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I dedicate this dissertation to all my
family and friends.



ACKNOWLEDGMENTS

I am very thankful to my advisor, Prof. Cássio Guimarães Lopes, for all his
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ABSTRACT

This thesis is concerned with the issue of the regularization of the Recursive
Least-Squares (RLS) algorithm. In the first part of the thesis, a novel regular-
ized exponentially weighted array RLS algorithm is developed, which circumvents
the problem of fading regularization that is inherent to the standard regular-
ized exponentially weighted RLS formulation, while allowing the employment of
generic time-varying regularization matrices. The standard equations are directly
perturbed via a chosen regularization matrix; then the resulting recursions are
extended to the array form. The price paid is an increase in computational com-
plexity, which becomes cubic. The superiority of the algorithm with respect to
alternative algorithms is demonstrated via simulations in the context of adaptive
beamforming, in which low filter orders are employed, so that complexity is not
an issue. In the second part of the thesis, an alternative criterion is motivated
and proposed for the dynamical regulation of regularization in the context of the
standard RLS algorithm. The regularization is implicitely achieved via dither-
ing of the input signal. The proposed criterion is of general applicability and
aims at achieving a balance between the accuracy of the numerical solution of
a perturbed linear system of equations and its distance from the analytical so-
lution of the original system, for a given computational precision. Simulations
show that the proposed criterion can be effectively used for the compensation of
large condition numbers, small finite precisions and unecessary large values of the
regularization.



RESUMO

Esta tese trata da regularização do algoritmo dos mı́nimos-quadrados recur-
sivo (Recursive Least-Squares - RLS). Na primeira parte do trabalho, um novo
algoritmo array com matriz de regularização genérica e com ponderação dos da-
dos exponencialmente decrescente no tempo é apresentado. O algoritmo é regu-
larizado via perturbação direta da inversa da matriz de autocorrelação (Pi) por
uma matriz genérica. Posteriormente, as equações recursivas são colocadas na
forma array através de transformações unitárias. O preço a ser pago é o aumento
na complexidade computacional, que passa a ser de ordem cúbica. A robus-
tez do algoritmo resultante é demonstrada via simulaçoes quando comparado
com algoritmos alternativos existentes na literatura no contexto de beamforming
adaptativo, no qual geralmente filtros com ordem pequena são empregados, e
complexidade computacional deixa de ser fator relevante. Na segunda parte do
trabalho, um critério alternativo é motivado e proposto para ajuste dinâmico da
regularização do algoritmo RLS convencional. A regularização é implementada
pela adição de rúıdo branco no sinal de entrada (dithering), cuja variância é con-
trolada por um algoritmo simples que explora o critério proposto. O novo critério
pode ser aplicado a diversas situações; procura-se alcançar um balanço entre a
precisão numérica da solução de um sistema linear de equações perturbado e sua
distância da solução do sistema original não-perturbado, para uma dada pre-
cisão. As simulações mostram que tal critério pode ser efetivamente empregado
para compensação de números de condicionamento (CN) elevados, baixa precisão
numérica, bem como valores de regularização excessivamente elevados.
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1 INTRODUCTION

1.1 A brief note on adaptive filters

Adaptive filters are used in digital signal processing and control applications,

when the exact filtering specifications are unknown prior to operation-time or

they are time-varying due to the nature of the application. As an example, in

mobile communications the communication channels are highly non-stationary

since they depend on the location of the mobile users and are determined by the

given physical and electromagnetic environment. Consequently, a system that

can adapt to the variations of the channel is required at the receiver, in order to

achieve acceptable levels of the Bit Error Rate (BER). The applications where

adaptive filters are employed today span the entire range of modern technology

with some of the most representative being channel equalization, beamforming,

target tracking, echo cancellation, speech enhancement, active noise control and

cardiac/brain signal processing.

Adaptive filters are discrete-time filters, whose coefficients are allowed to vary

with time, so that some time-variant objective is achieved (e.g. tracking of a fast-

fading mobile communication channel). The variation of the filter coefficients is

performed by an adaptive algorithm, which is designed to minimize some cost

function. There exists a large variety of different cost functions, ranging from

relatively simple to highly sophisticated ones. Different cost functions corres-

pond to different adaptive algorithms and hence to different adaptive filters, with
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varying degrees of capabilities. An adaptive filter can have a Finite Impulse Res-

ponse (FIR) or an Infinite Impulse Response (IIR) and can be implemented in

various structures similar to the structures appearing in the implementation of

the standard time-invariant filters, e.g. transversal or lattice structures. However,

adaptive filters are much more difficult systems to analyze than time-invariant

filters, since by design their coefficients are non-linear, time-variant functions of

the generally stochastic signals pertaining to their operation. Finally, an adap-

tive filter can be used in various configurations in an overall system, giving rise

to different functions, with most popular configurations being those of system

identification, system inversion and signal prediction.

The appearence of the area of adaptive filtering can be traced back to 1950;

however it was not until the landmark work of Widrow and Hoff in 1960 [1] and

the birth of the famous Least Mean Square (LMS) algorithm, that adaptive fil-

tering was established as a distinct area of scientific research and engineering

application. Since then, a large amount of literature has been developed (see for

example [2], [3], [4] and [5]) and with the aid of the power of modern computing

systems a significant part of it has been incorporated into the industrial and tech-

nological design. Today, adaptive filtering is considered a mature research area,

however still exhibiting important and challenging open issues to be addressed,

including the analysis and further insight into the behaviour of the various adap-

tive schemes and the development of fast adaptive algorithms, which are robust

to noise and numerical round-off errors, when implemented in finite precision.
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1.2 Notation

The notation adopted in this thesis is as follows:

• Matrices are denoted by upper-case, italic characters, e.g. R.

• Vectors are denoted by lower-case, italic characters, e.g. w.

• Scalar quantities can be represented either by upper-case or lower-case italic

characters, and their distinction from matrices or vectors will be clear from

the context.

• The normalized, discrete-time index is denoted by i.

• Time-varying vectors and matrices are denoted by placing i as a subscript,

e.g. wi, Ri.

• The indexing of the entries of a vector starts from zero.

• Discrete-time scalar functions (signals) are denoted by lower-case, italic

characters followed by i included in parentheses, e.g. u(i), d(i). The only

exception is when denoting the entries of a time-varying vector, e.g. wi(0)

is the first entry of the vector wi.

• All vectors are assumed to be column-vectors, with one exception: this is

the so-called regressor vector, which contains the M most recent samples of

the input process of a filter with M coefficients. This convention avoids the

use of the transpose operator, when representing the convolution sum of a

filter as the inner product of the regressor vector and the impulse response

vector.

• The conjugate-traspose of a matrix R is denoted as R∗.
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• The definition of a quantity is explicitely denoted by using the symbol ’
∆
=’.

The symbol ’=’ denotes that the quantity on its left can be proved to be

equal to the quantity on its right.
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2 REGULARIZATION IN THE

RECURSIVE LEAST-SQUARES

ALGORITHM

2.1 The Least-Squares Criterion

The problem that a conventional adaptive filter aims at solving, can be des-

cribed as follows.

Consider a given complex data collection {uj , d(j)}i
j=0, where uj is the 1×M

regressor

uj
∆
= [u(j), u(j − 1), · · · , u(j − 1 + M)] (2.1)

at time instant j corresponding to the signal u and d(j) is the jth sample of the

signal d. Then an adaptive algorithm aims at determining at iteration i a linear

transformation

wi : C
1×M → C (2.2)

that maps ui to a scalar d̂(i)
∆
= uiwi, such that d̂(i) is an estimate of d(i). The

determination of wi is performed via the minimization of some criterion, which

can usually be thought of as some function of the error signal e
∆
= d − d̂. As an

example, the celebrated Least-Mean-Squares (LMS) algorithm [1], employs the

criterion

JLMS(i)
∆
= |e(i)|2 (2.3)

which is an instantaneous approximation of the well-known Mean-Square-Error
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(MSE)

JMSE
∆
= E |e(i)|2 (2.4)

where E denotes the mathematical expectation operator.

On the other hand, the Recursive-Least-Squares (RLS) algorithm is based on

the following (deterministic) least squares criterion

JLS(i)
∆
=

i
∑

j=0

|d(j) − uj w|2 (2.5)

from which the algorithm bears its name. This type of criterion, consisting of

the sum of squared errors, was firstly used by Carl Friedrich Gauss in 1801 in his

succcessful attempt to relocate the asteroid Ceres, whose orbit the astronomers

of the time had lost track of [6]. Ten years later, Gauss published his famous

least-squares theory, whose modern geometric interpretation and linear algebraic

formulation consist one of the most important chapters in quantitative mathe-

matics and the basis for many theories and applications.

Defining the (i+1)×M matrix Hi and the (i+1)× 1 vector zi, respectively,

as

Hi
∆
= col {ui, ui−1, · · · , u0} (2.6)

zi
∆
= col {d(i), d(i − 1), · · · , d(0)} (2.7)

where col {·} is the column vector operator, JLS(i) can be written as

JLS(i) = ‖yi − Hiw‖2
2 (2.8)

and via standard (modern) least-squares theory the vector wi that minimizes

JLS(i), is given by

wi = H+
i zi (2.9)

where H+
i denotes the pseudo-inverse of Hi [6]. Assuming H+

i has full rank, its
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explicit expression is given by

H+
i =











H∗

i (HiH
∗

i )
−1 , i + 1 ≤ M

(H∗

i Hi)
−1 H∗

i , i + 1 > M.
(2.10)

Observe that if Hi does not have full rank, then the above formulae do not

apply, since neither HiH
∗

i nor H∗

i Hi is invertible. In that case, an equivalent

problem, albeit one with dimension smaller than M and in particular of dimension

rank(Hi), can be formulated and solved, using similar expressions with those

given above. This approach, known as dimensionality reduction [7], will not be

explored any further in the current thesis, since we will assume that the filter

order M is fixed.

Alternatively to dimensionality reduction, and interestingly enough, regula-

rization can be used to circumvent issues of invertibility. Inspired by the identity

H∗

i (HiH
∗

i + ǫI)−1 = (H∗

i Hi + ǫI)−1 H∗

i (2.11)

where I is the identity matrix of suitable dimensions and ǫ is a small positive

scalar, one could consider posing the regularized least-squares problem

J̃LS(i) = ǫ ‖w‖2
2 + ‖zi − Hiw‖2

2 (2.12)

where ǫ ‖w‖2
2 = w∗(ǫI)w is the regularization term and ǫI is the underlying

positive-definite regularization matrix. The solution that minimizes J̃LS(i) is

given by

wi = (H∗

i Hi + ǫI)−1 H∗

i zi. (2.13)

Observe now, that irrespectively of the dimensions or of the rank of Hi, the

matrix (H∗

i Hi + ǫI) is always invertible. Additionally, the regularized problem

now solved can be thought of as a perturbed version of the original problem.
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In fact, we can consider the more general regularized least-squares problem

min
w∈CM×1

{

w∗Πw + ‖zi − Hiw‖2
2

}

(2.14)

where Π is a positive-definite regularization matrix. The solution is now given by

wi = (H∗

i Hi + Π)−1 H∗

i zi. (2.15)

2.2 The RLS Algorithm

The solution wi = (H∗

i Hi + Π)−1 H∗

i zi of the problem (2.14), can be computed

by directly solving the normal equations

(H∗

i Hi + Π)wi = H∗

i zi (2.16)

e.g. either by QR or by Cholesky decomposition, with both methods being of

cubic complexity.

However, it turns out that the displacement structure [8] of the coefficient

matrix (H∗

i Hi + Π) is such that its displacement rank is equal to 1. As a di-

rect consequence of this fact, wi can be updated recursively (for increasing i) at

quadratic complexity by the following recursions:

γ(i) =
(

1 + λ−1 ui Pi−1u
∗

i

)

−1
(2.17)

gi = λ−1 γ(i) Pi−1 u∗

i (2.18)

e(i) = d(i) − ui wi−1 (2.19)

wi = wi−1 + gi e(i) (2.20)

Pi = λ−1 Pi−1 − gi g
∗

i /γ(i). (2.21)

with initialization w−1 = 0M×1 and P−1 = (Π)−1 and

Pi
∆
= (H∗

i Hi + Π)−1 . (2.22)
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Recursions (2.17)-(2.21) constitute the conventional RLS algorithm and the quan-

tities γ(i) and gi are known as the conversion factor and Kalman gain vector

respectively [2].

2.3 The Exponentially-Weighted RLS Algorithm

In adaptive filtering applications, the underlying data collection {uj, d(j)}i
j=0

might come from non-stationary signals. In such cases it is of interest to de-

emphasize the effect of older data in the computed solution, while weighting

more the recent data, thus enhancing the tracking abilities of the adaptive filter.

This weighting of the data can be achieved by introducing a so-called forget-

ting factor

0 < λ < 1 (2.23)

thus rendering the exponentially-weighted least-squares problem

min
w∈CM×1

{

i
∑

j=0

λi−j |d(j) − uj w|2
}

(2.24)

rewritten in matrix notation as

min
w∈CM×1

{

∥

∥

∥

(

Λ
1/2
i zi

)

−
(

Λ
1/2
i Hi

)

w
∥

∥

∥

2

2

}

(2.25)

with

Λ
1/2
i

∆
= col

{

1, λ1/2, · · · , λi/2
}

. (2.26)

This problem fits the standard least-squares formulation as in (2.8), albeit now

the data matrix is Λ
1/2
i Hi instead of Hi and its solution is given by the linear

system of equations

H∗

i ΛiHiwi = H∗

i Λizi. (2.27)

Again, the coefficient matrix H∗

i ΛiHi might not be invertible, thus possibly lea-

ding to an inconsistent system of linear equations. In cases where a filter of fixed
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order M is of interest (and thus dimensionality reduction can not be applied),

regularization can be employed as before, i.e. we can consider the regularized

exponentially-weighted least-squares problem

min
w∈CM×1

{

w∗Πw +
∥

∥

∥

(

Λ
1/2
i zi

)

−
(

Λ
1/2
i Hi

)

w
∥

∥

∥

2

2

}

(2.28)

whose solution is

wi = (H∗

i ΛiHi + Π)−1 H∗

i Λizi. (2.29)

Now, towards avoiding the cubic complexity that is required for a direct compu-

tation of wi from the above formula, we can consider weighting the regularization

matrix itself, i.e. replacing Π by λi+1Π, thus rendering the problem

min
w∈CM×1

{

w∗
(

λi+1Π
)

w +
∥

∥

∥

(

Λ
1/2
i zi

)

−
(

Λ
1/2
i Hi

)

w
∥

∥

∥

2

2

}

(2.30)

whose solution can be updated for increasing i at quadratic complexity via the

recursions

γ(i) =
(

1 + λ−1 ui Pi−1u
∗

i

)

−1
(2.31)

gi = λ−1 γ(i) Pi−1 u∗

i (2.32)

e(i) = d(i) − ui wi−1 (2.33)

wi = wi−1 + gi e(i) (2.34)

Pi = λ−1 Pi−1 − gi g
∗

i /γ(i). (2.35)

where in order to avoid an explosion of notation we redefine Pi as

Pi
∆
= R−1

i (2.36)

Ri
∆
= R̄i + λi+1 Π (2.37)

R̄i
∆
=

i
∑

j=0

λi−j u∗

j uj. (2.38)

Equations (2.31)-(2.35) constitute the conventional exponentially-weighted RLS

algorithm, to which we will be referring simply as RLS.
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2.4 Regularization Issues in RLS

We will now take a closer look into the interplay between computational

complexity and regularization in RLS.

Let us consider for a moment that no data weighting takes place, i.e. that

λ = 1. Then

Ri = R̄i + Π. (2.39)

But observe that

R̄i = R̄i−1 + u∗

i ui (2.40)

and hence

Ri = R̄i−1 + u∗

i ui + Π (2.41)

=
(

R̄i−1 + Π
)

+ u∗

i ui (2.42)

= Ri−1 + u∗

i ui (2.43)

and consequently Ri is related to Ri−1 via a rank-1 update, since rank(u∗

i ui) = 1.

It is this very fact that allows, via the matrix inversion lemma [2], for the inverse

of Ri, i.e. for Pi, to be related to Pi−1 via a rank-1 update as well, rendering the

overall RLS complexity of quadratic order.

Now, assume that it is of interest to employ time-varying regularization ma-

trices, i.e. we replace Π by Πi. Then the corresponding regularized sample

autocorrelation matrix becomes

Ri = R̄i + Πi (2.44)
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and towards relating Ri to Ri−1, we proceed as follows:

Ri = R̄i + Πi (2.45)

= R̄i−1 + u∗

i ui + Πi (2.46)

=
(

R̄i−1 + Πi−1

)

+ (u∗

i ui + Πi − Πi+1) (2.47)

= Ri−1 + (u∗

i ui + Πi − Πi+1) (2.48)

and since Πi might be a completely different matrix from Πi+1, we see that in

general Ri is now related to Ri−1 via a full-rank update, which implies that the

mapping Pi−1 7→ Pi can only be performed via cubic complexity, thus rendering

an RLS algorithm of cubic complexity.

Now, let us consider that λ is not necessarily equal to 1, while the regulari-

zation matrix is not weighted but fixed in time. Then

R̄i = λR̄i−1 + u∗

i ui (2.49)

and so

Ri = R̄i + Π (2.50)

= λR̄i−1 + u∗

i ui + Π (2.51)

= λ
(

R̄i−1 + Π
)

+ (u∗

i ui + Π − λΠ) (2.52)

= λRi−1 + (u∗

i ui + Π − λΠ) . (2.53)

But then (u∗

i ui + Π − λΠ) is in general a full-rank matrix and consequently, as

before, this renders an RLS algorithm of cubic complexity. On the contrary, if

we select λi+1Π as our regularization matrix, then we see that

Ri = R̄i + λi+1Π (2.54)

= λRi−1 + u∗

i ui (2.55)

and so quadratic complexity can be achieved. The price to be paid however, is
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that

λi+1 Π → 0M×M (2.56)

as i → ∞, i.e. in the long run there is no regularization! Obviously, this is an

undesirable property, since the propagated matrix Pi might as well correspond

to the inverse of a matrix that is not invertible, thus leading to unpredictable

algorithmic behaviour.

2.5 Existing Approaches

The literature on the regularization of RLS is rather limited, particularly

because, as we saw in the previous section, generic time-variant non-fading re-

gularization leads to cubic complexity, which had been prohibitive for practical

applications for many years, until the recent advent of fast multi-core platforms

[9], that allow for processing powers of the order of Tera-FLOPS i.e., 1012 floating-

point operations per second.

What has traditionally been the standard practice towards preventing Pi from

becoming unbounded, is to inflict regularization implicitely, via a process referred

to as dithering [10]. Dithering consists of injecting uncorrelated white noise of

small variance into the input signal u, thus making its sample autocorrelation

matrix positive-definite in the mean-square sense. However, this technique has

the obvious disadvantage of direct performance degradation of the adaptive filter

and should be used with care.

Several semi-direct regularization approaches have been proposed, see e.g.

[11] or [12] and references therein, which attempt to indirectly decrease the proba-

bility of Ri becoming non-invertible, while keeping the computational complexity

close to quadratic. However, these methods do not guarantee the invertibility of

Ri and they usually incorporate a number of design parameters to be selected
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a-priori, a selection that for practical applications might be far from straight-

forward. The value of these methods seems to lie more in the insights that their

analytical perspective offers, rather than in the establishment of a robust RLS

algorithm that is reliable for hard application scenarios.

More recently, in [13] an interesting regularization structure was proposed,

which consists of a regularization matrix that is updated in time via rank-1 ma-

trices. This structure allows for inflation or deflation of the regularization matrix

and can guarantee on the average the positive definiteness of Ri with a comple-

xity of O (2M2). However, strictly speaking, Ri is still positive-semidefinite, i.e.

its smallest eigenvalue is not prevented from becoming zero.

Finally, a non-fading regularization RLS algorithm has appeared in the lite-

rature, referred to as leaky-RLS [14], which corresponds to the problem

min
w∈CM×1

{

ǫ ‖w‖2
2 +

i
∑

j=0

λi−j |d(j) − uj w|2
}

. (2.57)

This algorithm is of cubic complexity, while in [14] it is argued that a quadratic

implementation is also possible. However, an explicit listing of this implementa-

tion has not yet been given.

2.6 The Need for Extensions

The standard RLS algorithm (regularization matrix equal to λi+1Π) and par-

ticularly recursion (2.35) for Pi, is known to be highly sensitive to finite precision

effects [15]. In particular, although Pi is in theory a symmetric positive-definite

matrix, in practical implementations it might loose both its symmetry and its

positive definiteness. Despite the fact that preventing loss of symmetry is a re-

latively simple task (one can only propagate the upper triangular part of Pi),

preventing loss of positive definiteness is very difficult. Consequently, the vari-



16

ous known regularization approaches that are applied directly on Pi can still not

prevent the algorithm from easily becoming unstable in finite precision, as is the

case e.g. with [14].

On the other hand, there exist numerically robust RLS variants that are,

from a theoretical point of view, equivalent to recursions (2.31)-(2.35). These

variants are known as array forms and the most important representatives are

the Square-Root RLS (SR-RLS) and the QR-RLS [2], [16]. The array forms,

are based on the propagation via unitary transformations of some matrix square-

root of Pi thus achieving two things: 1) the finite precision round-off errors are

bounded, since the processing is performed via unitary transformations and 2)

the underlying autocorrelation matrix or its inverse (the information matrix) are

always at least positive-semidefinite. However, the array forms still suffer from

the fading regularization phenomenon (since they are equivalent to RLS) and

they can still face numerical problems. Remeding (even partially) this problem

for array forms has not yet been considered in the literature.

In addition, the significance of generic time-varying regularization has not

been emphasized in the RLS literature. For example, in [14], the regularization

matrix is fixed over time and equal to ǫI. However, there exist applications, where

employing time-varying regularization of the sample autocorrelation matrix is

of critical importance, such as in adaptive beamforming [17], [18]. Moreover,

algorithms supporting time-varying regularization can admit more sophisticated

numerical protection, as is highlighted in [19].

Finally, an important open problem in the literature, is, in algorithms that

support regularization, how should the regularization parameters be selected?

Although in the adaptive filtering literature, several results exist for selecting

the amount of regularization in the Affine Projection Algorithm (APA) or in the

NLMS algorithm, see e.g. [19], [20], [21], [22], no similar results seem to exist for
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RLS.

2.7 The Contributions of the Thesis

This thesis attempts to fill some of the gaps in the RLS regularization litera-

ture, as mentioned in the previous section. In particular

1. in chapter 3 a novel array RLS algorithm is presented, that is equipped with

both a forgetting factor and time-varying regularization matrix with generic

structure. In this way the problem of fading regularization, inherent to the

standard exponentially-weighted RLS is circumvented, while the proposed

algorithm improves on the leaky-RLS of [14] in the sense that 1) all compu-

tations are performed via unitary transformations and 2) the regularization

matrix can be selected arbitrarily by the designer according to any desired

rule (while for leaky-RLS it is strictly equal to ǫI). Finally, the presented

algorithm is robust to small values of the forgetting factor, as is required in

tracking applications [23].

2. in chapter 4 a novel criterion is motivated and presented for the dynamical

regulation of regularization in the context of the standard RLS algorithm,

implicitely achieved via dithering of the input signal. The proposed crite-

rion is of general applicability and aims at achieving a balance between the

accuracy of the numerical solution of a perturbed linear system of equa-

tions and its distance from the analytical solution of the original system,

for a given computational precision. Extensive simulations show that the

proposed criterion can be effectively used for the compensation of large con-

dition numbers, small finite precisions and unecessary large values of the

regularization.
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3 AN ARRAY RLS ALGORITHM WITH

GENERIC REGULARIZATION MATRIX

3.1 Introduction

Towards solving a regularized least-squares problem with exponential data

weighting that allows for time-varying non-fading regularization of arbitrary ma-

trix structure, one can choose to solve the following normal equations

R̃i wi = yi (3.1)

where

R̃i
∆
= R̄i + Πi (3.2)

R̄i
∆
=

i
∑

j=0

λi−j u∗

j uj (3.3)

yi
∆
=

i
∑

j=0

λi−j d(j)u∗

j (3.4)

and Πi is an arbitrary regularization matrix. Moreover, the quantities R̄i and yi

can recursively be computed as follows [2]:

R̄i = λR̄i−1 + u∗

i ui (3.5)

yi = λyi−1 + d(i)u∗

i . (3.6)

However, this approach is problematic when precision is not high or the data are

not persistently exciting, since
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1. the backward (forward) substitution process during the direct solution of

(3.1) might face numerical difficulties

2. recursion (3.5) is quite sensitive in quantization effects in the sense that R̄i

can easily become indefinite.

In this work we adopt a novel approach that alleviates the numerical diffi-

culties associated with (3.1)-(3.5).The method is based on the propagation via

unitary transformations of the square-root factors L̃i, S̃i of R̃i, P̃i
∆
= R̃−1

i , res-

pectively; L̃i having considerably smaller condition number than R̃i. Towards

this end, we revisit results from array-form theory and list SR-RLS for ease of

reference (Secs. 3.2/3.3), while in Secs. 3.4 and 3.5 we explicitly regularize the

SR-RLS structural equations and complete the resulting set of equations, arri-

ving at an array RLS algorithm allowing for time-varying regularization matrix

of arbitrary structure.

3.2 Elements of Array-Forms Theory

We summarize the matrix theoretical basis for deriving RLS array forms ([2],

pp. 561–579) afresh in the two following lemmas. Let1

R = L L∗ (3.7)

be the LTCD of the positive definite matrix R, where L is the LTCF of R. Then

the UTCD of P
∆
= R−1 is given by

P =
(

L−1
)

∗
(

L−1
)

(3.8)

where (L−1)
∗

is the UTCF of P .

1All Cholesky factors are assumed to have positive diagonal elements and are thus unique
[24]. For short, we also use: LTCF (UTCF) for Lower (Upper) Triangular Cholesky Factor and
LTCD (UTCD) for Lower (Upper) Triangular Cholesky Decomposition.
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    Proof.     Inverting  both sides  of R = L L ∗ yields

P =
(

L−1
)

∗
(

L−1
)

. (3.9)

Since L is lower triangular, so will be its inverse L−1. Moreover, the eigenvalues

of L−1 will be the reciprocals of the eigenvalues of L. But the eigenvalues of a

triangular matrix are the elements of its diagonal, which implies that the diagonal

elements of L−1 will be positive and consequently (L−1)
∗

must be the UTCF of

P .

Let A, B, D and E be given matrices of suitable dimensions and let the

matrix
[

A B

]

(3.10)

have full row rank. Assume that it is desirable to determine a lower (upper)

triangular matrix C with positive diagonal elements and a matrix F such that

CC∗ = AA∗ + BB∗ (3.11)

FC∗ = DA∗ + EB∗. (3.12)

Then if the pre-array






A B

D E






(3.13)

is transformed via a composition of unitary transformations (and it is always

possible to find such transformations), say Θ, into a post-array







A B

D E






Θ =







X 0

Y Z






(3.14)

where Θ is unitary and the block A has been lower (upper) triangularized yiel-

ding the block X with positive diagonal elements, while the block B has been
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annihilated, it will hold that

X = C (3.15)

Y = F. (3.16)

In the simplified case where given A and B only a lower (upper) triangular ma-

trix C with positive diagonal elements is sought so that (3.11) is satisfied, then

annihilating the B block of the pre-array (3.10) and lower (upper) triangulari-

zing with positive diagonal elements the block A via unitary transformations, will

result into the block A of the pre-array being replaced by C in the post-array.

Proof. First note that

AA∗ + BB∗ (3.17)

is positive-definite and determining C is equivalent to determining its unique

LTCF (UTCF). Moreover, since C is invertible, F is uniquely determined by

(3.12). Now, multiplying from the right each side of (3.14) by its transpose and

equating the upper leftmost and lower leftmost blocks of the resulting equation,

yields X = C and Y = F . For the existence of Θ see [24].

3.3 Square-Root RLS

We are now ready to state the Square-Root RLS (also known as inverse-QR)

recursions. [SR-RLS] Consider a complex data collection {uj, d(j)}i
j=0, where

uj is 1 × M and d(j) scalar, 0 < λ < 1 is a forgetting factor and Π a positive

definite regularization matrix. Then the solution of the regularized exponentially-

weighted least-squares problem

min
w∈CM×1

{

λi+1 w∗ Π w +

i
∑

j=0

λi−j |d(j) − uj w|2
}

(3.18)
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can be updated recursively for increasing i as follows. Begin with S−1 = (Σ−1)
∗

,

where Σ is the LTCF of Π and wi = 0M×1 and iterate for i ≥ 0:

1. Form the pre-array






1 λ−1/2ui Si−1

0M×1 λ−1/2 Si−1






(3.19)

and transform it from the right via unitary transformations to obtain the

post-array






γ(i)−1/2 01×M

gi γ(i)−1/2 Si






(3.20)

where the block Si is required to be upper triangular with positive diagonal

elements. Then Si is the UTCF of Pi.

2. Perform the weight vector update using elements of the post-array as fol-

lows:

wi = wi−1 +
[

giγ(i)−1/2
] [

γ(i)−1/2
]

−1

e(i). (3.21)

      Proof.     Note  that ( 2.31) and (2.32) can be written exactly in the form of

(3.11) and (3.12), respectively, with the mappings

C 7→ γ(i)−1/2 F 7→ gi γ(i)−1/2

A 7→ 1 B 7→ λ−1/2 ui Si−1

D 7→ 0M×1 E 7→ λ−1/2 Si−1

(3.22)

where Si−1 is the UTCF of Pi−1. Then observe that the matrix

[

1 λ−1/2ui Si−1

]

(3.23)

has always full row rank and hence Lemma 3.2 implies that if the pre-array (3.19)

is transformed from the right via a composition of unitary transformations, say
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equivalent to a unitary transformation Θi, such that







1 λ−1/2ui Si−1

0M×1 λ−1/2 Si−1






Θi =







x(i) 01×M

yi Zi






(3.24)

where x(i) > 0, it will hold that

x(i) = γ(i)−1/2 (3.25)

yi = gi γ(i)−1/2. (3.26)

Now, we can further require that Θi is such that the block Zi is upper triangular

with positive diagonal elements. Multiplying each side of (3.24) by its transpose,

equating the resulting lower rightmost blocks and invoking equation (2.35), yields

Zi = Si (3.27)

which must be equal to the UTCF of Pi due to the uniqueness of the Cholesky

factor.

3.4 Perturbing the Standard Square-Root RLS

Now we are ready to apply the core concept of this work: perturb the struc-

tural equations of SR-RLS, so that the Cholesky factor that is propagated corres-

ponds to the fully regularized matrix R̃i (see (3.1)), in contrast to Ri (see (2.37))

as is the case with the standard SR-RLS.

We proceed by defining the perturbed conversion factor as

γ̃(i)
∆
=

(

1 + λ−1 ui P̃i−1u
∗

i

)

−1

(3.28)

where

P̃i
∆
= R̃−1

i (3.29)

with R̃i defined as in (3.1) (Compare with (2.31)). Now, define the perturbed
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Kalman gain vector as

g̃i
∆
= λ−1 γ̃(i) P̃i−1 u∗

i . (3.30)

The fundamental observation now is that (3.28) and (3.30) can be written in the

form of (3.11) and (3.12) respectively, where

C 7→ γ̃(i)−1/2 F 7→ g̃i γ̃(i)−1/2

A 7→ 1 B 7→ λ−1/2 ui S̃i−1

D 7→ 0M×1 E 7→ λ−1/2 S̃i−1

(3.31)

with S̃i being the UTCF of P̃i. Since

[

1 λ−1/2ui S̃i−1

]

(3.32)

has always full rank, Lemma 3.2 implies that for any unitary transformation Θ̃
(1)
i ,

such that






1 λ−1/2ui S̃i−1

0M×1 λ−1/2 S̃i−1






Θ̃

(1)
i =







x̃(i) 01×M

ỹi Z̃
(1)
i






(3.33)

where x̃(i) > 0, it holds that

x̃(i) = γ̃(i)−1/2 (3.34)

ỹi = g̃i γ̃(i)−1/2. (3.35)

This implies that the weight vector update can be performed exactly as in (3.21),

albeit using the more robust quantities g̃i and γ̃(i).

Contrary however to the standard SR-RLS (Theorem 3.3), further upper

triangularization with positive diagonal elements of the block Z̃
(1)
i will not yield

S̃i. The reason is that R̃i is not a rank-1 update of R̃i−1 anymore, as with Ri,

therefore a recursion for P̃i in the form of (2.35) cannot be obtained.
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3.5 Completing the Recursion

We now need to find a way to generate S̃i via unitary transformations. Letting

L̃i and Σi be the LTCFs of R̃i and Πi, respectively, and

R̄i = L̄iL̄
∗

i (3.36)

with L̄i being a lower triangular with non-negative diagonal elements square-root

factor of R̄i (R̄i might be singular), (3.1) becomes:

L̃i L̃
∗

i = L̄i L̄
∗

i + Σi Σ
∗

i . (3.37)

In addition, Lemma 3.2 ensures that the quantity S̃i, to be determined, must

satisfy the equation

S̃i L̃
∗

i = IM (3.38)

where IM is the M ×M identity matrix, which can be equivalently written in the

more suggesting form

S̃i L̃
∗

i = 0M×M L̄∗

i + (Σ∗

i )
−1 Σ∗

i . (3.39)

But now (3.37) and (3.39) are exactly in the form of (3.11) and (3.12), respectively,

where

C 7→ L̃i , F 7→ S̃i (3.40)

A 7→ L̄i , B 7→ Σi (3.41)

D 7→ 0M×M , E 7→ (Σ∗

i )
−1 . (3.42)

Then Lemma 3.2 implies that for any unitary Θ̃
(2)
i , such that







L̄i Σi

0M×M (Σ∗

i )
−1






Θ̃

(2)
i =







X̃i 0M×M

Ỹi Z̃
(2)
i






(3.43)
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where X̃i is lower triangular with positive diagonal elements, it holds that

X̃i = L̃i (3.44)

and

Ỹi = S̃i. (3.45)

Due to the potential singularity of R̄i, L̄i might be non-unique. However, the

important point is to be able to map some L̄i−1 to some L̄i, and this is always pos-

sible and a well-conditioned problem. To see this, assume that a lower-triangular

square-root factor of R̄i−1 with non-negative diagonal elements, denoted L̄i−1, is

available. Then observe that if we zero out via a unitary transformation Θ̄i the

M × 1 rightmost block of the pre-array

[

λ1/2 L̄i−1 u∗

i

]

(3.46)

i.e.
[

λ1/2 L̄i−1 u∗

i

]

Θ̄i =

[

X̄i 0M×1

]

(3.47)

while forcing X̄i to be lower triangular with non-negative diagonal elements (such

a Θ̄i always exists), then multiplying each side by its transpose yields

R̄i = λL̄i−1L̄
∗

i−1 + u∗

i ui (3.48)

= X̄iX̄
∗

i (3.49)

therefore

L̄i
∆
= X̄i (3.50)

thus leading to a recursive computation of a square-root factor L̄i for R̄i. This

square-root factor L̄i is equal to the LTCF of R̄i, in case the latter is nonsingular.
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3.6 Proposed Algorithm

Non-Fading Regularization Array RLS (NFRA-RLS): Select an initial po-

sitive definite regularization matrix Π−1 with LTCF Σ−1, set S̃−1 =
(

Σ∗

−1

)

−1
,

L̄−1 = 0M×M and iterate for 0 ≤ i ≤ N :

1. Perform via any unitary Θ̃
(1)
i the mapping







1 λ−1/2ui S̃i−1

0M×1 λ−1/2 S̃i−1






Θ̃

(1)
i =







γ̃(i)−1/2 01×M

g̃i γ̃(i)−1/2 Z̃
(1)
i






(3.51)

where γ̃(i)−1/2 must be positive, while Z̃
(1)
i is of no interest.

2. Perform the weight vector update as follows:

wi = wi−1 +

[

g̃iγ̃(i)−1/2
]

[

γ̃(i)−1/2
] [d(i) − ui wi−1]. (3.52)

3. Perform via any unitary Θ̄i the mapping

[

λ1/2 L̄i−1 u∗

i

]

Θ̄i =

[

L̄i 0M×1

]

(3.53)

where the block L̄i must be lower triangular with real-valued non-negative

diagonal elements.

4. Determine via some rule Πi and its LTCF Σi.

5. Perform via any unitary Θ̃
(2)
i the mapping







L̄i Σi

0M×M (Σ∗

i )
−1






Θ̃

(2)
i =







L̃i 0M×M

S̃i Z̃
(2)
i






(3.54)

where L̃i must be lower triangular with positive diagonal elements, while

Z̃
(2)
i is of no interest. The complexity of this step is M3

2
complex Givens

rotations.
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3.7 A Comment on the Computational Comple-

xity

Step 5) of the algorithm requires O
(

M2

2

)

Givens rotations, thus implying cu-

bic complexity if the algorithm is implemented on a sequential processor. Howe-

ver, it is possible to map the algorithm on a systolic array [25] using square-root

and division free Givens rotations [26], thus arriving at an efficient implementa-

tion. Moreover, note that steps 1) and 2) are independent of 3), 4) and 5) so that

they can be carried out in parallel.

Cubic complexity might be prohibitive for some applications. However, cubic

complexity is comparable to quadratic complexity (or even to linear complexity)

for small filter length, as encountered in some beamforming instances (in [27] a 4-

element antenna array has been designed for W-CDMA), or in DS-CDMA/OFDM

systems, where frequency selective multipath channels are usually modeled as

short FIR filters (e.g., with 2 to 5 taps [28]-[29]). Further applications involving

small filter length are combination of adaptive filters, where m ≥ 2 filters are

combined via the adaptation of m− 1 parameters, [30], and adaptive notch filte-

ring, where cancelling p sinusoids requires the adaptation of p or 2p parameters

[31], with both m and p small. In addition, note that cubic complexity is inhe-

rent in beamforming, i.e., the standard LSMI/MVDR beamformers are cubic [32]

and a cubic RLS beamformer is available [33]. Finally, cubic complexity can also

be considered for higher order filters, when robustness is mandatory, due to the

advent of fast multicore platforms [9].

3.8 Simulations

We consider a desired sinusoidal signal impinging from 45o on a linear uniform

antenna array of M = 4 elements [27] with inter-element spacing d = l/5, where l



29

is the wavelength of the carrier. An orthogonal sinusoidal interference at 26 dB is

also present from 140o. The measurement noise is at −27 dB and is Gaussian and

white both in time and space. Note that this scenario corresponds to insufficiently

persistent data, since the interference dominates.

We compare NFRA-RLS with dithered SR-RLS (DSR-RLS), the normal

equations (NE) of (3.1), the standard RLS recursion using the regularization

structure of [13] referred to as R1R-RLS and with the Loaded Sample Matrix

Inverse (LSMI) beamformer [18]. All RLS variants use λ = 0.995, while LSMI

uses a data window of length K = ⌊−1/logλ⌋. NFRA-RLS, NE and LSMI use

Πi = ǫIM , ǫ = 1, while DSR-RLS uses dithering variance equal to ǫ(1 − λ) and

R1R-RLS parameters φn = 1 and ξ2
n = ǫ(1 − λ)M (see [13] equation (13)) so

that they correspond to effective regularization equal to ǫ. The accuracy of com-

putations is B = 32 bits of floating point precision. The SINR [33] along with

the condition number (CN) for all algorithms averaged over 50 experiments are

depicted in Fig. 1 and 2 respectively. The optimal SINR of the Minimum Vari-

ance Distortionless Response (MVDR) beamformer [2] is also shown. We observe

that NE, R1R-RLS and NFRA-RLS perform similarly and close to the optimal,

while LSMI exhibits relatively slow convergence and as expected DSR-RLS poor

SINR due to dithering. In the sequel we perform the same simulation, albeit with

B = 13 Fig. 3. Then we see that the coupling effect of insufficiently persistend

data (large CN) and small accuracy result in LSMI, NE and R1R-RLS to become

unstable while although stable, DSR-RLS exhibits poor SINR due to dithering.

NFRA-RLS is practically not affected by the accuracy reduction. Finally, we con-

sider the same scenario, albeit the interference now moves at a rate of 0.1o per

iteration and λ = 0.9 Fig. 4. Note how NFRA-RLS exhibits robustness to this

hard scenario (large CN, small λ, small B), while the other algorithms become

unstable.
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Figure 1: Desired signal from 25o, 26dB interference from 140o, -27dB measure-
ment noise, B = 32 bits, M = 4, ǫ = 1, λ = 0.995, 50 experiments.
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Figure 2: Desired signal from 25o, 26dB interference from 140o, -27dB measure-
ment noise, B = 32 bits, M = 4, ǫ = 1, λ = 0.995, 50 experiments.
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Figure 3: Desired signal from 25o, 26dB interference from 140o, -27dB measure-
ment noise, B = 13 bits, M = 4, ǫ = 1, λ = 0.995, 50 experiments.
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Figure 4: Desired signal from 25o, 26dB interference moving at 0.1o/iteration,
-27dB measurement noise, λ = 0.9, B = 13 bits, M = 4, ǫ = 1, 50 experiments.
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4 AN ALTERNATIVE CRITERION TO

REGULARIZE RLS PROBLEMS

4.1 Introduction

In finite precision the solution of linear systems of equations may be greatly

affected by the data conditioning, so that regularization is employed in order to

enhance numerical stability [34], [35]. Particularly, in the systems that arise in

adaptive signal processing the interplay between computational precision (i.e.,

the number of bits) and the data conditioning is what ultimately governs the

overall numerical properties of the adaptive algorithms, and it is not a trivial

task to select the “amount” of regularization required in a given scenario.

There exist ways to control regularization [19], [21]. The condition number

[36], [7] is a typical measure of how well the required inversion in the system of

equations can be performed, and it can be employed to guide the regularization

process [19]. However, it does not capture properly how that ultimately affects the

solution that the numerical algorithm outputs. In this work we pose an accuracy

criterion that accounts simultaneously for the data conditioning as well as for

the numerical precision when solving a regularized linear system of equations. It

quantifies how far is the numerical solution of the regularized system from the

analytical solution of the original system.

Simulations show that the new criterion, the image function, captures well

variations in data conditioning, and it promptly reacts to the numerical precision



35

available.

We motivate the new criterion by proposing a pilot algorithm that regularizes

the standard recursive least-squares algorithm (RLS) via dithering of the input

regressor. The image function is simply fed back into the dithering mechanism, so

that the resulting algorithm regulates automatically the amount of regularization

(the dither noise variance) in response to changes in the adaptation scenario.

4.2 The Image Function

We start by considering an abstract M × M linear system of equations

Ax = b (4.1)

where A is positive-semidefinite. In order to stabilize the numerical process of

solving this system in finite precision, we perturb A and b in some way and instead

attempt solving the system1

Ãx̃ = b̃ (4.2)

where we assume that the structure of the perturbation is such that the larger

the matrix perturbation
∥

∥

∥
A − Ã

∥

∥

∥
(4.3)

is, the smaller the condition number χ
(

Ã
)

of Ã will be. As an example, one

choice could be

Ã = A + ǫI (4.4)

where I is the identity matrix and b̃ = b. This corresponds to the well-known

regularization structure.

Let [x̃] be the solution in finite precision for (4.2). We would like to per-

turb the original system (4.1) just enough so that the following cost function is

1The use of tilde in this chapter should be distinguished from that of the previous chapter.
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Figure 5: The J function (4.5) for an M × M system (A + ǫI) = b solved under
B bits of precision with M = 30 and B = 20. The condition number of the
coefficient matrix A is CN(A) ∝ 103.

minimized

J
∆
= ‖x − [x̃]‖ . (4.5)

Note that J penalizes (1) large condition numbers, (2) low numerical precisions

and (3) large perturbations (see Fig. 5). To see this intuitively, note that [7]

‖x̃ − [x̃]‖
‖x̃‖ ≤ χ

(

Ã
)

f(B) (4.6)

where f(B) is a function of the number B of available bits, which in principle

obtains large values for small values of B. Now consider the following three

scenarios.

To begin with (large condition numbers), assume that χ
(

Ã
)

is large, while

the perturbation and B are moderately valued. Then the quantity χ
(

Ã
)

f(B)

will be large and hence ‖x̃ − [x̃]‖ will (in general) be large as well. But since the

perturbation is small, we will have that x̃ ≈ x and consequently J = ‖x − [x̃]‖

will be large.
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In the sequel (small precisions), assume that B is small, while χ
(

Ã
)

and the

perturbation are moderately valued. Then the quantity χ
(

Ã
)

f(B) will be large

and hence ‖x̃ − [x̃]‖ will (in general) be large as well. But since the perturbation

is small, we will have that x̃ ≈ x and consequently J = ‖x − [x̃]‖ will be large.

Finally (large perturbations), assume that B is moderately valued, while the

perturbation is large, which implies that χ
(

Ã
)

will be small but ‖x − x̃‖ will

be large. Consequently, χ
(

Ã
)

f(B) will be small, so that [x̃] ≈ x̃ and hence

J = ‖x − [x̃]‖ will be large as well.

An important difficulty associated with the computation of J is that it re-

quires knowledge of x, which is the very quantity that we are trying to estimate.

To circumvent this issue, note that

J
(4.1)
=

∥

∥A−1b − [x̃]
∥

∥ (4.7)

≤
∥

∥A−1
∥

∥ ‖b − A [x̃]‖ (4.8)

and since ‖A−1‖ is not a function of the perturbation, we can choose instead to

minimize the measurable quantity

Jim
∆
= ‖b − A [x̃]‖ (4.9)

which is a relative upper bound of J .

Jim will be referred to as the image function, since the vector

b − A [x̃] (4.10)

is the image of the error vector

x − [x̃] (4.11)

under the linear transformation A [37].
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4.3 Contrived Example

To further illustrate the power of the concept behind the criterion J we discuss

a simple numerical example for the case of regularization.

Assume that we want to solve the trivial linear system of equations

9x = 8 (4.12)

on a platform that uses four decimal digits and no rounding takes place. The

analytical solution of our equation is x = 8/9 = 0.8888... and the numerical

solution that will be returned by our solver is [x] = 0.8888, leading to a numerical

error

‖x − [x]‖ = 0.8888... − 0.8888 (4.13)

= 8.8888... × 10−5. (4.14)

Now, the system (4.12) that we want to solve is perfectly well conditioned, since

χ(9) = 1 (4.15)

and there is no uncertainty in our data, i.e. we know with perfect accuracy our

coefficient matrix

A = 9 (4.16)

and our right hand side vector

b = 8. (4.17)

Consequently, according to existing regularization approaches, there is no need

to apply any regularization.

Now, following the ideas presented so far, we choose to solve the regularized

system

(9 + ǫopt)x̃ = 8 (4.18)
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instead of (4.12), with

ǫopt = arg
{

min
ǫ

‖xi − [x̃]‖
}

(4.19)

= arg

{

min
ǫ

∥

∥

∥

∥

0.8888... −
[

8

9 + ǫ

]
∥

∥

∥

∥

}

(4.20)

= −0.0002 (4.21)

which yields a numerical error

J(ǫopt) = ‖xi − [x̃]‖ (4.22)

=

∥

∥

∥

∥

0.8888... −
[

8

8.9998

]
∥

∥

∥

∥

(4.23)

= ‖0.8888... − 0.8889‖ (4.24)

= 1.1111... × 10−5 (4.25)

< 8.8888... × 10−5 = J(0). (4.26)

This example also shows that as long as we are getting more accurate numerical

solutions, negative values of the regularization parameter can be allowed.

4.4 Image Function Analysis

The fact that the vector (b − A [x̃]) is the image of the error vector (x − [x̃])

under the linear transformation A sets some important limitations on how well we

are doing by minimizing Jim given the fact that we would like to be minimizing

J .

To further elaborate on this subtle issue, we introduce the eigendecomposition

of the symmetric positive-definite matrix A

A = UΛU∗ (4.27)

where U is orthogonal containing in its ith column the ith eigenvector of A and

Λ
∆
= diag {λ1, · · · , λM} (4.28)
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contains the corresponding positive eigenvalues, where it is also assumed that

λ1 ≥ λ2 ≥ · · · ≥ λM > 0. (4.29)

Now, using the Euclidean norm without loss of generality 2 we have

Jim = ‖b − A [x]‖2 (4.30)

= ‖A (x − [x̃])‖2 (4.31)

(4.27)
= ‖UΛU∗ (x − [x̃])‖2 . (4.32)

Introducing the rotated error vector

v
∆
= U∗ (x − [x̃]) (4.33)

and using the fact that the Euclidean norm is invariant under orthogonal trans-

formations of its argument [6] (4.32) becomes

Jim =

√

‖Λv‖2
2 (4.34)

=
√

v∗Λ2v (4.35)

=

√

√

√

√

M
∑

j=1

λ2
j |v(j)|2 (4.36)

= λ1

√

√

√

√|v(1)|2 +
M

∑

j=2

(

λj

λ1

)2

|v(j)|2. (4.37)

Now let us raise momentarily our assumption that A is invertible and let us

assume that λM = 0, while the rest of the eigenvalues are positive. Then we

readily conclude from (4.37) that the component of the error vector (x − [x̃])

along the one-dimensional subspace spanned by the Kth eigenvector of A that

corresponds to the zero eigenvalue is actually unobservable via the image function

Jim. In other words, the component of (x − [x̃]) that belongs to the kernel of A

is annihiliated as we attempt to observe (x − [x̃]) via its image under A.

2All norms in finite dimensional vector spaces are equivalent [6].
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The practical implication of this phenomenon is that Jim might be obtai-

ning infinitely-small values, while the actual error is huge and there is no way

we could know. It is very important to emphasize though, that this is not an

inherent disadvantage of Jim, rather an inherent problem of the data, which no

regularization method could mend (one should consider reducing the dimension

of the problem and then re-applying the concept of the image function).

Now, returning to our assumption that A is invertible, observe from (4.37)

that the squares of the components of (x − [x̃]) along the one-dimensional eigens-

paces of A are summed inside the radical with weights less than unity and observe

that the smallest weight is equal to
(

λM

λ1

)2

, which is actually equal to the inverse

of the square of the condition number of A. This implies, that as A becomes

more and more ill-conditioned, the component of (x − [x̃]) along the eigenspace

that tends to zero (i.e. the space spanned by the eignevectors that correspond

to the eigenvalues that tend to zero) will be less and less weighted, i.e. it will

tend to be unobservable. Again, this is an inherent problem of the data and not

a weakness of Jim.

4.5 Application to RLS

We show an application of the previous concepts in adaptive filtering and

in particular in the context of the Recursive Least-Squares (RLS) algorithm, by

devising a simple feedback mechanism that adjusts the level of dithering [10], [38]

in response to an appropritely defined image function.

The regularization matrix of the conventional RLS algorithm3 λi+1 Π serves

to guarantee the invertibility of Ri during the initial stage of the algorithm and

it fades towards zero for i → ∞, giving rise to the probability of Ri loosing its

invertibility and hence of Pi being a numerically unreliable quantity. To alleviate

3The reader is referred to chapter 2.
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this event, it is standard practice to perturb the input signal by adding to it a

small quantity of white noise, a process known as dithering or noise injection

[10], [13], [2].

By direct multiplication of both sides of (2.35) from the right by u∗

i and

incorporation of (2.32) we obtain the RLS identity

gi = Piu
∗

i (4.38)

which can equivalently be written as

Rigi = u∗

i . (4.39)

If we now consider that the input signal is dithered and denote the dithered

version of a quantity ξ as ξ̃, then the above identity becomes in the context of

Dithered-RLS (DRLS)

R̃ig̃i = ũ∗

i . (4.40)

The challenge now is to determine the amount of dithering so that the numerical

Kalman gain vector of the dithered algorithm, denoted as [g̃i], to be as close as

possible to the Kalman gain vector of the infinite precision undithered RLS, i.e.

gi. But this problem fits exactly the formulation of section 4.2 with the mappings

Ri 7→ A u∗

i 7→ b gi 7→ x. (4.41)

Then a suboptimal level of dithering at iteration i can be obtained by minimizing

Jim,RLS(i)
∆
= ‖u∗

i − Ri [g̃i]‖ (4.42)

which is a relative upper bound of the function

JRLS(i)
∆
= ‖gi − [g̃i]‖ . (4.43)

Minimization of Jim,RLS is a difficult problem still under investigation. Alternati-
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vely, we can compensate for Jim,RLS recursively in time by designing the variance

of the injected white noise δ(i) as

δ(i) = αδ(i − 1) + βJim,RLS(i) (4.44)

where 0 < α < 1 and 0 < β ≪ 1 are scalars that determine the properties of the

feedback mechanism. This leads to an RLS algorithm with automatic dithering

regulation driven by the image function (4.42), referred to as IRLS (Image-RLS).

Note that in order to compute Jim,RLS(i) the matrix Ri is required, which however

can be easily computed in a recursive manner as

Ri = λRi−1 + u∗

i ui. (4.45)

The computational complexity of IRLS is O (M2) similarly to the standard RLS,

since its effective additional computational burdern is the matrix-vector multipli-

cation Ri [g̃i].

For practical implementations, and since all norms in CM×1 are equivalent,

we suggest using the infinity norm for its simplicity, defined as

‖u∗

i − Ri [g̃i]‖∞
∆
= max

k=1,···M
|u∗

i (k) − Ri(k, :) [g̃i]| (4.46)

where u∗

i (k) is the kth entry of u∗

i and Ri(k, :) is the kth row of Ri.

4.6 Proposed Algorithm

Summarizing the previous developments, we arrive at the following proposed

algorithm:

Image-RLS (IRLS): Select a filter order M , a forgetting factor 0 < λ < 1,

an initial positive-definnite regularization matrix Π, constants 0 < α < 1 and

0 < β ≪ 1, an initial level of dithering δ(0) = δ0 ≥ 0, set w−1 = 0M×1, P̃−1 = Π−1

and iterate for i ≥ 0:
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Draw a number η(i) from a random distribution of variance δ(i). The gene-

ration of this number must be independent from previous number generations.

ũ(i) = u(i) + η(i) (4.47)

γ̃(i) =
(

1 + λ−1 ũi P̃i−1ũ
∗

i

)

−1

(4.48)

g̃i = λ−1 γ̃(i) P̃i−1 ũ∗

i (4.49)

[g̃i] : numerical version of g̃i (4.50)

ẽ(i) = d(i) − ũi wi−1 (4.51)

wi = wi−1 + g̃i ẽ(i) (4.52)

P̃i = λ−1 P̃i−1 − g̃i g̃
∗

i /γ̃(i) (4.53)

Ri = λRi−1 + u∗

i ui (4.54)

Jim,RLS(i) = max
k=1,···M

|u∗

i (k) − Ri(k, :) [g̃i]| (4.55)

δ(i + 1) = αδ(i) + βJim,RLS(i). (4.56)

4.7 Results

We present simulations where IRLS is compared with fixed-dithering RLS

(DRLS) algorithms (fixed variance δ(i) = δ).

In Fig. (6) we demonstrate the ability of IRLS to respond to changes in

variations of the underlying computational precision in order to achieve numerical

stability. In the first 2000 iterations the precision is B = 32 bits; then in the

following 3000 iterations the precision is abruptly switched to B = 18 bits. In the

last 2000 iterations the precision switches back to the original B = 32 bits. Note

how the image function senses the changes in precision, keeping IRLS robust,

while the other fixed dithering implementations experience divergence peaks.

In Fig. (7) we demonstrate the ability of IRLS to respond in variations of

the condition number (CN) of the sample autocorrelation matrix of the original
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input signal. In the first 2000 iterations the SNR is 20 dB (moderate CN)4; then

in the following 3000 iterations the SNR is abruptly switched to 30 dB (large

CN). In the last 2000 iterations the SNR switches back to its original value of 20

dB. Observe that as the SNR increases, the Mean-Square-Error of the prediction

is decreased; however the numerical difficulty encountered by the algorithms is

increased, since Ri is now ill-conditioned. Note how the image functin senses the

CN variation and promptly increases the dithering level during the interval of

ill-conditioning (SNR = 30 dB) to keep IRLS robust, while the other algorithms

exhibit explosive divergence peaks.

In Fig. (8) we demonstrate the ability of IRLS to penalize unecessarily large

perturbations. We initialize IRLS with a small value of dithering (0.0005) and

at iteration i = 2000 we abruptly interfere to the feedback process and make the

value of dithering equal to 0.5; then we resume the feedback of the image function.

Observe how the image function senses unecessarily large values of perturbation

(no need for large dithering at 32 bits) and promptly drifts the dithering to a

very small value.

Finally, Fig. (9) depicts the IRLS algorithm in a linear prediction scenario for

speech signals; note how, for fixed (low) precision, the image function captures the

power and conditioning variations of the input signal, allowing the IRLS algorithm

to react correspondingly. In both simulations fixed-dithering RLS algorithms fail.

Note, particularly, that in the (b) curves the fixed “average” dithering (δ = 0.1,

or δdB = −20dB), although unfair with IRLS (the average suboptimal dithering

is an unknown quantity a priori), is outperformed by the proposed scheme.

4Note that the autocorrelation matrix of a noiseless sinusoid has rank 1.
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5 CONCLUSIONS

This thesis was concerned with the study of regularization in the RLS algo-

rithm.

In particular, an array RLS algorithm (NFRA-RLS) was developed embedded

with forgetting factor and non-fading regularization of arbitrary matrix structure.

The algorithm was found to exhibit superior robustness to alternative RLS algo-

rithms for adaptive beamforming as well as to the well-known LSMI beamformer.

Moreover, a dynamically dithered RLS algorithm (IRLS) was developed based

on a new criterion of general applicability referred to as the image function. The

algorithm was shown to be capable of adjusting its level of dithering accordingly

to variations of the condition number and the computational precision.

This thesis is concluded by mentioning a few challenges for future research.

As far as NFRA-RLS is concerned, it would be very interesting to investigate how

the imposition of some structure on the regularization matrix could lead to array

algorithms of smaller computational complexity. As far as IRLS is concerned, it

would be important to investigate the possibility of deriving stability bounds for

the constants α and β that govern the compensation mechanism of the image

function. Additionally, we pose the problem of direct minimization of the image

function. Finally, the ultimate objective is to exploit the non-fading regularization

structure of NFRA-RLS so that to apply the image function for the direct control

of the norm of the regularization matrix, a much more effective and reliable
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approach in comparison to dithering.
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