• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.3.2010.tde-28022011-155817
Documento
Autor
Nombre completo
Cesar Giacomini Penteado
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2010
Director
Tribunal
Kofuji, Sergio Takeo (Presidente)
Chavez Porras, Fernando
Martins, Carlos Augusto Paiva da Silva
Okamoto Junior, Jun
Silveira, Reinaldo
Título en portugués
Arquitetura modular de processador multicore, flexível, segura e tolerante a falhas, para sistemas embarcados ciberfísicos.
Palabras clave en portugués
Arquitetura de computadores
Arquitetura e organização de computadores
Confiabilidade
Sistemas ciberfísicos
Sistemas embarcados
Resumen en portugués
Sistemas Ciberfísicos (SCF) são sistemas onde existe uma união entre computação e física. Os SCF serão utilizados nas mais diversas áreas, formando uma nova era de produtos e estarão em qualquer lugar, sendo utilizados por qualquer um e para qualquer tarefa. Aplicações para SCF incluem sistemas e dispositivos médicos altamente confiáveis, controle de tráfego e segurança, sistemas automotivos avançados, controle de processos, conservação de energia, controle ambiental, aviação, instrumentação, controle de infra estrutura crítica, sistemas de defesa, fabricação e estruturas inteligentes. O cenário de sistemas ciberfísicos (SCF) exigirá dos processadores de sistemas embarcados melhorias em características além de processamento de I/O, consumo de energia e comunicação, ou seja, as futuras arquiteturas de processadores deverão possuir também características de segurança, tolerância à falhas e flexibilidade arquitetural para adequação aos diversos cenários alvo de SCF. Neste contexto, nesta tese de doutorado, idealizou-se uma arquitetura modular multicore (AMM), voltada à SCF, composta por processadores multicore, hardware dedicado ou ambos. Dessa maneira, propõe-se um processador para a arquitetura AMM e avalia-se seu correto funcionamento por meio de simulações no software Modelsim e ferramentas de simulação de circuitos integrados. Apresenta-se um protótipo para uma primeira versão da arquitetura AMM e detalham-se alguns programas especificamente escritos para comprovar as principais características da arquitetura. Na tese, apresentam-se testes funcionais em FPGA para o processador base do protótipo AMM, dados de utilização do protótipo do processador da arquitetura AMM em FPGA e um protótipo do processador da AMM em silício. Analisa-se o protótipo da arquitetura AMM com aplicações criticas e de uso em SCF, tais como: segurança, redundância, e tolerância a falhas; as quais permitem concluir que os processadores futuros de SCF devem ter essas características. A tese mostra que esses quesitos podem ser incluídos em sistemas embarcados com características multicore dedicados a aplicações e necessidades de sistemas SCF.
Título en inglés
Modular multicore processor architecture, flexible, securi and fault tolerant, to embedded cyber-physical systems.
Palabras clave en inglés
Computer architecture
Computer architecture and organization
Embedded systems
Reliability
Resumen en inglés
Cyber-physical Systems (CPS) are systems where there is an union between computing and physics. The CPS will be used in several areas, forming a new era of systems or devices and could be anywhere, being used by anyone and anything. Applications for CPS include highly reliable medical systems and devices, traffic control and security, advanced automotive, process control, energy conservation, environmental control, aviation, instrumentation, control of critical infrastructure, defense systems, manufacturing, and smart structures. So, CPS scenario needs requirements design of embedded systems, composed by processors with new features in addition to I/O processing, power consumption, and communication. Then, the future of processor architectures should also have security, fault tolerance, architectural adaptation and flexibility to various and different scenarios. In this context, in this thesis, it is proposed a modular architecture to multicore processor (AMM) to use in the CPS. It is composed by multicore processors, dedicated hardware or both. Thus, in this thesis, we have proposed one processor architecture and we have done verification based on simulations using Modelsim software and simulation tools for integrated circuits, and we have running applications programs to demonstrate the main features of the AMM architecture. We also show a prototype of AMM using FPGA as well as implementation data such as FPGA usage and resources in silicon area. It is also presented an ASIC prototype of AMM core. The prototype architecture of the AMM was analyzed with critical applications which are used in CPS, such as security, redundancy and fault tolerance, and these tests suggest that the future CPS processors must have those characteristics. Thus, the thesis shows that these aspects can be included in embedded systems with dedicated features to multicore applications and systems used in CPS.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2011-04-18
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2024. Todos los derechos reservados.