JOÃO EDUARDO MAEDA MOREIRA DA SILVA

ESTIMAÇÃO DE PARÂMETROS DE MODELOS COMPARTIMENTAIS PARA TOMOGRAFIA POR EMISSÃO DE PÓSITRONS

SÃO PAULO 2010

JOÃO EDUARDO MAEDA MOREIRA DA SILVA

ESTIMAÇÃO DE PARÂMETROS DE MODELOS COMPARTIMENTAIS PARA TOMOGRAFIA POR EMISSÃO DE PÓSITRONS

Dissertação apresentada à Escola Politécnica da Universidade de São Paulo para a obtenção do título de Mestre em Engenharia

Área de Concentração: Sistemas Eletrônicos

Orientador: Sérgio Shiguemi Furuie

Este exemplar foi revisado e alterado em	relação à versão original, so	b
responsabilidade única do autor e com a	anuência de seu orientador.	

São Paulo, de maio de 2010.

Assinatura do autor

Assinatura do orientador

FICHA CATALOGRÁFICA

Silva, João Eduardo Maeda Moreira da Estimação de parâmetros de modelos comportamentais para tomografia por emissão de pósitrons / J.E.M.M. da Silva. --ed.rev. -- São Paulo, 2010. 146 p.
Dissertação (Mestrado) - Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Telecomunicações e Controle.
1. Sistemas dinâmicos 2. Identificação de sistemas 3. Otimização não-linear 4. Modelos matemáticos I. Universidade de São Paulo. Escola Politécnica. Departamento de Engenharia de Telecomunicações e Controle II. t.

DEDICATÓRIA

Este trabalho é dedicado à minha família.

AGRADECIMENTOS

Ao Professor Sérgio Shiguemi Furuie, sobretudo pela amizade e companheirismo. Agradeço também pela orientação, empenho, dedicação, ensinamentos e sugestões durante todas as etapas de desenvolvimento deste trabalho.

Agradeço também o Departamento de Medicina Nuclear do Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo e o Laboratório de Engenharia Biomédica da Escola Politécnica da Universidade de São Paulo.

RESUMO

O presente trabalho possui como metas o estudo, simulação, identificação de parâmetros e comparação estatística de modelos compartimentais utilizados em tomografia por emissão de pósitrons (PET). Para tanto, propõe-se utilizar a metodologia de equações de sensibilidade e o método de Levenberg-Marquardt para a tarefa de estimação de parâmetros característicos das equações diferenciais descritoras dos referidos sistemas. Para comparação entre modelos, foi empregado critério de informação de Akaike. São consideradas três estruturas 0 compartimentais compostas, respectivamente, por dois compartimentos e duas constantes características, três compartimentos e quatro constantes características e quatro compartimentos e seis constantes características. Os dados considerados foram sintetizados preocupando-se neste texto em reunir as principais características de um exame de tomografia real, tais como tipo e nível de ruído e morfologia de função de excitação do sistema. Para tanto, foram utilizados exames de pacientes do setor de Medicina Nuclear do Instituto do Coração da Faculdade de Medicina da Universidade de São Paulo. Aplicando-se a metodologia proposta em três níveis de ruído (baixo, médio e alto), obteve-se concordância do melhor modelo em graus forte e considerável (com índices de Kappa iguais a 0.95, 0.93 e 0.63, respectivamente). Observou-se que, com elevado nível de ruído e modelos mais complexos (quatro compartimentos), a classificação se deteriora devido ao pequeno número de dados para a decisão. Foram desenvolvidos programas e uma interface gráfica que podem ser utilizadas na investigação, elaboração, simulação e identificação de parâmetros de modelos compartimentais para apoio e análise de diagnósticos clínicos e práticas científicas.

Palavras-chave: Modelos compartimentais. Estimação paramétrica. Sistemas de equações diferenciais. Equações de sensibilidade. Otimização Não-Linear.

ABSTRACT

This work has as goals the study, simulation, parameter identification and statistical comparison of compartmental models used in positron emission tomography (PET). We propose to use the methodology of sensitivity equations and the method of Levenberg-Marguardt for the task of estimating the characteristic parameters of the differential equations describing such systems. For model comparison, Akaike's information criterion is applied. We have considered three compartmental structures represented, respectively, by two compartments and two characteristic constants, three compartments and four characteristic constants and four compartments and six characteristics constants. The data considered in this work were synthesized taking into account key features of a real tomography exam, such as type and level of noise and morphology of the input function of the system. To this end, we used tests of patients in the sector of Nuclear Medicine of the Heart Institute of the Faculty of Medicine, University of São Paulo. Applying the proposed methodology with three noise levels (low, medium and high), we obtained agreement of the best model with strong and considerable degrees (with Kappa indexes equal to 0.95, 0.93 and 0.63, respectively). It was observed that, with high noise level and more complex models (four compartments), the classification is deteriorated due to lack of data for the decision. Programs have been developed and a graphical interface that can be used in research, development, simulation and parameter identification of compartmental models, supporting analysis of clinical diagnostics and scientific practices.

Keywords: Compartmental modeling. Parametric estimation. Differential equations systems. Sensitivity equations. Nonlinear Optimization.

SUMÁRIO

CAPÍTULO 1	11
INTRODUÇÃO	11
1.1 INTRODUÇÃO	11
1.2 Objetivos e Justificativas	12
CAPÍTULO 2	13
REVISÃO BIBLIOGRÁFICA	13
2.1 TOMOGRAFIA POR EMISSÃO DE PÓSITRONS	13
2.2 RADIOFÁRMACOS	14
2.3 CONSIDERAÇÕES SOBRE MODELAGEM MATEMÁTICA	17
2.4 MODELAGEM DO PROCESSO FISIOLÓGICO	19
2.5 MODELOS COMPARTIMENTAIS	22
2.6 ELEMENTOS NECESSÁRIOS PARA ESTIMAÇÃO DE PARÂMETROS DE MODELOS	
COMPARTIMENTAIS	24
2.7 SOLUÇÕES DE MODELOS COMPARTIMENTAIS: A ABORDAGEM ANALÍTICA	26
2.7.1 Modelo com dois compartimentos	26
2.7.2 Modelo com três compartimentos	28
2.7.3 Modelo com quatro compartimentos	30
2.7.4 Algumas observações sobre a metodologia analítica	31
CAPÍTULO 3	32
METODOLOGIA	32
3.1 SIMULAÇÃO DE MODELOS COMPARTIMENTAIS	32
3.1.1 Integração da Curva de Entrada	33
3.1.2 Exemplo de integração de modelos com dois compartimentos	35
3.2 ESTIMAÇÃO DE PARÂMETROS E MÉTODOS DE OTIMIZAÇÃO	38
3.2.1 Estrutura iterativa para estimação de parâmetros	39
3.2.2 O método de Levenberg-Marquardt	42
3.2.3 A avaliação da matriz Jacobiana baseada em equações de sensibili	idade
	46

3.2.4 Abordagem numérica para obtenção das equações de sensibilidade	53
3.2.5 Precisão dos parâmetros estimados	55
3.3 AVALIAÇÃO DE MODELOS ATRAVÉS DA SINTETIZAÇÃO DE DADOS	56
3.3.1 Sintetização de dados	58
Características da Curva de Atividade de Entrada Sintética	58
Morfologia característica	58
Curva de Atividade de Entrada resultante de injeção única	59
Características da Curva de Atividade Radioativa em Tecidos Sintética	61
3.3.2 Processo de avaliação	62
Aumento gradativo do Nível de Ruído para Avaliação dos Modelos desejados	63
CAPÍTULO 4	66
RESULTADOS	66
4.1 ESTIMATIVAS OBTIDAS PELA METODOLOGIA APLICADA	66
4.1.1 Identificação individual de modelos compartimentais	66
4.1.1.1 Parâmetros estimados do modelo com dois compartimentos	67
4.1.1.2 Parâmetros estimados do modelo de três compartimentos	68
4.1.1.3 Parâmetros estimados do modelo de quatro compartimentos	70
4.1.2 Ilustração através da aplicação a um exame real	71
4.1.3 Desempenho do Decisor de Modelos	73
4.1.3.1 Desempenho do Decisor de Modelos pelo índice de Kappa	85
CAPÍTULO 5	90
DISCUSSÃO DE RESULTADOS	90
5.1 DISCUSSÃO DE RESULTADOS DA PRIMEIRA ETAPA	90
5.2 DISCUSSÃO DE RESULTADOS DA SEGUNDA ETAPA	91
CAPÍTULO 6	92
CONCLUSÕES	92
6.1 CONCLUSÕES	92
6.2 CONTRIBUIÇÕES DA PESQUISA	93
6.3 MELHORIAS E TRABALHOS FUTUROS	94
REFERÊNCIAS BIBLIOGRÁFICAS	96

APÊNDICE	98
APÊNDICE A	
A.1 - PROCESSO DE ESTIMAÇÃO PARAMÉTRICA	
APÊNDICE B	99
B.1 - O ESTIMADOR DE MÍNIMOS QUADRADOS	
APÊNDICE C	
C.1 – INTERFACE GRÁFICA	
APÊNDICE D	
D.1 – TABELAS DETALHAS DO CAPÍTULO DE RESULTADOS	
APÊNDICE E	140
E.1 – LISTAGEM DE PROGRAMAS	140
APÊNDICE F	146
F.1 – PUBLICAÇÕES RESULTANTES DESTE TRABALHO	

CAPÍTULO 1

INTRODUÇÃO

1.1 Introdução

A técnica de tomografia por emissão de pósitrons, conhecida no meio médico pela sigla "PET" (do Inglês, Positron Emission Tomography), é empregada no estudo não invasivo do corpo humano. Com o auxílio de processamento de imagens médicas, este método permite investigar a integridade e o mecanismo metabólico de órgãos como o cérebro e o coração, possibilitando dessa maneira o diagnóstico precoce de patologias e planejamentos cirúrgicos. As informações fisiológicas reveladas através de um estudo dessa categoria de tomografia são de grande utilidade para atividades clínicas e práticas científicas, apresentando aplicabilidade notável nas áreas de oncologia, neurologia e cardiologia.

Baseado na variação ao longo do tempo da concentração de uma substância radioisotópica (também conhecida como substância marcadora, radiofármaco ou tracer), o método de tomografia por emissão de pósitrons emprega os conhecidos modelos compartimentais no estudo dinâmico do metabolismo da glicose em certas regiões do miocárdio.

O estudo de viabilidade do miocárdio e a detecção de doenças cardíacas podem ser realizados baseando-se na estimação de determinados parâmetros característicos da modelagem matemática empregada. O estudo, estimação de parâmetros e avaliação e seleção de modelos compartimentais, ao menos no senso estatístico, constituem o principal objetivo deste trabalho.

1.2 Objetivos e Justificativas

A utilização e interpretação de modelos compartimentais sem cautela e sem análise estatística adequada pode conduzir à incorreta estimação de parâmetros e à interpretação equivocada de exames. Por esta razão, busca-se questionar os níveis de complexidade de modelos compartimentais em determinadas aplicações, de maneira que os resultados apresentem confiabilidade estatística satisfatória.

O objetivo do presente trabalho é, além de promover os estudos da estimação e parâmetros característicos de modelos compartimentais, investigar estruturas mais adequadas para o estudo dinâmico do metabolismo da glicose utilizando-se o critério de informação de Akaike.

Para tanto, a avaliação é executada com dados sintéticos baseados em dados reais de pacientes do Instituto do Coração da Faculdade de Medicina da Universidade de São Paulo.

CAPÍTULO 2

REVISÃO BIBLIOGRÁFICA

2.1 Tomografia por emissão de pósitrons

O emprego da técnica de tomografia por emissão de pósitrons com abordagem dinâmica tem se tornado cada vez mais difundido em aplicações médicas, sendo capaz de informar aos profissionais da área, por exemplo, as taxas metabólicas de determinados órgãos do corpo humano. Sua importância é vasta: o acompanhamento e tomada de decisão sobre formas de tratamento de alguns tumores cancerígenos podem ser realizados em razão da alta taxa metabólica que estas neoplasias malignas costumam apresentar. A viabilidade do miocárdio também pode ser estudada em função das características metabólicas do músculo cardíaco, tendo como alvos principais a detecção de isquemia cardíaca e fibrose muscular (GUYTON; HALL, 1997) e (PHELPS et al., 1980).

As informações de interesse, na realização de um exame de tomografia por emissão de pósitrons em sua categoria dinâmica, são obtidas através da estimação de parâmetros que governam os modelos compartimentais, apresentados neste texto.

Para ilustração e exemplificação da prática desta técnica, toma-se como exemplo um exame para a quantificação da taxa metabólica de glicose do miocárdio. Os passos são descritos da seguinte forma:

Inicialmente, uma dose de radiofármaco é injetada na artéria radial do paciente. O paciente é então posicionado no equipamento e dá-se o início da captação e mapeamento da distribuição desta substância ao longo do tempo pelo corpo do indivíduo. Dessa maneira, é possível se obter uma série temporal de imagens da região que se deseja investigar que informam sobre a concentração e distribuição da substância marcadora.

Para realizar um estudo sobre a taxa metabólica do coração, define-se uma região de interesse, também conhecida como ROI (do Inglês, Region of Interest) e estuda-se seu comportamento ao longo do tempo, isto é, a concentração de radiofármaco por ela delimitada, possibilitando dessa maneira o levantamento de uma Curva de Atividade de Entrada e de uma Curva de Atividade Radioativa do Tecido que se deseja investigar. A ROI pode ser delimitada nos softwares responsáveis pelo processamento das imagens obtidas.

Esquematicamente e de maneira geral, o procedimento hospitalar pode ser representado sucintamente como na fig. 2.1.

2.2 Radiofármacos

O advento de novos equipamentos e técnicas específicas permitiu aos cientistas estudarem mais profundamente muitos sistemas metabólicos em nível molecular, uma tarefa até então bastante complexa ou mesmo impossível. A caracterização destes mecanismos pode ser baseada em informações dinâmicas da estrutura em questão, tal como a distribuição espacial e temporal de suas componentes.

Neste contexto, os radioisótopos desenvolveram-se em ritmo intenso nos últimos anos principalmente por dois fatores: o primeiro diz respeito à qualidade e quantidade de informação encontrada em um estudo que emprega tomografia por emissão de pósitrons. O elevado nível de detalhamento sobre a velocidade de consumo de glicose por determinado tecido, por exemplo, é um dos pontos atrativos da técnica. O segundo relaciona-se ao surgimento e desenvolvimento crescentes de aparelhos de medida e tecnologias empregados, conferindo aos tomógrafos maior precisão de medição e aumentando o número de radiofármacos para diversas outras modalidades de estudo.

Esta sinergia favorece a difusão da utilização deste tipo de tomografia em estudos cardíacos e permite aplicabilidade da técnica em diagnósticos de doenças, viabilidade do miocárdio, consumo de glicose e planejamento no posicionamento de pontes de safena.

Atualmente, para estudos com tomografia por emissão de pósitrons do coração, três tipos de radiofármacos merecem atenção especial: O FDG (fluordeoxiglicose), o composto pelo radioisótopo de amônia e o composto pelo radioisótopo de rubídio. Cada um deles é empregado de acordo com a peculiaridade do estudo desejado e são escolhidos considerando-se o tempo de meia vida do radioisótopo utilizado. A idéia por trás da maioria destes fármacos é incorporar isótopos a substâncias metabolizáveis pelo organismo que se pretende investigar, como glicose, insulina, vitaminas, proteínas, minerais e aminoácidos (COBELLI; FOSTER; TOFFOLO, 2000).

O ¹⁸F (isótopo de flúor), com tempo de meia vida característico de 110 minutos, é o radioisótopo componente do radiofármaco FDG e sua aplicação compreende estudos metabólicos. Em razão de sua similaridade com a glicose, é possível investigar a taxa com que esta substância é consumida por determinadas regiões do miocárdio.

O ¹³N (isótopo de nitrogênio) e o ⁸²Rb (isótopo de rubídio) possuem meia vida de 10 minutos e 1.25 minuto, respectivamente, e compõem radiomarcadores para estudos de perfusão sangüínea do coração. Dessa forma, são empregados para a detecção de patologias como isquemia cardíaca e fibrose muscular.

Figura 2.1 – Esquema de procedimento de tomografia por emissão de pósitrons para obtenção da taxa metabólica de consumo de glicose do miocárdio: inicialmente, o radiofármaco é injetado no paciente. Em seguida, as imagens são obtidas através do tomógrafo e as ROIs definidas por processamento de imagens. As Curvas de Entrada a serem aplicadas na modelagem matemática podem ser obtidas por amostragem sanguínea ou processamento de imagens. As curvas de atividades são obtidas por processamento de imagens. As

2.3 Considerações sobre modelagem matemática

Diz-se que um modelo matemático para determinado estudo é a descrição de (ou algumas de) suas características reais, através de um conjunto de relações matemáticas, aplicáveis a uma finalidade.

Em Medicina Nuclear e, especificamente em PET, modelagem torna-se importante por permitir a análise quantitativa na interpretação de dados experimentais, oferecendo ricas informações sobre grandezas mensuráveis e não mensuráveis. A construção do modelo desejado pode incluir características e informações que não são necessariamente captadas por equipamentos de medida (por exemplo, através de um tomógrafo), mas podem ser investigadas assim que suas restrições e capacidades são estabelecidas e de acordo com os objetivos do estudo. Quantificar o consumo de glicose por determinadas regiões do miocárdio é um exemplo interessante já que é feita indiretamente, baseada em níveis radioativos de um marcador que variam ao longo do tempo em determinada região.

Freqüentemente, como primeiro passo no desenvolvimento de um modelo, consideram-se informações conhecidas a priori, como o comportamento bioquímico do marcador de interesse, a resolução do aparelho de tomografia e os aspectos fisiológicos do organismo (CARSON, 1991). A etapa seguinte conduz à elaboração de uma representação matemática preliminar que, na maioria dos casos, apresenta-se bastante complexa e com muito mais parâmetros do que se pode determinar utilizando-se de dados e medidas experimentais.

Neste ponto, evidencia-se a necessidade de abrir mão de algumas características e capacidades do modelo em favor de sua simplificação. Adotar uma representação mais simples, porém "menos precisa", pode resultar em maior utilidade prática.

A escolha sobre quais informações incluir no modelo é uma tarefa criteriosa e depende não só do objetivo do estudo, mas também de detalhes relacionados à instrumentação, à logística, à fisiologia e aos radiomarcadores empregados. Informações como dinâmica de transporte, grau de absorção, grau de difusão e grau de consumo de certas substâncias, como a glicose, podem ser obtidas levando-se em conta as seguintes questões (CARSON, 1991):

- É razoável empregar medições de maneira não invasiva, ou seja, utilizando-se imagens? Em termos práticos, é possível realizar punções sucessivas ou instalação de cateter nos pacientes?
- As medidas são feitas utilizando-se sangue arterial, sangue venoso ou valores radioativos presentes nas imagens captadas pelo tomógrafo?
- A discrepância entre o metabolismo de glicose e o FDG (análogo à glicose), por exemplo, é tolerável? Se não, como calcular ou estimar um fator de compatibilidade entre suas dinâmicas de metabolismo?
- Referente aos recursos do tomógrafo, quanto tempo é necessário para efetuar a medição das contagens radioativas?
- Como são considerados os efeitos de resolução tomográfica, atenuação e espalhamento?
- São necessárias múltiplas aquisições ou apenas uma?
- São necessárias injeções múltiplas de marcadores sob diversas condições do paciente?
- Quantos parâmetros podem ser estimados de acordo com as medidas experimentais obtidas?
- Que tipo de representação escolher? Linear ou não-linear?
- É possível assumir as mesmas hipóteses e simplificações para indivíduos saudáveis e indivíduos em condições patológicas, como diabetes?
- Como estabelecer um compromisso entre uma diminuição do número de parâmetros do modelo a estimar e a manutenção de um nível de precisão satisfatório dessas grandezas?

A fig. 2.2 apresenta um diagrama sobre considerações importantes a serem feitas durante a etapa de modelagem.

Além das considerações anteriores, suposições e simplificações baseadas no comportamento fisiológico são etapas obrigatórias no processo de modelagem, seja por falta de algumas informações sobre o objeto de estudo, seja por interesse em estudar apenas determinadas características do sistema. Conseqüentemente, é possível evitar representações demasiadamente complexas que podem ser impraticáveis e oferecer informações não confiáveis do ponto de vista estatístico.

O passo seguinte é a etapa de avaliação de modelos. Aqui, deseja-se verificar se hipóteses assumidas e simplificações são razoáveis e se os parâmetros fisiológicos

de interesse podem ser estimados com certo grau de acurácia. Se necessário, recomenda-se refinar o modelo modificando algumas de suas características para alcançar um equilíbrio entre praticidade, utilidade e acurácia.

Por fim, é interessante aliar a metodologia descrita a um planejamento de protocolo médico adequado. Dessa forma, é possível obter um modelo definitivo para avaliação de quantificação fisiológica em estudos de tomografia por emissão de pósitrons.

O diagrama da fig. 2.3 ilustra as etapas acima mencionadas.

2.4 Modelagem do processo fisiológico

A justificativa para se considerar tecidos como compartimentos decorre da natureza fisiológica do metabolismo em investigação (CARSON, 2005).

A substância marcadora injetada na artéria do indivíduo alcançará o tecido de interesse após determinado intervalo de tempo. Dessa forma, ocorrem os seguintes processos relevantes para o estudo:

- O fornecimento do radiofármaco transportado pelo sangue arterial para as estruturas componentes do tecido.
- A absorção de substância marcadora pelo tecido, que pode resultar em metabolização, aprisionamento ou devolução desta para a corrente sanguínea.
- A eliminação dos produtos da metabolização ou não de radiofármaco para o sangue venoso.

A fig. 2.4 ilustra este mecanismo.

Conhecimento prévio sobre Tomografia por Emissão de Pósitrons

Figura 2.3 – Diagrama de etapas do processo de modelagem.

Figura 2.4 – Representação dos possíveis processos que ocorrem na interação entre o transporte da substância marcadora e o tecido alvo. É ilustrado o transporte de radiofármaco "X" pelo sangue arterial, o aprisionamento e metabolização pelas estruturas do tecido e a eliminação de radiofármaco não metabolizado e produtos de metabolização para o sangue venoso. Obtida de (CARSON, 2005).

2.5 Modelos compartimentais

Tradicionalmente empregados, desde o início da técnica de tomografia por emissão de pósitrons (PHELPS et al., 1980), modelos compartimentais constituem uma abordagem clássica na estimação de taxas metabólicas. Em PET, cada órgão (ou cada região deste) é tratado como um compartimento.

Informações sobre a velocidade com que o radiofármaco é metabolizado neste sistema podem ser associadas às taxas de variações no tempo das concentrações de radiofármaco em cada compartimento. A interação entre eles é representada por uma espécie de tubo, cada qual com uma constante "k" associada, informando sobre a rapidez de absorção, difusão ou transformação bioquímica de substância marcadora no organismo. Modelos compartimentais são bastante utilizados em softwares para aplicações em PET existentes atualmente e descrevem, de maneira bastante satisfatória, uma ampla gama de processos metabólicos como cerebrais e cardíacos.

A idéia central no emprego desta abordagem é raciocinar em termos de conjuntos de moléculas específicas e suas respectivas distribuições espaciais ao longo do tempo em razão da inviabilidade de se rastrear e estudar o comportamento de uma única molécula. Por exemplo, se fossem considerados três compartimentos para se estudar um mecanismo de consumo de glicose pelo miocárdio, eles poderiam representar as seguintes regiões: um compartimento para o plasma sanguíneo, um compartimento para o meio intersticial entre células musculares e outro compartimento para as células musculares propriamente ditas. As constantes dinâmicas que interligam tais compartimentos representam a taxa de trânsito de substância entre as regiões.

Matematicamente, a modelagem compartimental adotada resulta em um sistema de equações diferenciais ordinárias, cujas soluções não são lineares com respeito aos parâmetros de interesse. Essa característica deve-se à aplicação do conceito de balanço de massa: a variação temporal da concentração de radiofármaco em um determinado compartimento é o balanço entre a concentração de radiofármaco que entra nesse compartimento e a concentração de radiofármaco que sai desse compartimento.

Considere a seguinte representação:

Figura 2.5 – Modelo compartimental genérico: i-ésimo compartimento.

Nota-se a existência de três fronteiras: a primeira restringe cada compartimento, representados pelas caixas menores. A segunda delimita um conjunto de compartimentos. A terceira compreende o sistema completamente e abriga o meio externo e os compartimentos. A razão dessa escolha é permitir que cada um dos compartimentos compartilhe de uma mesma informação sobre o meio externo.

Com relação às grandezas de interesse, C_i representa a concentração de substância marcadora do i-ésimo compartimento e C_e representa a concentração de substância marcadora no meio externo. No contexto do estudo, o meio externo é o plasma sanguíneo do indivíduo e, portanto, C_e é a Curva de Atividade de Entrada. Os fluxos de material são apresentados próximos às flechas e são proporcionais às suas respectivas concentrações da região de origem, seja ela compartimento ou meio externo. Admite-se que tal proporcionalidade seja invariante no tempo. Uma maneira geral de descrever o modelo para os n compartimentos da fig. 2.5 é a seguinte:

$$\dot{C}_{i} = \sum_{i \neq j} F_{ji} - \sum_{i \neq j} F_{ij} + u_{i} - F_{io}, \text{ para } i = 1, ..., n \quad e \quad j = 1, ..., n \quad (2.1)$$

Com:

 $F_{ji} = k_{ji} \cdot C_j$ (fluxo do compartimento "j" para o compartimento "i"). (2.2)

$$F_{ij} = k_{ij} \cdot C_i$$
 (fluxo do compartimento "i" para o compartimento "j"). (2.3)

$$u_i = k_{ei} \cdot C_e$$
 (fluxo de entrada do meio externo para o compartimento (2.4) "i").

$$F_{io} = k_{ie} \cdot C_i$$
 (fluxo de saída do compartimento "i" para o meio externo). (2.5)

O sistema de equações diferenciais ordinárias é obtido aplicando-se a eq. (2.1) para cada um dos "n" compartimentos; as concentrações iniciais destes são necessárias para a solução do problema e devem ser escolhidas de acordo com o estudo em questão.

O objetivo é estimar os parâmetros referentes às constantes de fluxo e, conseqüentemente, a taxa metabólica de glicose. Portanto, devem-se estimar os valores das constantes de fluxo k_{ab} , que por determinarem os fluxos de troca de material entre os compartimentos, governam a dinâmica do referido sistema.

2.6 Elementos necessários para estimação de parâmetros de modelos compartimentais

Estimar parâmetros cinéticos de modelos compartimentais, no escopo deste trabalho, requer a utilização de dados experimentais das seguintes fontes:

- Curva de Atividade de Entrada
- Curvas de Atividade Radioativa de Tecidos

A Curva de Atividade de Entrada funciona como excitação do sistema de equações diferenciais resultantes da aplicação do conceito de balanço de massa. Esta pode ser levantada utilizando-se punções sucessivas para amostragem sanguínea. Nesta abordagem, após a instalação de um cateter, são retiradas pequenas porções sanguíneas do indivíduo que são colocadas em um contador de

radioatividade do tipo "poço" para medirem-se as concentrações temporais de radiofármaco que circundam o tecido alvo (PHELPS et al., 1980).

Naturalmente, esse processo limita-se a estudos em que o tecido alvo localiza-se nas proximidades do ponto de amostragem. Do contrário, se este estiver em uma região relativamente distante, as medidas obtidas pelo contador serão inadequadas para aplicação ao modelo uma vez que podem assumir outros valores durante o tempo de trânsito decorrido para percorrer esta distância.

Para contornar este problema, esta Curva de Atividade de Entrada pode ser obtida através de processamento de imagens. Neste caso, confia-se em valores obtidos através dos valores dos pixels da série temporal de imagens. Tal alternativa é bastante cômoda, pois a informação é obtida da mesma maneira do que a utilizada para obter as Curvas de Atividade radioativa de Tecidos.

Tome como exemplo um estudo cardíaco: a instalação de um cateter nas imediações do miocárdio é algo bastante complexo e arriscado. Nessa categoria de exames, obter os valores de concentrações para a função de entrada através de imagens é uma prática bastante comum (ARNO et al., 2001) e seguramente menos invasivo.

Deve-se, entretanto, estar ciente de que tais valores diferem, ainda que pouco, daqueles que seriam obtidos por amostragem sanguínea. (ARNO et al., 2001) apresenta uma discussão interessante sobre qual região cardíaca é mais adequada para encontrar uma informação sobre a curva de entrada por processamento de imagens mais semelhante à que seria resultante de um processo de amostragem de sangue.

As Curvas de Atividade Radioativa de Tecidos são obtidas por processamento de imagens obtidas pelo tomógrafo e delimitando-se as regiões de interesse (ROI).

2.7 Soluções de modelos compartimentais: a abordagem analítica

Com o objetivo de compreender o comportamento dinâmico de modelos compartimentais, apresentam-se aqui a resolução analítica de alguns modelos compartimentais encontrados freqüentemente na literatura (CARSON, 2005; COBELLI; FOSTER; TOFFOLO, 2000; PHELPS et al., 1980).

A idéia central nesta seção é encontrar valores de concentrações da substância marcadora tecidual tendo em mãos a Curva de Atividade de Entrada e parâmetros característicos dos modelos compartimentais. Ressalta-se que os sistemas aqui apresentados são caracterizados por parâmetros que não variam no tempo.

2.7.1 Modelo com dois compartimentos

Considere a seguinte representação:

Figura 2.6 – Modelo compartimental com dois compartimentos.

Tal que:

- C_p representa a concentração de substância marcadora no plasma sangüíneo do indivíduo.
- C₁ representa a concentração de substância marcadora no compartimento 1, sendo esta a medida por um tomógrafo.
- K₁ e k₂ são constantes fisiológicas que não variam no tempo.

Aplicando-se o conceito de conservação de massa aos compartimentos e considerando valores temporais destas duas concentrações ($C_p(t) \in C_1(t)$), tem-se:

$$\frac{dC_1(t)}{dt} = K_1 \cdot C_p(t) - k_2 \cdot C_1(t)$$
(2.6)

Assume-se que a concentração inicial de radiofármaco é nula, ou seja:

$$C_1(0) = 0 \tag{2.7}$$

Aplicando-se a transformada de Laplace à eq. (2.6), tem-se:

$$s \cdot C_1(s) - C_1(0_-) = K_1 \cdot C_p(s) - k_2 \cdot C_1(s)$$
(2.8)

Resolvendo esta equação em $C_1(s)$ e substituindo o valor da condição inicial $C_1(0) = C_1(0.) = 0$, tem-se:

$$C_{1}(s) = \frac{K_{1}}{s + k_{2}} \cdot C_{p}(s)$$
(2.9)

Que, no domínio do tempo, corresponde a:

$$C_{1}(t) = K_{1} \cdot e^{-k_{2} \cdot t} \otimes C_{p}(t)$$
(2.10)

O símbolo "⊗" de convolução denota a seguinte relação:

$$y(t) = x(t) \otimes h(t) = \int_{-\infty}^{\infty} x(\tau) \cdot h(t-\tau) d\tau$$
(2.11)

O objetivo da tarefa de estudo de parâmetros fisiológicos é buscar uma estimativa para os valores das constantes K_1 e k_2 a partir de medidas de concentração de radiofármacos em tecidos e no plasma sangüíneo. No caso do modelo com dois compartimentos, C_1 é o valor tecidual e C_p é o valor plasmático.

2.7.2 Modelo com três compartimentos

Considere a seguinte representação:

Figura 2.7 – Modelo compartimental com três compartimentos.

Tal que:

 Cp representa a concentração de substância marcadora no plasma sangüíneo do indivíduo.

- C₁ representa a concentração de substância marcadora no compartimento 1.
- C₂ representa a concentração de substância marcadora no compartimento 2.
- K₁, k₂, k₃ e k₄ são constantes fisiológicas que não variam no tempo.

Aplicando-se o conceito de conservação de massa aos compartimentos e considerando valores temporais destas três concentrações ($C_p(t)$, $C_1(t)$ e $C_2(t)$), têmse:

$$\frac{dC_1(t)}{dt} = K_1 \cdot C_p(t) + k_4 \cdot C_2(t) - k_2 \cdot C_1(t) - k_3 \cdot C_1(t)$$
(2.12)

$$\frac{dC_2(t)}{dt} = k_3 \cdot C_1(t) - k_4 \cdot C_2(t)$$
(2.13)

Assume-se que as concentrações iniciais de radiofármaco em cada compartimento são nulas, ou seja:

$$C_1(0) = 0 \ e \ C_2(0) = 0 \tag{2.14}$$

Aplicando-se a transformada de Laplace às eq. (2.12) e (2.13), tem-se:

$$s \cdot C_1(s) - C_1(0_-) = K_1 \cdot C_p(s) + k_4 \cdot C_2(s) - k_2 \cdot C_1(s) - k_3 \cdot C_1(s)$$
(2.15)

$$s \cdot C_2(s) - C_2(0_-) = k_3 \cdot C_1(s) - k_4 \cdot C_2(s)$$
 (2.16)

Resolvendo as eq. (2.15) e (2.16) em $C_1(s)$ e $C_2(s)$ e substituindo os valores das condições iniciais $C_1(0) = C_1(0) = 0$ e $C_2(0) = C_2(0) = 0$, tem-se:

$$C_1(s) = \frac{K_1}{\alpha_2 - \alpha_1} \cdot \left(\frac{k_4 - \alpha_1}{s + \alpha_1} + \frac{\alpha_2 - k_4}{s + \alpha_2}\right) \cdot C_p(s)$$
(2.17)

$$C_2(s) = \frac{K_1 \cdot k_3}{\alpha_2 - \alpha_1} \cdot \left(\frac{1}{s + \alpha_1} - \frac{1}{s + \alpha_2}\right) \cdot C_p(s)$$
(2.18)

Onde:

$$\alpha_1 = \frac{(k_2 + k_3 + k_4 - \sqrt{(k_2 + k_3 + k_4)^2 - 4 \cdot k_2 \cdot k_4})}{2}$$
(2.19)

е

$$\alpha_2 = \frac{(k_2 + k_3 + k_4 + \sqrt{(k_2 + k_3 + k_4)^2 - 4 \cdot k_2 \cdot k_4})}{2}$$
(2.20)

Que, no domínio do tempo, corresponde a:

$$C_{1}(t) = \frac{K_{1}}{\alpha_{2} - \alpha_{1}} \cdot [(k_{4} - \alpha_{1}) \cdot e^{-\alpha_{1} t} + (\alpha_{2} - k_{4}) \cdot e^{-\alpha_{2} t}] \otimes C_{p}(t)$$
(2.21)

е

$$C_{2}(t) = \frac{K_{1} \cdot k_{3}}{\alpha_{2} - \alpha_{1}} \cdot (e^{-\alpha_{1} \cdot t} - e^{-\alpha_{2} \cdot t}) \otimes C_{p}(t)$$
(2.22)

No entanto, em tomografia por emissão de pósitrons, o que se mede é a soma das concentrações $C_1(t)$ e $C_2(t)$. Isto acontece já que o tomógrafo não é capaz de discernir as fronteiras dos compartimentos e apenas consegue captar a concentração de atividade radioativa total tecidual $C_{TAC}(t) = C_1(t) + C_2(t)$. Portanto, tem-se:

$$C_{TAC}(t) = \frac{K_1}{\alpha_2 - \alpha_1} \cdot \left[(k_3 + k_4 - \alpha_1) \cdot e^{-\alpha_1 \cdot t} + (\alpha_2 - k_3 - k_4) \cdot e^{-\alpha_2 \cdot t} \right] \otimes C_p(t)$$
(2.23)

Esta mesma abordagem pode ser empregada para explicitar as equações em modelos com mais compartimentos.

2.7.3 Modelo com quatro compartimentos

Considere a seguinte representação:

Figura 2.8 – Modelo compartimental com quatro compartimentos.

Tal que:

 Cp representa a concentração de substância marcadora no plasma sangüíneo do indivíduo.

- C₁ representa a concentração de substância marcadora no compartimento 1.
- C₂ representa a concentração de substância marcadora no compartimento 2.
- C₃ representa a concentração de substância marcadora no compartimento 3.
- K₁, k₂, k₃, k₄, k₅ e k₆ são constantes fisiológicas que não variam no tempo.

Aplicando-se o conceito de conservação de massa aos compartimentos e considerando valores temporais destas quatro concentrações ($C_p(t)$, $C_1(t)$, $C_2(t)$ e $C_3(t)$), têm-se:

$$\frac{dC_1(t)}{dt} = K_1 \cdot C_p(t) + k_4 \cdot C_2(t) + k_6 \cdot C_3(t) - (k_2 + k_3 + k_5) \cdot C_1(t)$$
(2.24)

$$\frac{dC_2(t)}{dt} = k_3 \cdot C_1(t) - k_4 \cdot C_2(t)$$
(2.25)

$$\frac{dC_3(t)}{dt} = k_5 \cdot C_1(t) - k_6 \cdot C_3(t)$$
(2.26)

Assume-se que as concentrações iniciais de radiofármaco em cada compartimento são nulas, ou seja:

$$C_1(0) = 0, C_2(0) = 0 \ e \ C_3(0) = 0$$
 (2.27)

A resposta tecidual, isto é, a atividade radioativa em virtude da concentração de radiofármaco, é dada pela somatória das concentrações de cada compartimento individualmente. Portanto, $C_{TAC}(t) = C_1(t) + C_2(t) + C_3(t)$.

Os cálculos utilizando-se transformada de Laplace não serão desenvolvidos aqui em razão de sua grande extensão. Dessa maneira, modelos relativamente mais complexos como este são simulados numericamente.

2.7.4 Algumas observações sobre a metodologia analítica

Observando as equações encontradas analiticamente, observa-se que a complexidade das expressões aumenta consideravelmente quando da adição de mais compartimentos. Além disso, a operação de convolução oferece dificuldades de implementação computacional, principalmente no que diz respeito à determinação de seu passo de integração.

Por esses motivos, preferiu-se aplicar métodos numéricos de integração de equações diferenciais como os de Runge-Kutta de quarta ordem com passo adaptativo. Neste trabalho, utilizou-se a rotina ode45 do Matlab®.

CAPÍTULO 3

METODOLOGIA

3.1 Simulação de modelos compartimentais

A tarefa de obtenção da estimativa de valores de parâmetros característicos de um determinado sistema dinâmico é assunto de grande interesse em diversas modalidades de engenharia. Há um grande número de modelos de sistemas reais baseados em equações diferenciais ordinárias, descrevendo diversos processos elétricos, mecânicos, químicos, biológicos e econômicos, por exemplo (ORSINI, 1985).

O ajuste de curvas, muitas vezes referido na literatura como processo de *fitting* de dados, destaca-se por permitir a obtenção de informações sobre certo sistema através de medidas experimentais. Tais informações possibilitam investigação do mecanismo em questão, podendo ser aplicadas a algoritmos de controle de processos, previsões e diagnósticos clínicos.

Em posse de equações matemáticas e respectivos parâmetros característicos, o primeiro passo para a estimação paramétrica é a simulação dos modelos dinâmicos, não se preocupando, pelo menos inicialmente, com o ajuste dos dados experimentais. Em outras palavras, é necessário desenvolver uma maneira que permita obter resposta de um sistema dinâmico fornecendo-se, no caso de equações diferenciais, elementos como os parâmetros ou constantes características, as condições iniciais e a curva de excitação de entrada.

O estabelecimento do processo de simulação desempenha um dos papéis principais na tarefa de otimização de parâmetros. Nesta etapa, algoritmos numéricos para solução de equações diferenciais e de otimização estão prontamente disponíveis na literatura e em softwares e linguagens computacionais como Matlab®, C, C++ e Java.

A seguir, descreve-se a metodologia adotada para modelos compartimentais para Tomografia por Emissão de Pósitrons. Não obstante, acredita-se que ela possa ser aplicada a outros modelos descritores de processos dinâmicos de outras disciplinas.

3.1.1 Integração da Curva de Entrada

Como visto anteriormente, os modelos compartimentais, diferente de sistemas dinâmicos classificados como "sistemas livres", dependem de uma função de excitação de entrada. No tocante à disciplina de sistemas dinâmicos, diz-se que um modelo compartimental pode ser um sistema dinâmico forçado que responde não somente aos valores de suas condições iniciais, mas também por valores de uma função de entrada específica como a concentração de radiofármaco em alguma região de interesse como o ventrículo esquerdo do coração humano. Para melhor esclarecer, podem ser feitas algumas analogias com outros tipos de sistemas, como a tensão elétrica aplicada a um circuito elétrico composto por resistores, capacitores e indutores ou uma força variável aplicada a um sistema massa-mola com coeficiente de elasticidade de mola, atrito e massa de um corpo.

Como aspecto fundamental, deve-se considerar que as medidas experimentais, tanto da Curva de Atividade de Entrada quanto da Curva de Atividade Tecidual, representam valores discretos no tempo. Dessa maneira, para simulação da Curva de Atividade Tecidual para um determinado conjunto de parâmetros dinâmicos, uma lista de pares ordenados de valores de concentração de substância marcadora que compõem a Curva de Atividade de Entrada é considerada pelo algoritmo integrador.

Deve-se notar que tais dados experimentais freqüentemente encontram-se disponíveis em intervalos de tempos não uniformes, isto é, o intervalo de tempo entre duas amostras consecutivas não é necessariamente constante. Dessa maneira, foi utilizada interpolação linear para obtenção da estimativa de valores intermediários da Curva de Atividade de Entrada.

Para ilustração, considere a situação em que se deseje simular a concentração de radiofármaco em apenas um compartimento tecidual e proveniente do plasma sanguíneo, por exemplo. Neste caso, isenta de constantes características, a equação dinâmica resulta em:

$$\frac{dC_1(t)}{dt} = C_p(t) \tag{3.1}$$

Considerando condição inicial nula e utilizando valores tabulados de $C_p(t)$, a avaliação de $C_1(t)$ pode ser efetuada pela seguinte função "c1.m" escrita em Matlab®:

```
function dx=cl(t,x,flag,a,b)
dx=intlin(a,b,t);
```

Tal que:

- "t" representa o instante de tempo em que a função é avaliada.
- "x" representa a condição inicial considerada.
- "flag" é um parâmetro característico do Matlab® para passagem de parâmetros ao algoritmo integrador de equações diferenciais.
- "a" é o vetor de valores dos instantes de tempos das amostras da Curva de Atividade de Entrada.
- "b" é o vetor de valores de concentração de substância marcadora das amostras da Curva de Atividade de Entrada.
- "intlin" é uma sub-rotina desenvolvida que, recebendo os vetores "a" e "b" e um instante de tempo arbitrário "t", retorna uma estimativa correspondente do valor de concentração de radiofármaco através de interpolação linear. Sua estrutura justifica-se, pois o algoritmo integrador pode necessitar de valores de concentração em certos instantes de tempos intermediários que não estão necessariamente tabulados.

Note que os vetores "a" e "b" representam, conjuntamente, os pares ordenados componentes da forma tabulada de $C_p(t)$. A interpolação linear pode ser conseguida aplicando-se o conceito de alinhamento de três pontos da Geometria Analítica.

Para utilizar tal função, chama-se a rotina ode45 do Matlab® da seguinte maneira:

[tempo, c1] = ode45('c1',a,0,[],a,b);

O parâmetro representado pelos colchetes vazios permite a passagem de parâmetros extras como os vetores "a" e "b" ao algoritmo integrador.

A seguir, apresentam-se uma Curva de Atividade de Entrada amostrada e sua integração após utilização da rotina ode45, ambas no mesmo gráfico. Neste exemplo, os dados tabulados de $C_p(t)$ foram obtidos utilizando-se uma exponencial negativa e escolhendo-se o primeiro valor como nulo. Isso é feito para imitar uma Curva de Atividade de Entrada encontrada na prática.

Figura 3.1 – Integração da forma tabulada de $C_p(t)$ utilizando interpolação linear e rotina ode45.

3.1.2 Exemplo de integração de modelos com dois compartimentos

Estabelecida uma maneira para integração de dados tabulados da Curva de Atividade de Entrada, passa-se a então a modelos compartimentais mais complexos. Nesta seção, será coberta a estrutura com apenas um compartimento e duas constantes dinâmicas. No entanto, modelos mais elaborados com mais compartimentos e respectivas constantes dinâmicas podem ser simulados de maneira semelhante e a metodologia pode ser estendida sem maiores dificuldades.

Considere o seguinte sistema com dois compartimentos a ser simulado:

Figura. 3.2 – Modelo Compartimental com dois compartimentos.

Com equação diferencial:

$$\frac{dC_{1}(t)}{dt} = K_{1} \cdot C_{p}(t) - k_{2} \cdot C_{1}(t)$$
(3.2)

Novamente, utiliza-se a rotina ode45 do Matlab® para integração da eq. (3.2). A seguinte função "c2.m" é empregada:

function dx=c2(t,x,flag,k,a,b)
dx=k(1)*intlin(a,b,t)-k(2)*x;

A chamada no console do Matlab® é dada por:

[tempo, c2]=ode45('c2',a,0,[],k,a,b);

Note a passagem do parâmetro adicional "k", um vetor de duas posições composto pelas constantes dinâmicas K₁ e k₂.

Para ilustração, o modelo dinâmico representado pela eq. (3.2) foi simulado para valores de K₁ =0.4 mL/min/mL (fixado) e 10 valores distintos de k₂, partindo de 0.01 a 0.1, em passos de 0.01 min⁻¹. A Curva de Atividade de Entrada exponencial considerada é a mesma da fig. 3.1 e está apresentada na cor vermelha. As respostas obtidas são as seguintes:

Figura 3.3 – Integração do sistema da eq.(3.2) utilizando rotina ode45 para valor de K₁ fixado e diversos valores de k₂.

As curvas representadas pela cor azul denotam as respostas do modelo da eq. (3.2) à Curva de Atividade de Entrada em questão. A curva apontada pela flecha com o número "1" corresponde às constantes dinâmicas $K_1 = 0.4$ mL/min/mL e $k_2 = 0.01$ min⁻¹. A curva apontada pela flecha com o número "10" corresponde às constantes dinâmicas $K_1 = 0.4$ mL/min/mL e $k_2 = 0.1$ min⁻¹. A curva apontada pela flecha com o número "10" corresponde às constantes dinâmicas $K_1 = 0.4$ mL/min/mL e $k_2 = 0.1$ min⁻¹. As curvas azuis intermediárias representam os diversos valores de k_2 , de maneira crescente em passos de 0.01 min⁻¹.

Observa-se que as curvas apresentam aspectos coerentes: variando-se apenas valores de k₂, nota-se que para instantes de tempos próximos de 60 minutos (final de um exame de tomografia), os valores de concentração de radiofármaco tecidual (curvas azuis) tendem a se aproximar de zero conforme k₂ toma valores mais elevados. Isso significa que, segundo o modelo, o compartimento elimina a substância marcadora mais rapidamente, a uma taxa regida pelo valor de k₂. Se k₂ assume valores muito pequenos, a excreção é cada vez mais lenta, fazendo com que a curva tecidual tenda a um valor constante.

Para a simulação de modelos mais complexos, com mais constantes dinâmicas, procede-se da mesma maneira, alterando e incluindo-se as novas equações e parâmetros a uma função semelhante à de "c2.m". A diferença é que para modelos com três e quatro compartimentos, devem-se somar todas as concentrações-

respostas obtidas de cada equação diferencial integrada para compor a resposta que, teoricamente, seria captada por um tomógrafo.

3.2 Estimação de parâmetros e métodos de otimização

Até este ponto, apresentou-se uma maneira de obter as Curvas de Atividade Radioativa de Tecidos utilizando a Curva de Atividade de Entrada e parâmetros préfixados.

No entanto, em exames de tomografia, enfrenta-se o problema inverso: como determinar os parâmetros dos modelos compartimentais possuindo medidas da Curva de Atividade de Entrada e das Curvas de Atividade Radioativa de Tecidos?

Para resolver esta questão, faz-se uso do recurso dos mínimos quadrados (apresentado em mais detalhes no apêndice) (BARD, 1974) e de métodos de otimização para problemas não-lineares. Há uma extensa literatura, (BARD, 1974; BAZARAA; SHERALI; SHETTY, 2006; CHAPRA; CANALLE, 2008; COBELLI; CARSON, 2001; LUENBERGER, 1984; PRONZATO; WALTER, 1997) que apresenta abordagens baseadas principalmente no método de Levenberg-Marquardt (detalhado no item 3.2.2.). A escolha deste método justifica-se pelos melhores resultados para este tipo de problema obtido por diversos autores.

Os métodos de otimização tem como objetivo minimizar uma determinada função objetivo que depende de certos parâmetros. Esses algoritmos farão o seu melhor para cumprir tal papel e normalmente dependem de um palpite inicial para os valores dos parâmetros. Neste trabalho, a somatória dos erros quadráticos ponderados compõe a função objetivo e os parâmetros fisiológicos são os parâmetros ajustados pelo algoritmo.

Como são esquemas iterativos, novas estimativas são obtidas a cada iteração até que um determinado critério de parada seja atendido. Dois critérios de parada bastante utilizados são:

- 1) Em relação ao valor da função objetivo.
- 2) Em relação ao conjunto de parâmetros estimados.

Para estes casos, o algoritmo é terminado quando dois resultados consecutivos, fornecidos pelo algoritmo, distinguem-se de um valor extremamente pequeno. No caso "1", comparam-se dois valores sucessivos da somatória de resíduos quadráticos e, se sua diferença atender a uma determinada tolerância, o algoritmo é interrompido e finalizado. Para o caso "2", toma-se a norma euclidiana da diferença dos dois últimos conjuntos de parâmetros estimados consecutivos. Novamente, se esta norma for menor do que um número pré-definido finaliza-se o algoritmo e considera-se o último conjunto de constantes como a melhor estimativa alcançada pelo algoritmo.

Neste trabalho, o primeiro dos dois critérios é utilizado.

3.2.1 Estrutura iterativa para estimação de parâmetros

Descreve-se, a seguir, a estrutura iterativa que permite a estimação paramétrica para os modelos compartimentais utilizados neste trabalho. Em linhas gerais, a obtenção de valores de parâmetros de um sistema dinâmico baseia-se em sucessivas operações com os resultados de integrações numéricas do referido sistema.

Dessa maneira, divide-se a tarefa em duas etapas principais:

1) A partir de informações sobre a concentração do meio externo C_e (Curva de Atividade de Entrada), as constantes de fluxo k_{ab} (palpites iniciais para a primeira iteração do esquema) e as concentrações iniciais de cada compartimento, podem-se determinar as concentrações C_i de cada compartimento ao longo do tempo resolvendo o sistema de equações diferenciais gerado pela eq. (2.1) aplicada a cada compartimento do sistema. É neste ponto que se aplicam os métodos de Runge-Kutta (encontrados na rotina ode45 do Matlab®).

2) Utilizando-se informações sobre as concentrações de cada compartimento C_i ao longo do tempo, obtidas na etapa anterior, podem-se obter melhores estimativas das

constantes de fluxo k_{ab} por métodos de otimização. É neste ponto que se emprega o método de Levenberg-Marquardt.

O objetivo é estabelecer uma rotina que, iterativamente, seja capaz de obter estimações cada vez melhores dos valores das constantes, resolvendo as duas etapas em uma única iteração, até satisfazer o critério de parada desejado. O diagrama da fig. 3.4 ilustra a operação.

Figura 3.4 – Fluxo para rotina de estimação paramétrica.

No primeiro passo da rotina, informa-se o palpite inicial para os valores das constantes a serem estimadas. Em seguida, conhecendo-se a concentração de substância marcadora no meio externo ao longo do tempo, as concentrações iniciais

de substância marcadora em cada compartimento e as constantes que regem a dinâmica do problema, o sistema de equações diferenciais é integrado.

A soma das concentrações ao longo do tempo de cada compartimento, encontradas através da solução do sistema de equações diferenciais, é então comparada com os dados medidos. Neste ínterim, um método de otimização é aplicado no sentido de melhorar a estimativa dos valores das constantes levando-se em consideração os dados medidos: se o critério de parada é alcançado, o valor estimado para as constantes é exibido. Caso contrário, uma nova iteração da rotina é executada com atualização dos valores dos parâmetros.

3.2.2 O método de Levenberg-Marquardt

O método de Levenberg-Marquardt é bastante empregado em problemas de ajustes de curvas ou modelos não-lineares pelo método dos mínimos quadrados. No caso de sistemas regidos por sistemas de equações diferenciais, sua aplicação também é possível, mostrando-se como um dos mais eficientes algoritmos para essa classe de problemas. Sua maior qualidade é reunir as principais vantagens de dois conhecidos métodos de otmização: o Método de Gauss-Newton e o método do gradiente (BARD, 1974; CHAPRA; CANALLE, 2008). Sucintamente, o primeiro desses dois métodos possui forte taxa de convergência, no entanto, apenas quando se está próximo de um mínimo da função custo. Em outras ocasiões, por ter de utilizar a inversão de matrizes, o método de Gauss-Newton pode conduzir a matrizes singulares, provocando a não convergência para a correta estimativa das constantes dinâmicas. Por outro lado, o método do gradiente possui relativa baixa taxa de convergência, isto é, são necessárias muitas iterações até que a estimativa seja obtida. No entanto, além de sua estabilidade notável, dispensa a operação de inversão matricial.

Graças a um parâmetro escalar característico do algoritmo, como descrito mais a frente, o método de Levenberg-Marquardt consegue reunir a velocidade do método de Gauss-Newton com a estabilidade do método do gradiente. Quando se está longe do mínimo, informação esta baseada na avaliação sucessiva da função custo,

o algoritmo comporta-se estavelmente como o método do gradiente. Assim que o mínimo se aproxima, o parâmetro escalar é modificado, conferindo ao algoritmo as características do método de Gauss-Newton e acelerando-o rapidamente em direção ao mínimo da função custo (CHAPRA; CANALLE, 2008).

De forma semelhante ao algoritmo de Newton para encontrar raízes de funções numericamente, o método baseia-se em informações sobre o resíduo quadrático entre a curva de ajuste e os dados medidos (função custo) e em suas derivadas parciais, com relação a cada uma das constantes a serem estimadas. A maneira como essas derivadas são aproveitadas permitem tanto a estimativa de zeros de funções como a otimização de parâmetros de funções como a somatória de resíduos quadráticos.

Considere a seguinte função custo a ser otimizada:

$$\chi^{2} = \sum_{i=1}^{n} w_{i} \cdot [C_{TAC}(t_{i}) - \hat{C}_{TAC}(t_{i})]^{2}$$
(3.3)

Essa função custo considera a somatória dos n resíduos quadráticos ponderados por um peso w_i, freqüentemente escolhido como inverso da variância do valor aferido. Neste trabalho, este fator de ponderação é determinado pelo inverso do valor da i-ésima medida de concentração de radiofármaco obtida pelo tomógrafo (CARSON, 2005). A justificativa para tal escolha decorre do fato da distribuição dos valores dessas medidas obedecerem a uma distribuição do tipo Poisson, em que a variância coincide com o valor esperado. Desta maneira:

$$w_i = \frac{1}{\operatorname{var}(C_{TAC}(t_i))} = \frac{1}{C_{TAC}(t_i)}$$
(3.4)

Assume-se a seguinte estrutura iterativa para a obtenção de novas estimativas para os parâmetros na tarefa de minimizar a eq. (3.3):

$$\Delta p_q = -(H + \lambda \cdot I)^{-1} \cdot g \tag{3.5}$$

Onde:

- $\Delta p_q \acute{e}$ o q-ésimo vetor incremental que atualiza o vetor de parâmetros anterior.
- *g* é o vetor gradiente (em relação aos parâmetros) da função custo (3.3).
- *H* é a matriz Hessiana (em relação aos parâmetros) da função custo (3.3).

 λ é um parâmetro escalar característico do algoritmo de Levenberg-Marquardt que permite um comportamento misto entre o algoritmo de Gauss-Newton e o método do gradiente. Isso confere ao método maior desempenho em problemas de ajuste a modelos de natureza não-linear.

Nota-se, dessa maneira, que para obter a correção Δp , necessita-se calcular as matrizes $g \in H$. A estrutura da eq. (3.5) decorre da consideração dos dois primeiros termos da série de Taylor da derivada da função custo da eq. (3.3), em virtude da minimização desta mesma função.

Para o cálculo de g, deriva-se a eq. (3.3) com respeito a cada parâmetro j, chegando a:

$$g_{k} = 2 \cdot \sum_{i=1}^{n} w_{i} \cdot r_{i} \cdot \frac{\partial r_{i}}{\partial p_{j}}$$
(3.6)

Onde r_i representa o i-ésimo resíduo entre os valores medidos e os valores estimados de concentração de radiofármaco.

Para o cálculo de *H*, deriva-se a eq. (3.6) com respeito a cada um dos *j* parâmetros. Aqui, é introduzido um índice *k* em razão da derivada parcial dupla para a cobertura de todas as combinações possíveis. Cada elemento (j,k) da matriz *H* é dado por:

$$H_{j,k} = 2 \cdot \sum_{i=1}^{n} w_i \cdot \left(\frac{\partial r_i}{\partial p_j} \cdot \frac{\partial r_i}{\partial p_k} \right) + w_i \cdot \left(r_i \cdot \frac{\partial^2 r_i}{\partial p_j \partial p_k} \right)$$
(3.7)

Desprezando-se a parcela de segunda ordem dentro da somatória da eq. (3.7) em razão de sua pequena ordem de grandeza, vem a seguinte aproximação:

$$H_{j,k} \cong 2 \cdot \sum_{i=1}^{n} w_i \cdot \frac{\partial r_i}{\partial p_j} \cdot \frac{\partial r_i}{\partial p_k} = 2 \cdot \sum_{i=1}^{n} w_i \cdot J_{i,j} \cdot J_{i,k}$$
(3.8)

Tal que $J_{i,j} = \frac{\partial r_i}{\partial p_j}$ representa o i-ésimo componente de um vetor coluna relativo

ao j-ésimo parâmetro de uma matriz Jacobiana *J* utilizada à frente. A matriz Jacobiana possui *j* colunas (cada qual relativa a cada parâmetro que se deseja

estimar) e *i* linhas (cada uma para cada medida experimental realizada) e representa a derivada dos resíduos com relação a cada parâmetro.

É importante reparar que não se avalia *H* explicitamente. Ao invés disso, faz-se uma aproximação desta em função da matriz Jacobiana, mais simples de se calcular.

O cálculo de cada elemento da matriz Jacobiana resulta em:

$$J_{i,j} = \frac{\partial r_i}{\partial p_j} = \frac{\partial [C_{TAC}(t_i) - \hat{C}_{TAC}(\underline{p}, t_i)]}{\partial p_j} = -\frac{\partial [\hat{C}_{TAC}(\underline{p}, t_i)]}{\partial p_j}$$
(3.9)

Onde $\hat{C}_{TAC}(\underline{p},t_i)$ é a concentração tecidual prevista pelo modelo compartimental. Esta é uma função de um vetor de parâmetros <u>p</u>avaliada no i-ésimo instante de tempo t_i . O chapéu grafado denota um valor de concentração estimada.

Isso permite escrever as matrizes $g \in H$ em função exclusivamente da matriz Jacobiana J da seguinte maneira:

$$g = 2 \cdot J^T \cdot W \cdot r \tag{3.10}$$

$$H = 2 \cdot J^T \cdot W \cdot J \tag{3.11}$$

Onde:

- *r* é o vetor de resíduos.
- W é a matriz quadrada diagonal de dimensão n com os elementos da diagonal principal correspondentes ao inverso do valor de cada medida i, como estabelecido na relação (3.4).

Dessa forma, a eq. (3.5) que fornece novas estimativas iterativamente, torna-se:

$$\Delta p_{q} = -(2 \cdot J^{T} \cdot W \cdot J + \lambda \cdot I)^{-1} \cdot 2 \cdot J^{T} \cdot W \cdot r \qquad (3.12)$$

A inversão da matriz da expressão dada pela eq. (3.12) pode, algumas vezes, resultar em instabilidade numérica devida ao seu mau condicionamento, observada principalmente para o modelo com quatro compartimentos. Dessa forma, utilizou-se a rotina de (SHRAGER; JUTAN; MUZIC, 1994), que por realizar uma espécie de escalonamento matricial apropriado, oferece melhores resultados.

A estimação de parâmetros característicos dos modelos compartimentais não é uma tarefa simples. Em algumas ocasiões, o modelo não é unicamente identificável,

isto é, a minimização da função custo pode resultar em diferentes valores dos parâmetros (COBELLI; FOSTER; TOFFOLO, 2000). Este seja talvez o maior problema na estimação de parâmetros para modelos não-lineares, uma vez que diferentes palpites iniciais podem resultar em estimativas distintas fornecidas pelo algoritmo. Diz-se que, então, a função custo possui diversos mínimos locais. Cabe ao usuário uma interpretação minuciosa dos resultados obtidos a fim de não cometer um equívoco em um diagnóstico clínico por causa dos resultados fornecidos por esta metodologia.

3.2.3 A avaliação da matriz Jacobiana baseada em equações de sensibilidade

Como explanado anteriormente, algoritmos de otimização fornecem novas estimativas dos parâmetros iterativamente com o objetivo de minimizar alguma função objetivo como a somatória dos resíduos quadráticos. A partir de um palpite inicial para os valores destes parâmetros, a rotina de otimização é executada até um critério de parada ser alcançado.

Características como a maneira como esses algoritmos funcionam constituem o principal assunto para os que se interessam pelo assunto. Há algoritmos baseados em entes geométricos (poliedros) como o método de Nelder-Mead (BARD, 1974). Este algoritmo é bastante popular em problemas genéricos de otimização, pois depende exclusivamente da função objetivo - esta é avaliada em cada vértice de poliedro, orientando o algoritmo na busca de melhores estimativas dos parâmetros.

No entanto, para problemas de minimização de resíduos quadráticos, existem algoritmos que apresentam melhor desempenho, como método de Levenberg-Marquardt apresentado anteriormente.

Baseado numa expansão de Taylor da função objetivo, esse algoritmo depende da avaliação da função objetivo e da avaliação sua derivada com respeito a cada um dos parâmetros a ajustar. Algumas vezes, tais derivadas podem ser difíceis de serem obtidas analiticamente em razão da complexidade das equações regentes do modelo. É por esta razão com que muitos softwares comerciais realizam essa tarefa

de maneira numérica, isto é, estimam os valores de derivadas como a diferença entre valores da função objetivo avaliados mediante uma pequeníssima perturbação dos valores paramétricos (valores ligeiramente diferentes, baseados no menor número positivo e diferente de zero que o sistema computacional consegue representar).

Tal abordagem numérica, por vezes chamada como "método das perturbações" ou "método das diferenças finitas", foi implementada nesse trabalho e será discutida mais adiante. Entretanto, melhores desempenhos foram observados calculando-se as chamadas equações de sensibilidade das equações diferenciais resultantes da aplicação do conceito de balanço de massa (BARD, 1974; ORSINI, 1985; PRONZATO; WALTER, 1997). Por melhor desempenho, entenda-se maior velocidade no tempo de processamento da estimativa.

Neste caso, cada equação diferencial correspondente à variação de concentração de radiofármaco é diferenciada com respeito a cada um dos parâmetros a ajustar. Dessa forma, obtiveram-se novas equações diferenciais que são integradas conjuntamente com as equações diferenciais do modelo. Como exemplo, considere um modelo com três compartimentos e quatro parâmetros a estimar (como o da seção 2.7.2). O número total de equações diferenciais a serem integradas pelo método de Runge-Kutta é dez: as duas equações originais do modelo mais as oito equações diferenciais resultantes da diferenciação dessas duas equações originais com respeito a cada um de seus quatro parâmetros característicos K₁, k₂, k₃ e k₄.

Como estabelecido pela eq. (3.5), necessita-se calcular a cada iteração duas matrizes: o gradiente da função custo g e a matriz Hessiana H da função custo. Escrever esta duas matrizes, mesmo utilizando a aproximação da eq. (3.8) para H, em função da matriz Jacobiana é uma grande vantagem. Esta afirmação justifica-se já que a matriz Jacobiana é composta puramente pelos resultados da integração numérica das chamadas equações de sensibilidade.

O que se deseja destacar neste ponto é que as derivadas necessárias pelo algoritmo de otimização podem ser obtidas diretamente de um método de integração numérica como Runge-Kutta, por exemplo. Isso confere uma maior qualidade, em termos de exatidão, às matrizes $g \in H$, melhorando o desempenho da tarefa de estimação.

As equações de sensibilidade para os modelos considerados neste trabalho são encontradas a seguir (eqs. (3.14-3.15), eqs. (3.19-3.26) e eqs. (3.30-3.47)).

- 1) Equações de sensibilidade para modelo de dois compartimentos
 - Equação do modelo:

$$\frac{dC_1(t)}{dt} = K_1 \cdot C_p(t) - k_2 \cdot C_1(t)$$
(3.13)

• Parâmetros em questão: K₁ e k₂.

Com dois parâmetros em questão, têm-se duas equações de sensibilidade. Derivando-se (3.13) com relação à K₁:

$$\frac{\partial}{\partial t} \left[\frac{dC_1(t)}{dK_1} \right] = C_p(t) - k_2 \cdot \left[\frac{dC_1(t)}{dK_1} \right]$$
(3.14)

Derivando-se (3.13) com relação à k₂:

$$\frac{\partial}{\partial t} \left[\frac{dC_1(t)}{dk_2} \right] = -C_1(t) - k_2 \cdot \left[\frac{dC_1(t)}{dk_2} \right]$$
(3.15)

Note que foi utilizada a regra da cadeia e o diferencial com respeito ao tempo e o diferencial com respeito às constantes foram trocados de ordem: ($\partial t e dK_1$), por exemplo. Isso permite que as equações (3.13), (3.14) e (3.15) sejam integradas conjuntamente com respeito ao tempo e, como apresentado na eq. (3.9), a matriz Jacobiana pode ser formada, por colunas, da seguinte maneira:

$$J = -[f(K_1) \stackrel{!}{:} f(k_2)]$$
(3.16)

Onde:

- *f*(*K*₁) é o vetor coluna que possui os valores resultantes da integração numérica da equação de sensibilidade (3.14) ao longo do tempo.
- *f*(*k*₂) é o vetor coluna que possui os valores resultantes da integração numérica da equação de sensibilidade (3.15) ao longo do tempo.

Se determinado exame possuir, por exemplo, 60 pontos medidos, a matriz Jacobiana *J* possuirá duas colunas (em razão de se ter duas constantes em questão) e 60 linhas (em razão da integração numérica das eqs. (3.14) e (3.15), avaliada em todos os respectivos instantes e tempo dos valores medidos).

Por não se tratar da também estimação das concentrações de radiofármaco iniciais dos modelos compartimentais, as equações de sensibilidade deste trabalho tem condições iniciais nulas.

Esquematicamente, tem-se:

Figura 3.5 – Esquema para integração das equações de sensibilidade e obtenção da matriz Jacobiana.

A aplicação do mesmo raciocínio conduz às equações de sensibilidade para modelos com três e quatro compartimentos. Note-se que para o cálculo da matriz Jacobiana, não foi necessário derivar numericamente em relação aos parâmetros. Assim, vêm:

- 2) Equações de sensibilidade para modelo de três compartimentos
 - Equações do modelo:

$$\frac{dC_1(t)}{dt} = K_1 \cdot C_p(t) + k_4 \cdot C_2(t) - k_2 \cdot C_1(t) - k_3 \cdot C_1(t)$$
(3.17)

$$\frac{dC_2(t)}{dt} = k_3 \cdot C_1(t) - k_4 \cdot C_2(t)$$
(3.18)

• Parâmetros em questão: K₁, k₂, k₃ e k₄.

Com quatro parâmetros em questão, têm-se oito equações de sensibilidade. Derivando-se (3.17) com relação à K_1 , k_2 , k_3 e k_4 , têm-se, respectivamente:

$$\frac{\partial}{\partial t} \left[\frac{dC_1(t)}{dK_1} \right] = C_p(t) + k_4 \cdot \left[\frac{dC_2(t)}{dK_1} \right] - k_2 \cdot \left[\frac{dC_1(t)}{dK_1} \right] - k_3 \cdot \left[\frac{dC_1(t)}{dK_1} \right]$$
(3.19)

$$\frac{\partial}{\partial t} \left[\frac{dC_1(t)}{dk_2} \right] = -C_1(t) + k_4 \cdot \left[\frac{dC_2(t)}{dk_2} \right] - k_2 \cdot \left[\frac{dC_1(t)}{dk_2} \right] - k_3 \cdot \left[\frac{dC_1(t)}{dk_2} \right]$$
(3.20)

$$\frac{\partial}{\partial t} \left[\frac{dC_1(t)}{dk_3} \right] = k_4 \cdot \left[\frac{dC_1(t)}{dk_3} \right] - k_2 \cdot \left[\frac{dC_1(t)}{dk_3} \right] - C_1(t) - k_3 \cdot \left[\frac{dC_1(t)}{dk_3} \right]$$
(3.21)

$$\frac{\partial}{\partial t} \left[\frac{dC_1(t)}{dk_4} \right] = C_2(t) + k_4 \cdot \left[\frac{dC_2(t)}{dk_4} \right] - k_2 \cdot \left[\frac{dC_1(t)}{dk_4} \right] - k_3 \cdot \left[\frac{dC_1(t)}{dk_4} \right]$$
(3.22)

Derivando-se (3.18) com relação à K_1 , k_2 , k_3 e k_4 , têm-se, respectivamente:

$$\frac{\partial}{\partial t} \left[\frac{dC_2(t)}{dK_1} \right] = k_3 \cdot \left[\frac{dC_1(t)}{dK_1} \right] - k_4 \cdot \left[\frac{dC_2(t)}{dK_1} \right]$$
(3.23)

$$\frac{\partial}{\partial t} \left[\frac{dC_2(t)}{dk_2} \right] = k_3 \cdot \left[\frac{dC_1(t)}{dk_2} \right] - k_4 \cdot \left[\frac{dC_2(t)}{dk_2} \right]$$
(3.24)

$$\frac{\partial}{\partial t} \left[\frac{dC_2(t)}{dk_3} \right] = C_1(t) + k_3 \cdot \left[\frac{dC_1(t)}{dk_3} \right] - k_4 \cdot \left[\frac{dC_2(t)}{dk_3} \right]$$
(3.25)

$$\frac{\partial}{\partial t} \left[\frac{dC_2(t)}{dk_4} \right] = k_3 \cdot \left[\frac{dC_1(t)}{dk_4} \right] - C_2(t) - k_4 \cdot \left[\frac{dC_2(t)}{dk_4} \right]$$
(3.26)

- 3) Equações de sensibilidade para modelo de quatro compartimentos
 - Equações do modelo:

$$\frac{dC_1(t)}{dt} = K_1 \cdot C_p(t) + k_4 \cdot C_2(t) + k_6 \cdot C_3(t) - (k_2 + k_3 + k_5) \cdot C_1(t)$$
(3.27)

$$\frac{dC_2(t)}{dt} = k_3 \cdot C_1(t) - k_4 \cdot C_2(t)$$
(3.28)

$$\frac{dC_3(t)}{dt} = k_5 \cdot C_1(t) - k_6 \cdot C_3(t)$$
(3.29)

Com seis parâmetros em questão, têm-se dezoito equações de sensibilidade.

Derivando-se (3.27) com relação à K_1 , k_2 , k_3 , k_4 , k_5 , e k_6 , têm-se, respectivamente:

$$\frac{\partial}{\partial t} \left[\frac{dC_1(t)}{dK_1} \right] = C_p(t) + k_4 \cdot \left[\frac{dC_2(t)}{dK_1} \right] + k_6 \cdot \left[\frac{dC_3(t)}{dK_1} \right] - (k_2 + k_3 + k_5) \cdot \left[\frac{dC_1(t)}{dK_1} \right]$$
(3.30)

$$\frac{\partial}{\partial t} \left[\frac{dC_1(t)}{dk_2} \right] = k_4 \cdot \left[\frac{dC_2(t)}{dk_2} \right] + k_6 \cdot \left[\frac{dC_3(t)}{dk_2} \right] - C_1(t) - (k_2 + k_3 + k_5) \cdot \left[\frac{dC_1(t)}{dk_2} \right]$$
(3.31)

$$\frac{\partial}{\partial t} \left[\frac{dC_1(t)}{dk_3} \right] = k_4 \cdot \left[\frac{dC_2(t)}{dk_3} \right] + k_6 \cdot \left[\frac{dC_3(t)}{dk_3} \right] - C_1(t) - (k_2 + k_3 + k_5) \cdot \left[\frac{dC_1(t)}{dk_3} \right]$$
(3.32)

$$\frac{\partial}{\partial t} \left[\frac{dC_1(t)}{dk_4} \right] = C_2(t) + k_4 \cdot \left[\frac{dC_2(t)}{dk_4} \right] + k_6 \cdot \left[\frac{dC_3(t)}{dk_4} \right] - (k_2 + k_3 + k_5) \cdot \left[\frac{dC_1(t)}{dk_4} \right]$$
(3.33)

$$\frac{\partial}{\partial t} \left[\frac{dC_1(t)}{dk_5} \right] = k_4 \cdot \left[\frac{dC_2(t)}{dk_5} \right] + k_6 \cdot \left[\frac{dC_3(t)}{dk_5} \right] - C_1(t) - (k_2 + k_3 + k_5) \cdot \left[\frac{dC_1(t)}{dk_5} \right]$$
(3.34)

$$\frac{\partial}{\partial t} \left[\frac{dC_1(t)}{dk_6} \right] = k_4 \cdot \left[\frac{dC_2(t)}{dk_6} \right] + C_3(t) + k_6 \cdot \left[\frac{dC_3(t)}{dk_6} \right] - (k_2 + k_3 + k_5) \cdot \left[\frac{dC_1(t)}{dk_6} \right]$$
(3.35)

Derivando-se (3.28) com relação à K₁, k₂, k₃, k₄, k₅, e k₆, têm-se, respectivamente:

$$\frac{\partial}{\partial t} \left[\frac{dC_2(t)}{dK_1} \right] = k_3 \cdot \left[\frac{dC_1(t)}{dK_1} \right] - k_4 \cdot \left[\frac{dC_2(t)}{dK_1} \right]$$
(3.36)

$$\frac{\partial}{\partial t} \left[\frac{dC_2(t)}{dk_2} \right] = k_3 \cdot \left[\frac{dC_1(t)}{dk_2} \right] - k_4 \cdot \left[\frac{dC_2(t)}{dk_2} \right]$$
(3.37)

$$\frac{\partial}{\partial t} \left[\frac{dC_2(t)}{dk_3} \right] = C_1(t) + k_3 \cdot \left[\frac{dC_1(t)}{dk_3} \right] - k_4 \cdot \left[\frac{dC_2(t)}{dk_3} \right]$$
(3.38)

$$\frac{\partial}{\partial t} \left[\frac{dC_2(t)}{dk_4} \right] = k_3 \cdot \left[\frac{dC_1(t)}{dk_4} \right] - C_2(t) - k_4 \cdot \left[\frac{dC_2(t)}{dk_4} \right]$$
(3.39)

$$\frac{\partial}{\partial t} \left[\frac{dC_2(t)}{dk_5} \right] = k_3 \cdot \left[\frac{dC_1(t)}{dk_5} \right] - k_4 \cdot \left[\frac{dC_2(t)}{dk_5} \right]$$
(3.40)

$$\frac{\partial}{\partial t} \left[\frac{dC_2(t)}{dk_6} \right] = k_3 \cdot \left[\frac{dC_1(t)}{dk_6} \right] - k_4 \cdot \left[\frac{dC_2(t)}{dk_6} \right]$$
(3.41)

Derivando-se (3.29) com relação à K₁, k₂, k₃, k₄, k₅, e k₆, têm-se, respectivamente:

$$\frac{\partial}{\partial t} \left[\frac{dC_3(t)}{dK_1} \right] = k_5 \cdot \left[\frac{dC_1(t)}{dK_1} \right] - k_6 \cdot \left[\frac{dC_3(t)}{dK_1} \right]$$
(3.42)

$$\frac{\partial}{\partial t} \left[\frac{dC_3(t)}{dk_2} \right] = k_5 \cdot \left[\frac{dC_1(t)}{dk_2} \right] - k_6 \cdot \left[\frac{dC_3(t)}{dk_2} \right]$$
(3.43)

$$\frac{\partial}{\partial t} \left[\frac{dC_3(t)}{dk_3} \right] = k_5 \cdot \left[\frac{dC_1(t)}{dk_3} \right] - k_6 \cdot \left[\frac{dC_3(t)}{dk_3} \right]$$
(3.44)

$$\frac{\partial}{\partial t} \left[\frac{dC_3(t)}{dk_4} \right] = k_5 \cdot \left[\frac{dC_1(t)}{dk_4} \right] - k_6 \cdot \left[\frac{dC_3(t)}{dk_4} \right]$$
(3.45)

$$\frac{\partial}{\partial t} \left[\frac{dC_3(t)}{dk_5} \right] = C_1(t) + k_5 \cdot \left[\frac{dC_1(t)}{dk_5} \right] - k_6 \cdot \left[\frac{dC_3(t)}{dk_5} \right]$$
(3.46)

$$\frac{\partial}{\partial t} \left[\frac{dC_3(t)}{dk_6} \right] = k_5 \cdot \left[\frac{dC_1(t)}{dk_6} \right] - C_3(t) - k_6 \cdot \left[\frac{dC_3(t)}{dk_6} \right]$$
(3.47)

As equações de sensibilidade de (3.19) à (3.26) servem para compor a matriz Jacobiana *J* para identificação de modelos com três compartimentos. As equações de sensibilidade de (3.30) à (3.47) servem para compor a matriz Jacobiana *J* para identificação de modelos com quatro compartimentos.

Pelo motivo dos modelos com três e quatro compartimentos retornarem valores simulados de concentração com formato $C_{TAC}(t) = C_1(t) + C_2(t) e C_{TAC}(t) = C_1(t) + C_2(t) + C_3(t)$, respectivamente, as matrizes Jacobianas devem ser compostas pela

soma das integrações das equações de sensibilidade. Dessa maneira, tome o exemplo de se determinar a matrix Jacobiana *J* para a tarefa de se estimar parâmetros de um modelo com três compartimentos.

Como visto, este é um problema de identificação de quatro constantes dinâmicas e a matrix Jacobiana *J* possuirá, portanto, quatro colunas. Assim, pelo modelo de três compartimentos oferecer como resposta a concentração tecidual $C_{TAC}(t) = C_1(t)$ + $C_2(t)$, a primeira coluna da matrix Jacobiana *J*, neste caso, é dada pela soma da integração das eqs. (3.19) e (3.23). A segunda coluna, pela soma da integração das eqs. (3.20) e (3.24). A terceira coluna, pela soma da integração das eqs. (3.21) e (3.25). E finalmente, a quarta coluna, pela soma da integração das eqs. (3.22) e (3.26). A mesma idéia é empregada para o modelo com quatro compartimentos e seis constantes características.

3.2.4 Abordagem numérica para obtenção das equações de sensibilidade

As equações diferenciais de sensibilidade apresentadas no item anterior, de maneira analítica, oferecem uma importante alternativa para se calcular a matriz Jacobiana *J*. Entretanto, apesar de conferirem melhor desempenho ao algoritmo de otimização, representam uma tarefa sujeita a equívocos por necessitar de sucessivas operações de derivações parciais, sempre relativas a cada uma de todas as constantes que se desejar otimizar.

Uma segunda alternativa interessante é a obtenção de aproximações para os valores fornecidos pela integração das equações de sensibilidade analíticas numericamente. Este método é conhecido como "método das perturbações" ou "método das diferenças finitas" e oferece razoáveis aproximações para o cálculo do gradiente e da matriz Hessiana da função custo, mantendo o que foi assumido na seção 3.2.2. Entende-se por "perturbar" um determinado parâmetro quando ao seu valor é acrescido um pequeno número com o intuito de se obter uma operação de diferenciação numérica.

A principal vantagem deste encaminhamento é o descarte da tarefa de se obter todas as derivadas parciais com relação às constantes através da aplicação da regra

da cadeia e intercâmbio de diferenciais. Dessa vez, estas informações serão obtidas unicamente através das repetidas integrações das equações diferenciais originais dos modelos compartimentais.

Sua descrição aqui é sucinta, mas o funcionamento é efetivo.

Para conseguir o vetor coluna para composição da matriz Jacobiana *J*, procedese da seguinte forma:

- Fixado um vetor de constantes em uma determinada iteração, integre normalmente o sistema de equações diferenciais do modelo. Guarde sua resposta.
- 2) Perturbe somente a componente do vetor de constantes que representa o parâmetro que se deseja obter a sensibilidade e mantenha os valores dos parâmetros restantes inalterados. Integre novamente o sistema de equações diferenciais do modelo. Guarde sua resposta.
- Retome os valores do vetor de constantes do primeiro passo, e perturbe o parâmetro seguinte. Integre novamente o sistema de equações diferenciais do modelo. Guarde sua resposta.
- Faça isso com todos os parâmetros, sempre guardando as respostas do modelo compartimental.
- 5) Após esgotarem-se as escolhas de parâmetros a serem perturbados, obtenha o vetor coluna da matriz Jacobiana *J* através da diferença entre as respostas da integração do sistema com os respectivos parâmetros perturbados e a resposta obtida no primeiro passo. Divida este vetor de diferenças por um fator escalar *δ*.

A operação pode ser escrita, para cada parâmetro, como (GILL; MURRAY; WRIGHT, 1981):

$$\frac{F(\underline{p}, comp_i = p_i + \delta) - F(\underline{p})}{\delta}, para \ \delta = \varepsilon \cdot |1 + p_i|$$
(3.48)

Onde:

- <u>*p*</u> é p vetor de parâmetros em uma iteração qualquer.
- P_i é o i-ésimo componente do vetor <u>p</u> que se deseja perturbar.
- *ɛ* é a precisão do software de programação numérica.

 F é o vetor de valores obtidos, em todos os instantes de tempo, através da integração do sistema de equações diferenciais do modelo compartimental para um determinado vetor de parâmetros.

A abordagem de diferenciação numérica é um importante recurso não só em problemas de ajuste de dados, mas em tarefas de otimização em geral. Apesar de não ser o caso deste trabalho, esta técnica freqüentemente apresenta-se como a única alternativa para funções custos em que ou a derivada analítica é extremamente custosa de se obter analiticamente ou é composta por funções descontínuas em seu domínio.

Sua principal desvantagem é o alto custo computacional, necessitando-se de mais iterações para a convergência do algoritmo e, no caso de se dispor dos recursos de derivação analítica e numérica, serve para comparação de desempenho.

3.2.5 Precisão dos parâmetros estimados

Tão importante quanto o procedimento de estimar parâmetros, é a avaliação da precisão destes parâmetros. Apesar do problema em questão ser de natureza nãolinear, é possível obter estimativas das variâncias dos parâmetros estimados através das aproximações que já foram feitas na descrição do método de Levenberg-Marquardt (COBELLI; FOSTER; TOFFOLO, 2000).

Para tanto, a idéia é obter a matriz de covariância das estimativas baseada também na matriz Jacobiana *J*. Define-se a matriz normal ponderada como a seguinte matriz:

$$M(\underline{p}^*) = J(\underline{p}^*)^T \cdot W \cdot J(\underline{p}^*)$$
(3.49)

Onde:

<u>p</u>* é o vetor de estimativa de constantes obtido após a rotina de otimização.
 É o vetor de parâmetros que minimiza a soma dos resíduos quadráticos ponderados.

- $M(p^*)$ é a matriz normal ponderada avaliada em p^* .
- $J(p^*)$ é a matriz Jacobiana ponderada avaliada em p^* .
- W é a matriz quadrada diagonal de ponderação pelas variâncias das medidas de dimensão n ,com os elementos da diagonal principal correspondentes ao inverso do valor de cada medida i.

Segundo a desigualdade de Cramer-Rao, obtém-se o seguinte limite inferior para a matriz de covariância:

$$Cov(p^*) \ge M(p^*)^{-1}$$
 (3.50)

A matriz $Cov(\underline{p}^*)$ é quadrada e possui dimensão igual ao número de parâmetros a estimar. Dessa forma, os desvios-padrão podem ser calculados tomando-se a raiz quadrada dos elementos da diagonal principal de $Cov(p^*)$.

3.3 Avaliação de modelos através da sintetização de dados

O objetivo deste trabalho é promover a avaliação de modelos compartimentais utilizando-se o critério de Akaike.

Estabelecidas as características e as estruturas dos modelos candidatos, é necessário realizar uma etapa de avaliação quanto aos três seguintes aspectos (LJUNG, 1999):

 Grau de concordância entre os valores de dados obtidos experimentalmente e os valores conseguidos com a utilização do modelo em questão.

- Utilidade do modelo ao propósito desejado em casos reais.
- Capacidade de o modelo descrever o sistema real.

O último desses pontos é uma tarefa complexa e muitas vezes, do ponto de vista filosófico, impossível de se analisar profundamente. Na prática, o segundo aspecto torna-se o mais interessante dos três em razão do propósito da modelagem: se os parâmetros fisiológicos estimados utilizando-se determinado modelo auxiliarem o diagnóstico médico de maneira satisfatória, então sua utilidade estará verificada.

Naturalmente, no caso de os parâmetros representarem grandezas físicas, a comparação entre seus valores e respectivas variâncias estimados e valores já conhecidos *a priori*, sejam eles encontrados na literatura ou sugeridos por profissionais experientes, torna-se imprescindível no processo de avaliação.

Em relação ao primeiro tópico, faz-se necessária a utilização de critérios que permitam avaliar e comparar a qualidade de ajuste (em Inglês, *"goodness of fit"*) oferecida pelo emprego dos modelos a serem analisados.

O Critério de Akaike (AIC – Akaike Information Criterion) (AKAIKE, 1974) é o critério de informação aqui empregado pois leva em conta a estatística dos resíduos provocados pela modelagem e os graus de liberdade do modelo (TURKHEIMER; HINZ; CUNNINGHAM, 2002).

No caso particular de estimação de parâmetros através da técnica de mínimos quadrados ponderados, a expressão para o índice AIC é:

$$AIC = n \cdot \ln(\chi^2) + 2 \cdot K \tag{3.51}$$

Tal que:

• χ^2 representa a somatória dos resíduos quadráticos ponderados entre as medidas experimentais e a curva ajustada.

- *n* representa o número de valores medidos experimentalmente.
- *K* representa o número de parâmetros estimados.

Os valores dos índices AIC são calculados para todos os modelos submetidos à avaliação e utilizados para ajustar um mesmo conjunto de dados ruidosos. O modelo correspondente ao menor valor de índice AIC é o mais adequado, ao menos no sentido de Akaike. Propõe-se realizar a avaliação dos modelos baseada em dados sintetizados.

3.3.1 Sintetização de dados

O método de avaliação dos modelos compartimentais utiliza dados sintetizados. Nesse tipo de abordagem, constroem-se as curvas necessárias para a estimação dos parâmetros característicos baseadas em informações sobre particularidades do processo de obtenção de dados, tais como ruído e morfologia característicos.

Para tanto, são necessários os seguintes elementos:

- Curva de Atividade de Entrada.
- Curva de Atividade Tecidual.

Com mais detalhes, apresentam-se a seguir algumas informações importantes a respeito da construção da Curva de Atividade de Entrada e da Curva de Atividade de Tecido.

Características da Curva de Atividade de Entrada Sintética

Algumas considerações relevantes devem ser levadas em conta no momento de construção de uma Curva de Atividade de Entrada C_p(t). Para tanto, são importantes alguns tipos de morfologia e ruídos característicos.

Morfologia característica

Há basicamente dois tipos de morfologia característica para Curvas de Atividade de Entrada. O escopo deste trabalho considera concentrações de substância marcadora resultantes de Injeção Única. Há também curvas resultantes de infusão constante (COBELLI; FOSTER; TOFFOLO, 2000), nas quais é instalado um cateter no paciente e o radiofármaco é injetado constantemente durante todo ou parte de todo o exame.

Curva de Atividade de Entrada resultante de injeção única

As Curvas de Atividade de Entrada resultantes de uma injeção única de radiofármaco tem um caráter exponencial marcante. Normalmente, logo após o início do exame, as concentrações de radiofármaco no plasma sangüíneo apresentam valor máximo e, a partir de então, decaem exponencialmente até se extinguirem quase que completamente na região considerada como fonte radiofármaco.

Um modelo possível para síntese de Curvas de Atividade de Entrada com esta característica pode ser levantado considerando-se a injeção de uma porção de radiofármaco tão rápida a ponto de ser representada por um impulso de amplitude *d* e largura tendendo a zero segundos. Desta maneira, a Curva de Atividade de Entrada é aproximada pela resposta impulsiva de um sistema linear e invariante no tempo (SLIT), cuja resposta é descrita por uma somatória de exponenciais decrescentes. Matematicamente, segue-se:

$$C_{p}(t) = d \cdot \sum_{i=1}^{n} A_{i} \cdot e^{-\alpha_{i} \cdot t}$$
(3.52)

Onde:

- *d* é a amplitude do impulso com largura tendendo a zero segundos
- A_i são constantes relativas a amplitude das n exponenciais
- α_i são constantes de tempo positivas das *n* exponenciais

Esquematicamente, tem-se:

Observações relevantes:

 A representação impulsiva acerca da injeção de radiofármaco é uma aproximação. Neste ponto, considera-se que a seringa é esvaziada em um intervalo de tempo muito pequeno frente ao intervalo de duração da coleta de dados.

 A Curva de Atividade de Entrada C_p(t) é uma aproximação da somatória de exponenciais com diferentes amplitudes e constantes de tempo. É importante observar que, no início dos tempos, a concentração de radiofármaco no plasma sangüíneo é nula.

A justificativa da opção de construção de Curvas de Atividade de Entrada resultantes de injeção única de radiofármaco decorre dos dados experimentais obtidos de casos reais.

Os dados experimentais disponíveis foram obtidos administrando-se de maneira intravenosa uma pequena porção de radiofármaco com uma seringa em um curto intervalo de tempo. A principal vantagem deste método frente ao de infusão constante é a simplificação do processo de administração do radiofármaco em virtude de dispensar uma bomba de infusão. Contudo, para captar as rápidas variações de concentração de radiofármaco no plasma sangüíneo do paciente, necessita-se de uma quantidade relativamente elevada de amostras principalmente no início da coleta de dados.

Apenas para caráter informativo, alguns autores (MEYER, 1989) recomendam a construção da Curvas de Atividade de Entrada com morfologia descrita pela seguinte função:

$$C_p(t) = d \cdot \sum_{i=1}^n A_i \cdot t \cdot e^{-\alpha_i \cdot t}$$
(3.53)

Note que esta expressão incorpora um termo multiplicativo dependente puramente do tempo, fazendo com que a curva não possua um caráter abrupto no início do tempo, como a curva considerada neste trabalho. Sua ação terá efeito amortecedor, fazendo com que a concentração parta do valor nulo e, suavemente, alcance o valor máximo dessa grandeza em curto espaço de tempo. Isso pode ser útil para estudos de outros mecanismos que não o cardíaco.

Características da Curva de Atividade Radioativa em Tecidos Sintética

Para a Curva de Atividade em Tecidos, os seguintes requisitos são necessários:

• Escolha prévia do modelo compartimental que se deseja estudar.

• Valores previamente escolhidos para os parâmetros componentes do vetor de parâmetros *p*.

• Curva de Atividade de Entrada sintetizada.

Em poder dos elementos acima, integram-se numericamente as equações do modelo compartimental desejado. Esquematicamente, representa-se como na fig. 3.7.

3.3.2 Processo de avaliação

Para avaliar os modelos compartimentais desejados através de simulações, uma estrutura específica é estabelecida, aqui denominada "Decisor de Modelos". Essa estrutura sugere o modelo compartimental mais adequado através da aplicação do critério de Akaike ao identificar um conjunto de dados sintetizados com os modelos com dois, três e quatro compartimentos. Como anteriormente mencionado, são necessárias duas informações a serem sintetizadas: a Curva de Atividade de Entrada e a Curva de Atividade Tecidual.

Desta maneira, para melhor compreensão do processo, divide-se a tarefa nos seguintes passos:

Curva de Atividade em Tecidos Sintetizada

Figura 3.7 – Procedimento para sintetização de Curvas de Atividade Radioativa de Tecidos.

1) Construir uma Curva de Atividade de Entrada resultante de injeção única de acordo com a morfologia característica apresentada anteriormente.

2) Escolher um modelo compartimental e os valores de seus parâmetros característicos. Fixar estes valores.

 Com as informações escolhidas no primeiro passo e com a Curva de Atividade de Entrada, construir uma Curva de Atividade Radioativa em Tecidos de acordo com o procedimento apresentado anteriormente.

4) Acrescentar uma componente aleatória à Curva de Atividade Radioativa de Tecido. Denominar esta componente aleatória como "ruído de medida".

5) Fornecer a Curva de Atividade Radioativa em Tecidos obtida no quarto passo ao Decisor de Modelos, considerando vários modelos definidos *a priori*, por exemplo, estruturas com dois, três e quatro compartimentos.

 O Decisor de Modelos fornecerá o modelo mais adequado no sentido do Critério de Akaike.

 Comparar o modelo eleito pelo Decisor de Modelos com o modelo escolhido no passo 3.

O propósito dos ruídos de medida presentes nesta estrutura é adicionar componentes aleatórias às Curvas de Atividade Radioativa de Tecidos, permitindo avaliar os modelos desejados no sentido da métrica de Akaike.

O diagrama da fig. 3.8 apresenta os elementos mencionados, incluindo componentes referentes a ruídos de medida.

Aumento gradativo do Nível de Ruído para Avaliação dos Modelos desejados

Uma vez cumpridos os sete passos anteriores, repete-se o processo para outras realizações dos ruídos de medida, mas em intensidades diferentes.

Para aumentar a fidelidade dos dados sintetizados em relação a dados de exames reais, decidiu-se empregar um gerador de números aleatórios do Matlab® caracterizado pela distribuição de Poisson, como já comentado no item 3.2.2. Tal distribuição possui variância dependente do valor absoluto da medida de concentração tecidual sintetizada e sem ruído. Sua relação é inversamente proporcional, ou seja, pontos com maior valor de concentração tecidual possuem menor variância relativa associada e vice-versa.

Para este trabalho, os sete passos anteriores foram realizados para três níveis de ruído de medida para avaliar a robustez do Decisor de Modelos: ruído baixo, ruído médio e ruído alto. Assim, o nível de ruído Poisson, assumido como aditivo, é função da concentração tecidual obtida no terceiro passo do item "Processo de avaliação" descrito.

Em razão de a concentração ser função da amplitude da curva exponencial de entrada (Curva de Atividade de Entrada) e dos parâmetros pré-fixados e de ser determinante na geração de números aleatórios segundo a distribuição de Poisson, já que esta depende exclusivamente de seus valores absolutos, optou-se por associar cada nível ao valor médio da Curva de Atividade Radioativa de Tecido sintetizada. Exames reais revelaram valores médios de 20000 u.a. (unidades arbitrárias) de concentração de radiofármaco tecidual. Convencionou-se a unidade "u.a." em razão de a medida ser aferida baseando-se em valores de pixels de imagens, além de haver inúmeros fabricantes de tomógrafos, cada qual adotando uma unidade específica. Não obstante, podem-se utilizar as amostras em unidades de contagem radioativa por unidade volume como, por exemplo, o kilo Becquerel por milímetro cúbico (kBq/mL). A unidade mili-litros (mL) é a mais utilizada na prática.

Dessa maneira, definiram-se os seguintes níveis de ruído:

Nível de ruído	Valor médio da concentração tecidual sintetizada
Baixo	200000 u. a.
Médio	20000 u. a.
Alto	2000 u. a.

Tabela 3.1 – Ruídos baseados no valor médio da concentração tecidual

Em termos práticos, exames que empregam relativa alta concentração de radiofármaco injetada no paciente apresentam baixos níveis de ruído relativo (e, conseqüentemente, maior relação Sinal/Ruído) e vice-versa. Este fato faz toda a diferença no sucesso da tarefa de estimação dos parâmetros em razão do nível de ruído associado, além de evidenciar a importância da dosagem adequada de substância marcadora na correta interpretação das constantes estimadas e, conseqüentemente, do exame.

Figura 3.8 – Processo de avaliação de modelos compartimentais baseado em dados sintetizados. Diagrama do Decisor de Modelos.

CAPÍTULO 4

RESULTADOS

4.1 Estimativas obtidas pela metodologia aplicada

Tal como descrito no capítulo de metodologia, avaliaram-se modelos com dois, três e quatro compartimentos. Esta seção divide-se em duas partes principais. A primeira apresenta o ajuste de dados para os modelos compartimentais descritos até aqui de maneira individual. A segunda traz o desempenho do Decisor de Modelos para os três níveis de ruídos comentados. Nesta última etapa, o objetivo é testar a metodologia de identificação paramétrica destes sistemas pelo Método dos Mínimos Quadrados ponderados. O modelo com o menor valor da métrica de Akaike deveria coincidir com o modelo escolhido previamente para a sintetização dos dados.

4.1.1 Identificação individual de modelos compartimentais

Nesta primeira etapa, fixaram-se duas Curvas de Atividade Radioativa de Entrada e todas as constantes dinâmicas das três estruturas compartimentais consideradas para a sintetização de dados. Em seguida, aplicou-se o algoritmo de otimização para verificar se os parâmetros estimados assemelhavam-se com os parâmetros utilizados para a síntese de medidas. Encontram-se também os gráficos obtidos dos dados ajustados.

Como Curva de Atividade de Entrada para os modelos de dois e três compartimentos, a utilizou-se a seguinte expressão:

$$C_{p}(t) = \begin{cases} 250000 \cdot e^{(-0.5 \cdot t)}, se \ t > 0\\ 0, se \ t \le 0 \end{cases}$$
(4.1)

Como Curva de Atividade de Entrada para os modelos de quatro compartimentos, utilizou-se a seguinte expressão:

$$C_{P}(t) = \begin{cases} 1000000 \cdot e^{(-0.5 \cdot t)}, se \ t > 0\\ 0, se \ t \le 0 \end{cases}$$
(4.2)

Nota-se que a concentração de radiofármaco injetada é maior para o modelo de quatro compartimentos, diminuindo o nível de ruído das medidas sintetizadas e permitindo a identificação coerente de seus parâmetros característicos. Para as expressões das Eqs. (4.1) e (4.2), o intervalo de tempo considerado para o exame simulado foi de sessenta minutos. O número de amostras sintetizadas foi de trinta medidas, baseado em valores de exames reais e divididos em três trechos. Do instante inicial do exame até o décimo minuto, distribuem-se quinze pontos de leitura em intervalos de tempo constantes. Do décimo primeiro minuto ao trigésimo minuto, distribuem-se dez pontos em intervalos de tempo constantes. Do trigésimo primeiro minuto ao sexagésimo minuto, distribuem-se cinco pontos de em intervalos de tempo constantes.

Note que estes pontos foram escolhidos de maneira não-equidistantes ao longo dos sessenta minutos e este problema pode ser resolvido utilizando-se interpolação linear entre os pontos como apresentado no item 3.1.1. O primeiro trecho possui mais pontos distribuídos em virtude de ser o intervalo de tempo que mais possui informação sobre a dinâmica do sistema por causa da natureza exponencial da Curva de Atividade de Entrada.

4.1.1.1 Parâmetros estimados do modelo com dois compartimentos

Para o modelo de dois compartimentos, utilizaram-se os seguintes parâmetros:

Parâmetros	pré-fixados	Parâmetros estimados			
K ₁	k ₂	K ₁	desvio padrão	k ₂	desvio padrão
(mL/min/mL)	(min⁻¹)	(mL/min/mL)	(mL/min/mL)	(min⁻¹)	(min⁻¹)
0.0200	0.0100	0.0199	0.0010	0.0098	0.0024

Tabela 4.1 – Parâmetros do modelo com dois compartimentos

O gráfico de ajuste obtido é o seguinte:

Figura 4.1 – Ajuste alcançado para modelo com dois compartimentos.

Palpites iniciais	Número de iterações para convergência	Soma dos resíduos quadráticos	Soma dos resíduos quadráticos ponderados	Valor médio de concentração tecidual sintetizada
(mL/min/mL) e (min⁻¹)	iterações	(u.a.) ²	(u.a.)	(u.a.)
[0.1, 0.1] ¹	8	3.0877e+5	32.7481	6.1872e+3

As seguintes informações foram obtidas após a rotina de otimização:

Tabela 4.2 – Resultados do ajuste para modelo com dois compartimentos

Pela fig. 4.1 e tabela 4.2, verifica-se que este caso se enquadra em sinal de ruído 'alto' (valor médio de 6187.2).

4.1.1.2 Parâmetros estimados do modelo de três compartimentos

Para o modelo de três compartimentos, utilizaram-se os seguintes parâmetros:

Parâmetros	pré-fixados		Parâmetros e	estimados	
K ₁	k ₂	K ₁	desvio padrão	k ₂	desvio padrão
(mL/min/mL)	(min⁻¹)	(mL/min/mL)	(mL/min/mL)	(min⁻¹)	(min⁻¹)
0.1000	0.0400	0.0997	0.0105	0.0399	0.0331
k ₃	k_4	k ₃	desvio padrão	k ₄	desvio padrão
(min ⁻¹)	(min⁻¹)	(min⁻¹)	(min⁻¹)	(min⁻¹)	(min⁻¹)
0.0500	0.0	0.0510	0.0759	0.0005	0.0304

Tabela 4.3 – Parâmetros do mo	odelo com três con	partimentos
-------------------------------	--------------------	-------------

O gráfico de ajuste obtido é o seguinte:

Figura 4.2 – Ajuste alcançado para modelo com três compartimentos.

As seguintes informações foram obtidas após a rotina de otimização:

Palpites iniciais	Número de iterações para convergência	Soma dos resíduos quadráticos	Soma dos resíduos quadráticos ponderados	Valor médio de concentração tecidual sintetizada
(mL/min/mL) e (min⁻¹)	iterações	(u.a.) ²	(u.a.)	(u.a.)
[0.1, 0.1, 0.1, 0] ^T	8	9.2560e+005	34.0209	2.6492e+4

Tabela 4.4 – Resultados do ajuste para modelo com três compartimentos

Pela fig. 4.2 e tabela 4.4, verifica-se que este caso se enquadra em sinal de ruído 'médio' (valor médio de 26492).

4.1.1.3 Parâmetros estimados do modelo de quatro compartimentos

Para o modelo de quatro compartimentos, utilizaram-se os seguintes parâmetros:

Parâmetros	pré-fixados		Parâmetros e	estimados	i
K ₁	k ₂	K ₁	desvio padrão	k ₂	desvio padrão
(mL/min/mL)	(min⁻¹)	(mL/min/mL)	(mL/min/mL)	(min⁻¹)	(min⁻¹)
0.1000	0.1000	0.0999	0.0201	0.1003	0.2220
k ₃	k_4	k ₃	desvio padrão	k_4	desvio padrão
(min⁻¹)	(min⁻¹)	(min ⁻¹)	(min ⁻¹)	(min ⁻¹)	(min ⁻¹)
0.0200	0.0500	0.0144	0.3064	0.0414	0.4703
k ₅	k ₆	k_5	desvio padrão	k ₆	desvio padrão
(min⁻¹)	(min⁻¹)	(min ⁻¹)	(min ⁻¹)	(min ⁻¹)	(min ⁻¹)
0.1000	0.2000	0.1066	0.8419	0.1871	1.4681

Tabela 4.5 – Parâmetros do modelo com quatro compartimentos

O gráfico de ajuste obtido é o seguinte:

Palpites iniciais	Número de iterações para convergência	Soma dos resíduos quadráticos	Soma dos resíduos quadráticos ponderados	Valor médio de concentração tecidual sintetizada
(mL/min/mL) e (min ⁻¹)	iterações	(u.a.) ²	(u.a.)	(u.a.)
$\begin{bmatrix} 0.1, 0.1, 0.02, 0.05, 0.1, 0.2 \end{bmatrix}^{T}$	9	2.9373e+006	25.4899	1.0394e+005

Tabela 4.6 – Resultados do ajuste para modelo com quatro compartimentos

Pela fig. 4.3 e tabela 4.6, verifica-se que este caso se enquadra em sinal de ruído 'baixo' (valor médio de 1,03 x 10^5).

4.1.2 Ilustração através da aplicação a um exame real

A fig. 4.4 ilustra a aplicação da metodologia apresentada a um exame real, buscando exibir todas as características encontradas na prática clínica. As constantes estimadas bem como suas incertezas devem ser divididas por um fator de 60 em razão do tomógrafo utilizado para obtenção de dados apresentar como unidade de tempo o segundo. O modelo mais adequado é composto por três compartimentos.

Figura 4.4 – Ajuste alcançado para um caso real.
4.1.3 Desempenho do Decisor de Modelos

Nesta segunda etapa de avaliação da metodologia, buscou-se avaliar a robustez do algoritmo de otimização utilizando as equações de sensibilidades para cálculos das derivadas necessárias. Dessa forma, utilizando-se os mesmos parâmetros da seção anterior, foram obtidos nove conjuntos de dados, cada qual com trinta realizações distintas do ruído Poisson.

Os nove conjuntos são relativos aos três modelos compartimentais utilizados para síntese de dados, cada qual adicionado aos três níveis de ruído considerados.

Dessa maneira, têm-se dados sintetizados para o modelo com dois compartimentos e nível de ruído baixo, para o modelo com dois compartimentos e nível de ruído médio, para o modelo com dois compartimentos e nível de ruído alto e assim por diante.

Considerando-se um dos nove conjuntos com trinta séries de concentrações teciduais, deseja-se estimar o modelo responsável pela geração deste mesmo conjunto de dados utilizando-se a métrica de Akaike (AIC). Assim, cada uma das linhas das nove tabelas apresentadas contém as constantes estimadas utilizando-se os três modelos compartimentais, além da métrica de Akaike referente a cada um de seus ajustes. O número de acertos do Decisor de Modelos é indicado no canto inferior esquerdo de cada tabela e é baseado no menor valor AIC obtido. AIC "n" refere-se à métrica aplicada ao modelo com "n" compartimentos, para "n" igual a 2,3 e 4.

Os palpites iniciais considerados pelo algoritmo de otimização são aleatórios, com distribuição uniforme com média igual à da constante característica utilizada para a síntetização dos dados e com intervalo de -50% a +50% do valor da média. As Curvas de Atividade de Entrada possuem constante de tempo exponencial igual a (-0.5) (tal como considerada em 4.1.1), mas com amplitudes variadas para provocar, respectivamente, os níveis de ruído baixo, médio e alto.

As unidades dos parâmetros característicos são mL/min/mL para a constante K₁ e min⁻¹ para todas as demais. A unidade de AIC é a mesma da concentração de radiofármaco (u. a.).

As tabelas obtidas para a estimativa dos parâmetros nos vários modelos e do AIC são as seguintes:

- tabelas (4.7, 4.8, 4.9) para dois compartimentos e 3 níveis de ruído;
- tabelas (4.10, 4.11, 4.12) para três compartimentos e 3 níveis de ruído;
- tabelas (4.13, 4.14, 4.15) para quatro compartimentos e 3 níveis de ruído;

Em cada uma das nove tabelas seguintes estão apresentadas:

• Na primeira coluna, o número do experimento simulado pela sintetização de dados, que varia de 1 a 30. Dessa maneira, cada linha representa um experimento.

 Na coluna de "Parâmetros pré-fixados", os parâmetros característicos do modelo escolhido para a sintetização de dados. Em tese, estes devem apresentar valores mais próximos possíveis das estimativas obtidas pelo menos para a mesma estrutura compartimental identificada dentre as três possíveis.

 No conjunto de colunas com nome "Parâmetros estimados e índices AIC", encontram-se todos os parâmetros identificados dos três modelos em questão pelo algoritmo de otimização, bem como seus respectivos valores de métrica de Akaike (AIC).

• A última coluna, denominada "Sugestão de compartimentos", apresenta o modelo que exibiu menor métrica de Akaike para cada um dos 30 experimentos.

 No canto inferior direito, são contabilizados os totais de acertos e erros de cada tabela. Estes resultados serão submetidos ao tratamento estatístico de Kappa (LANDIS; KOCH, 1977), descrito na próxima seção.

O objetivo da construção destas tabelas é investigar o quão robusto é o algoritmo utilizado, considerando-se além de suas estimativas fornecidas, o total de erros e acerto baseados nos índices de informação de Akaike. Para tanto, estes totais serão sumarizados em tabelas disponíveis na próxima seção e analisados pelo índice de Kappa.

Outras informações referentes a estas tabelas são encontradas no Apêndice D. Lá, por questão de espaço, encontram-se:

• Os palpites iniciais utilizados pelo algoritmo de otimização para cada um dos experimentos.

• Os limites para as incertezas de cada estimativa alcançada. A incerteza apresentada é o desvio-padrão.

Tabela 4.7 – Valores estimados e sugestões do Decisor de Modelos
Estrutura compartimental fixada: dois compartimentos
Nível de ruído: baixo

	Parâmetros	s pré-fixados					Pa	râmetro	os estim	nados e í	ndices	AIC						
			dois compa	artimentos		trê	s comp	partime	ntos			qua	tro con	npartim	entos			
experimento	K ₁	k ₂	K ₁	k ₂	AIC 2	K ₁	k ₂	k ₃	k ₄	AIC 3	K ₁	k ₂	k ₃	k ₄	k_5	k ₆	AIC 4	Sugestão de compartimentos
1	0,0200	0,0100	0,0200	0,0100	100,9221	0,0200	0,0101	-0,0001	0,0359	115,4160	0,0200	0,0103	-0,0122	-0,0014	0,0141	0,0028	117,8974	2
2	0,0200	0,0100	0,0200	0,0099	98,2012	0,0199	0,0099	-0,0039	0,5735	102,3031	0,0199	0,0089	-0,0807	0,2349	0,0415	0,1686	104,1895	2
3	0,0200	0,0100	0,0200	0,0100	102,1726	0,0199	0,0098	-0,0014	0,0739	118,0183	0,0199	0,0095	0,0259	0,0027	-0,0295	0,0068	120,7515	2
4	0,0200	0,0100	0,0200	0,0100	117,5355	0,0199	0,0096	-0,0040	0,0793	120,5273	0,0199	0,0094	-0,0365	0,0474	0,0303	0,0415	125,3538	2
5	0,0200	0,0100	0,0200	0,0100	90,7743	0,0199	0,0098	-0,0011	0,0188	110,1616	0,0199	0,0097	0,0191	0,0075	-0,0215	0,0113	104,6124	2
6	0,0200	0,0100	0,0200	0,0100	90,1982	0,0199	0,0098	-0,0015	0,0735	97,8189	0,0199	0,0096	0,0182	0,0216	-0,0216	0,0282	102,2989	2
7	0,0200	0,0100	0,0200	0,0101	97,3325	0,0199	0,0100	-0,0001	-0,0144	116,9721	0,0199	0,0100	0,0101	0,0298	-0,0099	0,0280	117,0607	2
8	0,0200	0,0100	0,0200	0,0099	102,7167	0,0199	0,0095	-0,0139	0,2922	102,2474	0,0199	0,0095	0,0006	-0,0263	-0,0040	0,0258	122,1533	3
9	0,0200	0,0100	0,0200	0,0100	121,3658	0,0199	0,0096	-0,0066	0,2025	130,2762	0,0199	0,0096	0,0136	0,0550	-0,0185	0,0684	135,1120	2
10	0,0200	0,0100	0,0200	0,0100	112,7634	0,0199	0,0096	-0,0059	0,1290	110,9739	0,0199	0,0086	0,0185	1,1961	-0,0465	0,3012	112,2466	3
11	0,0200	0,0100	0,0200	0,0100	109,4511	0,0198	0,0093	-0,0043	0,0417	135,6766	0,0199	0,0096	-0,0044	0,0741	0,0011	0,0602	125,2361	2
12	0,0200	0,0100	0,0200	0,0100	108,9118	0,0199	0,0094	-0,0099	0,1514	113,5330	0,0199	0,0095	0,0113	-0,0054	-0,0154	0,0046	116,6613	2
13	0,0200	0,0100	0,0200	0,0100	104,1946	0,0199	0,0090	-0,0363	0,3670	116,5334	0,0199	0,0094	0,0176	0,0436	-0,0271	0,0634	119,7123	2
14	0,0200	0,0100	0,0200	0,0099	100,3857	0,0199	0,0095	-0,0058	0,1259	112,9470	0,0199	0,0090	0,0230	0,1349	-0,0461	0,1755	112,3525	2
15	0,0200	0,0100	0,0200	0,0100	105,4305	0,0200	0,0102	0,0019	0,1817	121,0032	0,0200	0,0104	-0,0380	0,1345	0,0465	0,1468	117,3970	2
16	0,0200	0,0100	0,0200	0,0100	99,9178	0,0199	0,0098	-0,0023	0,0840	122,2391	0,0199	0,0100	0,0021	0,1060	-0,0032	0,1361	118,9461	2
17	0,0200	0,0100	0,0200	0,0100	112,4390	0,0199	0,0096	-0,0041	0,0902	122,6320	0,0199	0,0096	-0,0150	0,0056	0,0117	-0,0018	123,4919	2
18	0,0200	0,0100	0,0200	0,0100	106,5852	0,0200	0,0101	0,0009	0,0571	111,5964	0,0199	0,0101	-0,0007	0,2368	0,0025	0,1310	113,7892	2
19	0,0200	0,0100	0,0200	0,0100	119,0412	0,0200	0,0097	-0,0074	0,2278	121,2310	0,0199	0,0098	0,0039	-0,0116	-0,0049	-0,0057	125,2314	2
20	0,0200	0,0100	0,0200	0,0100	88,5136	0,0199	0,0099	-0,0006	0,0174	104,6139	0,0199	0,0098	-0,0041	-0,0248	0,0033	-0,0300	95,7729	2
21	0,0200	0,0100	0,0200	0,0100	102,0662	0,0199	0,0099	0,0003	0,1097	124,3446	0,0199	0,0099	0,0272	-0,0409	-0,0271	-0,0412	108,9549	2
22	0,0200	0,0100	0,0200	0,0100	108,3567	0,0199	0,0100	0,0004	0,0522	121,8345	0,0199	0,0104	0,0380	0,3292	-0,0154	0,2072	119,9920	2
23	0,0200	0,0100	0,0200	0,0100	117,2512	0,0199	0,0098	-0,0016	0,0745	120,2870	0,0200	0,0102	-0,0048	-0,0255	0,0067	-0,0145	127,9441	2
24	0,0200	0,0100	0,0200	0,0100	85,3959	0,0200	0,0099	0,0003	0,0677	115,7432	0,0199	0,0086	-0,0075	0,2163	-0,0430	0,3913	108,4250	2
25	0,0200	0,0100	0,0200	0,0100	116,5059	0,0200	0,0100	-0,0004	0,0177	119,4437	0,0199	0,0094	0,0026	-0,0212	-0,0066	0,0064	113,8331	4
26	0,0200	0,0100	0,0200	0,0100	113,7412	0,0200	0,0101	0,0018	0,2327	115,9505	0,0200	0,0100	-0,0061	-0,0629	0,0062	-0,0618	120,5455	2
27	0,0200	0,0100	0,0200	0,0100	101,3423	0,0200	0,0099	-0,0003	0,0376	106,2021	0,0199	0,0098	0,0030	-0,0215	-0,0039	-0,0143	109,6110	2
28	0,0200	0,0100	0,0200	0,0100	100,7651	0,0200	0,0098	-0,0009	0,0482	113,2543	0,0199	0,0096	-0,0062	0,1015	0,0009	0,0254	115,7182	2
29	0,0200	0,0100	0,0200	0,0100	110,2320	0,0199	0,0091	-0,0236	0,2595	114,4999	0,0199	0,0091	0,0077	0,0315	-0,0203	0,0744	120,2031	2
30	0,0200	0,0100	0,0200	0,0100	95,6971	0,0199	0,0097	-0,0021	0,0391	109,0509	0,0199	0,0099	0,0306	0,0121	-0,0315	0,0130	105,9927	2
média			0,0200	0,0100	104,6735	0,0199	0,0097	-0,0044	0,1249	115,5777	0,0199	0,0096	0,0019	0,0926	-0,0077	0,0649	116,0495	
desvio padrão			0,0000	0,0000	9,3892	0,0000	0,0003	0,0080	0,1251	8,2341	0,0000	0,0005	0,0234	0,2290	0,0230	0,1028	8,5447	
																	Acortos	27

Acertos 27

Erros para três compartimentos 2

Tabela 4.8 – Valores estimados e sugestões do Decisor de Modelos Estrutura compartimental fixada: dois compartimentos Nível de ruído: médio

	Parâmetros	pré-fixados					Pa	râmetro	os estim	nados e í	ndices	AIC						
			dois comp	artimentos		trê	s comp	partimer	ntos			qua	tro con	npartime	entos			
experimento	К.	ka	К.	ka	AIC 2	к.	ka	k	k.	AIC 3	к.	k	k	k.	k-	k	AIC 4	Sugestão de
	N 1	112	N 1	112	/	N1	112	13	14	/	N1	142	13	K 4	15	1.6	/	compartimentos
1	0,0200	0,0100	0,0200	0,0100	98,6170	0,0199	0,0097	-0,0013	0,0163	103,4230	0,0201	0,0106	-0,0007	-0,0212	0,0022	-0,0053	114,3711	2
2	0,0200	0,0100	0,0200	0,0102	96,6571	0,0199	0,0100	-0,0004	-0,0218	100,3270	0,0199	0,0100	-0,0104	-0,0075	0,0099	-0,0067	103,6588	2
3	0,0200	0,0100	0,0200	0,0100	113,6532	0,0198	0,0093	-0,0019	-0,0105	109,5293	0,0198	0,0094	-0,0005	-0,0471	-0,0011	0,0310	112,8785	3
4	0,0200	0,0100	0,0199	0,0098	109,8566	0,0199	0,0097	-0,0005	0,9258	116,6499	0,0199	0,0098	-0,0416	-0,0100	0,0422	-0,0091	119,3141	2
5	0,0200	0,0100	0,0199	0,0098	107,1437	0,0199	0,0101	0,0018	0,0604	106,4502	0,0199	0,0100	-0,0051	-0,0214	0,0062	-0,0160	110,7985	3
6	0,0200	0,0100	0,0200	0,0099	101,3621	0,0200	0,0100	0,0004	-0,0116	105,3996	0,0200	0,0097	0,0044	-0,0193	-0,0063	-0,0053	108,7407	2
7	0,0200	0,0100	0,0200	0,0099	104,9065	0,0198	0,0092	-0,0096	0,1410	111,4240	0,0199	0,0090	0,0236	-0,0015	-0,0321	0,0092	113,9117	2
8	0,0200	0,0100	0,0200	0,0101	117,2747	0,0199	0,0096	-0,0042	0,0724	121,2616	0,0205	0,0127	0,0056	-0,0048	0,0000	3,8145	165,6090	2
9	0,0200	0,0100	0,0200	0,0100	102,8292	0,0198	0,0086	-0,0393	0,2875	106,0694	0,0199	0,0091	-0,0004	-0,0066	-0,0137	0,1735	112,7624	2
10	0,0200	0,0100	0,0199	0,0100	89,9779	0,0199	0,0101	0,0010	0,1319	92,4804	0,0199	0,0106	0,0262	0,0055	-0,0198	-0,0042	93,1253	2
11	0,0200	0,0100	0,0200	0,0099	70,5257	0,0199	0,0094	-0,0096	0,1745	73,6397	0,0199	0,0097	0,0176	-0,0084	-0,0198	-0,0042	77,3992	2
12	0,0200	0,0100	0,0201	0,0101	96,9598	0,0200	0,0099	-0,0012	0,0186	105,5339	0,0200	0,0101	-0,0048	0,0019	0,0055	0,0110	108,0607	2
13	0,0200	0,0100	0,0200	0,0099	100,4750	0,0199	0,0078	-0,0680	0,3211	103,4785	0,0199	0,0091	-0,0419	-0,0068	0,0349	-0,0128	106,6757	2
14	0,0200	0,0100	0,0200	0,0100	97,7693	0,0199	0,0102	0,0013	0,0351	102,2721	0,0199	0,0101	0,0173	0,0538	-0,0176	0,0588	106,3131	2
15	0,0200	0,0100	0,0200	0,0099	99,5404	0,0199	0,0097	-0,0022	0,0572	105,1817	0,0199	0,0096	-0,0085	0,0301	0,0045	0,0075	107,9735	2
16	0,0200	0,0100	0,0200	0,0100	104,2440	0,0200	0,0103	0,0026	0,0543	108,5523	0,0200	0,0105	-0,0309	0,0136	0,0351	0,0170	112,6247	2
17	0,0200	0,0100	0,0200	0,0099	112,3443	0,0199	0,0096	-0,0013	0,0159	113,3816	0,0199	0,0094	0,0033	0,0807	-0,0087	0,0824	117,7939	2
18	0,0200	0,0100	0,0200	0,0099	101,9135	0,0195	0,0081	-0,0012	0,8236	190,8355	0,0199	0,0101	-0,0012	0,0124	0,0017	0,0012	106,8663	2
19	0,0200	0,0100	0,0199	0,0098	121,5073	0,0199	0,0098	0,0000	0,1223	126,0824	0,0199	0,0097	-0,0008	-0,0624	0,0005	-0,0725	129,9167	2
20	0,0200	0,0100	0,0200	0,0100	111,5326	0,0198	0,0086	-0,0237	0,1670	118,5477	0,0198	0,0078	-0,0510	0,0390	0,0239	0,0077	115,3150	2
21	0,0200	0,0100	0,0199	0,0099	100,1372	0,0198	0,0091	-0,0069	0,0677	105,9894	0,0198	0,0090	-0,0213	0,0048	0,0160	-0,0023	110,8273	2
22	0,0200	0,0100	0,0199	0,0099	111,2876	0,0198	0,0098	0,0016	0,3093	116,5644	0,0199	0,0096	0,0049	0,0449	-0,0059	0,0337	118,0860	2
23	0,0200	0,0100	0,0200	0,0100	117,7453	0,0199	0,0100	-0,0065	0,9031	120,4362	0,0200	0,0098	0,0192	-0,0014	-0,0214	0,0032	123,4582	2
24	0,0200	0,0100	0,0200	0,0100	98,2804	0,0199	0,0091	-0,0095	0,0901	99,9692	0,0199	0,0092	0,0518	0,0324	-0,0575	0,0344	103,8188	2
25	0,0200	0,0100	0,0200	0,0099	95,2079	0,0199	0,0108	0,0163	0,1566	96,9310	0,0200	0,0114	-0,0358	0,1057	0,0640	0,1279	101,4153	2
26	0,0200	0,0100	0,0200	0,0101	108,1728	0,0199	0,0098	-0,0010	0,0122	111,6222	0,0200	0,0105	0,1132	-0,0057	-0,1086	-0,0072	114,4315	2
27	0,0200	0,0100	0,0200	0,0099	108,8877	0,0200	0,0102	0,0029	0,0679	109,1866	0,0199	0,0103	-0,0001	0,9232	0,0026	0,0186	117,2694	2
28	0,0200	0,0100	0,0200	0,0100	90,4882	0,0199	0,0094	-0,0061	0,0834	94,8021	0,0198	0,0083	-0,0389	0,1341	0,0093	0,0734	96,5111	2
29	0,0200	0,0100	0,0200	0,0100	114,3601	0,0200	0,0098	-0,0057	0,3205	117,9948	0,0200	0,0098	0,0534	-0,0173	-0,0566	-0,0147	116,4960	2
30	0,0200	0,0100	0,0200	0,0099	98,2091	0,0199	0,0102	0,0437	1,5890	103,5399	0,0199	0,0099	-0,0378	-0,0054	0,0358	-0,0082	104,6831	2
média			0,0200	0,0100	103,3955	0,0199	0,0096	-0,0043	0,2327	109,9185	0,0199	0,0098	0,0003	0,0412	-0,0025	0,1445	111,7035	
desvio padrão			0,0000	0,0001	10,1735	0,0001	0,0007	0,0175	0,3626	18,3759	0,0001	0,0009	0,0335	0,1716	0,0331	0,6947	14,0826	
																	Acertos	28

Erros para três compartimentos 2

Tabela 4.9 – Valores estimados e sugestões do Decisor de Modelos Estrutura compartimental fixada: dois compartimentos Nível de ruído: alto

	Parâmetros	s pré-fixados					Pa	râmetro	os estim	nados e í	ndices	AIC						
			dois comp	artimentos		trê	s comp	partime	ntos			qua	tro con	npartim	entos			
experimento	K ₁	k ₂	K ₁	k ₂	AIC 2	K ₁	k ₂	k ₃	k ₄	AIC 3	К ₁	k ₂	k ₃	k_4	k ₅	k ₆	AIC 4	Sugestão de compartimentos
1	0,0200	0,0100	0,0199	0,0098	97,3625	0,0198	0,0084	-0,0150	0,0836	99,9211	0,0197	0,0075	-0,0380	0,1207	0,0027	0,0352	104,0720	2
2	0,0200	0,0100	0,0200	0,0102	114,4414	0,0198	0,0097	0,0000	-0,0511	117,4677	0,0198	0,0097	0,0008	0,0324	-0,0007	-0,0127	121,8193	2
3	0,0200	0,0100	0,0199	0,0097	99,7666	0,0198	0,0095	-0,0007	0,0300	102,6206	0,0199	0,0106	0,0197	0,0206	-0,0121	0,0073	106,8314	2
4	0,0200	0,0100	0,0201	0,0101	97,4433	0,0202	0,0110	0,0029	-0,0005	100,3792	0,0201	0,0110	-0,0036	0,2655	0,0050	0,0230	104,7728	2
5	0,0200	0,0100	0,0200	0,0100	101,0740	0,0200	0,0109	0,0051	0,0300	104,3699	0,0201	0,0114	0,0505	0,0157	-0,0411	0,0111	108,3510	2
6	0,0200	0,0100	0,0202	0,0105	97,9446	0,0201	0,0104	-0,0019	0,1581	102,0622	0,0201	0,0092	-0,0431	0,0365	0,0270	0,0163	104,7784	2
7	0,0200	0,0100	0,0200	0,0098	93,7336	0,0199	0,0104	0,0058	0,0853	97,3300	0,0200	0,0103	0,0075	-0,0592	-0,0053	-0,0687	100,1045	2
8	0,0200	0,0100	0,0197	0,0093	115,8552	0,0193	0,0039	-0,2103	0,3529	116,2090	0,0193	0,0055	0,0111	-0,0545	-0,0420	-0,0105	109,7193	4
9	0,0200	0,0100	0,0198	0,0095	105,5006	0,0199	0,0102	0,0063	0,0650	109,3642	0,0198	0,0096	0,0034	-0,0087	-0,0026	-0,0140	113,3616	2
10	0,0200	0,0100	0,0199	0,0102	117,1449	0,0198	0,0094	-0,0007	-0,0562	118,8593	0,0198	0,0098	-0,0038	-0,0730	0,0047	-0,0645	122,1754	2
11	0,0200	0,0100	0,0200	0,0101	105,2245	0,0199	0,0102	0,0007	0,0073	109,2874	0,0200	0,0105	0,0027	-0,0568	-0,0013	-0,0761	112,8593	2
12	0,0200	0,0100	0,0199	0,0098	101,9641	0,0198	0,0090	-0,0003	-0,0921	101,1240	0,0197	0,0088	0,0114	-0,0292	-0,0123	-0,0331	105,6823	3
13	0,0200	0,0100	0,0201	0,0102	99,7357	0,0202	0,0109	0,0011	-0,0290	102,2356	0,0202	0,0104	0,0026	-0,0244	-0,0054	0,0243	106,0540	2
14	0,0200	0,0100	0,0198	0,0103	97,7224	0,0197	0,0096	-0,0037	0,0277	101,0868	0,0197	0,0089	0,0094	-0,0293	-0,0162	-0,0152	105,4027	2
15	0,0200	0,0100	0,0199	0,0097	104,5518	0,0197	0,0091	-0,0001	-0,1018	106,7972	0,0198	0,0100	0,0308	-0,0389	-0,0259	-0,0449	109,6390	2
16	0,0200	0,0100	0,0201	0,0105	98,0249	0,0201	0,0105	-0,0001	-0,0462	101,9060	0,0199	0,0097	-0,0111	0,0338	0,0135	0,1040	102,1391	2
17	0,0200	0,0100	0,0198	0,0094	105,9970	0,0198	0,0098	0,0011	-0,0170	108,0098	0,0198	0,0081	-0,0606	0,1460	0,0192	0,0572	111,8729	2
18	0,0200	0,0100	0,0199	0,0098	110,1843	0,0197	0,0076	-0,0386	0,1615	114,8209	0,0197	0,0075	0,0083	-0,0102	-0,0355	0,0467	117,8780	2
19	0,0200	0,0100	0,0197	0,0094	112,3814	0,0196	0,0091	-0,0013	0,3465	116,8056	0,0196	0,0096	-0,0118	-0,0512	0,0155	-0,0421	118,8278	2
20	0,0200	0,0100	0,0197	0,0093	107,4521	0,0198	0,0102	0,0022	-0,0181	107,7365	0,0198	0,0100	0,0117	-0,0179	-0,0108	-0,0143	112,2417	2
21	0,0200	0,0100	0,0200	0,0101	121,1511	0,0201	0,0131	0,0700	0,2314	124,1888	0,0200	0,0121	-0,0010	-0,0196	0,0274	0,0954	128,0433	2
22	0,0200	0,0100	0,0199	0,0098	124,6815	0,0201	0,0121	0,0162	0,0527	126,3925	0,0201	0,0121	0,0309	-0,0118	-0,0191	-0,0241	130,1039	2
23	0,0200	0,0100	0,0201	0,0099	111,0202	0,0201	0,0110	0,0068	0,0391	114,4119	0,0202	0,0113	0,0055	0,0221	0,0009	0,0020	118,9272	2
24	0,0200	0,0100	0,0200	0,0103	110,1699	0,0201	0,0119	0,0057	0,0066	110,3614	0,0202	0,0135	0,0293	0,0033	-0,0134	-0,0135	113,9488	2
25	0,0200	0,0100	0,0201	0,0098	94,5206	0,0200	0,0099	0,0003	-0,0341	97,6441	0,0200	0,0100	-0,0045	-0,0210	0,0043	-0,0275	101,6758	2
26	0,0200	0,0100	0,0198	0,0101	99,4582	0,0197	0,0100	0,0000	-0,0844	103,3233	0,0197	0,0102	-0,0075	0,0015	0,0101	0,0178	107,0241	2
27	0,0200	0,0100	0,0202	0,0102	112,0812	0,0202	0,0114	0,0460	0,3839	115,0703	0,0202	0,0110	0,0093	0,1496	0,0058	0,2202	119,3422	2
28	0,0200	0,0100	0,0198	0,0097	104,1792	0,0197	0,0091	-0,0063	0,1224	108,4205	0,0197	0,0086	0,0125	-0,0132	-0,0220	0,0065	111,5551	2
29	0,0200	0,0100	0,0201	0,0104	107,6464	0,0202	0,0123	0,0080	0,0159	108,0258	0,0202	0,0117	0,0027	-0,1125	-0,0018	-0,1217	109,7331	2
30	0,0200	0,0100	0,0198	0,0095	81,3917	0,0197	0,0091	-0,0043	0,0755	86,0085	0,0197	0,0089	0,0172	-0,0096	-0,0218	-0,0024	90,8154	2
média			0,0199	0,0099	104,9935	0,0199	0,0100	-0,0035	0,0582	107,7413	0,0199	0,0099	0,0031	0,0069	-0,0051	0,0027	110,9917	
desvio padrão			0,0001	0,0003	9,0663	0,0002	0,0017	0,0428	0,1284	8,6940	0,0002	0,0016	0,0219	0,0761	0,0179	0,0626	8,5201	
																	Acertos	28

Erros para três compartimentos 1

Tabela 4.10 – Valores estimados e sugestões do Decisor de Modelos Estrutura compartimental fixada: três compartimentos Nível de ruído: baixo

	Pará	àmetros	s pré-fix	ados					Pa	râmetro	os estim	nados e í	ndices	AIC						
					dois compa	artimentos		trê	s comp	partime	ntos			qua	tro con	npartime	entos			
experimento	K ₁	k ₂	k ₃	k ₄	К1	k ₂	AIC 2	K ₁	k ₂	k ₃	k ₄	AIC 3	K ₁	k ₂	k ₃	k ₄	k ₅	k ₆	AIC 4	Sugestão de compartimentos
1	0,1000	0,0400	0,0500	0,0000	0,0877	0,0117	318,7142	0,1000	0,0402	0,0505	0,0002	107,1904	0,1001	0,0403	0,0520	-0,0017	-0,0019	-0,0262	111,3992	3
2	0,1000	0,0400	0,0500	0,0000	0,0879	0,0118	319,0878	0,1002	0,0402	0,0501	0,0000	119,5258	0,1003	0,0406	0,0621	0,0008	-0,0115	0,0035	124,7035	3
3	0,1000	0,0400	0,0500	0,0000	0,0878	0,0117	319,0937	0,1001	0,0399	0,0492	-0,0005	95,6938	0,1001	0,0400	0,0929	-0,0019	-0,0436	-0,0035	100,5999	3
4	0,1000	0,0400	0,0500	0,0000	0,0877	0,0117	318,9304	0,0999	0,0400	0,0499	-0,0002	96,8855	0,0999	0,0400	0,0599	-0,0047	-0,0110	-0,0173	102,0650	3
5	0,1000	0,0400	0,0500	0,0000	0,0877	0,0116	318,3218	0,0998	0,0396	0,0494	-0,0003	94,0339	0,0997	0,0397	0,0454	0,0015	0,0044	-0,0128	99,2101	3
6	0,1000	0,0400	0,0500	0,0000	0,0879	0,0117	318,5257	0,1003	0,0407	0,0515	0,0007	106,6893	0,1005	0,0418	0,0352	-0,0048	0,0201	0,0225	108,5671	3
7	0,1000	0,0400	0,0500	0,0000	0,0878	0,0117	318,4709	0,1000	0,0398	0,0496	-0,0001	102,2935	0,1000	0,0401	0,0474	-0,0011	0,0032	0,0437	106,5030	3
8	0,1000	0,0400	0,0500	0,0000	0,0877	0,0117	318,4651	0,0999	0,0399	0,0499	0,0000	110,0981	0,0999	0,0401	0,0371	0,0015	0,0132	-0,0036	112,8281	3
9	0,1000	0,0400	0,0500	0,0000	0,0878	0,0117	318,6808	0,1001	0,0404	0,0510	0,0004	94,9659	0,1002	0,0408	0,1122	0,0004	-0,0607	0,0004	95,8444	3
10	0,1000	0,0400	0,0500	0,0000	0,0877	0,0117	318,9432	0,0998	0,0395	0,0485	-0,0008	99,3095	0,0998	0,0394	0,0747	0,0030	-0,0271	0,0127	104,7884	3
11	0,1000	0,0400	0,0500	0,0000	0,0878	0,0117	318,6231	0,1000	0,0401	0,0504	0,0001	112,8957	0,1002	0,0403	0,0667	-0,0002	-0,0160	-0,0016	116,5153	3
12	0,1000	0,0400	0,0500	0,0000	0,0878	0,0117	318,6130	0,1001	0,0401	0,0499	0,0001	103,3829	0,1000	0,0402	0,1220	0,0008	-0,0720	0,0013	106,8897	3
13	0,1000	0,0400	0,0500	0,0000	0,0877	0,0117	318,7024	0,0999	0,0395	0,0490	-0,0005	124,4084	0,0999	0,0398	0,0487	0,0000	0,0008	-0,0146	130,5367	3
14	0,1000	0,0400	0,0500	0,0000	0,0877	0,0117	318,3660	0,0998	0,0396	0,0496	0,0000	110,6425	0,0999	0,0400	0,1019	-0,0036	-0,0520	-0,0066	114,1259	3
15	0,1000	0,0400	0,0500	0,0000	0,0877	0,0117	318,5982	0,0999	0,0398	0,0497	-0,0001	116,5904	0,0999	0,0399	0,0836	-0,0017	-0,0339	-0,0038	120,4454	3
16	0,1000	0,0400	0,0500	0,0000	0,0877	0,0117	318,8960	0,1000	0,0400	0,0497	-0,0002	103,5617	0,1000	0,0399	0,0918	0,0047	-0,0432	0,0125	106,6590	3
17	0,1000	0,0400	0,0500	0,0000	0,0878	0,0117	318,2770	0,0999	0,0399	0,0503	0,0003	109,4651	0,0999	0,0401	0,0550	0,0012	-0,0046	0,0139	112,8181	3
18	0,1000	0,0400	0,0500	0,0000	0,0878	0,0117	319,2702	0,1002	0,0405	0,0505	-0,0001	110,4623	0,1004	0,0409	0,0674	0,0000	-0,0163	-0,0002	114,3909	3
19	0,1000	0,0400	0,0500	0,0000	0,0878	0,0117	318,2943	0,1001	0,0403	0,0509	0,0005	104,0018	0,1002	0,0402	0,0902	-0,0018	-0,0394	-0,0045	109,0633	3
20	0,1000	0,0400	0,0500	0,0000	0,0877	0,0117	318,9085	0,1000	0,0400	0,0497	-0,0003	106,4395	0,0999	0,0401	0,0498	-0,0003	0,0001	0,0049	111,3921	3
21	0,1000	0,0400	0,0500	0,0000	0,0877	0,0117	319,5662	0,1002	0,0408	0,0510	0,0000	112,7724	0,1003	0,0416	0,0097	-0,0139	0,0435	0,0058	114,2716	3
22	0,1000	0,0400	0,0500	0,0000	0,0878	0,0117	318,2161	0,1000	0,0402	0,0508	0,0005	110,0182	0,1001	0,0404	0,0671	0,0026	-0,0161	0,0108	113,4067	3
23	0,1000	0,0400	0,0500	0,0000	0,0877	0,0117	318,8755	0,1000	0,0398	0,0491	-0,0004	101,3886	0,1000	0,0399	0,0636	0,0002	-0,0143	0,0019	107,0210	3
24	0,1000	0,0400	0,0500	0,0000	0,0877	0,0117	318,2638	0,0999	0,0403	0,0513	0,0006	97,5776	0,1000	0,0407	-0,0114	-0,0001	0,0634	0,0007	104,0082	3
25	0,1000	0,0400	0,0500	0,0000	0,0878	0,0117	318,5622	0,1000	0,0400	0,0499	0,0000	109,8832	0,0999	0,0401	0,0144	-0,0002	0,0358	0,0001	112,2537	3
26	0,1000	0,0400	0,0500	0,0000	0,0878	0,0117	318,0989	0,1000	0,0400	0,0503	0,0002	99,6078	0,0999	0,0405	0,0472	-0,0011	0,0049	0,0379	100,1046	3
27	0,1000	0,0400	0,0500	0,0000	0,0878	0,0117	318,8040	0,1000	0,0399	0,0494	-0,0003	110,4903	0,1000	0,0402	0,0383	0,0012	0,0116	-0,0041	116,4835	3
28	0,1000	0,0400	0,0500	0,0000	0,0878	0,0117	318,4027	0,1000	0,0397	0,0494	-0,0001	110,8230	0,1000	0,0400	-0,0078	-0,0013	0,0576	-0,0002	116,7458	3
29	0,1000	0,0400	0,0500	0,0000	0,0877	0,0117	318,5791	0,1001	0,0406	0,0513	0,0003	113,2508	0,1002	0,0410	0,0641	0,0006	-0,0121	0,0011	118,3050	3
30	0,1000	0,0400	0,0500	0,0000	0,0878	0,0117	318,7769	0,1001	0,0402	0,0500	0,0000	109,0616	0,1002	0,0403	0,0669	-0,0005	-0,0167	-0,0022	112,2193	3
média					0,0878	0,0117	318,6643	0,1000	0,0400	0,0501	0,0000	106,7803	0,1000	0,0403	0,0583	-0,0007	-0,0078	0,0024	110,8055	
desvio padrão					0,0001	0,0000	0,3349	0,0001	0,0003	0,0007	0,0003	7,3828	0,0002	0,0005	0,0316	0,0032	0,0321	0,0142	7,6486	
																			Acertos	30

Erros para dois compartimentos 0

Tabela 4.11 – Valores estimados e sugestões do Decisor de Modelos Estrutura compartimental fixada: três compartimentos Nível de ruído: médio

	Parâ	àmetros	pré-fix	ados					Pa	râmetro	os estim	nados e í	ndices	AIC						
					dois compa	artimentos		trê	s comp	partime	ntos			qua	tro con	npartime	entos			
ovnorimonto	ĸ	k	k	k	K	k		ĸ	k	k	k		ĸ	k	k	k	k	k		Sugestão de
experimento	N 1	K2	K3	К4	К <u>1</u>	K ₂	AIC 2	N1	ĸ ₂	к3	K4	AIC 3	K1	ĸ2	ĸġ	к4	K 5	ĸ ₆		compartimentos
1	0,1000	0,0400	0,0500	0,0000	0,0875	0,0116	248,3772	0,0993	0,0389	0,0488	-0,0001	94,8598	0,0993	0,0388	0,0072	-0,0103	0,0418	0,0023	98,9279	3
2	0,1000	0,0400	0,0500	0,0000	0,0877	0,0117	250,0567	0,0998	0,0391	0,0474	-0,0011	98,7621	0,0999	0,0396	0,0446	-0,0002	0,0041	-0,0061	103,2935	3
3	0,1000	0,0400	0,0500	0,0000	0,0877	0,0117	250,0984	0,1000	0,0400	0,0499	0,0000	110,7514	0,1002	0,0411	0,0517	0,0021	0,0008	-0,0338	114,4146	3
4	0,1000	0,0400	0,0500	0,0000	0,0878	0,0117	251,0178	0,1003	0,0403	0,0492	-0,0010	115,8139	0,1003	0,0403	0,0712	-0,0015	-0,0220	-0,0026	119,9079	3
5	0,1000	0,0400	0,0500	0,0000	0,0875	0,0117	247,6911	0,0990	0,0382	0,0485	0,0006	107,7935	0,0978	0,0224	0,0310	0,0024	-0,4956	1,1909	109,1341	3
6	0,1000	0,0400	0,0500	0,0000	0,0879	0,0117	249,9172	0,1003	0,0409	0,0524	0,0010	107,3305	0,1004	0,0414	0,0128	-0,0052	0,0404	0,0036	112,0032	3
7	0,1000	0,0400	0,0500	0,0000	0,0877	0,0118	251,0950	0,1000	0,0399	0,0485	-0,0006	114,4663	0,1002	0,0403	0,0654	0,0000	-0,0160	0,0008	118,0674	3
8	0,1000	0,0400	0,0500	0,0000	0,0877	0,0117	249,6366	0,0998	0,0396	0,0495	0,0000	110,9753	0,0997	0,0391	0,1756	-0,0145	-0,1295	-0,0179	112,5354	3
9	0,1000	0,0400	0,0500	0,0000	0,0875	0,0116	249,2715	0,0989	0,0374	0,0459	-0,0011	122,2008	0,0988	0,0373	0,0411	-0,0006	0,0045	-0,0067	127,0240	3
10	0,1000	0,0400	0,0500	0,0000	0,0879	0,0117	249,4343	0,1000	0,0393	0,0482	-0,0005	97,1443	0,0999	0,0394	0,0565	0,0014	-0,0087	0,0170	101,2428	3
11	0,1000	0,0400	0,0500	0,0000	0,0879	0,0117	249,1183	0,1004	0,0415	0,0536	0,0015	120,0422	0,1011	0,0453	0,0274	0,0733	0,0441	-0,0045	123,3005	3
12	0,1000	0,0400	0,0500	0,0000	0,0878	0,0117	249,7387	0,0999	0,0394	0,0487	-0,0006	100,8572	0,1002	0,0406	0,0526	0,0039	0,0004	-0,0626	103,3123	3
13	0,1000	0,0400	0,0500	0,0000	0,0877	0,0117	249,7985	0,0997	0,0393	0,0487	-0,0003	110,5837	0,0997	0,0396	0,0928	-0,0008	-0,0437	-0,0015	114,9551	3
14	0,1000	0,0400	0,0500	0,0000	0,0880	0,0117	248,5369	0,1001	0,0398	0,0503	0,0006	112,4911	0,1007	0,0470	0,0639	0,3088	0,0548	-0,0012	113,4923	3
15	0,1000	0,0400	0,0500	0,0000	0,0878	0,0117	248,8826	0,0996	0,0387	0,0475	-0,0003	112,4209	0,0997	0,0396	0,0426	0,0099	0,0089	-0,0206	115,4016	3
16	0,1000	0,0400	0,0500	0,0000	0,0880	0,0117	249,8430	0,1004	0,0403	0,0503	-0,0001	108,1019	0,1003	0,0403	0,0581	-0,0015	-0,0081	-0,0085	112,1286	3
17	0,1000	0,0400	0,0500	0,0000	0,0876	0,0116	249,0940	0,0999	0,0409	0,0532	0,0012	97,0518	0,1002	0,0418	0,0484	0,0017	0,0063	0,0014	101,1992	3
18	0,1000	0,0400	0,0500	0,0000	0,0876	0,0116	248,9291	0,0997	0,0403	0,0525	0,0013	95,4598	0,0998	0,0406	0,0586	-0,0034	-0,0071	-0,0218	98,6635	3
19	0,1000	0,0400	0,0500	0,0000	0,0875	0,0116	249,9871	0,0998	0,0404	0,0516	0,0005	113,0249	0,0998	0,0408	0,0407	0,0011	0,0112	-0,0013	116,7043	3
20	0,1000	0,0400	0,0500	0,0000	0,0877	0,0117	249,0561	0,1001	0,0412	0,0534	0,0014	115,7075	0,1002	0,0413	0,0605	-0,0044	-0,0087	-0,0226	118,7358	3
21	0,1000	0,0400	0,0500	0,0000	0,0878	0,0118	250,0249	0,1001	0,0403	0,0502	0,0002	108,2447	0,1006	0,0430	0,0379	0,0334	0,0246	-0,0136	106,5088	4
22	0,1000	0,0400	0,0500	0,0000	0,0878	0,0117	248,6485	0,0996	0,0392	0,0497	0,0004	109,9404	0,0997	0,0396	0,0529	0,0009	-0,0021	0,0046	114,6260	3
23	0,1000	0,0400	0,0500	0,0000	0,0877	0,0116	247,8480	0,0996	0,0395	0,0505	0,0007	101,9639	0,0997	0,0401	0,0630	0,0033	-0,0119	0,0182	106,0598	3
24	0,1000	0,0400	0,0500	0,0000	0,0878	0,0117	249,5113	0,1004	0,0401	0,0487	-0,0001	92,7026	0,1003	0,0401	0,0795	-0,0009	-0,0306	-0,0024	96,2200	3
25	0,1000	0,0400	0,0500	0,0000	0,0877	0,0117	249,6654	0,0996	0,0386	0,0469	-0,0012	100,4875	0,0994	0,0383	0,0306	-0,0018	0,0158	-0,0007	105,8778	3
26	0,1000	0,0400	0,0500	0,0000	0,0878	0,0118	249,4625	0,1002	0,0402	0,0499	0,0005	97,1912	0,1002	0,0404	0,0314	0,0004	0,0187	0,0007	100,6218	3
27	0,1000	0,0400	0,0500	0,0000	0,0876	0,0117	251,0092	0,1004	0,0416	0,0522	0,0001	107,9285	0,1006	0,0427	0,0517	-0,0007	0,0050	0,1127	111,8737	3
28	0,1000	0,0400	0,0500	0,0000	0,0875	0,0116	249,6665	0,0991	0,0381	0,0472	-0,0010	112,7668	0,0990	0,0377	0,1063	0,0047	-0,0609	0,0110	116,8330	3
29	0,1000	0,0400	0,0500	0,0000	0,0878	0,0117	249,0149	0,0999	0,0399	0,0505	0,0007	112,5628	0,0999	0,0400	0,0529	0,0015	-0,0026	0,0360	115,9442	3
30	0,1000	0,0400	0,0500	0,0000	0,0877	0,0118	250,7202	0,0999	0,0395	0,0480	-0,0009	105,8797	0,1002	0,0414	0,0511	0,0001	0,0005	0,0053	110,2793	3
média					0,0877	0,0117	249,5050	0,0999	0,0397	0,0497	0,0001	107,1836	0,0999	0,0400	0,0553	0,0134	-0,0189	0,0392	110,6429	
desvio padrão					0,0001	0,0001	0,8454	0,0004	0,0010	0,0020	0,0008	7,8281	0,0006	0,0039	0,0307	0,0578	0,0964	0,2193	7,8003	
																			Acertos	29

Erros para dois compartimentos 0

Erros para quatro compartimentos 1

Tabela 4.12 – Valores estimados e sugestões do Decisor de Modelos Estrutura compartimental fixada: três compartimentos Nível de ruído: alto

	Pará	àmetros	s pré-fix	ados					Pa	râmetro	os estim	nados e í	ndices	AIC						
					dois compa	artimentos		trê	s comp	partime	ntos			qua	tro con	npartim	entos			
experimento	K ₁	k ₂	k ₃	k_4	K ₁	k ₂	AIC 2	K ₁	k ₂	k ₃	k ₄	AIC 3	K ₁	k ₂	k ₃	k_4	k_5	k ₆	AIC 4	Sugestão de compartimentos
1	0,1000	0,0400	0,0500	0,0000	0,0873	0,0112	181,6619	0,0991	0,0387	0,0507	-0,0004	98,2481	0,0987	0,0358	0,0577	-0,0257	-0,0201	-0,0428	99,0474	3
2	0,1000	0,0400	0,0500	0,0000	0,0872	0,0113	177,4759	0,0972	0,0331	0,0395	-0,0036	96,3285	0,0970	0,0330	0,0217	-0,0031	0,0176	-0,0043	100,5176	3
3	0,1000	0,0400	0,0500	0,0000	0,0884	0,0120	187,3728	0,1016	0,0410	0,0446	-0,0043	94,3121	0,1032	0,0605	0,0559	-0,0077	0,1729	0,3269	96,8276	3
4	0,1000	0,0400	0,0500	0,0000	0,0880	0,0118	181,2325	0,1007	0,0431	0,0574	0,0033	98,8069	0,1010	0,0436	0,0677	0,0013	-0,0100	-0,0079	102,8568	3
5	0,1000	0,0400	0,0500	0,0000	0,0882	0,0118	181,4579	0,1030	0,0500	0,0715	0,0065	100,4305	0,1057	0,0838	0,0919	0,0007	0,1953	0,2306	99,5198	4
6	0,1000	0,0400	0,0500	0,0000	0,0870	0,0113	181,3203	0,0991	0,0403	0,0543	0,0013	97,5841	0,0992	0,0400	0,0899	-0,0101	-0,0390	-0,0191	101,2001	3
7	0,1000	0,0400	0,0500	0,0000	0,0882	0,0117	182,7927	0,1006	0,0401	0,0495	-0,0005	117,4305	0,1005	0,0401	0,1041	0,0021	-0,0549	0,0049	121,4226	3
8	0,1000	0,0400	0,0500	0,0000	0,0885	0,0122	182,9504	0,1005	0,0399	0,0490	0,0009	113,6912	0,1014	0,0440	0,0591	0,0099	0,0017	-0,0451	117,1293	3
9	0,1000	0,0400	0,0500	0,0000	0,0878	0,0113	180,0272	0,0996	0,0389	0,0511	0,0002	102,1160	0,0994	0,0387	0,0724	0,0002	-0,0217	0,0004	105,9690	3
10	0,1000	0,0400	0,0500	0,0000	0,0883	0,0116	181,8210	0,0990	0,0341	0,0373	-0,0056	118,2532	0,0987	0,0337	-0,0157	-0,0068	0,0523	-0,0062	122,2060	3
11	0,1000	0,0400	0,0500	0,0000	0,0867	0,0112	185,4098	0,0981	0,0367	0,0437	-0,0041	114,8894	0,0977	0,0353	0,0376	-0,0070	0,0021	0,0074	120,1258	3
12	0,1000	0,0400	0,0500	0,0000	0,0873	0,0116	180,1158	0,0990	0,0398	0,0532	0,0023	96,1488	0,0993	0,0410	0,0734	0,0027	-0,0176	0,0012	100,0286	3
13	0,1000	0,0400	0,0500	0,0000	0,0864	0,0108	179,1013	0,0966	0,0340	0,0442	-0,0024	108,6975	0,0961	0,0322	0,0878	0,0094	-0,0539	0,0340	112,9255	3
14	0,1000	0,0400	0,0500	0,0000	0,0883	0,0121	176,3741	0,0999	0,0397	0,0516	0,0033	96,3012	0,1000	0,0400	0,0683	0,0033	-0,0165	0,0033	100,5004	3
15	0,1000	0,0400	0,0500	0,0000	0,0878	0,0120	177,5282	0,0988	0,0371	0,0452	0,0002	90,8672	0,0988	0,0374	0,0415	0,0009	0,0049	-0,0017	95,0891	3
16	0,1000	0,0400	0,0500	0,0000	0,0874	0,0118	180,8307	0,0979	0,0342	0,0377	-0,0046	109,3397	0,0978	0,0338	0,0362	-0,0041	0,0008	-0,0190	113,5328	3
17	0,1000	0,0400	0,0500	0,0000	0,0883	0,0119	186,4253	0,1011	0,0410	0,0498	-0,0004	116,6548	0,1007	0,0394	0,0463	-0,0020	-0,0002	-0,0204	121,6148	3
18	0,1000	0,0400	0,0500	0,0000	0,0873	0,0117	183,9169	0,0988	0,0363	0,0407	-0,0043	99,7788	0,0984	0,0353	-0,0080	0,0093	0,0455	-0,0040	104,3249	3
19	0,1000	0,0400	0,0500	0,0000	0,0877	0,0117	181,7641	0,1002	0,0400	0,0485	-0,0004	109,8975	0,1015	0,0483	0,0792	0,0322	0,0050	-0,0477	111,7618	3
20	0,1000	0,0400	0,0500	0,0000	0,0876	0,0117	181,9354	0,0997	0,0402	0,0517	0,0014	117,4467	0,1001	0,0415	0,0475	0,0062	0,0073	-0,0143	121,1562	3
21	0,1000	0,0400	0,0500	0,0000	0,0878	0,0117	182,4108	0,0996	0,0380	0,0453	-0,0018	102,7226	0,0994	0,0376	0,0132	-0,0022	0,0311	-0,0022	106,6081	3
22	0,1000	0,0400	0,0500	0,0000	0,0871	0,0114	178,9008	0,0980	0,0365	0,0459	-0,0015	105,5657	0,0977	0,0349	0,1064	0,0104	-0,0688	0,0269	108,9415	3
23	0,1000	0,0400	0,0500	0,0000	0,0879	0,0118	185,7390	0,1019	0,0456	0,0577	0,0011	80,2972	0,1021	0,0454	0,0699	-0,0069	-0,0151	-0,0223	83,3024	3
24	0,1000	0,0400	0,0500	0,0000	0,0875	0,0117	177,1869	0,0978	0,0339	0,0392	-0,0029	102,6032	0,0975	0,0334	0,0454	-0,0032	-0,0070	-0,0035	106,5217	3
25	0,1000	0,0400	0,0500	0,0000	0,0874	0,0122	188,8763	0,1016	0,0457	0,0540	0,0001	120,3859	0,1017	0,0461	0,0366	0,0000	0,0179	0,0005	124,3522	3
26	0,1000	0,0400	0,0500	0,0000	0,0869	0,0112	179,9660	0,1003	0,0484	0,0788	0,0094	108,5226	0,1002	0,0460	0,1457	-0,0096	-0,0780	-0,0181	111,5120	3
27	0,1000	0,0400	0,0500	0,0000	0,0880	0,0116	180,8416	0,1002	0,0400	0,0520	0,0010	110,7937	0,1001	0,0396	0,0637	-0,0044	-0,0138	-0,0160	114,5860	3
28	0,1000	0,0400	0,0500	0,0000	0,0874	0,0116	185,0334	0,0999	0,0403	0,0490	-0,0017	117,6954	0,1002	0,0416	0,0771	-0,0006	-0,0251	-0,0008	121,9187	3
29	0,1000	0,0400	0,0500	0,0000	0,0883	0,0120	184,0074	0,1028	0,0481	0,0654	0,0051	93,4994	0,1030	0,0504	0,0712	0,0173	0,0049	-0,0341	95,7151	3
30	0,1000	0,0400	0,0500	0,0000	0,0873	0,0118	186,8441	0,1007	0,0429	0,0516	-0,0010	109,4259	0,1008	0,0434	0,0415	-0,0004	0,0108	-0,0022	113,7194	3
média					0,0876	0,0117	182,0440	0,0998	0,0399	0,0503	-0,0001	104,9578	0,0999	0,0419	0,0595	0,0004	0,0043	0,0102	108,4978	
desvio padrão					0,0005	0,0003	3,1758	0,0016	0,0044	0,0093	0,0034	9,8374	0,0020	0,0100	0,0334	0,0100	0,0573	0,0763	10,2680	
																			Acertos	29

Erros para dois compartimentos 0

Tabela 4.13 – Valores estimados e sugestões do Decisor de Modelos Estrutura compartimental fixada: quatro compartimentos Nível de ruído: baixo

		Parâ	imetros	s pré-fix	ados						Pa	râmetro	os estim	nados e í	ndices	AIC						
							dois compa	artimentos		três	s comp	artimer	ntos			qua	tro con	npartim	entos			
experimento	K ₁	k ₂	k ₃	k ₄	k ₅	k ₆	K ₁	k ₂	AIC 2	K ₁	k ₂	k ₃	k_4	AIC 3	К1	k ₂	k ₃	k_4	k ₅	k ₆	AIC 4	Sugestão de compartimentos
1	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0857	0,0465	304,2998	0,0986	0,0824	0,0468	0,0819	175,2308	0,0998	0,0970	0,0113	0,0371	0,0921	0,1650	109,8638	4
2	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0857	0,0464	304,0889	0,0981	0,0802	0,0432	0,0793	167,6081	0,0995	0,0951	0,0173	0,0472	0,0843	0,1845	103,8788	4
3	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0857	0,0465	303,3701	0,0981	0,0800	0,0428	0,0797	171,2431	0,0997	0,0970	0,0165	0,0454	0,0940	0,1910	109,2382	4
4	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0856	0,0464	303,9980	0,0985	0,0827	0,0481	0,0830	169,6507	0,0997	0,0973	0,0210	0,0528	0,0885	0,1945	103,8683	4
5	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0855	0,0464	305,0571	0,0985	0,0820	0,0460	0,0811	173,9968	0,1001	0,1016	0,0287	0,0587	0,1035	0,2400	119,6526	4
6	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0857	0,0464	304,6327	0,0989	0,0844	0,0511	0,0843	168,2736	0,1002	0,0987	0,0199	0,0516	0,0891	0,1829	102,3521	4
7	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0856	0,0464	304,2844	0,0983	0,0814	0,0454	0,0812	173,2672	0,0997	0,0971	0,0190	0,0497	0,0890	0,1900	112,8602	4
8	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0858	0,0466	303,7230	0,0985	0,0821	0,0466	0,0824	174,8657	0,0998	0,0970	0,0129	0,0408	0,0921	0,1712	117,3520	4
9	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0857	0,0465	304,2171	0,0983	0,0814	0,0455	0,0815	169,8179	0,0996	0,0973	0,0288	0,0607	0,0874	0,2339	122,0668	4
10	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0857	0,0464	303,9066	0,0984	0,0816	0,0457	0,0815	178,2045	0,1002	0,1032	0,0250	0,0546	0,1134	0,2294	104,8762	4
11	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0858	0,0465	303,4302	0,0987	0,0834	0,0497	0,0847	178,3454	0,0999	0,0982	0,0111	0,0376	0,0974	0,1669	110,7263	4
12	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0856	0,0464	304,2624	0,0983	0,0813	0,0452	0,0810	171,4682	0,0998	0,0987	0,0233	0,0541	0,0950	0,2127	94,6883	4
13	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0857	0,0464	304,5899	0,0987	0,0831	0,0483	0,0826	171,0127	0,1002	0,1021	0,0307	0,0608	0,1029	0,2432	105,5882	4
14	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0857	0,0465	303,1520	0,0981	0,0805	0,0442	0,0813	171,3233	0,0995	0,0956	0,0170	0,0479	0,0871	0,1848	128,8815	4
15	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0857	0,0465	303,3854	0,0981	0,0806	0,0439	0,0805	173,1024	0,0997	0,0978	0,0148	0,0426	0,0966	0,1834	97,0548	4
16	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0857	0,0465	304,0446	0,0985	0,0823	0,0471	0,0825	173,9918	0,0997	0,0959	0,0109	0,0373	0,0885	0,1607	105,6233	4
17	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0857	0,0465	303,7063	0,0983	0,0817	0,0461	0,0819	176,7597	0,1000	0,1004	0,0219	0,0523	0,1021	0,2102	123,5735	4
18	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0858	0,0465	303,2549	0,0986	0,0827	0,0484	0,0843	169,5522	0,0999	0,0976	0,0177	0,0492	0,0917	0,1854	105,0081	4
19	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0857	0,0464	303,5366	0,0982	0,0812	0,0454	0,0817	172,0818	0,0997	0,0987	0,0255	0,0570	0,0969	0,2265	113,3849	4
20	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0856	0,0464	304,3367	0,0983	0,0815	0,0457	0,0818	172,4750	0,0997	0,0962	0,0153	0,0452	0,0870	0,1750	125,4265	4
21	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0857	0,0465	303,8681	0,0987	0,0832	0,0487	0,0833	177,8679	0,1007	0,1073	0,0287	0,0574	0,1276	0,2448	108,9157	4
22	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0857	0,0465	304,1988	0,0984	0,0817	0,0458	0,0815	168,7438	0,0999	0,0988	0,0223	0,0533	0,0929	0,2038	120,8409	4
23	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0857	0,0464	303,3511	0,0981	0,0807	0,0443	0,0807	174,9790	0,0999	0,1003	0,0203	0,0498	0,1051	0,2090	104,4958	4
24	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0857	0,0464	304,1782	0,0984	0,0822	0,0468	0,0820	170,2585	0,0998	0,0976	0,0165	0,0464	0,0902	0,1788	113,9127	4
25	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0857	0,0464	304,1510	0,0984	0,0822	0,0470	0,0822	172,9796	0,1000	0,1012	0,0271	0,0577	0,1012	0,2271	108,9091	4
26	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0857	0,0464	303,1004	0,0982	0,0813	0,0458	0,0823	179,8505	0,1000	0,1016	0,0219	0,0520	0,1108	0,2177	110,0782	4
27	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0857	0,0464	304,5482	0,0983	0,0813	0,0447	0,0803	179,8782	0,1001	0,0995	0,0156	0,0432	0,0992	0,1850	118,9293	4
28	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0857	0,0464	303,9697	0,0982	0,0810	0,0444	0,0804	177,4666	0,0998	0,0987	0,0142	0,0413	0,0985	0,1809	107,0197	4
29	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0857	0,0464	303,7671	0,0986	0,0825	0,0477	0,0832	174,8599	0,1001	0,1015	0,0259	0,0569	0,1045	0,2253	108,3159	4
30	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0857	0,0465	304,1834	0,0984	0,0817	0,0457	0,0815	176,8584	0,0999	0,0982	0,0143	0,0423	0,0949	0,1764	113,7132	4
média							0,0857	0,0464	303,9531	0,0984	0,0818	0,0462	0,0818	173,5338	0,0999	0,0989	0,0199	0,0494	0,0968	0,1993	111,0365	
desvio padrão							0,0001	0,0000	0,4807	0,0002	0,0010	0,0019	0,0013	3,5012	0,0002	0,0026	0,0058	0,0071	0,0093	0,0253	8,2131	
																					Acertos	30
																		Erros	para doi:	s compa	rtimentos	0

82

Erros para três compartimentos

Tabela 4.14 – Valores estimados e sugestões do Decisor de Modelos Estrutura compartimental fixada: quatro compartimentos Nível de ruído: médio

		Parâ	imetros	s pré-fix	ados						Pa	râmetro	os estim	nados e í	ndices	AIC						
							dois comp	artimentos		três	s comp	artimer	ntos			qua	tro con	npartime	entos			
experimento	К.	k.	k.	k.	k-	k.	К.	k.		К.	k.	k.	k.		К.	k.	k.	k.	k-	k.		Sugestão de
experimento	14	K2	13	K 4	K 5	~ 6	1	N ₂	AIC 2	11	N2	13	N4	Alc 5	1	K2	13	N 4	K 5	16	AIC 4	compartimentos
1	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0857	0,0465	236,3728	0,0975	0,0773	0,0363	0,0734	135,4698	0,0999	0,0977	0,0073	0,0226	0,1010	0,1668	112,7422	4
2	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0858	0,0464	234,2231	0,0988	0,0832	0,0494	0,0838	128,6995	0,1008	0,1106	0,0348	0,0619	0,1457	0,2809	109,4756	4
3	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0856	0,0464	235,6289	0,0985	0,0820	0,0455	0,0798	142,4986	0,1014	0,1189	0,0263	0,0497	0,1806	0,2554	122,0509	4
4	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0857	0,0464	236,6010	0,0995	0,0869	0,0558	0,0870	116,1849	0,1003	0,1000	0,0306	0,0637	0,0816	0,2048	106,8805	4
5	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0856	0,0464	238,3271	0,0981	0,0797	0,0397	0,0742	130,4321	0,0996	0,0926	0,0134	0,0394	0,0742	0,1650	120,4834	4
6	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0855	0,0463	236,2755	0,0981	0,0805	0,0424	0,0764	130,5945	0,1004	0,1037	0,0058	0,0148	0,1183	0,1624	103,9516	4
7	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0857	0,0465	234,3624	0,0972	0,0768	0,0360	0,0740	113,2076	0,0988	0,0905	0,0116	0,0373	0,0755	0,1691	99,1620	4
8	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0859	0,0466	236,4694	0,1000	0,0891	0,0600	0,0897	129,1640	0,1018	0,1227	0,0635	0,0789	0,2075	0,4529	119,4906	4
9	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0853	0,0462	236,1978	0,0974	0,0788	0,0401	0,0760	128,4288	0,0990	0,0934	0,0094	0,0312	0,0845	0,1596	107,2963	4
10	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0858	0,0465	233,1117	0,0971	0,0759	0,0351	0,0740	118,7126	0,0990	0,0954	0,0211	0,0506	0,1027	0,2462	107,9813	4
11	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0857	0,0467	235,5679	0,0976	0,0784	0,0389	0,0767	132,6139	0,0991	0,0929	0,0122	0,0386	0,0825	0,1744	117,0386	4
12	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0858	0,0466	234,5927	0,0984	0,0823	0,0472	0,0831	121,4734	0,0997	0,0957	0,0104	0,0367	0,0876	0,1587	109,2951	4
13	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0861	0,0466	234,2471	0,0982	0,0797	0,0425	0,0804	128,0951	0,0998	0,0952	0,0110	0,0368	0,0908	0,1707	111,6354	4
14	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0856	0,0464	235,1047	0,0986	0,0834	0,0497	0,0840	124,0848	0,0995	0,0933	0,0030	0,0118	0,0811	0,1269	114,0894	4
15	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0858	0,0466	232,6006	0,0970	0,0759	0,0355	0,0754	132,3994	0,0993	0,0994	0,0174	0,0450	0,1184	0,2283	112,3155	4
16	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0860	0,0467	235,9073	0,0987	0,0807	0,0417	0,0771	137,7309	0,0978	0,0783	-0,0002	0,0611	0,0407	0,0802	139,5338	3
17	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0860	0,0466	234,9029	0,0986	0,0809	0,0440	0,0804	122,1007	0,1002	0,1004	0,0307	0,0611	0,1051	0,2657	108,4763	4
18	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0858	0,0464	235,4625	0,0983	0,0811	0,0457	0,0819	117,6729	0,0992	0,0915	0,0280	0,0629	0,0620	0,2053	110,0588	4
19	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0856	0,0463	236,8999	0,0993	0,0859	0,0530	0,0840	121,3788	0,1007	0,1065	0,0460	0,0711	0,1117	0,3192	103,9943	4
20	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0860	0,0464	232,8840	0,0980	0,0794	0,0434	0,0814	122,2584	0,0995	0,0963	0,0155	0,0448	0,0968	0,1910	107,4275	4
21	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0860	0,0469	233,9316	0,0990	0,0847	0,0521	0,0873	122,0348	0,1012	0,1188	0,0501	0,0728	0,2033	0,3971	107,2212	4
22	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0859	0,0465	234,6020	0,0992	0,0851	0,0529	0,0860	135,0685	0,1011	0,1075	0,0071	0,0229	0,1282	0,1654	117,4031	4
23	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0858	0,0464	234,3215	0,0984	0,0820	0,0477	0,0838	125,4428	0,0995	0,0929	0,0011	-0,0124	0,0839	0,1247	105,7492	4
24	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0854	0,0463	235,9841	0,0984	0,0824	0,0462	0,0802	119,3676	0,1000	0,1025	0,0198	0,0475	0,1084	0,2030	94,8457	4
25	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0857	0,0464	234,2936	0,0982	0,0809	0,0444	0,0803	118,1138	0,1016	0,1440	0,0583	0,0679	0,4198	0,5107	107,2101	4
26	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0860	0,0465	234,8577	0,0991	0,0835	0,0487	0,0829	134,5747	0,1012	0,1065	0,0054	0,0156	0,1258	0,1617	104,0482	4
27	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0858	0,0463	234,4099	0,0982	0,0814	0,0468	0,0832	109,5389	0,0991	0,0915	0,0252	0,0607	0,0639	0,1915	101,9355	4
28	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0858	0,0465	237,9039	0,0995	0,0850	0,0497	0,0815	130,8815	0,1013	0,1086	0,0326	0,0594	0,1232	0,2546	121,1206	4
29	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0855	0,0463	236,2166	0,0979	0,0796	0,0409	0,0761	138,3401	0,0999	0,0979	0,0039	0,0084	0,1007	0,1488	118,0157	4
30	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0860	0,0468	233,8972	0,0987	0,0833	0,0499	0,0864	111,1540	0,0991	0,0888	0,0095	0,0438	0,0624	0,1313	109,2177	4
média							0,0858	0,0465	235,2052	0,0984	0,0815	0,0454	0,0807	125,9239	0,1000	0,1011	0,0204	0,0435	0,1156	0,2157	111,0049	
desvio padrão							0,0002	0,0002	1,3787	0,0007	0,0032	0,0062	0,0045	8,4179	0,0010	0,0126	0,0169	0,0220	0,0693	0,0967	8,5034	
																					Acertos	29
																		Erros	para doi:	s compa	rtimentos	0

Erros para três compartimentos

Tabela 4.15 – Valores estimados e sugestões do Decisor de Modelos Estrutura compartimental fixada: quatro compartimentos Nível de ruído: alto

		Parâ	imetros	s pré-fix	ados						Pa	râmetro	os estim	nados e í	ndices	AIC						
							dois comp	artimentos		três	s comp	artimer	ntos			qua	tro con	npartime	entos			
experimento	K ₁	k ₂	k ₃	k ₄	k ₅	k ₆	К ₁	k ₂	AIC 2	K ₁	k ₂	k ₃	k_4	AIC 3	K ₁	k ₂	k ₃	k_4	k ₅	k ₆	AIC 4	Sugestão de compartimentos
1	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0852	0,0457	171,0970	0,0995	0,0909	0,0662	0,0905	112,9046	0,1013	0,1180	0,0463	0,0688	0,1409	0,2595	113,7738	3
2	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0856	0,0464	170,2533	0,0995	0,0879	, 0,0573	, 0,0873	104,6401	0,1011	0,1096	, 0,0271	0,0564	, 0,1217	0,2136	103,4364	4
3	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0856	0,0465	168,1173	0,0982	0,0810	0,0437	0,0796	103,0177	0,0995	0,0939	0,0106	0,0362	0,0810	0,1574	106,8054	3
4	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0856	0,0466	173,5295	0,0975	0,0773	0,0356	0,0727	117,8176	0,0977	0,0778	0,0171	0,0688	0,0193	0,0775	121,5922	3
5	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0856	0,0464	179,7111	0,1014	0,0904	0,0534	0,0779	114,1362	0,1013	0,0944	0,0035	0,0158	0,0671	0,1072	117,5106	3
6	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0852	0,0464	168,4719	0,0960	0,0728	0,0279	0,0642	94,3764	0,0981	0,0923	0,0235	0,0509	0,1035	0,3118	95,2742	3
7	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0854	0,0465	161,2322	0,0965	0,0783	0,0448	0,0873	104,7225	0,0991	0,1155	0,0371	0,0662	0,2138	0,3434	104,1498	4
8	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0854	0,0462	176,2159	0,1006	0,0906	0,0575	0,0822	110,2561	0,1006	0,0919	0,0536	0,0795	0,0105	0,2060	114,0365	3
9	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0856	0,0463	167,9708	0,0964	0,0724	0,0272	0,0634	108,9776	0,1000	0,1289	0,0345	0,0513	0,4022	0,5027	111,8079	3
10	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0863	0,0465	168,2153	0,0970	0,0741	0,0332	0,0741	115,0779	0,0984	0,0845	0,0021	-0,0006	0,0689	0,1355	114,4947	4
11	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0850	0,0460	171,4122	0,0970	0,0760	0,0313	0,0636	114,5654	0,1131	0,5615	0,1346	0,0440	1,7768	0,3205	111,0524	4
12	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0851	0,0458	183,0235	0,1005	0,0867	0,0458	0,0696	120,5126	0,1023	0,1032	0,0042	0,0059	0,0918	0,1262	119,1764	4
13	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0863	0,0469	168,9773	0,1015	0,0990	0,0820	0,1006	111,3171	0,1043	0,1326	0,0084	0,0258	0,1909	0,1699	110,5465	4
14	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0849	0,0463	166,3665	0,0970	0,0801	0,0442	0,0810	118,0096	0,1012	0,1306	0,0060	0,0089	0,2267	0,1970	112,2237	4
15	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0850	0,0459	169,2619	0,0967	0,0769	0,0374	0,0738	104,3045	0,0980	0,0921	0,0364	0,0663	0,0946	0,3995	107,2743	3
16	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0863	0,0471	174,2256	0,0972	0,0715	0,0234	0,0592	124,0416	0,0986	0,0811	0,0032	0,0068	0,0506	0,1270	125,4971	3
17	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0856	0,0463	173,7553	0,0980	0,0790	0,0390	0,0743	106,7718	0,0981	0,0796	0,0036	0,0435	0,0374	0,0818	110,4370	3
18	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0852	0,0462	173,6672	0,0970	0,0762	0,0329	0,0673	114,8160	0,0993	0,0932	0,0032	0,0023	0,0836	0,1378	115,0502	3
19	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0850	0,0460	167,3085	0,0971	0,0805	0,0473	0,0843	119,5112	0,0990	0,1022	0,0155	0,0431	0,1212	0,1977	120,9143	3
20	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0863	0,0471	165,0702	0,0983	0,0812	0,0474	0,0888	98,3280	0,0983	0,0821	0,0043	0,0465	0,0482	0,1035	102,2830	3
21	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0856	0,0464	166,5418	0,0993	0,0865	0,0556	0,0872	102,3637	0,1115	0,5532	0,2701	0,0714	2,0483	0,4493	97,4890	4
22	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0850	0,0457	177,4803	0,0983	0,0802	0,0383	0,0677	126,8583	0,1024	0,1204	0,0112	0,0211	0,1696	0,1933	122,4111	4
23	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0853	0,0464	169,3234	0,0989	0,0882	0,0602	0,0903	110,7402	0,0993	0,0965	0,0000	-0,2537	0,0875	0,1118	109,2973	4
24	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0858	0,0467	165,0791	0,0983	0,0826	0,0497	0,0870	91,5206	0,1004	0,1117	0,0422	0,0699	0,1604	0,3301	87,4351	4
25	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0861	0,0469	169,0549	0,0993	0,0847	0,0515	0,0868	116,9516	0,1006	0,1002	0,0005	-0,0345	0,1027	0,1315	119,0915	3
26	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0857	0,0466	167,7326	0,0985	0,0863	0,0601	0,0953	95,8801	0,0984	0,0864	0,0065	0,0942	0,0538	0,0953	99,9863	3
27	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0845	0,0456	177,2011	0,0998	0,0900	0,0561	0,0787	107,9556	0,1006	0,0995	0,0001	-0,0585	0,0851	0,1044	109,6003	3
28	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0864	0,0472	166,0416	0,1001	0,0929	0,0740	0,1034	112,6895	0,1006	0,0982	0,0535	0,0911	0,0437	0,1978	116,3517	3
29	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0849	0,0458	165,5348	0,0945	0,0694	0,0265	0,0665	109,0707	0,0956	0,0791	0,0201	0,0536	0,0527	0,2512	111,2171	3
30	0,1000	0,1000	0,0200	0,0500	0,1000	0,2000	0,0851	0,0463	168,0189	0,0964	0,0776	0,0412	0,0813	114,9783	0,0973	0,0853	0,0005	-0,0266	0,0666	0,1143	116,5219	3
média							0,0855	0,0464	170,3297	0,0982	0,0820	0,0464	0,0795	110,2371	0,1005	0,1299	0,0293	0,0271	0,2274	0,2051	110,8912	
desvio padrão							0,0005	0,0004	4,8666	0,0017	0,0072	0,0142	0,0114	8,5456	0,0037	0,1173	0,0530	0,0647	0,4659	0,1133	8,6214	
																					Acertos	11
																		Erros	para doi:	s compa	rtimentos	0

84

Erros para três compartimentos

4.1.3.1 Desempenho do Decisor de Modelos pelo índice de Kappa

Para avaliar o desempenho do Decisor de Modelos, decidiu-se aplicar a estatística de Kappa (LANDIS; KOCH, 1977) por permitir análise e comparação cruzada entre os modelos (e, conseqüentemente, suas respectivas constantes) utilzados na sintetização de dados e os modelos sugeridos pela métrica de Akaike na etapa de identificação dos parâmetros. Em linhas gerais, tal abordagem baseia-se na disposição dos resultados obtidos pelo Decisor de Modelos em forma de uma tabela que apresenta o número de acertos dos modelos classificados, através da metodologia apresentada, para o cálculo do chamado índice de concordância de Kappa. Foram construídas três tabelas, cada qual correspondente a cada nível de ruído considerado, compostas pelas sugestões do número de compartimentos segundo a métrica de Akaike.

O índice de Kappa permite a avaliação da variabilidade de classificação que o Decisor de Modelos apresenta quando testado com os diferentes níveis de ruído. Seu valor máximo é igual a um, podendo apresentar valores mínimos negativos menores que -1. O valor zero indicaria concordância nula entre o Decisor e a classificação correta. O índice é expresso por:

Índice de Kappa =
$$\frac{P_o - P_e}{n - P_e}$$
 (4.3)

Onde:

 P_o representa a somatória dos valores concordantes entre os modelos sintetizados e os modelos classificados. É a somatória dos valores da diagonal principal dos modelos classificados e designado pela letra "U" na tabela 4.16.

• P_e representa a somatória dos produtos entre totais das linhas e totais das colunas para determinado modelo dividida pelo número total de realizações do experimento n. Assim, cada parcela da somatória é o produto do total de coluna para o modelo com dois, três ou quatro compartimentos pelo total de linha para o modelo com dois, três ou quatro compartimentos, dividida por n. Nas tabelas, tais

parcelas são apresentadas na coluna de "freqüência esperada" e designado pela letra "T" na tabela 4.16.

• *n* é o número de realizações ou dados sintéticos de concentração tecidual.

Aqui, possui valor fixo de noventa e designado pela letra "S" na tabela 4.16.

A seguir, apresenta-se a tabela modelo para cálculo.

		ippu pulu luido (Juaiquoi		
	Propost	o pelo Decisor de l	Modelos		
Ruído alto	dois compartimentos	três compartimentos	quatro compartimentos	totais das linhas	freqüência esperada
dois compartimentos	A	В	С	D	E
três compartimentos	F	G	н	I	J
quatro compartimentos	К	L	Μ	Ν	0
totais das colunas	Р	Q	R	S	т
total da diagonal	U				
total da diagonal (%)	V				
índice Kappa	W				
Valor-p	Χ*				
Intervalo de confi	ança com 95%				
inferior	Υ*				
superior	Z*				
	Ruído alto dois compartimentos três compartimentos quatro compartimentos totais das colunas total da diagonal total da diagonal total da diagonal (%) <u>índice Kappa</u> Valor-p Intervalo de confi inferior superior	PropositionRuído altodois compartimentosdoisAcompartimentosFquatroKquatroKtotais dasPtotais dasUtotal da diagonalUtotal da diagonalV(%)X*Intervalo de confiança com 95%Y*superiorZ*	Propose pelo Decisor de laRuído altodois compartimentostrês compartimentosdois três trêsABcompartimentos trêsFGquatro quatro colunasKLtotais das colunasPQtotai da diagonal (%)U-índice KappaW-Valor-pX*-Intervalo de confiarça com 95% inferiorY*superiorZ*-	Proposto pelo Decisor de ModelosRuído altodois compartimentos compartimentosquatro compartimentosdois compartimentosABCdois compartimentosABCtrês quatro quatro quatroFGHcompartimentos quatroKLMtotais das colunasPQRtotai da diagonal (%)UVVíndice KappaWVVValor-pX*VVIntervalo de confiaça com 95% inferiorY*VVsuperiorZ*VV	Proposite relation quarter Ruído alto dois compartimentos três compartimentos quatro compartimentos totais das linhas dois A B C D dois A B C D três F G H I quatro K L M N compartimentos P Q R S totais das colunas P Q R S totai da diagonal (%) V V V V fíndice Kappa W V V V Valor-p X* V V V inferior Y* V V V

Tabela 4 16 -	- Estatística	de Kappa	para ruído	qualquer
		uc nappa	para ruido	quaiquei

Onde:

- A, B, C, F, G, H, K, L e M são números propostos pelo Decisor de Modelos.
- D = A + B + C
- I = F + G + H
- N = K + L + M
- P = A + F + K
- Q = B + G + L
- R = C + H + M
- S = P + Q + R = D + I + N

•
$$U = A + G + M$$

•
$$V = \frac{U}{S}$$

•
$$E = \frac{P \cdot D}{S}$$

•
$$J = \frac{Q \cdot I}{S}$$

•
$$O = \frac{R \cdot N}{S}$$

•
$$T = E + J + O$$
$$W = \frac{U - T}{S}$$

S-T

• X*, Y* e Z* foram calculados com o auxílio de (LEE - LABORATÓRIO DE EPIDEMIOLOGIA E ESTATÍSTICA).

O termo "Valor-p" (designado anteriormente por X*) denota o erro de, eventualmente, rejeitar a hipótese nula de não-concordância entre o Decisor e o sintetizado, baseado no índice de Kappa encontrado. Aqui, esse erro é delimitado por uma desigualdade e se, por exemplo, encontra-se p < 0.001, interpreta-se que o erro em aceitar a concordância é menor do que um milésimo.

Os limites inferiores e superiores (designados anteriormente por Y* e Z*) delimitam um intervalo de 95% de confiança, ou seja, há probabilidade de 0.95 de que o valor do índice de Kappa calculado pertença ao intervalo em questão.

O valor do índice de Kappa calculado denota os seguintes graus de concordância entre as medidas sintetizadas e os modelos classificados, segundo (LANDIS; KOCH, 1977):

Tabela 4.17 – INIVEIS de concor	dancia pelo indice de Kappa
Índice de Kappa	Grau de concordância
< 0	pobre
0.00 a 0.20	fraco
0.21 a 0.40	razoável
0.41 a 0.60	moderado
0.61 a 0.80	considerável
0.81 a 1.00	forte

Nívois do concordância polo índico do Kanno

As tabelas 4.18, 4.19 e 4.20 sumarizam os números de acertos e de erros cometidos pelo Decisor de Modelos e avaliam os respectivos índices de Kappa em três situações distintas: com nível de ruído baixo, com nível de ruído médio e com

nível de ruído alto. O objetivo da elaboração destas tabelas é verificar o nível de robustez do algoritmo nestas três situações diferentes, tal que maior robustez é evidenciada pelo maior valor de índice de Kappa obtido.

As três primeiras linhas de cada tabela apresentam o número de sugestões de determinado modelo compartimental fornecido pelo Decisor de Modelos frente a um determinado experimento. Dessa maneira, idealmente, esperava-se uma matriz diagonal para cada uma das tabelas. No entanto, explica-se a ausência deste caráter em razão do ruído de medida encontrado em cada experimento, provocando sugestões equivocadas, quanto aos modelos mais adequados, do Decisor de Modelos. Comparando-se os índices Kappa obtidos com a tabela 4.17, nota-se que nos três níveis de ruído simulados, a concordância é estatisticamente significativa (p<0,001) e com grau "considerável" e "forte".

As tabelas são as seguintes:

		Propost	o pelo Decisor de l	Modelos		
	Ruído baixo	dois compartimentos	três compartimentos	quatro compartimentos	totais das linhas	freqüência esperada
qo	dois compartimentos	27	2	1	30	9,0000
ntetiza	três compartimentos	0	30	0	30	10,6667
Si	quatro compartimentos	0	0	30	30	10,3333
	totais das colunas	27	32	31	90	30,0000
	total da diagonal	87				
	total da diagonal (%)	96,67%				
	índice Kappa	0,9500				
	Valor-p	< 0.001				
	Intervalo de confi	ança com 95%				
	inferior	0,8040				
	superior	1,0000				

Tabela 4.18 – Estatística d	de Kappa pa	ara ruído baixo
-----------------------------	-------------	-----------------

		Propost	o pelo Decisor de l	Modelos		
	Ruído médio	dois compartimentos	três compartimentos	quatro compartimentos	totais das linhas	freqüência esperada
qo	dois compartimentos	28	2	0	30	9,3333
ntetiza	três compartimentos	0	29	1	30	10,6667
Si	quatro compartimentos	0	1	29	30	10,0000
	totais das colunas	28	32	30	90	30,0000
	total da diagonal	86				
	total da diagonal (%)	95,56%				
	índice Kappa	0,9333				
	Valor-p	< 0.001				
	Intervalo de confi	ança com 95%				
	inferior	0,7870				
	superior	1,0000				

Tabela 4.19 – Estatística de Kappa para ruído médio

Tabela 4.20 – Estatística de Kappa para ruído alto Pronosto pelo Decisor de Modelos

		Propost	o pelo Decisor de l	viodelos		
	Ruído alto	dois compartimentos	três compartimentos	quatro compartimentos	totais das linhas	freqüência esperada
op	dois compartimentos	28	1	1	30	9,3333
ntetiza	três compartimentos	0	29	1	30	16,3333
Si	quatro compartimentos	0	19	11	30	4,3333
	totais das colunas	28	49	13	90	30,0000
	total da diagonal	68				
	total da diagonal (%)	75,56%				
	índice Kappa	0,6333				
	Valor-p	< 0.001				
	Intervalo de confi	ança com 95%				
	inferior	0,4960				
	superior	0,7700				

CAPÍTULO 5

DISCUSSÃO DE RESULTADOS

5.1 Discussão de resultados da primeira etapa

Como mencionado no início do capítulo anterior, os resultados foram divididos em duas etapas.

A primeira delas apresenta gráficos com o intuito de ilustrar a qualidade do ajuste encontrado utilizando-se a metodologia apresentada. Observa-se razoável concordância entre os dados sintetizados (representados por pontos vermelhos) e a curva ajustada pelo modelo (apresentada na cor azul) nas figs. 4.1, 4.2 e 4.3.

Os valores estimados apresentados nas tabelas (4.1), (4.3) e (4.5) revelam melhor desempenho da metodologia quando aplicada aos dois modelos compartimentais mais simples, isto é, com dois e com três compartimentos. A justificativa é a maior concordância dos valores estimados quando comparados aos valores utilizados na sintetização de dados, indicando que o método oferece resultados mais coerentes para tal situação. Adicionalmente, observou-se que a estimativa de parâmetros para o modelo de quatro compartimentos algumas vezes é prejudicada pela existência de mais mínimos locais da função custo.

Outro aspecto relevante que apóia tal afirmação diz respeito aos valores limite de desvios padrão avaliados para as estimativas (vide tabelas no Apêndice D): o modelo compartimental com quatro compartimentos apresenta estimativas com variâncias relativamente maiores em comparação aos modelos mais simples, levantando questionamento crítico na aplicabilidade desta estrutura em exames reais.

Resultados semelhantes para os três modelos foram obtidos para outras situações e experimentos com diferentes parâmetros e níveis de ruído.

5.2 Discussão de resultados da segunda etapa

As tabelas resumo apresentadas (tabelas (4.7-4.15)) reforçam as afirmações colocadas na discussão dos resultados da primeira etapa. Delas, observa-se que, como esperado intuitivamente, o modelo com dois compartimentos descreve a maior concordância entre os valores fixados e estimados na tarefa de estimação em todos os três níveis de ruído.

Em seguida, passando ao modelo com três compartimentos, notam-se também concordâncias bastante razoáveis para as estimativas das constantes para esta estrutura, piorando para o caso de nível de ruído alto. Dessa maneira, em termos práticos, sua empregabilidade fica encorajada por apresentar desempenhos satisfatórios inclusive para nível de ruído médio.

No entanto, para o modelo mais complexo com quatro compartimentos, observase concordância muito mais pobre. Apesar de apresentar índices de Akaike mais coerentes com a estrutura fixada para a sintetização de dados para os níveis de ruído baixo e médio, seu desempenho para ruído alto é prejudicado. Tal modelo só possui concordância entre os parâmetros fixados e estimados para níveis de ruído baixo e médio, condenando seu uso para fins práticos na presença de ruído elevado e para modelos mais complexos.

Finalmente, os índices de Kappa mostraram concordância forte de classificação de modelos para os níveis de ruído baixo e médio, como pode ser observado através da tabela de níveis de concordância característicos desta abordagem. Tal fato evidencia considerável robustez da metodologia proposta através do uso das equações de sensibilidade. Com relação ao nível de ruído alto, nota-se que o valor do índice foi diminuído pela discordância entre estruturas pré-fixadas e identificadas do modelo mais complexo com quatro compartimentos.

CAPÍTULO 6

CONCLUSÕES

6.1 Conclusões

A abordagem neste trabalho representa a solução com melhor desempenho dentre todas as pesquisadas. O emprego da metodologia de resolução do problema de otimização aplicada à redução da função custo de somatória dos mínimos quadrados ponderados pela variância da medida aferida através da utilização das equações de sensibilidade mostra vantagem considerável, principalmente em tempo de processamento, quando comparada a outros algoritmos de otimização disponíveis na literatura e em pacotes de software como o Matlab®. Acredita-se que tal benefício esteja relacionado tanto à qualidade da avaliação dos termos relacionados à derivada da função custo quanto à relativa rapidez com que tais informações são obtidas na etapa de integração conjunta das equações de sensibilidade, superando com vantagem a abordagem numérica para tal propósito.

Outro importante aspecto a ressaltar é a robustez alcançada pela metodologia quando da utilização do método de Levenberg-Marquardt e das equações de sensibilidade. Apesar de modelos compartimentais mais complexos como o modelo com quatro compartimentos apresentarem dificuldades na tarefa de identificação paramétrica, como a existência de diversos mínimos locais, a metodologia proposta apresenta resultados satisfatórios para os modelos com dois e três compartimentos, dificilmente sofrendo com a existência de mais de uma solução.

Para o caso de modelos mais elaborados, sugere-se a simplificação do modelo a fim de se obter estimativas com relativas menores variâncias. É freqüente, na literatura, este tipo de prática, além da preparação de um protocolo médico que empregue o projeto do experimento em questão. Para esta finalidade, pode-se, por exemplo, realizar múltiplas injeções de radiofármaco durante o exame e, com relação aos modelos compartimentais mais sofisticados, podem-se agrupar

determinadas constantes para a tarefa de estimação, mas com a desvantagem de não estimá-las individualmente. Do ponto de vista clínico, tal alternativa pode ser interessante nas situações em que tal agrupamento caracterize o estudo de determinado mecanismo metabólico, guardadas as considerações e cuidados sobre a modelagem adotada.

Com relação ao ruído adicionado aos dados sintetizados, observou-se desempenho considerável do método para uma distribuição do tipo Poisson, conferindo maior proximidade às condições encontradas em exames clínicos. Os resultados obtidos para as estimativas aqui apresentados são válidos até para níveis de ruído relativamente maiores que os encontrados em casos reais, ressaltando-se a utilização dos modelos com dois e três compartimentos. Isso pode ser observado analisando os resultados obtidos na seção que apresenta a estatística de Kappa. O modelo com quatro compartimentos não é recomendado para nível de ruído elevado, pelo menos ao empregar-se a metodologia descrita, para fins práticos, em razão da menor concordância dos parâmetros estimados frente aos parâmetros préfixados.

6.2 Contribuições da pesquisa

Como principal resultado deste trabalho, obteve-se a seleção de modelos mediante o emprego do critério de informação de Akaike, além da comprovação da eficácia da metodologia de equações de sensibilidade para a estimação paramétrica de modelos compartimentais caracterizados por equações diferenciais. Conclui-se que tal abordagem venha a ser bastante útil na identificação de outros tipos de sistemas dinâmicos com excitação de entrada, oferecendo até mesmo uma maneira de se estimar limites inferiores para as incertezas dos parâmetros. Comprovou-se também apreciável robustez oferecida pelo método de otimização de Levenberg-Marquardt, fato este observado pelos elevados índices de concordância de Kappa obtidos neste trabalho. A metodologia revela-se eficaz, ao menos para as estruturas com dois e com três compartimentos, ainda que considerado um ruído do tipo Poisson, como aqui considerado.

No tocante à simulação de sistemas dinâmicos com excitação de entrada, apresentou-se, através da técnica de interpolação linear, uma alternativa para integração numérica de equações diferenciais caracterizadas por funções de entrada informadas por dados tabulados.

Adicionalmente, uma interface gráfica foi programada em Matlab® para facilitar a conferência das afirmações descritas neste texto. As rotinas programadas foram elaboradas de maneira modular, facilitando a inclusão de novos modelos para trabalhos futuros. Sua apresentação é encontrada no Apêndice.

Por fim, ressalta-se a análise e proposta de solução aplicáveis à área médica, podendo se aplicável a exames reais de pacientes para diagnósticos clínicos, bem como ferramenta para modelagem de sistemas biológicos.

6.3 Melhorias e trabalhos futuros

Diante da pobre concordância entre parâmetros fixados e estimados para o modelo com quatro compartimentos com elevado nível de ruído, sugere-se um aprofundamento no estudo de outros algoritmos de otimização que resolvam o problema de estimação de maneira adequada. Pelo método de Levenberg-Marquardt utilizar derivadas da função custo, o mal dos mínimos locais talvez possa ser reduzido com o auxílio de outras metodologias para minimização da função custo.

Outra interessante contribuição seria a introdução de restrições aos valores das estimativas. Tal detalhe deveria ser integrado à rotina de otimização e alguns métodos como o de "projeção do gradiente" sobre funções de restrição poderiam ser estudados e programados.

A incorporação do recurso de restrição foi implementada na interface gráfica programada em Matlab®, porém de maneira relativamente simples. É sabido que há melhores alternativas na literatura para o tratamento específico desta questão.

Ainda referente à interface gráfica, sugere-se a ampliação de sua funcionalidade integrando-a a um sistema de aferição de concentração de radiofármaco através do processamento de imagens. Dessa maneira, os dados sintetizados não mais seriam

obtidos da maneira descrita neste trabalho, mas sim de pixels de determinado conjunto de imagens que se deseja estudar, tal qual como as captadas por um tomógrafo.

Sugere-se também a inclusão de outros modelos compartimentais dedicados a outras modalidades de estudos clínicos.

REFERÊNCIAS BIBLIOGRÁFICAS

AKAIKE, H. **A new look at the statistical model identification.** IEEE Transactions on Automatic Control. v.19, Issue 6, p.716-723, 1974.

ARNO, P. K et al. **Image-derived input functions for determination of MRGIu in** cardiac ¹⁸F-FDG PET scans. The Journal of Nuclear Medicine. v.42, n.11, p.1622-1629, 2001.

BARD, Y. Nonlinear parameter estimation. New York. Academic Press, 1974.

BAZARAA, M.; SHERALI, H.; SHETTY, C. **Nonlinear Programming: Theory and Algorithms.** Wiley-Interscience. 3rd ed, 2006.

CARSON, R. E. The development and application of mathematical models in nuclear medicine. Journal of Nuclear Medicine, v.32, n.12, p.2206-2208, 1991.

CARSON, R. E. Tracer Kinetic Modeling in PET. In: D. BAILEY et al., **Positron Emission Tomography - Basic Sciences.** Londres. Springer. 2005. p.127-159.

CHAPRA, S.; CANALLE, R. **Métodos Numéricos para Engenharia.** McGraw Hill Brasil. 5. ed, 2008.

COBELLI, C.; CARSON, E. **Modelling Methodology for Physiology and Medicine.** Academic Press, 2001.

COBELLI, C.; FOSTER, D.; TOFFOLO, G. **Tracer kinetics in biomedical research** - from data to model. Kluwer Academic Publishers, 2000.

GILL, P. E.; MURRAY, W.; WRIGHT, M. H. **Practical Optimization.** Academic Press, 1982.

GUYTON, A.; HALL, J. **Tratado de Fisiologia Médica.** Rio de Janeiro. Guanabara Koogan. 9. Ed, 1997.

LEE, **Laboratório de Epidemiologia e Estatística: Análise de concordância -Kappa.** Disponível em: <<u>http://www.lee.dante.br/pesquisa/kappa/index.html</u>>. Acesso em: 17 fev. 2010.

LANDIS, J. R.; KOCH, G. G. The Measurement of Observer Agreement for Categorical Data. Biometrics, v.33, no.1, p.159-174, 1977.

LJUNG, L. System Identification: Theory for the User. Prentice-Hall. 2nd ed, 1999.

LUENBERGER, D. Linear and Nonlinear Programming. Addison-Wesley. 2nd ed, 1984.

MEYER, E. Simultaneous correction for tracer arrival delay and dispersion in CBF measurements by the $H_2^{15}O$ autoradiographic method and dynamic PET. The Journal of Nuclear Medicine, v.30, p.1069-1078 ,1989.

ORSINI, L. Q. Introdução aos sistemas dinâmicos. Rio de Janeiro Guanabara Dois, 1985.

PHELPS, M. et al. **Noninvasive determination of local cerebral metabolic rate of glucose in man.** The American Physiological Society, AJP - Endocrinology and Metabolism, v.238, Issue 1, p.E69-E82, 1980.

PRONZATO, L.; WALTER, E. Identification of Parametric Models: from **Experimental Data.** Springer, 1997.

SHRAGER, R.; JUTAN, A.; MUZIC, R. **leasqr.m**, 1994. Disponível em: <<u>http://users.powernet.co.uk/kienzle/octave/matcompat/scripts/optim/leasqr.m</u>>. Acesso em: 17 fev. 2010.

TURKHEIMER, F.; HINZ, R.; CUNNINGHAM, V. On the Undecidability Among Kinetic Models: From Model Selection to Model Averaging. Journal of Cerebral Blood Flow & Metabolism, v.23, p.490-498, 2002.

APÊNDICE

APÊNDICE A

A.1 - Processo de Estimação Paramétrica

A tarefa de estimação de parâmetros é uma etapa tradicional dos processos de modelagem em Tomografia por Emissão de Pósitrons. No caso específico dos modelos compartimentais, o processo resume-se a determinar valores de parâmetros característicos em questão utilizando dados experimentais e, de maneira geral, envolve três assuntos principais: Probabilidade, Estatística e Otimização.

Os dois primeiros estão intimamente relacionados e, por motivos didáticos, são quase sempre apresentados em seqüência. A razão pela qual Probabilidade e Estatística são imprescindíveis na etapa de identificação relaciona-se à necessidade de tratamento matemático dos erros e imprecisões das medidas experimentais. Como conseqüência, os parâmetros apresentam valor médio e variância associados, tais como variáveis aleatórias.

A imperfeição de medida experimental em tomografia por emissão de pósitrons impede que os parâmetros tenham seus valores exatos estimados com confiança absoluta. Desta forma, é possível apenas afirmar que certo parâmetro apresenta determinado valor com certo grau de confiança, devendo ser analisadas precisão e acurácia.

O último assunto, referente à Otimização, compreende técnicas de minimização e maximização de funções matemáticas. A justificativa do uso de tais procedimentos é ilustrada, por exemplo, na minimização de erros quadráticos entre dados previstos pelo modelo e dados experimentais.

APÊNDICE B

B.1 - O Estimador de Mínimos Quadrados

O Estimador de Mínimos Quadrados é o mais utilizado na identificação de modelos compartimentais. O fato é justificado por razões históricas e o método é freqüentemente citado na literatura acerca do assunto. É provável que sua preferência deva-se à íntima relação entre o Estimador de Mínimos Quadrados e o Estimador de Máxima Verossimilhança para distribuições Gaussianas, além de apresentar o conceito simples, porém bastante intuitivo, de minimização somatória das diferenças entre medições experimentais e previsões do modelo.

Suponha que cada dado experimental y_i é medido no instante de tempo t_i e possui um desvio padrão σ_i . Considere ainda os valores preditos pelo modelo nos respectivos instantes t_i representados por $\hat{y}(t_i, \underline{\theta}, u(t_i))$, tal que $\underline{\theta}$ é o vetor de parâmetros a estimar e $u(t_i)$ é o valor da Curva de Entrada no instante t_i . Desta maneira, escreve-se a seguinte função χ^2 (chi-quadrado):

$$\chi^{2} = \sum_{i=1}^{n} \left[\frac{y_{i} - \hat{y}(t_{i}, \underline{\theta}, u(t_{i}))}{\sigma_{i}} \right]^{2}$$
(B.1)

As parcelas $y_i - \hat{y}(t_i, \underline{\theta}, u(t_i)) = \frac{y_i - \hat{y}(t_i, \underline{\theta}, u(t_i))}{\sigma_i}$ são chamadas de resíduo e resíduo normalizado, respectivamente, e *n* é o número de pares experimentais (t_i, y_i) , para i = 1, 2, ..., n. Note que resíduos medem a diferença entre valores experimentais e valores preditos.

O ajuste do modelo aos dados experimentais é conseguido minimizando-se o valor da função χ^2 modificando-se os valores de $\underline{\theta}$.

APÊNDICE C

C.1 – Interface gráfica

Uma ferramenta gráfica, bem como todas suas rotinas, foram desenvolvidaa em Matlab® (Matlab® 7) para estimação de parâmetros de modelos compartimentais com dois, três e quatro compartimentos. Esta interface permite ao usuário a sintetização de dados, escolhendo-se as características da Curva de Atividade de Entrada e as constantes dinâmicas do modelo desejado.

Dessa maneira, conseguem-se realizar a simulação e identificação de parâmetros de todos os modelos apresentados neste trabalho, oferecendo uma maneira prática de estimação de parâmetros de forma cruzada, isto é, sintetizandose dados com determinado modelo e identificando este mesmo conjunto de medidas com todos os demais.

As informações retornadas são:

- Valores dos parâmetros estimados.
- Valores de desvios padrão dos parâmetros estimados.
- Valor da somatória de resíduos quadráticos.
- Valor da somatória de resíduos quadráticos ponderados.
- Valor do índice de Akaike (AIC).

Graficamente, são apresentados:

- Curva de Atividade de Entrada.
- Dados sintetizados pelo modelo escolhido.
- Curva de ajuste dos dados após aplicação da rotina de otimização.
- Resíduos para verificação de aleatoriedade.

E as seguintes opções encontram-se disponíveis para o algoritmo de otimização:

 Avaliação de derivadas da função custo por diferenças finitas (utilizando a abordagem numérica apresentada neste texto).

 Restrições de positividade dos parâmetros, forçando o algoritmo de otimização a realizar sua busca apenas por parâmetros maiores que zero.

A interface gráfica encontra-se na figura a seguir.

Figura C.1 – Interface gráfica desenvolvida.

APÊNDICE D

D.1 – Tabelas detalhas do Capítulo de Resultados

No Capítulo de Resultados foram apresentadas tabelas resumo contendo as estimativas alcançadas pelo Decisor de Modelos. A seguir, encontram-se as mesmas tabelas, porém com informações adicionais como o palpite inicial utilizado pelo algoritmo de otimização e as respectivas incertezas das estimativas dos parâmetros estimados.

Em razão da grande quantidade de informações por elas apresentadas, as tabelas estão organizadas, agrupadas de quatro em quatro tabelas como a seguir:

• A primeira tabela do subgrupo refere-se às informações estimadas para o modelo com dois compartimentos;

 A segunda tabela do subgrupo refere-se às informações estimadas para o modelo com três compartimentos;

• A terceira tabela do subgrupo refere-se às informações estimadas para o modelo com quatro compartimentos;

 A quarta tabela do subgrupo refere-se às informações dos índices de Akaike (AIC);

A ordenação se dá segundo o nível crescente de complexidade do modelo utilizado para sintetização de dados, para os três níveis de ruído: baixo, médio e alto. Dessa maneira, têm-se primeiramente as tabelas com informações referentes à identificação de parâmetros de um conjunto de dados gerado pelo modelo com dois compartimentos e dos índices AIC, nas situações de nível de ruído baixo, seguido dos níveis de ruído médio e alto. Na seqüência têm-se as tabelas com informações referentes à identificação de parâmetros de um conjunto de dados gerado pelo modelo pelo modelo com três compartimentos e dos índices AIC, nas situações de nível de ruído baixo, seguido pelo modelo com três compartimentos e dos índices AIC, nas situações de nível de ruído pelo modelo com três compartimentos e dos índices AIC, nas situações de nível de ruído baixo, seguido dos níveis de ruído médio e alto. E, por fim, têm-se as tabelas com informações referentes à identificação de parâmetros de um conjunto de dados de ruído baixo, seguido dos níveis de ruído médio e alto. E, por fim, têm-se as tabelas com informações referentes à identificação de parâmetros de um conjunto de dados de truído baixo, seguido dos níveis de ruído médio e alto. E, por fim, têm-se as tabelas com informações referentes à identificação de parâmetros de um conjunto de dados de tados de tados

gerado pelo modelo com quatro compartimentos e dos índices AIC, nas situações de nível de ruído baixo, seguido dos níveis de ruído médio e alto.

Cada conjunto de quatro tabelas complementa as tabelas resumo apresentadas no capítulo de Resultados.

Tabela D.1 – Valores dos parâmetros estimados

Estrutura compartimental para sintetização: dois compartimentos
Estrutura compartimental identificada: dois compartimentos
Nivel de ruído: baixo

experimento	K _{1 (palpite inicial)}	k _{2 (palpite inicial)}	K ₁	desvio nadrão	k ₂	desvio nadrão
1	0.0217	0.0122	0.0200	0.0010	0.0100	0.0024
2	0,0277	0,0051	0,0200	0,0010	0,0099	0,0024
3	0,0181	0,0067	0,0200	0,0010	0,0100	0,0024
4	0,0122	0,0060	0,0200	0,0010	0,0100	0,0024
5	0,0290	0,0122	0,0200	0,0010	0,0100	0,0024
6	0,0252	0,0066	0,0200	0,0010	0,0100	0,0024
7	0,0139	0,0149	0,0200	0,0010	0,0101	0,0024
8	0,0144	0,0124	0,0200	0,0010	0,0099	0,0024
9	0,0184	0,0121	0,0200	0,0010	0,0100	0,0024
10	0,0258	0,0059	0,0200	0,0010	0,0100	0,0024
11	0,0120	0,0101	0,0200	0,0010	0,0100	0,0024
12	0,0169	0,0069	0,0200	0,0010	0,0100	0,0024
13	0,0127	0,0135	0,0200	0,0010	0,0100	0,0024
14	0,0185	0,0068	0,0200	0,0010	0,0099	0,0024
15	0,0289	0,0107	0,0200	0,0010	0,0100	0,0024
16	0,0214	0,0067	0,0200	0,0010	0,0100	0,0024
17	0,0275	0,0108	0,0200	0,0010	0,0100	0,0024
18	0,0242	0,0091	0,0200	0,0010	0,0100	0,0024
19	0,0258	0,0067	0,0200	0,0010	0,0100	0,0024
20	0,0271	0,0144	0,0200	0,0010	0,0100	0,0024
21	0,0171	0,0129	0,0200	0,0010	0,0100	0,0024
22	0,0174	0,0115	0,0200	0,0010	0,0100	0,0024
23	0,0280	0,0125	0,0200	0,0010	0,0100	0,0024
24	0,0243	0,0118	0,0200	0,0010	0,0100	0,0024
25	0,0268	0,0079	0,0200	0,0010	0,0100	0,0024
26	0,0286	0,0071	0,0200	0,0010	0,0100	0,0024
27	0,0201	0,0098	0,0200	0,0010	0,0100	0,0024
28	0,0157	0,0087	0,0200	0,0010	0,0100	0,0024
29	0,0207	0,0064	0,0200	0,0010	0,0100	0,0024
30	0,0135	0,0131	0,0200	0,0010	0,0100	0,0024
média	0,0211	0,0097	0,0200		0,0100	
desvio padrão	0,0057	0,0030	0,0000		0,0000	
		104				

Tabela D.2 – Valores dos parâmetros estimados Estrutura compartimental para sintetização: dois compartimentos Estrutura compartimental identificada: três compartimentos Nivel de ruído: baixo

evnerimento	K	k	k	k	κ.	desvio	k.	desvio	k.	desvio	k.	desvio
experimento	N1 (palpite inicial)	N2 (palpite inicial)	▶3 (palpite inicial)	№4 (palpite inicial)	K 1	padrão	K2	padrão	K3	padrão	K4	padrão
1	0,0217	0,0122	0,0000	0,0000	0,0200	0,0019	0,0101	0,0257	-0,0001	0,3225	0,0359	184,8685
2	0,0277	0,0051	0,0000	0,0000	0,0199	0,0046	0,0099	0,3756	-0,0039	38,0073	0,5735	2456,3280
3	0,0181	0,0067	0,0000	0,0000	0,0199	0,0022	0,0098	0,0361	-0,0014	0,6445	0,0739	24,4437
4	0,0122	0,0060	0,0000	0,0000	0,0199	0,0022	0,0096	0,0369	-0,0040	0,7002	0,0793	9,9296
5	0,0290	0,0122	0,0000	0,0000	0,0199	0,0018	0,0098	0,0213	-0,0011	0,2302	0,0188	8,4027
6	0,0252	0,0066	0,0000	0,0000	0,0199	0,0021	0,0098	0,0359	-0,0015	0,6442	0,0735	22,9893
7	0,0139	0,0149	0,0000	0,0000	0,0199	0,0016	0,0100	0,0149	-0,0001	0,1044	-0,0144	23,8559
8	0,0144	0,0124	0,0000	0,0000	0,0199	0,0032	0,0095	0,1311	-0,0139	7,1793	0,2922	73,8721
9	0,0184	0,0121	0,0000	0,0000	0,0199	0,0028	0,0096	0,0850	-0,0066	3,2849	0,2025	51,3679
10	0,0258	0,0059	0,0000	0,0000	0,0199	0,0024	0,0096	0,0534	-0,0059	1,4200	0,1290	18,0971
11	0,0120	0,0101	0,0000	0,0000	0,0198	0,0019	0,0093	0,0261	-0,0043	0,3735	0,0417	3,9585
12	0,0169	0,0069	0,0000	0,0000	0,0199	0,0025	0,0094	0,0608	-0,0099	1,8621	0,1514	15,8924
13	0,0127	0,0135	0,0000	0,0000	0,0199	0,0034	0,0090	0,1664	-0,0363	11,6199	0,3670	58,2041
14	0,0185	0,0068	0,0000	0,0000	0,0199	0,0024	0,0095	0,0523	-0,0058	1,3803	0,1259	17,3832
15	0,0289	0,0107	0,0000	0,0000	0,0200	0,0027	0,0102	0,0792	0,0019	2,6761	0,1817	133,7729
16	0,0214	0,0067	0,0000	0,0000	0,0199	0,0022	0,0098	0,0390	-0,0023	0,7572	0,0840	18,5888
17	0,0275	0,0108	0,0000	0,0000	0,0199	0,0022	0,0096	0,0404	-0,0041	0,8306	0,0902	12,1967
18	0,0242	0,0091	0,0000	0,0000	0,0200	0,0021	0,0101	0,0319	0,0009	0,4857	0,0571	25,7733
19	0,0258	0,0067	0,0000	0,0000	0,0200	0,0029	0,0097	0,0977	-0,0074	4,1783	0,2278	64,3628
20	0,0271	0,0144	0,0000	0,0000	0,0199	0,0018	0,0099	0,0211	-0,0006	0,2223	0,0174	14,3576
21	0,0171	0,0129	0,0000	0,0000	0,0199	0,0024	0,0099	0,0487	0,0003	1,1239	0,1097	230,1498
22	0,0174	0,0115	0,0000	0,0000	0,0199	0,0020	0,0100	0,0303	0,0004	0,4477	0,0522	59,2568
23	0,0280	0,0125	0,0000	0,0000	0,0199	0,0022	0,0098	0,0362	-0,0016	0,6509	0,0745	22,0113
24	0,0243	0,0118	0,0000	0,0000	0,0200	0,0021	0,0099	0,0347	0,0003	0,5871	0,0677	106,6996
25	0,0268	0,0079	0,0000	0,0000	0,0200	0,0018	0,0100	0,0212	-0,0004	0,2223	0,0177	22,7978
26	0,0286	0,0071	0,0000	0,0000	0,0200	0,0030	0,0101	0,1054	0,0018	4,4919	0,2327	280,6577
27	0,0201	0,0098	0,0000	0,0000	0,0200	0,0019	0,0099	0,0261	-0,0003	0,3372	0,0376	54,8897
28	0,0157	0,0087	0,0000	0,0000	0,0200	0,0020	0,0098	0,0287	-0,0009	0,4143	0,0482	22,2029
29	0,0207	0,0064	0,0000	0,0000	0,0199	0,0030	0,0091	0,1059	-0,0236	5,3342	0,2595	30,0573
30	0,0135	0,0131	0,0000	0,0000	0,0199	0,0019	0,0097	0,0260	-0,0021	0,3498	0,0391	7,2881
média	0,0211	0,0097	0,0000	0,0000	0,0199		0,0097		-0,0044		0,1249	
desvio padrão	0,0057	0,0030	0,0000	0,0000	0,0000		0,0003		0,0080		0,1251	

Tabela D.3 – Valores dos parâmetros estimados

Estrutura compartimental para sintetização: dois compartimentos
Estrutura compartimental identificada: quatro compartimentos
Nivel de ruído: baixo

ovnorimonto	K	k	k	k	k .	k	ĸ	desvio	٢	desvio	k	desvio	k	desvio	k	desvio	k	desvio nadrão
experimento	№1 (palpite inicial)	^k 2 (palpite inicial)	^K 3 (palpite inicial)	• • 4 (palpite inicial)	№5 (palpite inicial)	№6 (palpite inicial)) 1	padrão	ĸ2	padrão	κ3	padrão	ĸ ₄	padrão	K 5	padrão	~ 6	uesvio paulao
1	0,0217	0,0122	0,0000	0,0000	0,0000	0,0000	0,0200	0,0027	0,0103	0,0606	-0,0122	15224,6440	-0,0014	2437,8457	0,0141	15223,3450	0,0028	2376,1406
2	0,0277	0,0051	0,0000	0,0000	0,0000	0,0000	0,0199	0,0043	0,0089	0,2652	-0,0807	602,9464	0,2349	429,3627	0,0415	622,2904	0,1686	328,0535
3	0,0181	0,0067	0,0000	0,0000	0,0000	0,0000	0,0199	0,0027	0,0095	0,0611	0,0259	19182,8590	0,0027	1428,6173	-0,0295	19181,4030	0,0068	1405,5416
4	0,0122	0,0060	0,0000	0,0000	0,0000	0,0000	0,0199	0,0029	0,0094	0,0858	-0,0365	18759,2760	0,0474	1645,2865	0,0303	18762,0460	0,0415	1708,1991
5	0,0290	0,0122	0,0000	0,0000	0,0000	0,0000	0,0199	0,0027	0,0097	0,0641	0,0191	26397,4380	0,0075	2495,9120	-0,0215	26395,8770	0,0113	2469,6212
6	0,0252	0,0066	0,0000	0,0000	0,0000	0,0000	0,0199	0,0028	0,0096	0,0732	0,0182	7911,7754	0,0216	1308,8161	-0,0216	7909,7651	0,0282	1314,2796
7	0,0139	0,0149	0,0000	0,0000	0,0000	0,0000	0,0199	0,0027	0,0100	0,0692	0,0101	357900,6600	0,0298	32224,6730	-0,0099	357902,4100	0,0280	31427,9850
8	0,0144	0,0124	0,0000	0,0000	0,0000	0,0000	0,0199	0,0026	0,0095	0,0592	0,0006	6,8506	-0,0263	151,6986	-0,0040	5,5190	0,0258	108,4972
9	0,0184	0,0121	0,0000	0,0000	0,0000	0,0000	0,0199	0,0031	0,0096	0,1003	0,0136	2541,8461	0,0550	1075,8925	-0,0185	2538,3288	0,0684	1083,6743
10	0,0258	0,0059	0,0000	0,0000	0,0000	0,0000	0,0199	0,0108	0,0086	2,3728	0,0185	660,8209	1,1961	30061,5780	-0,0465	46,9128	0,3012	104,9449
11	0,0120	0,0101	0,0000	0,0000	0,0000	0,0000	0,0199	0,0031	0,0096	0,1061	-0,0044	2626,0605	0,0741	4884,7347	0,0011	2629,9201	0,0602	13747,2460
12	0,0169	0,0069	0,0000	0,0000	0,0000	0,0000	0,0199	0,0026	0,0095	0,0581	0,0113	1104,8166	-0,0054	429,3369	-0,0154	1103,4838	0,0046	419,0656
13	0,0127	0,0135	0,0000	0,0000	0,0000	0,0000	0,0199	0,0030	0,0094	0,0913	0,0176	625,8060	0,0436	282,4487	-0,0271	622,6932	0,0634	296,0056
14	0,0185	0,0068	0,0000	0,0000	0,0000	0,0000	0,0199	0,0038	0,0090	0,1998	0,0230	1003,4398	0,1349	650,0454	-0,0461	991,4064	0,1755	638,2083
15	0,0289	0,0107	0,0000	0,0000	0,0000	0,0000	0,0200	0,0039	0,0104	0,2030	-0,0380	25259,2240	0,1345	3700,8408	0,0465	25249,1300	0,1468	3755,7460
16	0,0214	0,0067	0,0000	0,0000	0,0000	0,0000	0,0199	0,0036	0,0100	0,1674	0,0021	1040,8190	0,1060	5673,8746	-0,0032	1033,0072	0,1361	6606,7190
17	0,0275	0,0108	0,0000	0,0000	0,0000	0,0000	0,0199	0,0026	0,0096	0,0596	-0,0150	2996,3329	0,0056	819,8946	0,0117	2997,7172	-0,0018	848,9457
18	0,0242	0,0091	0,0000	0,0000	0,0000	0,0000	0,0199	0,0043	0,0101	0,2715	-0,0007	77,6359	0,2368	18806,3050	0,0025	93,3053	0,1310	1044,4554
19	0,0258	0,0067	0,0000	0,0000	0,0000	0,0000	0,0199	0,0026	0,0098	0,0549	0,0039	4163,3868	-0,0116	2898,4054	-0,0049	4162,2507	-0,0057	2769,5785
20	0,0271	0,0144	0,0000	0,0000	0,0000	0,0000	0,0199	0,0025	0,0098	0,0464	-0,0041	3425,4736	-0,0248	2405,3377	0,0033	3426,2861	-0,0300	2500,6281
21	0,0171	0,0129	0,0000	0,0000	0,0000	0,0000	0,0199	0,0020	0,0099	0,0244	0,0272	2605,6005	-0,0409	34,5153	-0,0271	2605,6005	-0,0412	34,0536
22	0,0174	0,0115	0,0000	0,0000	0,0000	0,0000	0,0199	0,0053	0,0104	0,4728	0,0380	316,1733	0,3292	1249,9252	-0,0154	353,8354	0,2072	785,8487
23	0,0280	0,0125	0,0000	0,0000	0,0000	0,0000	0,0200	0,0025	0,0102	0,0503	-0,0048	449,0464	-0,0255	435,8741	0,0067	448,1397	-0,0145	437,0216
24	0,0243	0,0118	0,0000	0,0000	0,0000	0,0000	0,0199	0,0053	0,0086	0,4698	-0,0075	191,4824	0,2163	1055,5785	-0,0430	144,3895	0,3913	1152,6882
25	0,0268	0,0079	0,0000	0,0000	0,0000	0,0000	0,0199	0,0026	0,0094	0,0548	0,0026	41,6837	-0,0212	157,0248	-0,0066	40,4914	0,0064	137,2618
26	0,0286	0,0071	0,0000	0,0000	0,0000	0,0000	0,0200	0,0042	0,0100	0,0891	-0,0061	493079,3400	-0,0629	41766,9710	0,0062	493078,0300	-0,0618	41924,9710
27	0,0201	0,0098	0,0000	0,0000	0,0000	0,0000	0,0199	0,0025	0,0098	0,0505	0,0030	1802,3828	-0,0215	1970,0503	-0,0039	1801,4158	-0,0143	1868,2985
28	0,0157	0,0087	0,0000	0,0000	0,0000	0,0000	0,0199	0,0031	0,0096	0,1035	-0,0062	8,4091	0,1015	214,0323	0,0009	11,8439	0,0254	239,1268
29	0,0207	0,0064	0,0000	0,0000	0,0000	0,0000	0,0199	0,0030	0,0091	0,0900	0,0077	58,5440	0,0315	103,8891	-0,0203	55,4186	0,0744	112,1624
30	0,0135	0,0131	0,0000	0,0000	0,0000	0,0000	0,0199	0,0024	0,0099	0,0467	0,0306	978029,4700	0,0121	14307,4820	-0,0315	978028,7200	0,0130	14254,8630
média	0,0211	0,0097	0,0000	0,0000	0,0000	0,0000	0,0199		0,0096		0,0019		0,0926		-0,0077		0,0649	
desvio padrão	0,0057	0,0030	0,0000	0,0000	0,0000	0,0000	0,0000		0,0005		0,0234		0,2290		0,0230		0,1028	

Tabela D.4 – Métricas de Akaike e sugestão de compartimentos Estrutura compartimental para sintetização: dois compartimentos Nivel de ruído: baixo

experimento	AIC 2	AIC 3	AIC 4	Sugestão de
	/ 2	/	/	compartimentos
1	100,9221	115,4160	117,8974	2
2	98,2012	102,3031	104,1895	2
3	102,1726	118,0183	120,7515	2
4	117,5355	120,5273	125,3538	2
5	90,7743	110,1616	104,6124	2
6	90,1982	97,8189	102,2989	2
7	97,3325	116,9721	117,0607	2
8	102,7167	102,2474	122,1533	3
9	121,3658	130,2762	135,1120	2
10	112,7634	110,9739	112,2466	3
11	109,4511	135,6766	125,2361	2
12	108,9118	113,5330	116,6613	2
13	104,1946	116,5334	119,7123	2
14	100,3857	112,9470	112,3525	2
15	105,4305	121,0032	117,3970	2
16	99,9178	122,2391	118,9461	2
17	112,4390	122,6320	123,4919	2
18	106,5852	111,5964	113,7892	2
19	119,0412	121,2310	125,2314	2
20	88,5136	104,6139	95,7729	2
21	102,0662	124,3446	108,9549	2
22	108,3567	121,8345	119,9920	2
23	117,2512	120,2870	127,9441	2
24	85,3959	115,7432	108,4250	2
25	116,5059	119,4437	113,8331	4
26	113,7412	115,9505	120,5455	2
27	101,3423	106,2021	109,6110	2
28	100,7651	113,2543	115,7182	2
29	110,2320	114,4999	120,2031	2
30	95,6971	109,0509	105,9927	2
média	104,6735	115,5777	116,0495	acertos
desvio padrão	9,3892	8,2341	8,5447	27
Erros para três	compartime	entos	•	2
Erros para quat	ro compart	imentos		1

TabelaD.5 – Valores dos parâmetros estimados

Estrutura compartimental para sintetização: dois compartimentos
Estrutura compartimental identificada: dois compartimentos
Nivel de ruído: médio

experimento	K _{1 (palpite inicial)}	k _{2 (palpite inicial)}	K ₁	desvio nadrão	k ₂	desvio nadrão
1	0.0217	0.0123	0.0200	0.0010	0.0100	0.0024
2	0.0133	0.0064	0.0200	0.0010	0.0102	0.0024
3	0,0136	0,0070	0,0200	0,0010	0,0100	0,0024
4	0,0161	0,0058	0,0199	0,0010	0,0098	0,0024
5	0,0240	0,0085	0,0199	0,0010	0,0098	0,0024
6	0,0273	0,0098	0,0200	0,0010	0,0099	0,0024
7	0,0129	0,0119	0,0200	0,0010	0,0099	0,0024
8	0,0298	0,0143	0,0200	0,0010	0,0101	0,0024
9	0,0127	0,0070	0,0200	0,0010	0,0100	0,0024
10	0,0252	0,0069	0,0199	0,0010	0,0100	0,0024
11	0,0156	0,0138	0,0200	0,0010	0,0099	0,0024
12	0,0130	0,0074	0,0201	0,0010	0,0101	0,0024
13	0,0113	0,0134	0,0200	0,0010	0,0099	0,0024
14	0,0146	0,0087	0,0200	0,0010	0,0100	0,0024
15	0,0217	0,0074	0,0200	0,0010	0,0099	0,0024
16	0,0175	0,0131	0,0200	0,0010	0,0100	0,0024
17	0,0111	0,0086	0,0200	0,0010	0,0099	0,0024
18	0,0131	0,0119	0,0200	0,0010	0,0099	0,0024
19	0,0265	0,0075	0,0199	0,0010	0,0098	0,0024
20	0,0154	0,0075	0,0200	0,0010	0,0100	0,0024
21	0,0231	0,0067	0,0199	0,0010	0,0099	0,0024
22	0,0232	0,0094	0,0199	0,0010	0,0099	0,0024
23	0,0266	0,0065	0,0200	0,0010	0,0100	0,0024
24	0,0135	0,0134	0,0200	0,0010	0,0100	0,0024
25	0,0160	0,0145	0,0200	0,0010	0,0099	0,0024
26	0,0141	0,0052	0,0200	0,0010	0,0101	0,0024
27	0,0265	0,0071	0,0200	0,0010	0,0099	0,0024
28	0,0294	0,0095	0,0200	0,0010	0,0100	0,0024
29	0,0105	0,0117	0,0200	0,0010	0,0100	0,0024
30	0,0132	0,0103	0,0200	0,0010	0,0099	0,0024
média	0,0184	0,0094	0,0200		0,0100	
desvio padrão	0,0062	0,0029	0,0000		0,0001	
Tabela D.6 – Valores dos parâmetros estimados Estrutura compartimental para sintetização: dois compartimentos Estrutura compartimental identificada: três compartimentos Nivel de ruído: médio

experimento	K	k	k	k .,	к	desvio	k	desvio	k	desvio	k	desvio
experimento	1 (palpite inicial)	№2 (palpite inicial)	№3 (palpite inicial)	№4 (palpite inicial)	R ₁	padrão	ĸ2	padrão	к3	padrão	ĸ ₄	padrão
1	0,0217	0,0123	0,0000	0,0000	0,0199	0,0018	0,0097	0,0206	-0,0013	0,2179	0,0163	6,4287
2	0,0133	0,0064	0,0000	0,0000	0,0199	0,0016	0,0100	0,0136	-0,0004	0,0852	-0,0218	6,9087
3	0,0136	0,0070	0,0000	0,0000	0,0198	0,0017	0,0093	0,0152	-0,0019	0,1209	-0,0105	2,1619
4	0,0161	0,0058	0,0000	0,0000	0,0199	0,0063	0,0097	0,8150	-0,0005	131,9796	0,9258	96976,5060
5	0,0240	0,0085	0,0000	0,0000	0,0199	0,0021	0,0101	0,0331	0,0018	0,5213	0,0604	13,9683
6	0,0273	0,0098	0,0000	0,0000	0,0200	0,0017	0,0100	0,0155	0,0004	0,1127	-0,0116	9,1235
7	0,0129	0,0119	0,0000	0,0000	0,0198	0,0025	0,0092	0,0567	-0,0096	1,6689	0,1410	14,0601
8	0,0298	0,0143	0,0000	0,0000	0,0199	0,0021	0,0096	0,0347	-0,0042	0,6254	0,0724	8,2261
9	0,0127	0,0070	0,0000	0,0000	0,0198	0,0030	0,0086	0,1121	-0,0393	6,4192	0,2875	24,5254
10	0,0252	0,0069	0,0000	0,0000	0,0199	0,0025	0,0101	0,0574	0,0010	1,4962	0,1319	107,0201
11	0,0156	0,0138	0,0000	0,0000	0,0199	0,0026	0,0094	0,0708	-0,0096	2,4472	0,1745	23,8270
12	0,0130	0,0074	0,0000	0,0000	0,0200	0,0018	0,0099	0,0213	-0,0012	0,2265	0,0186	7,3157
13	0,0113	0,0134	0,0000	0,0000	0,0199	0,0031	0,0078	0,1153	-0,0680	7,7845	0,3211	19,9454
14	0,0146	0,0087	0,0000	0,0000	0,0199	0,0019	0,0102	0,0259	0,0013	0,3174	0,0351	10,2991
15	0,0217	0,0074	0,0000	0,0000	0,0199	0,0020	0,0097	0,0309	-0,0022	0,4872	0,0572	10,7532
16	0,0175	0,0131	0,0000	0,0000	0,0200	0,0021	0,0103	0,0315	0,0026	0,4612	0,0543	8,2274
17	0,0111	0,0086	0,0000	0,0000	0,0199	0,0018	0,0096	0,0207	-0,0013	0,2205	0,0159	6,4656
18	0,0131	0,0119	0,0000	0,0000	0,0195	0,0059	0,0081	0,6954	-0,0012	121,7114	0,8236	36259,9620
19	0,0265	0,0075	0,0000	0,0000	0,0199	0,0024	0,0098	0,0532	0,0000	1,3501	0,1223	12281,7370
20	0,0154	0,0075	0,0000	0,0000	0,0198	0,0025	0,0086	0,0611	-0,0237	2,1600	0,1670	8,7116
21	0,0231	0,0067	0,0000	0,0000	0,0198	0,0021	0,0091	0,0325	-0,0069	0,5935	0,0677	4,6715
22	0,0232	0,0094	0,0000	0,0000	0,0198	0,0033	0,0098	0,1531	0,0016	8,6922	0,3093	798,7710
23	0,0266	0,0065	0,0000	0,0000	0,0199	0,0061	0,0100	0,7700	-0,0065	118,8381	0,9031	7039,5744
24	0,0135	0,0134	0,0000	0,0000	0,0199	0,0022	0,0091	0,0386	-0,0095	0,8304	0,0901	5,4400
25	0,0160	0,0145	0,0000	0,0000	0,0199	0,0027	0,0108	0,0749	0,0163	2,1638	0,1566	10,4096
26	0,0141	0,0052	0,0000	0,0000	0,0199	0,0018	0,0098	0,0198	-0,0010	0,1989	0,0122	7,1934
27	0,0265	0,0071	0,0000	0,0000	0,0200	0,0021	0,0102	0,0357	0,0029	0,5918	0,0679	10,3818
28	0,0294	0,0095	0,0000	0,0000	0,0199	0,0022	0,0094	0,0375	-0,0061	0,7502	0,0834	7,2834
29	0,0105	0,0117	0,0000	0,0000	0,0200	0,0034	0,0098	0,1569	-0,0057	9,1974	0,3205	244,2146
30	0,0132	0,0103	0,0000	0,0000	0,0199	0,0101	0,0102	2,2063	0,0437	579,1371	1,5890	8326,1710
média	0,0184	0,0094	0,0000	0,0000	0,0199		0,0096		-0,0043		0,2327	
desvio padrão	0,0062	0,0029	0,0000	0,0000	0,0001		0,0007		0,0175		0,3626	

Tabela D.7 – Valores dos parâmetros estimados

Estrutura compartimental para sintetização: dois compartimentos
Estrutura compartimental identificada: quatro compartimentos
Nivel de ruído: médio

ovnorimento	K	k .	k	k .	k .	k	ĸ	desvio	k	desvio	k	desvio	k	desvio	k	desvio	k	desvio padrão
experimento	f1 (palpite inicial)	2 (palpite inicial)	3 (palpite inicial)	K4 (palpite inicial)	^K 5 (palpite inicial)	№6 (palpite inicial)) 1	padrão	ĸ2	padrão	к3	padrão	ĸ ₄	padrão	к5	padrão	ĸ _б	uesvio paulao
1	0,0217	0,0123	0,0000	0,0000	0,0000	0,0000	0,0201	0,0026	0,0106	0,0529	-0,0007	167,8629	-0,0212	1511,4423	0,0022	166,8907	-0,0053	785,4673
2	0,0133	0,0064	0,0000	0,0000	0,0000	0,0000	0,0199	0,0022	0,0100	0,0335	-0,0104	146414,1800	-0,0075	5496,6604	0,0099	146414,0800	-0,0067	5892,5710
3	0,0136	0,0070	0,0000	0,0000	0,0000	0,0000	0,0198	0,0026	0,0094	0,0570	-0,0005	1,3870	-0,0471	49,4723	-0,0011	0,6267	0,0310	215,6161
4	0,0161	0,0058	0,0000	0,0000	0,0000	0,0000	0,0199	0,0023	0,0098	0,0389	-0,0416	524930,1300	-0,0100	5693,3532	0,0422	524929,6000	-0,0091	5772,3764
5	0,0240	0,0085	0,0000	0,0000	0,0000	0,0000	0,0199	0,0025	0,0100	0,0507	-0,0051	4029,3252	-0,0214	1964,9488	0,0062	4028,3805	-0,0160	1910,6455
6	0,0273	0,0098	0,0000	0,0000	0,0000	0,0000	0,0200	0,0026	0,0097	0,0529	0,0044	279,1085	-0,0193	367,7017	-0,0063	278,0334	-0,0053	386,6210
7	0,0129	0,0119	0,0000	0,0000	0,0000	0,0000	0,0199	0,0026	0,0090	0,0590	0,0236	1081,2651	-0,0015	212,2980	-0,0321	1079,7837	0,0092	211,7285
8	0,0298	0,0143	0,0000	0,0000	0,0000	0,0000	0,0205	0,0345	0,0127	16,0786	0,0056	7,1365	-0,0048	0,7891	0,0000	7824,0381	3,8145	399956380,0000
9	0,0127	0,0070	0,0000	0,0000	0,0000	0,0000	0,0199	0,0033	0,0091	0,1246	-0,0004	0,8483	-0,0066	55,5904	-0,0137	5,4530	0,1735	79,8931
10	0,0252	0,0069	0,0000	0,0000	0,0000	0,0000	0,0199	0,0027	0,0106	0,0623	0,0262	1156,8326	0,0055	246,9874	-0,0198	1158,1235	-0,0042	248,1054
11	0,0156	0,0138	0,0000	0,0000	0,0000	0,0000	0,0199	0,0026	0,0097	0,0558	0,0176	12379,1440	-0,0084	1403,8124	-0,0198	12377,9490	-0,0042	1407,5785
12	0,0130	0,0074	0,0000	0,0000	0,0000	0,0000	0,0200	0,0027	0,0101	0,0635	-0,0048	1688,7905	0,0019	1432,5661	0,0055	1687,3438	0,0110	1598,8116
13	0,0113	0,0134	0,0000	0,0000	0,0000	0,0000	0,0199	0,0025	0,0091	0,0525	-0,0419	4205,0355	-0,0068	328,6362	0,0349	4206,2008	-0,0128	330,3674
14	0,0146	0,0087	0,0000	0,0000	0,0000	0,0000	0,0199	0,0031	0,0101	0,0979	0,0173	40223,0710	0,0538	5519,7305	-0,0176	40219,8980	0,0588	6102,5562
15	0,0217	0,0074	0,0000	0,0000	0,0000	0,0000	0,0199	0,0028	0,0096	0,0692	-0,0085	159,7935	0,0301	300,5638	0,0045	161,6242	0,0075	304,3478
16	0,0175	0,0131	0,0000	0,0000	0,0000	0,0000	0,0200	0,0028	0,0105	0,0699	-0,0309	41018,0070	0,0136	2150,7816	0,0351	41016,3640	0,0170	2078,7693
17	0,0111	0,0086	0,0000	0,0000	0,0000	0,0000	0,0199	0,0030	0,0094	0,1010	0,0033	1662527,4000	0,0807	417693,7800	-0,0087	1662523,7000	0,0824	166172,8000
18	0,0131	0,0119	0,0000	0,0000	0,0000	0,0000	0,0199	0,0027	0,0101	0,0638	-0,0012	920,1510	0,0124	4947,9954	0,0017	921,6080	0,0012	2646,6619
19	0,0265	0,0075	0,0000	0,0000	0,0000	0,0000	0,0199	0,0022	0,0097	0,0328	-0,0008	152,2020	-0,0624	1208,2015	0,0005	152,5975	-0,0725	1347,6338
20	0,0154	0,0075	0,0000	0,0000	0,0000	0,0000	0,0198	0,0027	0,0078	0,0637	-0,0510	77,1211	0,0390	38,6421	0,0239	79,2327	0,0077	35,9469
21	0,0231	0,0067	0,0000	0,0000	0,0000	0,0000	0,0198	0,0026	0,0090	0,0587	-0,0213	3372,6287	0,0048	631,2581	0,0160	3374,0663	-0,0023	683,3174
22	0,0232	0,0094	0,0000	0,0000	0,0000	0,0000	0,0199	0,0029	0,0096	0,0844	0,0049	2373,4786	0,0449	3202,7693	-0,0059	2376,0706	0,0337	1966,4192
23	0,0266	0,0065	0,0000	0,0000	0,0000	0,0000	0,0200	0,0027	0,0098	0,0594	0,0192	11599,3960	-0,0014	1303,0838	-0,0214	11598,0700	0,0032	1333,3337
24	0,0135	0,0134	0,0000	0,0000	0,0000	0,0000	0,0199	0,0029	0,0092	0,0789	0,0518	410042,5400	0,0324	7513,7380	-0,0575	410040,1200	0,0344	7109,2247
25	0,0160	0,0145	0,0000	0,0000	0,0000	0,0000	0,0200	0,0038	0,0114	0,1839	-0,0358	2339,7133	0,1057	593,3038	0,0640	2332,2708	0,1279	504,7889
26	0,0141	0,0052	0,0000	0,0000	0,0000	0,0000	0,0200	0,0027	0,0105	0,0594	0,1132	268637,1500	-0,0057	1816,8760	-0,1086	268638,3400	-0,0072	1812,1063
27	0,0265	0,0071	0,0000	0,0000	0,0000	0,0000	0,0199	0,0073	0,0103	1,0376	-0,0001	168,7319	0,9232	940482,8600	0,0026	0,5739	0,0186	5,5070
28	0,0294	0,0095	0,0000	0,0000	0,0000	0,0000	0,0198	0,0033	0,0083	0,1283	-0,0389	72,8580	0,1341	125,8717	0,0093	79,2546	0,0734	152,6575
29	0,0105	0,0117	0,0000	0,0000	0,0000	0,0000	0,0200	0,0025	0,0098	0,0506	0,0534	41726,2260	-0,0173	958,6792	-0,0566	41725,2480	-0,0147	977,2030
30	0,0132	0,0103	0,0000	0,0000	0,0000	0,0000	0,0199	0,0026	0,0099	0,0554	-0,0378	42675,9290	-0,0054	1625,5070	0,0358	42677,0860	-0,0082	1584,7522
média	0,0184	0,0094	0,0000	0,0000	0,0000	0,0000	0,0199		0,0098		0,0003		0,0412		-0,0025		0,1445	
desvio padrão	0,0062	0,0029	0,0000	0,0000	0,0000	0,0000	0,0001		0,0009		0,0335		0,1716		0,0331		0,6947	

Tabela D.8 – Métricas de Akaike e sugestão de compartimentos Estrutura compartimental para sintetização: dois compartimentos Nivel de ruído: médio

experimento	AIC 2	AIC 3	AIC 4	Sugestao de					
схреппеню	710 2	/10 0		compartimentos					
1	98,6170	103,4230	114,3711	2					
2	96,6571	100,3270	103,6588	2					
3	113,6532	109,5293	112,8785	3					
4	109,8566	116,6499	119,3141	2					
5	107,1437	106,4502	110,7985	3					
6	101,3621	105,3996	108,7407	2					
7	104,9065	111,4240	113,9117	2					
8	117,2747	121,2616	165,6090	2					
9	102,8292	106,0694	112,7624	2					
10	89,9779	92,4804	93,1253	2					
11	70,5257	73,6397	77,3992	2					
12	96,9598	105,5339	108,0607	2					
13	100,4750	103,4785	106,6757	2					
14	97,7693	102,2721	106,3131	2					
15	99,5404	105,1817	107,9735	2					
16	104,2440	108,5523	112,6247	2					
17	112,3443	113,3816	117,7939	2					
18	101,9135	190,8355	106,8663	2					
19	121,5073	126,0824	129,9167	2					
20	111,5326	118,5477	115,3150	2					
21	100,1372	105,9894	110,8273	2					
22	111,2876	116,5644	118,0860	2					
23	117,7453	120,4362	123,4582	2					
24	98,2804	99,9692	103,8188	2					
25	95,2079	96,9310	101,4153	2					
26	108,1728	111,6222	114,4315	2					
27	108,8877	109,1866	117,2694	2					
28	90,4882	94,8021	96,5111	2					
29	114,3601	117,9948	116,4960	2					
30	98,2091	103,5399	104,6831	2					
média	103,3955	109,9185	111,7035	acertos					
desvio padrão	10 <u>,173</u> 5	18,3759	14,0826	28					
Erros para três	compartim	entos		2					
Erros para quat	ro compart	imentos		0					

Tabela D.9 – Valores dos parâmetros estimados

Estrutura compartimental para sintetização: dois compartimentos
Estrutura compartimental identificada: dois compartimentos
Nivel de ruído: alto

experimento	K _{1 (palpite inicial)}	k _{2 (palpite inicial)}	K ₁	desvio padrão	k ₂	desvio padrão	
1	0,0180	0,0084	0,0199	0,0010	0,0098	0,0024	
2	0,0162	0,0099	0,0200	0,0010	0,0102	0,0024	
3	0,0114	0,0099	0,0199	0,0010	0,0097	0,0024	
4	0,0242	0,0117	0,0201	0,0010	0,0101	0,0024	
5	0,0178	0,0129	0,0200	0,0010	0,0100	0,0024	
6	0,0295	0,0075	0,0202	0,0010	0,0105	0,0024	
7	0,0290	0,0095	0,0200	0,0010	0,0098	0,0024	
8	0,0182	0,0140	0,0197	0,0010	0,0093	0,0024	
9	0,0223	0,0062	0,0198	0,0010	0,0095	0,0024	
10	0,0180	0,0128	0,0199	0,0010	0,0102	0,0024	
11	0,0257	0,0142	0,0200	0,0010	0,0101	0,0024	
12	0,0272	0,0084	0,0199	0,0010	0,0098	0,0024	
13	0,0247	0,0134	0,0201	0,0010	0,0102	0,0024	
14	0,0240	0,0109	0,0198	0,0010	0,0103	0,0024	
15	0,0156	0,0133	0,0199	0,0010	0,0097	0,0024	
16	0,0199	0,0128	0,0201	0,0010	0,0105	0,0024	
17	0,0298	0,0137	0,0198	0,0010	0,0094	0,0024	
18	0,0101	0,0054	0,0199	0,0010	0,0098	0,0024	
19	0,0244	0,0121	0,0197	0,0010	0,0094	0,0024	
20	0,0192	0,0141	0,0197	0,0010	0,0093	0,0024	
21	0,0142	0,0132	0,0200	0,0010	0,0101	0,0024	
22	0,0231	0,0135	0,0199	0,0010	0,0098	0,0024	
23	0,0235	0,0132	0,0201	0,0010	0,0099	0,0024	
24	0,0136	0,0057	0,0200	0,0010	0,0103	0,0024	
25	0,0187	0,0098	0,0201	0,0010	0,0098	0,0024	
26	0,0163	0,0111	0,0198	0,0010	0,0101	0,0024	
27	0,0224	0,0141	0,0202	0,0010	0,0102	0,0024	
28	0,0165	0,0137	0,0198	0,0010	0,0097	0,0024	
29	0,0224	0,0092	0,0201	0,0010	0,0104	0,0024	
30	0,0226	0,0054	0,0198	0,0010	0,0095	0,0024	
média	0,0206	0,0110	0,0199		0,0099		
desvio padrão	0,0052	0,0029	0,0001		0,0003		

Tabela D.10 – Valores dos parâmetros estimados Estrutura compartimental para sintetização: dois compartimentos Estrutura compartimental identificada: três compartimentos Nivel de ruído: alto

ovnorimonto	K _{1 (palpite inicial)}	$k_{2 (palpite inicial)}$	k _{3 (palpite inicial)}	$k_{4 (palpite inicial)}$	ĸ	desvio	k	desvio	k	desvio	k	desvio
experimento					κ ₁	padrão	N 2	padrão	N3	padrão	κ ₄	padrão
1	0,0180	0,0084	0,0000	0,0000	0,0198	0,0021	0,0084	0,0349	-0,0150	0,7705	0,0836	3,2235
2	0,0162	0,0099	0,0000	0,0000	0,0198	0,0015	0,0097	0,0101	0,0000	0,0400	-0,0511	100,0683
3	0,0114	0,0099	0,0000	0,0000	0,0198	0,0019	0,0095	0,0244	-0,0007	0,3063	0,0300	17,2732
4	0,0242	0,0117	0,0000	0,0000	0,0202	0,0018	0,0110	0,0182	0,0029	0,1392	-0,0005	1,5759
5	0,0178	0,0129	0,0000	0,0000	0,0200	0,0020	0,0109	0,0259	0,0051	0,2855	0,0300	2,1825
6	0,0295	0,0075	0,0000	0,0000	0,0201	0,0027	0,0104	0,0678	-0,0019	1,9700	0,1581	86,5261
7	0,0290	0,0095	0,0000	0,0000	0,0199	0,0023	0,0104	0,0425	0,0058	0,7979	0,0853	7,6149
8	0,0182	0,0140	0,0000	0,0000	0,0193	0,0025	0,0039	0,0611	-0,2103	7,6687	0,3529	9,2532
9	0,0223	0,0062	0,0000	0,0000	0,0199	0,0022	0,0102	0,0363	0,0063	0,5957	0,0650	4,5671
10	0,0180	0,0128	0,0000	0,0000	0,0198	0,0015	0,0094	0,0094	-0,0007	0,0351	-0,0562	1,3269
11	0,0257	0,0142	0,0000	0,0000	0,0199	0,0018	0,0102	0,0193	0,0007	0,1744	0,0073	8,6881
12	0,0272	0,0084	0,0000	0,0000	0,0198	0,0014	0,0090	0,0067	-0,0003	0,0119	-0,0921	1,1217
13	0,0247	0,0134	0,0000	0,0000	0,0202	0,0016	0,0109	0,0128	0,0011	0,0658	-0,0290	1,7725
14	0,0240	0,0109	0,0000	0,0000	0,0197	0,0018	0,0096	0,0228	-0,0037	0,2748	0,0277	3,1629
15	0,0156	0,0133	0,0000	0,0000	0,0197	0,0013	0,0091	0,0062	-0,0001	0,0085	-0,1018	1,5386
16	0,0199	0,0128	0,0000	0,0000	0,0201	0,0015	0,0105	0,0103	-0,0001	0,0410	-0,0462	21,5465
17	0,0298	0,0137	0,0000	0,0000	0,0198	0,0016	0,0098	0,0149	0,0011	0,1038	-0,0170	2,8309
18	0,0101	0,0054	0,0000	0,0000	0,0197	0,0024	0,0076	0,0534	-0,0386	2,0192	0,1615	5,1928
19	0,0244	0,0121	0,0000	0,0000	0,0196	0,0034	0,0091	0,1775	-0,0013	12,0764	0,3465	1555,8048
20	0,0192	0,0141	0,0000	0,0000	0,0198	0,0016	0,0102	0,0149	0,0022	0,0979	-0,0181	1,3872
21	0,0142	0,0132	0,0000	0,0000	0,0201	0,0035	0,0131	0,1505	0,0700	5,4272	0,2314	7,3477
22	0,0231	0,0135	0,0000	0,0000	0,0201	0,0022	0,0121	0,0356	0,0162	0,4529	0,0527	1,1638
23	0,0235	0,0132	0,0000	0,0000	0,0201	0,0020	0,0110	0,0288	0,0068	0,3453	0,0391	2,0753
24	0,0136	0,0057	0,0000	0,0000	0,0201	0,0018	0,0119	0,0204	0,0057	0,1583	0,0066	0,9333
25	0,0187	0,0098	0,0000	0,0000	0,0200	0,0016	0,0099	0,0120	0,0003	0,0631	-0,0341	5,5346
26	0,0163	0,0111	0,0000	0,0000	0,0197	0,0014	0,0100	0,0072	0,0000	0,0136	-0,0844	12,9531
27	0,0224	0,0141	0,0000	0,0000	0,0202	0,0040	0,0114	0,2441	0,0460	15,2804	0,3839	54,1431
28	0,0165	0,0137	0,0000	0,0000	0,0197	0,0023	0,0091	0,0508	-0,0063	1,3698	0,1224	15,8848
29	0,0224	0,0092	0,0000	0,0000	0,0202	0,0019	0,0123	0,0233	0,0080	0,1948	0,0159	0,8439
30	0,0226	0,0054	0,0000	0,0000	0,0197	0,0021	0,0091	0,0358	-0,0043	0,7006	0,0755	9,0966
média	0,0206	0,0110	0,0000	0,0000	0,0199		0,0100		-0,0035		0,0582	
desvio padrão	0,0052	0,0029	0,0000	0,0000	0,0002		0,0017		0,0428		0,1284	

Tabela D.11 – Valores dos parâmetros estimados

Estrutura compartimental para sintetização: dois compartimentos
Estrutura compartimental identificada: quatro compartimentos
Nivel de ruído: alto

ovnorimonto	V	k	k	k	k	k	V	desvio	k	desvio	k	desvio	k	desvio	k	desvio	k	docuio padrão
experimento	N1 (palpite inicial)	№2 (palpite inicial)	^N 3 (palpite inicial)	▲4 (palpite inicial)	№5 (palpite inicial)	№6 (palpite inicial)	К1	padrão	ĸ2	padrão	к3	padrão	к ₄	padrão	κ ₅	padrão	ĸ ₆	uesvio paulao
1	0,0180	0,0084	0,0000	0,0000	0,0000	0,0000	0,0197	0,0031	0,0075	0,1016	-0,0380	9,5999	0,1207	50,9929	0,0027	14,2545	0,0352	107,2587
2	0,0162	0,0099	0,0000	0,0000	0,0000	0,0000	0,0198	0,0028	0,0097	0,0673	0,0008	12,7349	0,0324	843,9000	-0,0007	14,3355	-0,0127	263,3115
3	0,0114	0,0099	0,0000	0,0000	0,0000	0,0000	0,0199	0,0028	0,0106	0,0711	0,0197	645,2465	0,0206	266,4603	-0,0121	646,8885	0,0073	300,2890
4	0,0242	0,0117	0,0000	0,0000	0,0000	0,0000	0,0201	0,0040	0,0110	0,2146	-0,0036	11,1757	0,2655	712,9395	0,0050	1,2277	0,0230	6,6072
5	0,0178	0,0129	0,0000	0,0000	0,0000	0,0000	0,0201	0,0028	0,0114	0,0711	0,0505	14727,6060	0,0157	713,0285	-0,0411	14729,1270	0,0111	770,7473
6	0,0295	0,0075	0,0000	0,0000	0,0000	0,0000	0,0201	0,0028	0,0092	0,0703	-0,0431	277,8972	0,0365	87,8756	0,0270	279,9061	0,0163	81,9252
7	0,0290	0,0095	0,0000	0,0000	0,0000	0,0000	0,0200	0,0023	0,0103	0,0345	0,0075	199,2609	-0,0592	148,5799	-0,0053	199,6644	-0,0687	153,0817
8	0,0182	0,0140	0,0000	0,0000	0,0000	0,0000	0,0193	0,0023	0,0055	0,0385	0,0111	8,2295	-0,0545	9,3618	-0,0420	7,0633	-0,0105	9,7053
9	0,0223	0,0062	0,0000	0,0000	0,0000	0,0000	0,0198	0,0026	0,0096	0,0548	0,0034	5525,2295	-0,0087	4706,2611	-0,0026	5526,3698	-0,0140	5266,3130
10	0,0180	0,0128	0,0000	0,0000	0,0000	0,0000	0,0198	0,0022	0,0098	0,0334	-0,0038	255,1166	-0,0730	246,7861	0,0047	254,7232	-0,0645	266,8055
11	0,0257	0,0142	0,0000	0,0000	0,0000	0,0000	0,0200	0,0022	0,0105	0,0335	0,0027	20,2428	-0,0568	105,9620	-0,0013	20,6181	-0,0761	115,6635
12	0,0272	0,0084	0,0000	0,0000	0,0000	0,0000	0,0197	0,0024	0,0088	0,0454	0,0114	9099,7174	-0,0292	1630,3868	-0,0123	9100,5861	-0,0331	1338,9213
13	0,0247	0,0134	0,0000	0,0000	0,0000	0,0000	0,0202	0,0027	0,0104	0,0593	0,0026	7,7872	-0,0244	40,6988	-0,0054	6,5670	0,0243	79,6990
14	0,0240	0,0109	0,0000	0,0000	0,0000	0,0000	0,0197	0,0024	0,0089	0,0471	0,0094	227,2450	-0,0293	139,9708	-0,0162	226,2865	-0,0152	124,0333
15	0,0156	0,0133	0,0000	0,0000	0,0000	0,0000	0,0198	0,0024	0,0100	0,0425	0,0308	1507,6633	-0,0389	163,1521	-0,0259	1508,3066	-0,0449	159,8530
16	0,0199	0,0128	0,0000	0,0000	0,0000	0,0000	0,0199	0,0032	0,0097	0,1137	-0,0111	18,4285	0,0338	30,5679	0,0135	14,4891	0,1040	126,1504
17	0,0298	0,0137	0,0000	0,0000	0,0000	0,0000	0,0198	0,0032	0,0081	0,1183	-0,0606	15,6111	0,1460	46,2252	0,0192	21,3404	0,0572	23,6286
18	0,0101	0,0054	0,0000	0,0000	0,0000	0,0000	0,0197	0,0026	0,0075	0,0616	0,0083	10,6683	-0,0102	19,8081	-0,0355	8,6784	0,0467	21,3103
19	0,0244	0,0121	0,0000	0,0000	0,0000	0,0000	0,0196	0,0023	0,0096	0,0405	-0,0118	391,5036	-0,0512	132,2845	0,0155	390,8878	-0,0421	136,0608
20	0,0192	0,0141	0,0000	0,0000	0,0000	0,0000	0,0198	0,0025	0,0100	0,0521	0,0117	16299,4460	-0,0179	2324,5641	-0,0108	16298,4430	-0,0143	2785,5067
21	0,0142	0,0132	0,0000	0,0000	0,0000	0,0000	0,0200	0,0032	0,0121	0,1027	-0,0010	1,1298	-0,0196	23,1596	0,0274	2,0239	0,0954	16,1660
22	0,0231	0,0135	0,0000	0,0000	0,0000	0,0000	0,0201	0,0026	0,0121	0,0544	0,0309	290,9190	-0,0118	70,7613	-0,0191	291,7688	-0,0241	79,1679
23	0,0235	0,0132	0,0000	0,0000	0,0000	0,0000	0,0202	0,0028	0,0113	0,0697	0,0055	163,0126	0,0221	408,4231	0,0009	164,4902	0,0020	1364,5598
24	0,0136	0,0057	0,0000	0,0000	0,0000	0,0000	0,0202	0,0027	0,0135	0,0622	0,0293	142,6431	0,0033	53,8444	-0,0134	143,6033	-0,0135	71,6992
25	0,0187	0,0098	0,0000	0,0000	0,0000	0,0000	0,0200	0,0025	0,0100	0,0482	-0,0045	1994,2168	-0,0210	1607,8981	0,0043	1995,0703	-0,0275	1353,8333
26	0,0163	0,0111	0,0000	0,0000	0,0000	0,0000	0,0197	0,0027	0,0102	0,0660	-0,0075	321,4180	0,0015	284,5072	0,0101	319,8811	0,0178	331,5188
27	0,0224	0,0141	0,0000	0,0000	0,0000	0,0000	0,0202	0,0044	0,0110	0,2848	0,0093	346,4484	0,1496	833,1257	0,0058	330,5255	0,2202	3756,1130
28	0,0165	0,0137	0,0000	0,0000	0,0000	0,0000	0,0197	0,0025	0,0086	0,0550	0,0125	146,9746	-0,0132	89,6646	-0,0220	145,6125	0,0065	89,5852
29	0,0224	0,0092	0,0000	0,0000	0,0000	0,0000	0,0202	0,0020	0,0117	0,0220	0,0027	40,6279	-0,1125	83,8589	-0,0018	40,7503	-0,1217	90,8107
30	0,0226	0,0054	0,0000	0,0000	0,0000	0,0000	0,0197	0,0025	0,0089	0,0554	0,0172	2799,0062	-0,0096	529,6817	-0,0218	2797,7047	-0,0024	515,1095
média	0,0206	0,0110	0,0000	0,0000	0,0000	0,0000	0,0199		0,0099		0,0031		0,0069		-0,0051		0,0027	
desvio padrão	0,0052	0,0029	0,0000	0,0000	0,0000	0,0000	0,0002		0,0016		0,0219		0,0761		0,0179		0,0626	

experimento				Sugestão de
experimento				compartimentos
1	97,3625	99,9211	104,0720	2
2	114,4414	117,4677	121,8193	2
3	99,7666	102,6206	106,8314	2
4	97,4433	100,3792	104,7728	2
5	101,0740	104,3699	108,3510	2
6	97,9446	102,0622	104,7784	2
7	93,7336	97,3300	100,1045	2
8	115,8552	116,2090	109,7193	4
9	105,5006	109,3642	113,3616	2
10	117,1449	118,8593	122,1754	2
11	105,2245	109,2874	112,8593	2
12	101,9641	101,1240	105,6823	3
13	99,7357	102,2356	106,0540	2
14	97,7224	101,0868	105,4027	2
15	104,5518	106,7972	109,6390	2
16	98,0249	101,9060	102,1391	2
17	105,9970	108,0098	111,8729	2
18	110,1843	114,8209	117,8780	2
19	112,3814	116,8056	118,8278	2
20	107,4521	107,7365	112,2417	2
21	121,1511	124,1888	128,0433	2
22	124,6815	126,3925	130,1039	2
23	111,0202	114,4119	118,9272	2
24	110,1699	110,3614	113,9488	2
25	94,5206	97,6441	101,6758	2
26	99,4582	103,3233	107,0241	2
27	112,0812	115,0703	119,3422	2
28	104,1792	108,4205	111,5551	2
29	107,6464	108,0258	109,7331	2
30	81,3917	86,0085	90,8154	2
média	104,9935	107,7413	110,9917	acertos
desvio padrão	9,0663	8,6940	8,5201	28
Erros para três o	compartime	entos		1
Erros para quat	, ro comparti	imentos		1

Tabela D.12 – Métricas de Akaike e sugestão de compartimentos Estrutura compartimental para sintetização: dois compartimentos Nivel de ruído: alto

Tabela D.13 – Valores dos parâmetros estimados

Estrutura compartimental para sintetização: três compartimentos
Estrutura compartimental identificada: dois compartimentos
Nivel de ruído: baixo

experimento K1 (palpite inicial) K2 (palpite inicial) K1 desvio padrão k2 desvio padrão 1 0,0846 0,0458 0,0877 0,0052 0,0117 0,0028 2 0,1119 0,0367 0,0879 0,0052 0,0117 0,0028 3 0,0955 0,0205 0,0877 0,0052 0,0117 0,0028 4 0,1467 0,0354 0,0877 0,0052 0,0117 0,0028 5 0,0552 0,0228 0,0877 0,0052 0,0117 0,0028 6 0,0607 0,0470 0,0878 0,0052 0,0117 0,0028 7 0,0657 0,0523 0,0877 0,052 0,0117 0,0028 9 0,1366 0,0317 0,0878 0,052 0,0117 0,0028 10 0,1450 0,0315 0,0877 0,052 0,0117 0,0028 12 0,0640 0,0258 0,0878 0,0052 0,0117 0,0028	The rule rule						
Construction Padrão Padrão Padrão 1 0,0846 0,0458 0,0877 0,0052 0,0117 0,0028 2 0,1119 0,0367 0,0879 0,0052 0,0117 0,0028 3 0,0955 0,0205 0,0878 0,0052 0,0117 0,0028 4 0,1467 0,0354 0,0877 0,0052 0,0117 0,0028 5 0,0552 0,0228 0,0877 0,0052 0,0117 0,0028 6 0,0607 0,0470 0,0879 0,0052 0,0117 0,0028 7 0,0657 0,0523 0,0878 0,0052 0,0117 0,0028 9 0,1366 0,0315 0,0877 0,0052 0,0117 0,0028 10 0,1450 0,0315 0,0877 0,0052 0,0117 0,0028 11 0,1460 0,0379 0,0877 0,0052 0,0117 0,0028 12 0,0640 0,0258 0,0877	experimento	K	ka (K.	desvio	ka	desvio
1 0,0846 0,0458 0,0877 0,0052 0,0117 0,0288 2 0,1119 0,0367 0,0879 0,0052 0,0118 0,0288 3 0,0955 0,0205 0,0878 0,0052 0,0117 0,0288 4 0,1467 0,0354 0,0877 0,0052 0,0117 0,0288 5 0,0552 0,0228 0,0877 0,0052 0,0117 0,0288 6 0,0607 0,0470 0,0879 0,0052 0,0117 0,0288 7 0,0657 0,0523 0,0877 0,0052 0,0117 0,028 8 0,1299 0,0459 0,0877 0,052 0,0117 0,028 10 0,1450 0,0315 0,0877 0,052 0,0117 0,028 11 0,1460 0,0379 0,0877 0,052 0,0117 0,028 12 0,0640 0,0258 0,0877 0,052 0,0117 0,028 13 0,1453<		(palpite inicial)	••2 (paipite inicial)	N1	padrão	12	padrão
2 0,1119 0,0367 0,0879 0,0052 0,0118 0,0028 3 0,0955 0,0205 0,0878 0,0052 0,0117 0,0028 4 0,1467 0,0354 0,0877 0,0052 0,0117 0,0028 5 0,0552 0,0228 0,0877 0,0052 0,0117 0,0028 6 0,0607 0,0470 0,0879 0,0052 0,0117 0,0028 7 0,0657 0,0523 0,0877 0,0052 0,0117 0,0028 9 0,1366 0,0317 0,0878 0,0052 0,0117 0,0028 10 0,1450 0,0315 0,0877 0,052 0,0117 0,0028 11 0,1460 0,0379 0,0878 0,052 0,0117 0,0028 12 0,0640 0,0258 0,0877 0,052 0,0117 0,0028 13 0,1453 0,0274 0,0877 0,052 0,0117 0,0028 14 0	1	0,0846	0,0458	0,0877	0,0052	0,0117	0,0028
3 0,0955 0,0205 0,0878 0,0052 0,0117 0,0028 4 0,1467 0,0354 0,0877 0,0052 0,0117 0,0028 5 0,0552 0,0228 0,0877 0,0052 0,0117 0,0028 6 0,0607 0,0470 0,0879 0,052 0,0117 0,0028 7 0,0657 0,0523 0,0878 0,052 0,0117 0,0028 9 0,1366 0,0317 0,0878 0,052 0,0117 0,0028 10 0,1450 0,0315 0,0877 0,052 0,0117 0,0028 12 0,0640 0,0258 0,0878 0,052 0,0117 0,0028 13 0,1453 0,0274 0,0877 0,052 0,0117 0,0028 14 0,0878 0,0361 0,0877 0,052 0,0117 0,0028 15 0,0736 0,0361 0,0877 0,052 0,0117 0,0028 16 0,09	2	0,1119	0,0367	0,0879	0,0052	0,0118	0,0028
4 0,1467 0,0354 0,0877 0,0052 0,0117 0,0028 5 0,0552 0,0228 0,0877 0,0052 0,0117 0,0028 6 0,0607 0,0470 0,0879 0,0052 0,0117 0,0028 7 0,0657 0,0523 0,0878 0,0052 0,0117 0,0028 8 0,1299 0,0459 0,0877 0,0052 0,0117 0,0028 9 0,1366 0,0317 0,0878 0,0052 0,0117 0,0028 10 0,1450 0,0315 0,0877 0,0052 0,0117 0,0028 11 0,1460 0,0379 0,0878 0,0052 0,0117 0,0028 12 0,0640 0,0258 0,0877 0,052 0,0117 0,0028 13 0,1453 0,0274 0,0877 0,052 0,0117 0,0028 14 0,0878 0,0361 0,0877 0,052 0,0117 0,0028 15 0,0736 0,0361 0,0878 0,052 0,0117 0,0028 <	3	0,0955	0,0205	0,0878	0,0052	0,0117	0,0028
5 0,0552 0,0228 0,0877 0,052 0,0116 0,0028 6 0,0607 0,0470 0,0879 0,052 0,0117 0,0028 7 0,0657 0,0523 0,0878 0,052 0,0117 0,0028 8 0,1299 0,0459 0,0877 0,052 0,0117 0,0028 9 0,1366 0,0317 0,0878 0,052 0,0117 0,0028 10 0,1450 0,0315 0,0877 0,052 0,0117 0,0028 11 0,1460 0,0379 0,0878 0,052 0,0117 0,0028 12 0,0640 0,0258 0,0877 0,052 0,0117 0,0028 13 0,1453 0,0274 0,0877 0,052 0,0117 0,0028 14 0,0878 0,0530 0,0877 0,052 0,0117 0,0028 15 0,0736 0,0361 0,0877 0,052 0,0117 0,0028 16 0,0900	4	0,1467	0,0354	0,0877	0,0052	0,0117	0,0028
6 0,0607 0,0470 0,0879 0,0052 0,0117 0,0028 7 0,0657 0,0523 0,0878 0,0052 0,0117 0,0028 8 0,1299 0,0459 0,0877 0,0052 0,0117 0,0028 9 0,1366 0,0317 0,0878 0,0052 0,0117 0,0028 10 0,1450 0,0315 0,0877 0,052 0,0117 0,0028 11 0,1460 0,0379 0,0878 0,052 0,0117 0,0028 12 0,0640 0,0258 0,0877 0,052 0,0117 0,0028 13 0,1453 0,0274 0,0877 0,052 0,0117 0,0028 14 0,0878 0,0530 0,0877 0,052 0,0117 0,0028 15 0,0736 0,0361 0,0877 0,052 0,0117 0,0028 16 0,0900 0,0542 0,0878 0,052 0,0117 0,0028 17 0	5	0,0552	0,0228	0,0877	0,0052	0,0116	0,0028
7 0,0657 0,0523 0,0878 0,0052 0,0117 0,0028 8 0,1299 0,0459 0,0877 0,0052 0,0117 0,0028 9 0,1366 0,0317 0,0878 0,0052 0,0117 0,0028 10 0,1450 0,0315 0,0877 0,052 0,0117 0,0028 11 0,1460 0,0379 0,0878 0,052 0,0117 0,0028 12 0,0640 0,0258 0,0878 0,052 0,0117 0,0028 13 0,1453 0,0274 0,0877 0,052 0,0117 0,0028 14 0,0878 0,0530 0,0877 0,052 0,0117 0,0028 15 0,0736 0,0361 0,0877 0,052 0,0117 0,0028 16 0,0900 0,0542 0,0878 0,052 0,0117 0,0028 17 0,0816 0,0349 0,0878 0,052 0,0117 0,0028 18 0	6	0,0607	0,0470	0,0879	0,0052	0,0117	0,0028
8 0,1299 0,0459 0,0877 0,0052 0,0117 0,0028 9 0,1366 0,0317 0,0878 0,0052 0,0117 0,0028 10 0,1450 0,0315 0,0877 0,0052 0,0117 0,0028 11 0,1460 0,0379 0,0878 0,0052 0,0117 0,0028 12 0,0640 0,0258 0,0877 0,0052 0,0117 0,0028 13 0,1453 0,0274 0,0877 0,0052 0,0117 0,0028 14 0,0878 0,0530 0,0877 0,0052 0,0117 0,0028 15 0,0736 0,0361 0,0877 0,0052 0,0117 0,0028 16 0,0900 0,0542 0,0877 0,0052 0,0117 0,0028 17 0,0816 0,0349 0,0878 0,0052 0,0117 0,0028 18 0,1066 0,0595 0,0877 0,052 0,0117 0,0028 20	7	0,0657	0,0523	0,0878	0,0052	0,0117	0,0028
9 0,1366 0,0317 0,0878 0,0052 0,0117 0,0028 10 0,1450 0,0315 0,0877 0,0052 0,0117 0,0028 11 0,1460 0,0379 0,0878 0,0052 0,0117 0,0028 12 0,0640 0,0258 0,0877 0,0052 0,0117 0,0028 13 0,1453 0,0274 0,0877 0,0052 0,0117 0,0028 14 0,0878 0,0530 0,0877 0,0052 0,0117 0,0028 15 0,0736 0,0361 0,0877 0,0052 0,0117 0,0028 16 0,0900 0,0542 0,0877 0,0052 0,0117 0,0028 17 0,0816 0,0349 0,0878 0,0052 0,0117 0,0028 18 0,1066 0,0595 0,8878 0,0052 0,0117 0,0028 20 0,1147 0,0229 0,0877 0,0052 0,0117 0,0028 21	8	0,1299	0,0459	0,0877	0,0052	0,0117	0,0028
10 0,1450 0,0315 0,0877 0,0052 0,0117 0,0028 11 0,1460 0,0379 0,0878 0,0052 0,0117 0,0028 12 0,0640 0,0258 0,0878 0,052 0,0117 0,0028 13 0,1453 0,0274 0,0877 0,052 0,0117 0,0028 14 0,0878 0,0530 0,0877 0,052 0,0117 0,0028 15 0,0736 0,0361 0,0877 0,052 0,0117 0,0028 16 0,0900 0,0542 0,0877 0,052 0,0117 0,0028 17 0,0816 0,0349 0,0878 0,052 0,0117 0,0028 18 0,1066 0,0595 0,0878 0,052 0,0117 0,0028 20 0,1147 0,0229 0,0877 0,052 0,0117 0,0028 21 0,1447 0,0505 0,0877 0,052 0,0117 0,0028 23 <td< td=""><td>9</td><td>0,1366</td><td>0,0317</td><td>0,0878</td><td>0,0052</td><td>0,0117</td><td>0,0028</td></td<>	9	0,1366	0,0317	0,0878	0,0052	0,0117	0,0028
11 0,1460 0,0379 0,0878 0,0052 0,0117 0,0028 12 0,0640 0,0258 0,0878 0,0052 0,0117 0,0028 13 0,1453 0,0274 0,0877 0,0052 0,0117 0,0028 14 0,0878 0,0530 0,0877 0,0052 0,0117 0,0028 15 0,0736 0,0361 0,0877 0,0052 0,0117 0,0028 16 0,0900 0,0542 0,0877 0,0052 0,0117 0,0028 17 0,0816 0,0349 0,0878 0,0052 0,0117 0,0028 18 0,1066 0,0595 0,0878 0,0052 0,0117 0,0028 20 0,1147 0,0229 0,0877 0,0052 0,0117 0,0028 21 0,1447 0,0505 0,0877 0,052 0,0117 0,0028 23 0,0998 0,0453 0,0877 0,052 0,0117 0,0028 24	10	0,1450	0,0315	0,0877	0,0052	0,0117	0,0028
12 0,0640 0,0258 0,0878 0,0052 0,0117 0,0028 13 0,1453 0,0274 0,0877 0,0052 0,0117 0,0028 14 0,0878 0,0530 0,0877 0,0052 0,0117 0,0028 15 0,0736 0,0361 0,0877 0,052 0,0117 0,0028 16 0,0900 0,0542 0,0877 0,052 0,0117 0,0028 17 0,0816 0,0349 0,0878 0,052 0,0117 0,0028 18 0,1066 0,0595 0,0878 0,052 0,0117 0,0028 20 0,1147 0,0229 0,0877 0,052 0,0117 0,0028 21 0,1447 0,0505 0,0877 0,052 0,0117 0,0028 23 0,0998 0,0453 0,0877 0,052 0,0117 0,0028 24 0,0537 0,0547 0,0878 0,0052 0,0117 0,0028 25 <	11	0,1460	0,0379	0,0878	0,0052	0,0117	0,0028
13 0,1453 0,0274 0,0877 0,0052 0,0117 0,0028 14 0,0878 0,0530 0,0877 0,0052 0,0117 0,0028 15 0,0736 0,0361 0,0877 0,0052 0,0117 0,0028 16 0,0900 0,0542 0,0877 0,0052 0,0117 0,0028 17 0,0816 0,0349 0,0878 0,052 0,0117 0,0028 18 0,1066 0,0595 0,0878 0,052 0,0117 0,0028 20 0,1147 0,0229 0,0877 0,052 0,0117 0,0028 21 0,1447 0,0505 0,0877 0,052 0,0117 0,0028 23 0,0998 0,0453 0,0877 0,052 0,0117 0,0028 24 0,0537 0,0547 0,0878 0,0052 0,0117 0,0028 25 0,0527 0,0444 0,0878 0,052 0,0117 0,0028 27	12	0,0640	0,0258	0,0878	0,0052	0,0117	0,0028
14 0,0878 0,0530 0,0877 0,0052 0,0117 0,0028 15 0,0736 0,0361 0,0877 0,0052 0,0117 0,0028 16 0,0900 0,0542 0,0877 0,052 0,0117 0,0028 17 0,0816 0,0349 0,0878 0,052 0,0117 0,0028 18 0,1066 0,0595 0,0878 0,052 0,0117 0,0028 20 0,1147 0,0229 0,0877 0,052 0,0117 0,0028 21 0,1447 0,0505 0,0877 0,052 0,0117 0,0028 23 0,0998 0,0453 0,0877 0,052 0,0117 0,0028 24 0,0537 0,0547 0,0878 0,0052 0,0117 0,0028 25 0,0527 0,0444 0,0878 0,0052 0,0117 0,0028 26 0,1163 0,0219 0,0878 0,0052 0,0117 0,0028 28	13	0,1453	0,0274	0,0877	0,0052	0,0117	0,0028
15 0,0736 0,0361 0,0877 0,0052 0,0117 0,0028 16 0,0900 0,0542 0,0877 0,0052 0,0117 0,0028 17 0,0816 0,0349 0,0878 0,0052 0,0117 0,0028 18 0,1066 0,0595 0,0878 0,0052 0,0117 0,0029 19 0,0587 0,0201 0,0878 0,0052 0,0117 0,0028 20 0,1147 0,0229 0,0877 0,052 0,0117 0,0028 21 0,1447 0,0505 0,0877 0,052 0,0117 0,0028 23 0,0998 0,0453 0,0877 0,052 0,0117 0,0028 24 0,0537 0,0547 0,0878 0,0052 0,0117 0,0028 25 0,0527 0,0444 0,0878 0,0052 0,0117 0,0028 26 0,1163 0,0219 0,0878 0,0052 0,0117 0,0028 28	14	0,0878	0,0530	0,0877	0,0052	0,0117	0,0028
16 0,0900 0,0542 0,0877 0,0052 0,0117 0,0028 17 0,0816 0,0349 0,0878 0,0052 0,0117 0,0028 18 0,1066 0,0595 0,0878 0,0052 0,0117 0,0029 19 0,0587 0,0201 0,0878 0,0052 0,0117 0,0028 20 0,1147 0,0229 0,0877 0,0052 0,0117 0,0028 21 0,1447 0,0505 0,0877 0,0052 0,0117 0,0029 22 0,1473 0,0429 0,0878 0,0052 0,0117 0,0028 23 0,0998 0,0453 0,0877 0,052 0,0117 0,0028 24 0,0537 0,0547 0,0878 0,0052 0,0117 0,0028 25 0,0527 0,0444 0,0878 0,0052 0,0117 0,0028 26 0,1163 0,0219 0,0878 0,0052 0,0117 0,0028 28	15	0,0736	0,0361	0,0877	0,0052	0,0117	0,0028
17 0,0816 0,0349 0,0878 0,0052 0,0117 0,0028 18 0,1066 0,0595 0,0878 0,0052 0,0117 0,0029 19 0,0587 0,0201 0,0878 0,0052 0,0117 0,0028 20 0,1147 0,0229 0,0877 0,0052 0,0117 0,0028 21 0,1447 0,0505 0,0877 0,0052 0,0117 0,0029 22 0,1473 0,0429 0,0878 0,0052 0,0117 0,0028 23 0,0998 0,0453 0,0877 0,0052 0,0117 0,0028 24 0,0537 0,0547 0,0878 0,0052 0,0117 0,0028 25 0,0527 0,0444 0,0878 0,0052 0,0117 0,0028 26 0,1163 0,0219 0,0878 0,0052 0,0117 0,0028 29 0,0508 0,0484 0,0878 0,0052 0,0117 0,0028 30	16	0,0900	0,0542	0,0877	0,0052	0,0117	0,0028
18 0,1066 0,0595 0,0878 0,0052 0,0117 0,0029 19 0,0587 0,0201 0,0878 0,0052 0,0117 0,0028 20 0,1147 0,0229 0,0877 0,0052 0,0117 0,0028 21 0,1447 0,0505 0,0877 0,0052 0,0117 0,0029 22 0,1473 0,0429 0,0878 0,0052 0,0117 0,0028 23 0,0998 0,0453 0,0877 0,0052 0,0117 0,0028 24 0,0537 0,0547 0,0877 0,0052 0,0117 0,0028 25 0,0527 0,0444 0,0878 0,0052 0,0117 0,0028 26 0,1163 0,0219 0,0878 0,0052 0,0117 0,0028 28 0,0508 0,0444 0,0878 0,0052 0,0117 0,0028 29 0,0974 0,0277 0,0877 0,0052 0,0117 0,0028 30	17	0,0816	0,0349	0,0878	0,0052	0,0117	0,0028
19 0,0587 0,0201 0,0878 0,0052 0,0117 0,0028 20 0,1147 0,0229 0,0877 0,0052 0,0117 0,0028 21 0,1447 0,0505 0,0877 0,0052 0,0117 0,0029 22 0,1473 0,0429 0,0878 0,0052 0,0117 0,0028 23 0,0998 0,0453 0,0877 0,0052 0,0117 0,0028 24 0,0537 0,0547 0,0877 0,0052 0,0117 0,0028 25 0,0527 0,0444 0,0878 0,0052 0,0117 0,0028 26 0,1163 0,0219 0,0878 0,0052 0,0117 0,0028 27 0,1157 0,0476 0,0878 0,0052 0,0117 0,0028 29 0,0508 0,0477 0,0877 0,052 0,0117 0,0028 30 0,1491 0,0450 0,0878 0,0052 0,0117 0,0028 30	18	0,1066	0,0595	0,0878	0,0052	0,0117	0,0029
20 0,1147 0,0229 0,0877 0,0052 0,0117 0,0028 21 0,1447 0,0505 0,0877 0,0052 0,0117 0,0029 22 0,1473 0,0429 0,0878 0,0052 0,0117 0,0028 23 0,0998 0,0453 0,0877 0,052 0,0117 0,0028 24 0,0537 0,0547 0,0877 0,052 0,0117 0,0028 25 0,0527 0,0444 0,0878 0,052 0,0117 0,0028 26 0,1163 0,0219 0,0878 0,052 0,0117 0,0028 27 0,1157 0,0476 0,0878 0,052 0,0117 0,0028 28 0,0508 0,0484 0,0878 0,052 0,0117 0,0028 29 0,0974 0,0277 0,0878 0,0052 0,0117 0,0028 30 0,1491 0,0450 0,0878 0,0052 0,0117 0,0028 média	19	0,0587	0,0201	0,0878	0,0052	0,0117	0,0028
21 0,1447 0,0505 0,0877 0,0052 0,0117 0,0029 22 0,1473 0,0429 0,0878 0,0052 0,0117 0,0028 23 0,0998 0,0453 0,0877 0,052 0,0117 0,0028 24 0,0537 0,0547 0,0877 0,052 0,0117 0,0028 25 0,0527 0,0444 0,0878 0,052 0,0117 0,0028 26 0,1163 0,0219 0,0878 0,052 0,0117 0,0028 27 0,1157 0,0476 0,0878 0,052 0,0117 0,0028 28 0,0508 0,0484 0,0878 0,052 0,0117 0,0028 29 0,0974 0,0277 0,0878 0,052 0,0117 0,0028 30 0,1491 0,0450 0,0878 0,0512 0,0117 0,0028 média 0,1009 0,0390 0,0878 0,0017 0,0000 0,0000	20	0,1147	0,0229	0,0877	0,0052	0,0117	0,0028
22 0,1473 0,0429 0,0878 0,0052 0,0117 0,0028 23 0,0998 0,0453 0,0877 0,0052 0,0117 0,0028 24 0,0537 0,0547 0,0877 0,052 0,0117 0,0028 25 0,0527 0,0444 0,0878 0,052 0,0117 0,0028 26 0,1163 0,0219 0,0878 0,052 0,0117 0,0028 27 0,1157 0,0476 0,0878 0,052 0,0117 0,0028 28 0,0508 0,0484 0,0878 0,052 0,0117 0,0028 29 0,0974 0,0277 0,0877 0,052 0,0117 0,0028 30 0,1491 0,0450 0,0878 0,0052 0,0117 0,0028 média 0,1009 0,0390 0,0878 0,0117 0,0000	21	0,1447	0,0505	0,0877	0,0052	0,0117	0,0029
23 0,0998 0,0453 0,0877 0,0052 0,0117 0,0028 24 0,0537 0,0547 0,0877 0,0052 0,0117 0,0028 25 0,0527 0,0444 0,0878 0,0052 0,0117 0,0028 26 0,1163 0,0219 0,0878 0,0052 0,0117 0,0028 27 0,1157 0,0476 0,0878 0,0052 0,0117 0,0028 28 0,0508 0,0484 0,0878 0,0052 0,0117 0,0028 29 0,0974 0,0277 0,0877 0,0052 0,0117 0,0028 30 0,1491 0,0450 0,0878 0,0052 0,0117 0,0028 média 0,1009 0,0390 0,0878 0,0017 0,0000	22	0,1473	0,0429	0,0878	0,0052	0,0117	0,0028
24 0,0537 0,0547 0,0877 0,0052 0,0117 0,0028 25 0,0527 0,0444 0,0878 0,0052 0,0117 0,0028 26 0,1163 0,0219 0,0878 0,0052 0,0117 0,0028 27 0,1157 0,0476 0,0878 0,0052 0,0117 0,0028 28 0,0508 0,0484 0,0878 0,0052 0,0117 0,0028 29 0,0974 0,0277 0,0877 0,052 0,0117 0,0028 30 0,1491 0,0450 0,0878 0,0052 0,0117 0,0028 média 0,1009 0,0390 0,0878 0,0017 0,0000	23	0,0998	0,0453	0,0877	0,0052	0,0117	0,0028
25 0,0527 0,0444 0,0878 0,0052 0,0117 0,0028 26 0,1163 0,0219 0,0878 0,0052 0,0117 0,0028 27 0,1157 0,0476 0,0878 0,0052 0,0117 0,0028 28 0,0508 0,0484 0,0878 0,0052 0,0117 0,0028 29 0,0974 0,0277 0,0877 0,0052 0,0117 0,0028 30 0,1491 0,0450 0,0878 0,0052 0,0117 0,0028 média 0,1009 0,0390 0,0878 0,0017 0,0000	24	0,0537	0,0547	0,0877	0,0052	0,0117	0,0028
26 0,1163 0,0219 0,0878 0,0052 0,0117 0,0028 27 0,1157 0,0476 0,0878 0,0052 0,0117 0,0028 28 0,0508 0,0484 0,0878 0,0052 0,0117 0,0028 29 0,0974 0,0277 0,0877 0,0052 0,0117 0,0028 30 0,1491 0,0450 0,0878 0,0052 0,0117 0,0028 média 0,1009 0,0390 0,0878 0,0117 0,0000	25	0,0527	0,0444	0,0878	0,0052	0,0117	0,0028
27 0,1157 0,0476 0,0878 0,0052 0,0117 0,0028 28 0,0508 0,0484 0,0878 0,0052 0,0117 0,0028 29 0,0974 0,0277 0,0877 0,0052 0,0117 0,0028 30 0,1491 0,0450 0,0878 0,0052 0,0117 0,0028 média 0,1009 0,0390 0,0878 0,0117 0,0000	26	0,1163	0,0219	0,0878	0,0052	0,0117	0,0028
28 0,0508 0,0484 0,0878 0,0052 0,0117 0,0028 29 0,0974 0,0277 0,0877 0,0052 0,0117 0,0028 30 0,1491 0,0450 0,0878 0,0052 0,0117 0,0028 média 0,1009 0,0390 0,0878 0,0117 0,0000 desvio padrão 0,0343 0,0117 0,0001 0.0000 0.0000	27	0,1157	0,0476	0,0878	0,0052	0,0117	0,0028
29 0,0974 0,0277 0,0877 0,0052 0,0117 0,0028 30 0,1491 0,0450 0,0878 0,0052 0,0117 0,0028 média 0,1009 0,0390 0,0878 0,0117 0,0000 desvio padrão 0,0343 0,0117 0,0001 0.0000	28	0,0508	0,0484	0,0878	0,0052	0,0117	0,0028
30 0,1491 0,0450 0,0878 0,0052 0,0117 0,0028 média 0,1009 0,0390 0,0878 0,0117 0,00117 desvio padrão 0,0343 0,0117 0,0001 0.0000	29	0,0974	0,0277	0,0877	0,0052	0,0117	0,0028
média 0,1009 0,0390 0,0878 0,0117 desvio padrão 0,0343 0,0117 0,0001 0.0000	30	0,1491	0,0450	0,0878	0,0052	0,0117	0,0028
desvio padrão 0,0343 0,0117 0,0001 0.0000	média	0,1009	0,0390	0,0878		0,0117	
-,	desvio padrão	0,0343	0,0117	0,0001		0,0000	

Tabela D.14 – Valores dos parâmetros estimados Estrutura compartimental para sintetização: três compartimentos Estrutura compartimental identificada: três compartimentos Nivel de ruído: baixo

experimento	K	k	k	k	к	desvio	k	desvio	k	desvio	k	desvio
experimento	№1 (palpite inicial)	№2 (palpite inicial)	▲3 (palpite inicial)	№4 (palpite inicial)	κ ₁	padrão	N 2	padrão	N 3	padrão	κ ₄	padrão
1	0,0846	0,0458	0,0329	0,0000	0,1000	0,0105	0,0402	0,0329	0,0505	0,0743	0,0002	0,0301
2	0,1119	0,0367	0,0547	0,0000	0,1002	0,0105	0,0402	0,0327	0,0501	0,0734	0,0000	0,0301
3	0,0955	0,0205	0,0655	0,0000	0,1001	0,0105	0,0399	0,0323	0,0492	0,0723	-0,0005	0,0302
4	0,1467	0,0354	0,0380	0,0000	0,0999	0,0105	0,0400	0,0326	0,0499	0,0733	-0,0002	0,0301
5	0,0552	0,0228	0,0485	0,0000	0,0998	0,0105	0,0396	0,0324	0,0494	0,0734	-0,0003	0,0306
6	0,0607	0,0470	0,0321	0,0000	0,1003	0,0106	0,0407	0,0334	0,0515	0,0752	0,0007	0,0298
7	0,0657	0,0523	0,0405	0,0000	0,1000	0,0105	0,0398	0,0325	0,0496	0,0735	-0,0001	0,0304
8	0,1299	0,0459	0,0610	0,0000	0,0999	0,0105	0,0399	0,0326	0,0499	0,0738	0,0000	0,0303
9	0,1366	0,0317	0,0748	0,0000	0,1001	0,0106	0,0404	0,0331	0,0510	0,0746	0,0004	0,0299
10	0,1450	0,0315	0,0581	0,0000	0,0998	0,0104	0,0395	0,0320	0,0485	0,0718	-0,0008	0,0305
11	0,1460	0,0379	0,0395	0,0000	0,1000	0,0105	0,0401	0,0328	0,0504	0,0741	0,0001	0,0301
12	0,0640	0,0258	0,0734	0,0000	0,1001	0,0105	0,0401	0,0326	0,0499	0,0736	0,0001	0,0303
13	0,1453	0,0274	0,0602	0,0000	0,0999	0,0104	0,0395	0,0322	0,0490	0,0728	-0,0005	0,0306
14	0,0878	0,0530	0,0402	0,0000	0,0998	0,0105	0,0396	0,0325	0,0496	0,0740	0,0000	0,0307
15	0,0736	0,0361	0,0308	0,0000	0,0999	0,0105	0,0398	0,0325	0,0497	0,0737	-0,0001	0,0305
16	0,0900	0,0542	0,0531	0,0000	0,1000	0,0105	0,0400	0,0325	0,0497	0,0731	-0,0002	0,0302
17	0,0816	0,0349	0,0529	0,0000	0,0999	0,0105	0,0399	0,0328	0,0503	0,0747	0,0003	0,0304
18	0,1066	0,0595	0,0637	0,0000	0,1002	0,0106	0,0405	0,0329	0,0505	0,0732	-0,0001	0,0296
19	0,0587	0,0201	0,0372	0,0000	0,1001	0,0106	0,0403	0,0331	0,0509	0,0750	0,0005	0,0301
20	0,1147	0,0229	0,0611	0,0000	0,1000	0,0105	0,0400	0,0325	0,0497	0,0731	-0,0003	0,0301
21	0,1447	0,0505	0,0288	0,0000	0,1002	0,0106	0,0408	0,0331	0,0510	0,0734	0,0000	0,0294
22	0,1473	0,0429	0,0667	0,0000	0,1000	0,0105	0,0402	0,0331	0,0508	0,0751	0,0005	0,0302
23	0,0998	0,0453	0,0493	0,0000	0,1000	0,0105	0,0398	0,0323	0,0491	0,0726	-0,0004	0,0304
24	0,0537	0,0547	0,0434	0,0000	0,0999	0,0106	0,0403	0,0332	0,0513	0,0756	0,0006	0,0301
25	0,0527	0,0444	0,0362	0,0000	0,1000	0,0105	0,0400	0,0326	0,0499	0,0737	0,0000	0,0303
26	0,1163	0,0219	0,0584	0,0000	0,1000	0,0105	0,0400	0,0329	0,0503	0,0745	0,0002	0,0303
27	0,1157	0,0476	0,0672	0,0000	0,1000	0,0105	0,0399	0,0324	0,0494	0,0729	-0,0003	0,0303
28	0,0508	0,0484	0,0523	0,0000	0,1000	0,0105	0,0397	0,0324	0,0494	0,0733	-0,0001	0,0306
29	0,0974	0,0277	0,0450	0,0000	0,1001	0,0106	0,0406	0,0332	0,0513	0,0747	0,0003	0,0297
30	0,1491	0,0450	0,0459	0,0000	0,1001	0,0105	0,0402	0,0327	0,0500	0,0734	0,0000	0,0301
média	0,1009	0,0390	0,0504	0,0000	0,1000		0,0400		0,0501		0,0000	
desvio padrão	0,0343	0,0117	0,0131	0,0000	0,0001		0,0003		0,0007		0,0003	

Tabela D.15 – Valores dos parâmetros estimados

Estrutura compartimental para sintetização: três compartimentos
Estrutura compartimental identificada: quatro compartimentos
Nivel de ruído: baixo

experimento	K	k	k	k	k .	k	ĸ	desvio	k	desvio	k	desvio	k	desvio	k	desvio	k	desvio padrão
experimento	№1 (palpite inicial)	^R 2 (palpite inicial)	^N 3 (palpite inicial)	K4 (palpite inicial)	K5 (palpite inicial)	№6 (palpite inicial)	к1	padrão	ĸ2	padrão	κ3	padrão	к ₄	padrão	K 5	padrão	к ₆	uesvio paulao
1	0,0846	0,0458	0,0329	0,0000	0,0000	0,0000	0,1001	0,0139	0,0403	0,0687	0,0520	10,9992	-0,0017	4,0632	-0,0019	11,3153	-0,0262	53,9866
2	0,1119	0,0367	0,0547	0,0000	0,0000	0,0000	0,1003	0,0144	0,0406	0,0776	0,0621	12984,0280	0,0008	277,7163	-0,0115	12983,6250	0,0035	1623,3191
3	0,0955	0,0205	0,0655	0,0000	0,0000	0,0000	0,1001	0,0142	0,0400	0,0744	0,0929	65165,1820	-0,0019	556,7158	-0,0436	65165,5600	-0,0035	1133,0015
4	0,1467	0,0354	0,0380	0,0000	0,0000	0,0000	0,0999	0,0139	0,0400	0,0696	0,0599	94,8431	-0,0047	12,2374	-0,0110	95,1746	-0,0173	45,6371
5	0,0552	0,0228	0,0485	0,0000	0,0000	0,0000	0,0997	0,0141	0,0397	0,0730	0,0454	75,7271	0,0015	15,0245	0,0044	76,0928	-0,0128	101,2431
6	0,0607	0,0470	0,0321	0,0000	0,0000	0,0000	0,1005	0,0148	0,0418	0,0845	0,0352	15,3331	-0,0048	4,2145	0,0201	14,8861	0,0225	15,9979
7	0,0657	0,0523	0,0405	0,0000	0,0000	0,0000	0,1000	0,0151	0,0401	0,0906	0,0474	4,8516	-0,0011	1,3591	0,0032	4,3150	0,0437	68,4969
8	0,1299	0,0459	0,0610	0,0000	0,0000	0,0000	0,0999	0,0143	0,0401	0,0757	0,0371	1930,3025	0,0015	143,0105	0,0132	1930,6919	-0,0036	347,1886
9	0,1366	0,0317	0,0748	0,0000	0,0000	0,0000	0,1002	0,0127	0,0408	0,0512	0,1122	699,8316	0,0004	28,4735	-0,0607	699,8398	0,0004	52,4075
10	0,1450	0,0315	0,0581	0,0000	0,0000	0,0000	0,0998	0,0145	0,0394	0,0797	0,0747	352,4527	0,0030	20,1660	-0,0271	352,0089	0,0127	73,2748
11	0,1460	0,0379	0,0395	0,0000	0,0000	0,0000	0,1002	0,0143	0,0403	0,0762	0,0667	95220,6870	-0,0002	1011,6705	-0,0160	95221,0780	-0,0016	4055,3250
12	0,0640	0,0258	0,0734	0,0000	0,0000	0,0000	0,1000	0,0129	0,0402	0,0550	0,1220	852639,1400	0,0008	1685,4421	-0,0720	852638,9900	0,0013	2899,2206
13	0,1453	0,0274	0,0602	0,0000	0,0000	0,0000	0,0999	0,0140	0,0398	0,0719	0,0487	67,4442	0,0000	12,8545	0,0008	67,7989	-0,0146	491,3156
14	0,0878	0,0530	0,0402	0,0000	0,0000	0,0000	0,0999	0,0141	0,0400	0,0732	0,1019	8179,0931	-0,0036	127,3202	-0,0520	8179,4592	-0,0066	227,9671
15	0,0736	0,0361	0,0308	0,0000	0,0000	0,0000	0,0999	0,0142	0,0399	0,0744	0,0836	25499,5590	-0,0017	333,4372	-0,0339	25499,9380	-0,0038	773,7535
16	0,0900	0,0542	0,0531	0,0000	0,0000	0,0000	0,1000	0,0145	0,0399	0,0806	0,0918	691,2886	0,0047	26,4640	-0,0432	690,8436	0,0125	70,2091
17	0,0816	0,0349	0,0529	0,0000	0,0000	0,0000	0,0999	0,0145	0,0401	0,0809	0,0550	157,6559	0,0012	15,3064	-0,0046	157,2132	0,0139	265,2616
18	0,1066	0,0595	0,0637	0,0000	0,0000	0,0000	0,1004	0,0127	0,0409	0,0508	0,0674	43985,9000	0,0000	58,9260	-0,0163	43985,9000	-0,0002	241,9478
19	0,0587	0,0201	0,0372	0,0000	0,0000	0,0000	0,1002	0,0142	0,0402	0,0747	0,0902	12549,1830	-0,0018	193,4163	-0,0394	12549,5600	-0,0045	409,4564
20	0,1147	0,0229	0,0611	0,0000	0,0000	0,0000	0,0999	0,0144	0,0401	0,0775	0,0498	2036,5005	-0,0003	98,0271	0,0001	2036,0922	0,0049	66668,9330
21	0,1447	0,0505	0,0288	0,0000	0,0000	0,0000	0,1003	0,0143	0,0416	0,0756	0,0097	29,2938	-0,0139	22,7551	0,0435	28,9282	0,0058	9,0677
22	0,1473	0,0429	0,0667	0,0000	0,0000	0,0000	0,1001	0,0146	0,0404	0,0806	0,0671	559,2452	0,0026	30,6751	-0,0161	558,8104	0,0108	161,4895
23	0,0998	0,0453	0,0493	0,0000	0,0000	0,0000	0,1000	0,0143	0,0399	0,0765	0,0636	52717,4960	0,0002	696,8018	-0,0143	52717,0950	0,0019	3266,1402
24	0,0537	0,0547	0,0434	0,0000	0,0000	0,0000	0,1000	0,0139	0,0407	0,0705	-0,0114	402265,5900	-0,0001	14270,0410	0,0634	402265,2500	0,0007	2619,8135
25	0,0527	0,0444	0,0362	0,0000	0,0000	0,0000	0,0999	0,0127	0,0401	0,0506	0,0144	506159,7000	-0,0002	5315,0999	0,0358	506159,6800	0,0001	2152,2899
26	0,1163	0,0219	0,0584	0,0000	0,0000	0,0000	0,0999	0,0150	0,0405	0,0894	0,0472	6,8563	-0,0011	1,7805	0,0049	6,3400	0,0379	49,9534
27	0,1157	0,0476	0,0672	0,0000	0,0000	0,0000	0,1000	0,0143	0,0402	0,0753	0,0383	1659,8992	0,0012	125,0178	0,0116	1660,2847	-0,0041	351,9928
28	0,0508	0,0484	0,0523	0,0000	0,0000	0,0000	0,1000	0,0142	0,0400	0,0745	-0,0078	164186,8600	-0,0013	11860,5250	0,0576	164186,4800	-0,0002	1664,9374
29	0,0974	0,0277	0,0450	0,0000	0,0000	0,0000	0,1002	0,0128	0,0410	0,0524	0,0641	410497,9200	0,0006	1453,7041	-0,0121	410497,8600	0,0011	7778,9433
30	0,1491	0,0450	0,0459	0,0000	0,0000	0,0000	0,1002	0,0143	0,0403	0,0754	0,0669	56021,1280	-0,0005	705,7629	-0,0167	56021,5110	-0,0022	2688,0829
média	0,1009	0,0390	0,0504	0,0000	0,0000	0,0000	0,1000		0,0403		0,0583		-0,0007		-0,0078		0,0024	
desvio padrão	0 0343	0 0117	0.0131	0.0000	0 0000	0.0000	0 0002		0 0005		0.0316		0.0032		0.0321		0 0142	

Tabela D.16 – Métricas de Akaike e sugestão de compartimentos Estrutura compartimental para sintetização: três compartimentos Nivel de ruído: baixo

evnerimento				Sugestão de		
схреппеню	710 2	/10 0		compartimentos		
1	318,7142	107,1904	111,3992	3		
2	319,0878	119,5258	124,7035	3		
3	319,0937	95,6938	100,5999	3		
4	318,9304	96,8855	102,0650	3		
5	318,3218	94,0339	99,2101	3		
6	318,5257	106,6893	108,5671	3		
7	318,4709	102,2935	106,5030	3		
8	318,4651	110,0981	112,8281	3		
9	318,6808	94,9659	95,8444	3		
10	318,9432	99,3095	104,7884	3		
11	318,6231	112,8957	116,5153	3		
12	318,6130	103,3829	106,8897	3		
13	318,7024	124,4084	130,5367	3		
14	318,3660	110,6425	114,1259	3		
15	318,5982	116,5904	120,4454	3		
16	318,8960	103,5617	106,6590	3		
17	318,2770	109,4651	112,8181	3		
18	319,2702	110,4623	114,3909	3		
19	318,2943	104,0018	109,0633	3		
20	318,9085	106,4395	111,3921	3		
21	319,5662	112,7724	114,2716	3		
22	318,2161	110,0182	113,4067	3		
23	318,8755	101,3886	107,0210	3		
24	318,2638	97,5776	104,0082	3		
25	318,5622	109,8832	112,2537	3		
26	318,0989	99,6078	100,1046	3		
27	318,8040	110,4903	116,4835	3		
28	318,4027	110,8230	116,7458	3		
29	318,5791	113,2508	118,3050	3		
30	318,7769	109,0616	112,2193	3		
média	318,6643	106,7803	110,8055	acertos		
desvio padrão	0,3349	7,3828	7,6486	30		
Erros para dois compartimentos 0						
Erros para quat	ro compart	imentos		0		

Tabela D.17 – Valores dos parâmetros estimados

Estrutura compartimental para sintetização: três compartimentos
Estrutura compartimental identificada: dois compartimentos
Nivel de ruído: médio

experimento	K _{1 (palpite inicial)}	k _{2 (palpite inicial)}	K ₁	desvio	k ₂	desvio
1	0.0568	0.0480	0.0875	0.0051	0.0116	0.0028
2	0.1135	0.0551	0.0877	0.0052	0.0117	0.0028
3	0.1046	0.0431	0.0877	0.0052	0.0117	0.0028
4	0.0858	0.0247	0.0878	0.0052	0.0117	0.0029
5	0,1020	0,0245	0,0875	0,0051	0,0117	0,0028
6	0,0960	0,0467	0,0879	0,0052	0,0117	0,0028
7	0,1484	0,0500	0,0877	0,0052	0,0118	0,0029
8	0,0536	0,0301	0,0877	0,0052	0,0117	0,0028
9	0,0833	0,0563	0,0875	0,0051	0,0116	0,0028
10	0,0955	0,0499	0,0879	0,0052	0,0117	0,0028
11	0,0512	0,0219	0,0879	0,0052	0,0117	0,0028
12	0,1284	0,0504	0,0878	0,0052	0,0117	0,0028
13	0,1387	0,0279	0,0877	0,0052	0,0117	0,0028
14	0,0917	0,0539	0,0880	0,0052	0,0117	0,0028
15	0,0552	0,0360	0,0878	0,0052	0,0117	0,0028
16	0,1272	0,0243	0,0880	0,0052	0,0117	0,0028
17	0,1228	0,0499	0,0876	0,0052	0,0116	0,0028
18	0,0643	0,0264	0,0876	0,0051	0,0116	0,0028
19	0,0861	0,0504	0,0875	0,0052	0,0116	0,0028
20	0,0912	0,0204	0,0877	0,0052	0,0117	0,0028
21	0,1241	0,0202	0,0878	0,0052	0,0118	0,0028
22	0,1380	0,0245	0,0878	0,0052	0,0117	0,0028
23	0,1119	0,0577	0,0877	0,0051	0,0116	0,0028
24	0,0623	0,0267	0,0878	0,0052	0,0117	0,0028
25	0,1261	0,0379	0,0877	0,0052	0,0117	0,0028
26	0,0770	0,0552	0,0878	0,0052	0,0118	0,0028
27	0,0574	0,0453	0,0876	0,0052	0,0117	0,0029
28	0,0644	0,0509	0,0875	0,0051	0,0116	0,0028
29	0,0837	0,0219	0,0878	0,0052	0,0117	0,0028
30	0,1403	0,0522	0,0877	0,0052	0,0118	0,0029
média	0,0960	0,0394	0,0877		0,0117	
desvio padrão	0,0299	0,0134	0,0001		0,0001	

Tabela D.18 – Valores dos parâmetros estimados Estrutura compartimental para sintetização: três compartimentos Estrutura compartimental identificada: três compartimentos Nivel de ruído: médio

experimento	K	k	k	k	к	desvio	k	desvio	k	desvio	k	desvio
experimento	№1 (palpite inicial)	►2 (palpite inicial)	▶3 (palpite inicial)	▶4 (palpite inicial)	κ ₁	padrão	N 2	padrão	N 3	padrão	ĸ ₄	padrão
1	0,0568	0,0480	0,0434	0,0000	0,0993	0,0104	0,0389	0,0322	0,0488	0,0746	-0,0001	0,0316
2	0,1135	0,0551	0,0662	0,0000	0,0998	0,0104	0,0391	0,0315	0,0474	0,0711	-0,0011	0,0311
3	0,1046	0,0431	0,0569	0,0000	0,1000	0,0105	0,0400	0,0327	0,0499	0,0738	0,0000	0,0303
4	0,0858	0,0247	0,0503	0,0000	0,1003	0,0105	0,0403	0,0322	0,0492	0,0710	-0,0010	0,0296
5	0,1020	0,0245	0,0676	0,0000	0,0990	0,0103	0,0382	0,0321	0,0485	0,0764	0,0006	0,0327
6	0,0960	0,0467	0,0522	0,0000	0,1003	0,0107	0,0409	0,0338	0,0524	0,0764	0,0010	0,0296
7	0,1484	0,0500	0,0524	0,0000	0,1000	0,0104	0,0399	0,0320	0,0485	0,0712	-0,0006	0,0304
8	0,0536	0,0301	0,0686	0,0000	0,0998	0,0105	0,0396	0,0325	0,0495	0,0741	0,0000	0,0308
9	0,0833	0,0563	0,0334	0,0000	0,0989	0,0102	0,0374	0,0308	0,0459	0,0723	-0,0011	0,0330
10	0,0955	0,0499	0,0611	0,0000	0,1000	0,0104	0,0393	0,0319	0,0482	0,0723	-0,0005	0,0310
11	0,0512	0,0219	0,0698	0,0000	0,1004	0,0108	0,0415	0,0345	0,0536	0,0775	0,0015	0,0292
12	0,1284	0,0504	0,0676	0,0000	0,0999	0,0104	0,0394	0,0320	0,0487	0,0726	-0,0006	0,0308
13	0,1387	0,0279	0,0553	0,0000	0,0997	0,0104	0,0393	0,0321	0,0487	0,0731	-0,0003	0,0310
14	0,0917	0,0539	0,0704	0,0000	0,1001	0,0106	0,0398	0,0330	0,0503	0,0755	0,0006	0,0308
15	0,0552	0,0360	0,0593	0,0000	0,0996	0,0103	0,0387	0,0316	0,0475	0,0728	-0,0003	0,0320
16	0,1272	0,0243	0,0347	0,0000	0,1004	0,0106	0,0403	0,0328	0,0503	0,0735	-0,0001	0,0299
17	0,1228	0,0499	0,0548	0,0000	0,0999	0,0106	0,0409	0,0342	0,0532	0,0778	0,0012	0,0296
18	0,0643	0,0264	0,0562	0,0000	0,0997	0,0106	0,0403	0,0338	0,0525	0,0780	0,0013	0,0302
19	0,0861	0,0504	0,0526	0,0000	0,0998	0,0106	0,0404	0,0333	0,0516	0,0755	0,0005	0,0298
20	0,0912	0,0204	0,0426	0,0000	0,1001	0,0107	0,0412	0,0343	0,0534	0,0775	0,0014	0,0293
21	0,1241	0,0202	0,0480	0,0000	0,1001	0,0105	0,0403	0,0328	0,0502	0,0735	0,0002	0,0301
22	0,1380	0,0245	0,0588	0,0000	0,0996	0,0105	0,0392	0,0326	0,0497	0,0757	0,0004	0,0314
23	0,1119	0,0577	0,0301	0,0000	0,0996	0,0105	0,0395	0,0330	0,0505	0,0764	0,0007	0,0310
24	0,0623	0,0267	0,0381	0,0000	0,1004	0,0105	0,0401	0,0322	0,0487	0,0719	-0,0001	0,0305
25	0,1261	0,0379	0,0257	0,0000	0,0996	0,0103	0,0386	0,0312	0,0469	0,0712	-0,0012	0,0316
26	0,0770	0,0552	0,0608	0,0000	0,1002	0,0105	0,0402	0,0327	0,0499	0,0738	0,0005	0,0304
27	0,0574	0,0453	0,0381	0,0000	0,1004	0,0107	0,0416	0,0337	0,0522	0,0735	0,0001	0,0285
28	0,0644	0,0509	0,0692	0,0000	0,0991	0,0102	0,0381	0,0312	0,0472	0,0726	-0,0010	0,0321
29	0,0837	0,0219	0,0747	0,0000	0,0999	0,0105	0,0399	0,0329	0,0505	0,0755	0,0007	0,0307
30	0,1403	0,0522	0,0524	0,0000	0,0999	0,0104	0,0395	0,0317	0,0480	0,0713	-0,0009	0,0307
média	0,0960	0,0394	0,0537	0,0000	0,0999		0,0397		0,0497		0,0001	
desvio padrão	0,0299	0,0134	0,0132	0,0000	0,0004		0,0010		0,0020		0,0008	

Tabela D.19 – Valores dos parâmetros estimados

Estrutura compartimental para sintetização: três compartimentos
Estrutura compartimental identificada: quatro compartimentos
Nivel de ruído: médio

ovnorimento	V	k	k	k	k	k	V	desvio	k	desvio	k	desvio	k	desvio	k	desvio	k	docuio padrão
experimento	N1 (palpite inicial)	^k 2 (palpite inicial)	^N 3 (palpite inicial)) ^K 4 (palpite inicial)	K5 (palpite inicial)	№6 (palpite inicial)	к1	padrão	K 2	padrão	N 3	padrão	ĸ ₄	padrão	N 5	padrão	ĸ ₆	uesvio paulao
1	0,0568	0,0480	0,0434	0,0000	0,0000	0,0000	0,0993	0,0140	0,0388	0,0735	0,0072	119,2381	-0,0103	87,5086	0,0418	118,8562	0,0023	21,9066
2	0,1135	0,0551	0,0662	0,0000	0,0000	0,0000	0,0999	0,0141	0,0396	0,0737	0,0446	1212,6084	-0,0002	86,7493	0,0041	1212,9853	-0,0061	800,9532
3	0,1046	0,0431	0,0569	0,0000	0,0000	0,0000	0,1002	0,0139	0,0411	0,0691	0,0517	2,9446	0,0021	2,1335	0,0008	3,2493	-0,0338	45,4116
4	0,0858	0,0247	0,0503	0,0000	0,0000	0,0000	0,1003	0,0143	0,0403	0,0754	0,0712	214398,0500	-0,0015	1607,7890	-0,0220	214398,4400	-0,0026	5039,8832
5	0,1020	0,0245	0,0676	0,0000	0,0000	0,0000	0,0978	0,0295	0,0224	0,6705	0,0310	0,9331	0,0024	0,0507	-0,4956	51,5892	1,1909	77,2017
6	0,0960	0,0467	0,0522	0,0000	0,0000	0,0000	0,1004	0,0144	0,0414	0,0772	0,0128	371,5409	-0,0052	112,5264	0,0404	371,1548	0,0036	46,0108
7	0,1484	0,0500	0,0524	0,0000	0,0000	0,0000	0,1002	0,0136	0,0403	0,0664	0,0654	483343,5900	0,0000	2719,8283	-0,0160	483343,2900	0,0008	11395,2750
8	0,0536	0,0301	0,0686	0,0000	0,0000	0,0000	0,0997	0,0136	0,0391	0,0655	0,1756	4465,5107	-0,0145	44,8211	-0,1295	4465,8149	-0,0179	54,8442
9	0,0833	0,0563	0,0334	0,0000	0,0000	0,0000	0,0988	0,0138	0,0373	0,0721	0,0411	1103,0670	-0,0006	89,9876	0,0045	1103,4595	-0,0067	685,4223
10	0,0955	0,0499	0,0611	0,0000	0,0000	0,0000	0,0999	0,0145	0,0394	0,0807	0,0565	89,0800	0,0014	9,9946	-0,0087	88,6260	0,0170	100,5427
11	0,0512	0,0219	0,0698	0,0000	0,0000	0,0000	0,1011	0,0164	0,0453	0,1148	0,0274	0,6376	0,0733	5,4408	0,0441	1,1754	-0,0045	0,4504
12	0,1284	0,0504	0,0676	0,0000	0,0000	0,0000	0,1002	0,0136	0,0406	0,0638	0,0526	0,1435	0,0039	0,6988	0,0004	0,2925	-0,0626	9,9906
13	0,1387	0,0279	0,0553	0,0000	0,0000	0,0000	0,0997	0,0137	0,0396	0,0685	0,0928	776224,6900	-0,0008	2755,3534	-0,0437	776225,0200	-0,0015	5737,0451
14	0,0917	0,0539	0,0704	0,0000	0,0000	0,0000	0,1007	0,0235	0,0470	0,3344	0,0639	4,4583	0,3088	13,3089	0,0548	0,4605	-0,0012	0,0752
15	0,0552	0,0360	0,0593	0,0000	0,0000	0,0000	0,0997	0,0141	0,0396	0,0742	0,0426	7,2526	0,0099	4,5568	0,0089	7,6254	-0,0206	8,8826
16	0,1272	0,0243	0,0347	0,0000	0,0000	0,0000	0,1003	0,0142	0,0403	0,0735	0,0581	655,8435	-0,0015	44,0447	-0,0081	656,2080	-0,0085	256,9733
17	0,1228	0,0499	0,0548	0,0000	0,0000	0,0000	0,1002	0,0129	0,0418	0,0531	0,0484	189784,6300	0,0017	614,6864	0,0063	189784,6400	0,0014	4662,0761
18	0,0643	0,0264	0,0562	0,0000	0,0000	0,0000	0,0998	0,0139	0,0406	0,0699	0,0586	27,8633	-0,0034	6,0308	-0,0071	28,1879	-0,0218	28,4951
19	0,0861	0,0504	0,0526	0,0000	0,0000	0,0000	0,0998	0,0143	0,0408	0,0770	0,0407	19770,8750	0,0011	592,4185	0,0112	19771,2690	-0,0013	2005,8945
20	0,0912	0,0204	0,0426	0,0000	0,0000	0,0000	0,1002	0,0140	0,0413	0,0699	0,0605	27,9820	-0,0044	5,7620	-0,0087	28,2985	-0,0226	23,0459
21	0,1241	0,0202	0,0480	0,0000	0,0000	0,0000	0,1006	0,0151	0,0430	0,0896	0,0379	2,4788	0,0334	3,9297	0,0246	2,9369	-0,0136	1,6076
22	0,1380	0,0245	0,0588	0,0000	0,0000	0,0000	0,0997	0,0144	0,0396	0,0782	0,0529	5444,8426	0,0009	182,9873	-0,0021	5444,4234	0,0046	5044,5090
23	0,1119	0,0577	0,0301	0,0000	0,0000	0,0000	0,0997	0,0147	0,0401	0,0835	0,0630	106,8595	0,0033	10,3584	-0,0119	106,3914	0,0182	83,6785
24	0,0623	0,0267	0,0381	0,0000	0,0000	0,0000	0,1003	0,0143	0,0401	0,0744	0,0795	74063,0390	-0,0009	710,1512	-0,0306	74063,4170	-0,0024	1764,2326
25	0,1261	0,0379	0,0257	0,0000	0,0000	0,0000	0,0994	0,0141	0,0383	0,0742	0,0306	172563,1500	-0,0018	3195,3306	0,0158	172562,7500	-0,0007	6420,8901
26	0,0770	0,0552	0,0608	0,0000	0,0000	0,0000	0,1002	0,0127	0,0404	0,0507	0,0314	156207,7200	0,0004	746,6795	0,0187	156207,7100	0,0007	1263,2742
27	0,0574	0,0453	0,0381	0,0000	0,0000	0,0000	0,1006	0,0168	0,0427	0,1263	0,0517	0,6578	-0,0007	0,2281	0,0050	0,5754	0,1127	35,2690
28	0,0644	0,0509	0,0692	0,0000	0,0000	0,0000	0,0990	0,0142	0,0377	0,0784	0,1063	1387,0001	0,0047	37,5296	-0,0609	1386,5422	0,0110	78,2150
29	0,0837	0,0219	0,0747	0,0000	0,0000	0,0000	0,0999	0,0149	0,0400	0,0884	0,0529	10,1662	0,0015	2,1879	-0,0026	9,6461	0,0360	115,3976
30	0,1403	0,0522	0,0524	0,0000	0,0000	0,0000	0,1002	0,0144	0,0414	0,0784	0,0511	1946,7301	0,0001	91,9853	0,0005	1946,3289	0,0053	10330,0600
média	0,0960	0,0394	0,0537	0,0000	0,0000	0,0000	0,0999		0,0400		0,0553		0,0134		-0,0189		0,0392	
desvio padrão	0.0299	0.0134	0.0132	0.0000	0.0000	0.0000	0.0006		0.0039		0.0307		0.0578		0.0964		0.2193	

Tabela D.20 – Métricas de Akaike e sugestão de compartimentos Estrutura compartimental para sintetização: três compartimentos Nivel de ruído: médio

experimento		AIC 3	AIC 4	Sugestao de			
схреппеню	710 2	/10 0		compartimentos			
1	248,3772	94,8598	98,9279	3			
2	250,0567	98,7621	103,2935	3			
3	250,0984	110,7514	114,4146	3			
4	251,0178	115,8139	119,9079	3			
5	247,6911	107,7935	109,1341	3			
6	249,9172	107,3305	112,0032	3			
7	251,0950	114,4663	118,0674	3			
8	249,6366	110,9753	112,5354	3			
9	249,2715	122,2008	127,0240	3			
10	249,4343	97,1443	101,2428	3			
11	249,1183	120,0422	123,3005	3			
12	249,7387	100,8572	103,3123	3			
13	249,7985	110,5837	114,9551	3			
14	248,5369	112,4911	113,4923	3			
15	248,8826	112,4209	115,4016	3			
16	249,8430	108,1019	112,1286	3			
17	249,0940	97,0518	101,1992	3			
18	248,9291	95,4598	98,6635	3			
19	249,9871	113,0249	116,7043	3			
20	249,0561	115,7075	118,7358	3			
21	250,0249	108,2447	106,5088	4			
22	248,6485	109,9404	114,6260	3			
23	247,8480	101,9639	106,0598	3			
24	249,5113	92,7026	96,2200	3			
25	249,6654	100,4875	105,8778	3			
26	249,4625	97,1912	100,6218	3			
27	251,0092	107,9285	111,8737	3			
28	249,6665	112,7668	116,8330	3			
29	249,0149	112,5628	115,9442	3			
30	250,7202	105,8797	110,2793	3			
média	249,5050	107,1836	110,6429	acertos			
desvio padrão	0,8454	7,8281	7,8003	29			
Erros para dois compartimentos 0							
Erros para quat	ro compart	imentos		1			

Tabela D.21 – Valores dos parâmetros estimados

Estrutura compartimental para sintetização: três compartimentos
Estrutura compartimental identificada: dois compartimentos
Nivel de ruído: alto

experimento	K	ka (K.	desvio	ka	desvio	
	••1 (palpite inicial)	••2 (paipite inicial)	1	padrão	~ <u>2</u>	padrão	
1	0,0837	0,0383	0,0873	0,0051	0,0112	0,0028	
2	0,1194	0,0310	0,0872	0,0051	0,0113	0,0028	
3	0,1433	0,0447	0,0884	0,0054	0,0120	0,0029	
4	0,0781	0,0365	0,0880	0,0052	0,0118	0,0028	
5	0,0770	0,0286	0,0882	0,0052	0,0118	0,0028	
6	0,0751	0,0572	0,0870	0,0051	0,0113	0,0028	
7	0,0812	0,0275	0,0882	0,0053	0,0117	0,0029	
8	0,0985	0,0579	0,0885	0,0052	0,0122	0,0029	
9	0,0954	0,0346	0,0878	0,0052	0,0113	0,0028	
10	0,0507	0,0390	0,0883	0,0052	0,0116	0,0028	
11	0,1359	0,0278	0,0867	0,0052	0,0112	0,0029	
12	0,1311	0,0363	0,0873	0,0051	0,0116	0,0028	
13	0,1342	0,0205	0,0864	0,0050	0,0108	0,0028	
14	0,1128	0,0404	0,0883	0,0052	0,0121	0,0028	
15	0,1385	0,0549	0,0878	0,0051	0,0120	0,0028	
16	0,1321	0,0264	0,0874	0,0051	0,0118	0,0028	
17	0,1151	0,0256	0,0883	0,0053	0,0119	0,0029	
18	0,0606	0,0575	0,0873	0,0052	0,0117	0,0029	
19	0,1195	0,0580	0,0877	0,0052	0,0117	0,0029	
20	0,0930	0,0576	0,0876	0,0052	0,0117	0,0028	
21	0,0972	0,0356	0,0878	0,0052	0,0117	0,0029	
22	0,0649	0,0498	0,0871	0,0051	0,0114	0,0028	
23	0,1220	0,0235	0,0879	0,0053	0,0118	0,0029	
24	0,0941	0,0323	0,0875	0,0051	0,0117	0,0028	
25	0,0858	0,0209	0,0874	0,0053	0,0122	0,0030	
26	0,0589	0,0463	0,0869	0,0051	0,0112	0,0028	
27	0,0758	0,0213	0,0880	0,0052	0,0116	0,0028	
28	0,1236	0,0543	0,0874	0,0052	0,0116	0,0029	
29	0,1287	0,0568	0,0883	0,0053	0,0120	0,0029	
30	0,0978	0,0564	0,0873	0,0053	0,0118	0,0029	
média	0,1008	0,0399	0,0876		0,0117		
desvio padrão	0,0268	0,0133	0,0005		0,0003		

Estrutura con	npartim	ental para sinte	etização: três		3							
Nivel de ruído: alto												
ovnorimonto	K	Ŀ	k	k	V	desvio						

experimento	K _{1 (palpite inicial)}	k _{2 (palpite inicial)}	k _{3 (palpite inicial)}	k _{4 (palpite inicial)}	K ₁	desvio padrão	k ₂	desvio padrão	k ₃	desvio padrão	k ₄	desvio padrão
1	0,0837	0,0383	0,0622	0,0000	0,0991	0,0104	0,0387	0,0328	0,0507	0,0771	-0,0004	0,0309
2	0,1194	0,0310	0,0479	0,0000	0,0972	0,0097	0,0331	0,0280	0,0395	0,0710	-0,0036	0,0393
3	0,1433	0,0447	0,0656	0,0000	0,1016	0,0105	0,0410	0,0303	0,0446	0,0611	-0,0043	0,0285
4	0,0781	0,0365	0,0531	0,0000	0,1007	0,0110	0,0431	0,0365	0,0574	0,0818	0,0033	0,0284
5	0,0770	0,0286	0,0340	0,0000	0,1030	0,0119	0,0500	0,0429	0,0715	0,0913	0,0065	0,0243
6	0,0751	0,0572	0,0618	0,0000	0,0991	0,0106	0,0403	0,0347	0,0543	0,0806	0,0013	0,0298
7	0,0812	0,0275	0,0675	0,0000	0,1006	0,0107	0,0401	0,0330	0,0495	0,0733	-0,0005	0,0303
8	0,0985	0,0579	0,0710	0,0000	0,1005	0,0106	0,0399	0,0325	0,0490	0,0740	0,0009	0,0315
9	0,0954	0,0346	0,0621	0,0000	0,0996	0,0105	0,0389	0,0331	0,0511	0,0779	0,0002	0,0311
10	0,0507	0,0390	0,0704	0,0000	0,0990	0,0099	0,0341	0,0273	0,0373	0,0643	-0,0056	0,0378
11	0,1359	0,0278	0,0349	0,0000	0,0981	0,0100	0,0367	0,0295	0,0437	0,0678	-0,0041	0,0326
12	0,1311	0,0363	0,0693	0,0000	0,0990	0,0106	0,0398	0,0343	0,0532	0,0816	0,0023	0,0314
13	0,1342	0,0205	0,0648	0,0000	0,0966	0,0099	0,0340	0,0300	0,0442	0,0768	-0,0024	0,0367
14	0,1128	0,0404	0,0574	0,0000	0,0999	0,0107	0,0397	0,0344	0,0516	0,0819	0,0033	0,0328
15	0,1385	0,0549	0,0516	0,0000	0,0988	0,0102	0,0371	0,0311	0,0452	0,0748	0,0002	0,0351
16	0,1321	0,0264	0,0416	0,0000	0,0979	0,0097	0,0342	0,0273	0,0377	0,0654	-0,0046	0,0382
17	0,1151	0,0256	0,0583	0,0000	0,1011	0,0107	0,0410	0,0326	0,0498	0,0710	-0,0004	0,0293
18	0,0606	0,0575	0,0308	0,0000	0,0988	0,0099	0,0363	0,0284	0,0407	0,0647	-0,0043	0,0342
19	0,1195	0,0580	0,0703	0,0000	0,1002	0,0106	0,0400	0,0324	0,0485	0,0723	-0,0004	0,0309
20	0,0930	0,0576	0,0394	0,0000	0,0997	0,0107	0,0402	0,0339	0,0517	0,0781	0,0014	0,0309
21	0,0972	0,0356	0,0486	0,0000	0,0996	0,0103	0,0380	0,0308	0,0453	0,0702	-0,0018	0,0323
22	0,0649	0,0498	0,0402	0,0000	0,0980	0,0102	0,0365	0,0310	0,0459	0,0746	-0,0015	0,0340
23	0,1220	0,0235	0,0390	0,0000	0,1019	0,0111	0,0456	0,0361	0,0577	0,0745	0,0011	0,0254
24	0,0941	0,0323	0,0413	0,0000	0,0978	0,0098	0,0339	0,0283	0,0392	0,0701	-0,0029	0,0393
25	0,0858	0,0209	0,0433	0,0000	0,1016	0,0110	0,0457	0,0348	0,0540	0,0689	0,0001	0,0254
26	0,0589	0,0463	0,0331	0,0000	0,1003	0,0117	0,0484	0,0461	0,0788	0,1105	0,0094	0,0264
27	0,0758	0,0213	0,0370	0,0000	0,1002	0,0107	0,0400	0,0341	0,0520	0,0787	0,0010	0,0307
28	0,1236	0,0543	0,0449	0,0000	0,0999	0,0106	0,0403	0,0324	0,0490	0,0707	-0,0017	0,0298
29	0,1287	0,0568	0,0486	0,0000	0,1028	0,0115	0,0481	0,0397	0,0654	0,0845	0,0051	0,0252
30	0,0978	0,0564	0,0610	0,0000	0,1007	0,0107	0,0429	0,0335	0,0516	0,0696	-0,0010	0,0272
média	0,1008	0,0399	0,0517	0,0000	0,0998		0,0399		0,0503		-0,0001	
desvio padrão	0,0268	0,0133	0,0130	0,0000	0,0016		0,0044		0,0093		0,0034	

Tabela D.22 – Valores dos parâmetros estimados

Tabela D.23 – Valores dos parâmetros estimados Estrutura compartimental para sintetização: três compartimentos Estrutura compartimental identificada: quatro compartimentos Nivel de ruído: alto

ovnorimonto	K	k	k	k	k	k	ĸ	desvio	k	desvio	k	desvio padrão	k	desvio	k	desvio padrão	٢	desvio padrão
experimento	K1 (palpite inicial)	^R 2 (palpite inicial)	K3 (palpite inicial)	K4 (palpite inicial)	K5 (palpite inicial)	№6 (palpite inicial)	, к ₁	padrão	ĸ2	padrão	к3	uesvio paulao	ĸ ₄	padrão	K 5	uesvio paulao	ĸ _б	uesvio paulao
1	0,0837	0,0383	0,0622	0,0000	0,0000	0,0000	0,0987	0,0128	0,0358	0,0541	0,0577	21,0383	-0,0257	4,2410	-0,0201	21,2712	-0,0428	7,0758
2	0,1194	0,0310	0,0479	0,0000	0,0000	0,0000	0,0970	0,0132	0,0330	0,0657	0,0217	172798,9200	-0,0031	4624,1276	0,0176	172799,3100	-0,0043	5521,0887
3	0,1433	0,0447	0,0656	0,0000	0,0000	0,0000	0,1032	0,0278	0,0605	0,4786	0,0559	0,4834	-0,0077	0,0624	0,1729	5,6931	0,3269	5,3235
4	0,0781	0,0365	0,0531	0,0000	0,0000	0,0000	0,1010	0,0147	0,0436	0,0785	0,0677	288,7667	0,0013	22,5559	-0,0100	289,1318	-0,0079	116,8845
5	0,0770	0,0286	0,0340	0,0000	0,0000	0,0000	0,1057	0,0277	0,0838	0,4517	0,0919	0,6090	0,0007	0,0691	0,1953	3,0021	0,2306	2,3031
6	0,0751	0,0572	0,0618	0,0000	0,0000	0,0000	0,0992	0,0138	0,0400	0,0685	0,0899	241,4044	-0,0101	13,8856	-0,0390	241,7215	-0,0191	24,4140
7	0,0812	0,0275	0,0675	0,0000	0,0000	0,0000	0,1005	0,0147	0,0401	0,0788	0,1041	13463,2090	0,0021	172,9568	-0,0549	13462,7930	0,0049	355,1805
8	0,0985	0,0579	0,0710	0,0000	0,0000	0,0000	0,1014	0,0143	0,0440	0,0730	0,0591	0,4804	0,0099	0,9832	0,0017	0,7540	-0,0451	6,3515
9	0,0954	0,0346	0,0621	0,0000	0,0000	0,0000	0,0994	0,0127	0,0387	0,0512	0,0724	35418,3590	0,0002	41,8546	-0,0217	35418,3590	0,0004	140,5795
10	0,0507	0,0390	0,0704	0,0000	0,0000	0,0000	0,0987	0,0123	0,0337	0,0477	-0,0157	459423,7500	-0,0068	8647,6716	0,0523	459423,6000	-0,0062	2639,0571
11	0,1359	0,0278	0,0349	0,0000	0,0000	0,0000	0,0977	0,0137	0,0353	0,0719	0,0376	96,8433	-0,0070	15,3263	0,0021	96,4181	0,0074	410,0019
12	0,1311	0,0363	0,0693	0,0000	0,0000	0,0000	0,0993	0,0144	0,0410	0,0805	0,0734	84735,2410	0,0027	878,6970	-0,0176	84735,6600	0,0012	3498,6521
13	0,1342	0,0205	0,0648	0,0000	0,0000	0,0000	0,0961	0,0140	0,0322	0,0824	0,0878	37,7934	0,0094	3,9099	-0,0539	37,1728	0,0340	12,3983
14	0,1128	0,0404	0,0574	0,0000	0,0000	0,0000	0,1000	0,0130	0,0400	0,0531	0,0683	1690,9195	0,0033	583,4145	-0,0165	1691,1018	0,0033	2414,0679
15	0,1385	0,0549	0,0516	0,0000	0,0000	0,0000	0,0988	0,0141	0,0374	0,0748	0,0415	14982,3540	0,0009	495,3141	0,0049	14982,7680	-0,0017	3879,1029
16	0,1321	0,0264	0,0416	0,0000	0,0000	0,0000	0,0978	0,0133	0,0338	0,0646	0,0362	64,7235	-0,0041	17,0377	0,0008	65,0844	-0,0190	472,0776
17	0,1151	0,0256	0,0583	0,0000	0,0000	0,0000	0,1007	0,0140	0,0394	0,0685	0,0463	30,1521	-0,0020	8,1623	-0,0002	30,4811	-0,0204	1343,9567
18	0,0606	0,0575	0,0308	0,0000	0,0000	0,0000	0,0984	0,0138	0,0353	0,0719	-0,0080	126,7171	0,0093	131,3758	0,0455	127,1457	-0,0040	15,6289
19	0,1195	0,0580	0,0703	0,0000	0,0000	0,0000	0,1015	0,0156	0,0483	0,0939	0,0792	0,2763	0,0322	0,6580	0,0050	0,2889	-0,0477	0,9646
20	0,0930	0,0576	0,0394	0,0000	0,0000	0,0000	0,1001	0,0145	0,0415	0,0773	0,0475	25,8824	0,0062	7,9001	0,0073	26,2588	-0,0143	28,0050
21	0,0972	0,0356	0,0486	0,0000	0,0000	0,0000	0,0994	0,0124	0,0376	0,0477	0,0132	0,0000	-0,0022	12038,0560	0,0311	0,0000	-0,0022	5121,1338
22	0,0649	0,0498	0,0402	0,0000	0,0000	0,0000	0,0977	0,0144	0,0349	0,0824	0,1064	107,0608	0,0104	6,7445	-0,0688	106,5025	0,0269	16,4113
23	0,1220	0,0235	0,0390	0,0000	0,0000	0,0000	0,1021	0,0143	0,0454	0,0709	0,0699	41,0344	-0,0069	5,8783	-0,0151	41,3213	-0,0223	16,9852
24	0,0941	0,0323	0,0413	0,0000	0,0000	0,0000	0,0975	0,0120	0,0334	0,0450	0,0454	35730,5730	-0,0032	99,0585	-0,0070	35730,5740	-0,0035	636,0580
25	0,0858	0,0209	0,0433	0,0000	0,0000	0,0000	0,1017	0,0414	0,0461	0,3429	0,0366	10718433,0000	0,0000	72561,2270	0,0179	10718431,0000	0,0005	150057,4200
26	0,0589	0,0463	0,0331	0,0000	0,0000	0,0000	0,1002	0,0143	0,0460	0,0768	0,1457	262,9293	-0,0096	8,8639	-0,0780	263,2474	-0,0181	12,7537
27	0,0758	0,0213	0,0370	0,0000	0,0000	0,0000	0,1001	0,0142	0,0396	0,0715	0,0637	126,7696	-0,0044	13,9455	-0,0138	127,1162	-0,0160	45,4033
28	0,1236	0,0543	0,0449	0,0000	0,0000	0,0000	0,1002	0,0129	0,0416	0,0515	0,0771	6448,1541	-0,0006	22,1423	-0,0251	6448,1541	-0,0008	67,5981
29	0,1287	0,0568	0,0486	0,0000	0,0000	0,0000	0,1030	0,0152	0,0504	0,0856	0,0712	0,8129	0,0173	1,0293	0,0049	1,1260	-0,0341	3,1889
30	0,0978	0,0564	0,0610	0,0000	0,0000	0,0000	0,1008	0,0146	0,0434	0,0771	0,0415	42316,7610	-0,0004	926,0110	0,0108	42317,1230	-0,0022	3375,7201
média	0,1008	0,0399	0,0517	0,0000	0,0000	0,0000	0,0999		0,0419		0,0595		0,0004		0,0043		0,0102	
desvio padrão	0,0268	0,0133	0,0130	0,0000	0,0000	0,0000	0,0020		0,0100		0,0334		0,0100		0,0573		0,0763	

Tabela D.24 – Métricas de Akaike e sugestão de compartimentos Estrutura compartimental para sintetização: três compartimentos Nivel de ruído: alto

evnerimento				Sugestão de							
experimento		AIC 3		compartimentos							
1	181,6619	98,2481	99,0474	3							
2	177,4759	96,3285	100,5176	3							
3	187,3728	94,3121	96,8276	3							
4	181,2325	98,8069	102,8568	3							
5	181,4579	100,4305	99,5198	4							
6	181,3203	97,5841	101,2001	3							
7	182,7927	117,4305	121,4226	3							
8	182,9504	113,6912	117,1293	3							
9	180,0272	102,1160	105,9690	3							
10	181,8210	118,2532	122,2060	3							
11	185,4098	114,8894	120,1258	3							
12	180,1158	96,1488	100,0286	3							
13	179,1013	108,6975	112,9255	3							
14	176,3741	96,3012	100,5004	3							
15	177,5282	90,8672	95,0891	3							
16	180,8307	109,3397	113,5328	3							
17	186,4253	116,6548	121,6148	3							
18	183,9169	99,7788	104,3249	3							
19	181,7641	109,8975	111,7618	3							
20	181,9354	117,4467	121,1562	3							
21	182,4108	102,7226	106,6081	3							
22	178,9008	105,5657	108,9415	3							
23	185,7390	80,2972	83,3024	3							
24	177,1869	102,6032	106,5217	3							
25	188,8763	120,3859	124,3522	3							
26	179,9660	108,5226	111,5120	3							
27	180,8416	110,7937	114,5860	3							
28	185,0334	117,6954	121,9187	3							
29	184,0074	93,4994	95,7151	3							
30	186,8441	109,4259	113,7194	3							
média	182,0440	104,9578	108,4978	acertos							
desvio padrão	3,1758	9,8374	10,2680	29							
Erros para dois	compartim	entos		0							
Erros para quat	ro compart	imentos		1							

Tabela D.25 – Valores dos parâmetros estimados

E	Estrutura com	partimental p	ara sintetiza	ação: quatr	ro compartime	entos
E	Estrutura com	partimental ic	lentificada:	dois comp	artimentos	
1	vivel de ruído	: baixo				

experimento	K ₁ (palpite inicial)	ka (nalpito inicial)	K₁	desvio	k ₂	desvio
	(parpite inicial)		1	padrão	2	padrão
1	0,0650	0,0863	0,0857	0,0049	0,0465	0,0027
2	0,1263	0,0889	0,0857	0,0049	0,0464	0,0027
3	0,0587	0,0673	0,0857	0,0049	0,0465	0,0027
4	0,0563	0,1480	0,0856	0,0049	0,0464	0,0027
5	0,0689	0,0601	0,0855	0,0049	0,0464	0,0027
6	0,1261	0,0919	0,0857	0,0049	0,0464	0,0027
7	0,1297	0,1044	0,0856	0,0049	0,0464	0,0027
8	0,1235	0,1431	0,0858	0,0049	0,0466	0,0027
9	0,1388	0,1392	0,0857	0,0049	0,0465	0,0027
10	0,1483	0,1185	0,0857	0,0049	0,0464	0,0027
11	0,0517	0,0844	0,0858	0,0049	0,0465	0,0027
12	0,1138	0,1429	0,0856	0,0049	0,0464	0,0027
13	0,0652	0,1224	0,0857	0,0049	0,0464	0,0027
14	0,0755	0,1138	0,0857	0,0049	0,0465	0,0027
15	0,1198	0,1072	0,0857	0,0049	0,0465	0,0027
16	0,1172	0,0691	0,0857	0,0049	0,0465	0,0027
17	0,1432	0,0648	0,0857	0,0049	0,0465	0,0027
18	0,1468	0,1310	0,0858	0,0049	0,0465	0,0027
19	0,0528	0,1492	0,0857	0,0049	0,0464	0,0027
20	0,0895	0,1116	0,0856	0,0049	0,0464	0,0027
21	0,0876	0,0718	0,0857	0,0049	0,0465	0,0027
22	0,0770	0,0960	0,0857	0,0049	0,0465	0,0027
23	0,0916	0,1284	0,0857	0,0049	0,0464	0,0027
24	0,0820	0,1268	0,0857	0,0049	0,0464	0,0027
25	0,0638	0,1294	0,0857	0,0049	0,0464	0,0027
26	0,1164	0,0921	0,0857	0,0049	0,0464	0,0027
27	0,0910	0,1034	0,0857	0,0049	0,0464	0,0027
28	0,0941	0,1384	0,0857	0,0049	0,0464	0,0027
29	0,0604	0,0795	0,0857	0,0049	0,0464	0,0027
30	0,0666	0,1184	0,0857	0,0049	0,0465	0,0027
média	0,0949	0,1076	0,0857		0,0464	
desvio padrão	0,0314	0,0272	0,0001		0,0000	

Tabela D.26 – Valores dos parâmetros estimados Estrutura compartimental para sintetização: quatro compartimentos Estrutura compartimental identificada: três compartimentos Nivel de ruído: baixo

experimento	K	k _{2 (palpite inicial)} k	k ₃ (palpite inicial) k	al) k 4 (palpite inicial)	К.	desvio	desvio k ₂		desvio ka		desvio k ₄	
experimento	1 (palpite inicial)	№2 (palpite inicial)	▶3 (palpite inicial)	▶4 (palpite inicial)	R ₁	padrão	ĸ2	padrão	к3	padrão	к ₄	padrão
1	0,0650	0,0863	0,0295	0,0456	0,0986	0,0117	0,0824	0,0483	0,0468	0,0899	0,0819	0,0617
2	0,1263	0,0889	0,0187	0,0476	0,0981	0,0114	0,0802	0,0458	0,0432	0,0845	0,0793	0,0628
3	0,0587	0,0673	0,0192	0,0500	0,0981	0,0114	0,0800	0,0458	0,0428	0,0848	0,0797	0,0638
4	0,0563	0,1480	0,0121	0,0323	0,0985	0,0117	0,0827	0,0492	0,0481	0,0926	0,0830	0,0621
5	0,0689	0,0601	0,0166	0,0585	0,0985	0,0116	0,0820	0,0476	0,0460	0,0880	0,0811	0,0613
6	0,1261	0,0919	0,0216	0,0636	0,0989	0,0119	0,0844	0,0510	0,0511	0,0963	0,0843	0,0607
7	0,1297	0,1044	0,0119	0,0254	0,0983	0,0116	0,0814	0,0474	0,0454	0,0882	0,0812	0,0626
8	0,1235	0,1431	0,0128	0,0369	0,0985	0,0117	0,0821	0,0483	0,0466	0,0905	0,0824	0,0628
9	0,1388	0,1392	0,0190	0,0646	0,0983	0,0116	0,0814	0,0475	0,0455	0,0886	0,0815	0,0628
10	0,1483	0,1185	0,0151	0,0476	0,0984	0,0116	0,0816	0,0476	0,0457	0,0889	0,0815	0,0626
11	0,0517	0,0844	0,0184	0,0260	0,0987	0,0118	0,0834	0,0505	0,0497	0,0963	0,0847	0,0629
12	0,1138	0,1429	0,0214	0,0250	0,0983	0,0116	0,0813	0,0472	0,0452	0,0878	0,0810	0,0625
13	0,0652	0,1224	0,0172	0,0723	0,0987	0,0117	0,0831	0,0492	0,0483	0,0917	0,0826	0,0609
14	0,0755	0,1138	0,0109	0,0270	0,0981	0,0115	0,0805	0,0468	0,0442	0,0879	0,0813	0,0644
15	0,1198	0,1072	0,0299	0,0433	0,0981	0,0115	0,0806	0,0465	0,0439	0,0865	0,0805	0,0635
16	0,1172	0,0691	0,0120	0,0478	0,0985	0,0117	0,0823	0,0486	0,0471	0,0911	0,0825	0,0624
17	0,1432	0,0648	0,0208	0,0669	0,0983	0,0116	0,0817	0,0479	0,0461	0,0896	0,0819	0,0628
18	0,1468	0,1310	0,0111	0,0578	0,0986	0,0118	0,0827	0,0497	0,0484	0,0946	0,0843	0,0636
19	0,0528	0,1492	0,0225	0,0401	0,0982	0,0116	0,0812	0,0475	0,0454	0,0893	0,0817	0,0636
20	0,0895	0,1116	0,0265	0,0625	0,0983	0,0116	0,0815	0,0477	0,0457	0,0892	0,0818	0,0630
21	0,0876	0,0718	0,0146	0,0323	0,0987	0,0118	0,0832	0,0496	0,0487	0,0931	0,0833	0,0616
22	0,0770	0,0960	0,0204	0,0678	0,0984	0,0116	0,0817	0,0477	0,0458	0,0888	0,0815	0,0624
23	0,0916	0,1284	0,0171	0,0684	0,0981	0,0115	0,0807	0,0468	0,0443	0,0872	0,0807	0,0635
24	0,0820	0,1268	0,0127	0,0369	0,0984	0,0117	0,0822	0,0483	0,0468	0,0903	0,0820	0,0621
25	0,0638	0,1294	0,0250	0,0718	0,0984	0,0117	0,0822	0,0484	0,0470	0,0906	0,0822	0,0621
26	0,1164	0,0921	0,0267	0,0341	0,0982	0,0116	0,0813	0,0479	0,0458	0,0905	0,0823	0,0640
27	0,0910	0,1034	0,0139	0,0671	0,0983	0,0115	0,0813	0,0468	0,0447	0,0863	0,0803	0,0619
28	0,0941	0,1384	0,0199	0,0498	0,0982	0,0115	0,0810	0,0467	0,0444	0,0866	0,0804	0,0627
29	0,0604	0,0795	0,0263	0,0742	0,0986	0,0117	0,0825	0,0491	0,0477	0,0926	0,0832	0,0628
30	0,0666	0,1184	0,0265	0,0313	0,0984	0,0116	0,0817	0,0476	0,0457	0,0888	0,0815	0,0625
média	0,0949	0,1076	0,0190	0,0491	0,0984		0,0818		0,0462		0,0818	
desvio padrão	0,0314	0,0272	0,0057	0,0161	0,0002		0,0010		0,0019		0,0013	

Tabela D.27 – Valores dos parâmetros estimados

Estrutura compartimental para sintetização: quatro compartimentos Estrutura compartimental identificada: quatro compartimentos Nivel de ruído: baixo

ovnorimonto	K	k	k	k	k	k	V	desvio	k	desvio	k	desvio	k	desvio	k	desvio	k	docuio podrão
experimento	N 1 (palpite inicial)	^K 2 (palpite inicial)	^K 3 (palpite inicial)	K4 (palpite inicial)	κ ₅ (palpite inicial)	κ ₆ (palpite inicial)	к1	padrão	ĸ ₂	padrão	ĸ ₃	padrão	к ₄	padrão	к5	padrão	к _б	uesvio paulao
1	0,0650	0,0863	0,0295	0,0456	0,0942	0,1371	0,0998	0,0189	0,0970	0,1876	0,0113	0,3162	0,0371	0,5989	0,0921	0,6187	0,1650	1,3517
2	0,1263	0,0889	0,0187	0,0476	0,1465	0,1732	0,0995	0,0195	0,0951	0,2048	0,0173	0,3906	0,0472	0,4991	0,0843	0,7363	0,1845	1,9565
3	0,0587	0,0673	0,0192	0,0500	0,1170	0,2650	0,0997	0,0199	0,0970	0,2173	0,0165	0,3421	0,0454	0,4598	0,0940	0,8330	0,1910	1,7942
4	0,0563	0,1480	0,0121	0,0323	0,1451	0,1283	0,0997	0,0201	0,0973	0,2230	0,0210	0,4483	0,0528	0,4784	0,0885	0,8174	0,1945	2,1651
5	0,0689	0,0601	0,0166	0,0585	0,1064	0,2527	0,1001	0,0221	0,1016	0,2871	0,0287	0,3986	0,0587	0,3194	0,1035	1,3274	0,2400	2,7041
6	0,1261	0,0919	0,0216	0,0636	0,1482	0,1381	0,1002	0,0199	0,0987	0,2133	0,0199	0,4838	0,0516	0,5353	0,0891	0,7035	0,1829	1,9598
7	0,1297	0,1044	0,0119	0,0254	0,0790	0,1604	0,0997	0,0199	0,0971	0,2162	0,0190	0,4106	0,0497	0,4815	0,0890	0,7865	0,1900	1,9903
8	0,1235	0,1431	0,0128	0,0369	0,0520	0,1539	0,0998	0,0192	0,0970	0,1952	0,0129	0,3456	0,0408	0,5777	0,0921	0,6586	0,1712	1,4928
9	0,1388	0,1392	0,0190	0,0646	0,0769	0,2255	0,0996	0,0213	0,0973	0,2662	0,0288	0,4392	0,0607	0,3542	0,0874	1,2054	0,2339	3,1451
10	0,1483	0,1185	0,0151	0,0476	0,0801	0,2630	0,1002	0,0219	0,1032	0,2816	0,0250	0,3717	0,0546	0,3404	0,1134	1,2553	0,2294	2,2050
11	0,0517	0,0844	0,0184	0,0260	0,0709	0,1267	0,0999	0,0192	0,0982	0,1938	0,0111	0,3182	0,0376	0,6129	0,0974	0,6475	0,1669	1,3121
12	0,1138	0,1429	0,0214	0,0250	0,0555	0,2895	0,0998	0,0208	0,0987	0,2467	0,0233	0,4024	0,0541	0,3939	0,0950	1,0196	0,2127	2,3160
13	0,0652	0,1224	0,0172	0,0723	0,1456	0,1057	0,1002	0,0222	0,1021	0,2931	0,0307	0,4248	0,0608	0,3197	0,1029	1,3553	0,2432	2,8576
14	0,0755	0,1138	0,0109	0,0270	0,1030	0,1515	0,0995	0,0195	0,0956	0,2078	0,0170	0,4009	0,0479	0,5205	0,0871	0,7452	0,1848	1,9221
15	0,1198	0,1072	0,0299	0,0433	0,0733	0,2072	0,0997	0,0197	0,0978	0,2109	0,0148	0,3300	0,0426	0,4915	0,0966	0,7771	0,1834	1,5954
16	0,1172	0,0691	0,0120	0,0478	0,1197	0,2848	0,0997	0,0187	0,0959	0,1812	0,0109	0,3372	0,0373	0,6553	0,0885	0,5733	0,1607	1,3742
17	0,1432	0,0648	0,0208	0,0669	0,1352	0,2529	0,1000	0,0210	0,1004	0,2495	0,0219	0,3859	0,0523	0,3998	0,1021	1,0201	0,2102	2,0763
18	0,1468	0,1310	0,0111	0,0578	0,0719	0,2016	0,0999	0,0198	0,0976	0,2139	0,0177	0,4233	0,0492	0,5296	0,0917	0,7525	0,1854	1,8701
19	0,0528	0,1492	0,0225	0,0401	0,0820	0,1157	0,0997	0,0213	0,0987	0,2638	0,0255	0,4071	0,0570	0,3674	0,0969	1,1700	0,2265	2,5996
20	0,0895	0,1116	0,0265	0,0625	0,0684	0,2060	0,0997	0,0192	0,0962	0,1975	0,0153	0,4002	0,0452	0,5676	0,0870	0,6597	0,1750	1,7309
21	0,0876	0,0718	0,0146	0,0323	0,0507	0,1042	0,1007	0,0230	0,1073	0,3167	0,0287	0,3844	0,0574	0,3074	0,1276	1,4695	0,2448	2,2703
22	0,0770	0,0960	0,0204	0,0678	0,0963	0,2539	0,0999	0,0206	0,0988	0,2363	0,0223	0,4194	0,0533	0,4256	0,0929	0,9185	0,2038	2,1985
23	0,0916	0,1284	0,0171	0,0684	0,1415	0,2777	0,0999	0,0209	0,1003	0,2482	0,0203	0,3538	0,0498	0,3947	0,1051	1,0287	0,2090	1,9398
24	0,0820	0,1268	0,0127	0,0369	0,1199	0,1299	0,0998	0,0195	0,0976	0,2051	0,0165	0,4034	0,0464	0,5352	0,0902	0,6957	0,1788	1,7404
25	0,0638	0,1294	0,0250	0,0718	0,0572	0,2621	0,1000	0,0216	0,1012	0,2713	0,0271	0,4192	0,0577	0,3562	0,1012	1,1764	0,2271	2,5115
26	0,1164	0,0921	0,0267	0,0341	0,1298	0,1977	0,1000	0,0214	0,1016	0,2639	0,0219	0,3648	0,0520	0,3805	0,1108	1,1337	0,2177	2,0274
27	0,0910	0,1034	0,0139	0,0671	0,1489	0,2069	0,1001	0,0199	0,0995	0,2156	0,0156	0,3325	0,0432	0,4687	0,0992	0,7898	0,1850	1,5747
28	0,0941	0,1384	0,0199	0,0498	0,1370	0,2229	0,0998	0,0197	0,0987	0,2096	0,0142	0,3200	0,0413	0,4933	0,0985	0,7610	0,1809	1,5060
29	0,0604	0,0795	0,0263	0,0742	0,1238	0,1478	0,1001	0,0216	0,1015	0,2713	0,0259	0,4121	0,0569	0,3662	0,1045	1,1727	0,2253	2,3840
30	0,0666	0,1184	0,0265	0,0313	0,1153	0,1190	0,0999	0,0195	0,0982	0,2035	0,0143	0,3485	0,0423	0,5309	0,0949	0,7046	0,1764	1,5341
média	0,0949	0,1076	0,0190	0,0491	0,1030	0,1920	0,0999		0,0989		0,0199		0,0494		0,0968		0,1993	
desvio padrão	0,0314	0,0272	0,0057	0,0161	0,0330	0,0603	0,0002		0,0026		0,0058		0,0071		0,0093		0,0253	

Tabela D.28 – Métricas de Akaike e sugestão de compartimentos Estrutura compartimental para sintetização: quatro compartimentos Nivel de ruído: baixo

1 304,2998 175,2308 109,8638 4 2 304,0889 167,6081 103,8788 4 3 303,3701 171,2431 109,2382 4 4 303,9980 169,6507 103,8683 4 5 305,0571 173,9968 119,6526 4 6 304,6327 168,2736 102,3521 4 7 304,2844 173,2672 112,8602 4 8 303,7230 174,8657 117,3520 4 9 304,2171 169,8179 122,0668 4 10 303,9066 178,2045 104,8762 4
1 304,2998 175,2308 109,8638 4 2 304,0889 167,6081 103,8788 4 3 303,3701 171,2431 109,2382 4 4 303,9980 169,6507 103,8683 4 5 305,0571 173,9968 119,6526 4 6 304,6327 168,2736 102,3521 4 7 304,2844 173,2672 112,8602 4 8 303,7230 174,8657 117,3520 4 9 304,2171 169,8179 122,0668 4 10 303,9066 178,2045 104,8762 4
2 304,0889 167,6081 103,8788 4 3 303,3701 171,2431 109,2382 4 4 303,9980 169,6507 103,8683 4 5 305,0571 173,9968 119,6526 4 6 304,6327 168,2736 102,3521 4 7 304,2844 173,2672 112,8602 4 8 303,7230 174,8657 117,3520 4 9 304,2171 169,8179 122,0668 4 10 303,9066 178,2045 104,8762 4
3 303,3701 171,2431 109,2382 4 4 303,9980 169,6507 103,8683 4 5 305,0571 173,9968 119,6526 4 6 304,6327 168,2736 102,3521 4 7 304,2844 173,2672 112,8602 4 8 303,7230 174,8657 117,3520 4 9 304,2171 169,8179 122,0668 4 10 303,9066 178,2045 104,8762 4
4 303,9980 169,6507 103,8683 4 5 305,0571 173,9968 119,6526 4 6 304,6327 168,2736 102,3521 4 7 304,2844 173,2672 112,8602 4 8 303,7230 174,8657 117,3520 4 9 304,2171 169,8179 122,0668 4 10 303 9066 178 2045 104 8762
5 305,0571 173,9968 119,6526 4 6 304,6327 168,2736 102,3521 4 7 304,2844 173,2672 112,8602 4 8 303,7230 174,8657 117,3520 4 9 304,2171 169,8179 122,0668 4 10 303,9066 178,2045 104,8762 4
6 304,6327 168,2736 102,3521 4 7 304,2844 173,2672 112,8602 4 8 303,7230 174,8657 117,3520 4 9 304,2171 169,8179 122,0668 4 10 303 9066 178 2045 104 8762 4
7 304,2844 173,2672 112,8602 4 8 303,7230 174,8657 117,3520 4 9 304,2171 169,8179 122,0668 4 10 303,9066 178,2045 104,8762 4
8 303,7230 174,8657 117,3520 4 9 304,2171 169,8179 122,0668 4 10 303,9066 178,2045 104,8762 4
9 304,2171 169,8179 122,0668 4 10 303 9066 178 2045 104 8762 4
10 303 9066 178 2045 104 8762 4
10 000,0000 110,2010 101,0102 1
11 303,4302 178,3454 110,7263 4
12 304,2624 171,4682 94,6883 4
13 304,5899 171,0127 105,5882 4
14 303,1520 171,3233 128,8815 4
15 303,3854 173,1024 97,0548 4
16 304,0446 173,9918 105,6233 4
17 303,7063 176,7597 123,5735 4
18 303,2549 169,5522 105,0081 4
19 303,5366 172,0818 113,3849 4
20 304,3367 172,4750 125,4265 4
21 303,8681 177,8679 108,9157 4
22 304,1988 168,7438 120,8409 4
23 303,3511 174,9790 104,4958 4
24 304,1782 170,2585 113,9127 4
25 304,1510 172,9796 108,9091 4
26 303,1004 179,8505 110,0782 4
27 304,5482 179,8782 118,9293 4
28 303,9697 177,4666 107,0197 4
29 303,7671 174,8599 108,3159 4
30 304,1834 176,8584 113,7132 4
média 303,9531 173,5338 111,0365 acertos
desvio padrão 0,4807 3,5012 8,2131 30
Erros para dois compartimentos 0
Erros para três compartimentos 0

Tabela D.29 – Valores dos parâmetros estimados

	Estrutura com	partimental pai	ra sintetização	o: quatro comparti	imentos
	Estrutura com	partimental ide	ntificada: dois	s compartimentos	
	Nivel de ruído	: médio			
-					

experiment	р. К	kar in in in	К.	desvio	ka	desvio
	(palpite inicial)	№2 (palpite inicial)	N1	padrão	K ₂	padrão
1	0,0846	0,1116	0,0857	0,0049	0,0465	0,0028
2	0,1055	0,0766	0,0858	0,0049	0,0464	0,0027
3	0,0886	0,0992	0,0856	0,0049	0,0464	0,0028
4	0,1348	0,0905	0,0857	0,0049	0,0464	0,0027
5	0,0811	0,0805	0,0856	0,0049	0,0464	0,0028
6	0,1191	0,1303	0,0855	0,0049	0,0463	0,0028
7	0,1481	0,0865	0,0857	0,0049	0,0465	0,0027
8	0,0596	0,1454	0,0859	0,0049	0,0466	0,0027
9	0,1475	0,0611	0,0853	0,0049	0,0462	0,0028
10	0,1214	0,0968	0,0858	0,0049	0,0465	0,0027
11	0,1378	0,0811	0,0857	0,0049	0,0467	0,0027
12	0,1263	0,0779	0,0858	0,0049	0,0466	0,0027
13	0,1375	0,0596	0,0861	0,0049	0,0466	0,0027
14	0,1020	0,0634	0,0856	0,0049	0,0464	0,0027
15	0,0721	0,1327	0,0858	0,0049	0,0466	0,0027
16	0,0663	0,0513	0,0860	0,0050	0,0467	0,0028
17	0,1333	0,0862	0,0860	0,0049	0,0466	0,0027
18	0,0572	0,0851	0,0858	0,0049	0,0464	0,0027
19	0,0930	0,0939	0,0856	0,0049	0,0463	0,0027
20	0,0805	0,1016	0,0860	0,0049	0,0464	0,0027
21	0,0842	0,1370	0,0860	0,0049	0,0469	0,0027
22	0,1490	0,1201	0,0859	0,0049	0,0465	0,0027
23	0,1146	0,0507	0,0858	0,0049	0,0464	0,0027
24	0,1340	0,0640	0,0854	0,0049	0,0463	0,0028
25	0,1155	0,0583	0,0857	0,0049	0,0464	0,0027
26	0,1015	0,0547	0,0860	0,0049	0,0465	0,0027
27	0,0703	0,0783	0,0858	0,0049	0,0463	0,0027
28	0,0788	0,1256	0,0858	0,0049	0,0465	0,0028
29	0,0582	0,0595	0,0855	0,0049	0,0463	0,0028
30	0,0682	0,0982	0,0860	0,0049	0,0468	0,0027
méd	ia 0,1024	0,0886	0,0858		0,0465	
desvio padrâ	o 0,0299	0,0274	0,0002		0,0002	

Tabela D.30 – Valores dos parâmetros estimados

Estrutura compartimental para sintetização: quatro compartimentos Estrutura compartimental identificada: três compartimentos Nivel de ruído: médio

experimento	V	ka (ka (an laine inizial) k	k_{1} k_{1} (palpite inicial)	K	desvio	k	desvio	k	desvio	k	desvio
experimento	№1 (palpite inicial)	^K 2 (palpite inicial)	K ₃ (palpite inicial)	K4 (palpite inicial)	к1	padrão	к2	padrão	к ₃	padrão	к ₄	padrão
1	0,0846	0,1116	0,0294	0,0320	0,0975	0,0110	0,0773	0,0411	0,0363	0,0725	0,0734	0,0635
2	0,1055	0,0766	0,0115	0,0465	0,0988	0,0118	0,0832	0,0502	0,0494	0,0950	0,0838	0,0621
3	0,0886	0,0992	0,0266	0,0258	0,0985	0,0116	0,0820	0,0473	0,0455	0,0863	0,0798	0,0602
4	0,1348	0,0905	0,0220	0,0329	0,0995	0,0122	0,0869	0,0541	0,0558	0,1030	0,0870	0,0596
5	0,0811	0,0805	0,0269	0,0628	0,0981	0,0112	0,0797	0,0429	0,0397	0,0748	0,0742	0,0590
6	0,1191	0,1303	0,0180	0,0604	0,0981	0,0114	0,0805	0,0449	0,0424	0,0802	0,0764	0,0598
7	0,1481	0,0865	0,0209	0,0264	0,0972	0,0110	0,0768	0,0411	0,0360	0,0734	0,0740	0,0650
8	0,0596	0,1454	0,0294	0,0270	0,1000	0,0125	0,0891	0,0572	0,0600	0,1100	0,0897	0,0593
9	0,1475	0,0611	0,0138	0,0416	0,0974	0,0112	0,0788	0,0435	0,0401	0,0786	0,0760	0,0623
10	0,1214	0,0968	0,0162	0,0651	0,0971	0,0109	0,0759	0,0407	0,0351	0,0733	0,0740	0,0670
11	0,1378	0,0811	0,0143	0,0529	0,0976	0,0112	0,0784	0,0431	0,0389	0,0780	0,0767	0,0642
12	0,1263	0,0779	0,0277	0,0467	0,0984	0,0117	0,0823	0,0488	0,0472	0,0921	0,0831	0,0632
13	0,1375	0,0596	0,0210	0,0287	0,0982	0,0114	0,0797	0,0457	0,0425	0,0854	0,0804	0,0652
14	0,1020	0,0634	0,0250	0,0341	0,0986	0,0118	0,0834	0,0503	0,0497	0,0954	0,0840	0,0621
15	0,0721	0,1327	0,0158	0,0713	0,0970	0,0110	0,0759	0,0413	0,0355	0,0754	0,0754	0,0687
16	0,0663	0,0513	0,0214	0,0568	0,0987	0,0115	0,0807	0,0448	0,0417	0,0798	0,0771	0,0607
17	0,1333	0,0862	0,0149	0,0669	0,0986	0,0115	0,0809	0,0465	0,0440	0,0860	0,0804	0,0629
18	0,0572	0,0851	0,0234	0,0484	0,0983	0,0116	0,0811	0,0476	0,0457	0,0898	0,0819	0,0637
19	0,0930	0,0939	0,0222	0,0460	0,0993	0,0120	0,0859	0,0520	0,0530	0,0965	0,0840	0,0579
20	0,0805	0,1016	0,0142	0,0488	0,0980	0,0115	0,0794	0,0465	0,0434	0,0885	0,0814	0,0666
21	0,0842	0,1370	0,0276	0,0641	0,0990	0,0120	0,0847	0,0524	0,0521	0,1009	0,0873	0,0634
22	0,1490	0,1201	0,0152	0,0707	0,0992	0,0121	0,0851	0,0527	0,0529	0,1005	0,0860	0,0616
23	0,1146	0,0507	0,0124	0,0363	0,0984	0,0117	0,0820	0,0493	0,0477	0,0942	0,0838	0,0644
24	0,1340	0,0640	0,0249	0,0277	0,0984	0,0116	0,0824	0,0476	0,0462	0,0871	0,0802	0,0599
25	0,1155	0,0583	0,0233	0,0487	0,0982	0,0115	0,0809	0,0467	0,0444	0,0867	0,0803	0,0627
26	0,1015	0,0547	0,0146	0,0522	0,0991	0,0119	0,0835	0,0497	0,0487	0,0926	0,0829	0,0612
27	0,0703	0,0783	0,0208	0,0496	0,0982	0,0116	0,0814	0,0485	0,0468	0,0927	0,0832	0,0644
28	0,0788	0,1256	0,0163	0,0433	0,0995	0,0119	0,0850	0,0496	0,0497	0,0898	0,0815	0,0571
29	0,0582	0,0595	0,0131	0,0683	0,0979	0,0113	0,0796	0,0441	0,0409	0,0789	0,0761	0,0611
30	0,0682	0,0982	0,0118	0,0673	0,0987	0,0119	0,0833	0,0510	0,0499	0,0988	0,0864	0,0650
média	0,1024	0,0886	0,0198	0,0483	0,0984		0,0815		0,0454		0,0807	
desvio padrão	0,0299	0,0274	0,0057	0,0147	0,0007		0,0032		0,0062		0,0045	

Tabela D.31 – Valores dos parâmetros estimados

Estrutura compartimental para sintetização: quatro compartimentos Estrutura compartimental identificada: quatro compartimentos Nivel de ruído: médio

experimento	K	k	k	k	k	k	ĸ	desvio	k.	desvio	k.	desvio	k	desvio	k	desvio	k.	desvio nadrão
experimento	1 (palpite inicial)	2 (palpite inicial)	13 (palpite inicial)	•4 (palpite inicial)	6 (palpite inicial)	6 (palpite inicial)	K1	padrão	K2	padrão	K3	padrão	κ ₄	padrão	NS	padrão	N 6	
1	0,0846	0,1116	0,0294	0,0320	0,1198	0,1080	0,0999	0,0189	0,0977	0,1867	0,0073	0,1657	0,0226	0,4806	0,1010	0,6960	0,1668	1,0183
2	0,1055	0,0766	0,0115	0,0465	0,0804	0,2117	0,1008	0,0248	0,1106	0,3834	0,0348	0,3961	0,0619	0,2569	0,1457	2,0087	0,2809	2,7153
3	0,0886	0,0992	0,0266	0,0258	0,0922	0,2681	0,1014	0,0249	0,1189	0,3795	0,0263	0,3018	0,0497	0,2544	0,1806	1,7965	0,2554	1,6276
4	0,1348	0,0905	0,0220	0,0329	0,1106	0,1602	0,1003	0,0208	0,1000	0,2410	0,0306	0,6263	0,0637	0,4680	0,0816	0,8314	0,2048	2,9060
5	0,0811	0,0805	0,0269	0,0628	0,0925	0,1497	0,0996	0,0184	0,0926	0,1744	0,0134	0,3442	0,0394	0,5471	0,0742	0,5633	0,1650	1,7082
6	0,1191	0,1303	0,0180	0,0604	0,1434	0,2726	0,1004	0,0193	0,1037	0,1953	0,0058	0,1277	0,0148	0,4612	0,1183	0,7071	0,1624	0,7661
7	0,1481	0,0865	0,0209	0,0264	0,1235	0,1550	0,0988	0,0184	0,0905	0,1761	0,0116	0,2987	0,0373	0,5552	0,0755	0,6234	0,1691	1,6929
8	0,0596	0,1454	0,0294	0,0270	0,0846	0,2086	0,1018	0,0322	0,1227	0,7356	0,0635	0,5955	0,0789	0,1557	0,2075	5,5350	0,4529	6,3842
9	0,1475	0,0611	0,0138	0,0416	0,1488	0,1177	0,0990	0,0182	0,0934	0,1727	0,0094	0,2614	0,0312	0,5881	0,0845	0,5839	0,1596	1,3072
10	0,1214	0,0968	0,0162	0,0651	0,0853	0,1472	0,0990	0,0216	0,0954	0,2786	0,0211	0,2849	0,0506	0,3068	0,1027	1,4617	0,2462	2,6432
11	0,1378	0,0811	0,0143	0,0529	0,0577	0,2998	0,0991	0,0187	0,0929	0,1865	0,0122	0,2979	0,0386	0,5290	0,0825	0,6775	0,1744	1,6378
12	0,1263	0,0779	0,0277	0,0467	0,0877	0,1453	0,0997	0,0186	0,0957	0,1787	0,0104	0,3368	0,0367	0,6868	0,0876	0,5571	0,1587	1,3567
13	0,1375	0,0596	0,0210	0,0287	0,1454	0,1503	0,0998	0,0190	0,0952	0,1896	0,0110	0,2914	0,0368	0,5720	0,0908	0,6710	0,1707	1,4220
14	0,1020	0,0634	0,0250	0,0341	0,0634	0,1929	0,0995	0,0171	0,0933	0,1382	0,0030	0,1646	0,0118	1,0967	0,0811	0,3989	0,1269	0,7906
15	0,0721	0,1327	0,0158	0,0713	0,0709	0,1526	0,0993	0,0215	0,0994	0,2716	0,0174	0,2608	0,0450	0,3393	0,1184	1,3122	0,2283	1,9036
16	0,0663	0,0513	0,0214	0,0568	0,1040	0,1135	0,0978	0,0156	0,0783	0,1034	-0,0002	56,5046	0,0611	2459,0131	0,0407	56,1441	0,0802	17,2830
17	0,1333	0,0862	0,0149	0,0669	0,1235	0,1126	0,1002	0,0229	0,1004	0,3156	0,0307	0,3778	0,0611	0,2825	0,1051	1,6507	0,2657	3,2635
18	0,0572	0,0851	0,0234	0,0484	0,1031	0,2564	0,0992	0,0198	0,0915	0,2180	0,0280	0,5878	0,0629	0,4800	0,0620	0,8040	0,2053	3,7795
19	0,0930	0,0939	0,0222	0,0460	0,0560	0,2114	0,1007	0,0252	0,1065	0,4028	0,0460	0,4553	0,0711	0,2174	0,1117	2,3541	0,3192	4,8181
20	0,0805	0,1016	0,0142	0,0488	0,1344	0,2896	0,0995	0,0199	0,0963	0,2190	0,0155	0,3400	0,0448	0,4896	0,0968	0,8559	0,1910	1,7605
21	0,0842	0,1370	0,0276	0,0641	0,0884	0,1836	0,1012	0,0300	0,1188	0,6221	0,0501	0,4825	0,0728	0,1830	0,2033	4,3268	0,3971	4,5763
22	0,1490	0,1201	0,0152	0,0707	0,1012	0,2826	0,1011	0,0201	0,1075	0,2118	0,0071	0,1763	0,0229	0,5310	0,1282	0,7429	0,1654	0,8065
23	0,1146	0,0507	0,0124	0,0363	0,0750	0,1791	0,0995	0,0167	0,0929	0,1298	0,0011	0,0549	-0,0124	1,0366	0,0839	0,4216	0,1247	0,5359
24	0,1340	0,0640	0,0249	0,0277	0,1471	0,2750	0,1000	0,0209	0,1025	0,2452	0,0198	0,3434	0,0475	0,3895	0,1084	0,9728	0,2030	1,7456
25	0,1155	0,0583	0,0233	0,0487	0,0900	0,2281	0,1016	0,0398	0,1440	1,1888	0,0583	0,6320	0,0679	0,1314	0,4198	9,5356	0,5107	4,3850
26	0,1015	0,0547	0,0146	0,0522	0,1189	0,2799	0,1012	0,0198	0,1065	0,2021	0,0054	0,1321	0,0156	0,5136	0,1258	0,7164	0,1617	0,7204
27	0,0703	0,0783	0,0208	0,0496	0,0777	0,1446	0,0991	0,0194	0,0915	0,2059	0,0252	0,6302	0,0607	0,5635	0,0639	0,6871	0,1915	3,3061
28	0,0788	0,1256	0,0163	0,0433	0,1170	0,1126	0,1013	0,0235	0,1086	0,3276	0,0326	0,3894	0,0594	0,2704	0,1232	1,5422	0,2546	2,5251
29	0,0582	0,0595	0,0131	0,0683	0,1006	0,2560	0,0999	0,0183	0,0979	0,1667	0,0039	0,1090	0,0084	0,5734	0,1007	0,5832	0,1488	0,7337
30	0,0682	0,0982	0,0118	0,0673	0,1396	0,2524	0,0991	0,0172	0,0888	0,1427	0,0095	0,7551	0,0438	1,5264	0,0624	0,4302	0,1313	1,9191
média	0,1024	0,0886	0,0198	0,0483	0,1028	0,1972	0,1000		0,1011		0,0204		0,0435		0,1156		0,2157	
desvio padrão	0,0299	0,0274	0,0057	0,0147	0,0274	0,0630	0,0010		0,0126		0,0169		0,0220		0,0693		0,0967	

Tabela D.32 – Métricas de Akaike e sugestão de compartimentos Estrutura compartimental para sintetização: quatro compartimentos Nivel de ruído: médio

experimento	AIC 2	AIC 3	AIC 4	Sugestão de					
	/	/	/	compartimentos					
1	236,3728	135,4698	112,7422	4					
2	234,2231	128,6995	109,4756	4					
3	235,6289	142,4986	122,0509	4					
4	236,6010	116,1849	106,8805	4					
5	238,3271	130,4321	120,4834	4					
6	236,2755	130,5945	103,9516	4					
7	234,3624	113,2076	99,1620	4					
8	236,4694	129,1640	119,4906	4					
9	236,1978	128,4288	107,2963	4					
10	233,1117	118,7126	107,9813	4					
11	235,5679	132,6139	117,0386	4					
12	234,5927	121,4734	109,2951	4					
13	234,2471	128,0951	111,6354	4					
14	235,1047	124,0848	114,0894	4					
15	232,6006	132,3994	112,3155	4					
16	235,9073	137,7309	139,5338	3					
17	234,9029	122,1007	108,4763	4					
18	235,4625	117,6729	110,0588	4					
19	236,8999	121,3788	103,9943	4					
20	232,8840	122,2584	107,4275	4					
21	233,9316	122,0348	107,2212	4					
22	234.6020	135.0685	117.4031	4					
23	234.3215	125.4428	105.7492	4					
24	235,9841	119.3676	94.8457	4					
25	234.2936	118,1138	107.2101	4					
26	234.8577	134.5747	104.0482	4					
27	234,4099	109.5389	101.9355	4					
28	237.9039	130.8815	121,1206	4					
29	236.2166	138.3401	118.0157	4					
30	233.8972	111.1540	109.2177	4					
média	235 2052	125,9239	111 0049	acertos					
desvio nadrão	1 3787	8 4170	8 5034	20					
Erros para dois	compartim	entos	0,0004	0					
Erros para trôc	compartim	entos		1					
Erros para tres compartimentos									

Tabela D.33 – Valores dos parâmetros estimados

Estrutura com	partimental pa	ara sintetizaç	ão: quatro	compartime	entos
Estrutura com	partimental id	entificada: d	ois compa	rtimentos	
Nivel de ruído	: alto				

experimento	K _{1 (palpite inicial)}	k _{2 (palnite inicial)}	K ₁	desvio	k ₂	desvio
•	i (parpire micial)	2 (parpite metal)	1	padrão	2	padrão
1	0,0807	0,0661	0,0852	0,0049	0,0457	0,0028
2	0,1057	0,1306	0,0856	0,0049	0,0464	0,0028
3	0,0990	0,0986	0,0856	0,0049	0,0465	0,0028
4	0,0821	0,1343	0,0856	0,0050	0,0466	0,0028
5	0,0800	0,0753	0,0856	0,0051	0,0464	0,0029
6	0,0901	0,0831	0,0852	0,0049	0,0464	0,0028
7	0,0770	0,1285	0,0854	0,0048	0,0465	0,0027
8	0,1075	0,1232	0,0854	0,0050	0,0462	0,0028
9	0,1368	0,1308	0,0856	0,0050	0,0463	0,0028
10	0,1449	0,0592	0,0863	0,0049	0,0465	0,0027
11	0,0666	0,0622	0,0850	0,0050	0,0460	0,0029
12	0,1375	0,0639	0,0851	0,0051	0,0458	0,0029
13	0,0637	0,0732	0,0863	0,0049	0,0469	0,0027
14	0,0902	0,0955	0,0849	0,0049	0,0463	0,0028
15	0,1444	0,1318	0,0850	0,0049	0,0459	0,0028
16	0,0626	0,1071	0,0863	0,0051	0,0471	0,0028
17	0,0513	0,0580	0,0856	0,0050	0,0463	0,0028
18	0,1062	0,1279	0,0852	0,0050	0,0462	0,0028
19	0,0877	0,1077	0,0850	0,0049	0,0460	0,0027
20	0,1124	0,0807	0,0863	0,0049	0,0471	0,0027
21	0,0860	0,0764	0,0856	0,0049	0,0464	0,0027
22	0,0516	0,0870	0,0850	0,0051	0,0457	0,0029
23	0,0783	0,0754	0,0853	0,0049	0,0464	0,0027
24	0,0782	0,1342	0,0858	0,0049	0,0467	0,0027
25	0,1011	0,1308	0,0861	0,0050	0,0469	0,0027
26	0,0824	0,1425	0,0857	0,0048	0,0466	0,0027
27	0,1295	0,1169	0,0845	0,0050	0,0456	0,0028
28	0,1329	0,0508	0,0864	0,0049	0,0472	0,0027
29	0,0596	0,1122	0,0849	0,0048	0,0458	0,0027
30	0,1027	0,0549	0,0851	0,0049	0,0463	0,0027
média	0,0943	0,0973	0,0855		0,0464	
desvio padrão	0,0273	0,0297	0,0005		0,0004	

Tabela D.34 – Valores dos parâmetros estimados Estrutura compartimental para sintetização: quatro compartimentos Estrutura compartimental identificada: três compartimentos Nivel de ruído: alto

evnerimento	K	k	k			desvio	k.	desvio	desvio ka		k.	desvio
experimento	N1 (palpite inicial)	№2 (palpite inicial)	▲3 (palpite inicial)	►4 (palpite inicial)	N 1	padrão	ĸ2	padrão	к3	padrão	ĸ ₄	padrão
1	0,0807	0,0661	0,0299	0,0326	0,0995	0,0127	0,0909	0,0612	0,0662	0,1193	0,0905	0,0579
2	0,1057	0,1306	0,0211	0,0281	0,0995	0,0123	0,0879	0,0552	0,0573	0,1046	0,0873	0,0587
3	0,0990	0,0986	0,0142	0,0414	0,0982	0,0115	0,0810	0,0465	0,0437	0,0853	0,0796	0,0625
4	0,0821	0,1343	0,0248	0,0670	0,0975	0,0110	0,0773	0,0409	0,0356	0,0715	0,0727	0,0634
5	0,0800	0,0753	0,0193	0,0394	0,1014	0,0123	0,0904	0,0509	0,0534	0,0849	0,0779	0,0482
6	0,0901	0,0831	0,0109	0,0749	0,0960	0,0103	0,0728	0,0351	0,0279	0,0585	0,0642	0,0654
7	0,0770	0,1285	0,0291	0,0578	0,0965	0,0116	0,0783	0,0492	0,0448	0,1007	0,0873	0,0762
8	0,1075	0,1232	0,0215	0,0667	0,1006	0,0124	0,0906	0,0542	0,0575	0,0953	0,0822	0,0509
9	0,1368	0,1308	0,0125	0,0740	0,0964	0,0104	0,0724	0,0350	0,0272	0,0579	0,0634	0,0660
10	0,1449	0,0592	0,0164	0,0323	0,0970	0,0109	0,0741	0,0401	0,0332	0,0740	0,0741	0,0728
11	0,0666	0,0622	0,0195	0,0593	0,0970	0,0108	0,0760	0,0373	0,0313	0,0596	0,0636	0,0576
12	0,1375	0,0639	0,0171	0,0366	0,1005	0,0117	0,0867	0,0448	0,0458	0,0702	0,0696	0,0452
13	0,0637	0,0732	0,0189	0,0566	0,1015	0,0138	0,0990	0,0739	0,0820	0,1501	0,1006	0,0607
14	0,0902	0,0955	0,0266	0,0306	0,0970	0,0116	0,0801	0,0477	0,0442	0,0900	0,0810	0,0660
15	0,1444	0,1318	0,0153	0,0313	0,0967	0,0110	0,0769	0,0420	0,0374	0,0755	0,0738	0,0639
16	0,0626	0,1071	0,0182	0,0520	0,0972	0,0102	0,0715	0,0322	0,0234	0,0506	0,0592	0,0670
17	0,0513	0,0580	0,0169	0,0381	0,0980	0,0112	0,0790	0,0426	0,0390	0,0751	0,0743	0,0607
18	0,1062	0,1279	0,0105	0,0318	0,0970	0,0108	0,0762	0,0383	0,0329	0,0640	0,0673	0,0604
19	0,0877	0,1077	0,0101	0,0464	0,0971	0,0117	0,0805	0,0498	0,0473	0,0977	0,0843	0,0678
20	0,1124	0,0807	0,0268	0,0584	0,0983	0,0118	0,0812	0,0507	0,0474	0,1019	0,0888	0,0727
21	0,0860	0,0764	0,0176	0,0547	0,0993	0,0123	0,0865	0,0549	0,0556	0,1050	0,0872	0,0608
22	0,0516	0,0870	0,0113	0,0747	0,0983	0,0113	0,0802	0,0414	0,0383	0,0670	0,0677	0,0526
23	0,0783	0,0754	0,0251	0,0403	0,0989	0,0125	0,0882	0,0581	0,0602	0,1142	0,0903	0,0623
24	0,0782	0,1342	0,0298	0,0401	0,0983	0,0119	0,0826	0,0513	0,0497	0,1005	0,0870	0,0667
25	0,1011	0,1308	0,0186	0,0600	0,0993	0,0122	0,0847	0,0526	0,0515	0,1009	0,0868	0,0642
26	0,0824	0,1425	0,0140	0,0569	0,0985	0,0123	0,0863	0,0588	0,0601	0,1232	0,0953	0,0698
27	0,1295	0,1169	0,0132	0,0528	0,0998	0,0122	0,0900	0,0529	0,0561	0,0909	0,0787	0,0491
28	0,1329	0,0508	0,0111	0,0449	0,1001	0,0133	0,0929	0,0700	0,0740	0,1507	0,1034	0,0702
29	0,0596	0,1122	0,0290	0,0607	0,0945	0,0102	0,0694	0,0352	0,0265	0,0631	0,0665	0,0766
30	0,1027	0,0549	0,0111	0,0594	0,0964	0,0113	0,0776	0,0457	0,0412	0,0885	0,0813	0,0710
média	0,0943	0,0973	0,0187	0,0500	0,0982		0,0820		0,0464		0,0795	
desvio padrão	0,0273	0,0297	0,0064	0,0143	0,0017		0,0072		0,0142		0,0114	

Tabela D.35 – Valores dos parâmetros estimados

Estrutura compartimental para sintetização: quatro compartimentos
Estrutura compartimental identificada: quatro compartimentos
Nivel de ruído: alto

	V	ь	ь.	ь.	ь	ь.	K	desvio	ь	desvio		desvio	Ŀ	desvio	Ŀ	desvio		deeuie vedrãe
experimento	κ ₁ (palpite inicial)	K ₂ (palpite inicial)	K ₃ (palpite inicial)	K ₄ (palpite inicial)	K ₅ (palpite inicial)	K ₆ (palpite inicial)	К1	padrão	к2	padrão	K ₃	padrão	к ₄	padrão	К5	padrão	к _б	desvio padrao
1	0,0807	0,0661	0,0299	0,0326	0,1475	0,2700	0,1013	0,0249	0,1180	0,3820	0,0463	0,5841	0,0688	0,2910	0,1409	1,6523	0,2595	2,6973
2	0,1057	0,1306	0,0211	0,0281	0,1116	0,2696	0,1011	0,0221	0,1096	0,2817	0,0271	0,4565	0,0564	0,3844	0,1217	1,0762	0,2136	1,8989
3	0,0990	0,0986	0,0142	0,0414	0,0638	0,2431	0,0995	0,0186	0,0939	0,1740	0,0106	0,3333	0,0362	0,6597	0,0810	0,5381	0,1574	1,4429
4	0,0821	0,1343	0,0248	0,0670	0,1384	0,1218	0,0977	0,0153	0,0778	0,1020	0,0171	639,6375	0,0688	146,1752	0,0193	639,2739	0,0775	161,5598
5	0,0800	0,0753	0,0193	0,0394	0,1450	0,1684	0,1013	0,0167	0,0944	0,1194	0,0035	0,2789	0,0158	1,4770	0,0671	0,2319	0,1072	0,8693
6	0,0901	0,0831	0,0109	0,0749	0,0524	0,1288	0,0981	0,0231	0,0923	0,3425	0,0235	0,2317	0,0509	0,2084	0,1035	2,3318	0,3118	4,2456
7	0,0770	0,1285	0,0291	0,0578	0,0807	0,1323	0,0991	0,0280	0,1155	0,5491	0,0371	0,4243	0,0662	0,2463	0,2138	3,5408	0,3434	3,1561
8	0,1075	0,1232	0,0215	0,0667	0,0805	0,1325	0,1006	0,0199	0,0919	0,2079	0,0536	1,0891	0,0795	0,4643	0,0105	0,6427	0,2060	27,2532
9	0,1368	0,1308	0,0125	0,0740	0,1343	0,2868	0,1000	0,0382	0,1289	1,0765	0,0345	0,3775	0,0513	0,1317	0,4022	9,4115	0,5027	4,0469
10	0,1449	0,0592	0,0164	0,0323	0,0547	0,1633	0,0984	0,0166	0,0845	0,1293	0,0021	0,0847	-0,0006	0,8088	0,0689	0,4677	0,1355	0,8690
11	0,0666	0,0622	0,0195	0,0593	0,0973	0,2521	0,1131	0,1047	0,5615	5,9846	0,1346	1,6594	0,0440	0,0973	1,7768	16,1695	0,3205	0,8191
12	0,1375	0,0639	0,0171	0,0366	0,0633	0,1825	0,1023	0,0178	0,1032	0,1458	0,0042	0,1249	0,0059	0,5842	0,0918	0,4030	0,1262	0,6081
13	0,0637	0,0732	0,0189	0,0566	0,0850	0,2036	0,1043	0,0231	0,1326	0,2838	0,0084	0,2025	0,0258	0,5176	0,1909	0,8959	0,1699	0,5883
14	0,0902	0,0955	0,0266	0,0306	0,1308	0,1441	0,1012	0,0237	0,1306	0,3323	0,0060	0,0902	0,0089	0,3221	0,2267	1,2996	0,1970	0,5482
15	0,1444	0,1318	0,0153	0,0313	0,1329	0,2880	0,0980	0,0256	0,0921	0,4520	0,0364	0,3422	0,0663	0,1811	0,0946	3,7889	0,3995	9,3300
16	0,0626	0,1071	0,0182	0,0520	0,0630	0,1232	0,0986	0,0159	0,0811	0,1140	0,0032	0,1284	0,0068	0,7911	0,0506	0,3658	0,1270	1,1751
17	0,0513	0,0580	0,0169	0,0381	0,0513	0,2360	0,0981	0,0150	0,0796	0,0968	0,0036	5,2093	0,0435	17,9964	0,0374	4,8957	0,0818	4,7729
18	0,1062	0,1279	0,0105	0,0318	0,1149	0,2227	0,0993	0,0173	0,0932	0,1436	0,0032	0,0928	0,0023	0,5958	0,0836	0,4851	0,1378	0,7329
19	0,0877	0,1077	0,0101	0,0464	0,0846	0,1351	0,0990	0,0210	0,1022	0,2503	0,0155	0,3138	0,0431	0,4532	0,1212	1,0146	0,1977	1,4909
20	0,1124	0,0807	0,0268	0,0584	0,1355	0,1544	0,0983	0,0160	0,0821	0,1152	0,0043	2,1009	0,0465	7,7200	0,0482	1,7232	0,1035	2,9239
21	0,0860	0,0764	0,0176	0,0547	0,0906	0,1453	0,1115	0,1389	0,5532	9,7081	0,2701	5,1493	0,0714	0,0899	2,0483	31,9701	0,4493	1,6648
22	0,0516	0,0870	0,0113	0,0747	0,0692	0,1510	0,1024	0,0224	0,1204	0,2794	0,0112	0,1440	0,0211	0,2724	0,1696	1,0702	0,1933	0,7666
23	0,0783	0,0754	0,0251	0,0403	0,0585	0,1084	0,0993	0,0154	0,0965	0,0974	0,0000	0,0000	-0,2537	3,1293	0,0875	0,2521	0,1118	0,1370
24	0,0782	0,1342	0,0298	0,0401	0,0871	0,1600	0,1004	0,0264	0,1117	0,4662	0,0422	0,4494	0,0699	0,2345	0,1604	2,8381	0,3301	3,7309
25	0,1011	0,1308	0,0186	0,0600	0,0933	0,1973	0,1006	0,0177	0,1002	0,1438	0,0005	0,0189	-0,0345	0,8129	0,1027	0,4715	0,1315	0,3730
26	0,0824	0,1425	0,0140	0,0569	0,1298	0,1937	0,0984	0,0151	0,0864	0,0997	0,0065	202045,1800	0,0942	16465,2790	0,0538 2	202045,0200	0,0953	2031,2860
27	0,1295	0,1169	0,0132	0,0528	0,0732	0,2452	0,1006	0,0162	0,0995	0,1101	0,0001	0,0083	-0,0585	1,0932	0,0851	0,2999	0,1044	0,2490
28	0,1329	0,0508	0,0111	0,0449	0,1043	0,2350	0,1006	0,0211	0,0982	0,2422	0,0535	2,1544	0,0911	0,9144	0,0437	1,3395	0,1978	8,5801
29	0,0596	0,1122	0,0290	0,0607	0,0936	0,1875	0,0956	0,0195	0,0791	0,2334	0,0201	0,2988	0,0536	0,3455	0,0527	1,4207	0,2512	5,6742
30	0,1027	0,0549	0,0111	0,0594	0,0916	0,2296	0,0973	0,0155	0,0853	0,1083	0,0005	0,0331	-0,0266	1,3977	0,0666	0,3545	0,1143	0,5213
média	0,0943	0,0973	0,0187	0,0500	0,0953	0,1904	0,1005		0,1299		0,0293		0,0271		0,2274		0,2051	
desvio padrão	0,0273	0,0297	0,0064	0,0143	0,0303	0,0547	0,0037		0,1173		0,0530		0,0647		0,4659		0,1133	

Nivel de ruído	o: alto							
experimento				Sugestão de				
ехрепшенио				compartimentos				
1	171,0970	112,9046	113,7738	3				
2	170,2533	104,6401	103,4364	4				
3	168,1173	103,0177	106,8054	3				
4	173,5295	117,8176	121,5922	3				
5	179,7111	114,1362	117,5106	3				
6	168,4719	94,3764	95,2742	3				
7	161,2322	104,7225	104,1498	4				
8	176,2159	110,2561	114,0365	3				
9	167,9708	108,9776	111,8079	3				
10	168,2153	115,0779	114,4947	4				
11	171,4122	114,5654	111,0524	4				
12	183,0235	120,5126	119,1764	4				
13	168,9773	111,3171	110,5465	4				
14	166,3665	118,0096	112,2237	4				
15	169,2619	104,3045	107,2743	3				
16	174,2256	124,0416	125,4971	3				
17	173,7553	106,7718	110,4370	3				
18	173,6672	114,8160	115,0502	3				
19	167,3085	119,5112	120,9143	3				
20	165,0702	98,3280	102,2830	3				
21	166,5418	102,3637	97,4890	4				
22	177,4803	126,8583	122,4111	4				
23	169,3234	110,7402	109,2973	4				
24	165,0791	91,5206	87,4351	4				
25	169,0549	116,9516	119,0915	3				
26	167,7326	95,8801	99,9863	3				
27	177,2011	107,9556	109,6003	3				
28	166,0416	112,6895	116,3517	3				
29	165,5348	109,0707	111,2171	3				
30	168,0189	114,9783	116,5219	3				
média	170,3297	110,2371	110,8912	acertos				
desvio padrão	4,8666	8,5456	8,6214	11				
Erros para dois compartimentos 0								
Erros para três compartimentos 19								

Tabela D.36 – Métricas de Akaike e sugestão de compartimentos Estrutura compartimental para sintetização: quatro compartimentos Nivel de ruído: alto

APÊNDICE E

E.1 – Listagem de programas

Encontra-se abaixo a listagem das rotinas utilizadas neste trabalho. Os programas e a interface gráfica foram desenvolvidos em Matlab® 7.

A listagem é composta por:

• Três rotinas para integração dos três modelos compartimentais.

```
%%% func2.m
%%% PROGRAMADO POR: JOÃO EDUARDO MAEDA MOREIRA DA SILVA
%%% DATA DA DOCUMENTAÇÃO: FEVEREIRO DE 2010
%%% ROTINA PARA OBTENÇÃO DA INTEGRAÇÃO NUMÉRICA DE:
%%% 1-EQUAÇÕES DO MODELO
%%% MÉTODO EMPREGADO: RUNGE-KUTTA (ode45)
%%% MODELO: DOIS COMPARTIMENTOS
function f=func2(x,p,u,v)
[x,y]=ode45('ode2',x,zeros(1,3),[],p,u,v);
f=y(:,1);
%%% func4.m
%%% PROGRAMADO POR: JOÃO EDUARDO MAEDA MOREIRA DA SILVA
%%% DATA DA DOCUMENTAÇÃO: FEVEREIRO DE 2010
%%% ROTINA PARA OBTENÇÃO DA INTEGRAÇÃO NUMÉRICA DE:
%%% 1-EQUAÇÕES DO MODELO
%%% MÉTODO EMPREGADO: RUNGE-KUTTA (ode45)
%%% MODELO: TRÊS COMPARTIMENTOS
function f=func4(x,p,u,v)
[x,y]=ode45('ode4',x,zeros(1,10),[],p,u,v);
%%%SOMA DAS CONCENTRAÇÕES TECIDUAIS
f=y(:,1)+y(:,2);
%%% func6.m
%%% PROGRAMADO POR: JOÃO EDUARDO MAEDA MOREIRA DA SILVA
%%% DATA DA DOCUMENTAÇÃO: FEVEREIRO DE 2010
%%% ROTINA PARA OBTENÇÃO DA INTEGRAÇÃO NUMÉRICA DE:
%%% 1-EQUAÇÕES DO MODELO
%%% MÉTODO EMPREGADO: RUNGE-KUTTA (ode45)
%%% MODELO: QUATRO COMPARTIMENTOS
function f = func 6(x, p, u, v)
```

```
[x,y]=ode45('ode6',x,zeros(1,21),[],p,u,v);
%%% SOMA DAS CONCENTRAÇÕES TECIDUAIS
```

```
f=y(:,1)+y(:,2)+y(:,3);
```

Três rotinas para integração das equações de sensibilidade dos três modelos

compartimentais - abordagem analítica.

```
%%% Dfunc2.m
%%% PROGRAMADO POR: JOÃO EDUARDO MAEDA MOREIRA DA SILVA
%%% DATA DA DOCUMENTAÇÃO: FEVEREIRO DE 2010
%%% ROTINA PARA OBTENÇÃO DA INTEGRAÇÃO NUMÉRICA DE:
%%% 1-EQUAÇÕES DE SENSIBILIDADE
%%% MÉTODO EMPREGADO: RUNGE-KUTTA (ode45)
%%% MODELO: DOIS COMPARTIMENTOS
function Df=Dfunc2(x,p,u,v)
%colocar aqui as derivadas parciais de f a ser ajustado.
[x,y]=ode45('ode2',x,[0 0 0],[],p,u,v);
%%% 1-EQUAÇÕES DE SENSIBILIDADE
Df = [y(:,2) \ y(:,3)];
%%% Dfunc4.m
%%% PROGRAMADO POR: JOÃO EDUARDO MAEDA MOREIRA DA SILVA
%%% DATA DA DOCUMENTAÇÃO: FEVEREIRO DE 2010
%%% ROTINA PARA OBTENÇÃO DA INTEGRAÇÃO NUMÉRICA DE:
%%% 1-EOUAÇÕES DE SENSIBILIDADE
%%% MÉTODO EMPREGADO: RUNGE-KUTTA (ode45)
%%% MODELO: TRÊS COMPARTIMENTOS
function Df=Dfunc4(x,p,u,v)
%colocar aqui as derivadas parciais de f a ser ajustado.
[x,y]=ode45('ode4',x,zeros(1,10),[],p,u,v);
%%% 1-EQUAÇÕES DE SENSIBILIDADE
J1=[y(:,3) y(:,4) y(:,5) y(:,6)];
J2=[y(:,7) y(:,8) y(:,9) y(:,10)];
Df = J1 + J2;
%%% Dfunc6.m
%%% PROGRAMADO POR: JOÃO EDUARDO MAEDA MOREIRA DA SILVA
%%% DATA DA DOCUMENTAÇÃO: FEVEREIRO DE 2010
%%% ROTINA PARA OBTENÇÃO DA INTEGRAÇÃO NUMÉRICA DE:
%%% 1-EQUAÇÕES DE SENSIBILIDADE
%%% MÉTODO EMPREGADO: RUNGE-KUTTA (ode45)
%%% MODELO: QUATRO COMPARTIMENTOS
function Df=Dfunc6(x,p,u,v)
%colocar aqui as derivadas parciais de f a ser ajustado.
[x,y]=ode45('ode6',x,zeros(1,21),[],p,u,v);
%%% 1-EQUAÇÕES DE SENSIBILIDADE
J1=[y(:,4) \ y(:,5) \ y(:,6) \ y(:,7) \ y(:,8) \ y(:,9)];
J2=[y(:,10) \ y(:,11) \ y(:,12) \ y(:,13) \ y(:,14) \ y(:,15)];
J3=[y(:,16) \ y(:,17) \ y(:,18) \ y(:,19) \ y(:,20) \ y(:,21)];
Df = J1 + J2 + J3;
```

 Três funções descritoras das equações dos três modelos e respectivas equações de sensibilidade.

```
%%% ode2.m
%%% PROGRAMADO POR: JOÃO EDUARDO MAEDA MOREIRA DA SILVA
%%% DATA DA DOCUMENTAÇÃO: FEVEREIRO DE 2010
%%% MODELO: DOIS COMPARTIMENTOS
%%% CONTEÚDO:
%%% 1-EQUAÇÕES DO MODELO
%%% 2-EQUAÇÕES DE SENSIBILIDADE
function dx=ode2(t,x,flag,k,a,b)
dx=zeros(3,1);
%%% 1-EQUAÇÕES DO MODELO
dx(1)=k(1)*intlin(a,b,t)-k(2)*x(1);
%%% 2-EOUACÕES DE SENSIBILIDADE
dx(2)=intlin(a,b,t)-k(2)*x(2);
dx(3) = -x(1) - k(2) * x(3);
%%% ode4.m
%%% PROGRAMADO POR: JOÃO EDUARDO MAEDA MOREIRA DA SILVA
%%% DATA DA DOCUMENTAÇÃO: FEVEREIRO DE 2010
%%% MODELO: TRÊS COMPARTIMENTOS
%%% CONTEÚDO:
%%% 1-EQUAÇÕES DO MODELO
%%% 2-EQUAÇÕES DE SENSIBILIDADE
function dx = ode4(t, x, flag, k, a, b)
dx=zeros(10,1);
%%% 1-EOUAÇÕES DO MODELO
dx(1)=k(1)*intlin(a,b,t)+k(4)*x(2)-(k(2)+k(3))*x(1);
dx(2)=k(3)*x(1)-k(4)*x(2);
%%% 2-EQUAÇÕES DE SENSIBILIDADE
dx(3)=intlin(a,b,t)+k(4)*x(7)-k(2)*x(3)-k(3)*x(3);
dx(4) = k(4) * x(8) - x(1) - k(2) * x(4) - k(3) * x(4);
dx(5)=k(4)*x(9)-k(2)*x(5)-x(1)-k(3)*x(5);
dx(6) = x(2) + k(4) * x(10) - k(2) * x(6) - k(3) * x(6);
dx(7) = k(3) * x(3) - k(4) * x(7);
dx(8) = k(3) * x(4) - k(4) * x(8);
dx(9)=x(1)+k(3)*x(5)-k(4)*x(9);
dx(10) = k(3) * x(6) - x(2) - k(4) * x(10);
```

```
%%% ode6.m
      %%% PROGRAMADO POR: JOÃO EDUARDO MAEDA MOREIRA DA SILVA
      %%% DATA DA DOCUMENTAÇÃO: FEVEREIRO DE 2010
      %%% MODELO: QUATRO COMPARTIMENTOS
      %%% CONTEÚDO:
      %%% 1-EOUACÕES DO MODELO
      %%% 2-EQUAÇÕES DE SENSIBILIDADE
      function dx=ode6(t,x,flag,k,a,b)
      dx=zeros(21,1);
      %%% 1-EOUAÇÕES DO MODELO
      dx(1)=k(1)*intlin(a,b,t)+k(4)*x(2)+k(6)*x(3)-
(k(2)+k(3)+k(5))*x(1);
      dx(2) = k(3) * x(1) - k(4) * x(2);
      dx(3)=k(5)*x(1)-k(6)*x(3);
      %%% 2-EQUAÇÕES DE SENSIBILIDADE
      dx(4) = intlin(a, b, t) + k(4) * x(10) + k(6) * x(16) -
(k(2)+k(3)+k(5))*x(4);
      k(5)*x(5);
      k(5)*x(6);
      dx(7)=x(2)+k(4)*x(13)+k(6)*x(19)-k(2)*x(7)-k(3)*x(7)-
k(5) * x(7);
      dx(8) = k(4) * x(14) + k(6) * x(20) - k(2) * x(8) - k(3) * x(8) - x(1) + k(3) * x(8) - x(1) - k(3) * x(8) - x(1) + k(3) * x(8) - x(1) + k(3) * x(8) + k(3) * x(8) - x(1) + k(3) * x(8) + k(3)
k(5)*x(8);
      k(5)*x(9);
      %
      dx(10) = k(3) * x(4) - k(4) * x(10);
      dx(11)=k(3)*x(5)-k(4)*x(11);
      dx(12) = x(1) + k(3) * x(6) - k(4) * x(12);
      dx(13) = k(3) * x(7) - x(2) - k(4) * x(13);
      dx(14)=k(3)*x(8)-k(4)*x(14);
      dx(15)=k(3)*x(9)-k(4)*x(15);
      2
      dx(16)=k(5)*x(4)-k(6)*x(16);
      dx(17)=k(5)*x(5)-k(6)*x(17);
      dx(18) = k(5) * x(6) - k(6) * x(18);
      dx(19)=k(5)*x(7)-k(6)*x(19);
      dx(20) = x(1) + k(5) * x(8) - k(6) * x(20);
      dx(21) = k(5) * x(9) - x(3) - k(6) * x(21);
```

 Três funções para obtenção das derivadas, componentes da matriz Jacobiana, de maneira numérica.

```
%%% DfuncN2.m
  %%% PROGRAMADO POR: JOÃO EDUARDO MAEDA MOREIRA DA SILVA
  %%% DATA DA DOCUMENTAÇÃO: FEVEREIRO DE 2010
  %%% ROTINA PARA OBTENÇÃO DA INTEGRAÇÃO NUMÉRICA DE:
  %%% 1-EQUAÇÕES DE SENSIBILIDADE
  %%% MÉTODO EMPREGADO: RUNGE-KUTTA (ode45)
  %%% DIFERENÇAS FINITAS - DERIVADA NUMÉRICA
  %%% MODELO: DOIS COMPARTIMENTOS
  function DfN=DfuncN2(x,p,u,v)
  eps=le-8;
  base=eye(length(p));
  for i=1:length(p)
      DfN(:,i) = (func2(x,p+eps*base(:,i),u,v) -
func2(x,p,u,v))./(eps*(abs(1+p(i))));
  end
  %%% DfuncN4.m
  %%% PROGRAMADO POR: JOÃO EDUARDO MAEDA MOREIRA DA SILVA
  %%% DATA DA DOCUMENTACÃO: FEVEREIRO DE 2010
  %%% ROTINA PARA OBTENÇÃO DA INTEGRAÇÃO NUMÉRICA DE:
  %%% 1-EQUAÇÕES DE SENSIBILIDADE
  %%% MÉTODO EMPREGADO: RUNGE-KUTTA (ode45)
  %%% DIFERENÇAS FINITAS - DERIVADA NUMÉRICA
  %%% MODELO: TRÊS COMPARTIMENTOS
  function DfN=DfuncN4(x,p,u,v)
  eps=le-8;
  base=eye(length(p));
  for i=1:length(p)
      DfN(:,i) = (func4(x,p+eps*base(:,i),u,v) -
func4(x,p,u,v))./(eps*(abs(1+p(i))));
  end
  %%% DfuncN6.m
  %%% PROGRAMADO POR: JOÃO EDUARDO MAEDA MOREIRA DA SILVA
  %%% DATA DA DOCUMENTAÇÃO: FEVEREIRO DE 2010
  %%% ROTINA PARA OBTENÇÃO DA INTEGRAÇÃO NUMÉRICA DE:
  %%% 1-EQUAÇÕES DE SENSIBILIDADE
  %%% MÉTODO EMPREGADO: RUNGE-KUTTA (ode45)
  %%% DIFERENÇAS FINITAS - DERIVADA NUMÉRICA
  %%% MODELO: QUATRO COMPARTIMENTOS
  function DfN=DfuncN6(x,p,u,v)
  eps=le-8;
  base=eye(length(p));
  for i=1:length(p)
      DfN(:,i) = (func6(x,p+eps*base(:,i),u,v) -
func6(x,p,u,v))./(eps*(abs(1+p(i))));
  end
```
• Uma função para interpolação linear da Curva de Atividade de Entrada.

```
%%% intlin.m
%%% PROGRAMADO POR: JOÃO EDUARDO MAEDA MOREIRA DA SILVA
%%% DATA DA DOCUMENTAÇÃO: FEVEREIRO DE 2010
%%% CONTEÚDO:
%%% 1-INTERPOLAÇÃO LINEAR USANDO GEOMETRIA ANALÍTICA
function y_int=intlin(x,y,x_int)
for i=1:length(x),
if x_int==x(i),
y_int=y(i);
break
end
if x_int<x(i),</pre>
y_{int=(x_{int-x(i)})*(y(i)-y(i-1))/(x(i)-x(i-1))+y(i);
break;
end
end
```

APÊNDICE F

F.1 – Publicações resultantes deste trabalho

• MAEDA, J. E. M. S.; FURUIE, S. S. Estimativa da Concentração de Radiofármacos no Plasma Sanguíneo a Partir de Imagens Dinâmicas de PET Aplicada a Estudos Cardiológicos. Workshop of Theses and Dissertations - SIBGRAPI 2007 (October 7-10, 2007), 2007, Belo Horizonte. Proceedings of the XX Brazilian Symposium on Computer Graphics and Image Processing, 4 páginas, 2007.

• MAEDA, J. E. M. S.; FURUIE, S. S. Compartmental Modeling in Positron Emission Tomography: a model selection approach. Proceedings of PAHCE Conference 2009. Pan American Health Care Exchanges conference, workshops, and exhibits, p.29-34, 2009, México.

• Artigo a ser submetido na Revista Brasileira de Engenharia Biomédica. Previsão: abril de 2010