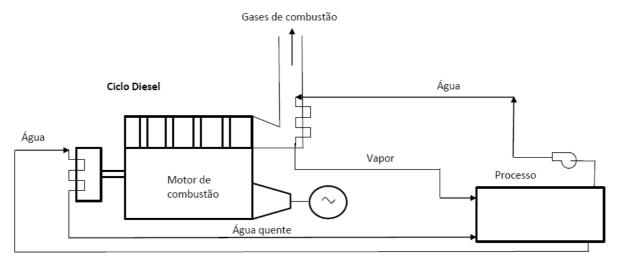

Fonte: Elaboração própria com base em BALESTIERI (2002).

Figura 2.5 - Ciclo de Cogeração Brayton

Fonte: Elaboração própria com base em BALESTIERI (2002).

Figura 2.6 - Ciclo de Cogeração Combinado

Fonte: Elaboração própria com base em BALESTIERI (2002).

Figura 2.7 – Ciclo de Cogeração Diesel

No ciclo Brayton, mostrado na Figura 2.5, o combustível é queimado na câmara de combustão da turbina a gás. Os gases de combustão movimentam o turbo gerador, gerando eletricidade. São então direcionados para uma caldeira de recuperação, na qual a água de alimentação é convertida em vapor para o processo industrial cedendo calor a este. Após condensada, a água é bombeada para retorno à caldeira.

No ciclo Combinado, mostrado na Figura 2.6, há uma repetição das etapas do ciclo Brayton. No entanto, após ser gerado na caldeira de recuperação, o vapor passa por um turbo gerador de contrapressão gerando eletricidade, para então ser direcionado ao processo industrial cedendo calor a este. Após condensada, a água é bombeada para retorno à caldeira.

No ciclo Diesel, mostrado na Figura 2.7, o combustível é queimado em um motor de combustão interna, movimentando um gerador elétrico e gerando eletricidade. Os gases de combustão trocam calor com água gerando vapor que é direcionado para o processo industrial. Após condensada, a água é bombeada para retorno ao sistema. Pode também ser feito algum aproveitamento de calor através da água de arrefecimento do motor diesel, nos casos em que água quente tem utilidade no processo industrial.

2.1.4. Principais equipamentos e sistemas de uma central de cogeração a biomassa

Os principais equipamentos que compõem os sistemas de cogeração a biomassa são aqueles que, utilizando um combustível, produzem energia térmica em forma de gases de combustão ou vapor, para mover um motor ou uma turbina. A máquina rotativa acoplada ao eixo de um gerador elétrico produz eletricidade, e outros equipamentos produzem energia térmica (calor e frio) a partir do reaproveitamento do vapor/gases. Relacionam-se abaixo os equipamentos mais importantes utilizados na cogeração a biomassa:

- Caldeiras de biomassa, também chamadas de geradores de vapor;
- Turbinas a vapor de condensação, após as quais o vapor é diretamente condensado para retorno à caldeira;
- Turbinas a vapor de contrapressão, após as quais o vapor de escape pode ser ainda aproveitado para troca de calor;
- Turbinas a vapor com extração, nas quais há uma extração de vapor a uma pressão intermediária para uso específico. São muito comuns em usinas de açúcar e álcool. Nelas o vapor da extração é direcionado para a turbobomba de água de alimentação da caldeira ou para turbinas que movimentam as moendas de cana:
- Condensadores de vapor;
- Estações de bombeamento de água e condensado;
- Estação de tratamento e desmineralização de água;
- Equipamentos e sistemas de proteção e distribuição de eletricidade;
- Equipamentos e sistemas de controle de geração de energia e de controle industrial.

Com o desenvolvimento tecnológico associado à hidrólise enzimática¹ de biomassa ou à gaseificação² da mesma, outros equipamentos poderão começar a

¹ Processo através do qual se quebram as moléculas de celulose da fibra vegetal em açúcares passíveis de fermentação, aplicado com a finalidade de produzir mais etanol.

² Processo através do qual a biomassa no estado sólido é gaseificada, permitindo sua utilização em duas rotas: formação do gás de síntese para sintetizar polímeros ou queima em turbinas a gás para melhor aproveitamento do energético para fins de eletricidade e calor.

ser utilizados nas centrais de cogeração a biomassa, principalmente aqueles associados aos ciclos de cogeração Brayton, ou Combinado.

Neste caso, somam-se aos anteriores, os equipamentos listados abaixo:

- Turbinas a gás natural;
- Caldeiras de recuperação e trocadores de calor;
- Motores a combustão (ciclo Otto ou Diesel);
- Sistemas de chillers de absorção, que utilizam calor (vapor ou água quente) para produção de frio (ar condicionado).

2.1.5. Parâmetros para análise de projetos de cogeração

Ao se estudar uma aplicação de cogeração termoelétrica, alguns aspectos são comuns a qualquer projeto e devem ser respondidos previamente a qualquer avanço, a saber:

- A finalidade da central;
- O combustível disponível;
- A demanda de eletricidade a ser atendida;
- A demanda de calor a ser atendida;
- A precedência de produção entre calor e eletricidade;
- As tecnologias disponíveis;
- As opções de configuração.

Uma vez definida a finalidade e as condições de contorno acima citadas, procede-se às análises técnicas para obtenção das melhores configurações técnicas possíveis para o ciclo de cogeração desejado.

Não se dispensa posteriormente uma análise de viabilidade técnico econômica, a qual é mais positiva quanto maior for o ganho obtido por unidade de energia entregue. Esta análise deve levar em conta custos de investimento, custos de operação e manutenção, custos de combustível, taxa de retorno do investimento, custos associados à interconexão e utilização do sistema elétrico (transmissão e/ou distribuição), impactos sociais, ambientais e econômicos da atividade, entre outros menos relevantes.

BALESTIERI (2002) sugere que os níveis de restrição dos projetos de cogeração evoluam das restrições técnicas (mais simples), passando pelas restrições econômicas (intermediárias) e chegando às restrições legais (mais complexas – institucionais e ambientais). Traduzindo em outras palavras, para que se possam desenvolver livremente as opções técnicas decorrentes das combinações tecnológicas disponíveis, recomenda-se que a análise técnica preceda às análises de ordem econômica e legal.

2.1.6. Escolha da formulação para o trabalho proposto

HORLOCK (1997) apresenta argumentos a respeito de eficiência global de ciclos de cogeração os quais sugerem que o Fator de Utilização de Energia (FUE) não é a forma mais satisfatória para o cálculo da eficiência energética global de ciclos de cogeração.

O primeiro deles diz respeito à diferença de custo por unidade de energia na comparação entre eletricidade e calor, sendo a primeira mais cara. Esta diferença reside no fato de que para maximizar a eletricidade obtida a partir dos ciclos termodinâmicos atualmente disponíveis, usualmente trabalha-se com a elevação da temperatura da fonte de calor. Isto leva a investimentos muito mais intensivos quando a finalidade é a obtenção de eletricidade. Enquanto isso, as demandas por calor para consumidores residenciais ou industriais estão associadas a temperaturas muito menores, com investimentos substancialmente menores. Desta maneira, a forma de se avaliar a eficiência global de ciclos de cogeração deveria levar em conta esta diferença técnica que resulta no custo final dos produtos da cogeração, o que não ocorre na formulação do FUE.

Outro argumento é o de que o FUE não leva em consideração as irreversibilidades do ciclo termodinâmico no qual é calculado. Isto é demonstrado tanto no ciclo ideal de Carnot quanto nos ciclos reais que levam em conta todas as entropias geradas.

Decorrente destes argumentos, outras formulações são então propostas, e seguem citadas abaixo:

- EUF_{VW} Fator de utilização de energia ponderado em custos. Nesta formulação, cada fator da formulação original é multiplicado pelo seu custo por unidade energética produzida;
- η_a Eficiência térmica artificial. Esta formulação considera apenas a eficiência térmica da razão entre trabalho e energia da fonte, mas subtrai da energia da fonte a parcela da energia que seria necessária para a produção de calor em separado do ciclo de cogeração.
- FESR Taxa de economia de energia do combustível. Esta formulação propõe que a eficiência do ciclo de cogeração seja a razão entre a energia utilizada da fonte para a produção de eletricidade e calor na cogeração; e a energia da fonte utilizada para a produção das mesmas quantidades de eletricidade e calor cada uma em separado da cogeração.
- IHR Taxa de calor incremental. Esta formulação com algumas simplificações resulta no inverso da eficiência artificial já descrita.
- RC Critério Racional por disponibilidade. Esta formulação propõe que do FUE seja subtraída a irreversibilidade associada ao calor fornecido entre a temperatura de contrapressão e a da fonte de baixa temperatura. Em outras palavras, poderia ser entendido como sendo a razão entre a energia requerida da fonte no processo reversível e aquela requerida da mesma fonte no processo real, considerando as irreversibilidades.

Admite-se que estas outras formulações que levam em consideração os conceitos de diferença de custos, disponibilidade e irreversibilidade são importantes quando se pretende em um sistema de cogeração maximizar a entrega de energia em forma de trabalho ou ainda quando se pretende normalizar toda a energia gerada em função do máximo trabalho que poderia ser obtido. No entanto, destacase que em uma central de cogeração o objetivo não é maximizar a entrega de trabalho, mas sim a entrega conjunta de calor e trabalho, em geral a uma taxa mínima pré-definida.

Particularmente ao estudar uma metodologia para gestão da eficiência energética global em centrais de cogeração a biomassa, verificou-se que todas as centrais deste tipo operam em ciclo Montante, ou Rankine Topping. Somado a isso,

na maioria dos casos a central de cogeração termelétrica foi implementada como conseqüência do projeto da planta industrial de açúcar, álcool, papel, arroz, entre outras. Assim sendo, o calor consumido nestas centrais demonstra ter papel preponderante em relação ao trabalho, pensado o objetivo final da planta. Além disso, não há nos setores industriais envolvidos com cogeração a biomassa uma demanda pela separação e comparação entre trabalho e calor. Ao contrário, há um interesse em somar ambos a fim de se mensurar o quanto o sistema completo está próximo do máximo aproveitamento energético.

Por isso, a formulação baseada no FUE é a escolhida para utilização na metodologia aqui proposta.

2.2. SISTEMAS DE GESTÃO VOLTADOS À ENGENHARIA

Sendo que o intuito deste trabalho é propor um modelo de gestão da eficiência energética em centrais de cogeração a biomassa, é importante verificar a existência de sistemas de gestão voltados à engenharia nos quais a metodologia aqui proposta possa se enquadrar. Este exercício visa validar as práticas aqui propostas e possibilita que as mesmas possam ser comparadas a práticas de gestão adotadas para outros setores em base semelhante.

Não são utilizados todos os sistemas abaixo descritos, mas sua descrição é necessária a fim de destacar as características de cada um e os motivos pelos quais cada ferramenta é utilizada ou descartada.

Após descrever os sistemas estudados e suas entidades mantenedoras, é feito um aprofundamento das práticas que melhor se enquadrem às necessidades do modelo de gestão da eficiência energética para usinas termoelétricas a biomassa.

2.2.1. A Engenharia de Sistemas

Conforme INCOSE (2004), a engenharia de sistemas surgiu nos Estados Unidos da América (EUA) ao final da década de 1950, com as corridas espacial e

armamentista do pós-guerra (2ª Guerra Mundial). Em 1991, foi criado o INCOSE – International Council on Systems Engineering, entidade sem fins lucrativos que tem como finalidade desenvolver e disseminar os princípios e práticas interdisciplinares que permitam a realização de sistemas eficazes.

Em INCOSE (2004), um sistema pode ser definido como o conjunto integrado de elementos que cumpre um objetivo definido. As fases para o desenvolvimento de um sistema são:

Fase 0 – Concepção e exploração

Fase 1 – Definição de programa e Redução de riscos

Fase 2 – Desenvolvimento de Engenharia e Manufatura

Fase 3 – Produção, Implantação de campo e Suporte Operacional

Foi verificado que tal metodologia, embora seja adequada para o acompanhamento de algum produto por todo seu ciclo de vida, está voltada essencialmente para o desenvolvimento e melhoria de produtos, ou seja dentro do ciclo produtivo, no domínio do fabricante.

2.2.2. Sistema de Avaliação de Projetos - PES®

Conforme IPA (2010), este sistema foi criado pela entidade denominada Independent Project Analysis – IPA, sediada nos Estados Unidos da América que conduz pesquisas sobre o funcionamento dos projetos de capital e sistemas, e aplica os resultados de suas pesquisas para aperfeiçoar a competitividade de seus clientes através da racionalização e uso efetivo do capital em seus negócios.

Dentro de seus princípios operacionais, todos relacionados à sustentabilidade, destaca: comprometimento com a excelência do produto, estabilidade de emprego e responsabilidade social e ética para com os clientes e com a sociedade.

O IPA atua em muitos segmentos da indústria. Sua atuação em projetos nestes mercados se dá através de uma plataforma estatística desenvolvida pelo próprio instituto, denominada Project Evaluation System - PES ®. O princípio básico desta metodologia é o de que os dados de saída de projetos correlatos podem ser previstos a medida em que se pode compreender as relações históricas entre os

dados de entrada dos projetos, como características, tecnologia, práticas de gerenciamento, etc., e os dados de saída. Desta maneira, trata-se de um método confiável para se obter: *benchmarking* competitivo, assessoramento contínuo de projetos e avaliação de projetos individuais via o histórico de projetos correlatos.

O detalhamento da aplicação do método PES®, por exemplo em projetos de energia, envolve análises detalhadas ao longo de toda a vida útil de um projeto ou sistema, subdividida em cinco etapas básicas:

FEL1 – Etapa de execução do plano de negócio (*business plan*), no qual se pretende ter uma noção básica da viabilidade e do custo de uma oportunidade de negócio detectada, sua precisão varia de menos 25% a mais 40%.

FEL2 – Etapa de análise das alternativas de atendimento à oportunidade de negócio, ao final da qual apenas uma é escolhida para desenvolvimento. Para esta alternativa, resultarão: escopo, engenharia básica, seleção do local, fluxogramas básicos de engenharia, estimativa de custo -30% / +40%.

FEL3 – Etapa de aprofundamento do estudo de escopo, prazo e custo da alternativa escolhida. Resultam: projeto básico, fluxogramas de processo, plano de compras, detalhamento do escopo de trabalho, cronograma com caminho crítico, estimativa de custo -10% / +20%.

Execução – Etapa de execução da engenharia detalhada, compras e montagem, que se estende até o final da construção e montagem e termina antes da partida.

Operação – Etapa de operação da planta, na qual as métricas e dados de saída serão coletadas a fim de proporcionar a análise da eficiência do processo e alimentar o banco de dados de projetos do método PES®.

Verifica-se que o método acima tem outra forma de abordagem no que tange ao gerenciamento das etapas de implementação de projetos, tanto voltados a produtos como a sistemas, no entanto fortemente orientada ao lucro do cliente, que na maioria dos casos é o empreendedor, proprietário da planta.

2.2.3. Corpo de Conhecimento do Gerenciamento de Projetos - PMBoK®

O sistema de gestão denominado PMBoK®, foi criado pela entidade denominada PMI - Project Management Institute (seu nome é mantido sem a tradução nos países em que atua), instituição fundada em 1969, nos Estados Unidos da America, que tem como meta principal:

"avançar na prática, na ciência e na profissão de gerenciamento de projetos em todo o mundo, de uma maneira consciente e pró-ativa, para que as organizações em todos os lugares apóiem, valorizem e utilizem o gerenciamento de projetos – e então atribuam seus sucessos a ele" (PMI,2010).

Este instituto nasceu da percepção de que a humanidade ao longo da história planeja e executa projetos de todos os tamanhos. Percebeu-se então que as técnicas de controle de custos, criação de prazos, aquisição de recursos, gerenciamento de riscos, entre outras práticas, são comuns a muitos projetos independente de seu porte. Este conjunto de práticas, denominado gerenciamento de projetos, somente foi reconhecido como profissão após a segunda guerra mundial.

Um projeto é definido segundo o PMI conforme abaixo:

"Um projeto é um esforço temporário empreendido para criar um produto, serviço ou resultado exclusivo." (PMI, 2004).

Define ainda o gerenciamento de projetos conforme abaixo:

"O gerenciamento de projetos é a aplicação de conhecimento, habilidades, ferramentas e técnicas às atividades do projeto a fim de atender aos seus requisitos. O gerenciamento de projetos é realizado através da aplicação e da integração dos seguintes processos de gerenciamento de projetos: iniciação, planejamento, execução, monitoramento e controle, e encerramento." (PMI, 2004)

As áreas de conhecimento utilizadas para o gerenciamento de projetos segundo a metodologia descrita no PMBoK® são:

- Gerenciamento de Integração;
- Gerenciamento de Escopo;
- Gerenciamento de Tempo;
- Gerenciamento de Custos;
- Gerenciamento de Qualidade:
- Gerenciamento de Recursos Humanos;
- Gerenciamento de Comunicação;
- Gerenciamento de Riscos;
- Gerenciamento de Aquisições.

Verifica-se que os conceitos e a metodologia descritos são fortemente orientados a projetos e ao seu gerenciamento, com uma definição muito clara de aplicação a projetos com início e fim.

2.2.4. Breve conclusão sobre os sistemas já apresentados

Diante das informações acima expostas, foi verificado que a contribuição principal destes institutos e suas práticas é no controle dos processos técnicos e econômicos que envolvem um projeto e/ou implantação de um empreendimento, com foco no produto final, em um ciclo com início, meio e fim, que culmina com a entrega do produto ou serviço ao cliente. No entanto, para que se possa estabelecer um sistema de gestão contínua da eficiência energética, tomou-se a decisão pela busca de processos que trouxessem, além do ciclo de implementação, os ciclos de controle e melhoria contínua intrínsecos ao conceito. Desta maneira, detalha-se a seguir o modelo de Planejamento para a Qualidade Total, baseado no histórico e conceitos da qualidade e da forma como esta é entendida pela sociedade atual.

2.2.5. Sistemas de Gestão da qualidade

Qualidade é um termo utilizado na sociedade há milhares de anos. No entanto, é difícil identificar conceitos universais para este termo. JURAN (1991) define a qualidade como sendo:

[...] 1. A qualidade consiste nas características do produto que vão ao encontro das necessidades dos clientes e dessa forma proporcionam a satisfação em relação ao produto. 2. A qualidade é a ausência de falhas.

Mesmo que de forma indireta, o conceito de qualidade sempre foi um dos vetores do desenvolvimento tecnológico dos produtos e serviços associados à eletricidade. Materiais e equipamentos elétricos são verificados e testados ao final da produção. Serviços de eletricidade são medidos e têm parâmetros de atendimento e qualidade definidos. Processos de produção são padronizados e

certificados. Também os produtos seriados são certificados sob as mais variadas condições de metrologia a fim de garantir sua qualidade e segurança.

Ao estudar a qualidade em todas as suas dimensões: conceitos e filosofia, componentes básicos, ciclos de projeto, construção, inspeção e testes, marketing, assistência técnica e estatísticas; JURAN (1991) definiu três processos que formam os alicerces da gestão da qualidade aplicável a qualquer produto ou serviço:

- Planejamento da qualidade;
- Controle da Qualidade;
- Melhoramento da Qualidade.

Os três processos acima formam a Trilogia Juran®, na qual a gerência da qualidade é executada a partir do estabelecimento de metas de qualidade orientadas ao produto e à satisfação do cliente, controle destas metas através de análises de desempenho e comparação com as metas estabelecidas e por fim melhoria da qualidade através da identificação das melhorias, definição da infra-estrutura necessária e implementação das melhorias pela equipe envolvida. Os processos podem ser aplicados a qualquer objetivo, desde uma pequena parte do processo produtivo de um produto até o processo produtivo inteiro. Em todos esses processos, a medição tem papel fundamental. Desde o planejamento, passando pelo controle e chegando ao ciclo de aperfeiçoamento, a criação de métricas adequadas para avaliar a eficiência dos processos e do produto é fundamental. Pode-se dizer que, se em cada um dos processos a medição for ineficaz, possivelmente não se chegará ao processo seguinte em condições de evoluir.

A partir do momento em que se consegue estruturar os três processos principais para determinado objetivo ou produto de forma estável e com bom controle estatístico, é possível estabelecer um conjunto de práticas concatenadas cujo controle retroalimenta o processo produtivo, formando um ciclo de aperfeiçoamento da qualidade.

JURAN (1991) remonta à origem dos ciclos de aperfeiçoamento desenvolvidos no Japão, em 1950. Naquela época, verificou-se que as etapas de administração de um processo de produção: especificar, produzir e inspecionar, eram análogas às etapas do método científico para se adquirir conhecimento: formular hipóteses, experimentar e testar hipóteses. Os estágios foram então rotulados pelos japoneses como "planejar-executar-verificar-agir". Em virtude da

tradução para o idioma inglês, tais ciclos são hoje conhecidos mundialmente como ciclos PDCA (plan-do-check-act).

Um roteiro para o planejamento da qualidade é definido conforme a Figura 2.8. Ressalta-se a importância de dois termos que formam a base deste processo: planejar e medir. Embora o diagrama original apresente particularidades do processo de criação e produção, o mesmo pode ser aplicado a qualquer processo dentro de uma organização, mesmo que não associado à fabricação de algum item.

Atualmente, um grande número de empresas no mundo todo, sejam fabricantes de produtos ou prestadoras de serviços, certificam seus produtos e serviços para a qualidade através dos processos e ciclos descritos acima. Tal prática traz para os clientes destes produtos e serviços a segurança a respeito da qualidade, alinha a realização e a expectativa em torno do que estão adquirindo.

Entidades mundialmente conhecidas, como ISO, Veritas Bureau, ABS Quality, entre muitas outras, especializaram-se em analisar, planejar, implementar, controlar e propor melhorias aos mais variados processos para toda e qualquer empresa que queira certificar seus produtos, serviços ou processos produtivos. Com o crescente interesse da sociedade a respeito dos temas meio ambiente e sustentabilidade, há hoje certificações também para estes campos de interesse das empresas.

Pensando a energia elétrica, e também a energia em outras formas, como térmica, química, etc., como um produto o qual a sociedade consome e do qual depende, certamente pode-se concluir que a aplicação de processos de aperfeiçoamento da qualidade para energia é uma exigência social que beneficia o cidadão comum, as empresas de distribuição, transmissão, geração, os agentes legais e toda a sociedade. Não se fala aqui apenas da qualidade do sinal de energia enquanto tensão e corrente elétrica, mas da qualidade na transformação de outras formas de energia em eletricidade, dado a eletricidade não ser uma fonte primária de energia. A gestão de eficiência energética no Brasil já é uma realidade à medida em que se observa os desdobramentos de programas como o PROCEL, que está descrito adiante, como por exemplo a decisão de escolha de um eletrodoméstico pelo seu consumo energético por parte do consumidor.

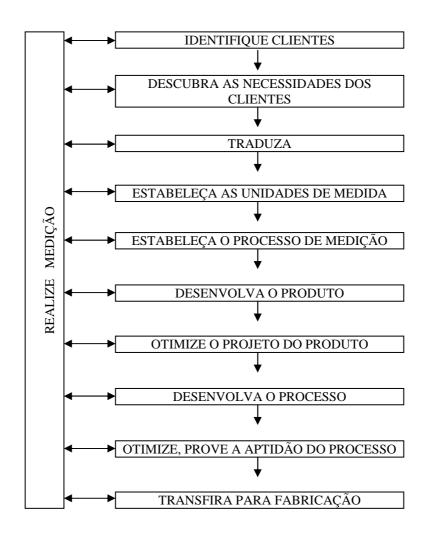
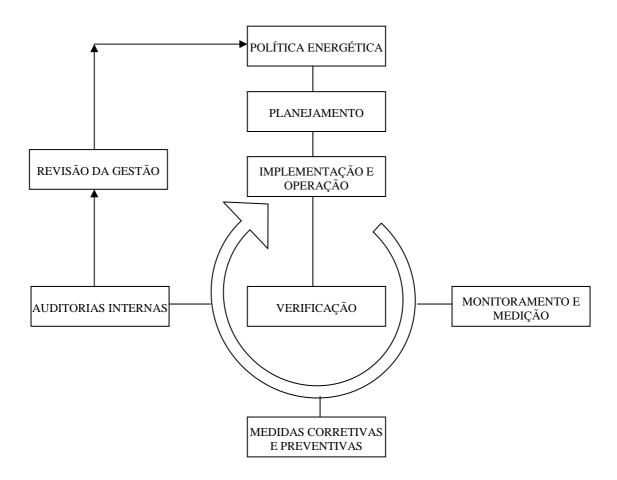


Figura 2.8 – Roteiro para o Planejamento da Qualidade. Fonte: JURAN (1991)

Durante a elaboração deste trabalho, foi verificada a existência de um grupo de estudo do instituto ISO – *International Organization for Standardization,* empenhado na elaboração de uma nova norma. Tal norma está em fase de verificação final prévia à publicação e tem como objetivo estabelecer requisitos que sirvam de guia para o estabelecimento de um sistema de gestão de energia em qualquer empresa, voltado para a melhoria da eficiência energética, uso, consumo ou intensidade energética, conforme ISO (2010).

A ISO/DIS 50001 está baseada no ciclo de melhoria contínua conhecido mundialmente como PDCA (*Plan-Do-Check-Act*), que indica a sequência: planejar, fazer, verificar e agir como apropriada para a implementação de melhorias contínuas em qualquer processo. Cada passo da sequência está relacionado à gestão energética da seguinte forma:


- Planejar estabelecer objetivos e processos necessários para entregar resultados de acordo com as oportunidades de melhoria da eficiência energética e com as políticas da empresa;
- Fazer implementar os processos;
- Verificar monitorar e medir os processos e produtos contra as políticas, objetivos e características chave da operação, e reportar seus resultados;
- Agir implementar as ações de melhoria contínua da eficiência energética.

Os requisitos para se estabelecer um sistema de gestão de energia estão brevemente descritos na ISO/DIS50001 conforme segue:

- Requisitos gerais;
- Atribuição de responsabilidades;
- Política energética;
- Planejamento energético;
- Implementação e operação;
- Verificação da eficiência;
- Revisão do plano de gestão.

O modelo proposto na norma para aplicação do conceito do ciclo PDCA para gestão energética está representado na Figura 2.9. A norma não descreve procedimentos para que se coloque em prática tais requisitos. Sua função é a de estabelecer as regras mínimas às quais qualquer organização deve seguir para implementar um sistema de gestão da eficiência energética reconhecido internacionalmente.

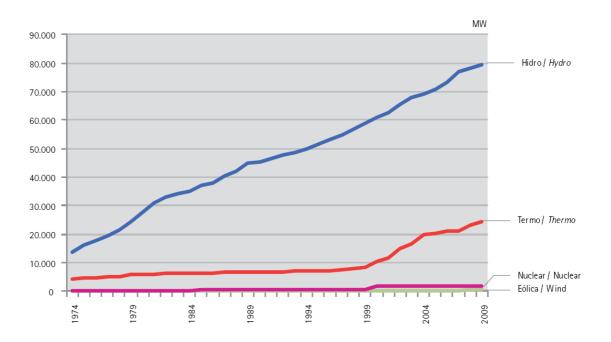
Contudo, verifica-se um alinhamento e complementaridade entre a proposição da norma e o trabalho aqui desenvolvido, pois a presente proposta é justamente o desenvolvimento de uma metodologia para estabelecimento de um sistema de gestão da eficiência energética em centrais de cogeração a biomassa, entendendo esta eficiência como sendo a da transformação energética da fonte em eletricidade e calor úteis.

Fonte: ISO (2010).

Figura 2.9 – Modelo de gestão energética da ISO/DIS 50001.

3. PANORAMA DA COGERAÇÃO E EFICIÊNCIA ENERGÉTICA NO BRASIL E NO EXTERIOR

3.1. COGERAÇÃO NO SETOR ELÉTRICO BRASILEIRO

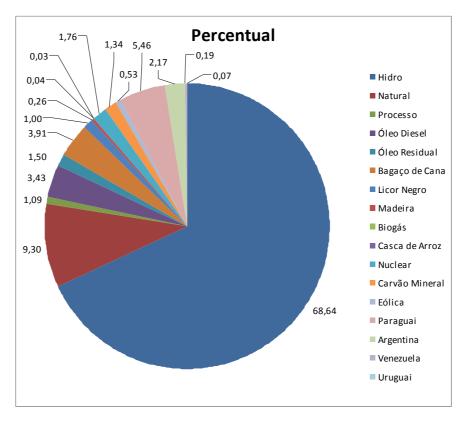

3.1.1. Panorama da cogeração do setor elétrico

O Setor Elétrico Brasileiro está em constante transformação a fim de atender ao crescimento populacional e econômico do país. E as mudanças incrementais deste setor variam em virtude das características da geografia, política e economia em cada período do tempo. A geração elétrica no Brasil teve seu último grande impulso nas décadas de 60, 70 e 80, com a construção de diversas usinas hidrelétricas, aproveitando as características de relevo e hidrografia do país. Na década de 90, o país experimentou a diminuição do crédito que lhe permitia fazer os investimentos vultuosos necessários à expansão hidrelétrica. Além disso, empreendimentos hidrelétricos passaram a enfrentar maior resistência ambiental e social em função da área alagada e conseqüentes impactos. Desta maneira, tiveram espaço para crescimento outras formas de geração de eletricidade com participação tímida na matriz elétrica até então.

Como conseqüência desta realidade à época, diversas iniciativas e fatos vêm transformando a matriz elétrica nacional. A Reestruturação do Setor Elétrico Brasileiro (RESEB) trouxe em 1997 um novo marco regulatório para o setor, prevendo uma massiva participação de capital privado, com a sistemática de expansão do sistema fortemente orientada ao preço de mercado da energia elétrica. A dificuldade em se conseguir que a energia firme acompanhasse a crescente demanda ano após ano e a grande oferta de gás natural proveniente da Bolívia motivaram o Programa Prioritário de Termoelétricas (PPT) em 1999, o qual previa uma grande injeção de energia termoelétrica no sistema a fim de reequilibrar o déficit que se anunciava. Outras formas de incentivo, como a qualificação de centrais cogeradoras de energia termoelétrica e calor de processo, iniciada em 2000, também foram lançadas. Mas dificuldades regulatórias e de mercado impediram que

o programa e demais iniciativas tivesse a eficácia anunciada em tão curto prazo. Toda esta conjuntura, agravada pelos baixos índices pluviométricos que ocorreram de 1999 a 2001, culminou com o racionamento de energia elétrica vivido a partir daquele ano.

Com grande esforço da sociedade, que não teve outra alternativa a não ser reduzir compulsoriamente o consumo de energia em todos os setores, o período de racionamento foi superado e sua ocorrência motivou uma nova transformação no setor. O Programa de incentivo a fontes alternativas renováveis de energia, denominado PROINFA, foi lançado em 2002. O novo marco regulatório para o setor elétrico lançado em 2004 abandonou o planejamento indicativo, instituiu a comercialização centralizada da energia elétrica e a modicidade tarifária como alguns de seus mais importantes alicerces. Nos anos subseqüentes, com a adoção de outras ações estruturais de menos vulto, o crescimento da oferta de geração elétrica no país estabilizou-se novamente, mas em uma nova condição, na qual a geração termoelétrica passava a ter papel mais relevante do que anteriormente.



Fonte: BRASIL (2011) - MME - BEN 2010

Figura 3.1 – Evolução da capacidade instalada (MW) de energia elétrica por fonte de 1973 a 2009.

A Figura 3.1 mostra a evolução da capacidade instalada de energia elétrica por fonte de 1973 a 2009, conforme dados do Balanço Energético Nacional –

BEN2010. Em concordância com o que já foi descrito, nota-se a partir de 1999 uma mudança significativa na inclinação da curva de evolução da capacidade instalada de energia termoelétrica, que inclui as movidas por combustíveis fósseis e também renováveis. Nos últimos 10 anos, de 1999 a 2009, houve um aumento aproximado de 10 para 25 GW na capacidade instalada em termoelétricas, o que confirma as dificuldades vividas naquele período para inclusão de geração hidrelétrica para atender a crescente demanda.

Fonte: BRASIL (2010) - ANEEL - BIG

Figura 3.2 – Capacidade Instalada de Energia Elétrica por fonte em 2010.

A Figura 3.2 mostra o percentual de capacidade instalada do sistema por fonte de energia em 2010. Observe-se que a energia termoelétrica proveniente de biomassa renovável soma por volta de 5% da capacidade instalada. Esta soma inclui bagaço de cana, licor negro, madeira biogás e casca de arroz. No entanto, é representada principalmente pelo bagaço de cana e licor negro. A capacidade instalada termoelétrica proveniente de combustíveis fósseis como gás natural, derivados de petróleo e carvão mineral soma por volta de 16,6%. Portanto, a capacidade instalada em termoelétricas soma hoje perto de 23% do total, o que

demonstra o movimento ocorrido ao final da década de 90 já relatado. Conforme informações do Banco de Informações de Geração da ANEEL, cruzando informações de geração termoelétrica e cogeração qualificada conforme a lei, tem-se o quadro mostrado na Tabela 3.1.

Tabela 3.1 –Usinas Termoelétricas e Cogeração Qualificada no Brasil em 2010

Tipo de Combustível	Combustível	Setor predominante	Quant.	Cap. Instalada (kW)	Qualificadas como Cogeração	Cap. Cogeração Qualif. (kW)
Biomassa	Bagaço de Cana de Açucar	Açúcar e álcool	292	4.761.315	19	889.460
	Biogás	Resíduos	10	44.672	0	0
	Carvão Vegetal	Siderurgia - GUSA	4	25.200	0	0
	Casca de arroz	Arroz	7	31.408	0	0
	Licor Negro	Papel e Celulose	14	1.193.298	1	126.600
	Resíduos de madeira	Papel e Celulose	35	302.567	0	0
Fóssil	Carvão Mineral	Energia / Alumínio	9	1.530.304	1	75.200
	Gás de Refinaria	Óleo e Gás	8	305.000	0	0
	Gás Natural	Energia / Indústria geral	94	10.864.018	43	391.218
	Óleo Combustível	Energia / Indústria geral	26	1.903.403	1	0
	Óleo Diesel	Energia / Indústria / Comércio	806	3.877.081	7	13.336
	Óleo Ultraviscoso	Energia	1	131.000	0	0
Outros	Efluente gasoso	Siderurgia / Qúimica	2	211.320	0	0
	Enxofre	Química (Fertilizantes)	5	56.688	1	23.000
	Gás de alto forno	Siderurgia	12	182.965	1	0
	Gás de processo	Química (Fertilizantes)	5	138.420	1	0
	Gás siderúrgico	Siderurgia	1	278.200	0	0
TOTAL			1331	25.836.858	75	1.518.814

FONTE: BRASIL (2010) - ANEEL - BIG

Verifica-se que o montante de cogeração qualificada representa uma parcela muito pequena dentro do total de geração termoelétrica. No entanto, cabem algumas

considerações importantes a respeito deste cenário. Olhando com mais detalhes sobre a parcela da geração termoelétrica a biomassa, verifica-se que, embora haja um número muito baixo de usinas termoelétricas qualificadas como cogeração, na prática grande parte destas plantas opera no regime de cogeração. Particularmente nos setores de Açúcar e Álcool e de Papel e Celulose, pode-se afirmar que 100% das plantas operam em regime de cogeração de energia elétrica e calor, em ciclo Rankine. Em virtude do processo industrial das mesmas e da forma como estas obtém energia elétrica, todas são, na prática, centrais de cogeração termoelétrica. Isto, em primeiro momento, denota o desinteresse ou dificuldade dos agentes geradores aqui estudados, em obter a qualificação de centrais de cogeração. Além disso, como se verá adiante, impede a supervisão dos padrões operativos destes agentes em detalhes, principalmente no que diz respeito ao aproveitamento energético dos combustíveis para geração de energia elétrica e calor.

Em um cenário no qual a cogeração é incentivada como forma mais eficiente de geração elétrica, e principalmente no qual a geração termoelétrica a partir de combustíveis renováveis é também incentivada em detrimento da geração a partir de combustíveis fósseis, é importante acompanhar com mais detalhes a cogeração a biomassa e seus potenciais de contribuição no aumento da oferta de energia elétrica e também na redução das perdas relacionadas às transformações energéticas a ela intrínsecas.

No atual panorama do setor de açúcar e álcool, muitas usinas não exportam excedentes de energia, mas operam somente como autoprodutores, com concessões e equipamentos antigos. Mesmo dentre aquelas que receberam outorga recente, em muitas delas decidiu-se por não fazer os investimentos vultuosos em troca de caldeiras de última geração para maximizar exportação de excedentes de energia. Tal situação denota um potencial reprimido de crescimento desta forma de geração, pois nestas usinas há excedente de bagaço de cana. Além disso, há ainda estudos que apontam para maiores ganhos energéticos, tanto em energia elétrica como na produção de açúcar e álcool, com a utilização de outras tecnologias como hidrólise enzimática ou gaseificação do bagaço de cana.

No setor de papel e celulose, a geração termoelétrica a vapor em ciclo Rankine a partir do licor negro é amplamente utilizada. Por serem plantas com consumo intensivo de energia elétrica, a busca pela autossuficiência em energia elétrica sempre existiu, sendo que hoje está muito próxima de ser atingida.

Conforme Análise Energia (2009) o ganho de eficiência energética em uma planta de papel e celulose chegou a 25% desde 1990 até hoje, alavancado pelo maior uso de resíduos de biomassa do processo produtivo. No entanto, já existem estudos apontando para a mudança de tecnologia para a gaseificação do licor negro ou lixívia e concomitante implementação de Ciclo Combinado (Brayton + Rankine) de termogeração, o que elevaria ainda mais a eficiência energética da conversão termoelétrica nestas plantas.

3.1.2. Legislação sobre cogeração do setor elétrico

Até há poucos anos atrás, a cogeração era praticada apenas pelo setor industrial com a finalidade de autoprodução. No entanto, em decorrência das transformações pelas quais tem passado o setor elétrico nas últimas décadas, dentre elas a incapacidade de manter os investimentos necessários à geração centralizada e a tendência de diversificação das fontes de energia elétrica, esta visão tem mudado bastante.

A partir da promulgação da Lei Federal nº 9.074, de 07/07/1995, a comercialização de excedentes de energia foi liberada e foi criada a figura do Produtor Independente de Energia (PIE). Desde então, com a criação da Agência Nacional de Energia Elétrica (ANEEL) através da Lei Federal nº9.427, de 26/12/1996, novas resoluções tem regulamentado esta participação e aumentado os incentivos à conexão de cogeradores ao sistema elétrico. Tal participação, além de permitida tem sido incentivada principalmente após as transformações recentes do setor elétrico. Um exemplo deste incentivo foi a publicação da Portaria nº314, de 24/08/2000, posteriormente revogada e substituída pela de nº 551, de 6 de dezembro de 2000, incluindo as usinas termoelétricas de cogeração que entrassem em operação comercial até 31 de dezembro de 2003, no PPT (2000). Foi também definido que os projetos de cogeração de então deveriam passar por uma qualificação com requisitos e critérios já definidos em resoluções anteriores.

A Resolução Normativa ANEEL nº 21, de 20 de janeiro de 2000, posteriormente revogada e substituída por BRASIL (2006), a Resolução Normativa nº235, de 14 de novembro de 2006, estabeleceu requisitos para qualificação de

centrais termoelétricas cogeradoras, tendo descrito as definições dos principais termos relacionados à cogeração e transcritos abaixo:

- I. Cogeração: processo operado numa instalação específica para fins da produção combinada das utilidades calor e energia mecânica, esta geralmente convertida total ou parcialmente em energia elétrica, a partir da energia disponibilizada por uma fonte primária, observando que:
- a) a instalação específica denomina-se central termoelétrica cogeradora, cujo ambiente não se confunde com o processo ao qual está conectada, sendo que, excepcionalmente e a pedido do interessado, a cogeração poderá alcançar a fonte e as utilidades no processo, além das utilidades produzidas pela central termoelétrica cogeradora a que está conectado, condicionando aquelas à exeqüibilidade de sua completa identificação, medição e fiscalização, a critério exclusivo da ANEEL; e
- b) a obtenção da utilidade eletromecânica ocorre entre a fonte e a transformação para obtenção da utilidade calor;
- II. Cogeração qualificada: atributo concedido a cogeradores que atendem os requisitos definidos nesta Resolução, segundo aspectos de racionalidade energética, para fins de participação nas políticas de incentivo à cogeração;
- III. Energia da fonte (Ef): energia recebida pela central termoelétrica cogeradora, no seu regime operativo médio, em kWh/h, com base no conteúdo energético específico, que no caso dos combustíveis é o Poder Calorífico Inferior (PCI);
- IV. Energia da utilidade eletromecânica (Ee): energia cedida pela central termoelétrica cogeradora, no seu regime operativo médio, em kWh/h, em termos líquidos, ou seja, descontando da energia bruta gerada o consumo em serviços auxiliares elétricos da central;
- V. Energia da utilidade calor (Et): energia cedida pela central termoelétrica cogeradora, no seu regime operativo médio, em kWh/h, em termos líquidos, ou seja, descontando das energias brutas entregues ao processo as energias de baixo potencial térmico que retornam à central;

- VI. Eficiência Energética: índice que demonstra o quanto da energia da fonte foi convertida em utilidade eletromecânica e utilidade calor;
- VII. Eficiência Exergética: índice que demonstra o quanto da energia da fonte foi convertida em utilidades equivalentes à eletromecânica;
- VIII. Fator de cogeração (Fc %): parâmetro definido em função da potência instalada e da fonte da central termoelétrica cogeradora, o qual aproxima-se do conceito de Eficiência Exergética; e
 - IX. Fator de ponderação (X): parâmetro adimensional definido em função da potência instalada e da fonte da central termoelétrica cogeradora, obtido da relação entre a eficiência de referência da utilidade calor e da eletromecânica, em processos de conversão para obtenção em separado destas utilidades.

Na mesma resolução, são ainda definidos os critérios para se qualificar uma central de cogeração termoelétrica, baseados principalmente na eficiência global do processo e na relação entre eletricidade e calor obtidos em cada caso analisado. Para se enquadrar como cogeração qualificada, uma central deve obedecer às Equações 3.1 e 3.2

$$\frac{E_t}{E_f} \ge 15\% \tag{3.1}$$

$$\left(\frac{E_{t}}{E_{f}}\right) \div X + \frac{E_{e}}{E_{f}} \ge Fc\% \tag{3.2}$$

Fazendo uma analogia entre este equacionamento e a equação 2.2, do FUE, pode-se notar duas características importantes. A primeira é que a soma da segunda equação tem um denominador comum Ef que representa a energia F da fonte. Os numeradores Et e Ee por sua vez representam respectivamente W e Qu daquela equação. No entanto, a segunda característica é que a energia do calor entra na soma dividida pelo fator de ponderação X. Isto remete às formulações que sugerem uma diferenciação de custo ou relevância entre o trabalho e o calor, já discutidos anteriormente.

Tabela 3.2 – Fatores de ponderação e de capacidade para cada tipo de fonte / potência instalada.

Fonte/potência elétrica instalada	Х	Fc%
Derivados de Petróleo, Gás Natural e Carvão:		
Até 5 MW	2,14	41
Acima de 5 MW e até 20 MW	2,13	44
Acima de 20 MW	2,00	50
Demais combustíveis:		
Até 5 MW	2,50	32
Acima de 5 MW e até 20 MW	2,14	37
Acima de 20 MW	1,88	42
Calor recuperado de processo:		
Até 5 MW	2,60	25
Acima de 5 MW e até 20 MW	2,17	30
Acima de 20 MW	1,86	35

Fonte: BRASIL (2006) - ANEEL

3.2. COGERAÇÃO NOS ESTADOS UNIDOS

Nos Estados Unidos, a maior parte da geração elétrica, e por conseqüência das centrais de cogeração, é movida por combustíveis fósseis. A regulação americana sobre cogeração tem destaque recente após a publicação do ato regulatório denominado PURPA (Public Utilities Regulatory Policy Act) em 1978. Este ato definiu as normas regulatórias a serem seguidas pelas companhias de distribuição de energia, lá denominadas *utilities*. O ato denominado EPA 2005 (Energy Policy Act), publicado no ano de 2005 define incentivos para microcogeração e determina regras para compra e venda mandatória a partir de centrais de cogeração. O ato denominado EISA 2007 (Energy Independence and Security Act) considera cogeração oficialmente como prática de eficiência energética. Mas um dos principais avanços em relação à legislação americana correlaciona cogeração e eficiência energética. Foram publicadas no código

regulatório federal americano, conforme USA (2011) as diretrizes para qualificação de centrais de cogeração, que podem ser resumidas em duas regras, muito parecidas com aquelas definidas na legislação brasileira. A primeira define em 15% a mínima participação do calor na energia total entregue pela central A segunda define a eficiência mínima para ciclos de cogeração *topping* operando com gás natural ou óleo, traduzida na Equação 3.3 abaixo.

$$\frac{NEO}{FHI} + \frac{NTO}{FHI} \div 2 \ge 42,5\% \tag{3.2}$$

Onde:

NEO - Saída de Eletricidade

NTO - Saída de Calor

FHI – Entrada de Combustível

É interessante também aqui notar a semelhança com as formulações do FUE e a brasileira. Aqui também se nota a adoção de um fator de ponderação para a parcela da energia em forma de calor do ciclo de cogeração. No caso da legislação americana o fator foi fixado em 2. De fato, a legislação brasileira, muito posterior à americana, traz um aperfeiçoamento do fator fixado em 2, com o fator de ponderação específico para cada fonte e faixa de potência da central.

No entanto, conforme U. S. Energy Information Administration (2011), ao final de 2009 a cogeração representava 6,5% da geração de eletricidade nos Estados Unidos. Em um país no qual a participação termoelétrica na matriz de geração de eletricidade é expressiva, e no qual as condições climáticas criam a necessidade de se prover aquecimento de ambiente para a população, esta participação parece ser ainda tímida frente a seu potencial. Acima de 70% da capacidade de geração nos Estados Unidos está baseada nas plantas de gás natural e carvão. No entanto, conforme mostra o relatório o aumento da eficiência global através da implantação de cogeração neste tipo de geração denota ser um desafio ainda não alcançado.

3.3. COGERAÇÃO NA UNIÃO EUROPÉIA

Na Europa, as políticas públicas recentes a respeito de cogeração remetem à diretiva que consta em COMISSÃO EUROPÉIA (2004) e seus desdobramentos. Este documento foi publicado com o intuito de promover a cogeração. Lá estão estabelecidas regras para classificar centrais de cogeração, calcular eficiências e economias de energia associadas.

A fim de subsidiar os requisitos desta diretiva, foi emitida então uma decisão do conselho, cujo intuito é esclarecer a forma e os passos a serem dados para o cálculo da eficiência da central de cogeração. Tal decisão pode ser vista em COMISSÃO EUROPÉIA (2008). Verifica-se que o ponto de partida para a verificação da eficiência de uma central de cogeração é a eficiência global, que em termos práticos, representa naquele documento, o FUE.

A partir da verificação da eficiência global e da relação trabalho-calor, chegase ao cálculo da Equação 3.3. Tal equação define a regra para qualificação de centrais de "alta eficiência", conforme definido naquele documento.

$$PES = (1 - \frac{1}{\frac{CHPH\eta}{REFH\eta} + \frac{CHPE\eta}{REFE\eta}}) \times 100\%$$
 (3.3)

Onde:

PES – Economia de energia

CHP Hn – Eficiência térmica da cogeração

Ref Hη – Eficiência térmica de referência para produção em separado de calor

CHP En – Eficiência elétrica da cogeração

Ref Eη – Eficiência elétrica de referência para produção em separado de eletricidade

Tal parâmetro aproxima-se da formulação do FESR, já apresentada neste trabalho. Desta maneira, a legislação européia apresenta maior complexidade,

cruzando informações resultantes do cálculo de três parâmetros: FUE, RTC e FESR, valorizando ciclos de alta eficiência. Para diferenciar cogerações comuns daquelas com alta eficiência, o parâmetro escolhido é a economia de combustível entre a adoção de cogeração e a produção em separado de eletricidade e calor.

Um outro documento da Comissão Européia, o COM(2006)545 final, denominado plano de ação para eficiência energética traz a média de eficiência energética das centrais termoelétricas naquela ocasião, destacando o grande potencial de melhoria ainda não utilizado. O documento indica que, à época de sua emissão, apenas 13% da eletricidade na Europa era proveniente de centrais de cogeração. Mas até onde se pôde observar, também na Europa o pacote de incentivos parece não ter o êxito esperado ao longo dos anos. Conforme documento resposta da COGEN Europe (2009), a associação de cogeração européia, as ações determinadas no plano de 2006 não foram tomadas e o plano da Comissão Européia de duplicar a geração de eletricidade a partir da cogeração até 2020 parece estar mais longe de ser atingido.

3.4. EFICIÊNCIA ENERGÉTICA NO BRASIL

3.4.1. Histórico e legislação

A eficiência energética no Brasil tem como seu maior ícone o PROCEL – Programa Nacional de Conservação de Energia Elétrica. Este programa foi criado em 1985 no âmbito dos ministérios de Minas e Energia e da Indústria e Comércio, tendo sido transformado em Programa de Governo em 1991, tendo a partir de então ampliado sua abrangência.

O PROCEL tem como objetivo:

"promover a racionalização da produção e do consumo de energia elétrica, para que se elimine os desperdícios e se reduzam os custos e os investimentos setoriais" (PROCEL,2009).

Dentro deste objetivo, os principais campos de atuação do programa são: redução das perdas das concessionárias, racionalização do uso da energia elétrica e eficiência energética em aparelhos elétricos.

À medida que o tema eficiência energética se tornou mais e mais relevante, surgiram entidades voltadas ao fomento de pesquisa e desenvolvimento voltados para eficiência energética, como o INEE — Instituto Nacional de Eficiência Energética, fundado em 1992 com o intuito de promover a transformação e uso final eficientes de energia, ou ainda o EXCEN — Centro de Excelência em Eficiência Energética, vinculado à UNIFEI, que foi criado como evolução do Grupo de Estudos Energéticos iniciado em 1984 naquela universidade. Surgiram também muitas empresas voltadas para as oportunidades de mercado decorrentes das exigências legais de aplicação compulsória em pesquisa, desenvolvimento e projetos de eficiência energética. Hoje existe um mercado consolidado de eficiência energética no qual atuam os agentes do setor elétrico, empresas de eficiência energética comumente conhecidas como ESCOs, sigla proveniente do termo em inglês "energy saving company", universidades e centros de pesquisa provedores de serviços nesta área.

Com a reestruturação do setor elétrico brasileiro (RESEB) ocorrida em 1997 e com a subseqüente privatização das empresas do setor nas áreas de geração e distribuição de energia elétrica, ficou estabelecido que os contratos de concessão que vigorariam a partir de então tornariam obrigatório o investimento em programas de eficiência energética, conforme estabelecido em BRASIL (2000) na Lei nº 9.991, de 24 de julho de 2000. Esta lei estabeleceu montantes para o investimento compulsório dos agentes do setor, geradores, transmissores e distribuidores, e estabeleceu as diretrizes para distribuição e aplicação dos recursos. Tal lei, quando criada, tinha a intenção de funcionar como mecanismo temporário de fomento ao investimento em pesquisa e desenvolvimento para eficiência energética. No entanto, foi depois prorrogada a iniciativa de tal modo que ainda hoje existe o incentivo à destinação de lucro das empresas do setor para projetos de eficiência energética, pesquisa e desenvolvimento nesta área.

Pouco mais de um ano depois, foi outorgada a Lei de Eficiência Energética nº10.295, de 17 de outubro de 2001, que dispõe sobre a política nacional de conservação e uso racional de energia.

Verifica-se que muitos esforços até agora têm-se voltado principalmente para a conservação de energia em seus usos finais, o que não é incorreto. No entanto, cabe fazer a seguinte reflexão: tendo a geração termoelétrica rendimento considerado baixo na transformação da energia térmica para energia mecânica e consequentemente para eletricidade, o investimento também em P&D ou projetos na área da geração de energia elétrica atuando diretamente sobre os processos termodinâmicos das usinas termoelétricas é uma alternativa com grande potencial de contribuição para aumentar a eficiência energética neste tipo de geração.

Esta preocupação não é uma novidade. NOGUEIRA (2005) aborda todos os conceitos do uso industrial de vapor, desde sua geração, a queima dos combustíveis, os tipos de caldeiras, a alimentação de água, medição e controle dos parâmetros pertinentes, a distribuição de vapor, operação de sistemas de vapor, eficiência e medidas de economia em sistemas de vapor, meio ambiente e economia. Verifica-se portanto um reconhecimento do potencial de ganho energético nesta área das aplicações industriais associada à geração de vapor e a seus usos, dentre os quais a geração de eletricidade e a troca de calor nos processos industriais.

3.4.2. O INMETRO

Criado em 1973, o INMETRO é o Instituto Nacional de Metrologia, Normalização e Qualidade Industrial. Sua missão é "prover confiança à sociedade brasileira nas medições e nos produtos, através da metrologia e da avaliação da conformidade, promovendo a harmonização das relações de consumo, a inovação e a competitividade do País" (INMETRO, 2010).

Ao longo de sua existência, o INMETRO desenvolveu e oferece serviços relacionados a:

- Metrologia científica e industrial;
- Metrologia legal;
- Qualidade e avaliação de conformidade;
- Acreditação.

Dentre os projetos desenvolvidos pelo Inmetro, destaca-se o Programa Brasileiro de Etiquetagem, projeto iniciado em 1984 que introduziu na sociedade a discussão a respeito da eficiência energética dos produtos por ela consumidos. O projeto ganhou grande relevância com a adesão dos parceiros: Eletrobrás, com o Programa Nacional de Conservação de Energia Elétrica – PROCEL, e Petrobras, através do Programa Nacional da Racionalização do Uso dos Derivados do Petróleo e do Gás Natural – CONPET.

Mas como já descrito, tais programas desde sua concepção sempre foram voltados para equipamentos e sistemas consumidores de energia elétrica em virtude da relevância e alcance do tema eficiência energética na sociedade de consumo em que vivemos. É notória a crescente participação da sociedade nas questões relativas, não somente ao que cada cidadão consome particularmente, mas também ao que o país consome em recursos energéticos, como estes recursos são transformados, quais são os resíduos e emissões provenientes da forma como tais recursos são consumidos. Desta maneira, faz-se necessário desenvolver processos de avaliação, acompanhamento e melhoria contínua também no âmbito das transformações dos recursos energéticos em sua trajetória desde a exploração, transformação até que seus subprodutos cheguem ao consumo pela sociedade. Sob este ponto de vista, outra importante iniciativa decorrente das atividades do INMETRO é a formação da RBC – Rede Brasileira de Calibração. Trata-se de uma lista de laboratórios de calibração acreditados pelo INMETRO para prestação de serviços de calibração de instrumentos de leitura e medição, cujos relatórios têm validade legal para fins de certificação dos instrumentos. A calibração e certificação dos instrumentos utilizados na medição em centrais de cogeração é abordada adiante como importante passo para uma futura certificação de um processo de gestão de eficiência energética submetido conforme os requisitos da ISO/DIS 50001.

3.5. EFICIÊNCIA ENERGÉTICA NO MUNDO

Assim como no Brasil, também no mundo o assunto eficiência energética ganhou relevância e trouxe consigo o desenvolvimento de legislação, agentes e um mercado específico em diversos países ou blocos econômicos.

As ações governamentais de eficiência energética nos Estados Unidos são concentradas no Department of Energy (DOE). As ações governamentais de eficiência energética na Comunidade Européia como um todo são concentradas na European Commission (EC).

A estrutura da legislação brasileira a respeito de eficiência energética tem algumas figuras em comum com as estruturas das legislações dos Estados Unidos e da Europa. No entanto, há diferenças em relação aos limites de responsabilidades dos agentes do setor. Destacam-se: a figura governamental que define a regulação, a figura das companhias distribuidoras que têm obrigações de melhoria contínua da eficiência por estarem mais próximas dos usos finais e a figura dos programas de etiquetagem que funcionam como a publicação do compromisso com a eficiência energética nos produtos em que se aplicam. Além destas, destaca-se também a figura das entidades não governamentais, como as exemplificadas abaixo:

- American Council for an Energy-efficient Economy;
- World Business Council for Sustainable Development WBCSD;
- International Energy Agency IEA;
- Energy Valuation Organization EVO.

A participação das entidades não-governamentais é importante no processo de melhoria e evolução da eficiência energética na sociedade. Pode-se encontrar em IEA (2007), uma importante publicação que mapeia todas as lacunas no processo de melhoria da eficiência energética nos setores, comercial, residencial e de usos finais nos diversos países membros desta organização, que inclui os Estados Unidos, Europa, Oceania e Japão. No entanto, a exemplo desta publicação, a grande maioria de trabalhos associados a este tema tem foco nos usos finais, não apresentando políticas claras de gestão para melhoria contínua da eficiência energética nas centrais de geração de eletricidade. Admite-se, porém, que as perdas energéticas associadas à geração de eletricidade são significativas, e têm maior peso em países cuja matriz de energia elétrica está fortemente apoiada na geração termoelétrica.

Diante de todo este panorama da cogeração, que tem cada vez maior incentivo entre as formas de geração termoelétrica, e da eficiência energética, que já tem um histórico sólido de aplicação, mas possui ainda grandes potenciais de melhoria, reforça-se a importância de se ter sistemas de gestão continuada da eficiência energética voltada para centrais de cogeração. Estas constatações

formam também, portanto, a base sobre a qual a metodologia proposta neste trabalho está descrita adiante.

4. REVISÃO BIBLIOGRÁFICA

Em virtude da grande relevância dos temas eficiência energética, geração termoelétrica, cogeração e energias renováveis, muitos trabalhos têm sido publicados, tanto no meio acadêmico como em outras instituições associadas a estes temas. Os trabalhos aqui relacionados não compõem a totalidade de pesquisas associadas ao tema em estudo. No entanto, são aqueles onde foi encontrada maior afinidade ou complementaridade com o tema deste trabalho. Não foram listados trabalhos anteriores a 2000, pois verificou-se que muitos deles traziam informações e paradigmas já superados em função da consolidação do modelo de planejamento energético ocorrida na última década. Isto ocorreu especialmente com os trabalhos voltados a pesquisas setoriais.

Foram também encontrados alguns trabalhos internacionais correlacionando os temas, cogeração, biomassa e eficiência energética. No entanto, não foram encontrados trabalhos relacionando gestão continuada da eficiência energética em cogerações a biomassa.

Notou-se maior existência de trabalhos relacionando cogeração a combustíveis fósseis com cogeração a biomassa, voltados à redução do impacto ambiental decorrente da queima de combustíveis fósseis.

4.1.1. Trabalhos setoriais sobre cogeração a biomassa

Foram verificados alguns trabalhos internacionais a respeito do atendimento à demanda de energia elétrica e calor com cogeração a biomassa.

SMOUSE et al. (1998) realiza um estudo detalhado do potencial de cogeração a biomassa na Índia a partir da indústria de açúcar daquele país. São mostrados: o panorama de consumo de eletricidade para os 25 anos subseqüentes, o potencial de cogeração a partir do bagaço de cana, dados estatísticos do setor, potenciais de melhoria na profissionalçização dos trabalhadores do setor e outros benefícios do investimento na cogeração nesta indústria.

CARDONA e PIACENTINO (2004) realizam uma análise crítica a respeito das iniciativas da União Européia (UE) para promoção da cogeração como forma de geração eficiente. O artigo analisa em detalhes as formulações utilizadas pela EU para qualificação de centrais eficientes e indica pontos de melhoria na legislação a fim de facilitar ou garantir o sucesso das políticas públicas de incentivo ora colocadas.

Alguns dos trabalhos nacionais aqui citados justificam-se pela conjuntura na qual foram desenvolvidos e são datados da fase de estudos que cercou a implementação do PROINFA, na qual havia uma série de incertezas a respeito do peso que as fontes alternativas teriam na matriz energética brasileira a partir daquele momento. Havia também incertezas a respeito do potencial de energia disponível de cada fonte alternativa.

SOUZA (2003) apresenta um trabalho de investigação de entraves estruturais e custos de transação de venda de energia elétrica excedente em usinas de açúcar e álcool, em um momento no qual a comercialização de excedentes de energia elétrica destas usinas era ainda incipiente e pouco significativa no sistema. Hoje, após importantes fatos como os leilões de biomassa de 2007 e de reserva de 2008, verifica-se cada vez mais a consolidação desta forma de geração no setor elétrico nacional.

PAULA(2004) apresenta um mapeamento de todo o potencial de cogeração conhecido até então e propõe um plano de inserção incentivada, a fim de acelerar a inclusão de uma oferta de energia elétrica lá registrada como sendo superior a 5GW até então mapeados. Descreve ainda que cada projeto de cogeração deve ser avaliado sob os quesitos:

- Racionalidade Energética;
- Custo evitado com a geração distribuída;
- Diferenciação em função da fonte (renovável, resíduos).

Dentre os quesitos apresentados acima, a contribuição à geração distribuída merece destaque. A Geração Distribuída (GD) tem como regra o atendimento à demanda de EE de determinado cliente ou centro consumidor junto ao mesmo, através de um centro de geração de baixa potência.

HENRIQUES (2009) apresenta um estudo do potencial de geração de eletricidade no Brasil a partir de resíduos da biomassa utilizando o processo de gaseificação. O estudo abrangeu todas as opções de combustíveis da biomassa no

Brasil, desde o bagaço de cana até a casca de arroz e resíduos sólidos urbanos (RSU). Os resultados mostram potencial de geração de até 143,56 TWh/ano. Dentre as configurações de UTEs, não havia centrais de cogeração.

4.1.2. Trabalhos setoriais sobre eficiência energética

Buscou-se também verificar dentre os trabalhos existentes a respeito de eficiência energética, se havia um ou mais que abordasse a eficiência energética da geração de eletricidade, ou a gestão da eficiência energética na geração. Não foram encontrados trabalhos correlacionando os temas acima, mas sim alguns trabalhos cuja abordagem sobre eficiência energética atende a outras necessidades regulatórias que podem beneficiar a metodologia aqui proposta.

GARCIA (2008) apresenta uma proposta de estruturação para leilões de eficiência energética no Brasil, a fim de possibilitar que haja um ambiente de contratação regulado para a redução de demanda decorrente de investimentos em eficiência energética, assim como há hoje para oferta de energia nova. É descrito o histórico do tema eficiência energética no Brasil e descrita uma proposta de estruturação, com estudo mais detalhado de opções com base nos potenciais de ganho significativos em alguns usos finais. O tema é abordado com foco na demanda e usos finais, o que torna o presente trabalho com grande potencial de complementaridade àquele, pois o sistema de gestão de eficiência energética em usinas termoelétricas pode servir de base de dados para aplicação do modelo de leilão de eficiência energética também no setor da geração e não somente no de usos finais.

ALVES (2007) apresenta um importante trabalho de tipificação das políticas de incentivo à eficiência energética no mundo e no Brasil. No entanto, ressalta-se que, tendo visitado a legislação de diversos países em todos os continentes, a grande maioria das leis e regulamentações trata de incentivo à melhoria da eficiência energética nos usos finais de eletricidade. Incluem-se, de fato, incentivos à geração distribuída, no entanto ainda de forma incipiente nos países mais desenvolvidos e com maiores restrições ao aumento da oferta de energia nos meios tradicionais, seja qual for a fonte energética.

Em complementação aos trabalhos acima mencionados, é importante citar o interessante trabalho desenvolvido por LEPETITGALAND (2007), no qual é proposta a utilização da técnica denominada BSC – *Balanced Scorecard* (termo mantido sem tradução no jargão do mercado) para aquisição de métricas de desempenho na busca de atendimento das metas de eficiência energética do programa PROCEL Info. Tal trabalho evidencia a crescente utilização de sistemas que meçam o desempenho de programas de eficiência energética a fim de trazer melhoria contínua e de não deixar que o tema eficiência energética seja negligenciado, especialmente em momentos nos quais a conjuntura é de oferta de energia elétrica a baixo custo, cuja ocorrência é até certo ponto comum no Brasil a longo prazo, como por exemplo nos meses e anos subseqüentes à entrada em operação de grandes usinas hidrelétricas, como Itaipu no passado e as usinas do complexo do Rio Madeira em futuro próximo.

Em um trabalho internacional, DIXON et al. (2010) apresenta um estudo sobre a legislação americana a respeito de eficiência energética citando desafios e oportunidades. São analisados os setores de: transportes, industrial, construções residenciais e comerciais e o setor de geração de energia elétrica.

4.1.3. Trabalhos de análise sobre centrais de cogeração a bagaço de cana

Os trabalhos aqui citados apresentam estudos nos quais se abordou a otimização da eficiência energética em usinas de açúcar e álcool, nas quais a fonte de energia é o bagaço de cana. Como já visto anteriormente, tal fonte energética é a mais representativa hoje dentre as provenientes da biomassa no cenário nacional. Existe uma complementaridade entre estes trabalhos e a metodologia aqui proposta. Tais trabalhos propõem otimizações em partes dos processos termodinâmicos de geração e uso do calor. Mas após a implementação, entende-se que devam ser verificados seus impactos na eficiência global ou no consumo de eletricidade e calor gerados pela central de cogeração, quase sempre contígua à planta de produção de açúcar e álcool. Além disso, embora sejam detectados potenciais de melhoria e

propostas soluções de otimização, suas proposições são pontuais. Não sugerem o acompanhamento para melhoria contínua.

PAZIAN (2004) desenvolve uma metodologia para análise do potencial de cogeração de energia elétrica em usina de açúcar e álcool. O estudo sugere que se utilize a ferramenta a cada safra tendo como base as características da fibra da cana colhida, que dará origem ao bagaço alimentado nas caldeiras.

ENSINAS (2008) apresenta um trabalho muito interessante de integração térmica e otimização termoeconômica aplicadas ao processo industrial de produção de açúcar e etanol a partir da cana de açúcar. Utilizando os conceitos de exergia e balanço de exergia, são calculados os fluxos e perdas de exergia de todo o ciclo produtivo de açúcar e álcool, a fim de detectar as diferenças de eficiência entre cada configuração estudada, utilizando-se ainda de diferentes índices de desempenho de ciclos de cogeração: Fator de Utilização de Energia (FUE), Eficiência artificial (η_{art}), Relação Trabalho-Calor (RTC) e Eficiência Exergética (η_{ex}). Os índices lá apresentados assemelham-se àqueles apresentados por HORLOCK (1997).

Outro interessante trabalho é o de PELLEGRINI (2009), no qual também é feita uma análise e otimização termo-econômica-ambiental baseada em plantas de produção combinada de açúcar, álcool e eletricidade. São encontradas importantes informações a respeito da análise exergética contraposta à eficiência energética tradicional, apontando-se as maiores perdas e conseqüentes potenciais de ganho energético em plantas de cogeração a biomassa. Importantes conclusões a respeito da aplicação de novas tecnologias de cogeração são apresentadas, apontando para as melhores configurações de cogeração utilizando-se ciclos com vapor supercrítico e sistemas de gaseificação de biomassa associados à termogeração com ciclo combinado (BIG-CC). O trabalho demonstra o grande potencial de melhoria associado às cogerações movidas a bagaço de cana.

Corroborando para o cenário de grande potencial de aumento do aproveitamento energético da biomassa, NETO (2009) apresenta um estudo de integração das tecnologias mais modernas de conversão da cana de açúcar em etanol e energia elétrica: plataforma termoquímica (gaseificação) e plataforma bioquímica (hidrólise enzimática da celulose), demonstrando os ganhos em eficiência energética e expondo as barreiras tecnológicas e de mercado ainda presentes.

KAMATE e GANGAVATI (2009) apresentam uma análise exergética em plantas de cogeração na indústria de açúcar na Índia. O trabalho analisa as eficiências parciais e a eficiência global de uma planta típica daquele país, e demonstra que a menor eficiência exergética está na caldeira, enquanto a maior está no turbogerador.

O potencial de geração da biomassa através de outras tecnologias ou outros ciclos termodinâmicos tem sido estudado também no ambiente governamental. Em BRASIL (2007) é também abordada a gaseificação de biomassa como sendo a tecnologia da próxima geração nas cogerações do setor de açúcar e álcool.

4.1.4. Trabalhos de análise sobre centrais de cogeração a licor negro

Conhecendo os ciclos termodinâmicos e centrais de cogeração presentes em plantas de papel e celulose, verifica-se que os mesmos são muito similares àqueles do mercado de açúcar e álcool. Desta maneira, entende-se que a metodologia aqui proposta pode ser aplicada a este mercado com poucas adaptações, que em geral tem maior caráter quantitativo e pouca alteração qualitativa. Embora a fonte licor negro seja líquida, a configuração do ciclo termodinâmico predominante na cogeração a partir desta é muito similar ao do bagaço de cana.

A respeito de geração a biomassa no mercado de papel e celulose, GALLEGO (2004) apresenta um estudo de modelagem e análise computacional de geração de potência utilizando gaseificação de licor negro, o principal insumo energético neste tipo de planta. A tecnologia de geração associada à gaseificação de combustíveis é em geral transferida para o ciclo combinado com turbinas a gás, caldeiras de recuperação e turbinas a vapor, trazendo maior eficiência na transformação de energia.

VELÁZQUEZ (2006) apresenta um trabalho sobre perspectivas de geração de excedentes de energia com a utilização de gaseificadores de licor negro associados a uma central de cogeração com ciclo combinado, tendo demonstrado o potencial de ganho energético.

FERREIRA (2008) apresenta uma interessante análise de sistemas de cogeração com gaseificação de licor negro utilizado como combustível da central de cogeração a ciclo combinado, aplicada a plantas de papel e celulose. Tal configuração tecnológica é uma forte tendência para a melhoria do aproveitamento energético deste resíduo desta indústria.

GOORTANI, MATEOS-ESPEJEL e PARIS (2010) trazem uma análise da integração de uma central de cogeração em uma planta de produção de polpa de celulose. O trabalho mostra os ganhos energéticos na implementação da central e faz uma análise de retorno do investimento, concluindo por sua viabilidade.

4.1.5. Trabalhos sobre cogeração com outras fontes da biomassa

Embora represente hoje uma parcela muito pequena da oferta de geração de energia elétrica, a utilização do biogás proveniente de resíduos sólidos urbanos (RSU) como insumo energético suscitou uma série de debates em torno deste assunto. Devido à relevância da questão de destinação e uso dos RSU como questão social e econômica das cidades brasileiras, foi verificado o teor dos trabalhos associados a este debate e analisados os potenciais de utilização não somente de biogás mas também destes resíduos na geração termoelétrica. Tais insumos, após uma separação adequada de materiais recicláveis, possuem características muito semelhantes às da biomassa vegetal em virtude da composição dos resíduos urbanos no Brasil. Isto faz com que se tenha já estudos de utilização do mesmo em centrais de cogeração com ciclo Rankine, similares às do setor de açúcar e álcool.

LOPES (2003) apresenta um estudo de gestão de RSU no município de São Carlos (SP). Lá são consideradas as disposições finais em lixões, muito utilizadas ainda, mas altamente nocivas ao meio ambiente; aterros sanitários, utilizadas em grandes cidades, muito adequadas ao menor impacto ambiental, mas com restrições de vida útil e espaço necessário, principalmente nas periferias de grandes capitais, e a incineração, considerada somente para eliminação de resíduos tóxicos e hospitalares com a finalidade de redução do impacto ambiental. Não é mencionada a utilização dos RSU como energético.

HENRIQUES (2004) apresenta um interessante estudo comparativo entre três alternativas de aproveitamento energético de RSU: gás de lixo (proveniente de aterros sanitários), digestão acelerada de RSU e incineração. Não são estudados casos práticos de instalações existentes nas três tecnologias, o que representa um entrave ao desenvolvimento de uma ou outra opções. No entanto, as vantagens e desvantagens de cada alternativa e as análises de sensibilidade considerando argumentos econômicos e ambientais trazem conclusões promissoras.

Em uma parceria do Governo do Estado de São Paulo com o Governo da Província da Baviera na Alemanha, foi desenvolvido um estudo de inserção de usinas de cogeração de energia termoelétrica utilizando-se de resíduos sólidos urbanos como combustíveis em caldeiras de grelha, muito similares àquelas utilizadas na cogeração a biomassa de cana no Brasil. Foi apresentado um relatório final comparativo do custo total do ciclo de vida entre um aterro sanitário e uma usina de incineração de RSU. O estudo conclui que, à medida em que se utiliza mais vapor proveniente da caldeira para comercialização com processo industrial adjacente, menores as tarifas do recolhimento de RSU para a administração pública. A conclusão é de que esta tecnologia ainda tem maior custo de ciclo de vida comparada à disposição em aterro sanitário, mas que se torna mais econômica quanto maior for a comercialização do calor excedente na cogeração.

Em complemento ao trabalho acima, foi desenvolvido artigo por PARO; CORNER e COELHO (2008) com um estudo comparativo entre aterros sanitários e usinas termoelétricas de incineração, com as vantagens e desvantagens nos aspectos técnicos e ambientais, a fim de melhor expor o tema às diversas instâncias afetadas pelas práticas propostas.

A verificação dos trabalhos acima leva a crer que o tema, além de ter potencial de mudança no cenário da cogeração no país, poderá ser uma opção à solução do problema socioeconômico da destinação final de resíduos sólidos urbanos no Brasil. No entanto, as bases regulatórias para sua implementação estão ainda em estágio muito primitivo. Até a conclusão deste trabalho, o Plano Nacional de Resíduos Sólidos do Ministério de Meio Ambiente ainda não havia sido concluído. Além disso, é ainda polêmica a destinação dos RSU para incineração e geração de EE, visto que o país necessita ainda dar muitos passos em direção à redução de RSU e sua reciclagem, sendo a incineração tida como alternativa mais agressiva ao

meio ambiente, principalmente em um momento de alta sensibilidade da sociedade quanto à emissão de gás carbônico na atmosfera.

NOVAES (2010) evidencia a necessidade de se apressar a tramitação no congresso da política nacional de resíduos sólidos, instrumento importante sem o qual uma destinação estruturada e inteligente dos RSU depende exclusivamente de iniciativas pontuais de governos municipais e estaduais ou da sociedade.

Em virtude dos argumentos acima expostos acerca da utilização energética dos RSU, tal forma de cogeração não é abordada daqui em diante neste trabalho.

A respeito da utilização de casca de arroz como biomassa para cogeração de energia elétrica e calor, entre outros trabalhos BARRIGA ÂNGULO (2002) apresenta um estudo propondo a gaseificação deste insumo em leito fluidizado a fim de se obter a máxima energia proveniente do mesmo.

No entanto, por representar um insumo cuja participação na matriz elétrica nacional é muito pequeno, abaixo de 0,5%, o estudo mais detalhado de seu potencial está desconsiderado neste trabalho.

4.1.6. Trabalhos sobre otimização de ciclos de geração ou cogeração

SI, THOMPSON e CALDER (2011) apresentam um estudo de otimização da eficiência energética em uma planta de aço, através do aproveitamento de calor perdido no processo siderúrgico. O aproveitamento proposto transforma o sistema em uma central de cogeração com ciclo jusante ou bottoming.

Os trabalhos pesquisados abaixo apresentam estudos de otimização de ciclos de geração ou cogeração, mas nem sempre a partir da biomassa. Todos foram desenvolvidos através de modelos computacionais, utilizando-se de ferramentas como o MATLAB®.

BORGERT (2003) apresenta uma análise exergoeconômica da otimização de ciclos termodinâmicos, quando a partir de um ciclo de geração Rankine, executa sua otimização incluindo o ciclo de absorção denominado ciclo Kalina, que utiliza troca de calor através da mistura água-amônia.

MELO (2004) apresenta um trabalho de simulação e otimização em plantas de microcogeração com a utilização de módulo de configuração de tarefas para a

tomada de decisão em demandas variáveis. O estudo relaciona geração distribuída com a demanda de calor residencial em um protótipo movido a gás natural.

PADILHA (2006) apresenta um estudo de otimização de um sistema de cogeração comparando métodos de gradiente, evolucionário e híbrido. O modelo é desenvolvido para uma aplicação com turbina a gás e geração de vapor através de caldeira de recuperação.

COSTA (2008) apresenta um estudo de otimização da lucratividade de plantas de cogeração através da proposição de uma modelagem intitulada PCLM – Planta de Cogeração de Lucro Máximo. O modelo aplicado no estudo utiliza o ciclo Brayton.

PIRES (2010) apresenta um estudo de otimização termoeconômica de sistemas de cogeração utilizando conceitos de exergia e compara a abordagem proposta de função de aproximação com a abordagem tradicional de função objetivo como base para o estudo de otimização.

BJAREBORN e AKERMAN (2010) apresentam um estudo comparativo entre uma central de gaseificação e cogeração em ciclo combinado a partir da biomassa e uma central de cogeração operando em ciclo Rankine.

4.1.7. Trabalhos sobre aplicação de ciclos de melhoria contínua na indústria

Foram encontrados muitos trabalhos a respeito de ciclos de melhoria contínua e particularmente sobre ciclo PDCA, mas muito poucos associados à indústria da geração de energia elétrica. Nenhum trabalho foi encontrado relacionando melhoria contínua na cogeração. Uma pequena amostra dos trabalhos procurados, que relaciona assuntos afins deste trabalho segue representada abaixo.

LABODOVA (2004) apresenta um estudo comparativo de implementação de sistemas integrados de gerenciamento contínuo entre a implementação incremental e a implementação através de uma abordagem de análise de risco. O trabalho conclui que a implementação de sistemas integrados de gestão com a análise de risco desde sua concepção traz melhores resultados na eficiência global do sistema.

CARVALHO (2009) apresenta uma proposta de agrupamento de indicadores para avaliação da efetividade do gerenciamento da segurança de usinas nucleares utilizando o conceito do ciclo PDCA. O trabalho analisa a evolução da efetividade do gerenciamento da segurança através do monitoramento dos parâmetros pertinentes para esta finalidade.

4.1.8. Breve conclusão da revisão bibliográfica

Os trabalhos apresentados nesta revisão bibliográfica não esgotam o grande número de trabalhos científicos que envolvem os temas de cogeração, eficiência energética e os muitos combustíveis da biomassa. Servem como um resumo do universo de trabalhos pesquisados relacionados aos temas.

O teor dos trabalhos é muito amplo e foi por isso dividido de forma resumida em: trabalhos de cunho setorial e trabalhos de aplicação tecnológica.

Nos trabalhos de cunho setorial, foram vistos desenvolvimentos de potencial e entraves ao desenvolvimento dos temas, por vezes correlacionando cogeração e eficiência. No entanto, não foram encontradas proposições de gestão continuada da cogeração como forma de busca da melhoria contínua.

Nos trabalhos de aplicação tecnológica, muitos modelos foram propostos e alguns deles testados em aplicações reais. Muitos dentre os trabalhos apresentam resultados de otimização da eficiência das centrais de geração ou cogeração, tanto na abordagem de eficiência energética como exergética. No entanto, nenhum deles apresenta uma proposição de acompanhamento contínuo através de uma sistemática de cálculo, medição, comparação e implantação de melhorias. Não foram encontrados trabalhos que envolvem ciclos de melhoria contínua, como o PDCA, associados à gestão de eficiência energética aplicada à indústria.

Em virtude das constatações acima, conclui-se que a proposição deste trabalho: uma metodologia para gestão de eficiência energética de centrais de cogeração a biomassa utilizando conceitos de ciclo PDCA da qualidade e melhoria contínua tem um caráter complementar aos trabalhos sobre os temas estudados. A aplicação de métodos de otimização, como aqueles dos trabalhos aqui citados ou mesmo outros, na busca da melhoria da eficiência de uma determinada central

podem no futuro inclusive fazer parte do ciclo PDCA que está descrito adiante, pois muitas ações de melhoria decorrentes do processo de verificação e comparação de indicadores necessitam de estudos e modelagens mais detalhados para permitir decisões de investimento seguras. Tais estudos aprofundados não são objeto deste trabalho, o que reforça a complementaridade aqui observada.

5. A METODOLOGIA

5.1.INTRODUÇÃO

Neste capítulo é feita a descrição da metodologia para gestão de eficiência energética de centrais de cogeração a biomassa. É demonstrado seu alinhamento com o sistema de gestão de qualidade. É feita a definição dos modelos de aplicação para centrais de cogeração a biomassa, detalhamento de equações para cálculo, detalhamento das grandezas físicas para enquadramento da central em uma categoria tecnológica, e finalmente detalhamento das premissas para medição e acompanhamento contínuo da eficiência energética global da central em que se aplica.

Verificou-se até aqui que os temas fundamentais deste trabalho: cogeração termoelétrica, eficiência energética e gestão de qualidade, são conhecidos e aplicados aos setores elétrico e industrial, mas de forma isolada ou ainda de forma parcialmente integrada. A contribuição que o presente trabalho propõe é justamente a de integrar estes temas a fim de possibilitar ao setor de geração termoelétrica a biomassa adquirir uma visão integrada de seu papel na sociedade, seu potencial de desenvolvimento e melhoria e suas limitações. Tal visão permitirá aos agentes deste setor estarem melhor preparados para os desafios contínuos que enfrentam nos segmentos: industrial, do qual fazem parte; e energético, do qual participam de forma cada vez mais comprometida.

Neste momento, é importante que sejam apresentadas as premissas e condições de contorno a fim de delimitar o escopo da metodologia a ser proposta adiante.

Foram apresentadas as formulações hoje disponíveis e mais relevantes para a determinação da eficiência energética global de centrais de cogeração. Pela característica do setor de cogeração a biomassa, representado de forma mais significativa pelo setor industrial de açúcar e álcool, a eletricidade e o calor utilizado no processo industrial têm graus de importância equivalentes, não podendo uma forma de energia ser considerada destacadamente prioritária em relação à outra. A

consideração conjunta destas duas afirmações permite que se justifique a escolha da formulação do Fator de Utilização de Energia (FUE) como a mais adequada para o acompanhamento da eficiência energética global de centrais de cogeração a biomassa. É importante destacar neste momento que uma das metas pretendidas ao propor uma metodologia para gestão da eficiência energética em centrais de cogeração é maximizar a eficiência global da mesma. Dada esta meta, serão descartadas formulações apropriadas para aqueles casos em que se queira maximizar a entrega de trabalho ou estabelecê-lo como base de relevância da energia entreque pelo sistema.

Embora tenham sido abordados parâmetros de análise de projetos de cogeração desde sua fase inicial, a metodologia proposta neste trabalho está limitada às análises técnicas a respeito da eficiência dos ciclos de cogeração. Por esta razão, as análises de ordem econômica para escolha de ciclos de cogeração serão deixadas para outros trabalhos científicos aos quais possam interessar.

Outra importante premissa da metodologia proposta é que a mesma se inicia a partir do momento em que se tenha uma central de cogeração ou um projeto de central cujo tipo de ciclo termodinâmico já esteja escolhido. Portanto, pode ser aplicada a centrais já implantadas ou em fase de implantação.

Até onde se pode apurar neste trabalho, todas as centrais de cogeração a biomassa no Brasil operam nos ciclos termodinâmicos Rankine, já apresentados. Em virtude disso, é desenvolvido o modelo de aplicação baseado apenas neste ciclo. A partir do modelo, é então desenvolvido o equacionamento geral para obtenção da eficiência energética global de uma central de cogeração a biomassa no ciclo Rankine. O modelo e equacionamento aqui propostos têm a função de estabelecer uma base comum para a aplicação da metodologia a toda e qualquer central de cogeração a biomassa configurada neste ciclo.

A metodologia está dividida em cinco etapas:

- Enquadramento etapa na qual a central de cogeração escolhida é enquadrada quanto a: ciclo termodinâmico de cogeração, fonte energética, temperatura da fonte quente, presença dos principais equipamentos e subsistemas;
- Cálculo etapa na qual se calcula a eficiência energética global da central de cogeração a partir dos parâmetros de projeto da mesma, atualizados em função das melhorias implementadas a cada ciclo;

- Medição etapa na qual se estabelecem as premissas de medição, se medem todos os parâmetros necessários à obtenção da eficiência energética global operacional e se verifica;
- Verificação para melhoria contínua etapa na qual se comparam as eficiências energéticas globais calculada e medida, a fim de verificar a eficácia das ações tomadas decorrentes do ciclo anterior, se houver, e possibilitar o planejamento de ações de melhoria para o ciclo seguinte.
- Ação de implementação etapa na qual se lista, analisa e se implementa as ações corretivas escolhidas para melhoria da eficiência energética global da central a ser aferida no ciclo sequinte.

O enquadramento é importante uma vez que permite posicionar a central de cogeração no universo das centrais que utilizam o mesmo ciclo termodinâmico. Permite que futuramente se possa classificar as centrais, dividindo-as em grupos por alinhamento de características e consequentemente por eficiência, possibilitando a obtenção de melhores práticas, a serem seguidas pelas demais centrais.

O cálculo é importante, pois estabelece o valor de referência contra o qual é comparado o valor da eficiência energética global operacional, proveniente das medições efetuadas. Nesta etapa, é calculado o valor da eficiência energética global de projeto da central, ou seja, a premissa técnica de eficiência da mesma utilizandose as condições de contorno pré-estabelecidas.

A medição é importante, pois é nesta etapa que serão obtidos os valores operacionais dos parâmetros que permitem o cálculo da eficiência energética global operacional da central. Há parâmetros cuja leitura direta do instrumento de campo já traz a energia do fluxo de saída correspondente. No entanto, há casos em que é necessário utilizar as mesmas equações do cálculo, pois as grandezas medidas não são energia, mas pressão, temperatura e vazão de vapor.

A verificação para melhoria contínua é importante, pois sem efetuar a comparação da eficiência medida com a eficiência de projeto, ou ainda com a eficiência potencial que pode ser atingida para aquele tipo de ciclo, não se estabelecem metas de melhoria, que são fundamentais no ciclo PDCA.

A ação é importante, pois fecha a aplicação do ciclo PDCA com a colocação em prática das providências que de fato farão com que a central caminhe em direção à melhoria contínua da eficiência energética.

Cabe ressaltar que a metodologia proposta não é a simples aplicação de todos os itens previstos na norma ISO/DIS 50001, reproduzidos novamente abaixo:

- Requisitos gerais;
- Atribuição de responsabilidades;
- Política energética;
- Planejamento energético;
- Implementação e operação;
- Verificação da eficiência;
- Revisão do plano de gestão.

Ocorre que, para que a metodologia possa ser estruturada de forma inteligível aos potenciais usuários e agentes do setor, algumas das ações previstas na norma precisam ser aqui desenvolvidas. Aquelas ações que dependem da missão, visão e valores da empresa, de sua estrutura organizacional e outras particularidades inerentes a cada agente do setor, deverão ser desenvolvidas pelo mesmo a cada aplicação. Assim, não serão definidos nesta metodologia: atribuição de responsabilidades, política energética ou revisão do plano de gestão. De qualquer maneira, dado que este trabalho propõe a gestão de eficiência energética através do acompanhamento da eficiência energética global de uma central, seria adequada a adoção da metodologia por empresas que definam em suas políticas energéticas entre outros pontos, o uso racional dos recursos energéticos na geração de eletricidade e calor.

Fazem parte da metodologia as descrições ou proposições para: requisitos gerais, planejamento energético (pelo lado da geração), implementação, operação e verificação de eficiência. A Figura 5.1 mostra como a metodologia proposta se posiciona em relação ao ciclo PDCA sugerido conforme a ISO/DIS 50001.

5.2. MODELO DE APLICAÇÃO

O modelo de aplicação tem como base um fluxograma geral qualitativo que mostra os blocos ou partes gerais de um sistema de cogeração a biomassa, mas que é passível de ser particularizado para cada aplicação. Como a aplicação deste

trabalho é orientada às usinas de cogeração a bagaço de cana, poderão ser observadas no modelo ou em sua descrição particularidades deste tipo de instalação. Isto não impede que o modelo e posterior equacionamento propostos sejam também aplicáveis a toda e qualquer central de cogeração a biomassa em ciclo Rankine, qualquer que seja o combustível. Reforça esta afirmação o fato de que a quase totalidade de centrais de geração ou cogeração termoelétrica no Brasil operam em ciclo Rankine.

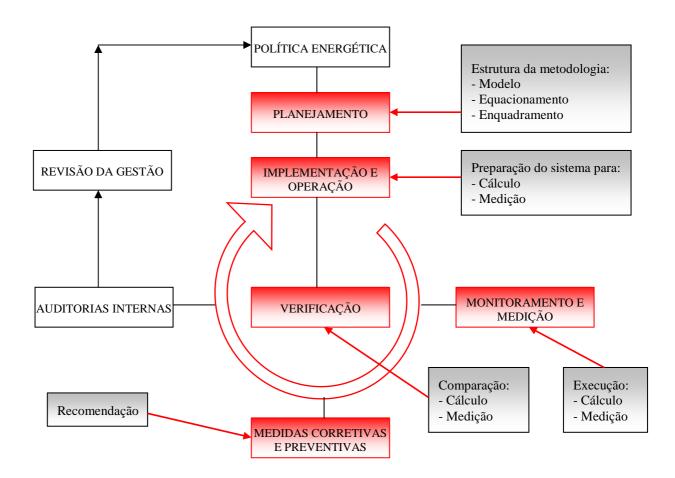
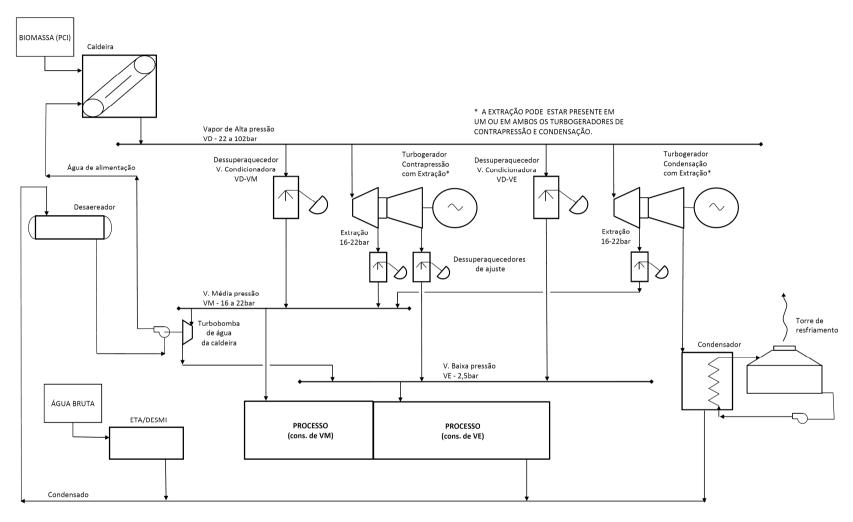


Figura 5.1 – Posicionamento da metodologia sobre o modelo de gestão energética da ISO/DIS 50001.


O fluxograma mostrado na Figura 5.2 mostra os módulos principais de uma central de cogeração típica a biomassa, que utiliza o ciclo Rankine. Com isso, este fluxograma busca atender a todas as configurações possívels de centrais de cgoeração a biomassa. Neste tipo de central, o combustível entra na caldeira na forma sólida ou líquida e é queimado em seu interior para geração de vapor em alta pressão. O vapor produzido na caldeira é direcionado a um tubo distribuidor principal

(header) a partir do qual serão feitas as derivações para cada consumidor de vapor em alta pressão, denominado também como vapor direto (VD). Os consumidores são os turbogeradores de eletricidade, que podem ser de três tipos predominantes: contrapressão, contrapressão com extração ou condensação. Usualmente, há nas centrais de cogeração a presença de uma válvula ou sistema condicionador de pressão denominado dessuperaquecedor, o qual condiciona o vapor de alta pressão para média ou baixa pressão, a fim de garantir o suprimento de vapor do processo em caso de parada em uma ou mais turbinas. O dessuperaquecedor está representado no fluxograma, pois é comum encontrar centrais em que este equipamento opera com vazão contínua para atender à demanda de vapor de escape para o processo de produção de açúcar ou álcool. É também típica a utilização de vapor em extração intermediária de uma ou mais turbinas para movimentação da bomba de água de caldeira, a fim de tornar o sistema da caldeira independente de energia elétrica no regime permanente no que tange à alimentação de água. Isto atende exigência de norma ASME internacional para geradores de vapor. O vapor de média (VM) pode ser também utilizado em outras turbomáquinas como nas moendas de cana. O vapor de escape (VE) das turbinas de contrapressão (com ou sem extração) é direcionado para o processo, geralmente na pressão necessária ao mesmo.

No setor de açúcar e álcool, os níveis comumente utilizados de pressão de vapor são:

- Alta pressão Vapor Direto VD 22 a 102 bar;
- Média pressão Vapor de Média VM 16 a 22 bar;
- Baixa pressão Vapor de Escape VE 2,5 bar.

No entanto, a grandeza mais importante, que determina o potencial de eficiência que se poderá extrair da cogeração é a temperatura do vapor de alta pressão VD. Desta maneira, a informação de energia da caldeira estará sempre associada ao par temperatura-pressão. Por exemplo, caldeiras com pressões de 65 a 102 bar absolutos podem ter temperatura do vapor na faixa de 480 a 530°C.

Fonte: Elaboração própria.

Figura 5.2 – Fluxograma geral de cogeração – ciclo Rankine

Nota-se que a faixa de alta pressão tem um intervalo muito grande. Isto ocorre na atual conjuntura do setor em virtude da recente modernização dos ciclos termodinâmicos pelo qual passa. Na primeira grande expansão do setor, durante o pró-álcool a partir de 1975, grande parte das usinas implementou sistemas de cogeração com caldeiras para produção de vapor na faixa de 22 bar absolutos. A configuração era complementada pela utilização de turbomáquinas no preparo e moendas de cana e turbobombas de água de caldeira, todas com turbinas de contrapressão, fornecendo VE para o processo de evaporação do caldo de cana. Na maioria dos casos, havia pouca ou nenhuma geração de eletricidade, sem qualquer excedente exportado de energia. Havia, sim, muita sobra de bagaço de cana, vendido para ser usado nas caldeiras de outras indústrias, principalmente alimentícias.

Na década de 1990, houve um impulso de modernização das cogerações nas usinas de açúcar e álcool, motivadas pelas pesquisas até então demonstrando um grande potencial de geração de energia elétrica com o bagaço excedente, o que poderia trazer renda maior comparada àquela obtida com a venda de bagaço. Muitas usinas novas ou existentes adquiriram então caldeiras com faixas de pressão mais elevadas, entre 33 e 45 bar absolutos. Nesta configuração, apareciam quase sempre turbogeradores de contrapressão e condensação, com a concomitante produção de eletricidade. Em alguns casos a eletricidade gerada era excedente, em outros não, mas quase sempre o objetivo era a autossuficiência no consumo.

Com o impulso dado desde o PROINFA somado às outras políticas de inserção das cogerações a bagaço de cana, sistemas com pressões mais altas encontraram viabilidade técnico-econômica, tendo sido já implementada uma série deles nas usinas do setor. Estão geralmente associados a caldeiras com faixa de pressão de 65 a 102 bar absolutos. Nesta configuração, utiliza-se praticamente todo o bagaço produzido no processo, gera-se energia elétrica que atende ao consumo interno com muita sobra, exportando-se o excedente de eletricidade para a rede.

O vapor consumido pela planta industrial é em geral condensado no processo, retorna para o sistema desaerador e para a alimentação da caldeira. A saída da turbina de condensação é direcionada ao condensador, e o condensado, após resfriamento, é também direcionado para o retorno ao sistema da caldeira. Os sistemas de captação, tratamento e desmineralização de água condicionam a água

captada ao uso na caldeira e turbinas, sendo também utilizado na reposição das perdas de vapor que ocorrem comumente no processo industrial.

5.3. EQUACIONAMENTO

O equacionamento constitui uma parte fundamental da metodologia, pois é nela que se compatibiliza o fluxograma da central de cogeração com as equações genéricas de energia. O estabelecimento de um equacionamento geral o qual possa ser particularizado a cada aplicação demonstra que ao padrão de fluxograma está também associado um padrão operacional, o que permite o futuro agrupamento de centrais que tenham enquadramento equivalente.

Assim, o equacionamento proposto abaixo busca atender de forma genérica a todas ou a maior parte das centrais de cogeração em ciclo Rankine. O equacionamento foi desenvolvido em função da obtenção do parâmetro de eficiência energética global. Com base na fundamentação teórica apresentada e na formulação escolhida do Fator de Utilização de Energia (FUE), podemos considerar a seguinte equação geral da eficiência energética global, aplicável a qualquer central cogeradora:

$$FUE = \frac{W + Q_u}{F} \tag{5.1}$$

Onde:

FUE – Fator de utilização de energia ou Eficiência energética global da central

W – Eletricidade ou trabalho mecânico em kWh

Q - Calor em kWh

F – Energia da fonte (combustível) em kWh

A equação acima, da forma como se apresenta, calcula a eficiência energética global com base em quantidades de trabalho, calor e combustível. É possível também se estabelecer uma base de tempo transformando as quantidades em fluxos. Assim, a mesma equação poderia ser representada conforme segue:

$$FUE_{t} = \frac{\dot{W} + \dot{Q}_{u}}{\dot{F}} \tag{5.2}$$

Onde:

FUE_t – Eficiência energética global da central em base de tempo

W - Fluxo de eletricidade ou trabalho mecânico

Q - Fluxo de calor

F - Fluxo de energia da fonte

Cada um dos termos da equação de eficiência energética global pode ser calculado conforme segue.

A energia elétrica pode ser calculada conforme a equação abaixo:

$$W = E_e = \sum (W_{G1}, W_{Gn}) - \sum W_{cons.aux.}$$
 (5.3)

Onde:

W_{G1} – Eletricidade gerada no gerador 1

W_{Gn} – Eletricidade gerada no gerador n

W_{cons.aux.} – Eletricidade consumida nos sistemas auxiliares da cogeração.

A energia térmica pode ser calculada conforme a equação abaixo:

$$Q_{u} = E_{t} = Q_{VMP} - Q_{VMC} + Q_{VEP} - Q_{VEC} - \sum Q_{CE} - Q_{perdas}$$
 (5.4)

Onde:

Q_{VMP} – Calor do vapor de média (extração) produzido pela central

Q_{VMC} – Calor do vapor de média (extração) consumido na própria central

Q_{VEP} – Calor do vapor de escape produzido pela central

Q_{VEC} – Calor do vapor de escape consumido na própria central

Q_{CE} – Calor do condensado que retorna do processo

Q_{perdas.} – Calor perdido na central em função de perdas térmicas ou de massa

Entenda-se o processo como o volume de controle onde é consumida a energia térmica disponibilizada no vapor que sai da cogeração. A equação acima pode ser traduzida como a energia que entra subtraída da que sai, medidas nas

fronteiras entre a cogeração e o processo industrial. Como já mencionado, é muito comum encontrar usinas de açúcar e álcool nas quais caldeiras novas com pressões acima de 65 bar são instaladas sem que se desative as caldeiras antigas, usualmente na faixa de 22 bar. Nestes casos, é comum encontrar conexões entre a extração em 22 bar da turbina e a tubulação de distribuição de VM para a usina. Neste caso, esta conexão passa a integrar a soma de entregas de vapor para o processo industrial. No entanto, como a soma é energética, não há problema em se somar parcelas de energia, ainda que advindas de vapor em diferentes níveis de pressão e temperatura.

Outro importante entendimento é o de que há uma perda na transferência deste calor cedido pela cogeração para o processo. Em muitos casos, sob o ponto de vista empresarial, o proprietário da usina é o mesmo da cogeração e esta é entendida como sendo parte da usina. No entanto, visto que o presente trabalho tem por objetivo calcular a eficiência energética global da cogeração vista pelo lado da geração de energia, entende-se que tal perda deva ser imputada ao processo enquanto agente terceiro, mesmo que ambos estejam integrados na mesma planta industrial. Da mesma maneira, os ganhos energéticos advindos de melhorias no consumo de vapor do processo serão imputados ao mesmo.

A fim de transformar as quantidades de vapor e condensado em energia, é utilizada de forma simplificada a correlação direta entre entalpia e energia de cada fluido presente na equação acima. Assim, cada termo daquela pode ser calculado utilizando-se a equação abaixo:

$$Q = \frac{m \times h}{3600} \tag{5.5}$$

Onde:

m – massa, em kg.

h – Entalpia específica do fluido, em kJ/kg.

1kWh = 3600kJ

A entalpia de cada fluxo é obtida através da aplicação dos respectivos valores de temperatura e pressão às tabelas de vapor na condição em que se encontra. Os dados de temperatura e pressão em cada fluxo fazem parte dos dados básicos de qualquer projeto de ciclo termodinâmico.

A energia da fonte é derivada do poder calorífico inferior (PCI) da mesma, qualquer que seja, conforme indicado na equação abaixo:

$$F = E_f = \frac{m \times PCI}{3600} \tag{5.6}$$

Onde:

m - massa, em kg.

PCI – Poder calorífico inferior, em kJ/kg.

1kWh = 3600kJ

A unidade resultante das equações acima é o kilowatt-hora kWh, a fim de colocar os termos da equação de eficiência na mesma base.

5.4. DESCRIÇÃO DAS ETAPAS

5.4.1. Enquadramento

Para fazer o enquadramento de uma central de cogeração, propõe-se que se classifique a mesma com os seguintes quesitos:

- Combustível;
- Pressão:
- Temperatura;
- Arranjo de turbogeradores;

Em decorrência dos ciclos termodinâmicos disponíveis, da conjuntura da geração de eletricidade a partir da biomassa e do histórico destes sistemas no setor, sugere-se que o enquadramento seja feito através do preenchimento da Tabela 5.1. A classificação aqui proposta é qualitativa. Não se faz necessário classificar quanto à quantidade de turbinas ou de caldeiras, pois uma vez enquadrada qualitativamente, a central já passa a ter uma referência de eficiência máxima limitada pelo ciclo de Carnot e pelo estado da arte conforme já visto anteriormente.

Tabela 5.1 – Formulário de enquadramento qualitativo da central de cogeração

QUESITO	OPÇÃO	ESCOLHA
1. Combustível	BC – Bagaço de cana	
	LN – Licor Negro	
	MA – Madeira	
	BI – Biogás	
	CA – Casca de arroz/Capim/Palha	
2. Pressão	Baixa - De 1 a 22 bar absoluto	
	Média - De 23 a 50 bar absoluto	
	Alta - De 51 a 105 bar absoluto	
3. Temperatura	300 − 300 a 399°C	
-	400 – 400 a 499°C	
	500 – 500 a 599°C	
4. Arranjo	CPR – Contrapressão	
•	ECP – Extração/Contrapressão	
	ECD – Extração/Condensação	
	ECC – Extração/Contrapress./Condensação	

Fonte: Elaboração própria.

É importante observar que o enquadramento proposto leva em consideração a temperatura do vapor gerado na caldeira, mas não a pressão. Isto decorre do conceito da eficiência energética do ciclo de Carnot, já descrito, no qual se demonstra que a eficiência depende diretamente da temperatura da fonte quente e não de sua pressão.

Após o preenchimento da tabela acima, sugere-se considerar para efeitos de simplificação de termo, a concatenação das siglas correspondentes à escolha de cada quesito para formar um código que identifique a central no enquadramento. Por exemplo:

Código: BC-Alta-500-ECC

Corresponde a: Uma central de cogeração a bagaço de cana composta por: Caldeira com pressão 67bar e temperatura 500°C e Turbogeradores que juntos apresentam extração, contrapressão e condensação.

No setor industrial, observa-se em muitos casos que em uma mesma planta há mais de um sistema de cogeração. Isto geralmente ocorre devido à implementação de expansões de planta com caldeiras novas de diferentes níveis de temperatura e pressão das existentes, que são implantadas sem que os sistemas antigos sejam desativados. Nestes casos, é muito importante ressaltar que o enquadramento mais adequado é aquele no qual cada sistema implementado em certa etapa da vida útil da planta seja enquadrado como uma central de cogeração independente das demais. Isto trará a necessidade de análises mais cuidadosas nas interfaces entre centrais adjacentes, pois muitas vezes estas são complementares, uma cedendo calor para outra em várias situações operacionais.

5.4.2. Cálculo

A etapa de cálculo consiste na utilização das equações definidas na etapa de equacionamento. Portanto, é necessário determinar a origem dos valores que serão preenchidos em cada termo das equações. Assim, esta etapa é subdividida em:

- preparação para o cálculo;
- execução do cálculo.

Preparação do cálculo

Durante o projeto de uma central de cogeração a biomassa, na etapa de engenharia básica da mesma, é executado um "balanço de massa e energia". Em alguns casos, este é o próprio nome do documento emitido com os números resultantes das simulações de operação da central. O balanço de massa e energia contém todas as premissas quantitativas e qualitativas de produção industrial. Em função das mesmas, o balanço define o consumo de calor necessário no processo industrial, tanto em base anual como em base horária, em função dos dias de funcionamento da planta. Das premissas de produção, decorrem ainda os valores de produção de biomassa residual do processo. Em usinas de açúcar e álcool, são os dados de produção de casca e licor negro. Em usinas de beneficiamento de arroz, são os dados de produção de casca. Em casos de biomassa importada, o montante de biomassa a ser adquirida passa a ser dado de entrada também. De posse de

todos os dados de entrada, são então elaborados os balanços de Vapor Direto (VD), que após passar pela central de geração elétrica, passa a ser Vapor de Média (VM) da extração, e Vapor de Escape (VE) para atender à demanda do processo industrial. Concomitante a estes balanços de vapor, é elaborado o balanço de bagaço a fim de garantir se o bagaço é suficiente para as necessidades da cogeração e do processo industrial. Em função dos resultados dos balanços de vapor e bagaço, são então escolhidas as configurações de caldeira, turbogeradores, torres de resfriamento, estações de tratamento e desmineralização de água, enfim dos principais equipamentos e sistemas que compõem a central de cogeração.

Desta maneira, dentre os parâmetros encontrados no balanço de massa e energia da central de cogeração, são destacados os constantes na Tabela 5.2 para a preparação do cálculo da eficiência energética global de projeto da central. Os valores dos parâmetros devem ser preenchidos na tabela para que se constitua um resumo dos dados utilizados no cálculo da eficiência energética global de projeto da central em questão.

Uma vez preenchida a tabela, é necessário fazer a correlação das grandezas com os fatores constantes nas equações já vistas. Os parâmetros 1 a 5 e 26 estão relacionados à produção e consumo do combustível, portanto à energia da fonte F. Os parâmetros 6 a 23 estão relacionados à produção e consumo de vapores VM e VE no processo, portanto relacionados ao calor Q. E os parâmetros 24 e 25 estão relacionados à produção e consumo de energia elétrica, portanto à eletricidade ou trabalho W. A Figura 5.3 posiciona cada um dos parâmetros de cálculo da Tabela 5.2 sobre o fluxograma da Figura 5.2.

Feita esta correlação, utiliza-se os parâmetros para o cálculo da eficiência energética global de projeto da central. Representando-se os fatores das equações apresentadas anteriormente como funções dos parâmetros numerados da Tabela 5.2, teríamos as equações representativas abaixo:

$$W = E_{e} = Wf(7,24) + Wf(8,24) - Wf(25)$$
(5.7)

$$Q_u = E_t = Qf(7,9,10,11) + Qf(8,9,10,11) + Qf(9,10,11,12) - Qf(14) - Qf(20) + + Qf(7,15,16,17) + Qf(8,15,16,17) + Qf(15,16,17,18) + Qf(14) - Qf(21)$$
(5.8)

$$F = E_f = Ff(1,2,3,4,26)$$
 (5.9)

Verifica-se portanto que cada termo das somas que permitem obter W, Q e F, está colocado em função dos parâmetros numerados do projeto.

Tabela 5.2 – Parâmetros utilizados no cálculo da eficiência energética global da central de cogeração

Nº	Parâmetro - premissa	Valor	Unid.
1	Produção total de bagaço da usina		T/h
2	Consumo de bagaço pela cogeração		T/h
3	Quantidade de caldeiras		Unid.
4	Produção de vapor de alta pressão VD		T/h
5	Pressão do VD		Bar
6	Temperatura do VD		°C
7	Quantidade de turbogeradores de contrapressão		Unid.
8	Quantidade de turbogeradores de condensação		Unid.
9	Produção de vapor de média pressão VM		T/h
10	Pressão do VM		bar
11	Temperatura do VM		°C
12	Vazão de dessuperaquecedor de VD para VM		T/h
13	Consumo de VM pelo processo		T/h
14	Consumo de VM da(s) turbobomba(s) da(s) caldeira(s)		T/h
15	Produção de vapor de escape VE		T/h
16	Pressão do VE		bar
17	Temperatura do VE		°C
18	Vazão de dessuperaquecedor de VD para VE		T/h
19	Consumo de VE pelo processo		T/h
20	Perdas de VM no processo		T/h ou %
21	Perdas de VE no processo		T/h ou %
22	Pressão do condensado de retorno		bar
23	Temperatura do condensado de retorno		°C
24	Produção de eletricidade		MWh
25	Consumo auxiliar de eletricidade - apenas na cogeração		MWh
26	PCI do bagaço		kJ/kg

Fonte: Elaboração própria.

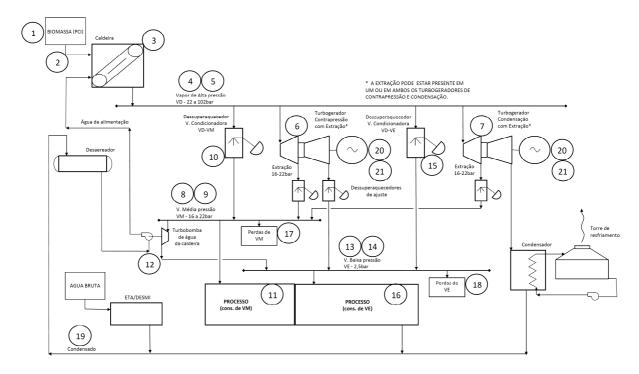


Figura 5.3 – Parâmetros de cálculo de projeto da eficiência energética global posicionados sobre o fluxograma de base.

5.4.3. Medição

A etapa de medição é a mais complexa dentre todas. Esta etapa consiste na medição operacional dos parâmetros necessários para que se calcule a eficiência energética global da central de cogeração. A principal diferença desta para a etapa anterior é a origem dos valores de cada parâmetro necessário ao cálculo. Enquanto no cálculo de projeto, os valores utilizados são baseados em premissas de projeto, como: capacidade de produção de açúcar e álcool, capacidade de moagem, premissas de VD, VM e VE; e premissas operacionais como: estabilidade, condição nominal de carregamento, entre outras, no cálculo a partir da medição, os valores são exatamente aqueles lidos nos respectivos instrumentos de campo, esteja a central operando dentro das condições de projeto ou não.

O percurso da etapa da medição é subdividido em quatro passos, após os quais a mesma estará completa:

- Mapeamento dos pontos de medição;
- Estabelecimento de parâmetros adicionais;
- Medição das grandezas;
- Manipulação dos dados das medições.

Mapeamento dos pontos de medição

Previamente à execução das medições propriamente dita em campo, é necessário planejar esta atividade e estabelecer as premissas mínimas necessárias para a execução das medições. O plano de medição deve ser executado com base nas características qualitativas e quantitativas encontradas no fluxograma de vapor e energia, e confirmadas em campo na própria central. Tais características são algumas dentre as listadas na Tabela 5.2, como: quantidade de caldeiras, pressão e temperatura de projeto da caldeira, quantidade de turbogeradores de contrapressão, quantidade de turbogeradores de condensação.

Todas estas características deverão ser levantadas através de um mapeamento dos pontos de medição, que deve ser feito na própria central.

Mapeamento de Eletricidade / Trabalho

A preparação para execução das medições de eletricidade ou trabalho consiste no mapeamento quantitativo e qualitativo de todos os pontos de medição do sistema elétrico da central. A grandeza a ser medida direta ou indiretamente é a energia ativa útil em kWh ou MWh.

Para se executar as medições de eletricidade ou trabalho em uma central de cogeração, é importante conhecer seu diagrama típico de distribuição de eletricidade. A Figura 5.4 mostra o diagrama unifilar geral típico de uma central de cogeração associada a uma usina de açúcar e álcool. Preconiza-se que a cada disjuntor do barramento de distribuição primária 13,8kV está associado um relé de proteção microprocessado capaz de medir ao menos a corrente elétrica. Os disjuntores de interesse são aqueles diretamente conectados aos geradores e às subestações auxiliares da cogeração.

Entende-se pela energia ativa útil toda aquela gerada na central, subtraída da eletricidade consumida pelas subestações auxiliares da cogeração. Como já citado anteriormente, há casos em que a cogeração e a usina de açúcar e álcool fazem parte da mesma instalação. Nestes casos, a eletricidade fornecida para

subestações auxiliares das unidades de produção de açúcar e álcool é considerada como parte da energia ativa útil. Geralmente, esta parcela correspondente da eletricidade fornecida não é comercializada pelo agente gerador. No entanto, para efeitos do presente trabalho, não pode ser imputada à cogeração, sendo portanto considerada consumo de eletricidade de terceiro.

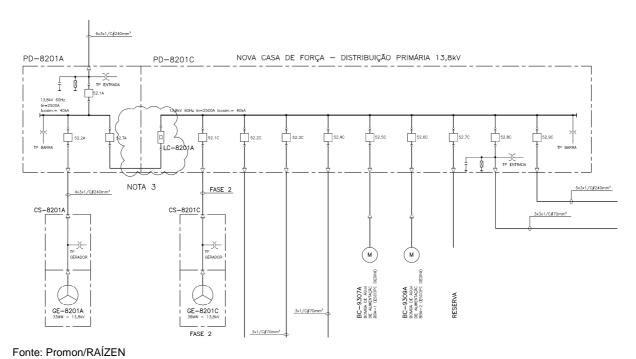


Figura 5.4 – Diagrama unifilar geral típico de uma central de cogeração

A medição da geração bruta de eletricidade pode ser usualmente encontrada nos medidores ou controladores de geração de energia associados a cada turbogerador da central. Nestes pontos, verifica-se sempre a existência de um multimedidor capaz de informar a energia ativa acumulada em MWh, disponível na memória de massa do equipamento, o que facilita em muito o trabalho de medição da geração de eletricidade bruta.

A medição do consumo de cada subestação auxiliar da cogeração pode ser diferente. Quando não houver medidores de energia com memória de massa, é necessário ler a potência ativa instantânea a cada intervalo de medição definido para W no relé de proteção da respectiva coluna da distribuição primária. No entanto, a aquisição de dados de consumo auxiliar pode ser ainda mais difícil, pois há casos em que as colunas de alimentação de subestações auxiliares terão somente leitura de corrente. Nestes casos, a potência instantânea deverá ser

calculada multiplicando-se a corrente pela tensão no barramento de distribuição e pelo fator de potência estimado daquele ramal em função de suas cargas. A Figura 5.5 mostra o fluxo de informações desde a leitura para obtenção da medição da energia elétrica ativa para determinado ramal.

Mapeamento de Calor

A preparação para execução das medições de calor consiste no mapeamento quantitativo e qualitativo de todos os pontos de medição do sistema de vapor e condensado da central. A grandeza a ser medida é a energia térmica envolvida em cada fluxo de vapor ou condensado pertinente, mapeado na central de cogeração, convertido para kWh ou MWh.

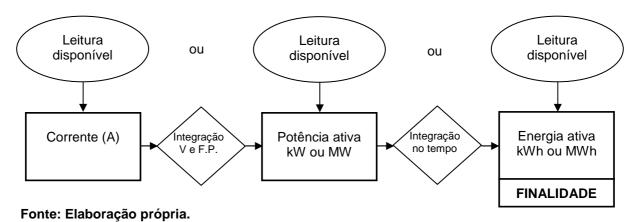


Figura 5.5 – Fluxo de informações da leitura para obtenção da energia elétrica ativa (W) em um ramal da central

A medição de calor é consideravelmente mais complexa de se fazer comparada à medição de eletricidade. Não há no mercado medidores de energia com memória de massa, integrados em um instrumento único, como no mercado de energia elétrica. Desta forma, para se medir a energia de um fluxo de calor, é necessária a integração das leituras de pressão, temperatura e vazão de cada fluxo. Sendo assim, são comumente executadas três leituras para cada fluxo mapeado no sistema de uma dada central.

É muito comum no mercado de caldeiras, o fornecimento do sistema com medição de temperatura, pressão e vazão de vapor produzido VD, e com medição

de temperatura, pressão e vazão de água de alimentação. Mas não é comum haver medição da alimentação de combustível, especialmente sólido, como o bagaço de cana. Isto é discutido com mais detalhes adiante.

No mercado de turbogeradores, é comum o fornecimento de unidades com medição de temperatura, pressão e vazão na entrada de vapor direto VD e na extração de vapor de média VM. No escape de vapor de baixa pressão VE, encontra-se medição de temperatura e pressão, mas não de vazão. Isto não é problema, pois a vazão de VE pode ser obtida pela diferença entre VD e VM. As Figuras 5.6 (a) e (b) mostram os trechos de entrada de VD e saída de VM em um mesmo turbogerador, representados no fluxograma de engenharia do projeto de uma central de cogeração a bagaço de cana.

Pode-se verificar através da Figura 5.6 os instrumentos de medição de pressão, temperatura e vazão, representados no desenho pelas siglas PIT, TIT e FIT respectivamente, conforme a simbologia padrão de norma pertinente. As siglas denotam ainda que se trata de instrumentos transmissores, ou seja, que além de efetuar a leitura do sinal, transmitem-na em algum protocolo de sinal de instrumentação. Sempre que as medições de pressão, temperatura e vazão são feitas através de transmissores, estas grandezas podem ser obtidas no sistema de controle do equipamento, como por exemplo no controlador lógico programável (CLP) ou no sistema supervisório.

No entanto, não é comum encontrar transmissores de pressão, temperatura e vazão juntos em todo e qualquer trecho do processo. Em alguns casos é necessário fazer a leitura fora do ponto exato desejado e adotar algum fator de correção externo à leitura. É o caso das entradas de VM e VE no processo e do retorno de condensado que sai do processo. Os pontos ideais para estas leituras são exatamente nas entradas e saídas do processo. No entanto, esta medida pode ser de difícil obtenção, pois o posicionamento de instrumentos nestes pontos não é comum.

Para se obter as leituras mais próximas possíveis dos fluxos de VM e VE que vão para o processo, sugere-se integrar as leituras da extração e escape dos turbogeradores. A esta integração, deve-se ainda somar eventuais vazões de vapor proveniente daqueles dessuperaquecedores acompanhados de válvulas condicionadoras de vapor. Nestes pontos comumente não há medição direta. Geralmente, estes equipamentos operam somente em condições transitórias, nas

quais é necessário rebaixar quantidades de VD para complementar a vazão de VM ou VE para o processo, pois por algum motivo sua produção na saída dos turbogeradores não atende à demanda. No entanto, é comum encontrar usinas operando com estes equipamentos em regime contínuo, o que pode ser explicado às vezes pelo aumento de produção de açúcar e álcool sem que se aumente o nº ou capacidade dos turbogeradores. Nestes casos, muitas vezes é necessário se presumir uma vazão de vapor em função da abertura da válvula condicionadora.

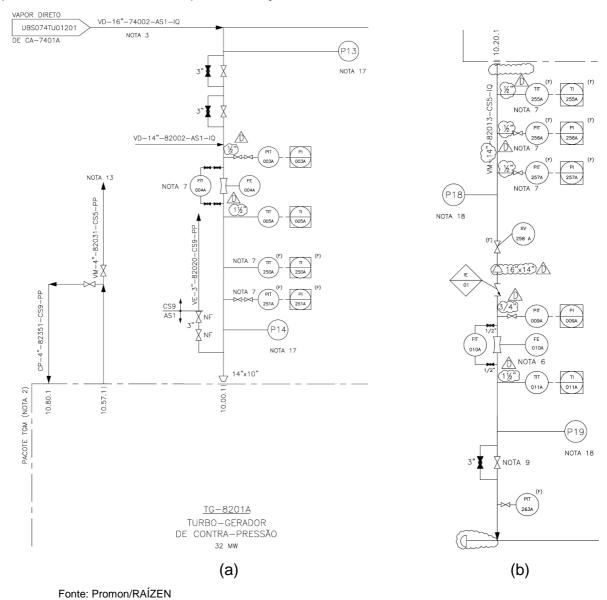


Figura 5.6 – Fluxogramas de engenharia representando a entrada de vapor de alta pressão VD (a), e a saída de vapor em média pressão VM (b), em um turbogerador.

A respeito dos dessuperaquecedores de ajuste, localizados nas saídas de extração e escape dos turbogeradores, sua função é ajustar as condições do vapor Àquelas requeridas pelo processo, pois podem ocorrer situações operacionais de saída de vapor em temperatura acima daquela aceitável pelo processo. Nestes pontos, em função do princípio de funcionamento do dessuperaquecedor, há um aumento na vazão mássica de vapor, pois o resfriamento consiste na adição de condensado ao vapor da linha. Atenção deve ser dada nestes pontos a fim de considerar a temperatura, pressão e vazão corretas na obtenção da energia destes fluxos.

Para se obter as leituras mais próximas possíveis do fluxo de condensado do processo, sugere-se que as medições sejam tiradas no retorno do condensado ao desaerador. No entanto, este ponto de medição pode ter valores diferentes daquele em função de mistura do condensado de saída do processo com água de reposição da ETA/Desmi. No processo, é comum a perda de massa de vapor através de purgas nas linhas em que o vapor ainda não foi condensado. Tais purgas retiram o condensado, indesejável a estas linhas. No entanto, a reposição de água desmineralizada, ou muitas vezes abrandada, é feita após a saída do condensado do processo, em condições de temperatura diferentes deste, o que gera diferença na leitura antes ou depois deste ponto.

Pode também ocorrer a existência de instrumentos que não sejam transmissores. Por exemplo, ao invés de encontrar um transmissor de pressão em determinado fluxo, verifica-se que o instrumento disponível é um manômetro, com indicação apenas local. Nestes casos, deve-se planejar a leitura no local do instrumento, o que em casos de acompanhamento perene, com diversas leituras por hora pode se tornar muito difícil. Desta maneira, é importante se fazer uma análise crítica na implementação da metodologia em cada central a fim de minimizar ou eliminar leituras manuais de grandezas.

Outra medição de difícil obtenção é a de perdas de massa que ocorrem tanto nos trechos da cogeração quanto no processo. Mensurar estas perdas requer usualmente que se utilize valores percentuais fixos, o que traz perda na fidelidade da medição e não contribui para a racionalização do uso de água. É possível implementar medições em mais pontos a fim de mapear perdas de massa de vapor ou condensado. No entanto, sua decisão recai sobre análise de custo benefício. Em centrais onde se perceba uma perda de massa que não se pode medir, sugere-se

elaborar uma análise de custo benefício, nos moldes daquelas presentes nos projetos de eficiência energética. A Figura 5.7 abaixo mostra o fluxo de informações desde a leitura para a obtenção da medição de calor em determinado fluxo na central.

Mapeamento de Combustível / Fonte

A preparação para execução das medições de consumo do combustível ou fonte consiste no mapeamento quantitativo e qualitativo de todos os pontos de medição da alimentação de bagaço nas caldeiras. A grandeza a ser medida é a energia do combustível que entra na(s) caldeira(s) durante todo o período de integração, convertida para kWh ou MWh.

Verifica-se no setor que a medição da vazão de bagaço nas caldeiras é feita de maneira indireta, através da vazão de vapor produzido nas mesmas, multiplicada por um fator fixo, dado pelo fabricante. Este fator é denominado aqui como a razão TV/TB (Tonelada de vapor por Tonelada de bagaço). No entanto, este método não leva em conta a alteração de eficiência da caldeira para diferentes condições de carregamento da mesma. Além disso, não é possível se fazer uma aferição deste fator fixo enquanto não se puder medir a vazão real de bagaço que é alimentado nas caldeiras.

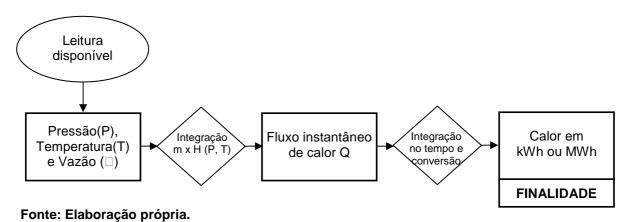


Figura 5.7 – Diagrama de leitura para obtenção do calor (Q) em um fluxo de vapor na central

Em virtude das constatações acima, este trabalho propõe um método de medição alternativo, que certamente precisará ser aferido, validado e aperfeiçoado. Portanto, a preparação e execução destas medições ocorre em caráter

experimental, a fim de permitir uma análise preliminar sobre sua validade e eficácia, para que enfim se possa decidir pelo aperfeiçoamento do mesmo. Este método é denominado aqui como sendo o da correlação TBxRPM (Tonelada de bagaço x Rotação dos dosadores).

O método proposto de medição de vazão de bagaço nas caldeiras é subdividido em duas partes:

- Construção da correlação entre rotação dos dosadores e velocidade de descida do bagaço nas bicas de alimentação da caldeira;
- 2) Medição da rotação dos motores de todos os dosadores de bagaço da caldeira durante o período de integração das medições.

A parte 1 consiste na construção de uma correlação entre a rotação dos dosadores e a velocidade de descida do bagaço, que pode ser aferida visualmente através dos visores de acrílico que todo duto possui acima do respectivo dosador. Para isto, é necessário em cada aplicação executar diversas medições a fim de formar uma amostra significativa e então poder extrair a média e desvio da velocidade de descida do bagaço compactado versus a rotação instantânea do respectivo dosador. A medição para vários patamares de rotação é possível visto que nas caldeiras atuais é muito comum que os motores elétricos dos dosadores sejam acionados através de inversores de freqüência, o que permite controlar sua rotação em qualquer patamar. Assim, é possível levantar a correlação entre rotação do dosador e velocidade linear de descida do bagaço.

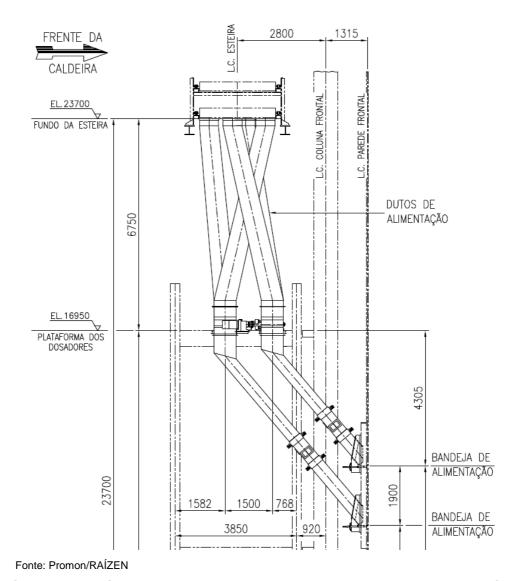
É verificado no estudo de caso adiante que as medições relativas à parte 1 foram todas executadas visualmente nos visores dos dosadores das centrais. O desenvolvimento de aplicações com leituras através de instrumentação calibrada pode trazer muitos benefícios à operação deste sistema com aumento da automação em torno das medições necessárias a esta metodologia, e com melhoria na verificação da eficiência particular da caldeira que está sendo medida.

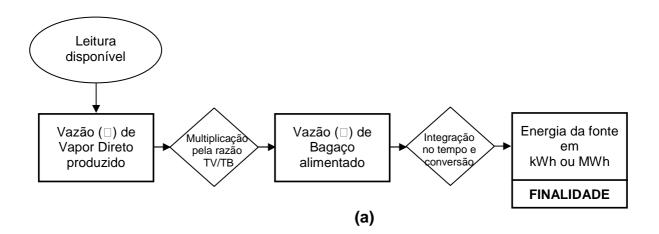
A Figura 5.8 mostra o desenho do sistema de dosadores de bagaço na entrada de uma caldeira.

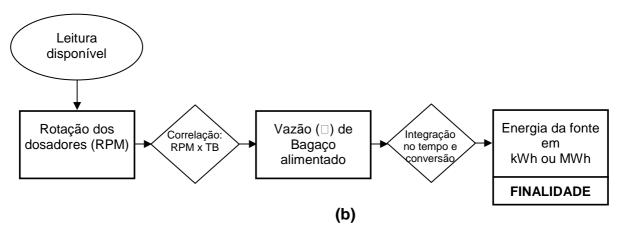
Verifica-se pela figura que o bagaço é alimentado desde a esteira em frente à caldeira, descendo pelos dutos de alimentação, passando pelos dosadores, que são equipamentos rotativos com pás que dosam a passagem de bagaço através dos dutos. Estes continuam abaixo dos dosadores, levando o bagaço até a fornalha da caldeira. Em condição operacional, o trecho do duto acima do dosador trabalha

sempre cheio de bagaço. Assim, o bagaço fica compactado e desce à medida em que gira o dosador. A quantidade de conjuntos duto-dosador pode variar conforme o tamanho e capacidade da caldeira.

A parte 2 consiste na medição da rotação de todos os dosadores de bagaço da(s) caldeira(s) da central durante o período escolhido para integração das medições. Estas medições podem ser obtidas no sistema de controle do equipamento, como por exemplo no controlador lógico programável (CLP) ou no sistema supervisório da(s) caldeira(s).




Figura 5.8 – Vista lateral dos dosadores de bagaço de uma caldeira.


Conhecendo-se a seção transversal do duto de alimentação em m², a velocidade linear relativa de descida do bagaço em m/s*RPM, é possível então obter

a vazão volumétrica de bagaço em m³/s e m³/h. Conhecendo então a densidade em T/m³ do bagaço compactado nas condições do duto de alimentação, pode-se obter a vazão mássica de bagaço em T/h para cada dosador em função da rotação do respectivo motor durante o período de integração.

Sobre a densidade do bagaço nas condições do duto de alimentação, é importante mencionar que seu valor pode variar de aplicação para aplicação. Não se conseguiu verificar no mercado um número consolidado para a densidade do bagaço compactado. Conforme CTC (2010), a densidade do bagaço sem compactação é de 130 kg/m³. Este número é utilizado por muitos agentes do setor para o bagaço na condição sem compactação. No entanto, para o bagaço compactado, não há um número consolidado no mercado. Assim, em virtude da possibilidade de variação deste parâmetro entre diferentes centrais, o valor adotado para a densidade do bagaço compactado foi levantado na própria central de estudo, através da verificação de suas condições na pilha de bagaço ou através da verificação de suas condições em caminhões de transporte de bagaço, muito utilizados no transporte do bagaço entre usinas para partidas de safra. Os caminhões são usualmente pesados cheios e vazios, na entrada e saída da usina. Seu volume pode ser calculado através da anotação das características da caçamba.

As Figuras 5.9(a) e (b) apresentam os fluxos de informação desde a leitura para a obtenção da medição de energia do combustível na central.

Fonte: Elaboração própria.

Figura 5.9 – Fluxo de informações da leitura para obtenção da energia do combustível (F) que entra na central – a partir da produção de vapor (a), e a partir da vazão volumétrica de bagaço em cada caldeira (b)

Finalmente, como registro do mapeamento de todos os pontos de medição de eletricidade, calor e combustível, é proposto o preenchimento da Tabela 5.3. Seu objetivo é manter o registro dos pontos de medição escolhidos para a aplicação desta etapa da metodologia.

Estabelecimento de premissas adicionais

As características definidas na execução do mapeamento são importantes. Porém, não são suficientes para se iniciar a medição. É necessário estabelecer os parâmetros adicionais listados na Tabela 5.4. A definição dos parâmetros listados na tabela deve ser feita a cada aplicação, em função das condições das instalações locais.

Os intervalos de medição de cada grandeza W, Q e F podem ser diferentes entre si em virtude da forma como estas grandezas são integradas. Por exemplo, a medição de energia elétrica em geral dispõe de medidores que integram os valores de corrente, tensão no tempo, disponibilizando a leitura de energia em kWh já integrada. Muitas vezes tais medidores apresentam inclusive memória de massa, guardando os valores acumulados de medição de energia. Já as medições de calor e combustível não dispõem de medidores modernos que integrem seus fluxos em energia. Desta maneira, é necessário se adotar formas de medir co intervalos de tempo menores e integrar a energia fora do instrumento de medição.

Tabela 5.3 – Registro do mapeamento de pontos de medição da central

Nº	Parâmetro F	Registro
1	Produção total de bagaço da usina	
2	Consumo de bagaço pela cogeração	
3	Quantidade de caldeiras	
2 3 4 5	Produção de vapor de alta pressão VD	
	Pressão do VD	
6	Temperatura do VD	
7	Quantidade de turbogeradores de contrapressão	
8	Quantidade de turbogeradores de condensação	
9	Produção de vapor de média pressão VM	
10	Pressão do VM	
11	Temperatura do VM	
12	Vazão de dessuperaquecedor de VD para VM	
13	Consumo de VM pelo processo	
14	Consumo de VM da(s) turbobomba(s) da(s) caldeira(s)	
15	Produção de vapor de escape VE	
16	Pressão do VE	
17	Temperatura do VE	
18	Vazão de dessuperaquecedor de VD para VE	
19	Consumo de VE pelo processo	
20	Perdas de VM no processo	
21	Perdas de VE no processo	
22	Pressão do condensado de retorno	
23	Temperatura do condensado de retorno	
24	Produção de eletricidade	·
25	Consumo auxiliar de eletricidade - apenas na cogeração	
26	PCI do bagaço	
Ean	ste: Flahoração própria	

Fonte: Elaboração própria.

Tabela 5.4 – Parâmetros adicionais para preparação da medição de eficiência energética global da central de cogeração

Nº	Parâmetro - premissa	Valor	Unid.
27	Intervalo de medição de W		Min:seg
28	Intervalo de medição de Q		Min:seg
29	Intervalo de medição de F		Min:seg
30	Intervalo de integração		Horas
31	Perda de massa (vapor) na caldeira		%
32	Perda de massa (vapor) nos turbogeradores		%
33	Perdas de VM		%
34	Perdas de VE		%
35	Perda de massa (vapor) no processo		%

Fonte: Elaboração própria.

O intervalo de integração significa o intervalo mínimo válido para que as medições de W, Q e F possam ser integradas e que se possa apresentar um valor de eficiência energética global, representada pelo FUE, com significância. Por isso, é

importante também escolher o intervalo de integração adequado. Verifica-se que em centrais de cogeração a biomassa em ciclo Rankine, a escolha de um intervalo de integração de uma hora é adequado para a validade do valor de eficiência energética operacional. Desta maneira, a cada hora pode-se aferir em que patamar de FUE a central está trabalhando.

Medição das grandezas

A medição das grandezas consiste no acompanhamento e registro de todas as grandezas do mapeamento de pontos de medição, aplicadas conforme os parâmetros adicionais definidos nos passos anteriores, durante o tempo e periodicidade que se desejar.

Manipulação dos dados de medição

Em virtude de que na maioria dos casos as grandezas medidas não são diretamente as energias da eletricidade, calor ou fonte, é necessário fazer um tratamento dos dados das medições a fim de se atingir o objetivo final, que é a obtenção do valor do FUE operacional para a central em estudo.

A manipulação poderá ser mais ou menos complexa, dependendo da qualidade da instrumentação de campo da central e do grau de automação do sistema supervisório da mesma.

Após manipular os dados de eletricidade, calor e fonte separadamente, os mesmos são integrados na equação de obtenção do FUE.

5.4.4. Verificação

A etapa de verificação consiste na comparação entre as eficiências energéticas globais das seguintes origens:

- Cálculo de projeto da central;
- Medição operacional na central;
- Meta de longo prazo.

Propõe-se a inserção de uma meta de longo prazo a fim de manter sempre o sistema em busca da melhoria contínua. Do contrário, sempre que a medição ultrapassar o preconizado no projeto, a busca de melhoria ficaria sem objetivo.

Após a comparação, faz-se uma análise crítica dos resultados, pontos que interferiram nos valores obtidos, mapeamento de melhorias possíveis, priorização de melhorias para o ciclo seguinte, revisão dos métodos utilizados, melhoria nos métodos através de instrumentação e automação, e finalmente revisão do sistema de gestão aplicado. Somente a comparação de valores permite verificar as diferenças entre as metas lançadas e os resultados atingidos. A fim de permitir uma boa análise crítica dos resultados obtidos, propõe-se o preenchimento da Tabela 5.5.

Após o preenchimento da tabela e análise preliminar dos dados, procede-se a uma análise crítica aprofundada. Para orientar o processo de análise crítica, sugere-se a discussão pautada minimamente pelos seguintes pontos:

- Entradas e saídas de energia W, Q e F;
- Uso de VM pelo processo;
- Uso de VE pelo processo;
- Variáveis relevantes entre usos e eficiência;
- FUE de projeto
- FUE da medição
- Efetividade das medidas de melhoria adotadas (quando da verificação do ciclo após melhorias implementadas mapeadas no ciclo anterior);
- Novas medidas de melhoria propostas.

Tal análise tem como finalidade assegurar que a passagem pelo ciclo foi concluída, e é válida somente se desta decorrerem ações para serem tomadas no(s) ciclo(s) seguinte(s). Desta maneira, propõe-se que o processo de análise crítica seja conduzido pelo grupo responsável pelo projeto de melhorias e desenvolvimento da unidade, e que ao final do mesmo, seja produzido um relatório objetivo indicando os progressos obtidos e os passos seguintes. Este relatório deve servir de base para a consulta dos dados de entrada para o ciclo seguinte, pois em havendo melhorias implementadas, estas devem ser evidenciadas por alteração de parâmetros que serão utilizados na etapa de cálculo do ciclo seguinte, mudando assim a meta de

eficiência energética a ser atingida a cada ciclo. No caso de usinas de açúcar e álcool, cada ciclo poderia ser entendido como uma safra.

Tabela 5.5 – Verificação dos resultados e comparação de metas

Parâmetro	Projeto	Medição	Meta de Longo Prazo
Eletricidade bruta gerada (MWh)			
Eletricidade cons. auxiliar (MWh)			
Eletricidade útil (MWh)			
Calor entregue VM (MWh)			
Calor entregue VE (MWh)			
Calor do condensado (MWh)			
Calor útil (MWh)			
Perdas VM (%)			
Perdas VE (%)			
Consumo de bagaço (MWh)	_		
FUE			

Fonte: Elaboração própria.

5.4.5. Ação

A etapa de ação consiste na proposição e execução das medidas de melhoria decorrentes das análises efetuadas na etapa de verificação do ciclo.

A proposição de medidas de melhoria passa pelas etapas a seguir:

- Composição de uma planilha de ações propostas de melhoria;
- Classificação de prioridade entre as ações propostas.

A planilha de ações propostas poderá ser preenchida conforme os requisitos apresentados na Tabela 5.6.

Tabela 5.6 – Planilha de ações propostas de melhoria do ciclo

Nº	Nome:Descrição	Justificativa	Prioridade
1			
2			
3			
4			
Etc.			

Fonte: Elaboração própria.

A classificação de prioridades dentre as ações propostas poderá ser definida pelo agente gerador da forma como estiver habituado em seus processos de decisão. Esta metodologia recomenda a classificação através de numeração crescente a partir de 1 para a maior prioridade, para cada ação listada na planilha.

É facultado ao agente gerador determinar a lógica de estabelecimento da prioridade para cada ação. Poderão ser levados em conta: custo de implementação, grau de melhoria da eficiência energética global, relação custo benefício, entre outros. Assim, o estudo de caso adiante finaliza-se com o preenchimento da planilha de ações propostas, sem que seja preenchida a coluna final, da prioridade.

6. ESTUDO DE CASO

Neste capítulo, é apresentado o estudo de caso no qual foi aplicada a metodologia proposta no presente trabalho. O caso foi implementado em duas usinas de açúcar e álcool pertencentes ao grupo RAÍZEN, nas quais foram implantadas recentemente expansões do sistema de cogeração com novas caldeiras de alta pressão, novos turbogeradores, e seus sistemas auxiliares como torres de resfriamento, estações de tratamento e desmineralização de água, subestações de alta tensão para exportação do excedente de energia elétrica, etc. Foram escolhidas duas usinas pelas razões descritas a seguir.

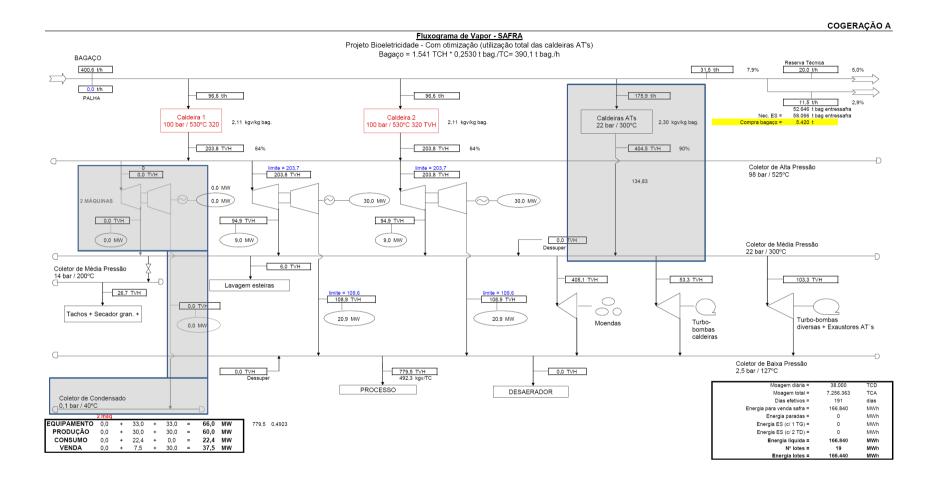
Buscou-se aplicar a metodologia a mais de um caso a fim de verificar possíveis diferenças de resultados que pudessem indicar problemas na metodologia proposta. A aplicação em apenas um caso não permite qualquer comparação de método. Foram escolhidas usinas que pudessem ter o enquadramento o mais próximo possível para que, caso desejável, pudesse ser feita uma análise comparativa entre ambas, o que poderia ser útil ao grupo proprietário no mapeamento de qual dentre as unidades tem operação mais eficiente, permitindo priorizar ações de melhoria na central com maiores problemas.

6.1. DADOS BÁSICOS

Os dados básicos da primeira unidade escolhida estão listados na Tabela 6.1 e seu fluxograma básico está mostrado na Figura 6.1. Esta central é denominada como "Cogeração A" daqui por diante.

As áreas hachuradas na Figura 6.1 representam: os turbogeradores de condensação ainda inexistentes na fase 1 da implantação e o sistema de geração de vapor antigo, de 22 bar absolutos, que não fazem parte da central de cogeração em estudo. Os valores de produção de vapor das caldeiras antigas são subtraídos do consumo de processo tanto em média pressão como em baixa pressão. Todos os consumidores antigos de VM, como as turbinas das moendas, antigos

turbogeradores e turbobombas, são de contrapressão e seu escape direciona todo o vapor consumido em VM para o VE que é consumido na evaporação de caldo.


Tabela 6.1 – Dados básicos – Central de Cogeração A

Desc	crição	Valor	
1.	Combustível	Bagaço de cana	
2.	Ciclo	Rankine Topping	
3.	Nº de caldeiras	2	
4.	Pressão	100 bar abs.	
5.	Temperatura	530°C	
6.	Nº de TGs Contrapressão	2	
7.	Potência por TG CP	32 MW	
8.	Nº TGs Condensação	2 (futuro)	
9.	Potência por TG CD	-	
10.	Possui Extração de VM	Sim	
11.	Pressão VM	22 bar abs.	
12.	Temperatura VM	300°C	
13.	Pressão VE	2,5 bar abs.	
14.	Temperatura VE	127°C	
15.	Pressão Condensado	2,5 bar abs.	
16.	Temp. Condensado	117°C	

Fonte: Cedido pela empresa RAÍZEN

Na Cogeração A, está prevista ainda a instalação de dois turbogeradores de condensação em futuro próximo. A implantação da central foi subdividida em duas fases. Na fase 1 de implantação desta central, foram instalados somente os turbogeradores de contrapressão. Na fase 2, serão instalados os turbogeradores de condensação. As caldeiras com capacidade para todo o sistema foram instaladas na fase 1. Por isso, os dados para o cálculo da eficiência energética global, tanto de projeto como das medições, foram considerados sem as máquinas de condensação.

Os dados básicos da segunda unidade escolhida estão listados na Tabela 6.2 e seu fluxograma básico está mostrado na Figura 6.2. Esta central é denominada como "Cogeração B" daqui por diante.

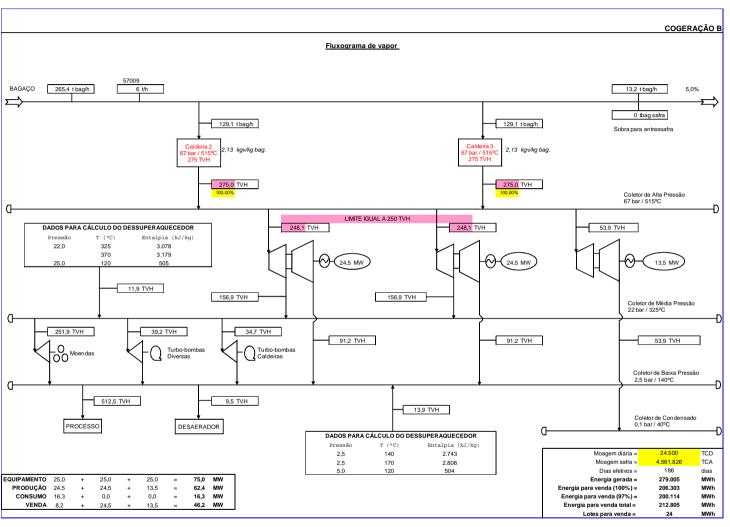
Fluxogramas Vapor_TESE.xls

Fonte: Cedido pela empresa RAÍZEN

Figura 6.1 – Fluxograma básico – Central de Cogeração A

Tabela 6.2 – Dados básicos – Central de Cogeração B

Bagaço de cana Rankine Topping 2 67 bar 515°C
2 67 bar
67 bar
515°C
0.00
2
25 MW
1
25 MW
Sim
22 bar
325°C
2,5 bar
140°C
2,5 bar abs.
117°C


Fonte: Cedido pela empresa RAÍZEN

A Cogeração B foi implementada em uma usina na qual as caldeiras antigas foram desativadas, não tendo sido necessário expurgar valores de produção de vapor destas do balanço de massa e energia.

Com base nos dados básicos e nos fluxogramas apresentados, que indicam valores do balanço de massa e energia executado como premissa operacional para as duas cogerações, pode-se iniciar a aplicação da metodologia proposta no trabalho para ambas as centrais. Desta forma, a primeira etapa a ser executada é o enquadramento de cada central.

6.2. ENQUADRAMENTO

Nesta etapa, foi preenchida a tabela de enquadramento para as duas centrais em estudo. Após o preenchimento, foi indicado o código correspondente a cada central, conforme sugerido pela metodologia. A Tabela 6.3 indica os valores escolhidos para as duas centrais e sua classificação sugerida.

Fonte: Cedido pela empresa RAÍZEN

Figura 6.2 - Fluxograma básico - Central de Cogeração B

Tabela 6.3 – Enquadramento das Cogerações A e B

QUESITO	OPÇÃO	COGERAÇÃO A	COGERAÇÃO B
1. Combustível	ВС	Х	Х
	LN		
	MA		
	BI		
	CA		
2. Pressão	Baixa		
	Média		
	Alta	Х	X
3. Temperatura	300		
•	400		
	500	Х	X
4. Arranjo	CPR		
	ECP	Χ	
	ECD		
	ECC		X
Classificação		BC-Alta-500-ECP	BC-Alta-500-ECC

Fonte: Elaboração própria

Verifica-se que a classe de ambas as centrais é praticamente a mesma, diferindo apenas no fato de a Cogeração A não possuir turbinas de condensação quando de seu estudo. Conforme já citado, após a conclusão da fase 2 de implantação desta central, a mesma será reclassificada incluindo turbogeradores de condensação, ficando exatamente no mesmo enquadramento da Cogeração B.

Uma vez enquadradas as centrais do estudo, passa-se à etapa de cálculo.

6.3. CÁLCULO

A etapa de cálculo iniciou-se com a preparação dos dados para o mesmo. A partir dos balanços de massa e energia fornecidos pelo proprietário, foram preenchidas as tabelas de parâmetros para o cálculo, conforme apresentadas na metodologia.

A Tabela 6.4 apresenta os parâmetros de projeto da Cogeração A.

Tabela 6.4 – Parâmetros de projeto da Cogeração A – preparação

Nº	Parâmetro - premissa	Valor	Unid.
1	Produção total de bagaço da usina	390,1	T/h
2	Consumo de bagaço pela cogeração	193,2	T/h
3	Quantidade de caldeiras	2x320	Un. X TV/h
4	Produção de vapor de alta pressão VD	407,6	T/h
5	Pressão do VD	100	Bar
6	Temperatura do VD	530	°C
7	Quantidade de turbogeradores de contrapressão	2	Unid.
8	Quantidade de turbogeradores de condensação	0	Unid.
9	Produção de vapor de média pressão VM	189,9	T/h
10	Pressão do VM	22	bar
11	Temperatura do VM	300	°C
12	Vazão de dessuperaquecedor de VD para VM	0,0	T/h
13	Consumo de VM pelo processo	164,6	T/h
14	Consumo de VM da(s) turbobomba(s) da(s) caldeira(s)	25,3	T/h
15	Produção de vapor de escape VE	217,8	T/h
16	Pressão do VE	2,5	bar
17	Temperatura do VE	127	oC
18	Vazão de dessuperaquecedor de VD para VE	0,0	T/h
19	Consumo de VE pelo processo	243,1	T/h
20	Perdas de VM na cogeração	3%	T/h ou %
21	Perdas de VE na cogeração	3%	T/h ou %
22	Pressão do condensado de retorno	1,5	bar
23	Temperatura do condensado de retorno	117	°C
24	Produção de eletricidade	60,0	MW
25	Consumo auxiliar de eletricidade - apenas na cogeração	6,0	MW
26	PCI do bagaço	7200*	kJ/kg

Fonte: Elaboração própria * Fonte: CTC (2010)

A Tabela 6.5 apresenta os valores resumidos das grandezas envolvidas diretamente no cálculo da eficiência energética global prevista no projeto da central e o resultado do cálculo de FUE de projeto da Cogeração A.

Tabela 6.5 - Cálculo do FUE de projeto - Cogeração A

CÁLCULO DE PROJETO		
Base horária	1 hora	
W – Trabalho (MWh)	54,000	
Q – VM (MWh)	133,869	
Q - VE (MWh)	177,935	
Q - condensado (MWh)	55,615	
PCI adotado (CTC) - kJ/kg	7200	
F - combustível (MWh)	386,400	
FUE – Projeto	0,803	

Fonte: Elaboração própria

A Tabela 6.6 apresenta os parâmetros de projeto da Cogeração B.

Tabela 6.6 – Parâmetros de projeto da Cogeração B – preparação

Nº	Parâmetro - premissa	Valor	Unid.
1	Produção total de bagaço da usina	265,4	T/h
2	Consumo de bagaço pela cogeração	258,2	T/h
3	Quantidade de caldeiras	2x275	Um. X TV/h
4	Produção de vapor de alta pressão VD	550	T/h
5	Pressão do VD	67	Bar
6	Temperatura do VD	515	°C
7	Quantidade de turbogeradores de contrapressão	2	Unid.
8	Quantidade de turbogeradores de condensação	1	Unid.
9	Produção de vapor de média pressão VM	313,8	T/h
10	Pressão do VM	22	bar
11	Temperatura do VM	325	°C
12	Vazão de dessuperaquecedor de VD para VM	11,9	T/h
13	Consumo de VM pelo processo	291	T/h
14	Consumo de VM da(s) turbobomba(s) da(s) caldeira(s)	34,7	T/h
15	Produção de vapor de escape VE	182,4	T/h
16	Pressão do VE	2,5	bar
17	Temperatura do VE	140	oC
18	Vazão de dessuperaquecedor de VD para VE	13,9	T/h
19	Consumo de VE pelo processo	512,5	T/h
20	Perdas de VM na cogeração	3%	T/h ou %
21	Perdas de VE na cogeração	3%	T/h ou %
22	Pressão do condensado de retorno	1,5	bar
23	Temperatura do condensado de retorno	115	°C
24	Produção de eletricidade	62,5	MW
25	Consumo auxiliar de eletricidade - apenas na cogeração	6,0	MW
26	PCI do bagaço	7200*	kJ/kg

Fonte: Elaboração própria * Fonte: CTC (2010)

A Tabela 6.7 apresenta os valores resumidos das grandezas envolvidas diretamente no cálculo da eficiência energética global prevista no projeto da central e o resultado do cálculo de FUE de projeto da Cogeração B.

6.4. MEDIÇÃO

Nesta etapa, foram planejadas, preparadas e executadas as medições dos fluxos de energia da central de cogeração durante sua operação. Foram preenchidos os registros de mapeamento dos pontos de medição e os parâmetros complementares para medição em cada central, conforme as respectivas tabelas da

metodologia. Em vistoria realizada em cada central de cogeração, foram mapeados todos os pontos de medição para cada fluxo de eletricidade, calor e combustível. Foram definidas, para cada fluxo, as formas de medição das grandezas necessárias à obtenção da eficiência energética global da central.

Tabela 6.7 – Cálculo do FUE de projeto – Cogeração B

CÁLCULO DE PROJETO			
Base horária	1 hora		
W – Trabalho (MWh)	56,500		
Q – VM (MWh)	241,228		
Q - VE (MWh)	170,787		
Q - condensado (MWh)	66,517		
PCI adotado (CTC) - kJ/kg	7200		
F - combustível (MWh)	516,400		
FUE - Projeto	0,778		

Fonte: Elaboração própria

As Tabelas 6.8 e 6.9 apresentam os registros dos pontos de medição conforme os mapeamentos realizados nas Cogerações A e B respectivamente. É importante observar algumas premissas que precisaram ser adotadas em função da instrumentação encontrada em cada central.

Os parâmetros de consumo de VM e VE no processo não possuíam medição no ponto adequado, portanto foram calculados a partir da adição ou subtração entre parâmetros lidos. O consumo de VM no processo foi tido como sendo a produção líquida disponibilizada pela central. Então foi calculado como sendo a produção de VM nos turbogeradores subtraída do seu consumo pelas turbobombas de água de caldeira. O consumo de VE no processo foi tido como sendo a produção líquida disponibilizada pela central. Então foi calculado como sendo a produção de VE nos turbogeradores adicionada do escape nas turbobombas de água de caldeira.

Não havia medição direta de vapor VM direcionado para as turbobombas de água das caldeiras. Assim, esta medição precisou ser feita de forma indireta pela vazão de água destas bombas, e aplicando-se uma correlação linear entre vazão real de água x vazão nominal de água – vazão real de vapor x vazão nominal de vapor.

Tabela 6.8 – Registro do mapeamento de pontos de medição da central – Cogeração A

Nº	Parâmetro	Instrumento Tipo	Instrumento Quantidade	Unid.	Origem da leitura
1	Produção total de bagaço da usina	Não há			Não medido
2	Consumo de bagaço pela cogeração	Dosador de bagaço	10 / caldeira	RPM	Supervisório
3	Quantidade de caldeiras		2		
4	Produção de vapor de alta pressão VD	Transmissor de vazão	1 / Caldeira	T/h	Supervisório
5	Pressão do VD	Transmissor de pressão	1 / Caldeira	kgf/cm²	Supervisório
6	Temperatura do VD	Transmissor de temperatura	1 / Caldeira	°С	Supervisório
7	Quantidade de turbogeradores de contrapressão		2		
8	Quantidade de turbogeradores de condensação		0		
9	Produção de vapor de média pressão VM	Transmissor de vazão	1 / Turbogerador	T/h	Supervisório
10	Pressão do VM	Transmissor de pressão	1 / Turbogerador	kgf/cm²	Supervisório
11	Temperatura do VM	Transmissor de temperatura	1 / Turbogerador	°C	Supervisório
12	Vazão de dessuperaquecedor de VD para VM	Não há	<u> </u>		Não medido
13	Consumo de VM pelo processo	Subtração P9-P14		T/h	Cálculo indireto
14	Consumo de VM da(s) turbobomba(s) da(s) caldeira(s)	Transmissor de vazão água de alimentação	1 / Caldeira	m³/h	Cálculo indireto
15	Produção de vapor de escape VE	Subtração VD-VM	1 / Turbogerador	T/h	Cálculo indireto
16	Pressão do VE	Transmissor de pressão	1 / Turbogerador	kgf/cm²	Supervisório
17	Temperatura do VE	Transmissor de temperatura	1 / Turbogerador	°C	Supervisório
18	Vazão de dessuperaquecedor de VD para VE	Não há	<u> </u>		Não medido
19	Consumo de VE pelo processo	Adição P15+P14		T/h	Cálculo indireto
20	Perdas de VM no processo	Não há			Estimativa
21	Perdas de VE no processo	Não há			Estimativa
22	Pressão do condensado de retorno	Transmissor de pressão	1 no desaerador	kgf/cm²	Supervisório
23	Temperatura do condensado de retorno	Transmissor de temperatura	1 no desaerador	°C	Supervisório
24	Produção de eletricidade	Controlador de geração	1 / Turbogerador	MWh	Instrumento
25	Consumo auxiliar de eletricidade - apenas na cogeração	Relé de proteção do ramal	1 / subestação auxiliar	kW	Supervisório
26	PCI do bagaço	Não há			Estimativa

Fonte: Elaboração própria

Tabela 6.9 – Registro do mapeamento de pontos de medição da central – Cogeração B

Nº	Parâmetro	Instrumento Tipo	Instrumento Quantidade	Unid.	Origem da leitura
1	Produção total de bagaço da usina	Não há			Não medido
2	Consumo de bagaço pela cogeração	Dosador de bagaço	10 / caldeira	RPM	Supervisório
3	Quantidade de caldeiras		2		
4	Produção de vapor de alta pressão VD	Transmissor de vazão	1 / Caldeira	T/h	Supervisório
5	Pressão do VD	Transmissor de pressão	1 / Caldeira	kgf/cm²	Supervisório
6	Temperatura do VD	Transmissor de temperatura	1 / Caldeira	°C	Supervisório
7	Quantidade de turbogeradores de contrapressão		2		
8	Quantidade de turbogeradores de condensação		1		
9	Produção de vapor de média pressão VM	Transmissor de vazão	1 / Turbogerador	T/h	Supervisório
10	Pressão do VM	Transmissor de pressão	1 / Turbogerador	kgf/cm²	Supervisório
11	Temperatura do VM	Transmissor de temperatura	1 / Turbogerador	°C	Supervisório
12	Vazão de dessuperaquecedor de VD para VM	Não há			Não medido
13	Consumo de VM pelo processo	Subtração P9-P14		T/h	Cálculo indireto
14	Consumo de VM da(s) turbobomba(s) da(s) caldeira(s)	Transmissor de vazão água de alimentação	1 / Caldeira	m³/h	Cálculo indireto
15	Produção de vapor de escape VE	Subtração VD-VM	1 / Turbogerador	T/h	Cálculo indireto
16	Pressão do VE	Transmissor de pressão	1 / Turbogerador	kgf/cm²	Supervisório
17	Temperatura do VE	Transmissor de temperatura	1 / Turbogerador	°C	Supervisório
18	Vazão de dessuperaquecedor de VD para VE	Não há			Não medido
19	Consumo de VE pelo processo	Adição P15+P14		T/h	Cálculo indireto
20	Perdas de VM no processo	Não há			Estimativa
21	Perdas de VE no processo	Não há			Estimativa
22	Pressão do condensado de retorno	Transmissor de pressão	1 no desaerador	kgf/cm²	Supervisório
23	Temperatura do condensado de retorno	Transmissor de temperatura	1 no desaerador	°C	Supervisório
24	Produção de eletricidade	Controlador de geração	1 / Turbogerador	MWh	Instrumento
25	Consumo auxiliar de eletricidade - apenas na cogeração	Relé de proteção do ramal	1 / subestação auxiliar	kW	Supervisório
26	PCI do bagaço	Não há			Estimativa

Fonte: Elaboração própria

Todos os dados cuja origem foi denominada "Supervisório", estão disponíveis no sistema supervisório da sala de controle da central de cogeração. Tal sistema consiste em uma rede TCP/IP que interliga os controladores dos equipamentos da cogeração e estações de operação (computadores com máquina, teclado, mouse e monitor). No servidor desta rede roda um programa supervisório que disponibiliza, em interface amigável na tela para os operadores, muitas das grandezas utilizadas na metodologia deste trabalho. Imagens das telas preparadas para supervisão, leitura e acompanhamento da operação dos sistemas da caldeira e dos turbogeradores estão disponíveis no apêndice deste trabalho.

A Tabela 6.10 apresenta os parâmetros adicionais definidos para as Cogerações A e B.

Tabela 6.10 – Parâmetros adicionais para preparação da medição de eficiência energética global – Cogeração A e Cogeração B

Nº	Parâmetro - premissa	Cogeração A	Cogeração B	Unid.
27	Intervalo de medição de W	1 a 10	1 a 10	Min:seg
28	Intervalo de medição de Q	1 a 10	1 a 10	Min:seg
29	Intervalo de medição de F	1 a 10	1 a 10	Min:seg
30	Intervalo de integração	1	1	Horas
31	Perda de massa (vapor) na caldeira	0	0	%
32	Perda de massa (vapor) nos turbogeradores	0	0	%
33	Perdas de VM	3	3	%
34	Perdas de VE	3	3	%
35	Perda de massa (vapor) no processo	0	0	%

Fonte: Elaboração própria

Para efeito de demonstração da metodologia no estudo de caso, é proposto o intervalo de integração de 1 hora. Uma vez demonstrada a validade da aplicação desta metodologia para o intervalo proposto, sua aplicação para intervalos de integração maiores se torna mais simples.

Como não foram identificados meios para se medir de forma eficaz as perdas de massa associadas aos fluxos de vapor, foi adotada perda mássica igual a zero na caldeira, turbogeradores e no processo. As perdas energéticas por sua vez, foram estimadas em 3% conforme dados tradicionais do proprietário. Pode-se

entender que tal estimativa cobre as perdas mássicas, além daquelas relacionadas à perda de calor nos equipamentos para o meio ambiente.

Uma vez feito o mapeamento de pontos de medição e definidos os parâmetros adicionais para medição nas centrais, foi dado prosseguimento à execução das medições.

Conforme descrito na metodologia, as medições de alimentação de bagaço nas duas centrais foram executadas através das duas formas descritas na metodologia, a fim de verificar a validade do método proposto de medição da vazão volumétrica de bagaço:

- TV/TB Razão entre Tonelada de vapor e Tonelada de bagaço;
- TBxRPM Correlação entre toneladas de bagaço e rotação dos dosadores;

Os resultados das medições da Cogeração A e os resultados encontrados para o FUE encontram-se resumidos na Tabela 6.11.

Tabela 6.11 – Medição e resultados de FUE – Cogeração A

MEDIÇÃO – RAZÃO TV/TB		MEDIÇÃO – CORRELAÇÃO TB x RPM	
Base horária	1 hora	Base horária	1 hora
W - Geração Bruta (MWh)	51,320	W - Geração Bruta (MWh)	51,320
W - Cons. Auxiliares (MWh)	3,571	W - Cons. Auxiliares (MWh)	3,571
W Útil	47,749	W Útil	47,749
Q – VM (MWh)	111,336	Q – VM (MWh)	111,336
Q – VE (MWh)	204,581	Q – VE (MWh)	204,581
Q - condensado (MWh)	59,070	Q - condensado (MWh)	59,070
Q útil	256,847	Q útil	256,847
Vazão Total VD Caldeiras (T/h)	412,443	Vazão TOTAL de BAGAÇO (m³/h)	921,262
Razão (T.Vapor/T.Bagaço)	2,11	Densidade adotada* – (kg/m³)	250
PCI adotado** - (kJ/kg)	7200	PCI adotado** – (kJ/kg)	7200
Vazão mássica de bagaço (T/h)	195,471	Vazão mássica de bagaço (T/h)	230,315
F - combustível (MWh)	390,941	F - combustível (MWh)	431,687
FUE	0,779	FUE	0,706

Fonte: Elaboração própria

Em virtude das boas condições operacionais de estabilidade da geração de eletricidade e calor nas Cogerações A e B nas datas e horários escolhidos para a

^{*} Fonte: Cedido pela empresa RAÍZEN. ** Fonte: CTC (2010)

medição, foram adotados na prática os intervalos de medição de 10 minutos para as grandezas W, Q e F, sem que tenha havido qualquer prejuízo dos resultados encontrados. O relaxamento na faixa dos intervalos de medição permitiu também ajustar melhor a equipe mobilizada durante as medições. Os resultados das medições da Cogeração B e os resultados encontrados para o FUE encontram-se resumidos na Tabela 6.12.

Tabela 6.12 – Medição e resultados de FUE – Cogeração B

MEDIÇÃO – RAZÃO TV/TB		MEDIÇÃO - CORRELAÇÃO TB x RPM		
Base horária	1 hora	Base horária	1 hora	
W - Geração Bruta (MWh)	53,230	W - Geração Bruta (MWh)	53,230	
W - Cons. Auxiliares (MWh)	3,924	W - Cons. Auxiliares (MWh)	3,924	
W Útil	49,306	W Útil	49,306	
Q – VM (MWh)	176,433	Q – VM (MWh)	176,433	
Q – VE (MWh)	176,324	Q – VE (MWh)	176,324	
Q - condensado (MWh)	60,204	Q - condensado (MWh)	60,204	
Q útil	292,553	Q útil	292,553	
Vazão Total VD Caldeiras (T/h)	447,177	Vazão TOTAL de BAGAÇO (m³/h)	893,393	
Razão (T.Vapor/T.Bagaço)	2,11	Densidade adotada* – (kg/m³)	250	
PCI adotado** – (kJ/kg)	7200	PCI adotado** – (kJ/kg)	7200	
Vazão mássica de bagaço (T/h)	211,932	Vazão mássica de bagaço (T/h)	223,348	
F - combustível (MWh)	423,865	F - combustível (MWh)	423,647	
FUE	0,807	·	0,807	

Fonte: Elaboração própria

* Fonte: Cedido pela empresa RAÍZEN. ** Fonte: CTC (2010)

Imagens das telas do supervisório com as curvas de rotação dos dosadores durante o período de medição em cada central estão disponíveis no apêndice deste trabalho.

Desta maneira, das medições em cada central, resultam dois valores para FUE: um considerando a medição de bagaço pela produção de vapor da caldeira, outra considerando a medição de bagaço pela rotação dos dosadores da caldeira (vazão volumétrica). Os resultados da Cogeração A demonstram que há diferença ao se considerar a alimentação de bagaço como função da produção de vapor ou

como medição da vazão volumétrica. Esta diferença pode ser explicada por alguns fatores:

- A razão de produção de vapor por consumo de bagaço pode variar em função do carregamento da caldeira. Isto acarreta erro na medição indireta pela vazão de vapor da caldeira;
- Durante o período de medição as caldeiras da Cogeração A se encontravam operando em aproximadamente 62,5% de carga, o que sugere que seu rendimento poderia estar abaixo do máximo declarado pelo fabricante. A observação mais detalhada das condições operacionais do rendimento específico da caldeira podem levar a conclusões mais seguras;
- A densidade do bagaço pode variar. Isto acarreta erro na medição pela vazão volumétrica ao se considerar este parâmetro fixo.

No caso da Cogeração B, apesar de os números de FUE terem tido resultados idênticos, considera-se que a influência dos fatores acima descritos seja a mesma. Há outro fator que pode ajudar a explicar porque esta comparação na Cogeração A resultou diferente e na Cogeração B resultou igual. Durante a medição nas centrais, verificou-se que, enquanto na Cogeração A as caldeiras estavam operando ambas com 62,5% de capacidade, na Cogeração B, ambas estavam operando com 80% de capacidade. Pontos de operação diferentes podem resultar em rendimentos operacionais diferentes nas caldeiras. Caso houvesse um sistema de medição instantânea de densidade do bagaço, de poder calorífico do mesmo ou ainda de rendimento da caldeira apenas, estas questões poderiam sair do campo hipotético para o empírico, o que certamente ajudaria a mapear os reais pontos de melhoria.

O valor adotado para a razão Toneladas de vapor por Toneladas de bagaço, de 2,11 T.vapor/T.bagaço, foi informado pelo proprietário das centrais como sendo o valor utilizado tradicionalmente ano após ano em seus processos de controle. Tal valor é declarado e validado pelo fabricante da caldeira. Em ambas as centrais, as caldeiras são do mesmo fabricante "Dedini", e do mesmo tipo "*Monodrum*".

O valor adotado para a densidade do bagaço, de 250 kg/m³, foi aquele informado pelo proprietário das centrais como sendo a densidade do bagaço nos caminhões que transportam bagaço entre usinas, condição mais próxima da densidade do mesmo dentro dos dutos de alimentação que conduzem o bagaço até

cada dosador da respectiva caldeira. O valor informado foi baseado em amostra retirada do sistema de controle de compra de bagaço da Cogeração A, no qual os caminhões são pesados na entrada (cheios) e na saída (vazios) da usina. Suas dimensões aproximadas são também anotadas.

Os caminhões transportam bagaço cheios e possuem caçambas com altura em torno de 3 a 4 metros. Pelo princípio operacional da caldeira, os dutos têm uma altura em torno de 5 metros acima do dosador e trabalham cheios de bagaço até o topo. A esteira que alimenta os dosadores trabalha sempre com excesso de bagaço para garantir que todos os dutos estejam realmente cheios. Desta maneira, há uma similaridade na altura do empilhamento de bagaço entre o caminhão e o duto de alimentação da caldeira.

O poder calorífico inferior (PCI) do bagaço adotado, de 7200 kJ/kg, pode também variar em função das condições do tempo, das condições da moagem instantânea da cana. Isto acarreta erro na mesma proporção em ambas as medições, não estando portanto relacionado à diferença entre os métodos de medição da alimentação de bagaço. De qualquer maneira, uma medição instantânea do poder calorífico do bagaço, direta ou indireta, seria importante para melhorar a qualidade da medição da energia que entra na central. Isto reduziria o erro da medição do FUE quando comparado ao de projeto ou à meta de longo prazo.

6.5. VERIFICAÇÃO

Nesta etapa são mostrados os valores de energia e os resultados dos cálculos do FUE no projeto, medições e meta e é executada uma análise crítica orientada que permite a definição de ações de melhoria para o ciclo seguinte de medição.

As Tabelas 6.13 e 6.14 apresentam os resultados resumidos em cada forma de cálculo do FUE: projeto, medição considerando razão TV/TB, medição considerando correlação TBxRPM e meta de longo prazo, para as Cogerações A e B respectivamente.

Tabela 6.13 – Verificação dos resultados e comparação – Cogeração A

Parâmetro	Projeto	Medição Razão TV/TB	Medição Correlação TBxRPM	Meta de Longo Prazo
Eletricidade bruta gerada (MWh)	60,000	51,320	51,320	
Eletricidade cons. auxiliar (MWh)	6,000	3,571	3,571	
Eletricidade útil (MWh)	54,000	47,749	47,749	
Calor entregue VM (MWh)	133,869	111,336	111,336	
Calor entregue VE (MWh)	177,935	204,581	204,581	
Calor do condensado (MWh)	55,615	59,070	59,070	
Calor útil (MWh)	256,189	256,847	256,847	
Perdas VM (%)	3%	3%	3%	
Perdas VE (%)	3%	3%	3%	
Consumo de bagaço (MWh)	386,400	390,941	431,687	
FUE	0,803	0,779	0,706	0,85

Fonte: Elaboração própria

Tabela 6.14 – Verificação dos resultados e comparação – Cogeração B

Parâmetro	Projeto	Medição Razão TV/TB	Medição Correlação TBxRPM	Meta de Longo Prazo
Eletricidade bruta gerada (MWh)	62,500	53,230	53,230	
Eletricidade cons. auxiliar (MWh)	6,000	3,924	3,924	
Eletricidade útil (MWh)	56,500	49,306	49,306	
Calor entregue VM (MWh)	241,228	176,433	176,433	
Calor entregue VE (MWh)	170,787	176,324	176,324	
Calor do condensado (MWh)	66,517	60,204	60,204	
Calor útil (MWh)	345,498	292,553	292,553	
Perdas VM (%)	3%	3%	3%	
Perdas VE (%)	3%	3%	3%	
Consumo de bagaço (MWh)	516,400	423,865	423,647	
FUE	0,778	0,807	0,807	0,85

Fonte: Elaboração própria

De posse das tabelas de verificação, inicia-se o processo de análise crítica dos resultados e comparações.

Sobre entradas e saídas de energia - W, Q e F

Os valores medidos de eletricidade bruta gerada encontram-se um pouco abaixo daqueles preconizados nos respectivos projetos das centrais A e B. No entanto, o desvio pode ser considerado normal, pois durante o projeto é feito um cálculo de geração sempre constante durante toda a safra, mas que não se mantém

constante durante a operação, podendo ser abaixo da média em determinados dias e horas, e acima da média em outros.

Particularmente no caso da Cogeração B, o turbogerador de condensação não estava operando na data e hora da medição, o que justifica a geração bruta abaixo do patamar projeto. Por outro lado, a comparação entre os dados de medição das centrais A e B ganha confiabilidade. Uma vez que a Cogeração A não possui turbogeradores de condensação e este não estava operando durante o período de medição da Cogeração B, ambas as centrais tiveram suas medições exatamente na mesma configuração de turbogeradores.

Cabe ressaltar a importância da manutenção da operação dos turbogeradores em patamares de operação o mais próximos do preconizado, especialmente se houver venda de eletricidade no ambiente de contratação regulado (ACR) para o mercado de eletricidade.

Os valores medidos de consumo auxiliar encontram-se abaixo daqueles preconizados pelo projeto em ambas as centrais A e B. Isto a rigor é bom, pois permite disponibilizar uma quantidade de eletricidade para o sistema maior do que aquela prevista no projeto.

Os resultados medidos de calor útil ficaram muito próximos aos de projeto na Cogeração A. Não foi o caso da Cogeração B.

Sobre consumo de bagaço

Os resultados medidos de consumo de bagaço ficaram muito próximos do valor de projeto na Cogeração A, considerando-se o método de medição pela razão TV/TB. Pelo método da correlação TBxRPM, houve um desvio em torno de 10% para mais na medição. Este fator foi preponderante na redução do FUE calculado a partir deste método. Conforme já comentado, tal diferença pode ser decorrente de: erro na razão TV/TB, redução do rendimento da caldeira ou erro na densidade adotada para o bagaço. Não foi encontrada uma curva de Rendimento x Carregamento da caldeira dentre os equipamentos pesquisados neste trabalho.

No caso da Cogeração B, os resultados medidos de consumo de bagaço ficaram 20% abaixo do valor de projeto para ambos os métodos de medição. Isto se explica pelo fato de a caldeira estar operando com 80% de carga, contra 100% de carga preconizados pelo projeto. Interessante notar que, neste caso, os valores de consumo entre os métodos de medição ficaram praticamente idênticos. Conforme já

comentado, acredita-se que haja uma feliz coincidência em tão grande exatidão na coincidência de valores de consumo de bagaço, que se refletem nos FUE calculados para os dois métodos de medição de consumo de bagaço. Isto poderia ser interpretado como o acerto entre as premissas: Razão TV/TB x Densidade do bagaço. No entanto, se ambas as premissas tiverem o mesmo erro em relação ao real, tal igualdade comparativa de consumo de bagaço e FUE seria repetida sem que se pudesse detectar tal erro. De qualquer forma, estes resultados indicam que a medição de consumo de bagaço pela vazão volumétrica em função da rotação dos dosadores pode ser um bom método para maior desenvolvimento.

Sobre consumo de vapor no processo

Conforme já mencionado, a diferença de resultados de calor útil entre projeto e medição na Cogeração B sugere uma análise mais aprofundada das condições de consumo de vapor na usina. Tanto na Cogeração A como na Cogeração B há um grande consumo proporcional de VM, utilizado nos turboacionamentos para bombas de água de alimentação das caldeiras, para os equipamentos do preparo de cana e para as moendas de cana. Particularmente na Cogeração B, o consumo proporcional do VM em relação ao do VE é muito alto. Recomenda-se verificar as condições de rendimento dos turbogeradores para extrações de VM superiores àquelas de VE. Nestas condições, pode haver queda no rendimento da turbina, o que resulta no aumento de temperatura na saída da extração, exigindo condicionamento do VM para seu consumo no processo. Além da maior perda na turbina, o condicionamento representa perda adicional da energia do vapor. Em se confirmando estas hipóteses, uma solução seria a redução do consumo de VM no processo, através da troca de turboacionamentos do preparo e moendas por motores elétricos.

Variáveis relevantes entre usos e eficiência

Pelo que se pôde observar, as variáveis mais relevantes discutidas foram:

- Razão TV/TB adotada:
- Densidade do bagaço adotada;
- PCI do bagaço adotado;
- Proporção de extração de VM x escape de VE nos turbogeradores;

• Perdas no consumo de VM e VE pelo processo.

Assim, recomenda-se que estas variáveis sejam verificadas a cada ciclo de gestão com maior atenção a fim de verificar a sensibilidade dos casos estudados a cada uma delas.

FUE – Projeto x Medição x Metas

Verificou-se em cada uma das centrais estudadas um comportamento de FUE na comparação Projeto x Medição. Enquanto na Cogeração A, o FUE de projeto está acima do medido, na Cogeração B está abaixo do medido.

Esta comparação entre os casos A e B é importante pois justifica a adoção de metas de longo prazo como guia para a melhoria contínua.

Caso a Cogeração B não adote meta de longo prazo para o FUE, seu resultado conforme o estudo de caso aqui desenvolvido seria melhor que o esperado, levando a uma acomodação da situação de acompanhamento contínuo. No entanto, como já mencionado, há problemas relacionados ao calor do VM.

Foi indicado como meta de longo prazo em ambos os casos, o valor de 0,85 para o FUE, que corresponde aos valores típicos para ciclos Rankine de cogeração com contrapressão, conforme apresentado no Capítulo 2 deste trabalho (fundamentação teórica).

A respeito do processo adotado nas medições de eletricidade, verificou-se que a presença de multimedidores de energia em cada consumidor auxiliar da cogeração tornaria este processo mais ágil e mais confiável sob o ponto de vista da confiabilidade do valor obtido.

A respeito do processo adotado nas medições de calor, verificou-se a existência de várias lacunas que levaram à adoção de estimativas e premissas, o que não é desejável no processo de medição. Entende-se a dificuldade em se ter transmissores de pressão, temperatura e vazão em abundância na central. Mas é importante estudar caso a caso a relação custo-benefício da instalação de instrumentos que possam mapear perdas de energia ao invés de estimá-las.

A respeito dos processos adotados nas medições de combustível, verificouse que o método proposto neste trabalho atingiu um resultado razoável em apenas duas aplicações. Demonstra portanto um potencial de desenvolvimento importante na aferição da operação da caldeira, que representa um nó chave em qualquer central de cogeração termoelétrica a biomassa. Recomenda-se o aprofundamento de estudos na aplicação deste método.

Cabe ressaltar a importância da qualidade das medições a serem executadas a fim de que o processo possa se tornar acreditado. Assim, deve-se dedicar especial atenção à analise crítica dos medidores e instrumentos utilizados, da forma com que os dados são coletados, e de todas as condições que cercam o processo de medição a fim de identificar pontos potenciais de melhoria contínua que garantam a credibilidade da metodologia aqui proposta.

Um aperfeiçoamento das ferramentas computacionais do supervisório também é importante para tornar grande parte das leituras e acúmulo de valores automático no sistema.

Sobre a efetividade das melhorias propostas

Em virtude do estudo de caso ter passado por apenas um ciclo de PDCA em cada central, as ações e melhorias recomendadas aqui poderão ser levadas adiante pelo proprietário das centrais de cogeração.

Como já foi dito, a adoção de uma política de eficiência energética, ligada à missão, visão e valores da empresa, são passos primordiais para a aplicação desta metodologia de forma continuada. Não se trata portanto de uma aplicação pontual, mas da implementação de um processo que se repete a cada ciclo na busca da melhoria contínua da eficiência energética global da central de cogeração à qual se aplicar.

6.6. **AÇÃO**

Nesta etapa são listadas as ações possíveis de melhoria para o ciclo seguinte de operação da central, retiradas das conclusões do processo de verificação.

A Tabela 6.15 apresenta a planilha de ações propostas preenchida.

Tabela 6.15 – Planilha de ações propostas de melhoria do ciclo

Nº	Nome:Descrição	Justificativa	Prioridade
1	Elaborar estudo mais aprofundado das perdas no consumo de vapor VM e VE no processo – Cogeração A	Perdas podem ser maiores do que as estimadas, gerando falsa leitura.	
2	Levantar curva Rendimento x Carregamento da caldeira, Cogeração A.	Caldeira quando opera fora do ponto nominal pode distorcer o parâmetro TV/TB.	
3	Desenvolver mais medições para validação do método de medição da alimentação de bagaço nas caldeiras	Método mostrou-se promissor na aferição da relação TV/TB da caldeira, especialmente em pontos de operação longe do nominal	
4	Implementar na medição, a verificação das condições de perdas mássicas de vapor e de perdas por troca de calor com o meio em equipamentos antigos, com isolação térmica em más condições, ou ainda de perdas em equipamentos com baixo rendimento de troca térmica.	A premissa de perdas mássicas zero em alguns elos do ciclo são fatores de distorção na medição	
5	Implementar medição continuada do PCI do bagaço na central através de instrumentação adequada.	Medida traz ganho potencial para melhorar a gestão da eficiência, reduzindo o consumo da fonte ou aumentando a oferta de eletricidade e calor.	
6	Implementar multimedidores de energia em todos os pontos de consumo auxiliar.	Medida traz automação total às medições de eletricidade, uma vez que a geração já é medida de forma automática.	
7	Implementar sistema de controle de calibração de instrumentos de medição.	A aferição e calibração conforme requisitos do IMETRO traz acreditação para o modelo perante auditorias.	
8	Implementar sistema automático de consolidação das medições referentes a energia da central.	A implementação de um sistema automático traz ganhos de produtividade para a equipe de operação, uma vez que delega ao hardware e software uma tarefa que demanda tempo.	

6.1. RESUMO

Tendo chegado ao fim da aplicação da metodologia proposta neste trabalho através do estudo de caso, pode-se resumir o percurso do ciclo PDCA através das atividades listadas abaixo.

P - Planejamento

Nesta etapa do ciclo, foram executados:

- A obtenção dos dados básicos das centrais do estudo de caso;
- A preparação das centrais através da adequação das equações e do fluxograma gerais para os casos particulares das centrais em estudo;
- O enquadramento das centrais conforme a classificação proposta.

D - Execução

Nesta etapa do ciclo, foram executados:

- O cálculo do FUE para as condições de projeto de cada central;
- A preparação para as medições nos diversos pontos mapeados em cada central;
- A rotina de medições conforme o plano estabelecido.

C - Verificação

Nesta etapa do ciclo, foram executados:

- O processamento dos dados de medição obtidos;
- O resumo e organização dos dados nas tabelas propostas;
- A análise crítica das medições x cálculo sob os pontos de vista indicados.

A - Ação

Nesta etapa do ciclo, foram executados:

 A consolidação das medidas de melhoria propostas para aplicação no ciclo seguinte.

7. CONCLUSÕES

O objetivo deste trabalho até aqui foi propor e aplicar uma metodologia de gestão da eficiência energética global de centrais de cogeração a biomassa operando em ciclo Rankine baseada no ciclo de melhoria contínua PDCA.

A aplicação da metodologia proposta ao estudo de caso demonstrou que:

- A adoção dos procedimentos passo-a-passo propostos permite que se consiga calcular o FUE de projeto e o decorrente das medições;
- Permite também que se possa comparar os valores parciais de energia da eletricidade, calor e fonte, e também os valores calculados do FUE para cada caso;
- Demonstra que a comparação dos FUE entre projeto e medição, inclusive entre diferentes maneiras de medição tem validade para a análise crítica que leva à proposição de melhorias para aprimoramento contínuo;
- Demonstra que os valores encontrados para FUE em centrais de ciclo Rankine estão dentro do esperado levando-se em conta valores típicos do FUE conforme as referências teóricas deste trabalho, e as particularidades das centrais estudadas;
- Aponta proposições de implementações para melhoria da eficiência energética global dos casos estudados;
- Aponta proposições de implementações para melhoria da própria metodologia proposta, especialmente no que tange a métodos de medição;
- Sugere que se dê continuidade no aprimoramento deste trabalho através de sua aplicação continuada por todo e qualquer agente gerador que possua ou queira possuir centrais de cogeração operando no sistema elétrico brasileiro;
- Está alinhado com o propósito de uso racional dos recursos energéticos uma vez que a melhoria da eficiência energética global traz redução de consumo de fonte ou aumento da oferta de energia na forma de eletricidade ou calor.

É importante índice ressaltar que, embora 0 escolhido para acompanhamento da eficiência energética global da central de cogeração tenha sido o FUE sem qualquer adaptação ou modernização, é perfeitamente possível a adaptação da metodologia para adoção de outros índices mais atuais, especialmente aqueles que levam em consideração de forma mais clara as diferenças entre trabalho e calor, alguns deles teido sido citados neste trabalho. Muitas medições e índices adotados no trabalho permanecem válidos também para outras formulações. Seriam necessárias algumas inclusões de parâmetros específicos das outras formulações.

Embora a metodologia proposta neste trabalho tenha sido implementada com sucesso, demonstrado pelo estudo de caso, há pontos importantes de recomendação para desenvolvimento futuro da mesma.

A automatização das tomadas de dados de medição é um fator importante para tornar simples a aplicação da metodologia. Tal medida é possível tecnicamente com os recursos computacionais e de automação existentes em grande parte das usinas hoje existentes. No entanto, isto requer o desenvolvimento de uma sistemática que possa ser aplicada ao maior universo de centrais possível. O desenvolvimento desta sistemática ajudará ainda a padronizar a disponibilização destes dados na rede mundial de computadores ou em redes dedicadas, como por exemplo a rede de dados de faturamento de eletricidade no Brasil gerida pela CCEE, a Câmara de Comercialização de Energia Elétrica. Ainda, a utilização de sistemas de medição de calor e combustível com instrumentação calibrada e certificada pela RBC do INMETRO é um passo fundamental na busca de um processo de medição que venha a ser considerado acreditado para fins de certificação universal de todo o processo de gestão da eficiência energética de qualquer central, como aquela proposta pela norma ISO DIS 50001, em discussão final.

Embora a aplicação da metodologia dê sinais de onde as melhorias em determinada central devam ser implementadas ou pesquisadas, a resolução pela priorização de ações mapeadas e sua posterior implementação exige sempre estudos mais detalhados. Neste caso, são bem vindos: a aplicação de outros trabalhos acadêmicos dentre os pesquisados, ou mesmo o desenvolvimento de novos trabalhos de análise detalhada dos rendimentos parciais dos equipamentos e sistemas de centrais de cogeração.

Trabalhos de pesquisa de campo relacionados à medição com instrumentação adequada do PCI do bagaço e da vazão mássica real de entrada do combustível na caldeira já foram mencionados, mas reforça-se aqui sua importância. Embora não tenha sido o foco do trabalho, o método de medição de vazão do bagaço na entrada de uma caldeira demonstrou haver um potencial de desenvolvimento para que se torne referência na medição de entrada deste combustível no sistema. O desenvolvimento de um trabalho com foco neste tema, utilizando toda a ciência da metrologia em ambiente acadêmico, em parceria com agentes geradores traria benefícios para a pesquisa científica e para todo o setor de cogeração termoelétrica renovável no Brasil.

8. REFERÊNCIAS

ABE, Ricardo S.; Desenvolvimento e Aplicação de Metodologia de Simulação para Estudos de Viabilidade de Plantas de Cogeração; Dissertação de Mestrado; Universidade de São Paulo, São Paulo, 2002, 142p.

ALVES, Sizenando Silveira; Tipificação dos instrumentos de políticas de apoio à eficiência energética: a experiência mundial e o cenário nacional. Dissertação de mestrado. Universidade de São Paulo. São Paulo. 2007. 184p.

ANÁLISE ENERGIA – Anuário 2009; Ed. Análise Editorial, 2009. São Paulo.

BALESTIERI, Jose A. P.; Cogeração; Editora da UFSC, 2002, 279p.

BARRIGA ANGULO, Mario Bernardo; Experimentos de Gaseificação de Casca de Arroz em Leito Fluidizado; Dissertação de Mestrado; Universidade Estadual de Campinas, Campinas, 2002. 65p.

BJAREBORN, Emil; AKERMAN, Fredrik; Thermodynamic modelling of biomass based power production; Dissertação de Mestrado; Lund University, Lund, Suécia, 2010. 78p.

BORGERT JR., José A.; Otimização Exergoeconômica de Ciclos de Absorção para Geração de Potência; Dissertação de Mestrado; PUC-PR, Curitiba, 2003. 171p.

BRASIL. Ministério de Minas e Energia. Empresa de pesquisa Energética. [on-line]; Plano Nacional de Energia – 2030, 12vol. Brasília, 2007. Disponível em: http://www.mme.gov.br/ >. Acesso em 28 mar. 2010.

BRASIL. ANEEL – Agência Nacional de Energia Elétrica [on-line]; BIG – Banco de Informações de Geração. Brasília, 2010. Disponível em: http://www.aneel.gov.br>. Acesso em 01 abr. 2010.

BRASIL. ANEEL – Agência Nacional de Energia Elétrica [on-line]; Resolução Normativa nº 235. Brasília, 2006. Disponível em: http://www.aneel.gov.br>. Acesso em 01 abr. 2010.

BRASIL. Ministério de Minas e Energia. Empresa de pesquisa Energética. [on-line]; BEN2010 - Balanço Energético Nacional. Brasília, 2011. Disponível em: http://www.mme.gov.br. Acesso em 02 mai. 2011.

CARDONA, E.; PIACENTINO, A.; "Cogeneration: a Regulatory Framework Toward Growth". Energy Policy, Volume 33, Issue 16, Elsevier, Nov. 2005, Páginas 2100-2111.

CARVALHO, José A. B. de; "Uma proposta de agrupamento de indicadores para avaliação da efetividade do gerenciamento da segurança de usinas nucleares". Dissertação de Mestrado; Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2009. 82p.

CGEE – Centro de Gestão de Estudos Estratégicos. Bioetanol combustível: uma oportunidade para o Brasil. Brasília, 2009. 536p. ISBN – 978-85-60755-15-8.

COGEN-EU – Cogen Europe; Educogen – The European Education Tool on Cogeneration; Segunda edição, Bruxelas, Bélgica, 2001.

COMISSÃO EUROPÉIA [on-line], Directiva 2004/8/CE do Parlamento Europeu e do Conselho. Comunidade Européia, 2004. Disponível em: http://europa.eu/legislation_summaries/energy/index_en.htm>. Acesso em 10 set. 2010.

COMISSÃO EUROPÉIA [on-line], Decisão da Comissão 2008/952/CE. Comunidade Européia, 2004. Disponível em: http://europa.eu/legislation_summaries/energy/index_en.htm>. Acesso em 24 mai. 2010.

COSTA, Alessandro N.; Otimização da Lucratividade de Plantas de Cogeração: Modelagem do Problema PCLM; Dissertação de Mestrado. Universidade Federal do Rio de Janeiro - COPPE. Rio de Janeiro, 2008, 220p.

CTC – Centro de Tecnologia Canavieira [on-line]; Caracterização, movimentação e armazenagem do bagaço e palha de cana. Brasília, 2010. Disponível em: http://www.ctcanavieira.com.br/>. Acesso em 16 mai. 2010.

DIAS, Rubens A.; MATTOS, Cristiano R.; BALESTIERI, Jose A. P.; Uso Racional de Energia: ensino e cidadania; Editora Unesp, 2006, 189p.

DIXON, Robert K.; McGOWAN, Elisabeth; ONYSKO, Ganna; SCHEER, Richard M.; "US Energy, Conservation and Efficiency Policies: Challenges and Opportunities". Energy Policy, Volume 38, Issue 11, Nov. 2010, Páginas 6398-6408.

ENSINAS, Adriano Viana; Integração térmica e otimização termoecômica aplicadas ao processo industrial de produção de açúcar e etanol a partir da cana-de-açucar; Tese de Doutorado; Universidade Estadual de Campinas: Faculdade de Engenharia Mecânica, Campinas 2008. 207 p.

FERREIRA, Elzimar T. F.; Análise de sistemas de cogeração com gaseificação de licor negro no setor de papel e celulose; Dissertação de Mestrado. Universidade Estadual Paulista. Guaratinguetá, 2008, 103p.

GALLEGO, Antonio Garrido; Modelagem Computacional e Análise Termodinâmica de Sistemas de Geração de Potência utilizando Gaseificação de Licor Negro; Tese de Doutorado; Universidade Estadual de Campinas: Faculdade de Engenharia Mecânica, Campinas 2004. 202 p.

GARCIA, Agenor G. P.; Leilões de Eficiência Energética no Brasil; Tese de Doutorado. Universidade Federal do Rio de Janeiro - COPPE. Rio de Janeiro, 2008, 186p.

- GOORTANI, Behnam. M.; MATEOS-ESPEJEL, Enrique; PARIS, Jean; "Integration of a cogeneration unit into a kraft pulping process". Applied Thermal Engineering, Volume 30, Issues 17-18, Elsevier, Dez. 2010, Páginas 2724-2729.
- HENRIQUES, Rachel M.; Potencial para Geração de Energia Elétrica no Brasil com Resíduos da Biomassa através da Gaseificação; Tese de Doutorado. Universidade Federal do Rio de Janeiro COPPE. Rio de Janeiro, 2009, 207p.
- HORLOCK, J. H.; Cogeneration Combined Heat and Power (CHP): Thermodynamics and Economics; Krieger Publishing Company, 1997, 246p.
- HUANG, F.F. Performance assessment parameters of a cogeneration system. Proceedings of Ecos'96, Efficiency, Costs, Optimization Simulation and Environmental Aspects of Energy Systems, Stockholm, 25-27 Junho,1996, pp.225-229.
- INCOSE International Council on Systems Engineering; Systems Engineering Handbook A "what to" guide for all SE practitioners; INCOSE. E.U.A., 2004, 308p.
- INMETRO Instituto Nacional de Metrologia, Normalização e Qualidade Industrial [on-line], Brasília, 2010, O que é o Inmetro, Disponível em: http://www.inmetro.gov.br. Acesso em 20 jan. 2010.
- IEA International Energy Agency; Mind the Gap Quantifying Principal-Agent Problems in Energy Efficiency; IEA Publications, França, 2007, 219p.
- IPA Independent Project Analysis. [on-line]; Quantitative, Empirical, and Objective Approach to Assessing Projects. Ashburn-VA, E.U.A., 2010. Disponível em: http://www.ipaglobal.com/Methodology/Project-Evaluation-System>. Acesso em 01/04/2010.
- ISO International Organization for Standardization; ISO/DIS 50001 Energy Management Systems Requirements with Guidance for Use, Draft International Standard, Geneva, Suíça, 2010.
- JURAN, J. M.: GRYNA, Frank M.; Controle da Qualidade Handbook, Vols. I a VI; Ed. McGraw-Hill Ltda. e Makron Books do Brasil Ltda. S. Paulo, Brasil, Tradução da 4ª Ed. do original "Juran"s Quality Control Handbook", 1991, 1904p.
- KAMATE, S. C.; GANGAVATI, P. B.; "Exergy Analisys of Cogeneration Power Plants in Sugar Industries". Applied Thermal Engineering, Volume 29, Issues 5-6, Elsevier, Abr. 2009, Páginas 1187-1194.
- LABODOVA, Alena; "Implementing integrated management systems using a risk analysis based approach". Journal of Cleaner Production, Volume 12, Issue 6, Elsevier, Ago. 2004, Páginas 571-580.
- LEPETITGALAND, Karla K.; Aplicação do Balanced Scorecard para Avaliação do Centro Brasileiro de Informação de Eficiência Energética Procel Info. Dissertação de Mestrado, Universidade Federal do Rio de Janeiro. Rio de Janeiro, 2007, 142p.

LOPES, Adriana A.; Estudo da gestão e do gerenciamento integrado de resíduos sólidos urbanos no Município de São Carlos (SP). Dissertação de Mestrado, Universidade de São Paulo. São Paulo, 2003, 194p.

MELO, Nazario R.; Simulação e Otimização de Plantas de Microcogeração com a Utilização de Um Módulo de Configuração de Tarefas para a Tomada de Decisão em Demandas Variáveis; Dissertação de Mestrado; Universidade Federal de Pernambuco, Recife, 2004. 141p.

NOGUEIRA, Luiz A.H.; Eficiência Energética no Uso de Vapor. Livro Técnico PROCEL, Eletrobrás, Rio de Janeiro, Brasil, 2005, 196p.

NOVAES, Washington; Artigo publicado em OESP - O Estado de São Paulo, 26/03/2010.

PADILHA, Ricardo de S.; Otimização de Um Sistema de Cogeração de Referência Utilizando Métodos de Gradiente, Evolucionário e Híbrido: Um Estudo Comparativo; Dissertação de Mestrado. Universidade Federal do Rio de Janeiro - COPPE. Rio de Janeiro, 2006, 151p.

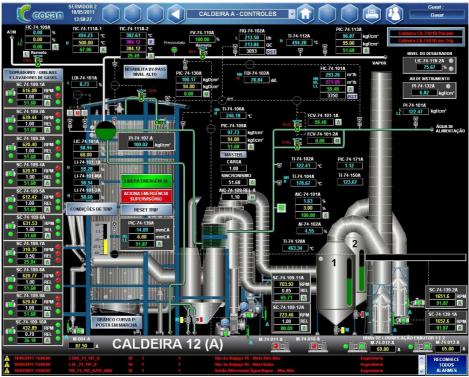
PARO, André de C.; CORNER, Fernando; COELHO, Suani T.; Estudo Comparativo para o Tratamento de Resíduos Sólidos Urbanos: Aterros Sanitários x Incineração. RBE – Revista Brasileira de Energia; Vol.14, Nº2, 2º Sem. 2008, pp.113-125.

PAULA, Cláudio P.; Geração Distribuída e Cogeração no Setor Elétrico: Avaliação Sistêmica de um Plano de Inserção Incentivada. Tese de Doutorado. PIPGE/USP, São Paulo, 2004.

PAZIAN, João A.; Desenvolvimento de Uma Metodologia para Análise do Potencial de Cogeração de Energia Elétrica em Usina de Açúcar e Álcool; Dissertação de Mestrado. Universidade Estadual Paulista - UNESP. Bauru, 2004, 228p.

PELLEGRINI, Luiz F.; Análise e Otimização Termo-Econômica-Ambiental Aplicada à Produção Combinada de Açúcar, Álcool e Eletricidade. *Tese de Doutorado*. Universidade de São Paulo, São Paulo, 2009, 350p.

PIRES, Thiago da S.; Método de Superfície de Resposta Aplicado à Otimização Termoeconômica de Sistemas de Cogeração Modelados em um Simulador de Processos; Dissertação de Mestrado. Universidade Federal do Rio de Janeiro - COPPE. Rio de Janeiro, 2010, 94p.


PMI – Project Management Institute, Um Guia do Conjunto de Conhecimentos em Gerenciamento de Projetos. Terceira edição (Guia PMBOK®), Norma ANSI/PMI 99-001-2004.

PMI – Project Management Institute, [on-line]; Sobre o PMI, Disponível em: http://www.pmi.org.br/ >. Acesso em 15 mar. 2010.


- SÃO PAULO Secretaria do Meio Ambiente; Relatório: "Total costs of ownership: Comparison Incineration Plant-Landfill Technical Co-Operation Project Bavaria-Sao Paulo". São Paulo, 2006.
- SI, Minxing; THOMPSON, Shirley; CALDER, Kurtis; "Energy Efficiency Assessment by Process Heating Assessment and Survey Tool (PHAST) and Feasibility Analysis of Waste Heat Recovery in the Furnace at a Steel Company". Renewable and Sustainable Energy Reviews. Volume 15, Issue 6, Elsevier, Ago. 2011, Páginas 2904-2908.
- SMOUSE, Scott M.; STAATSA, Gary E.; RAOB, S. N.; GOLDMANC, Richard e HESS, David; "Promotion of biomass cogeneration» with power export in the Indian sugar industry". Fuel Processing Technology. Volume 54, Issues 1-3, Elsevier, Mar. 1998, Páginas 227-247
- STRAPASSON, Alexandre B.; A Energia Térmica e o Paradoxo da Eficiência Energética: Desafios para um Novo Modelo de Planejamento Energético; Dissertação de Mestrado, Universidade de São Paulo. São Paulo, 2004, 134p.
- U.S.A. [on-line], Code of Federal Regulations, Title 18 Conservation of Power and Water Resources Part. 292. Washington DC, 2011. Disponível em: http://www.gpo.gov/. Acesso em 09 mai. 2011.
- U.S. Energy Information Administration [on-line], DOE/EIA-0348(2009) Electric Power Annual 2009. Washington DC, 2011. Disponível em: http://www.eia.doe.gov/cneaf/electricity/epa/epa.pdf>. Acesso em 09 mai. 2011.
- VAN WYLEN, Gordon; Sonntag, Richard; Borgnakke, Claus; Fundamentos da Termodinâmica Clássica, Editora Edgard Blücher Ltda., S. Paulo, Brasil, Tradução da 4ª Ed. americana, 1995, 589p.
- VELÁZQUEZ, Sílvia M. S. G.;Perspectivas para a Geração de Excedentes de Energia Elétrica no Segmento de Papel e Celulose com a Utilização de Sistemas de Gaseificação Turbina a Gás; Tese de Doutorado. Universidade de São Paulo. Programa Interunidades de Pós Graduação em Energia EP/FEA/IEE/IF. São Paulo, 2006, 261p.

9. APÊNDICES

APÊNDICE A – Telas do sistema supervisório – controles da caldeira e do turbogerador

Tela de Controles – Caldeira

Tela de Controles – Turbogerador

APÊNDICE B – Telas do sistema supervisório – Gráficos de velocidade dos dosadores – Cogeração A – Caldeira 11

Gráfico: Rotação dosadores 1 a 5 x Tempo

Gráfico: Rotação dosadores 6 a 10 x Tempo

APÊNDICE C – Telas do sistema supervisório – Gráficos de velocidade dos dosadores – Cogeração A – Caldeira 12

Gráfico: Rotação dosadores 1 a 5 x Tempo

Gráfico: Rotação dosadores 6 a 10 x Tempo

APÊNDICE D – Telas do sistema supervisório – Gráficos de velocidade dos dosadores – Cogeração B – Caldeira 11

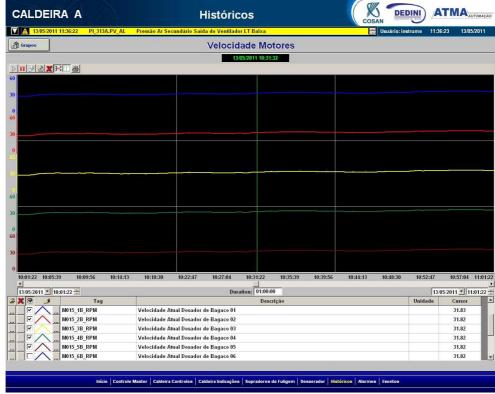


Gráfico: Rotação dosadores 1 a 5 x Tempo

Gráfico: Rotação dosadores 6 a 10 x Tempo

APÊNDICE E – Telas do sistema supervisório – Gráficos de velocidade dos dosadores – Cogeração B – Caldeira 12

Gráfico: Rotação dosadores 1 a 5 x Tempo

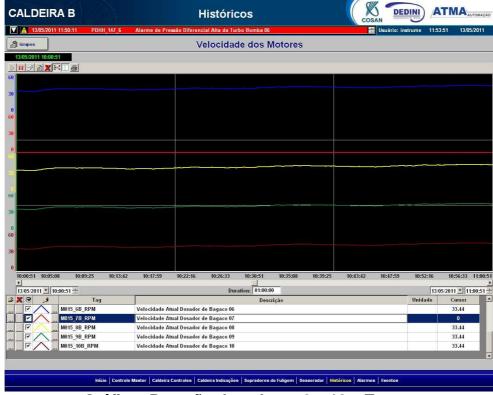


Gráfico: Rotação dosadores 6 a 10 x Tempo

APÊNDICE F - Planilhas de cálculo - Cogeração A

	Parâmetros de projeto:		COGER	AÇÃO A	
Νº	Parâmetro - premissa	Valor	Unid.	Entalpias	
1	Produção total de bagaço da usina	390,1	T/h		
2	Consumo de bagaço pela cogeração	193,2	T/h		
3	Quantidade de caldeiras	2x320	Unid.		
4	Produção de vapor de alta pressão VD	407,6	T/h		
5	Pressão do VD	100	Bar	3451,71	kJ/kg
6	Temperatura do VD	530	∘C		
7	Quantidade de turbogeradores de contrapressão	2	Unid.		
8	Quantidade de turbogeradores de condensação	0	Unid.		
9	Produção de vapor de média pressão VM	189,9	T/h		
10	Pressão do VM	22	bar	3018,42	kJ/kg
11	Temperatura do VM	300	°C		
12	Vazão de dessuperaquecedor para VM	0	T/h		
13	Consumo de VM pelo processo	164,6	T/h		
14	Consumo de VM da(s) turbobomba(s) da(s) caldeira(s)	25,3	T/h		
15	Produção de vapor de escape VE	217,8	T/h		
16	Pressão do VE	2,5	bar	2716,49	kJ/kg
17	Temperatura do VE	127	°C		
18	Vazão de dessuperaquecedor para VE	0	T/h		
19	Consumo de VE pelo processo	243,1	T/h		
20	Perdas de VM na cogeração	3%	T/h ou %		
21	Perdas de VE na cogeração	3%	T/h ou %		
22	Pressão do condensado de retorno	1,5	bar	491,08	kJ/kg
23	Temperatura do condensado de retorno	117	°C	,,,,,	-, 0
24	Produção de eletricidade	60	MW		
25	Consumo auxiliar de eletricidade - apenas na cogeração	6	MW		
	Cálculo feito a partir dos parâmetros de projeto para a safra				
	Base horária	1 hora			
	W - Trabalho	54,000			
	Q-VM	133,869			
	Q-VE	177,935			
	Q - condensado	55,615			
	PCI adotado (CTC) - kJ/kg	7200,000			
	F - combustível	386,400			
	FUE - Projeto	0,803			

Planilha de cálculo do FUE - Projeto

ferição de d	losadores -	Caldeiras 1	00 bar			CO	GERAÇÃO A	
Altura do Visor	15 cm							
Motor	5CV - 6 pólos							
Redutor	1160-20,8 rpm							
Dosador	Rotação (RPM)	tempo (s)	Dosador	Rotação (RPM)	tempo (s)	Dosador	Rotação (RPM)	tempo (s)
8	306	4,97	1	530	3,3	8	728	2,4
8	308	4,81	1	534	3	8	708	2,34
10	296	4,81	2	550	3,25	8	710	2,3
10	298	5,25	2	533	3,37	10	697	2,84
		0,20	4	532	3,22	10	701	2,78
			4	523	2,93	20	701	2,70
			5	533	3,37			
			5	540	3,12			
			6	535	3,28			
			6	540	2,65			
			8	542	3,44			
			8	529	3,65			
			9	527	3,22			
			9	521	3,25			
			10	543	3,37			
			10	539	3,22			
Média	302	4,96	Média	534,4375	3,2275	Média	708,8	2,532
Desvio	5,887840578	0,207525099	Desvio	7,667844112	0,227903488	Desvio	11,94571053	0,257138095
Desvio (%)	1,949616085	4,183973768	Desvio (%)	1,434750389	7,061300956	Desvio (%)	1,685342907	10,15553299
Velocidade (m/s)	0,030241935		Velocidade (m/s)	0,0464756		Velocidade (m/s)	0,059241706	
Veloc./RPM	1,001E-04		Veloc./RPM	8,696E-05		Veloc./RPM	8,358E-05	
dotado entre 200 e 500RPM	1,00E-04		Adotado entre 500 e 800RPM	8,50E-05		Adotado entre 500 e 800RPM	8,50E-05	

Planilha de aferição de velocidade nos dutos de bagaço (dosadores)

APÊNDICE F (continuação)

Medições de campo:		Eletricidad	e / Trabalh	o (W)					COGI	RAÇÃO A
DATA									12/05/2011	
HORA DE INÍCIO									11:30	
HORA DE TÉRMINO									12:30	
PREMISSAS										
Células em LARANJA são prench	idas com dados	de medições de	campo							
2. Medições de energia bruta efetu	uadas nos conti	oladores Woodw	ard de cada gera	ador. com memó	ria de massa					
3. Medições de consumos auxiliare						s a cada subesta	cão auxiliar da c	ngeracão		
								ogeração.		
1. Intervalo de medição adotado de	e 10 minutos ei	n virtude da boa o	ondição de esta	abilidade de ope	ração observada	durante o perio	do de medição.			
										Energia acumu
	Início						Final	Unidade		(MWh)
	10:30						11:30			
Energia acumulada G1A	77527,8						77553,6	MWh		25,8
Energia acumulada G1B	77590,8						77616,32	MWh		25,52
TOTAL GER. BRUTA										51,32
Potências Cons. Auxiliares									-	
	T=0	T=10	T=20	T=30	T=40	T=50	T=60			
CCM-8201 - Cs Força Essencial	250	248	251	252	250	250	249	kW		0,25
CCM-8202 - Cs Força Normal	603	600	599	610	607	590	588	kW		0,60
CCM-7401A - Caldeira 1 440V	86,7	88,1	85	86,5	87	88	85,9	kW		0,09
CCM-7401B - Caldeira 1 690V	960,45	1050	1120	1240	1240	1400	1460	kW		1,21
CCM-7402A - Caldeira 1 440V	88,4	89	88	87	90	90	91,3	kW		0,09
CCM-7402B - Caldeira 1 690V	1139,7	1150	1210	1248	1305	1320	1346,99	kW		1,25
CCM-9201 - ETA/DESMI	90	91	90	89	90	90	90	kW		0,09
TOTAL CONS. AUXILIARES										3,57
TOTAL W ÚTIL										47.75

Planilha de totalização da Eletricidade – Medição

	Medições de campo:		Calor (Q)							COGE	RAÇÃO A
	ivieuições de campo.		calor (Q)							COGLI	інсно н
	DATA									12/05/2011	
	HORA DE INÍCIO									11:30	
	HORA DE TÉRMINO									12:30	
	PREMISSAS										
- 1	Células em LARANJA são pres	achidar com dador do	modicãos do campo								
	Vazão do VF = VD-VM.	icnidas com dados de	medições de campo								
3.	Vazão do Condensado = Vazão	o do VD (a caldeira neo	essita de 100% de rep	osição mássica do vapor	produzido).						
4.	Consumo de vapor nas turbol	ombas da caldeira foi	medida indiretamente	e pela vazão de água me	dida sobre a vazão nomina	, considerando turbin	a de contrapres	ão 22-2,5 bar com re	ndimento 60%.		
5	Intervalo de medição adotado	de 10 minutos em vi	rtude da boa condição	de estabilidade de oper	ação observada durante o	período de medicão.					
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,		,						
					Perdas de vapor	VM		Turbobomba		m²/h	
	TURROGERADOR	TG-8201A			Perda	VM 2 00%	3.00%	Vazão Nominal Cons. VM nominal	35.		1
	TORBUGERADUR	1G-6201A			Peroa	3,00%	3,00%	Cons. Vivi nominai	1,	Ng/s	
		er mi e femi					m conformally		. ()		
nin.	Pressão (kgf/cm²)	Vapor Direto (VD) 93,7	Vapor de Média (VM) 21,5	Vapor de Escape (VE) 1,6	Condensado de escape 1,22	Q - VM (MWh)	Q - VE (MWh)	Q - Cond. (MWh)	Qu (MWh)	Vazão Turbobomba água	Q - VM consumir
mñ.			21,5 314	1,6					l	Turbobomba água Caldeira A	
	Temperatura (°C) Entalpia (kJ/kg)	507 3400,67	314 3052,49	128 2726,99	122,8 515,713				l	(m²/h)	
	Entalpia (kJ/kg) Vazão (T/h)	3400,67 203,3	3052,49 85,1	2726,99 118,2	515,713 203,3	56,5512525	98,85825796	29,12345914	1	(m*/h) 250	16,3
	vazao (1/h) Pressão (kgf/cm²)	93,7	85,1 21,5	1,6	1,22	20,2312525	20,02042/96	29,12945914	l	250	16,:
	Pressão (kgt/cm²) Temperatura (°C)	93,7 507	21,5 314	1,6	1,22						1
	Temperatura (*C) Entalpia (kJ/kg)	3400.67	3052.49	2726.99	515.713				1		1
	Entalpia (kJ/kg) Vazão (T/h)	3400,67 203,3		2726,99 118.2		56.5512525	98.85825796	29.12345914		250	16.:
	Vazão (T/h) Pressão (kgf/cm²)	203,3	85,1 21.5	118,2	203,3	56,5512525	98,85825796	29,12345914	 	250	16,:
	Pressao (kgr/cm²) Temperatura (°C)	93,7	314	1,6	1,22				1		1
	Temperatura (°C) Entalpia (kJ/kg)	507 3400.67	314 3052.49	128 2726,99	122,8 515.713						1
	Entaipia (KJ/Kg) Vazão (T/h)	203.3	9U52,49 85.1	118.2	203.3	56.5512525	98.85825796	29.12345914	1	250	16.
		203,3 92	85,1 20,6	1,6	1,22	20,2312525	20,02042/96	29,12545914	-	250	16,:
uniin.	Pressão (kgf/cm²) Temperatura (°C)	92 510	20,6 312.6	1,6	1,22				1		1
	Temperatura (*C) Entalpia (kJ/kg)	3410.26	312,6	2726.99	515,288				1		1
	Vazão (T/h)	202,8	86	116,8	202,8	57.27552787	97.82957673	29.02789067		250	16,3
Omin.	Pressão (kgf/cm²)	90,2	20,7	1,8	1,21	37,27332707	37,02337073	23,02703007		230	20,0
	Temperatura (°C)	501	320,4	129	122,7						1
	Entalpia (kJ/kg)	3389,69	3069,26	2727,12	515,288						•
-	Vazão (T/h)	199	78,6	120,4	199	51,48647018	100,4795468	28,48397556	l	250	16,3
	Pressão (kgf/cm²)	91,15	21,15	1,9	1,2	31,4004/010	200,47,33400	AU, TU33/330			10,:
Omm.	Temperatura (°C)	493	314	130	122,8						1
	Entalpia (kJ/kg)	3368,21	3053,41	2728,25	515,713						1
	Vazão (T/h)	199	72,6	126,4	199	46,28424215	104,931852	28,50746861		250	16,3
	Pressão (kef/cm²)	93.3	22.3	1.8	1.22	40,26424213	104,931632	20,30/40001		250	10,3
	Temperatura (°C)	491	308.7	128	122.8						
	Entalpia (kJ/kg)	3360,37	3038,02	2725,02	515,713						+
	Vazão (T/h)	202.6	82.9	119.7	202.6	54,48230663	99,88820419	29,02318161		250	16,3
						1.0.020000	33,000021.00				
	Vazão Total VD TG A (T/h)	201.5		TG-8201A	MÉDIAS	54.169	99 958	28 916		1	
	Vazão Total VD TG-A (T/h)	201,5		TG-8201A	MÉDIAS	54,169	99,958	28,916]	
	Vazão Total VD TG-A (T/h)	201,5		TG-8201A	MÉDIAS	54,169	99,958	28,916			
	Vazão Total VD TG-A (T/h)	201,5		TG-8201A	MÉDIAS	54,169	99,958	28,916			
	Vazão Total VD TG-A (T/h)	201,5		TG-8201A	MÉDIAS	54,169	99,958	28,916			
				TG-8201A	MÉDIAS	54,169	99,958	28,916			
	Vazão Total VD TG-A (T/h) TURBOGERADOR	201,5 TG-8201B		TG-8201A	MÉDIAS	54,169	99,958	28,916			
		TG-8201B									
	TURBOGERADOR	TG-8201B	Vapor de Média (VM)	Vapor de Escape (VE)	Condensado de escape			28,916 Q - Cond. (MWh)	Qu (MWh)		Vazão VM TB
nin.	TURBOGERADOR Pressão (kgt/cm²)	TG-8201B Vapor Direto (VD) 93,9	Vapor de Média (VM) 21,8	Vapor de Escape (VE)	Condensado de escape					Turbobomba água	Vazão VM TB
nin.	TURBOGERADOR Pressão (kgf/cm²) Temperatura (°C)	TG-8201B Vapor Direto (VD) 93,9 516	Vapor de Média (VM) 21,8 317,7	Vapor de Escape (VE) 1,6 136	Condensado de escape 1,22 122,8					Turbobomba água Caldeira A	
min.	TURBOGERADOR Pressão (kgf/cm²) Temperatura (°C) Tentalpia (kJ/kg)	TG-8201B Vapor Direto (VD) 93,9 516 3423,19	Vapor de Média (VM) 21.8 317,7 3060,26	Vapor de Escape (VE) 1,6 136 2743,53	Condensado de escape 122 122,8 515,713	Q - VM (MWh)	Q - VE (MWh)	Q - Cond. (MWh)		Turbobomba água Caldeira A (m²/h)	T/h
min.	TURBOGERADOR Pressão (kg/cm²) Temperatura (°C) tralapia (Lu/kg) Vaxão (Y/h)	TG-8201B Vapor Direto (VD) 93.9 516 3423,19 212	Vapor de Média (VM) 21.8 317,7 3060,26 87,5	Vapor de Escape (VE) 1,6 136 2743,53 124,5	Condensado de escape 122 122, 515,713 222			Q - Cond. (MWh)		Turbobomba água Caldeira A	
nin.	TURBOGERADOR Pressão (kg/cm²) remperatura (°C) rempis (u/kg) vasão ((r/h) Pressão (kg/cm²)	TG-8201B Vapor Direto (VD) 93.9 516 3423.19 212 93.9	Vapor de Média (VM) 21,8 317,7 3060,26 87,5 21,8	Vapor de Escape (VE) 1,6 136 2743,53 124,5	Condensado de escape 3,22 122,8 515,713 212 1,22	Q - VM (MWh)	Q - VE (MWh)	Q - Cond. (MWh)		Turbobomba água Caldeira A (m²/h)	T/h
min.	TURBOGERADOR Pressão (kgf/cm²) Temperatura (*C) fensipia (kJ/kg) Vaxão ((*fh) Pressão (kgf/cm²) Temperatura (*C)	TG-8201B Vapor Direto (VD) 93.9 516 3422,19 212 93.9 516	Vapor de Média (VM) 21.8 312.7 3060.26 87.5 21.8 312.7	Vapor de Escape (VE) 1,6 136 2743,53 124,5 1,6 336	Condensado de escape 1,22 122,8 515,713 212 1,22 122,8	Q - VM (MWh)	Q - VE (MWh)	Q - Cond. (MWh)		Turbobomba água Caldeira A (m²/h)	T/h
min.	TURBOGERADOR Pressão (lagf.cm²) Temperatura (°C)	TG-8201B Vapor Direto (VD) 93,9 516 3423,19 212 93,9 516 3423,19	Vapor de Média (VM) 21,8 317,7 300,76 87,5 21,8 317,7 300,26	Vapor de Escape (VE) 1.6 136 2743,53 124,5 1,6 136 2743,53	Condensado de escape 3,22 122,8 515,713 212 1,22 122,8 515,713	Q - VM (MWh) 59,21319815	Q - VE (MWh) 103,6317645	Q - Cond. (MWh) 30,36976556		Turbobomba água Caldeira A (m³/h) 240	T/h 15,685
min.	TURBOGERADOR Presside (kgf/cm²) Temperatura (°E) Gendala (kJ/kg) vale (r/k) Temperatura (°E) Gendala (kJ/kg) vale (r/k) Gendala (kJ/kg) Vale (r/k)	TG-8201B Vapor Direto (VD) 93.9 516 3423.19 212 213 516 3423.19 2212	Vapor de Média (VM) 21,8 317,7 3060,26 87,5 21,8 317,7 3060,26 87,5	Vapor de Escape (VE) 1,6 136 2743,53 104,5 1,6 2743,53 124,5	Condensado de escape 1,22 122,8 515,713 212 1,22 1,22 1,22 1,23 515,713 212	Q - VM (MWh)	Q - VE (MWh)	Q - Cond. (MWh) 30,36976556		Turbobomba água Caldeira A (m²/h)	T/h 15,685
min.	TURBOGERADOR Pressão flad/cor*) Temperatura (*C) Tempera	TG-8201B Vapor Direto (VD) 93.9 516 5422,19 212 93.9 516 3422,19 212 93.9 93.9	Vapor de Média (VM) 21.8 317.7 300.26 87,5 21.8 317,7 300.26 87,5 21.8 21.7	Vapor de Escape (VE) 1.6 1.6 1.6 1.7 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	Condensado de excape 3.27 3.28 3.29 3.29 3.21 3.21 3.21 3.22 1.22 1.22 1.23 555,713 212 1.22	Q - VM (MWh) 59,21319815	Q - VE (MWh) 103,6317645	Q - Cond. (MWh) 30,36976556		Turbobomba água Caldeira A (m³/h) 240	T/h 15,685
min. Omin.	TURBOGERADOR Presside (Isaf/cor*) Temperatura (PC) transpiral (Viga) vasile (YiA) vasile (YiA) Temperatura (PC) transpiral (Viga) vasile (YiA) Temperatura (PC) vasile (YiA) Presside (Isaf/cor*) Temperatura (PC) Presside (Isaf/cor*) Temperatura (PC)	TG-8201B Vapor Direto (VD) 93.9 516 3422,19 212 93.9 516 3423,19 212 222 93.9 516	Vapor de Média (VM) 21.8 317,7 3000,26 87,5 21.8 317,7 3000,26 87,5 21.8,317,7 3000,26	Vapor de Escape (VE) 1,6 316 2743,53 124,5 1,6 136 2743,53 124,5 1,6 136 136	Condensado de escape 1.22 12.8 15.73 212 12.9 12.9 12.9 12.13 12.13 12.13 12.2 12.2 12.2 12.3	Q - VM (MWh) 59,21319815	Q - VE (MWh) 103,6317645	Q - Cond. (MWh) 30,36976556		Turbobomba água Caldeira A (m³/h) 240	T/h
min. Omin.	TURBOGERADOR Persoda (la/junt') Temperatus (CC) Temperatus (C	TG-8201B Vapor Directo (VD) 93.5 156 157 158 93.9 159. 93.9 159. 112 93.9 150 142,19 150 142,19 150 150 150 150 150 150 150 1	Vapor de Média (VM) 2.38 2.37,7 2000,26 387,5 22,8 312,7 3000,26 87,5 22,8 312,7 3000,26 312,7 3000,26	Vapor de Escape (VE) 1.6 1.6 1.6 1.7 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	Condensado de excape 121 122 122 123 124 127 127 122 1228 121 122 1228 1238 121 122 1228 1328 13	Q - VM (MWh) 59,21319815 58,67416975	Q - VE (MWh) 103,6317645 104,1150047	Q - Cond. (MWh) 30,36976556 30,36976556		Turbobomba água Caldeira A (m³/h) 240	T/h 15,685
min. Omin.	TURBOGERADOR Pressib Buffcom*) Trenspecture (PC) Gendpin Buffan Trenspecture (PC) Gendpin Buffan Trenspecture (PC) Trens	TG-8201B Vapor Directo (VO) 93.9 516 3422,19 212 93.9 516 3422,19 212 93.9 516 3422,19 212 212 93.9 516 3422,19 212 212	Vapor de Média (VM) 21.8 21.7 200, 26 87,5 21.8 317,7 2000, 26 21.8 317,7 2000, 26 21.8 317,7 2000, 26 21.8 317,7 2000, 26 31,5 317,7 2000, 26 31,5 317,7 2000, 26 31,5 31,7 31,7 31,7 31,7 31,7 31,7 31,7 31,7	Vapor de Escape (VE) 1,6 136 124,53 124,53 14,6 136 124,53 14,6 136 124,53 14,6 136 124,53 14,6 136 124,53	Condensado de escape 122 122.8 515.713 212 122.8 122.8 121.1 122 122.8 133.713	Q - VM (MWh) 59,21319815	Q - VE (MWh) 103,6317645	Q - Cond. (MWh) 30,36976556 30,36976556		Turbobomba água Caldeira A (m³/h) 240	T/h 15,681
min. Omin.	TURBOGERADOR Pressão Bad/cm²) Transportaria (C. C. C	TG-8201B Vapor Diesto (VD) 915 915 915 916 917 918 918 918 918 918 918 918	Vapor de Média (VM) 2.5, 1 2.5, 1 2.5, 1 2.5, 1 2.5, 1 2.5, 1 2.5, 1 3.17, 1 300, 26 3.17, 1 300, 26 3.7, 5 3.7, 5 3.7, 5 3.7, 5 3.7, 5 3.7, 5 3.7, 5 3.7, 5 3.7, 5 3.7, 5 3.7, 5 3.7, 5 3.7, 5 3.7, 5	Vapor de Escape (VE) 1.6 1.6 2.243.53 1.6 2.743.53 1.6 2.743.53 1.04.5 1.24.5 1.6 1.74.5 1.6 1.74.5 1.6 1.74.5 1.6 1.74.5 1.6 1.74.5 1.6 1.74.5 1.6 1.6 1.74.5 1.6	Condensado de escape 122 122,0 122,0 122,0 122,0 122,0 122 122,8 515,73 121 122,8 123,73 121 122,13 123,13 124,13 125,13 126,13 127,13 127,13 128,13 129,13 120,13 121	Q - VM (MWh) 59,21319815 58,67416975	Q - VE (MWh) 103,6317645 104,1150047	Q - Cond. (MWh) 30,36976556 30,36976556		Turbobomba água Caldeira A (m³/h) 240	T/h 15,689
nin. Imin.	TURBOGERADOR Pressée (light/com²) Frence (light/com²)	TG-8201B Vapor Director (VD) 93,9 516 3422,19 212 93,9 546 3422,19 342,19 222 93,4 536 3422,19 212 93,4 5376	Vapor de Média (VM) 21,8 112,7 300,26 67,5 23,8 112,17 300,26 23,8 112,17 300,26 23,8 312,7 300,26 30,5 313,7	Vapor de Esape (VE) 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.	Condensado de escape 122 122.8 515,713 212. 132.	Q - VM (MWh) 59,21319815 58,67416975	Q - VE (MWh) 103,6317645 104,1150047	Q - Cond. (MWh) 30,36976556 30,36976556		Turbobomba água Caldeira A (m³/h) 240	T/h 15,689
min.	TURBOGERADOR Pessale Buldcort* Temperatura I*C Consigles Buldcort* Temperatura I*C Consigles Buldcort* Temperatura I*C Temper	TG-8201B Vapor Directo (VO) 91.9 516.19 516.19 516.9 517.9 517.8	Vapor de Média (VM) 23.8 117.7 20.0.5 117.7 20.0.5 117.7 20.0.5 21.8 21.7 20.0.5 21.8 21.7 20.0.5 21.8 21.7 20.0.5 21.8 21.7 20.0.5 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7	Vapor de Escape (VE) 1.6 116 116 116 120 120 136 136 120 136 120 136 120 136 120 136 136 136 136 136 136 136 136 136 136	Condensado de escape 122 122,8 133,713 132,9 132,8 131,73 122,1 122,8 131,73 131,73 132,8 131,73 132,8 131,73 132,8 131,73 132,8 131,73 132,8 132,8 132,8	Q. VM (MWN) 59,2119815 58,67416975 58,67416975	Q-VE(MWh) 103,6317645 104,1150047	QCond.(MWh) 30.36976556 30.36976556		Turbobomba água Caldeira A (m°/h) 240	T/h 15,681
min.	TURBOGERADOR Passada Big/Cor*) Temperatura pt Cel tendapia (s.1/kg) vasala (t/kg)	TG-8201B Vapor Directo (VO) 93.9 516 3421,19 212 93.9 536 3421,19 212 212 93.9 536 3421,19 212 212 93.4 537.6 537.6 537.6 537.6 537.6	Vapor de Madis (VM) 31.5 31.7 500.0.26 507.5 21.8 317.7 318.7 318.7 318.7 318.7 318.7 318.7 318.7 318.7 318.7 318.7 318.7 318.7 318.7 318.7 318.7 318.7 318.7 318.7	Vapor de Escape (VE) 1.6 1.6 1.8 274(3.5) 1.6 274(3.5) 1.6 1.6 1.6 1.8 1.8 1.8 1.8 1.8	Condensado de escape 122 123,8 155,73 124,8 155,73 122 122 123,8 123,1 124,1 125,1 127,1 127,1 127,1 127,1 128,1 129,1	Q - VM (MWh) 59,21319815 58,67416975	Q - VE (MWh) 103,6317645 104,1150047	QCond.(MWh) 30.36976556 30.36976556		Turbobomba água Caldeira A (m³/h) 240	T/h 15,68
min.	TURBOGERADOR Pressib lugiform? Trenspectura pt CC tenspic lulying value (TV) Temperatura pt CC value (TV)	TG-8201B Vapor Detecto (VO) 93.9 516 516 516 516 516 517 516 517 517 517 517 517 517 517 517 517 517	Vapor de Média (VM) 23.8 312.7 20.0.5 313.3 313.7 300.26 37.5 313.7 300.26 37.5 21.8 312.7 300.26 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5	Vapor de Estape (VS) 1-8 1-8 1-8 1-8 1-8 1-8 1-8 1-	Condensado de escape 122 122,8 65,721 222,8 55,721 123,2 124,2 124,2 125,2 127,2 127,2 128,3 129,3 129,3 120,3 121,3 1	Q. VM (MWN) 59,2119815 58,67416975 58,67416975	Q-VE(MWh) 103,6317645 104,1150047	QCond.(MWh) 30.36976556 30.36976556		Turbobomba água Caldeira A (m°/h) 240	T/h 15,68
min.	TURBOGERADOR Persoda (Lg/cm²) Temperatria e PC tendepia (Lg/cm²) Temperatria e PC tendepia (Lg/cg) Tendepia (Lg/cg) Tendepia (Lg/cg) Tendepia (Lg/cg) Tendepia (Lg/cg) Tendepia (Lg/cg) Temperatria (PC tendepia (Lg/cg) Temperatria (PC) Temper	TG-8201B Vapor Directo (VD) 100.	Vapor de Média (VM) 23.1 23.1 23.1 23.7 24.7 25.0 25.0 25.1 21.2 25.0 25.1 21.2 25.0 25.1 25.	Vapor de Escape (VE) 8	Condensado de escape 132 132 132 133 134 135 131 122 122 122 122 123 124 125 125 125 127 127 128 128 128 128 128 128 128 128 128 128	Q. VM (MWN) 59,2119815 58,67416975 58,67416975	Q-VE(MWh) 103,6317645 104,1150047	QCond.(MWh) 30.36976556 30.36976556		Turbobomba água Caldeira A (m°/h) 240	T/h 15,68
min.	TURBOGERADOR Pressée light/com² Temperatura tr CC tendaja is lu/kg-j vasale (tr/kg-j ressée light/com² temperatura (tr/kg-j vasale (tr/kg-j ressée light/com² temperatura (tr/kg-j vasale (tr/kg-j ressée light/com² temperatura tr CC tendaja is lu/kg-j vasale (tr/kg-j temperatura tr CC tendaja is lu/kg-j vasale (tr/kg-j temperatura tr CC tendaja is lu/kg-j vasale tr/kg-j temperatura tr CC tendaja is lu/kg-j vasale tr/kg-j temperatura tr CC tendaja is lu/kg-j	TG-8201B Vapor Directo (VO) 318 316 312,19 212 212 212 212 213 213 212 213 213 213	Vagor de Média (VM) 22,8 313,7 23,9 300,26 87,5 23,8 23,7 300,26 87,5 23,8 23,9 23,9 23,9 23,9 23,9 23,9 23,9 23,9	Vapor de Escape (VS) 1.6 1.6 1.8 1.8 2.724,5.1 1.8 1.8 1.8 1.8 1.8 1.8 1.8	Condensado de excape 122 122,8 515,731 122 122,8 515,731 122 122 122 122,1 123,1 124,1 125,1 127,1 127,1 128,1 129,1 120,1 120,1 121,1 122,1 123,1 124,1 125,1 126,1 127,1 128,1 129,1 120,1	Q - VM (MrWh) 69,2119815 58,67416975 58,67416975 61,97053172	Q-VE (MWN) 103,631766 104,1150047 104,1150047 104,1150047	Q - Cond. (MWh) 30, 36976556 30, 36976556 30, 36976556		Turbobomba digua Caldeira A (m²/h) 240 250 250	T/h 15,685 16,: 16,:
min.	TURBOGERADOR Tessals Bull/cor*) Temperatura I*C tonalpia Ib/Irg tonalpi	TG-8201B Vapor Exerte (VID) 91.9 91.9 91.0	Vagor de Média (VM) 23.8 131.7 23.8 23.9 23	Vapor de Escape (VE) 1.6 1.6 1.6 1.6 1.705,51 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.	Condensado de escape 1.22 1.28 1.57.31 1.57.31 1.57.31 1.22 1.22 1.22 1.23 1.23 1.24 1.25 1.27	Q. VM (MWN) 59,2119815 58,67416975 58,67416975	Q-VE(MWh) 103,6317645 104,1150047	QCond.(MWh) 30.36976556 30.36976556		Turbobomba água Caldeira A (m°/h) 240	T/h 15,68
min. min. min.	TURBOGERADOR Paraska Balf-(cor*) Temperatura EP temperatura	TG-82018 Vapor Evento (VO) 18.8 18.9 18.9 18.1 18.1 18.2 18.1 1	Vapor de Media (VM) 31.8 31.7 31.8 31.7 50.6), 56 50.7, 5 21.8 50.7, 5 21.8 50.7, 5 21.8 50.7, 5 5	Vapor de Escape (VE) 16 18 274(3.5) 186 274(3.5) 186 187 186 186 186 186 186 186	Condensado de escape. 122 123.8 155.73 122.1 123.1 124.1 125.1 126.1 127.1 127.1 128.1 129.1 12	Q - VM (MrWh) 69,2119815 58,67416975 58,67416975 61,97053172	Q-VE (MWN) 103,631766 104,1150047 104,1150047 104,1150047	Q - Cond. (MWh) 30, 36976556 30, 36976556 30, 36976556		Turbobomba digua Caldeira A (m²/h) 240 250 250	T/h 15,68
min. min.	TURBOGERADOR Trassib lug/cort') Tremperatura It Cl tendaja lu/lugi turbu (Cl tendaja lu/lugi tu	TG-82018 Vapor Directo (VO) 91.0 91.0 91.0 91.0 91.0 91.0 91.0 91.0	Vapor de Média (VM) 21.8 112.7 2000, 26 25.1 25.1 25.2 25.2 25.2 25.2 25.2 25.2	Vapor de Escape (VE) 1-6 1-6 1-6 1-740,51 1-740,	Condensate de escape 122,8 655,721 222,8 655,721 222,8 223,8 232,7 232,8 232,7 232,	Q - VM (MrWh) 69,2119815 58,67416975 58,67416975 61,97053172	Q-VE (MWN) 103,631766 104,1150047 104,1150047 104,1150047	Q - Cond. (MWh) 30, 36976556 30, 36976556 30, 36976556		Turbobomba digua Caldeira A (m²/h) 240 250 250	T/h 15,68
min. min. min.	TURBOGERADOR Parada Bug/cor/) Temperatura EC tentalpia Bu/kg valas (TV) Perasia Bug/cor/) Temperatura EC tentalpia Bu/kg valas (TV) Perasia Bug/cor/) Temperatura EC tendajnia Bu/kg valas (TV) Temperatura EC tendajnia Bu/kg valas (TV) Perasia Bug/cor/) Temperatura EC tendajnia Bu/kg valas (TV) Perasia Bug/cor/) Temperatura EC tendajnia Bu/kg valas (TV) Perasia Bug/cor/) Temperatura EC tendajnia Bu/kg valas (TV) Temperatura EC tendajnia Bu/kg valas (TV) Temperatura EC tendajnia Bu/kg valas (TV)	TG-82018 Vapor Directo (VD) 80 8 80 8 818 8 818 9 910 910 910 910 910 910 910 910 910 910	Vapor de Média (VAI) 3.17 3.17 3.17 3.17 3.17 3.17 3.18 3.17 3.18 3.17 3.18 3.17 3.18 3.17 3.18 3.17 3.18 3.17 3.18 3.17 3.18 3.17 3.18 3.17 3.18 3.17 3.18 3.17 3.18 3.17 3.18 3.	Vapor de Escape (VE) 1	Conferende de excepe 122.8 132.8 132.8 132.9 132.1 133.1 134.1 135.1 136.1 137.1 138.1 1	Q - VM (MWh) 59,21319815 58,67416975 58,67416975 54,93677648	Q - VE (MWIN) 103.6137645 104.1150847 104.1150847 104.1150847	Q - Cond. (MWh) 30,36976566 30,36976566 30,36976566 30,34473778 29,757862		Turbobomba água Caldeira A (m*/h) 240 250 250 250 240 240 240	T/h 15,68
nin. Imin. Imin. Imin.	TURBOGERADOR Presské light/cen*1 Presské light/cen*2 Erreppentura t°C Entralpia light/gen*2 Vasta (Tri) Presské light/cen*2 Vasta (Tri) Presské light/cen*2 Vasta (Tri) Presské light/cen*2 Vasta (Tri) Presské light/cen*2 Temperatura t°C Entralpia light/gen*2 Vasta (Tri) Presské light/cen*2 Temperatura t°C Entralpia light/gen*2 Vasta (Tri) Presské light/cen*2 Temperatura t°C Entralpia light/gen*2 Vasta (Tri) Temperatura t°C Temperatura t°	TG-8201B Vapor Directo (VO) 318 318 318 312,119 212 212 213 318,12 318,12 318,12 318,13 318,13 318,13 318,13 318,13	Vagor de Média (VM) 22,8 333,7 300,26 87,5 87,5 23,8 300,26 87,5 3	Vapor de Escape (VS) 1.6 1.6 1.6 1.6 2.724,51 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1	Condensate de excepe 122 122 132 131 131 132 132 13	Q - VM (MrWh) 69,2119815 58,67416975 58,67416975 61,97053172	Q-VE (MWN) 103,631766 104,1150047 104,1150047 104,1150047	Q - Cond. (MWh) 30,36976566 30,36976566 30,36976566 30,34473778 29,757862		Turbobomba digua Caldeira A (m²/h) 240 250 250	T/h 15,68
min. Idenin. Idenin. Idenin. Idenin.	TURBOGERADOR Tessals Buldform' Tessals Buldform' Temperatura I'Cl Consiglias Buldform' Temperatura I'Cl Vasals (Trib) Temperatura I'Cl Temperatura I'Cl Temperatura I'Cl Temperatura I'Cl Temperatura I'Cl Temperatura I'Cl Vasals (Trib) Tessals Buldform' T	TG-8201B Vapor Exerte (VII) 9139 516 516 517 518 518 518 518 518 518 518 518 518 518	Vapor de Média (VM) 23.8 112.7 20.0, 26 23.8 312.7 300, 26 312.8 312.7 300, 26 312.7 300, 26 312.7 300, 26 312.7 300, 26 312.7 300, 26 312.7 300, 26 312.7 300, 26 312.7 300, 26 312.7 300, 26 312.7 300, 26 312.7 300, 26 312.7 300, 26 312.7 300, 26 300, 30 3	Vapor de Escape (VE) 1.6 1.6 1.740,51 1.6 1.8 1.8 1.8 1.8 1.8 1.8 1.	Condensade de escape 1.22 1.23 1.25 1.35 1.37 1.37 1.32 1.22 1.22 1.23 1.23 1.23 1.23 1.23	Q - VM (MWh) 59,21319815 58,67416975 58,67416975 54,93677648	Q - VE (MWIN) 103.6137645 104.1150847 104.1150847 104.1150847	Q - Cond. (MWh) 30,36976566 30,36976566 30,36976566 30,34473778 29,757862		Turbobomba água Caldeira A (m*/h) 240 250 250 250 240 240 240	T/h 15,68
min. min. min. min.	TURBOGERADOR Persish Baffcon* Temperatura (TC)	TG-82018 Vapor Directo (VO) 18.8 18.9 18.9 18.0 18.1	Vapor de Media (VM) 31.8 31.8 31.8 31.7 30.0, 26 30.1, 5 30.1, 5 30.1, 5 30.1, 6 30	Vapor de Escape (VI) 16 16 18 2743,53 186, 1945, 186 186, 1945, 186 186, 1945, 186 186, 1945, 186 186, 1945, 186 186, 1945, 186 1945,	Condensado de scaspo. 122 122 122 122 123 135.73 121 122 132 132 132 132 132 132 132 13	Q - VM (MWh) 59,21319815 58,67416975 58,67416975 54,93677648	Q - VE (MWIN) 103.6137645 104.1150847 104.1150847 104.1150847	Q - Cond. (MWh) 30,36976566 30,36976566 30,36976566 30,34473778 29,757862		Turbobomba água Caldeira A (m*/h) 240 250 250 250 240 240 240	T/h 15,68
min. min. min. min.	TURBOGERADOR Trassib lugiforn') Trassib lugiforn') Trassib lugiforn') Trassib lugiforn') Trassib lugiforn') Trassib lugiforn' Trassib lug	TG-82018 Vapor Directo (VO) 105 105 105 105 105 105 105 10	Vapor de Média (VM) 23.8 112.7 20.0, 26 23.8 312.7 300, 26 312.8 312.7 300, 26 312.7 300, 26 312.7 300, 26 312.7 300, 26 312.7 300, 26 312.7 300, 26 312.7 300, 26 312.7 300, 26 312.7 300, 26 312.7 300, 26 312.7 300, 26 312.7 300, 26 312.7 300, 26 300, 30 3	Vapor de Escape (VE) 16- 16- 18- 18- 18- 18- 18- 18- 18- 18- 18- 18	Condensate de escape 122 122 132 133 131 132 132 13	Q - VM (MWW) 50,211/0815 54,67416975 54,67416975 54,67416975 55,67416975 51,0168659	Q-VE (MWN) 201,617,609 304,1150047 304,1150047 304,1150047 304,4041991 306,9304666	Q- Cand. (MWN) 30,36976556 30,36976556 30,36976556 20,757652		Turbobomba água Caldeira A (m*/h) 240 250 250 250 240 240 240	1/h 15,68 16, 16, 16, 15,68 15,68 15,68
min. min. min.	TURBOGERADOR Persish Baffcon* Temperatura (TC)	TG-82018 Vapor Directo (VO) 18.8 18.9 18.9 18.0 18.1	Vapor de Media (VM) 31.8 31.8 31.8 31.7 30.0, 26 30.1, 5 30.1, 5 30.1, 5 30.1, 6 30	Vapor de Escape (VI) 16 16 18 2743,53 186, 1945, 186 186, 1945, 186 186, 1945, 186 186, 1945, 186 186, 1945, 186 186, 1945, 186 1945,	Condensado de scaspo. 122 122 122 122 123 135.73 121 122 132 132 132 132 132 132 132 13	Q - VM (MWh) 59,21319815 58,67416975 58,67416975 54,93677648	Q - VE (MWIN) 103.6137645 104.1150847 104.1150847 104.1150847	Q - Cond. (MWh) 30,36976566 30,36976566 30,36976566 30,34473778 29,757862		Turbobomba água Caldeira A (m*/h) 240 250 250 250 240 240 240	1/h 15,68 16, 16, 16, 15,68 15,68 15,68
min. min. min.	TURBOGERADOR Presské lighforn' Presské lightern'	TG-8201B Vapor Directo (VO) 318 318 318 312,119 212 318 312,119 212 318 318 318 318 318 318 318 318 318 318	Vagor de Média (VM) 22,8 333,7 3002,26 87,5 87,5 333,7 3002,26 87,5 333,7 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 87,5 87,5 87,5 87,5 87,5 87,5 87,5	Vapor de Escape (VS) 1.6 1.6 1.6 1.6 1.704,51 1.85 1.	Condensate de excepe 122 122 122 132 131 132 132 13	Q - VMr (MeWN) 56,2113915 58,67416975 58,67416975 58,67416975 54,97053172 54,93677648 51,01688699	Q. VE (MWN) 103,6137659 104,1150047 104,1150047 104,1150047 104,1150047 106,1199150 106,1199150	Q. Cond. (MWh) 30.36976556 30.36976556 30.36976556 20.77862 20.77862 30.36981297	Gu (MNVN)	Turbobomba água Caldeira A (m*/h) 240 250 250 250 240 240 240	1/h 15,68 16, 16, 15,08
min. min. min. min.	TURBOGERADOR Trassib lugiforn') Trassib lugiforn') Trassib lugiforn') Trassib lugiforn') Trassib lugiforn') Trassib lugiforn' Trassib lug	TG-82018 Vapor Directo (VO) 105 105 105 105 105 105 105 10	Vagor de Média (VM) 22,8 333,7 3002,26 87,5 87,5 333,7 3002,26 87,5 333,7 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 87,5 87,5 87,5 87,5 87,5 87,5 87,5	Vapor de Escape (VE) 16- 16- 18- 18- 18- 18- 18- 18- 18- 18- 18- 18	Condensate de escape 122 122 132 133 131 132 132 13	Q - VM (MWW) 50,211/0815 54,67416975 54,67416975 54,67416975 55,67416975 51,0168659	Q-VE (MWN) 201,617,609 304,1150047 304,1150047 304,1150047 304,4041991 306,9304669	Q. Cond. (MWh) 30.36976556 30.36976556 30.36976556 20.77862 20.77862 30.36981297	Gu (MNVN)	Turbobomba água Caldeira A (m*/h) 240 250 250 250 240 240 240	1/h 15,68 16, 16, 15,08
min. min. min.	TURBOGERADOR Presské lighforn' Presské lightern'	TG-8201B Vapor Directo (VO) 318 318 318 312,119 212 318 312,119 212 318 318 318 318 318 318 318 318 318 318	Vagor de Média (VM) 22,8 333,7 3002,26 87,5 87,5 333,7 3002,26 87,5 333,7 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 3002,26 87,5 87,5 87,5 87,5 87,5 87,5 87,5 87,5	Vapor de Escape (VS) 1.6 1.6 1.6 1.6 1.704,51 1.85 1.	Condensate de excepe 122 122 122 132 131 132 132 13	Q - VMr (MeWN) 56,2113915 58,67416975 58,67416975 58,67416975 54,97053172 54,93677648 51,01688699	Q. VE (MWN) 103,6137659 104,1150047 104,1150047 104,1150047 104,1150047 106,1199150 106,1199150	Q. Cond. (MWh) 30.36976556 30.36976556 30.36976556 20.77862 20.77862 30.36981297	Gu (MNVN)	Turbobomba água Caldeira A (m*/h) 240 250 250 250 240 240 240	T/h 15,68

Planilha de totalização do Calor – Medição

APÊNDICE F (continuação)

Mediçõ	čes de campo:	Energia do combustíve	ı - Bagaço de cana (F)	COGERA	ÇAU A
DATA					
HORA DE	INÍCIO				
HORA DE	TÉRMINO				
PREMISSA	ıS				
1. Células en	n LARANJA são prenchida:	s com dados de medições de campo	0		
2. Medidas r	nesta usina estão em RPM				
			ido identificados três grupos de ve	locidades, identificados como LOTE 1	. 2 e 3.
				servada durante o período de mediç	
4. Intervalo	ae ilieuição adotado de 12	. Illinutos em virtude da boa condiç	,ao de estabilidade de operação ob		au.
Energia	a do combustível -	Bagaço de cana (F)			
CALDEIRA 11		LOTE 1	LOTE 2	LOTE 3	
Nume ração o	los Dosadores	1, 2, 3, 4, 5, 8, 9	10	6 e 7	
	dores no perfil	7	1	2	
Tempo (min)		Rotação (RPM)	Rotação (RPM)	Rotação (RPM)	
0-12		625		0	
12-14 24-36		800 700		0	4
36-48		650			
48-60		600			
10 00					
Rotação Méd	lia (RPM)	675	550	o c)
Seção por do		0,24	0,24		
Veloc.relativ	a (m/s*RPM)	8,50E-05	8,50E-05	1,00E-04	
					VAZÃO DE BAGAÇO (m³/h)
Vazão por do		49,57			TOTAL - CALDEIRA 11
Vazão por lot	.e (m³/h)	347,004	4 40,392		,
CALDEIRA 12		LOTE 1	LOTE 2	LOTE 3	-
Numeração o	los Dosadores	1, 2, 4, 5, 6, 7, 8, 10	3	9	
Quant. Dosac	dores no perfil	8	1	1	
Tempo (min)		Rotação (RPM)	Rotação (RPM)	Rotação (RPM)	
0-12		625			
12-24		800		600	
24-36 36-48		700			
48-60		650 600			
+10"00		800	425	500	
Rotação Méd	lia (RPM)	675	5 460	540)
Seção por do		0,24	0,24		
	a (m/s*RPM)	8,50E-05	1,00E-04	8,50E-05	
Veloc.relativ	-1,				
Veloc.relativ		49,57	7 39,74		VAZÃO DE BAGAÇO (m³/h) TOTAL - CALDEIRA 12

Planilha de totalização da Fonte - Medição

A planilha de aferição de velocidade nos dutos de bagaço foi preenchida através de medições visuais cronometradas, nos visores de bagaço das bicas de uma das caldeiras da Cogeração A. Foram tiradas 3 a 6 medidas em cada ponto, variando-se a velocidade de entrada do bagaço (rotação do motor do dosador), a fim de construir a tendência de comportamento da vazão pela rotação.

A planilha de totalização da fonte foi preenchida através da extrapolação das curvas de rotação de todos os dosadores de bagaço da central de Cogeração A, mostradas nos Apêndices B e C.

APÊNDICE G – Planilhas de cálculo – Cogeração B

	Davêmatura de musieto.		606	CDAÇÃO F	
	Parâmetros de projeto:		COG	ERAÇÃO E	5
Νº	Parâmetro - premissa	Valor	Unid.	Entalpias	
1	Produção total de bagaço da usina	265.4	T/h	Littuipius	
2	Consumo de bagaço pela cogeração	258,2	T/h		
3	Quantidade de caldeiras	2x275	Unid.		
4	Produção de vapor de alta pressão VD	550	T/h		
5	Pressão do VD	67	Bar	2451	kJ/kg
6	Temperatura do VD	515	°C	3431	KJ/ Kg
7	Quantidade de turbogeradores de contrapressão	2	Unid.		
8	Quantidade de turbogeradores de condensação	1	Unid.		
9	Produção de vapor de média pressão VM	313,8	T/h		
10	Pressão do VM	22	bar	3076,56	
11	Temperatura do VM	325	°C	30/6,56	KJ/Kg
12	Vazão de dessuperaquecedor para VM	11,9	T/h		
13	Consumo de VM pelo processo	291	T/h		
14	Consumo de VM da(s) turbobomba(s) da(s) caldeira(s)	34.7	T/h		
15	Produção de vapor de escape VE	182,4	T/h		
16	Pressão do VE	2,5	bar	2743,93	k1/ka
17	Temperatura do VE	140	°C	2743,53	KJ/Kg
18	Vazão de dessuperaquecedor para VE	13,9	T/h		
19	Consumo de VE pelo processo	486,7	T/h		
20	Perdas de VM na cogeração	3%	T/h ou %		
21	Perdas de VE na cogeração	3%	T/h ou %		
22	Pressão do condensado de retorno	1,5	bar	482,59	le I /lea
23	Temperatura do condensado de retorno	115	°C	462,39	KJ/Kg
24	Produção de eletricidade	62,5	MW		
24 25	Consumo auxiliar de eletricidade - apenas na cogeração	6	MW		
	Cálculo feito a partir dos parâmetros de projeto para a safra				
	Base horária	1 hora			
	W - Trabalho	56,500			
	Q - VM	241,228			
	Q - VE	170,787			
	Q - condensado	66,517			
	PCI adotado (CTC) - kJ/kg	7200,000			
	F - combustível	516,400			
	FUE - Projeto	0,778			
	TOE Trojeto	3,778			

Planilha de cálculo do FUE - Projeto

ericão de do	sadores - Cal	deiras 67 h	ar			CO	GERAÇÃO B	
origae ac ac	Judoi es eu	<u>ucii ub 07 b</u>					CZIU IÇI IC Z	
Altura do Visor	15 cm							
Motor	3CV - 6 pólos							
Redutor	1140-21 rpm							
Dosador	Rotação (RPM)	tempo (s)	Dosador	Rotação (RPM)	tempo (s)	Dosador	Rotação (RPM)	tempo (s)
1	324,9	5,12	1	647,9	2,64	1	982,3	1,58
1	326,8	5,41	1	646	3,03	1	1007	1,94
4	330,6	4,47	4	651,7	2,56	4	993,7	1,93
4	328,7	5,19	4	659,3	2,56	4	1003,2	1,97
6	343,9	4,78	6	674,5	2,69	6	1043,1	1,78
6	345,8	4,66	6	680,2	2,44	6	1035,5	1,84
Média	333,45	4,938333333	Média	659,9333333	2,653333333	Média	1010,8	1,84
Desvio	9,05245823	0,357961823	Desvio	14,35307168	0,203141986	Desvio	23,79176328	0,1457394
Desvio (%)	2,714787293	7,248636306	Desvio (%)	2,17492752	7,656105018	Desvio (%)	2,353755766	7,9206246
/elocidade (m/s)	0,03037462		Velocidade (m/s)	0,056532663		Velocidade (m/s)	0,081521739	
Veloc./RPM	9,109E-05		Veloc./RPM	8,566E-05		Veloc./RPM	8,065E-05	
dotado entre 200 e 400RPM	9,00E-05		Adotado entre 400 e 800RPM	8,50E-05		Adotado entre 800 e1100RPM	8,00E-05	

Planilha de aferição de velocidade nos dutos de bagaço (dosadores)

APÊNDICE G (continuação)

Medições de camp	0:	Eletricidad	de / Trabalh	10 (W)					COGI	ERAÇÃO B
DATA									13/05/2011	
HORA DE INÍCIO									10:30	
HORA DE TÉRMINO									11:30	
PREMISSAS										
1. Células em LARANJA são p	renchidas com dado	s de medições de	campo							
2. Medições de energia bruta	efetuadas nos cont	roladores Woody	vard de cada ger	rador, com memó	ria de massa					
3. Medições de consumos au	xiliares efeutadas n	os relés de medic	ão das colunas o	da distribuição pr	imária destinada	is a cada subesta	cão auxiliar da o	ogeração.		
4. Intervalo de medição adot										
The interval of the argue adde	ado de 10 minutos e	vii tuuc uu bou	contarção de est	abiliadae ac ope	i ação observado	durante o perio	uo uc meurçuor			
										Energia acumula
	Início						Final	Unidade		(MWh)
							11:30	Oilluade		(IVIVVII)
	10:30		1							
Energia acumulada G1A	10:30 246138,5						246165,13	MWh		26,63
Energia acumulada G1A Energia acumulada G1B							246165,13 230093,6	MWh MWh		26,63 26,6
	246138,5									
Energia acumulada G1B	246138,5									26,6
Energia acumulada G1B TOTAL GER. BRUTA Potências Cons. Auxiliares	246138,5 230067	T=10	T=20	T=30	T=40	T=50		MWh		26,6
Energia acumulada G1B TOTAL GER. BRUTA Potências Cons. Auxiliares CCM-Cs Força	246138,5 230067 T=0 400	400	420	400	400	390	230093,6 T=60 400	MWh		26,6 53,23
Energia acumulada G1B TOTAL GER. BRUTA Potências Cons. Auxiliares CCM-Cs Força CCM-Caldeira A	246138,5 230067 T=0 400 1390	400 1390	420 1550	400 1570	400 1510	390 1710	230093,6 T=60 400 1610	MWh kW kW		26,6 53,23 0,40 1,53
Energia acumulada G1B TOTAL GER. BRUTA Potências Cons. Auxiliares CCM-Cs Força CCM-CsIdleira A CCM-Caldeira B	246138,5 230067 T=0 400 1390 1160	400 1390 1160	420 1550 1230	400 1570 1380	400 1510 1290	390 1710 1300	230093,6 T=60 400 1610 1330	kW kW kW		26,6 53,23 0,40 1,53 1,26
Energia acumulada G18 TOTAL GER. BRUTA Potências Cons. Auxiliares CCM-Cs Força CCM-Caldeira A CCM-Caldeira B CCM-Caldeira B	246138,5 230067 T=0 400 1390 1160 430	400 1390 1160 430	420 1550 1230 430	400 1570 1380 430	400 1510 1290 420	390 1710 1300 420	230093,6 T=60 400 1610 1330 420	kW kW kW kW		0,40 1,53 1,26 0,43
Energia acumulada G1B TOTAL GER. BRUTA Potências Cons. Auxiliares CCM-Cs Força CCM-CsIdleira A CCM-Caldeira B	246138,5 230067 T=0 400 1390 1160	400 1390 1160	420 1550 1230	400 1570 1380	400 1510 1290	390 1710 1300	230093,6 T=60 400 1610 1330	kW kW kW		26,6 53,23 0,40 1,53 1,26

Planilha de totalização da Eletricidade – Medição

	Medições de campo	:	Calor (Q)						COGI	RAÇÃO B
	DATA								13/05/2011	
	HORA DE INÍCIO								10:30	
	HORA DE TÉRMINO								11:30	
	PREMISSAS									
- 1	Células em LARANJA são pre	nchidae com dadoe do	modicãos do campo							
	Vazão do VE = VD-VM.	ilciliuas comi uauos ue i	illeuições de campo							
	Vazão do Condensado = Vazã									
	Consumo de vapor nas turbo						na de contrapres:	ão 22-2,5 bar com re	ndimento 60%.	
5.	Intervalo de medição adotad	o de 10 minutos em vir	rtude da boa condição d	e estabilidade de operaçã	io observada durante o	período de medição.				
					Perdas de vapor	VM	VF	Turbobomba Vazão Nominal	220 m ² /h	
							•		320 m²/h	
	TURBOGERADOR	TG-A			Perda	3,00%	3,00%	Cons. VM nominal	6 kg/s	
		Vapor Direto (VD)	Vapor de Média (VM)	Vapor de Escape (VE)	Condensado de escape	Q-VM(MWh)	Q - VE (MWh)	Q - Cond. (MWh)	Qu (MWh) Vazão	Q - VM consumido
min.	Pressão (kgf/cm²)	64,24	18,68	1,43	0,8				Turbobomba água	
	Temperatura (°C)	506	326	154	115				Caldeira A	
	Entalpia (kl/kg)	3432,5	3086,9	2781,49	482,59				(m²/h)	
	Vazão (T/h)	206,92	85,71	121,21	206,92	57,81480734	102,9828902	27,73820078	240	
Omin.	Pressão (kgf/cm²)	64,24	18,68	1,43	0,8					
	Temperatura (°C)	506	326	154	115					
	Entalpia (kl/kg)	3432,5	3086,9	2781,49	482,59	57 81490734	102 9828902	27 73820078		
	Vazão (T/h)	206,92	85,71	121,21	206,92	57,81480734	102,9828902	27,73820078	240	
umin.	Pressão (kgf/cm²)	63	19,14	1,38	0,8					
	Temperatura (°C)	507 3436.34	328 3089,68	156,5 2786,87	115 482.59					
	Entalpia (kJ/kg) Vazān (T/h)	3436,34	3089,68 91.7	2786,87	482,59	62.85353189	98 74422301	27.748925	240	
Omin	Vazão (T/h) Pressão (kgf/cm²)	207 63.9	91,7 17.4	115,3 1.26	207	62,85353189	98,74422301	27,748925	240	
ordin.	Temperatura (°C)	509	322	1,26	115,7					
	Entalpia (kl/kg)	3440.1	3081,04	2788,1	485.56					
	Vazão (T/h)	208	95	113	208	65,97769011	96.55287109	28,05457778	230	
Omin	Pressão (kgf/cm²)	64,8	18,08	1.27	0.8	00,57703011	30,33207103	20,00407770	250	
······	Temperatura (°C)	509,9	330	156,1	115,7					
	Entalpia (kJ/kg)	3441.24	3095.59	2786.83	485 56					
	Vazão (T/h)	206	83	123	206	56,78690027	103.5616799	27.78482222	221	1
Omin.	Pressão (kgf/cm²)	63,9	16,9	1.27	0,8	34, 30,000		21,101,022		
	Temperatura (°C)	508,4	334	154,13	115,8					
	Entalpia (kJ/kg)	3438,67	3108,86	2782.83	485.58					
	Vazão (T/h)	217,9	103,5	114,4	217,9	72,98114913	98,05783476	29,39107833	242,6	1
50min.	Pressão (kgf/cm²)	64,99	18,31	1,32	0,8					
	Temperatura (°C)	509,3	334,86	154,3	116,3					
	Entalpia (kJ/kg)	3439,58	3107,58	2782,87	488,1					
	Vazão (T/h)						101,0188187	28,919925	227	
	Vaza0 (1/11)	213,3	93,9	119,4	213,3	65,7945254	101,0100107			15
										1
	Vazão Total VD TG-A (T/h)	213,3			213,3 MÉDIAS	62,860				1
										1
										1
										1
	Vazão Total VD TG-A (T/h)	209,4342857								1
		209,4342857 TG-B		TG-A		62,860	100,557	28,197		
	Vazão Total VDTG-A (T/h) TURBOGERADOR	209,4342857	Vapor de Média (VM)	TG-A Vapor de Escape (VE)	MÉDIAS Condensado de escape	62,860	100,557	28,197	Qu (MWh) Vazão	Vazão VM TB
	Vazão Total VDTG-A (T/h) TURBOGERADOR Pressão (kgf/cm²)	209,4342857 TG-B Vapor Direto (VD) 64	Vapor de Média (VM) 20,12	TG-A Vapor de Escape (VE) 1,41	MÉDIAS Condensado de escape 0,8	62,860	100,557	28,197	Qu (MWh) Vazão Turbobomba águs	
	Vazão Total VD TG-A (T/h) TURBOGERADOR Pressão (kgt/cm²) Temperatura (°C)	209,4342857 TG-B Vapor Direto (VD) 64 506	Vapor de Média (VM) 20,12 320	Vapor de Escape (VE) 1,41 157	MÉDIAS Condensado de escape 0,8 115	62,860	100,557	28,197	Qu (MWh) Vazão Turbobomba água Caldeira A	Vazão VM TB
	Vazão Total VD TG-A (T/h) TURBOGERADOR Pressão (kgf/cm²) Temperatura (°C) Entalpja (k/kg)	209,4342857 TG-B Vapor Direto (VD) 64 506 3432,8	Vapor de Média (VM) 20,12 220 3009,8	TG-A Vapor de Escape (VE) 1,41 157 228.66	Condensado de escape 0,8 115 482,59	Q-VM (MWh)	100,557 Q - VE (MWh)	28,197 Q - Cond. (MWh)	Qu (MWh) Vazão Turbobomba água Caldeira A (m²/h)	Vazão VM TB
min.	Vazão Total VD TG-A [T/h] TURBOGERADOR Pressão (tgt/cm²) Temperatura (°C) Entalpia (s/kg) Vazão (T/h)	209,4342857 TG-B Vapor Direto (VD) 64 506 34432,8 236	Vapor de Média (VM) 20,12 320 3069,8 144	Vapor de Escape (VE) 1,41 157 2787,66 92	MÉDIAS Condensado de escape 0.8 115 42,59 2.36	62,860	100,557	28,197 Q - Cond. (MWh)	Qu (MWh) Vazão Turbobomba água Caldeira A	Vazão VM TB
min.	Vazão Total VD TG-A (T/h) TURBOGERADOR Pressão (kg/cm²) Temecratura (FCI entalpia (k/kg) Vazão (T/h) Pressão (kg/cm²)	TG-B Vapor Direto (VD) 64 506 3432.8 236 64	Vapor de Média (VM) 20,12 200 3009,8 144 20,12	TG-A Vapor de Escape (VE) 1,41 157 2787,66 92 1,41	MEDIAS Condensado de escape 0.8 115 482,59 2.36 0.8	Q-VM (MWh)	100,557 Q - VE (MWh)	28,197 Q - Cond. (MWh)	Qu (MWh) Vazão Turbobomba água Caldeira A (m²/h)	Vazão VM TB
nin.	Vazão Total VD TG-A (T/h) TURBOGERADOR Pressão (tgd/cm²) temperatura (°C) temperatura (°C) Pressão (tgd/cm²) Pressão (tgd/cm²)	209,4342857 TG-B Vapor Direto (VD) 64 506 3432,8 236 64 506	Vapor de Média (VM) 20,12 320 3069,8 144 20,12 320	TG-A Vaporde fscape (VE) 1,41 157 2787.66 92 1,41 157	MéDIAS Condensado de escape 0.8 115 482,59 2.36 0.8 115	Q-VM (MWh)	100,557 Q - VE (MWh)	28,197 Q - Cond. (MWh)	Qu (MWh) Vazão Turbobomba água Caldeira A (m²/h)	Vazão VM TB
min.	Vasido Total VDTG-A (T/h) TURBOGERADOR Pressão (lagf/cm²) Temperatura (EC) Generatura (EC) Temperatura (EC) Temperatura (EC) Temperatura (EC) Temperatura (EC)	TG-B Vapor Direto (VD) 64 506 4422,8 236 64 506 3442,6	Vapor de Média (VM) 20,12 200 3009,3 144 20,12 220 3009,8	TG-A Vapor de Escape (VL) 1,41 157 2787,66 92 1,41 157 2787,66	MÉDIAS Condensado de escape 0.8 115 42,59 2.8 0.8 115 42,59	QVM (MWh)	100,557 Q - VE (MWh) 80,5461118	28,197 Q- Cond. (MWh)	Qu (MWh) Vasio Turbokomba água Caldeira A (m²/h) 225,7	Vazão VM TB
min. Omin.	Vasdo Total VDTG-A (T/h) TURBOGERADOR Pressão (kg//cm²) Tengeratrus IPC Gendajo (k/h/h) Pressão (kg//cm²) Tengeratrus IPC Gendajo (k/h/h) Pressão (kg//cm²) Gendajo (k/h/h) Gendajo (k/h/h)	209,4342857 TG-B Vapor Direto (VD) 64 506 3432,8 236 64 506 3432,68 236	Vapor de Média (VM) 20,12 320 3069, 8 144 20,12 320 3069, 8 144	TG-A Vapor de Escape (VE) 1,41 157 2787.66 92 1,41 157 2787.66 92 93	MéDIAS Condensado de escape 0.8 115 482,59 2.86 0.8 115 482,59 2.86 2.86	Q-VM (MWh)	100,557 Q - VE (MWh)	28,197 Q - Cond. (MWh)	Qu (MWh) Vazão Turbobomba água Caldeira A (m²/h)	Vazão VM TB
min. Omin.	Vasdo Total VDTG-A (T/h) TURBOGERADOR Pressão (kg/cm²) Temperatura (TC) Gonlajos (U/hg) Vasdo (T/h) Pressão (kg/cm²) Vasdo (T/h)	209,4342857 TG-B Vapor Direto (VD) 64 506 4342,8 236 64 906 2412,68 236 64	Vapor de Média (VM) 20.12 320.2 320 3209.8 144 20.12 320 3009.8 144 18.6	TG-A Vapor de ticape (VE) 3.41 157 278 46 92 1.41 157 278 76 92 1.41 157 278 76 92 1.39	MEDIAS Condensado de escape 0.8 115 492,59 236 0.8 115 42,59 236 0.8	QVM (MWh)	100,557 Q - VE (MWh) 80,5461118	28,197 Q- Cond. (MWh)	Qu (MWh) Vasio Turbokomba água Caldeira A (m²/h) 225,7	Vazão VM TB
min. Omin.	Vasalo Total VDTG-A (T/h) TURBOGERADOR Pressão (legi/cm²) Temperatura IFC Generatura IFC Pressão (legi/cm²) Pressão (legi/cm²) Pressão (legi/cm²) Pressão (legi/cm²)	209,4342857 TG-B Vapor Direto (VD) 64 906 4412.8 236 64 64 506 506	Vapor de Média (VM) 20,12 20,2 200,8 144 20,13 309,8 144 144 186 200,3	TG-A Vapor de Escape (VE) 1,41 157 2787,66 32 157 2787,66 139 22 1,30 1,30 1,56,7	MEDIAS Condensado de escape 0.8 115 42,59 42,59 42,59 42,59 0.8 115	QVM (MWh)	100,557 Q - VE (MWh) 80,5461118	28,197 Q- Cond. (MWh)	Qu (MWh) Vasio Turbokomba água Caldeira A (m²/h) 225,7	Vazão VM TB
min.	Vando Total VOTG-A (T/h) TURBOGERADOR Pressão (tyl/cm²) Fennecaraus (FC) rendigo (tyl/cm²)	209,4342657 TG-B Vapor Diretto (VII) 506 506 506 506 506 506 506 506 64 64 64 64 64 64 64 64 64 64 64 64	Vapor de Média (VM) 93.12 93.20 93.00 93	TG-A Vapor de Escape (VE) 144 157 2787.66 22 1,41 157 2787.66 28 186.7 2787.2	MEDIAS Condensado de escape. 0.8 0.8 0.8 0.8 0.8 0.8 0.8 115 0.2 236 0.8 115 0.2 336 0.8 115 0.2 346 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	Q - VM (MWh) 106, 5066604 106, 6252028	100,557 Q - VE (MWh) 80,5461118 80,25711858	28,197 Q. Cond. (MWh) 31,63645556	Qu (MWh) Vusio Turbobomba água Carl Phi (m*/h) 225,7	Vazão VM TB T/h
min. Omin.	Vasido Total VID TG-A (T/h) TURBOGERADOR Pressão (leg/cm²) Fremperatura ICG (totalpia lb /b/ag Pressão (leg/cm²) Temperatura ICG (totalpia lb /b/ag Vasido (T/h) Vasido (T/h) (saido (lb /b/ag) Vasido (T/h) (saido (lb /b/ag) Vasido (T/h) (saido (lb /b/ag) Vasido (T/h)	7G-B TG-B Vapor Direto (VIO) 64 506 3432,8 236 64 543,28 56 3432,8 3432,8 3432,8 3432,8 3432,8	Vapor de Média (VM) 2012 300 300 300 300 300 344 3012 303 304 316 316 310 300 317 317 317 318 318 319 319 319 319 319	TG-A Vapor de Escape (VE) 1.41 157 2787.66 1.41 157 2287.66 1.22 2287.2 78	MEDIAS Condemsado de escape 0.8 115 402.79 286 403.91 404.79 404.79 404.79 404.79 404.79 404.79 404.79 404.79 404.79 404.79 404.79 404.79	QVM (MWh)	100,557 Q - VE (MWh) 80,5461118	28,197 Q. Cond. (MWh) 31,63645556	Qu (MWh) Vasio Turbokomba água Caldeira A (m²/h) 225,7	Vazão VM TB T/h
min. Omin.	Vando Total VDTG-A (T/h) TURBOGERADOR Persado lagf.com*) Frence lagf.com*)	7G-B TG-B Vapor Ornto (V0) 8	Vapor de Média (VM) 20.13 20.23 20.03 20.04 20.12 20.06 20.06 20.07 20	TG-A Vapor de Escape (VE) 1.4.1 1.57 2787.66 92. 1.41 157 2787.66 92. 2.279.66 92. 1.52 92. 1.52 1.52 1.52 1.52 1.52 1.52 1.53 1.54 1.54	MeDIAS Condemaid de risage 68 68 62.99 286 6.8 115 62.29 286 6.8 115 62.29 286 62.29 63.8	Q - VM (MWh) 106, 5066604 106, 6252028	100,557 Q - VE (MWh) 80,5461118 80,25711858	28,197 Q. Cond. (MWh) 31,63645556	Qu (MWh) Vusio Turbobomba água Carl Phi (m*/h) 225,7	Vazão VM TB T/h
min. Omin.	Vasido Total VD TG-A (T/h) TURBOGERADOR Pressão (sg/fcm²) Frempendars ICC fontigia Li M-Baj Vasido (T/h) Pressão (sg/fcm²) Frempendars ICC fontigia Li M-Baj Vasido (T/h) Pressão (sg/fcm²) Tempendars ICC fontigia Li M-Baj Pressão (sg/fcm²) Tempendars ICC Frempendars ICC	7G-B Vapor Derto (VII) 64 506 3402,8 4006 410,8 410	Vagor de Média (VM) 20,12 20,12 300 300 300 1044 20,13 300 144 106,13 106,13 107,17 10	TG-A Vapor de Escape (VE) 1,41 157 2702.66 92 1,81 1,92 2707.66 92 1,99 1	MiDIAS Condemsado de escape 6.8 115 402.79 2.86 6.9 12.90 2.86 13.5 402.99 2.86 13.5 402.99 2.86 13.5 402.99 2.86 13.5 402.99 2.86 13.5 402.99 2.86 13.5 402.99 2.86 13.5 402.99 2.86 13.5 402.99 2.86 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	Q - VM (MWh) 106, 5066604 106, 6252028	100,557 Q - VE (MWh) 80,5461118 80,25711858	28,197 Q. Cond. (MWh) 31,63645556	Qu (MWh) Vusio Turbobomba água Carl Phi (m*/h) 225,7	Vazão VM TB T/h
min. Omin.	Vasdo Total VDTG-A (T/h) TURBOGERADOR TURBOGERADOR Pressão (tqt/cm²) Temperatura (Cl. Temperatura	7G-B TG-B Vapor Direto (VO) 64 64 5402.8 64 5402.8 64 5402.8 64 5402.8 64 5402.8 64 5402.8 64 5402.8 64 5402.8 5402.8 5402.8 5402.8 5402.8 5402.8 5402.8 5402.8 5402.8 5402.8 5402.8 5402.8	Vapor de Média (VM) 20.12 20.12 20.12 20.05 20.05 20.05 20.05 20.00 20	TG-A Vapor de Escape (VE) 3.44 2.772 (36 2.2 1.41 1.57 2.775 (36 2.2 1.29 1.29 1.30 2.2 1.41 1.56 2.776 (36 2.776 (36 2.776 (36 2.776 (36 2.776 (36) 2.776 (36) 2.776 (36)	Melous S Condemado de escape OL SE	Q. VM (MWh) 106, 9099604 106, 87-3208 129, 126613	100,557 Q - VE (MWh) 80,5461118 80,25711858 69,98339833	28,197 Q - Cond. (MWh) 31,6364556 31,77050833	Qu (MWh) Vazido Turbobomba água Caldeira A (m² h) 225,7 220	Vazão VM TB T/h 2:
min. Omin. Omin.	Vasdo Total VDTG-A (T/h) TURBOGERADOR Pressão (kg/cm²) Frensenhura (EC) Gentajos (k/hg) Vasdo (T/h) Pressão (kg/cm²) Frensenhura (EC) Gentajos (k/hg) Vasdo (T/h) Frensenhura (EC) Gentajos (k/hg) Vasdo (T/h) Frensenhura (EC) Gentajos (k/hg) Vasdo (T/h) Gentajos (k/hg) Vasdo (T/h) Gentajos (k/hg) Vasdo (T/h) Gentajos (k/hg)	209.4342557 TG-B Vajor Overto (VO) 66 596 3412,6 464 236 64 596 4412,6 236 64 906 2412,6 906 3412,6 906 3412,6 906 3412,6 906 3412,6 906 3412,6 906 3412,6 906 3412,6 906 3412,6 906 3412,6 906 3412,6 906 3412,6 906 3412,6 906 3412,6 906 3412,6 906 3412,6 906 3413,16	Vagor de Média (VM) 20.21 20.0 20.02 20.0 20.04 20.12 20.0 20.04 20.12 20.00 20.04 20.12 20.04 20.12 20.04 20.12 20.04 2	TG-A Vapor de tisope (VI) 1,41 1,57 2787.66 92 1,48 1,41 1,41 1,77 2787.66 92 1,39 1,56 78 78 1,39	OutDUAS Condemsado de escape 0.8 115 42.79 226 0.8 125 42.99 226 0.8 115 42.99 226 0.8 115 42.90 42.90 42.90 42.90 42.90 42.90 42.90 42.90 42.90 42.90 42.90 42.90 43.90 44.90 44.90 44.90 44.90 45.96 46.96 46.96 46.96	Q - VM (MWh) 106, 5066604 106, 6252028	100,557 Q - VE (MWh) 80,5461118 80,25711858	28,197 Q. Cond. (MWh) 31,63645556	Qu (MWh) Vusio Turbobomba água Carl Phi (m*/h) 225,7	Vazão VM TB T/h 2:
min. Omin. Omin.	Vasdo Total VDTG-A (T/h) TURBOGERADOR Pressão (kg//cm²) Temperahen PC	209,4342657 TG-B Vapor Directo (VO) 64 506 506 506 4312,68 4312,68 64 506 4312,68 64 506 4312,68 64 506 4312,68 64 64 667	Vapor de Média (VM) 2012 200 200 200 200 200 200 2	TG-A Vaporde Escape (VE) 141 257 279166. 141 157 2792. 1,41 157 2797.66 1,39 1,46,7 2797.72 2797.72 1,41 166,7 2797.93 1,41 176,6 2797.93 1,41	Mitous Condensado de escape GESTA	Q. VM (MWh) 106, 9099604 106, 87-3208 129, 126613	100,557 Q - VE (MWh) 80,5461118 80,25711858 69,98339833	28,197 Q - Cond. (MWh) 31,6364556 31,77050833	Qu (MWh) Vazido Turbobomba água Caldeira A (m² h) 225,7 220	Vazão VM TB T/h
min. Omin. Omin.	Vando Total VIDTG-A (T/h) TURBOGERADOR Perssio (spifcere) Tensecativas (CC fontajos (M/kg) Vando (T/h) Perssio (spifcere) Tensecativas (CC fontajos (M/kg) Vando (T/h) Perssio (spifcere) Tensperaturas (CC fontagos (M/kg) Perssio (spifcere) Perssio (spifcere) Perssio (spifcere)	7G-B Vapor Directo (VO) 506 3412,8 342,6 64 506 3412,6 506 3412,6 506 3412,6 506 3412,6 506 3412,6 506 3412,6 506 3412,6 506 506 506 506 506 506 506 506 506 50	Vapor de Média (VM) 30.12 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.	TG-A Vapor de ticape (VE) 1.41 1.57 2.787.66 92 1.41 1.97 1.96.66 1.92 1.96.76 1.97 1.97 1.97 1.98.76 1.99	MiDIAS Condensado de escape 0.8 115 42.59 2.86 0.8 125 0.8 115 42.59 0.8 115 42.59 0.8 115 42.59 0.8 115 115 115 115 115 115 115 1	Q. VM (MWh) 106, 9099604 106, 87-3208 129, 126613	100,557 Q - VE (MWh) 80,5461118 80,25711858 69,98339833	28,197 Q - Cond. (MWh) 31,6364556 31,77050833	Qu (MWh) Vazido Turbobomba água Caldeira A (m² h) 225,7 220	Vazão VM TB T/h 2:
min. Omin.	Vasdo Total VD TG-A (T/h) TURBOGERADOR Pressão (legform) Fremperahrer ICC Icelajes Ia (M-a) Vasdo (T/h) Pressão (legform) Temperahrer ICC Icelajes Ia (M-a) Vasdo (T/h) Pressão (legform) Temperahrer ICC Icelajes IA (M-a) Vasdo (T/h) Pressão (legform) Temperahrer ICC Icelajes IA (M-a) Vasdo (T/h) Pressão (legform) Temperahrer ICC Icelajes IA (M-a) Vasdo (T/h) Pressão (legform) Temperahrer ICC Icelajes IA (M-a) Vasdo (T/h) Pressão (legform) Temperahrer ICC Icelajes IA (M-a) Vasdo (T/h) Pressão (legform) Temperahrer ICC Icelajes IA (M-a)	209,4342657 TG-B Vapor Directo (VO) 64 506 506 506 4312,68 4312,68 64 506 4312,68 64 506 4312,68 64 506 4312,68 64 64 667	Vapor de Média (VM) 2012 200 200 200 200 200 200 2	TG-A Vaporde Escape (VE) 141 257 279166. 141 157 2792. 1,41 157 2797.66 1,39 1,46,7 2797.72 2797.72 1,41 166,7 2797.93 1,41 176,6 2797.93 1,41	Mitous Condensado de escape GESTA	Q_866 Q_VM (MWh) 106,509604 106,673208 119,126613	100,557 Q - VE (MWh) 80,5461118 80,25711858 69,98339833	28,197 Q - Cond. (MWh) 31,6364556 31,77050833	Cu (MWh) Vario Turebomhs agus Caldeira A (m²h) 225,7 220 225	Visido VAN TB V/h 21
Omin. Omin.	Vando Total VDTG-A (T/h) TURBOGERADOR Persola (bg/cm²) Fernya (bg/cm²)	7G-B Vapor Ore to (V0) Vapor O	Vapor de Média (VM) 20.12 20.12 20.12 20.03 20.04 20.02 20.09.8 20.04 20.12 20.0 20.04 20.12 20.04 20.12 20.04 20.12 20.04 20.12 20.04 20.12 20.04 2	TG-A Vapor de Escape (VE) 1.41 1.52 2782 (66 92 1.41 157 2787 (66 93 1.41 157 2787 (66 93 1.44 156, 7 2787 (2787 (28) 186, 7 2787 (28) 186, 7 2788 (38) 187 278, 93 187 278, 93 187 278, 93 187 278, 93 187 278, 93 187 278, 93 187 278, 93 187 278, 93 187 278, 93 187 278, 93 187 278, 93	Metous School of except	Q. VM (MWh) 106, 9099604 106, 87-3208 129, 126613	100,552 Q - VE (MWIN) 80,1461116 80,25711898 G0,96339831 76,2280512	28,197 Q. Cond. (MWh) 31,0364556 31,03645563 31,77050833	Qu (MWh) Vazido Turbobomba água Caldeira A (m² h) 225,7 220	Vazão VM TB T/h 2:
Dmin.	Vasdo Total VD TG-A (T/h) TURBOGERADOR PressSis (legf/cm²) Frementaria ICI fontigia IL/h/a) Vasdo (T/h) PressSis (legf/cm²) Frementaria ICI fontigia IL/h/a) Vasdo (T/h) PressSis (legf/cm²) Frementaria ICI fontigia IL/h/a) Vasdo (T/h) PressSis (legf/cm²) Frementaria ICI fontigia IL/h/a) PressSis (legf/cm²) Frementaria ICI fontigia IL/h/a) PressSis (legf/cm²) PressSis (legf/cm²) Frementaria ICI fontigia IL/h/a) Vasdo (T/h) PressSis (legf/cm²) FressSis (legf/cm²) FressSis (legf/cm²) FressSis (legf/cm²)	7G-B Vapor Derete (VO) 64 506 3412,8 266 64 66 64 66 64 66 64 66 64 66 64 66 64 66 64 66 64 66 66	Vapor de Média (VM) 20,12 300 20,12 300 200,8 144 20,13 300 300,8 144 146 20,3 100,4 20,13 100,4 20,13 100,17 100,17 100,18 100,17 100,18 100,	TG-A Vapor de Escape (VE) 1.41 157 2787.66 92 1.89 1.89 1.89 1.89 1.89 1.89 1.80 1.	Micross Condensado de escape 0.8 115 402.99 286 402.99 286 402.99 286 402.99 286 403.93 4	Q_866 Q_VM (MWh) 106,509604 106,673208 119,126613	100,552 Q - VE (MWIN) 80,1461116 80,25711898 G0,96339831 76,2280512	28,197 Q. Cond. (MWh) 31,0364556 31,03645563 31,77050833	Cu (MWh) Vario Turebomhs agus Caldeira A (m²h) 225,7 220 225	Visido VAN TB V/h 21
min. Omin. Omin.	Vando Total VDTG-A (T/h) TURBOGERADOR TURBOGERADOR Presab lag/cm ² Trengeration PC Genleja la/M-a Vando (T/h) Presab lag/cm ² Trengeration PC Genleja la/M-a Vando (T/h) Presab lag/cm ² Trengeration PC Genleja la/M-a Vando (T/h) Presab lag/cm ² Trengeration PC Trengeration PC Vando (T/h) Presab lag/cm ² Trengeration PC Trengeration PC	209,4342657 TG-B Vapor Directo (VO) 64 64 64 64 64 64 64 64 64 64 64 64 64	Vapor de Média (VM) 2012 2012 2013 2004 2014 2014 2014 2014 2010 2009 2009 2009 2014 2015 2019 201	TG-A Vapor de Escape (VI) 241 241 278 (66 92 141 157 278 (66 92 141 152 278 (66 92 149 149 150 189 144 156,69 189 189 199 199 199 199 199 1	Metous S Condensato de escape 0.1 0.2 0.3 0.3 0.4 0.5 0.8 0.15 0.8 0.15 0.8 0.15 0.8 0.15 0.8 0.15 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.	Q_866 Q_VM (MWh) 106,509604 106,673208 119,126613	100,551 Q-VE [MWHs] 80,540118 80,540118 60,96336631 76,2260513 74,55835402	28,197 Q. Cond. (MWh) 31,63645556 31,77050833 32,23578889	Cu (MWh) Vario Turebomhs agus Caldeira A (m²h) 225,7 220 225	Vasio VANTB V/h 1
Omin. Omin.	Vando Total VIDTG-A (T/h) TURBOGERADOR Pressão (spl. com²) Frensia (spl. com²)	7G-B Vapor Derete (VO) 64 506 3412,8 266 64 66 64 66 64 66 64 66 64 66 64 66 64 66 64 66 64 66 66	Vapor de Média (VM) 20,12 300 20,12 300 200,8 144 20,13 300 300,8 144 146 20,3 100,4 20,13 100,4 20,13 100,17 100,17 100,18 100,17 100,18 100,	TG-A Vapor de Scape (VS) 1,41 157 2702.66 92 1,21 159 2707.66 92 1,39 156,7 2707.2 2707.2 2707.2 2707.2 156,6 2706.93 1,39 1,39 1,39 1,39 1,39 1,39 1,44 1,44 1,56,6 2,766,93 8,7 8,7 8,7 1,39	MiDIAS Condemsado de escape 0.8 135 402.79 286 0.8 135 0.2 135 0.2 135 0.2 135 0.2 135 0.2 135 0.2 135 0.2 0.8 135 0.8 135 0.8 135 0.8 135 0.8 135 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.	Q_866 Q_VM (MWh) 106,509604 106,673208 119,126613	100,551 Q-VE [MWHs] 80,540118 80,540118 60,96336631 76,2260513 74,55835402	28,197 Q. Cond. (MWh) 31,63645556 31,77050833 32,23578889	Cu (MWh) Vario Turebomhs agus Caldeira A (m²h) 225,7 220 225	Vedic VM TB T/h 1
Omin. Omin.	Vando Total VD TG-A (T/h) TURBOGERADOR Pressão (legform) Fremperahran ICC Icadajas Ib Angul Fremperahran ICC Icadajas Ib Angul Turney Carlon ICC Icadajas Ib Angul Temperahran ICC Icadajas Ib Angul Temperahran ICC Icadajas Ib Angul Vando (T/h) Pressão (legform) Temperahran ICC Icadajas Ib Angul Vando (T/h) Pressão (legform) Temperahran ICC Icadajas Ib Angul Vando (T/h) Pressão (legform) Temperahran ICC Icadajas Ib Angul Vando (T/h) Pressão (legform) Temperahran ICC Icadajas Ib Angul Vando (T/h) Pressão (legform) Temperahran ICC Icadajas Ib Angul Vando (T/h) Pressão (legform) Temperahran ICC Icadajas Ib Angul Vando (T/h) Pressão (legform) Temperahran ICC Icadajas Ib Angul Vando (T/h) Pressão (legform) Temperahran ICC Icadajas Ib Angul Vando (T/h)	209,4342557 TG-B Vagor Overto (V0) 66 566 5402,8 236 64 558 64 558 64 558 64 568 64 568 64 568 64 568 64 568 64 568 64 568 64 568 64 568 64 64 658 64 64 658 64 64 658 64 64 658 64 64 658 64 658 64 64 658 64 658 64 658 667 667 668 668 668 668 668 668 668 66	Vapor de Média (VM) 20,12 300 800,8 304 305 300 300,8 304 344 346 303 301 301 300 300,8 300	TG-A Vapor de tisope (VI) 1,41 1,57 2787.66 92 1,48 1,41 1,41 1,71 2787.66 92 1,39 156,7 2787.2 78 156,6 2780,93 87 1,39 1,3	Micross Condensado de escape 0.8 115 402-59 286 402-59 287 402-59 286 402-59 287 402-59 287 402-59 402-	Q - VM (MWh) Q - VM (MWh) 105, 5069604 106, 823-208 119, 126663 112, 9701647	100,552 Q - VE (MWIN) 80,1461116 80,25711898 G0,96339831 76,2280512	28,197 Q. Cond. (MWh) 31,63645556 31,77050833 32,23578889	Qu (MWh) Varia Turobhomba água Caldeira a (m²/h) 225,7 225,7 220	Vedic VM TB T/h 1
min. Omin. Omin. Omin.	Vando Total VIDTG-A (T/h) TURBOGERADOR Perssile (spifcore) Temperature ICI Gentalpas (M/kg) Vando (T/h) Perssile (spifcore) Vando (T/h) Perssile (spifcore) Vando (T/h) Perssile (spifcore) Vando (T/h) Vando (T/h) Perssile (spifcore)	209.4342857 TG-B Vapor Circle to (Vito) 64 506 1411,2 1411,2 1412,2 1411	Vapor de Média (VM) 2012 200 2009 2009 2014 2012 200 2009 2014 2012 2014 2014 2015 2015 2016 2016 2016 2016 2016 2016 2016 2016	TG-A Vapor de Escape (VE) 1,41 157 2797,66 157 2797,66 157 2797,66 157 2797,66 157 2797,66 157 2797,66 157 157 157 157 157 157 157 1	04DUAS Condensado de escape 0,8 115 42,59 0,8 126 0,8 135 140,59 126 0,8 135 140,59 151 155 160,59 175 185 185 185 185 185 185 185	Q - VM (MWh) Q - VM (MWh) 105, 5069604 106, 823-208 119, 126663 112, 9701647	100,551 Q-VE [MWHs] 80,540118 80,540118 60,96336631 76,2260513 74,55835402	28,197 Q. Cond. (MWh) 31,63645556 31,77050833 32,23578889	Qu (MWh) Varia Turobhomba água Caldeira a (m²/h) 225,7 225,7 220	Vedio VM TB T/h 1
min. Omin. Omin. Omin.	Vando Total VOTG-A (T/h) TURBOGERADOR Pressib (tyl/cm²) Femograthus ICI Emergentus ICI Em	7G-B Vapor Directo (VIII) Fig. 18 Super Directo (VIII) Super Directo (VI	Vapor de Média (VM) 20,12 300 800,8 304 305 300 300,8 304 344 346 303 301 301 300 300,8 300	TG-A Vapor de ticape (VE) 1.41 1.47 2787.06 92 1.41 197.05 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.56 1.56 1.72 78 1.46 1.57 1.78 1.58 1.78 1.78 1.78 1.78 1.78 1.78 1.78 1.78 1.78 1.78 1.45	Micross Condensado de escape 0.8 115 402-59 286 402-59 287 402-59 286 402-59 287 402-59 287 402-59 402-	Q. VM (MWh) Q. VM (MWh) 106, 906604 106, 925028 119, 126613 112, 9701047 115, 783088	100,557 Q-VE (MWH) 80,5461118 80,25711859 60,98339833 76,2280517 74,35835403	28,197 Q. Cond. (MWh) 31,6364556 31,7050833 32,10091111 32,23578899	Qu (MWh) Vario Turbobomba água Coteiro A Im*/Di 225,7 220 225 225 225 225 225 225 22	Vacio VM TB T/h 21
Omin. Omin.	Vasdo Total VD TG-A (T/h) TURBOGERADOR Pressão (legform) Frengerahres IPC Gendejas (k/hg) Vasdo (T/h) Pressão (legform) Temperahres IPC	7G-B Vapor Over to (VII) 64 906 3412,8 3412,8 366 4 4412,6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Vapor de Média (VM) 2012 202 2009 2009 2009 2009 2009 2009	TG-A Vapor de Escape (VE) 1,41 157 2787.66 92 1,89 1,89 1,89 1,89 1,89 1,89 1,89 1,89 1,89 1,89 1,89 1,19 1,89 1,89 1,19	MiDUAS Condensato de escape 0.8 115 402.09 286 402.90 286 402.90 286 402.90 286 402.90 286 402.90 402.90 402.90 402.90 402.90 402.90 402.90 402.90 402.90 402.90 402.90 402.90 402.90 403.9	Q - VM (MWh) Q - VM (MWh) 105, 5069604 106, 823-208 119, 126663 112, 9701647	100,551 Q-VE [MWHs] 80,540118 80,540118 60,96336631 76,2260513 74,55835402	28,197 Q. Cond. (MWh) 31,63645556 31,77050833 32,23578889	Qu (MWh) Varia Turobhomba água Caldeira a (m²/h) 225,7 225,7 220	Vedic VM TB T/h 1
min. Omin. Omin. Omin.	Vasido Total VID TG-A (T/h) TURBOGERADOR Pressão (leg/cm²) Fremperahras I'Cl Contalpia Ib A/hag Pressão (leg/cm²) Fremperahras I'Cl Contalpia Ib A/hag Pressão (leg/cm²) Fremperahras I'Cl Contalpia Ib A/hag Vasido (T/h) Pressão (leg/cm²) Fremperahras I'Cl Contalpia Ib A/hag Vasido (T/h) Pressão (leg/cm²) Fremperahras I'Cl Contalpia Ib A/hag Pressão (leg/cm²) Fremperahras I'Cl Contalpia Ib A/hag Vasido (T/h) Pressão (leg/cm²) Fremperahras I'Cl Contalpia Ib A/hag Vasido (T/h) Pressão (leg/cm²) Fremperahras I'Cl Contalpia Ib A/hag Vasido (T/h) Pressão (leg/cm²) Fremperahras I'Cl Contalpia Ib A/hag Vasido (T/h) Pressão (leg/cm²) Fremperahras I'Cl Contalpia Ib A/hag F	7G-B Vapor Ornto (VO) 8	Vapor de Média (VM) 2012 202 2009 2009 2009 2009 2009 2009	TG-A Vapor de Escape (VE) 1.41 157 2780 66 1.43 157 2787 66 92 1.89	Microias Condensado de escape 0.8 0.8 0.8 0.8 0.9 0.8 0.9 0.8 0.9 0.9	Q, 266 Q, VM (MWh) Q, VM (MWh) 106, 5076004 106, 5125028 119, 1263613 112, 5701047 115, 7823848 120, 8510813 120, 8510813	Q - VE (IMVID) 80,1461114 80,24511858 60,9639833 76,2805140 70,64275853 78,35082400 78,35082400	28,197 Q. Cond. (MWh) 31,6965556 31,7705083 32,1023333 32,10223333 32,10223333	Qu (MWh) Vario Turbobomba água Coteiro A Im*/Di 225,7 220 225 225 225 225 225 225 22	Vacio VM TB T/h 21
min. Imin. Imin.	Vando Total VOTG-A (T/h) TURBOGERADOR Pressib (tyl/cm²) Femograthus ICI Emergentus ICI Em	7G-B Vapor Over to (VII) 64 906 3412,8 3412,8 366 4 4412,6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Vapor de Média (VM) 2012 202 2009 2009 2009 2009 2009 2009	TG-A Vapor de Escape (VE) 1,41 157 2787.66 92 1,89 1,89 1,89 1,89 1,89 1,89 1,89 1,89 1,89 1,89 1,89 1,19 1,89 1,89 1,19	MiDUAS Condensato de escape 0.8 115 402.09 286 402.90 286 402.90 286 402.90 286 402.90 286 402.90 402.90 402.90 402.90 402.90 402.90 402.90 402.90 402.90 402.90 402.90 402.90 402.90 403.9	Q. VM (MWh) Q. VM (MWh) 106, 906604 106, 925028 119, 126613 112, 9701047 115, 783088	100,557 Q-VE (MWH) 80,5461118 80,25711859 60,98339833 76,2280517 74,35835403	28,197 Q. Cond. (MWh) 31,6965556 31,7705083 32,1023333 32,10223333 32,10223333	Qu (MWh) Vario Turbobomba água Coteiro A Im*/Di 225,7 220 225 225 225 225 225 225 22	Vedic VM TB T/h 1
min. Imin. Imin.	Vasido Total VID TG-A (T/h) TURBOGERADOR Pressão (leg/cm²) Fremperahras I'Cl Contalpia Ib A/hag Pressão (leg/cm²) Fremperahras I'Cl Contalpia Ib A/hag Pressão (leg/cm²) Fremperahras I'Cl Contalpia Ib A/hag Vasido (T/h) Pressão (leg/cm²) Fremperahras I'Cl Contalpia Ib A/hag Vasido (T/h) Pressão (leg/cm²) Fremperahras I'Cl Contalpia Ib A/hag Pressão (leg/cm²) Fremperahras I'Cl Contalpia Ib A/hag Vasido (T/h) Pressão (leg/cm²) Fremperahras I'Cl Contalpia Ib A/hag Vasido (T/h) Pressão (leg/cm²) Fremperahras I'Cl Contalpia Ib A/hag Vasido (T/h) Pressão (leg/cm²) Fremperahras I'Cl Contalpia Ib A/hag Vasido (T/h) Pressão (leg/cm²) Fremperahras I'Cl Contalpia Ib A/hag F	7G-B Vapor Ornto (VO) 8	Vapor de Média (VM) 2012 202 2009 2009 2009 2009 2009 2009	TG-A Vapor de Escape (VE) 1.41 157 2780 66 1.43 157 2787 66 92 1.89	Microias Condensado de escape 0.8 0.8 0.8 0.8 0.9 0.8 0.9 0.8 0.9 0.9	Q, 266 Q, VM (MWh) Q, VM (MWh) 106, 5076004 106, 5125028 119, 1263613 112, 5701047 115, 7823848 120, 8510813 120, 8510813	Q - VE (IMVID) 80,1461114 80,24511858 60,9639833 76,2805140 70,64275853 78,35082400 78,35082400	28,197 Q. Cond. (MWh) 31,6965556 31,7705083 32,1023333 32,10223333 32,10223333	Qu (MWh) Vario Turbobomba água Coteiro A Im*/Di 225,7 220 225 225 225 225 225 225 22	Visido VAN TB V/h 21

Planilha de totalização do Calor – Medição

APÊNDICE G (continuação)

	Medições de campo:	Energia do combustíve	el - Bagaço de cana (F)	COGERA	IÇÃO B
	•	-	, , , , , , , , , , , , , , , , , , ,		
	DATA				
	HORA DE INÍCIO				
	HORA DE TÉRMINO				
	TIONA DE TENNINO				
	PREMISSAS				
1.	Células em LARANJA são prenchida	as com dados de medições de campo	0		
2.	Medidas nesta usina estão em Her	tz no sistema supervisório, foram ti	ransferidas para RPM através da ra	azão 60Hz = 1140RPM (rotação nomi:	nal do motor do dosador).
		odo de medição estavam com a mes			,
				oservada durante o período de mediç	žo
					ao.
5.	Foi verificado na medição que o do	sador 7 da caldeira 12 estava deslig	ado, não tendo sido somada sua co	ontribuição.	
	CALDEIRA 11	LOTE 1	LOTE 2	LOTE 3	-
	Numeração dos Dosadores	1 a 10	LOTE 2	LOIES	
	Trameração dos Bosadores	1010			
	Quant. Dosadores no perfil	10			
	Tempo (min)	Rotação (RPM)	Rotação (RPM)	Rotação (RPM)	
	0-12	589		, , , , , , , , , , , , , , , , , , ,	
	12-14	589,38	3		
	24-36	587,48			
	36-48	589,19			
	48-60	588,81	l l		
-	Rotação Média (RPM)	588,772			
	Seção por dosador (m²)	0,24			
	Veloc.relativa (m/s*RPM)	8,50E-05			
	,	7,22			VAZÃO DE BAGAÇO (m³/h)
	Vazão por dosador	43,24	0,0	0,0	TOTAL - CALDEIRA 11
	Vazão por lote (m³/h)	432,3941568	3	0	0 43
	CALDEIRA 12	LOTE 1	LOTE 2	LOTE 3	
	Numeração dos Dosadores	1 a 10, exceto 7 (nota 5)			
	Quant. Dosadores no perfil	9			
	Tempo (min)	Rotação (RPM)	Rotação (RPM)	Rotação (RPM)	
	0-12	(10 tação (11 14))		in the second	
	12-24	628,9			
	24-36	625,1			
	36-48	628,9			
	48-60	628,71			
	Rotação Média (RPM)	627,722			
	Seção por dosador (m²)	0,24			
_	Veloc.relativa (m/s*RPM)	8,50E-05	5		
-					VAZÃO DE BAGAÇO (m³/h)
	Vazão por dosador Vazão por lote (m³/h)	46,10 414,8991331		0 0,0	TOTAL - CALDEIRA 12

Planilha de totalização da Fonte - Medição

A planilha de aferição de velocidade nos dutos de bagaço foi preenchida através de medições visuais cronometradas, nos visores de bagaço das bicas de uma das caldeiras da Cogeração B. Foram tiradas 3 a 6 medidas em cada ponto, variando-se a velocidade de entrada do bagaço (rotação do motor do dosador), a fim de construir a tendência de comportamento da vazão pela rotação.

A planilha de totalização da fonte foi preenchida através da extrapolação das curvas de rotação de todos os dosadores de bagaço da central de Cogeração B, mostradas nos Apêndices D e E.