• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.3.2017.tde-17032017-094453
Document
Author
Full name
Pedro Luiz Coelho Rodrigues
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2016
Supervisor
Committee
Baccala, Luíz Antonio (President)
Kohn, Andre Fabio
Sameshima, Koichi
Title in Portuguese
Algoritmos para inferência de conectividade neural em potenciais evento-relacionados.
Keywords in Portuguese
Algoritmos
Potenciais evocados
Processamento de sinais
Sinais biomédicos
Abstract in Portuguese
Esta dissertação apresenta o desenvolvimento, a validação e a aplicação de algoritmos para inferência de conectividade neural em registros de EEG contendo potenciais evento-relacionados (ERP). Os sinais foram caracterizados via modelos auto-regressivos multivariados (MVAR) e empregou-se a coerência parcial direcionada (PDC) no estudo das relações de causalidade entre eles. Certas características dos ERPs, como sua transitoriedade intrínseca e as múltiplas repetições em experimentos, levaram ao desenvolvimento de novos algoritmos, como a estimação de modelos conjuntos a partir de vários segmentos de sinal e um procedimento em janela deslizante capaz de descrever a evolução temporal da estatística dos sinais de interesse. Ademais, mostrou-se a possibilidade de estender os resultados da análise assintótica da estatística da PDC ao caso multi-trecho, tornando possível o estudo de sua significância estatística sem recorrer a procedimentos de reamostragem. Os algoritmos foram validados em exemplos com neural mass models, modelos não-lineares capazes de gerar sinais com características muito semelhantes a sinais de EEG reais, e aplicados a uma base de dados pública contendo resultados de experimentos com ratos.
Title in English
Algorithms for inference of neural connectivity in event-related potentials.
Keywords in English
Auto-regressive models for segments
Event-related potentials
Neural connectivity
Partial directed coherence
Abstract in English
This dissertation presents the development, validation, and application of algorithms for inferring neural connectivity in EEG signals containing event-related potentials (ERP). The time series were described via multivariate auto-regressive models (MVAR) and partial directed coherence (PDC) was used to study causal relations between them. Certain features of the ERPs, such as their transitory behavior and the existence of multiple trials in an experiment, lead to the development of a new algorithm capable of estimating a joint model from multiple segments and a sliding-window procedure for describing the nonstationarity behavior of the signals of interest. Furthermore, the possibility of extending the asymptotic results for PDC's statistics to the multi-trial case was demonstrated, allowing, therefore, the study of its statistical significance without recurring to resampling methods. The algorithms were validated in examples with neural mass models, non-linear models capable of generating signals with features very similar to real EEG recordings, and then applied to a publicly available dataset of experiments in rats.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2017-03-21
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.