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Cássio Guimarães Lopes
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ABSTRACT

Acoustic Emission is a widely used structure health monitoring (SHM) method for
monitoring large structures with high sensitivity. When an acoustic source is active (for
example, during the expansion of a crack), it emits an elastic wave that reaches the
sensors that are spread along the structure surface. The signals sampled by these sensors
are processed and used to estimate the source position.

In this work, we study acoustic emission techniques based on the time of arrival
(TOA) of the signals received by the sensors and develop methods to improve the source
position estimate. More specifically, we derive the probability distribution of the TOA
measured by the fixed threshold method, a popular TOA estimation algorithm, as well
as an expression for its bias and consequently a TOA debiasing method. Moreover, we
derive a nearly-optimal TOA-based source position estimator. Algorithms for anisotropic
structures are also investigated.

In scenarios where multiple sources are active simultaneously, it is important to group
signals (hits) from the same source to avoid using signals emitted by other sources in the
localization algorithm. For this reason, we develop hit grouping techniques and compare
them with existing methods.

We also create a source localization algorithm that directly uses the signals received
by the sensors instead of TOAs to estimate the source position. This method takes into
account the wave propagation model and also the sparsity of the source signal in a known
dictionary to improve the localization performance using sparse reconstruction methods.

This work was partially supported by EMBRAER, which provided data of actual
acoustic emission tests in complex structures.

Keywords – Acoustic Emission, Source Localization, Signal Processing, Time of Arrival,
Structural Health Monitoring, Nondestructive Testing, Sparse Estimation, Compressive
Sensing.



RESUMO

A Emissão Acústica é uma técnica de monitoramento de saúde de estruturas (structure
health monitoring — SHM) amplamente usado na indústria, permitindo o monitoramento
de grandes superf́ıcies com alta sensitividade. Quando uma fonte acústica está ativa (por
exemplo, durante a expansão de uma trinca), uma onda elástica é emitida por ela. Esta
onda se propaga até os sensores espalhados na superf́ıcie da estrutura, que amostram os
sinais recebidos para então serem processados e usados para estimar a posição da fonte
acústica.

Neste trabalho, são estudadas técnicas de emissão acústica baseadas em tempo de
chegada (time of arrival — TOA) dos sinais recebidos pelos sensores e desenvolvidos novos
métodos com o objetivo de melhorar a estimativa da posição da trinca. Especificamente,
deriva-se a função densidade de probabilidade dos TOAs quando estes são estimado pelo
método do limiar fixo, um algoritmo popular de estimação de tempo de chegada, além de
uma expressão para seu viés e consequentemente um método de remoção de viés. Além
disso, deriva-se a expressão de um estimador de posição baseado em TOAs próximo ao
estimador ótimo. Algoritmos para estruturas anisotrópicas também são investigados.

Em cenários onde múltiplas fontes acústicas estão ativas simultaneamente, é impor-
tante agrupar sinais (hits) provenientes da mesma fonte a fim de evitar utilizar sinais
emitidos por outras fontes em algoritmos de localização. Por este motivo, neste trabalho
desenvolve-se algoritmos de agrupamento de hits, que são comparados com outros métodos
já existentes.

Também desenvolveu-se um algoritmo de localização que usa diretamente os sinais
amostrados pelos sensores ao invés dos tempos de chegada para estimar a posição da
fonte. Este método leva em consideração o modelo de propagação da onda e também o
fato de que o sinal da fonte acústica é esparso em um dicionário conhecido para melhorar
seu desempenho através de técnicas de reconstrução esparsa.

Este trabalho foi parcialmente financiado pela EMBRAER, que forneceu dados de
ensaios reais de emissão acústica realizados em estruturas complexas.

Palavras-Chave – Emissão Acústica, Localização de Fontes, Processamento de Sinais,
Tempo de Chegada, Monitoramento de Saúde de Estruturas, Ensaios Não Destrutivos,
Estimação Esparsa, Compressive Sensing.
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1 INTRODUCTION TO ACOUSTIC EMISSION

TESTING

Acoustic emission testing is a non-destructive testing method used to detect several

kinds of faults in structures such as piping, bridges and aerospace structures. Its main

advantages over other non-destructive testing methods are the high sensibility, the wide

coverage region and the possibility of monitoring structures in real time [1–6]. Elastic

waves that propagate through the medium are detected by acoustic emission sensors, and

as the signal is acquired at each sensor its time of arrival is estimated and used to localize

sources.

The objective of acoustic emission methods is to estimate the position of acoustic

sources (such as cracks or rivets under stress) that emit elastic waves. This is done by

scattering acoustic emission sensors along the structure to be monitored, and processing

the received signal. In some applications it is also important to identify the nature of the

source [7] (for example, classify the source as a growing crack, an active rivet, oscillation

due to an external actuator or noise). This work aims at improving source localization

algorithms, hence we are not interested in the source classification step.

In acoustic emission, a hit is a segment of the signal acquired by a sensor that is

identified as a wave that reached it. Hits from different sensors are grouped (using a hit

grouping algorithm) and used to localize the potential source, forming an event. A hit can

occur not only due to physical faults, but also because of oscillation caused by actuators

that stress the structure or simply noise.

Most acoustic emission methods extract the time of arrival (TOA) from the hits

that belong to an event and use them to estimate the source position [7–12]. In these

TOA-based methods, the estimated TOAs depend on the sampled signals, and the es-

timated position only depends on these estimated TOAs. On the other hand, there are

authors who use directly the sampled signals to localize the source instead of estimating

TOAs [13–16]. At first, we were interested in developing better TOA estimation methods.

Although localization algorithms based on TOAs usually assume a Gaussian distribution
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for the uncertainties in the TOA estimates [17–20], we observed that when applied to ac-

tual acoustic emission waveforms, the most popular TOA estimation method – the fixed

threshold algorithm [21] – produces estimates with a non-Gaussian distribution and large

bias in general, causing a considerable bias in the position estimate. For this reason,

we model the TOA estimate probability distribution (and bias) for the fixed threshold

method in Chapter 2, which is an extended version of the paper [22] (see Appendix),

presented at EUSIPCO 2018. The TOA probability density function (pdf) is also derived

in Chapter 2, as well as a debiasing technique.

In Chapter 3, localization techniques based on TOAs are studied on both isotropic

and anisotropic structures, as well as an alternative TOA estimation method based on the

Akaike Information Criterion (AIC) [23–25]. Then, in Chapter 4 we develop a position

estimator using the debiased TOAs, which are obtained by subtracting the bias model

(which is a deterministic variable) from TOAs (note that the variance of the estimates

remain unchanged by the debiasing stage, so the total error is reduced). This localization

method can be seen as a joint TOA and position estimation technique because TOA bias

depends on the estimated source position, and we show that our position estimator is the

optimal one when TOAs follow a Gaussian mixture distribution, which is approximately

true for high sampling frequency, as discussed in Chapter 2.

In Chapter 5, we develop a source waveform estimation and source localization method

that uses directly the signals acquired by the sensors to localize the fault, bypassing the

TOA estimation step. One of the versions of the method presented in Chapter 5 uses a

sparse estimation algorithm, which assumes the signals received by the sensors are sparse

in a known dictionary. This method is also used to create a hit grouping algorithm, which

is compared with other existing grouping methods.

In part of this work, data of real acoustic emission tests provided by Embraer is used

to test localization methods. We also use simulated data generated using a simulator that

we built as an improved version of the one developed in [26]. This simulator considers wave

propagation models, sampling, non-white noise and custom source waveform generation,

generating realistic TOAs that are used to test localization methods.

1.1 How Acoustic Emission Works

Consider we want to monitor a 2D structure such as a plate or shell using L sensors

that are fixed at different points on the structure. Before detecting and localizing sources,
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we have to learn intrinsic parameters of the structure that affect wave propagation, as the

wave speed. For this, we must create artificial sources whose positions are known, which

can be done in two ways: with a pencil-lead break (or Hsu-Nielsen test), or with an AST

(Auto Sensor Testing) test. The pencil-lead break consists in breaking a pencil lead at

45o at a known position, generating a waveform that is similar to the one generated by a

crack [27]. The AST test consists in using the sensors as actuators, one at a time, which

is possible for many piezoelectric sensors [28].

Both in the AST and pencil-lead break tests, an artificial source with a known position

emits a wave that propagates through the structure and reaches the sensors. The time the

wave reaches each sensor is estimated, and is called Time of Arrival (TOA). These TOA’s

can be used to determine the wave velocity in the medium, as detailed in Chapter 3, and

the waveforms each sensor samples can be used to determine other parameters that can be

used in more complex localization methods, as explained in Chapter 5. The advantage of

the pencil-lead break is that it is possible to create sources at any position, while the AST

only lets us emulate sources at the sensor positions. On the other hand, the AST test can

be done much faster (since it can be an automated process) and the waves it emits are

much more similar to one another than the ones emitted by the pencil-lead break test.

Furthermore, AST tests allow the generation of custom signals, unlike pencil-lead break

tests.

Once the wave velocity in the medium is known, the structure is submitted to traction.

When a crack occurs, it emits an elastic wave that propagates through the medium and

reaches the sensors at different instants. For each sensor, the time of arrival is estimated

using the sampled signals (or hits), and then converted in Time Difference of Arrival

(TDOA) by subtracting the smallest TOA (i.e. the TOA estimated by the first sensor to

detect a wave) from others. This process is illustrated in Figure 2, and an example of a

hit captured by a sensor during a tensile test as a result of the expansion of a crack is

shown in Figure 1.

Many TOA estimation algorithms are presented in the literature [25, 29–31], but the

fixed threshold method [32] is one of the most popular techniques due to its simplicity.

Suppose there are N sensors and define ri[n] as the signal sampled by the i-th sensor with

period Ts such that ri[0] corresponds to the sample at the instant t = t0. This method

estimates the TOA ti by comparing the absolute value of the signal to a fixed threshold

K:

ti = niTs + t0, (1.1)
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Figure 1: An example of a hit obtained by sampling an elastic wave emitted by a crack
during a tensile test.

Figure 2: When a crack grows, it emits an elastic wave that is captured by sensors 1, 2
and 3. The TOAs are estimated and converted into TDOAs in order to determine the
source position.
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Figure 3: TOA estimation using the fixed threshold method. The signal sampled by each
sensor is compared to a fixed threshold K, yielding a TOA estimate ti, which is in general
different than the actual time of arrival τi.

where ni is such that

ni = min
n
{n : |ri[n]| ≥ K} (1.2)

Thus, the estimated TOA is the first time the absolute value of the signal crosses the

threshold. This method only works if K is sufficiently higher than the noise level, but if it

is set too high, incoming waves will not cross the threshold, so they will not be detected.

An example of TOA estimation using the fixed threshold method is presented in Figure

3.

In Acoustic Emission Tests where different acoustic emission sources emit elastic waves

at close time instants, sensors can receive multiple hits in a small time interval. In order

to localize the source using TOA estimates, it is necessary to use hits generated by the

same source. For this reason, hits are grouped into events using a hit grouping algorithm

and TOAs that belong to the same event are used to localize a source. We propose a Hit

Grouping technique in Chapter 5 and we compare it to other hit grouping techniques.

Once the TOAs t1, t2, · · · , tN are determined and grouped into an event, the source

position is determined by solving the following system of equations, illustrated in Figure

4: 

c(t2 − t1) =
√

(x− x2)2 + (y − y2)2 −
√

(x− x1)2 + (y − y1)2

c(t3 − t1) =
√

(x− x3)2 + (y − y3)2 −
√

(x− x1)2 + (y − y1)2

...

c(t2 − t1) =
√

(x− xN)2 + (y − yN)2 −
√

(x− xN)2 + (y − yN)2

, (1.3)

where (x, y) is the tentative source position, (xk, yk) is the position of the k-th sensor and



20

Figure 4: Illustration of (1.3) for three sensors. TDOAs are equated to the distances
highlighted in green.

c is the wave velocity, a parameter that can be measured before the acoustic emission

test. System 1.3 has two unknowns (xs and ys) and N − 1 equations, thus if N > 3

the system is overdetermined (unless there are co-linear sensors). For this reason, the

position is usually estimated through the minimization of a cost function. For example,

the minimization of the cost function JTDOA(x, y) given by

JTDOA(x, y) =
N∑
i=2

[(ti − t1)− 1

c

√
(x− xi)2 + (y − yi)2]2 (1.4)

yields an estimate of the source position, where (xi, yi) is the position of the i-th sensor

and c is the wave velocity. The quality of the position estimates depends on the choice of

the cost function, and on the distribution of the uncertainty in the TOA estimates ti. The

use of cost functions to localize sources from TOA measurements is explored in Chapter

3.

Although most commercial acoustic emission systems use TOAs to estimate the source

position, it is possible to bypass the TOA measurement and estimate the position di-

rectly from the waveforms sampled at the sensors, at the cost of a higher computational

complexity and the need to store the waveforms if the localization is made offline. A

waveform-based localization technique is presented in chapter 5.
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1.1.1 Hit Segmentation

In acoustic emission tests, sensors sample continuously during the whole test, yielding

a stream of samples that contains several waves generated by multiple sources. In order to

locate them, hits must be extracted from these streams using hit segmentation methods

that are run in real time. We use the term hit to describe a segmented part of the signal

acquired by a sensor (that is, a part of the signal that was extracted by a hit segmentation

method). A well-segmented hit is contains the wave produced by only one source. If a

hit contains a wave generated by a second source, the TOA of this second wave will be

badly estimated or not estimated at all, since only one TOA is estimated per hit.

All hits from actual acoustic emission tests used in this work were extracted using the

Hit Definition Time/Hit Lockout Time (HLT/HDT) method [28], which is a popular hit

segmentation method that uses a fixed threshold K (as in the fixed threshold method for

TOA estimation) to determine the beginning of the hit, and then uses two predefined time

intervals called Hit Definition Time (HDT) and Hit Lockout Time (HLT) to determine

its ending.

Roughly, the HDT/HLT method determines the beginning of a hit at the first instant

it crosses the fixed threshold, and it ends at the instant where there is no threshold

crossing for a time interval HDT. Then, to avoid computing reflections in the next hit,

the sensor stop identifying hits for a time interval HLT.

Now, let us describe the HDT/HLT more comprehensively. Suppose we want to

segment the stream yi[n] captured by the i-th sensor. We will show how to extract the

indexes n1, n2 so that the first hit is yi[n] for n1 ≤ n ≤ n2. We consider that HDT and

HLT are measured in samples, but they can be converted into µs by multiplying them by

the sampling period.

Let d[n] be a binary sequence that assumes 1 or 0 depending on if r[n] crosses the

threshold K, that is,

d[n] =

1, |r[n]| ≥ K

0, |r[n]| < K
. (1.5)

The hit begins at the first instant where the signal crosses the threshold, thus

n1 = min
n
{n : d[n] = 1}. (1.6)

The hit does not end until one of the following conditions happen:
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1. The number of samples of the hit surpasses a predefined limit.

2. r[n] did not cross the threshold for HDT samples, that is, d[n] = d[n − 1] = · · · =

d[n− HDT + 1] = 0.

If one of the conditions above is satisfied at instant m, HLT samples are discarded to

avoid identifying reflections of the same wave as another hit, and n2 is set as

n2 = m+ HLT. (1.7)

After the hit
[
r[n1] r[n1 + 1] · · · , r[n2]

]T
is segmented and stored, the HDT/HLT al-

gorithm is executed again, but the samples at instant n ≤ n2 are not taken into account

for the new hit.

Even though the HDT/HLT technique is a naive method that cannot separate waves

that reach a sensor simultaneously, it is extremely simple and computationally efficient,

allowing it to be easily implemented in real time.

1.1.2 Anisotropic Media

In Section 1.1, we introduced the acoustic emission framework assuming that the

wave velocity is constant. However, the wave velocity can be different at each point of

the structure. When the wave speed depends only on the direction of propagation, we say

the structure presents a direction-dependent anisotropy. The advantage of using models

with direction-dependent anisotropy is that the velocity is constant along any straight

line. Therefore, if the source occurs at the position (xs, ys), the time it takes to reach the

sensor located at (xi, yi) is τi = 1
ci

√
(xs − xi)2 + (ys − yi)2, where ci is the velocity along

the line that connects the points (xs, ys) and (xi, yi).

Writing the velocity along the line y = tan(θ)x+ b (i.e. the line that forms an angle θ

with the x axis) as c(θ), the wave velocity along the line that connects (xs, ys) and (xi, yi)

is ci = c(θi), where θi is the angle this line forms with the x-axis.

A special case of direction-dependent anisotropy is the elliptical anisotropy, where

c(θ) forms an ellipse for θ ∈ [0, 2π[. This means that for some constants a, b and β, c(θ)

satisfies

c(θ) =
ab√

a2 sin2(θ − β) + b2 cos2(θ − β)
. (1.8)

This anisotropy model, illustrated in Figure 5, was employed in [26, 33] and will be used

in the following chapters.
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Figure 5: Illustration of the elliptical anisotropic model. The wave velocity c(θ) depends
on the direction of propagation θ in such a way that c(θ) describes an ellipsis in polar
coordinates. The axes represent the horizontal and vertical components of c(θ).

1.2 Wave Propagation Models for Acoustic Emission

In this work we are interested in waves propagating in planar solids, as plates or shells.

When a crack grows, an elastic wave is emitted and propagates through the medium. In

general, the waveform measured at a single point will not be a delayed version of the

waveform measured at another point, even if we disregard the energy loss. In lossless 2D

media, the energy of the whole wavefront must remain constant over time, so the energy

measured at a given point of the wavefront will decay as a function of its distance from

the source. Moreover, the velocity that each frequency propagates is not constant, so that

different frequencies reach the sensors at different instants.

Many of the signal processing techniques we present in this work assume a specific

propagation model. For this reason, in this section we discuss the main models described

in the literature.
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1.2.1 Constant Velocity Model

The Constant Velocity Model [34] is a simplified model where all frequencies propagate

with the same velocity. Even though this is in general not true, this model is often used in

applications that do not require high precision. This model can also be used for narrow-

band signals because in this case the energy of the signal is concentrated in very close

frequencies which propagate with similar velocities.

Consider an elastic wave propagating in an 1D medium (as in a wire) and assume

that all frequencies propagate with the same velocity c. The elastic displacement waves

u(t, r0) and u(t, r) measured at distances r0 and r from the source are related as

u(t, r) = u(t− τ, r0)e−α(r−r0), (1.9)

where α is the linear attenuation coefficient and

τ =
r − r0

c
(1.10)

is the time the wave takes to propagate through the distance r − r0.

In isotropic 2D media, the energy spreads as the wave propagates so that the total

energy of the wavefront decays with e−2α(r−r0). This can be used to derive the relation

between u(t, r) and u(t, r0). Defining C(r) as a circumference of radius r centered at the

source position, the relation between the energy of the wavefronts C(r) and C(r0) is∮
C(r)

u2(t, r) d` = e−2α(r−r0)

∮
C(r0)

u2(t, r0) d`. (1.11)

Since ∮
C(r)

u2(t, r) d` =

∫ π

−π
u2(t, r)r dθ = 2πru2(t, r) (1.12)

and ∮
C(r0)

u2(t, r0) d` =

∫ π

−π
u2(t, r0)r0 dθ = 2πr0u

2(t, r0), (1.13)

we have

2πru2(t, r) = 2πr0u
2(t, r0)e−2α(r−r0), (1.14)

hence

u(t, r) = u(t, r0)e−α(r−r0)

√
r0

r
. (1.15)

The term e−α(r−r0) models the energy loss, and the term
√

r0
r

models the energy spreading

due to the expansion of the wavefront. Note that the only difference between the 2D model

(1.15) and the 1D model (1.9) is the term
√

r0
r

.
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It is also possible to substitute the square root by an exponent β ≈ 1
2
, obtaining a

relaxed model:

u(t, r) = u(t, r0)e−α(r−r0)
[r0

r

]β
. (1.16)

The relaxed model can be used instead of (1.15) in cases where (1.15) does not fit well the

signals and it is not desired to use more complex models. Note that substituting β = 1
2

in (1.16) yields the original equation (1.15), and using β = 0 yields the 1D propagation

model (1.9), which considers that all attenuation is due to energy loss, modelled by the

term e−α(r−r0).

1.2.2 Power-Law Attenuation Model

In practice, different frequencies propagate with different velocities, such that the wave

deforms as it propagates throughout the medium. Employing (1.16) with a frequency-

dependent attenuation coefficient α(Ω) is a popular way to model this deformation. This

model is known as Power-Law attenuation model [35], and considers

α(Ω) = α0|Ω|γ, (1.17)

where γ ∈ [0, 2] is a constant that only depends on the material of the medium [36] and

Ω is the frequency in rad
s

.

Setting Ω0 as a fixed frequency (for example, the center frequency of a band-pass

sensor), α(Ω) can be rewritten as

α(Ω) = α(Ω0)

∣∣∣∣∣ Ω

Ω0

∣∣∣∣∣
γ

. (1.18)

Note that α0 = α(Ω0)
Ωγ0

.

In the expression of the transfer function H(Ω) of the Power-Law Attenuation Model,

the phase must be taken into account:

H(Ω) = e−α(Ω)(r−r0)e−jΩ(r−r0)/Vp(Ω)

√
r0

r
, (1.19)

where Vp(Ω) is the phase velocity for the frequency Ω in the medium. When converted

to time domain, the term e−jΩ(r−r0)/Vp(Ω) represents the time the wave component of

frequency Ω takes to propagate through the distance r−r0. For most functions Vp(Ω), the

system whose frequency response is H(Ω) is not a causal system (the impulse response

h(t) is not zero for all t < 0). It is possible to choose Vp(Ω) that makes the system
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causal [35,37], but in this work we derive a simpler approach using the Hilbert transform

and using V (Ω) = c as a constant, as described below. Even thought our approach

leads to an approximate model that is not exactly the Power-Law Attenuation Model, its

implementation is much simpler than choosing Vp(Ω) as in [35,37].

1.2.2.1 Causal approximation for the Power-Law Attenuation Model

Let us decompose the system impulse response hc(t) into the sum of an even part

he(t) and an odd part ho(t):

hc(t) = he(t) + ho(t),

where

he(t) =
hc(t) + hc(−t)

2

and

ho(t) =
hc(t)− hc(−t)

2
.

If the system is causal, hc(−t) = 0 for t > 0. Thus,he(t) = hc(t)
2
, t > 0

ho(t) = hc(t)
2
, t > 0.

(1.20)

On the other hand, if t < 0, hc(t) = 0, hencehe(t) = hc(t)
2
, t < 0

ho(t) = −hc(t)
2
, t < 0.

(1.21)

(1.20) and (1.21) can be combined into ho(t) = 1
2

sgnhe(t), thus

hc(t) = he(t) + sgn(t)he(t). (1.22)

Taking the Fourier transform at both sides of (1.22), recalling that F{sgn(t)} = −j 2
Ω

and

defining He(Ω) = F{he(t)}(Ω), we have

Hc(Ω) = He(Ω)− 1

2π

(
−j 2

Ω
∗He(Ω)

)
= He(Ω)− j

(
1

πΩ
∗He(Ω)

)
,

where ∗ denotes convolution. The convolution

(
1
πΩ
∗ He(Ω)

)
is the Hilbert Transform

(denoted by Hc{·}) of He(Ω), thus Hc(Ω) is causal if and only if

Hc(Ω) = He(Ω)− jH{He(Ω)}. (1.23)
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In our causal approximation (used in Chapter 5), we first define a causal system whose

frequency response is Hc(Ω) as in (1.23) using

He(Ω) = e−α(Ω)(r−r0)

√
r0

r
, (1.24)

so

H0(Ω) =
(
e−α(Ω)(r−r0) − jH{e−α(Ω)(r−r0)}

)√r0

r
. (1.25)

This causal system has no delay: If an impulse is applied to the system, an output

is measured instantaneously. However, the wave must take a time r−r0
c

to propagate

through the distance r − r0. For this reason, we add a delay to H0(Ω) by multiplying it

by e−jΩ
r−r0
c , obtaining the frequency response H(Ω) of our causal approximation of the

Power-Law Attenuation Model:

H(Ω) =
(
e−α(Ω)(r−r0) − jH{e−α(Ω)(r−r0)}

)√r0

r
e−jΩ(r−r0)/c. (1.26)

Note that in our approximation for the Power-Law Attenuation Model, the phase of H(Ω)

is not linear, so different frequencies propagate with different velocities.

1.2.3 Lossless isotropic model

It is possible to show that the equation that describes the wave propagation in lossless

linear elastic media is [38]

µ∇2u + (µ+ λ)∇(∇ · u) + F = ρ
∂2u

∂t2
, (1.27)

where λ is the Lamé parameter, µ is the Shear Modulus (or second Lamé parameter),

u is the displacement vector, ρ is the density of the medium and F is the external force

field. The symbol ∇φ is the gradient of the scalar field φ, and the symbols ∇·u and ∇2u

are respectively the divergent and Laplacian of vector u =


u1

u2

u3

. These operators are
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defined as

∇φ =


∂φ
∂x

∂φ
∂y

∂φ
∂z

 , (1.28)

∇ · u =
∂u1

∂x
+
∂u2

∂y
+
∂u3

∂z
, (1.29)

∇2u =


∇2u1

∇2u2

∇2u3

 =


∂2u1
∂x2

+ ∂2u1
∂y2

+ ∂2u1
∂z2

∂2u2
∂x2

+ ∂2u2
∂y2

+ ∂2u2
∂z2

∂2u3
∂x2

+ ∂2u3
∂y2

+ ∂2u3
∂z2

 . (1.30)

Lamé parameters can be written as a function of the Young Modulus E and the Poisson

Coefficient ν, which are usually found in tables for each material, as follows

λ =
ν

(1 + ν)(1− 2ν)
E, (1.31)

µ =
E

2(1 + ν)
. (1.32)

Our objective here is to solve (1.27) for lossless isotropic plates to obtain a propagation

model where distinct frequencies propagate with different velocities, unlike the Constant

Velocity Model (given by (1.15)).

We can apply the Helmholtz Decomposition in u and F, decomposing them as sum

of divergent-free and curl-free fields:

u = ∇Φ +∇×Ψ, (1.33)

F = ∇ΦF +∇×ΨF . (1.34)

The scalar field Φ is named Compression Potential, and the vector field Ψ is called Shear

Potential. The symbol ∇×Ψ is the curl of Ψ =


Ψ1

Ψ2

Ψ3

, defined as

∇×Ψ =


∂Ψ3

∂y
− ∂Ψ2

∂z

∂Ψ1

∂z
− ∂Ψ3

∂x

∂Ψ2

∂x
− ∂Ψ1

∂y

 . (1.35)

Substituting the decompositions at (1.27) and using the vector calculus properties
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∇ · (∇×Ψ) = 0, ∇2(∇Φ) = ∇(∇2Φ) and ∇2(∇×Ψ) = ∇× (∇2Ψ), we obtain

µ∇(∇2Φ)+µ∇×(∇2Ψ)+(µ+λ)∇(∇2Φ)+∇ΦF +∇×ΨF = ρ
∂2

∂t2
(∇Φ+∇×Ψ), (1.36)

which can be rearranged into a sum of a curl-free and a divergence-free field:

∇

(
(2µ+ λ)∇2Φ + ΦF − ρ

∂2Φ

∂t2

)
+∇×

(
µ∇2Ψ + ΨF − ρ

∂2Ψ

∂t2

)
= 0. (1.37)

The curl-free and the divergence-free components of (1.37) generate two independent wave

equations:

∇2Φ− 1

c2
α

∂2Φ

∂t2
= − ΦF

λ+ 2µ
cα =

√
λ+ 2µ

ρ
, (1.38)

∇2Ψ− 1

c2
β

∂2Ψ

∂t2
= −ΨF

µ
cβ =

√
µ

ρ
. (1.39)

The term (µ+λ)∇(∇·u) influences only the compression component of u, and does not

affect its shear component. As both equations are independent, two independent waves

with different velocities are generated – The compressional wave (also called ‘P-wave’),

given by (1.38), and the shear wave (or ‘S-wave’), given by (1.39). The compressional

wave has higher velocity than the shear wave, but only the shear wave oscillates in the

transverse axis (orthogonal to the surface of the structure). It is important to talk about

compressional and shear waves because many sensors only measure deformations that are

orthogonal to the surface of the structure, thus only the shear wave can be sensed by these

sensors. In practice, sensors may measure compressional waves with small gain, implying

that compressional waves are converted in signals with low amplitude.

Writing Lamé parameters in terms of E and ν as in (1.31), the ratio between the

S-wave and P-wave velocities depends only on the Poisson coefficient:

cα
cβ

=

√
2− 2ν

1− 2ν

For example, the Poisson coefficient of a 2024-T3 alluminium alloy is ν = 0.33 [39], thus

cα = 2cβ. Thus, compressional waves travel at higher velocity than shear waves. For this

reason, when a crack grows, a small amplitude compressional wave may be captured by

sensors before the shear wave arrives.



1.2.4 Fractional Zener Model

The Fractional Zener Model [40] is a much more complex model than those presented

before, but the waveform deformation described by this model tends to be closer to reality.

In this model, the displacement u(t) in a fixed position is the solution of a linear differential

equation that includes fractional derivatives:

∇2u− 1

c2

∂2u

∂t2
+ τaσ

∂a

∂ta
∇2u− τ bε

c2

∂b+2

∂tb+2
u, (1.40)

where c is a constant that can be interpreted as the wave speed when the constants τε

and τσ are equal to zero, and a and b are constants. In this model, each frequency has its

own velocity and attenuation. For the model to be physically consistent, we must have

a = b, but a relaxed model can be obtained using a 6= b.

Note that despite the fractional derivatives, the Fractional Zener Model is still linear.

Nevertheless, its main disadvantage is that it depends on many parameters that are not

straightforward to estimate. For this reason, this model is not employed in this work.

Concluding remarks

In this chapter, we presented the framework of acoustic emission. The fixed threshold

algorithm, which is a popular method for estimating TOAs in real time, was introduced.

In order to obtain an estimate from the source position, TOAs from at least three sensors

must be used, and if more than three sensors are available it is possible to minimize a

cost function to generate a position estimate. If it is desired to store the waveform or

extract parameters from it (as the energy), a hit segmentation algorithm as the HDT/HLT

method must be used to define the instants of the first and last samples of the hit.

Propagation models of elastic waves were also presented. We introduced the elliptical

anisotropic model, which considers that the velocity of the wave c(θ) depends on the

angle of propagation such that c(θ) describes an ellipse. The Constant Velocity Model is

a simple model that considers that all frequencies of the wave propagate with the same

velocity, hence each hit is an attenuated and shifted version of another hit. On the other

hand, the Power-Law model assumes that higher frequencies attenuate more than lower

frequencies, deforming the wave as it propagates. A causal implementation of the Power-

Law model is not straightforward, thus in this work we employ a causal approximation

using the Hilbert transform.
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2 MODELING TIME OF ARRIVAL

PROBABILITY DISTRIBUTION AND TDOA

BIAS

In acoustic emission tests, the time of arrival estimates are subjected to uncertainties

caused by signal distortion and noise. While some authors evaluate and compare source

localization algorithms using time of arrival estimates obtained by applying the fixed

threshold method to simulated or real signals [16,41–43], others assume the time of arrival

is Gaussian-distributed instead of processing the received signals [17–20]. To the best of

our knowledge, the article we published [22] was the first one to calculate the actual time

of arrival distribution expression. Knowing the time of arrival probability distribution

function (pdf) expression would allow the development of new statistical source position

estimators that may have better performance than traditional source localization methods.

For this reason, in this chapter we derive the time of arrival pdf considering noise, sampling

and waveform distortion, and show it is not Gaussian distributed. We also deduce an

approximate and simplified expression for the pdf that depends on fewer parameters,

being easier to apply in practical situations than the exact distribution.

The fixed threshold method is a popular detection algorithm in which the time of

arrival is estimated as the first time the received signal absolute value crosses a fixed

threshold [42]. However, sampling rate, attenuation and envelope modulation due to sen-

sor frequency response can add bias to the estimated Time Difference of Arrival (TDOA)

and consequently to the estimated position, since the position is estimated using TDOA

measurements. It is interesting to reduce TDOA bias because it may lead to an esti-

mated source position bias reduction, and thus to a smaller localization error. In [20], a

bias reducing algorithm for TDOA-based localization is developed, but TDOA itself was

assumed unbiased and Gaussian distributed. For this reason, we derive an approximate

model for the TDOA bias for the fixed threshold algorithm considering our more realistic

time of arrival model, as well as lower and upper bounds for it.
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Figure 6: The elastic wave generated by the source at t = 0 reaches the sensors at different
instants and with different amplitudes.

2.1 Time of arrival probability distribution

The objective of this section is to derive an expression for the probability distribution

of the time of arrival estimates considering they were obtained using a fixed threshold. The

threshold value is considered to be set high enough so that the noise has approximately

zero probability of crossing it.

2.1.1 Signal Model

We consider an acoustic source located at a deterministic position X = (xs, ys) emit-

ting an elastic wave at t = 0 that propagates throughout the 2D isotropic material with

velocity c. Let us(t) and ui(t) be the elastic displacement respectively at the source

position and at the i-th sensor position Xi = (xi, yi). We adopt the constant velocity

attenuation model presented in Chapter 1 and used in [34]:

ui(t) = aius(t− τi), (2.1)

where

ai =
e−α‖Xs−Xi‖

‖Xs −Xi‖
1
2

. (2.2)

The constant α is the attenuation coefficient and τi = 1
c
‖Xs −Xi‖ is the time the wave

takes to propagate from the source to the i-th sensor, as illustrated in Figure 6. Assuming

all sensors have the same frequency response h(t), the electrical signal ri(t) sensed by the
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Figure 7: Equivalence between sampling the elastic wave and sampling the shifted equiv-
alent source signal.

i-th sensor in a noiseless scenario is

ri(t) = [h ∗ ui](t) = ai[h ∗ us](t− τi) = aiψi(t), (2.3)

where ψi(t) = [h∗us](t−τi). Define the normalized received signal as ψ(t−τi) = ψi(t)
maxt ψi(t)

and denote A = maxt ψ(t) as the equivalent source amplitude. This way, ψi(t) = Aψ(t−
τi), and the noiseless wave received by sensor i is

ri(t) = aiAψ(t− τi). (2.4)

Assuming that the signal at each sensor is sampled at the instants t = nT + t0, where

n is a non-negative integer, T = 1
F

is the sampling interval and t0 is the initial sample

instant, the signal sampled by sensor i and corrupted by a white noise wi[n] is

ri[n] = aiAψ(nT + t0 − τi) + wi[n]. (2.5)

We call the term Aψ(t) the equivalent source signal. It allows us to ignore the fre-

quency response of the sensors and the elastic deformations, making it possible to work

directly with the signals sampled at the sensors. The equivalent source signal is an auxil-

iary signal that does not exist physically, but it generates the waveforms ri(t) received by

the sensors when it propagates from the source position to the sensors as shown in (2.4).

The equivalence between sampling the elastic waves and sampling directly the attenuated

and shifted equivalent source waveform is presented as a diagram in Figure 7.

Throughout this chapter, we assume that the noise probability density function fW (w)

is symmetric, i.e. fW (w) = fW (−w), or equivalently, FW (w) = 1−FW (−w), where FW (w)

is the noise cumulative distribution function (cdf). We also assume that t0 is uniformly
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distributed in [0, T ]. In addition, we consider the time of arrival was estimated using the

fixed threshold method. This algorithm estimates the time of arrival at the i-th sensor as

the smallest instant such that the |ri[n]| is greater than the threshold K.

2.1.2 Time of Arrival Probability Distribution

We first calculate the pdf of the time of arrival ti given the initial sample time t0. The

TOA estimated by the fixed threshold method is the first instant where |ri[n]| crosses the

fixed threshold K.

Let Φi(t) be the probability that the absolute value of a sample acquired at instant

t be less than the threshold. Note that Φi(t) can only be calculated at the instants

t = nT + t0, where n is a non-negative integer. Denoting P{A} as the probability of the

event A, Φi(t) can be expressed in terms of the noise cdf FW (w):

Φi(t) = P{|ri[n]| < K}, n =
t− t0
T

= P{−K < ri[n] < K}

= P{−K < aiAψ(t− τi) + wi[n] < K}

= P{−K − aiAψ(t− τi) < wi[n] < K − aiAψ(t− τi)}

= FW (K − aiAψ(t− τi))− FW (−K − aiAψ(t− τi)).

(2.6)

As the threshold is assumed to be much larger than the noise standard deviation, we

can approximate FW (K) and 1 − FW (−K) to one (or, equivalently, FW (−K) to zero).

This means in the case where aiAψ(t − τi) < 0, FW (K − aiAψ(t − τi)) ≈ 1 because

K− aiAψ(t− τi) ≥ K, and FW (−K− aiAψ(t− τi)) ≈ 0 is approximately zero in the case

where aiAψ(t− τi) > 0 because −K − aiAψ(t− τi) ≤ −K.

Assuming symmetrical noise, that is, fW (w) = fW (−w), or equivalently FW (w) =

1− FW (−w), leads to a simplified approximation for Φi(t):

Φi(t) ≈ FW (K − |aiAΨ(t− τi)|). (2.7)

Now, we use Φi(t) to derive an expression for the TOA distribution given t0. The

probability of the TOA be estimated at instant t = nT+t0 is the probability of |ri[n]| ≥ K

and |ri[k]| < K for all k < n. Hence, the probability mass function (pmf) of the TOA ti

given t0 is given by

P{ti = t|t0} = (1− Φi(t))
∞∏
k=1

Φi(t− kT ), (2.8)
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where (1−Φi(t)) is the probability of |ri[n]| ≥ K and
∏∞

k=1 Φi(t− kT ) is the probability

of |ri[k]| < K for all k < n (recall that we assumed the noise w[n] is independent and

identically distributed). It is worth noting that the variable t in (2.8) is a discrete variable

because it represents the instants where a sampling occurs (thus t = nT + t0, where n is

an integer).

Taking into account that ri(t) = |wi[n]| < K for t < τi, the upper limit in the product

can be substituted by b(t − τi)/T c since Φi(t − kT ) = 1 for k > (t − τi)/T (recall that

Φi(t) = 1 for t < 0 because the wave is emitted at instant t = 0).

The time of arrival pdf fti(t) can be calculated using P{ti = t|t0} and the initial

sample instant pdf ft0(t). The joint distribution of TOA ti and the initial sample instant

t0 is obtained through the Bayes Rule:

fti,t0(t, t0) = fti|t0(t|t0)ft0(t0) =

(
+∞∑

k=−∞

P{ti = t|t0}δ(t− (kT + t0))

)
ft0(t0), (2.9)

where δ(·) is the Dirac delta function. Thus, the TOA pdf is obtained by integrating the

joint pdf fti,t0(t, t0) with respect to t0:

fti(t) =

∫ +∞

−∞
fti,t0(t, t0) dt0 =

+∞∑
k=−∞

P{ti = t|t0 = t− kT}ft0(t− kT ). (2.10)

As ft0(t−kT ) = 0 for t−kT /∈ [0, T ], all the elements of the sum are equal to zero, except

for k such that 0 ≤ t − kT ≤ T , which is only possible for k = bFtc. Substituting the

pmf in (2.8) into (2.10) yields

fti(t) =
1

T
[1− Φi(t)]

b(t−τi)/T c∏
k=1

Φi(t− kT ). (2.11)

We compare fti(t) from (2.11) with the experimental distribution obtained in simula-

tion in section 2.3.

2.1.3 Simplified Case

Equation (2.11) is a complicated expression that describes the time of arrival pdf

in terms of the noise cdf for any signal and for any symmetric noise distribution, and

does not lead to closed-form solutions in general. A simple expression can be obtained

assuming the noise level is low enough so that ψ(t) can be approximated by a first-order

Taylor polynomial centered at t̄i, where t̄i is the noiseless time of arrival at the i-th sensor
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(i.e., disregarding the effect of noise, but not the errors due to sampling and waveform

attenuation. See Figure 8). Note that this hypothesis is not true if t̄i − τi occurs near a

maximum of |ψ(t)|.

Let ψ′(t) = dψ
dt

and consider the first-order Taylor approximation for the signal ψ(t)

centered at t̄i − τi:
ψ(t) ≈ ψ(t̄i − τi) + ψ′(t̄i − τi)(t− t̄i + τi). (2.12)

Assuming ψ′(t̄i−τi) 6= 0 and defining the constants bi = ψ′(t̄i−τi) and τ̄i = t̄i−τi− ψ(t̄i−τi)
ψ′(t̄i−τi) ,

this expression can be rewritten as

ψ(t) ≈ bi(t− τ̄i). (2.13)

We also need to approximate FW (w) in order to simplify the product in (2.11). FW (w)

may be approximated as the first order Taylor polynomial centered at w = 0, if w is

assumed to be bounded on an interval to guarantee that 0 ≤ FW (w) ≤ 1:

FW (w) ≈


0, w < − 1

2fW (0)
.

1
2

+ wfW (0), − 1
2fW (0)

≤ w ≤ 1
2fW (0)

.

1, w > 1
2fW (0)

.

(2.14)

Using this approximation for FW (w) is equivalent to approximating the noise distribution

as a uniform distribution bounded between −∆ and +∆, with ∆ = 1
2fW (0)

. Substituting

these approximations in (2.11) and defining the constants t−i = τ̄i + τi + K−∆
|Abi| and t+i =

τ̄i + τi + K+∆
|Abi| , we have

fti(t) ≈
Bi(t)

T

b(t−t−i )/T c∏
k=1

|bi|
2∆

(t+i − t+ kT ), (2.15)

where Bi(t) is defined by

Bi(t) =


bi(t−t−i )

2∆
, t−i ≤ t ≤ t+i .

1, t+i < t < t+i + T.

0, t < t−i or t ≥ t+i + T.

(2.16)

Applying the arithmetic progression product formula [44] to (2.15), we obtain

fti(t) ≈
Bi(t)

T

[
biT

2∆

]N(t)
Γ(1 + (t+i − t)/T +N(t))

Γ(1 + (t+i − t)/T )
, (2.17)
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where N(t) = b(t−t−i )/T c. This expression can be further simplified assuming the sample

rate is high enough so that N(t) ≈ (t− t−i )/T , resulting in

fti(t) ≈
Bi(t)

T

[
biT

2∆

](t−t−i )/T
Γ(1 + (t+i − t−i )/T )

Γ(1 + (t+i − t)/T )
. (2.18)

Unlike the exact time of arrival pdf expression (2.11), this approximated pdf does not

depend on the entire source waveform, but only on the noiseless time of arrival and the

source waveform derivative at that point. This closed-form approximation may simplify

the development of better location estimators.

2.2 Time Difference of Arrival Bias

In the previous section an exact pdf for the estimated time of arrival was derived.

We are also interested in obtaining the bias in the TDOA, which is more important than

the time of arrival bias when the localization algorithm is based on the TDOA, since two

time of arrival estimates with the same bias would produce an unbiased TDOA.

We can obtain the TDOA pdf using the time of arrival pdf expression in (2.11) or

even its approximation in (2.18). However, this approach does not lead to a closed-form

expression, so in the remaining of this section we concentrate on finding a closed-form

approximation for TDOA bias.

The signal ψ(t) is modeled here as an envelope m(t) that is increasing and thus

invertible in the interval [0, tmax] and whose maximum is at t = tmax, modulated by a

cosine whose frequency f0 represents the sensor resonance frequency. Since the time of

arrival has a low probability to be after the peak of the waveform, we do not make any

restriction on ψ(t) for t > tmax.

ψ(t) = m(t) cos(2πf0t), 0 ≤ t ≤ tmax (2.19)

The time τi it takes the wave to reach the sensor can be seen as the optimal value for ti.

The measured time of arrival deviation from τi can be approximately decomposed into a

sum of errors caused by different factors:

ti − τi ≈ εthr + εosc + εsamp + εnoise. (2.20)

The factor εthr = m−1( K
Aai

) is the time the wave envelope m(t) takes to reach the threshold

since the wave has arrived, εosc is the time the signal ψ(t) takes to cross the threshold
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Figure 8: Illustration of (2.20) in a noiseless case

after m(t) crosses it, εsamp is the time the sampled signal takes to cross the threshold after

the analog signal crosses it, and εnoise is the time of arrival deviation cause by sampled

noise. Figure 8 illustrates (2.20) in a noiseless case.

Consider the noise level is small enough so that ψ(t) can be approximated by its

tangent line at t = t̄i − τi as in equation (2.12). As |Aaiψ(t̄i − τi)| = K, approximating

the time of arrival deviation caused by sampled noise as the one caused by a zero-mean

continuous-time noise wi(t) leads to

Aaiψ
′(t̄i − τi)(ti − t̄i) + wi(t) = 0. (2.21)

Applying the expected value into both sides of the equation we obtain E{ti} = t̄i and

conclude that E{εnoise} ≈ 0.

Assuming the sampling rate is higher enough than f0 so that the first time |ψ(t)|
crosses the threshold it has a high probability to stay above it for at least one sampling

period, the deviation εsamp, which is always positive, will have a high probability to be

less than T .

Since m(t) is an increasing function in [0, tmax], the deviation εosc, which is also always

positive, is limited by half of the oscillation period because in the worst case the signal
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will be detected in the next period of |ψ(t)|. Hence, under the assumed hypothesis, the

measured time of arrival deviation from τi is bounded by

m−1

(
K

Aai

)
≤ ti − τi ≤ T +

1

2f0

+m−1

(
K

Aai

)
. (2.22)

The TDOA bias bounds can then be calculated using (2.22):

−T − 1

2f0

+ ∆εthr ≤ ∆t−∆topt ≤ T +
1

2f0

+ ∆εthr, (2.23)

where ∆topt = τ2 − τ1 is the optimal TDOA, ∆t = t2 − t1 is the estimated TDOA and

∆εthr is the time of arrival deviation due to the amplitude difference between received

waves at different sources, given by

∆εthr = m−1

(
K

Aa2

)
−m−1

(
K

Aa1

)
. (2.24)

If the attenuation factors a1 and a2 were the same, ∆εthr would be zero. This would only

happen if the source were equally distant from the sensors. Note that ai and hence ∆εthr

depend on the source position.

The average of the lower and upper TDOA bias bounds, equal to ∆εthr, can be used

as an estimator for the TDOA bias. This estimator should show good performance if

∆εthr � T + 1
2f0

.

2.3 Simulations

2.3.1 Time of arrival probability distribution

In order to verify if (2.11) successfully represents the time of arrival distribution for

a generic signal and to assess the approximation in (2.18), a noisy signal was generated

and detected by one sensor in simulation. The signal ψ(t) was modeled as in (2.19), and

the envelope was chosen as a hanning window m(t) = sin(πt
L

), 0 ≤ t ≤ L, as done in [42].

We used the following parameters: f0 = 150kHz (a common resonance frequency

for Acoustic Emission sensors), L = 50µs, Aai = 0.04, sampling frequency F = 1MHz,

threshold K = 0.0178 (equivalent to a 45dB threshold when the reference is 100 µV) and

τi = 100µs (equivalent to a source whose distance from the sensor is 0.5m if c = 5000m
s
).

Two simulations with 105 realizations were run with different noise levels, aiming to verify

that the approximation in (2.18) only holds for low level noise. For both simulations the
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Figure 9: Time of arrival (TOA) pdf with low noise level and sampling interval Ts = 1µs.

noise w[n] is Gaussian distributed with zero mean, and its standard deviation is 10−3 in

the first simulation and 5× 10−3 in the second.

Figures 9 and 10 show the comparison between the distribution of the times of arrival

obtained in the simulation, the theoretical time of arrival pdf (2.11) and the approximate

one (2.18). These figures also show the value of t̄i, the time of arrival that would be

estimated if there was no noise.

The simulated time of arrival distribution is not Gaussian shaped and coincides with

the theoretical one. In both cases the noiseless time of arrival (that is, the TOA that

would be measured if the waveform were not corrupted by noise) does not coincide with

the time of arrival expected value. We conclude that the presence of a zero-mean noise

modifies the time of arrival expected value. In the scenario where the noise variance

is low (figure 9), the approximate pdf from (2.18) is a good estimate of the theoretical

one. However, when the noise variance is high (figure 10), the approximate pdf only fits

the main lobe of the theoretical one. When the noise level is high, the threshold can be

triggered in different oscillation periods, creating secondary lobes in the time of arrival

pdf spaced by half of the oscillation period (in this case, 1
2f0

= 3.33µs).
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Figure 10: Time of arrival (TOA) pdf with high noise level and sampling interval Ts = 1µs.
The lobes are caused by the oscillation of the waveform, and the distance between adjacent
lobes is 1

2f0
= 3.33µs.
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Figure 11: Time of arrival (TOA) pdf with high noise level and sampling interval Ts =
0.1µs.

For small noise (Figure 9), most of the TOA uncertainty seems to be due to sampling

because the ”width” of the pdf is slightly larger than 1µs, the sampling period. In order to

confirm this insight, the simulation for low noise level was repeated using a sampling rate

of 10 MHz instead of 1 MHz. and we show the results of the simulation for high sampling

rate in Figure 11. As suspected, the variance of the pdf was reduced when sampling rate

was increased. Moreover, the shape of the TOA pdf is closer to a Gaussian distribution

for high sampling rate than for lower sampling rate, and the bias caused by the noise

(which is the difference between the mean TOA and the noiseless TOA) is lower for high

sampling rate.

2.3.2 TDOA bias

Another simulation was performed aiming to verify if the TDOA bias theoretical upper

and lower bounds described in (2.23) really limit the bias, as well as assess the performance

of the proposed TDOA bias estimator performance. Two sensors were placed in the x-axis

at x = 0m and x = 1m, and the source position was swept from x = 0.01m to x = 0.99m

along the x-axis. The attenuation coefficient was chosen as α = 2 m−1, and the noise is
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Figure 12: Simulated and estimated time difference of arrival and its theoretical bounds
for different source positions

Gaussian-distributed with standard deviation σ = 10−3. The rest of the parameters are

the same as in the previous simulation.

Figure 12 shows these simulation results. The TDOA bias obtained in the simulation

respects the theoretical bounds deduced in (2.23). Moreover, the theoretical bias in this

scenario is T+ 1
2f0

+∆εthr = 4.33µs+∆εthr, but the obtained bias is much larger than 4.33µs

in general, showing that most of the bias is due to ∆εthr, i.e. caused by the different signal

amplitudes received by each sensor on account of the difference of attenuation. That is why

the TDOA bias estimator fits well the obtained TDOA bias curve. Another interesting

observation is that the bias is minimum at x = 0.5m, when the wave propagation path

length is the same for both sensors, resulting in no attenuation difference.

2.4 Debiasing

In the end, our objective is to create better source position estimators, which can

also be done by making more precise TDOA estimations. Therefore, since we have a bias

model, it would be helpful to remove the bias of the TDOA estimates without changing
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their variance, but both our exact and approximate bias models require the knowledge of

the source position. This problem can be worked around if our source position estimate

is the minimum of a cost function J(x, y; u) = g(x, y,u), where u is the vector of TDOA

measurements. Let b(x, y) = ∆εthr be the bias model when the source position is (x, y).

Then minimizing the cost function

Jdebiased(x, y; u) = J(x, y; u− b(x, y)) (2.25)

offers a debiased source position estimator if the model b(x, y) is correct, although there

will still be a small bias due to the variance of TOA estimates (caused by nonlinearities

of the position estimator) and to the fact that ∆εthr is only an approximation to the

expected value of the TDOA estimates.

2.4.1 Debiasing TDOAs for the constant velocity model

As explained in the last section, the expression for ∆εthr is given by (2.24) if the

constant velocity model is taken into account. Note that if we had K
Aa2

= K
Aa1

, ∆εthr

would be zero for any envelope m(t) (thus the TDOA bias would be approximately zero).

Assume it is possible to recalculate TOAs in real time. We denote r1[n], · · · , rN [n]

as the received hits (that is, the already segmented signals containing the wave captured

by each sensor. See Section 1.1.1 from Chapter 1 for more information about how hits

are segmented) and s1[n], · · · , sN [n] the non-attenuated hits (such that r`[n] = a`s`[n]).

Define the modified hits

r̃k[n] =
1
N

∑N
`=1 E`

Ek
rk[n], E` =

1

M

√
1

N

∑
n

r2
k[n] (2.26)

where E` is the RMSE of the hit, that can be measured using either the whole hit, or a

truncated version of the hit to avoid picking noise and reflections, and M is the length of

the truncated hit. Using truncated hits is interesting if hits contain reflected waves because

the energy of the reflections do not depend on the attenuation factors a`. Remember that

a` is not known because it depends on the source position, which is unknown. Since

r`[n] = a`s`[n], E` can be written as

E` = a`

√
1

N

∑
n

s`[n]2. (2.27)

Since s1[n], s2[n], · · · , sL[n] are all a displaced version of s[n], they have the same RMSE,



45

that is denoted here as E0. Hence, E` = a`E0, thus

r̃k[n] =
1
N

∑N
`=1 a`E0

akE0

rk[n] =
1
N

∑N
`=1 a`

ak
rk[n]. (2.28)

Substituting rk[n] = aksk[n] in (2.28), we obtain

r̃k[n] = sk[n]
1

N

N∑
`=1

a` (2.29)

This way, we obtained modified signals r̃1[n], r̃2[n], · · · , r̃N [n] that are delayed versions

of each other without the knowledge of the attenuation factors a1, · · · , aN . If the threshold

is obtained using these modified signals, we would have ∆εthr = 0 because there is no

difference in attenuation between signals, thus the TDOA bias would be approximately

zero. Note that even though the waveform is required to compute the modified hits,

the operations needed to calculate them have very low complexity, and can be easily

implemented in real time. Hence, the waveform does not need to be stored to generate

debiased TOAs.

Note that applying the fixed threshold method to obtain TOAs from the modified

hits is equivalent to applying a different threshold to each original hit that depends on its

energy: Defining βk =
∑N
`=1 E`
Ek

such that r̃k[n] = βkrk[n], the TOA estimated by comparing

r̃k[n] with a fixed threshold K̃, which is different from the original threshold K, is

min
n
{n : |r̃i[n]| ≥ K} = min

n
{n : βk|ri[n]| ≥ K} = min

n
{n : |ri[n]| ≥ K

βk
}. (2.30)

It is important to emphasize that our debiasing method only works in structures where

waves propagate according to the constant velocity model, and it will not be effective if

hits contain reflections. In this case, hits must be windowed to avoid adding the energy

of reflections into the energy of the hit.

Our proposed debiasing method is tested in Section 4.4.2.4 from Chapter 4.

2.5 Generalizing TOA pdf for non-white noise

In very noisy acoustic emission tests, bandpass filters can be applied to increase the

SNR and increase the accuracy of hit detection and TOA estimation methods. If the

noisy waveform is filtered, the resulting signal becomes corrupted by a non-white noise.

Furthermore, nonlinear denoising procedures as sparsity-based denoising (using whether a

wavelet dictionary or a learned dictionary) also yield non-white noise. For this reason, in
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this section we generalized the expression of TOA pdf derived in this chapter to non-white

noise. However, in order to avoid very large expressions, we consider the initial sampling

instant is t0 = 0. Generalizing the obtained results to any t0 6= 0 is straightforward.

Denote the signal sampled by sensor k by

rk[n] = sk[n] + wk[n], (2.31)

where sk[n] is the delayed and attenuated wave and wk[n] is the noise. Define the vector

w[n] as

w[n] =
[
wk[1] wk[2] · · · wk[n]

]T
. (2.32)

and the interval Im as

Im =]−∞, K − |sk[m]|]. (2.33)

We omit the index k representing the sensor from w[n] and Im to simplify the notation,

since the TOAs measured by different sensors are independent.

The fixed threshold method estimates the TOA as the first instant where the signal

crosses the threshold. Thus, denoting as p[n] the probability of the estimated TOA being

the instant n, we have

p[n] = P{|rk[m]| < K ∀m < n and |rk[n]| ≥ K}. (2.34)

Assuming the noise is low enough so that it cannot trigger the threshold (i.e. P{|wk[m]| ≥
K} ≈ 0 ∀m), the sign of rk[m] is determined by sk[m], thus

|rk[m]| = |sk[m] + wk[m]| ≈ (sk[m] + wk[m])sgn(sk[m])

= |sk[m]|+ wk[m] sgn(sk[m]). (2.35)

Recalling that we assumed that the noise pdf is even (thus P{wk[m] ∈ A} = P{−wk[m] ∈
A} for any set A), from (2.35) we obtain

P{|rk[m]| < K} = P{wk[m] sgn(sk[m]) < K−|sk[m]|} = P{wk[m] < K−|sk[m]|}. (2.36)
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Denoting the joint pdf of w[n] as fw[n](w), we can write p[n] as a multiple integral:

p[n] =

∫
I0×···×In−1×Icn

fw[n](w0, w1, · · · , wn) dw0 · · · dwn

=

∫ +∞

−∞

∫
I0×···×In−1

fw[n](w0, w1, · · · , wn) dw0 · · · dwn

−
∫
I0×···×In−1×In

fw[n](w0, w1, · · · , wn) dw0 · · · dwn−1. (2.37)

Denoting the cumulative distribution of w[n] as Fw[n](w) and the upper bounds of I1, · · · , In
as q1, · · · , qn, we obtain from (2.37) the following expression for p[n]:

p[n] = Fw[n−1](q0, q1, · · · , qn−1)− Fw[n](q0, q1, · · · , qn), qi = K − |sk[i]|. (2.38)

2.5.1 TOA pmf for white noise

If the noise is white, (2.38) must be equivalent to the expression of the TOA pmf (2.8)

derived before. In this case, the cumulative distribution Fw[n](w[n]) can be written as:

Fw[n](w[n]) =
n∏
`=0

FW (w[`]). (2.39)

Substituting (2.39) in the expression of p[n] (2.38), we obtain

p[n] = (1− FW (K − |sk[n]|))
n−1∏
`=0

FW (K − |sk[`]|), (2.40)

which is the same equation as (2.8).

2.6 Approximating TOA pdf as Gaussian Mixture

Distribution

Along this chapter, we have shown that TOA is not Gaussian-distributed as many au-

thors consider. However, Figure 11 indicates that under low noise level and high sampling

rate, the TOA pdf may be approximated as a Gaussian distribution. Moreover, Figure 10

indicates that if the noise level is high, the TOA pdf may be approximated as a mixture

of Gaussian distributions. In Chapter 4 we assume that the TOA pmf (given by (2.40)) is

approximately a Gaussian distribution or a Gaussian Mixture to derive a nearly-optimal

source position estimator. Hence, in this section we verify if these hypotheses are true for

high sampling rate.
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We ran a simulation in similar conditions as in Figures 9 and 10, but we considered

that the initial sampling instant is t0 = 0 (so that TOA distribution is a probability mass

function) and we used Ts = 0.1µs (high sampling rate).

Figures 13 and 14 contain the TOA pmf and CDF for a hit with high and low SNR

respectively. For each hit, the pmf p[n] is converted into a pdf p(t) by adding a uniformly-

distributed uncertainty U(−Ts/2, Ts/2) to the TOAs (this is equivalent to assuming that

t0 ∼ U(−Ts/2, Ts/2)), resulting in a pdf given by the convolution of p[n] and a uniform

distribution:

p(t) =

(
+∞∑

n=−∞

p[n]δ(t− nTs)

)
∗ 1

Ts
1[−Ts

2
,Ts
2

](t) =
1

Ts

+∞∑
n=−∞

p[n]1[nTs−Ts2 ,nTs+
Ts
2

](t)

=
1

Ts
p[round(t/Ts)], (2.41)

where round(t/Ts) is the nearest integer to t/Ts. Then, a Gaussian distribution is fitted

to p(t) for the hit with high SNR, and a Gaussian mixture with two components is fitted

to p(t) for the hit with low SNR. The CDF of the fitted distribution was plotted along

with the TOA cdf, and in order to allow the comparison between the fitted pdf pfitted(t)

and p[n], we plotted Tspfitted(t) along with p[n].

We conclude from Figures 13 and 14 that TOA pmf and cdf are well fitted by a

Gaussian Distribution or by a Mixture of Gaussian Distributions depending on the SNR.

This approximation is explored in Chapter 4 to derive the expression for the optimal

TOA-based estimator assuming that the TOAs follow a Gaussian Mixture Distribution.
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Figure 13: TOA pmf and cdf for low noise level compared with the fitted Gaussian
distribution.
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Figure 14: TOA pmf and cdf for high noise level compared with the fitted Gaussian
mixture distribution. GMM stands for Gaussian Mixture Model.

Concluding remarks

In this chapter, we derived the expression for the TOA pdf and showed that it is

not Gaussian-distributed as many authors consider. We showed that it can only be

approximated as a Gaussian distribution if the sampling rate is high and the noise level is

small, but for higher noise levels the TOA pdf can be modeled by a mixture of Gaussian

distributions. We also derived an approximate but simplified expression for the TOA pdf

in the case where the noise level is small. The advantage of this simplified expression is

that it depends on the waveform and its derivative calculated at a single instant instead

of depending on the whole waveform as the exact TOA pdf.

Furthermore, we developed a model for the TDOA bias (which leads to bias in the

source position estimate) as well as upper and lower bounds, and we concluded that

the TDOA bias is mainly caused by the difference of attenuation between the two hits.

We also presented a procedure to reduce TDOA bias in structures where the Constant

Velocity Model holds. If the hits contain reflections of the wave emitted by the source,

they must be windowed before applying our debiasing method to avoid mixing the energy

of the reflections with the energy of the hits.
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3 SOURCE LOCALIZATION USING TOA

MEASUREMENTS

If the wave velocity at the medium is known and at least three sensors are used,

localization algorithms can estimate the fault position in a surface based on the time

difference of arrival (TDOA) estimates, which is defined as the difference between the

estimated times of arrival at two different sensors. [8, 18, 45–49]. However, localization

methods usually provide estimated positions that may have large variance and bias. For

this reason, several authors have been working in new localization methods [16,17,19,20,

41,43].

This chapter explores several source localization methods that determine the source

position using the measured Times of Arrival (TOAs) instead of the waveforms, which

are used only to estimate TOAs. The TOAs can be measured using the fixed threshold

algorithm, for example, but other methods can also be used [25,30,31]. It is worth pointing

out that we do not consider the problem where two sources are active simultaneously, that

is, we assume that each hit received by a sensor corresponds to only one event.

When only three TOAs are used to estimate the position of the source, the system of

constitutive equations that relate TOAs with the source position has only one solution,

whose closed-form expression is derived in this chapter. However, when more than three

sensors are used in localization, this system becomes overdetermined, and in general no

exact solution exists. In this case, the solution is often estimated by minimizing a cost

function. The performance of the localization algorithm depends on the choice of the

cost function under the presence of uncertainties over the measured TOAs and the wave

velocity in the medium. The most popular cost functions are investigated in this chapter

and their performance on anisotropic medium is compared.

In this chapter, we present two common cost functions for TOA-based localization,

and we generalize them for anisotropic models. One of our contributions is to show that

one of these cost functions, which depends on the source position and instant of emission,

can be written only in terms of the source position. We also derive the expression for
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the analytical solution of the 2D localization problem using a different approach than

the derivations in [50, 51]. Furthermore, we compare the TOA estimation method based

on Akaike Information Criterion with the Fixed Threshold Method in several scenarios.

Finally, we compare the performance of different TOA-based localization methods in an

anisotropic plate.

3.1 Popular Cost Functions

In order to determine the source position based on measured TOAs t1, t2, · · · , tN , we

have to solve the system of equations (1.3), which is overdetermined when more than

three sensors are used and there are no co-linear sensors. For this reason, cost functions

are often used to obtain an approximate solution for this system. We present two cost

functions that are often used in acoustic emission to estimate a source position based on

TOA measurements [26, 28, 52, 53], although there are other cost functions presented in

the literature as [8, 53,54].

Consider the direction-dependent anisotropic propagation model presented in Chapter

1. The cost function JTDOA(x, y) uses the estimated TOAs to compute TDOAs. Let the

TOAs t1, t2, · · · , tN be such that t1 ≤ t2 ≤ · · · ≤ tN . Each TDOA ∆ti is defined as

∆ti = ti − t1, i = 2, 3, · · · , N, (3.1)

and the cost function relates the estimated TDOA to the known sensor positions and a

tentative source position (x, y) as

JTDOA(x, y) =
N∑
k=2

[
(tk − t1)− 1

ck(x, y)

√
(x− xk)2 + (y − yk)2

+
1

c1(x, y)

√
(x− x1)2 + (y − y1)2

]2

,

(3.2)

where (xk, yk) is the position of the k-th sensor and ck(x, y) is wave velocity assuming it

propagates from the point (x, y) to (xk, yk).

The cost function JTOA(x, y) uses the estimated TOAs directly in its expression, given

by

JTOA(x, y, t) =
N∑
k=1

[
ck(x, y)(tk − t)−

√
(x− xk)2 + (y − yk)2

]2

. (3.3)

Although JTOA is a function of three variables (x, y and t) instead of two as JTDOA
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(which is a function of x and y), it is possible to write the variable t as a function of x and

y assuming (x, y, t) is a local minima of JTOA, that is, ∇JTOA(x, y, t) = 0, transforming

JTOA into a two-variable function. Reducing the number of variables of a function we want

to minimize is interesting because it decreases the computational cost of the minimization

algorithm. Equate the derivative of (3.3) with respect to t to zero:

∂JTOA

∂t
(x, y, t) = 2

N∑
k=1

ck(x, y)(
√

(x− xk)2 + (y − yk)2 + ck(x, y)(t− tk)) = 0. (3.4)

t can be isolated from this equation, yielding

t =

∑N
k=1 tkc

2
k(x, y)−

∑N
k=1 ck(x, y)

√
(x− xk)2 + (y − yk)2∑N

k=1 c
2
k(x, y)

. (3.5)

JTOA(x, y) can be rewritten by substituting (3.5) into (3.3):

JTOA(x, y) =
N∑
k=1

[
ck(x, y)

(
tk−

∑N
i=1 tic

2
i (x, y)−

∑N
i=1 ci(x, y)

√
(x− xi)2 + (y − yi)2∑N

i=1 c
2
i (x, y)

)

...−
√

(x− xk)2 − (y − yk)2

]2

. (3.6)

In the isotropic case (where ck = c ∀k), the expression of the optimal t is much

simpler, and so is JTOA(x, y):

t =
1

N

N∑
k=1

tk −
1

N

N∑
k=1

√
(x− xk)2 + (y − yk)2

c
, (3.7)

JTOA(x, y) =
N∑
k=1

[
c(tk −

1

N

N∑
i=1

ti) +
1

N

N∑
i=1

√
(x− xi)2 + (y − yi)2

−
√

(x− xk)2 − (y − yk)2

]2 (3.8)

Note that even though JTOA(x, y) and JTOA(x, y, t) share the same local minima (thus

they produce the same estimated source position when minimized), they are different

functions. Another important observation is that both JTOA(x, y) and JTDOA(x, y) may

have more than one local minimum, so it is important to choose carefully the initializa-

tion point conditions of the minimization algorithm we are using. In this work, we use

JTOA(x, y) instead of JTOA(x, y, t) in this work because JTOA(x, y) has less variables than

JTOA(x, y, t), thus minimizing JTOA(x, y) requires less computational complexity.
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3.1.1 Role of TDOAs in Localization

Even though JTOA has TOAs in its expression (unlike JTDOA(x, y), which has only

TDOAs), it is possible to write it only in terms of TDOAs. This can be done by placing

tk inside the fraction in (3.6):

JTOA(x, y) =
N∑
k=1

[
ck(x, y)

(∑N
i=1(tk − ti)c2

i (x, y) +
∑N

i=1 ci(x, y)
√

(x− xi)2 + (y − yi)2∑N
i=1 c

2
i (x, y)

)

−
√

(x− xk)2 − (y − yk)2

]2

(3.9)

In the isotropic case, (3.9) becomes

JTOA(x, y) =
N∑
k=1

[
c

N

N∑
i=1

(tk − ti) +
1

N

N∑
i=1

√
(x− xi)2 + (y − yi)2

−
√

(x− xk)2 − (y − yk)2

]2

.

(3.10)

In both cases, the cost function JTOA(x, y) depends only on the TDOAs ti − tk for 1 ≤
i, k ≤ N . Hence, a measurement error of TOAs that does not affect TDOAs (that is, an

error that is constant for all TOAs) will not impact the position estimate if JTOA(x, y) or

JTDOA(x, y) is used (as JTDOA also depends only on TDOAs).

This is intuitive because constant errors in TOAs are completely absorbed by the

instant of emission estimate t. In other words, if the estimated source coordinates is

(x̂, ŷ, t̂) for TOAs t1, t2, · · · , tN , then the estimated source coordinates is (x̂, ŷ, t̂ + ε) for

TOAs t1 + ε, t2 + ε, · · · , tN + ε, where ε is a constant, leaving the estimated position (x̂, ŷ)

unchanged.

It is worth noting that in most Acoustic Emission applications, the exact instant t

the source emits a wave is not important, thus the constant TOA bias (which only affects

t) is irrelevant. This is the reason why we modeled TDOA bias in Chapter 2 instead of

only TOA bias.
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3.2 Closed-Form Solution in Isotropic Media

Isotropic TOA-based source localization methods use cost functions to find the source

position (in most cases, estimating the exact instant the source was emitted is not rel-

evant). The choice of a cost function impacts on the accuracy when more than three

sensors are used in the isotropic case. However, when only three sensors are used, all

cost functions share a global minimum, since there is an exact solution for the system of

equations (1.3), as we show next. In this case, solving the system of equations is much

less computationally demanding than minimizing a cost function.

The objective of this section is to derive a closed-form expression for the estimated

position in 2D isotropic media. This closed-form expression is a well-known result in

literature that is employed for example in [50,51].

3.2.1 1D case

3.2.1.1 Analytical solution

Before tackling the 2D problem, we focus on the unidimensional source localization

problem because it is much easier to understand. In this problem, we want to determine

the position of a source along a line that connects two sensors, which are positioned at

x = 0 and x = L. If the wave was emitted at an instant t and propagates with velocity

c, we can determine the source position x using the measured TOAs t1 and t2, equating

the distance propagated by the wave with the distance between the source position and

the sensor: c(t1 − t) = |x|

c(t2 − t) = |L− x|
(3.11)

In order to solve (3.11), we get rid of the absolute values by assuming x belongs to

one of the intervals ]-∞, 0], [0, L] or ]L,∞[ and finding the solution for each interval.

First, let us find the solution assuming 0 ≤ x ≤ L. In this case, solving (3.11) is

straightforward since |x| = x and |L− x| = L− x, hence

x =
L− c(t2 − t1)

2
(3.12)

and

t =
t1 + t2

2
− L

2c
. (3.13)
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On the other hand, assuming x < 0, (3.11) becomesc(t1 − t) = −x,

c(t2 − t) = L− x,
⇔

ct− x = ct1,

ct− x = ct2 − L,
(3.14)

which is an impossible system of equations for any t1, t2 unless ct1 = ct2−L, in which case

the system will be undetermined (since the TDOA is equal to L/c for sources localized

in any point x < 0). An analogous situation occurs if x > L. Thus, we conclude that

the solution of the localization problem lies in the interval 0 < x < L, regardless of the

measured TOAs. Hence, if the actual source position does not belong to [0, L], it is not

possible to accurately estimate it.

3.2.1.2 Localizing a source at a negative position

We have concluded that it is not possible to find a solution to (3.11) in the region

x < 0 or x > L, thus we must always assume that x ∈ [0, L] in the 1D localization

problem with only 2 sensors, even if the actual source position is x∗ < 0 and TOAs are

noiseless. Let us find the solution for (3.11) considering that TOAs are generated by a

source located at x = x∗ < 0 that emits a wave at the instant t = t∗. In this case, the

measured TOAs may be modeled as

t1 = −x
∗

c
+ t∗ + ε1, (3.15)

t2 =
L− x∗

c
+ t∗ + ε2, (3.16)

where ε1 and ε2 are small perturbations due to noise and imperfections of the TOA

estimation algorithm. The measured TDOA does not depend on the source position x∗:

t2 − t1 =
L

c
+ ε2 − ε1, (3.17)

and neither does the estimated source position, obtained by substituting the TDOA is

(3.12):

x = c
ε1 + ε2

2
. (3.18)

Thus, the estimated source position depends only on the perturbations of the TOA mea-

surements, and it would be zero if ε1 = ε2 = 0.
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3.2.1.3 Negative position obtained by minimizing a cost function

What would happen if we were using a cost function minimization to estimate x that

produces a negative estimate for x? For example, let us see what happens when we use

JTOA, which is defined as

J(x, t) =
[
c(t1 − t)− |x|

]2

+
[
c(t2 − t)− |L− x|

]2

. (3.19)

If x < 0, J(x, t) reduces to[
c(t1 − t) + x

]2

+
[
c(t2 − t) + x− L

]2

. (3.20)

Despite the lack of analytical solution for negative values of x, the minimization algorithm

always finds a value of x and t where the gradient of J(x, t) is zero. Still assuming x < 0,

we have
∂J

∂t
= −2(c(t1 − t) + x)− 2c(c(t2 − t) + x− L) = 0

⇒ ct− x =
ct1 + ct2 − L

2
. (3.21)

∂J

∂x
= 2(c(t1 − t) + x) + 2(c(t2 − t) + x− L) = 0

⇒ ct− x =
ct1 + ct2 − L

2
. (3.22)

Hence, ∇J(x, y) = 0 for any (x, t) that satisfies (3.21). The estimated source position

will be different if different initial conditions are used in the minimization algorithm.

Furthermore, from (3.22) we have (t1 − t) = −1
c
x − 1

2
(t2 − t1 − L

c
), thus the solutions

found by the method may satisfy t > t1 if t2 − t1 − L
c
> −2x

c
. This would mean that the

sensor received the signal before the instant the source was emitted, which is an impossible

situation.

We conclude that it is necessary to verify the solutions of the optimization problems

for consistency, as there are source positions that cannot be a solution for the localization

problem.

3.2.2 2D Case

Now we solve the two-dimensional case using a polar coordinate system centered in

the first sensor position. The k-th sensor lies at a distance of ρk from the first one and at

an angle θk, with ρ1 = 0 and θ1 = 0, and the coordinates of the source position — which

are our unknown variables — are (ρ, θ). For the k-th sensor, the constitutive equations
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Figure 15: Illustration of equation (3.23). The star represents an acoustic emission source
(as a growing crack) and the circles represent the sensors.

are obtained by equating the distance the wave travelled and the distance between the

sensor and the source position, as in the 1D case. As illustrated in Figure 15, the distance

between the k-th sensor and the source position can be calculated using the law of cosines:

c(tk − t) =
√
ρ2
k + ρ2 − 2ρρk cos(θ − θk), k = 1, 2, 3. (3.23)

Note that this equation is simpler for the first sensor, since ρ1 = 0:

c(t1 − t) = ρ. (3.24)

Let ∆tk = tk− t1 be the Time Difference of Arrival (TDOA) between the hit received

by the k-th sensor and the hit received by the first one. Subtracting (3.24) from (3.23),

we have:

c∆tk =
√
ρ2
k + ρ2 − 2ρρk cos(θ − θk)− ρ. (3.25)

Isolating ρ using the above equation, we obtain

ρ =
ρ2
k − c2∆t2k

2c∆tk + 2ρk cos(θ − θk)
. (3.26)

Since this equation holds for k = 2 and k = 3, in the case of three sensors there is a single
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solution satisfying

ρ =
ρ2

2 − c2∆t22
2c∆t2 + 2ρ2 cos(θ − θ2)

=
ρ2

3 − c2∆t23
2c∆t3 + 2ρ3 cos(θ − θ3)

.

Defining the auxiliary variables ak and bk as in (3.27) and (3.28), we can rewrite the

equation to obtain (3.29):

ak =
ρk

ρ2
k − c2∆t2k

, (3.27)

bk =
c∆tk

ρ2
k − c2∆t2k

, (3.28)

b3 − b2 = a2 cos(θ − θ2)− a3 cos(θ − θ3). (3.29)

(3.29) is a simple trigonometric equation that can be solved expanding the cosines and per-

forming laborous but straightforward algebraic manipulations. Solving it yields the four

solutions summarized in the equation below, where the two ± are independent operators.

θ = ± arccos

(
b3 − b2√

a2
2 + a2

3 − 2a2a3 cos(θ2 − θ3)

)

± arccos

(
a2 cos(θ2)− a3 cos(θ3)√

a2
2 + a2

3 − 2a2a3 cos(θ2 − θ3)

)
.

(3.30)

ρ can be easily obtained through the substitution of (3.30) into (3.26) using k = 2 or

k = 3, and t can be obtained using (3.24):

t = t1 −
ρ

c
. (3.31)

Some of the four solutions are spurious. We must ignore the solutions with nonzero

imaginary part and those whose source emission instant is larger than at least one TOA.

Note that more than one solution that satisfies the constitutive equations (3.23) may

exist.

3.2.3 Geometry of the solution space

In order to understand which source positions do not yield a single solution, we

generated noiseless TOAs at three sensors located at (−1
2
, 0), (1

2
, 0) and (0, 1) for several

source positions. The number of non-spurious solutions for each position is shown in

Figure 16, which shows us that there is a region in which there are two solutions around

each sensor.
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These regions, shown in yellow and similar to parabolas, do not necessarily intersect,

thus even sources located very far away from the sensors can yield single solutions. More-

over, the figure also shows that there can be double solutions even when the source is

located inside the triangle formed by the sensor in the case where the source is very close

to a sensor.
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Figure 16: Geometry of the multiple solutions. Yellow indicates a double solution, and
blue means a single solution. The sensors are represented as three red circles.

A question that arises is if picking the wrong solution (in the case where two solutions

exists), the existence of double solutions affects the localization performance significantly.

The performance will be severely degraded if the picked solution is distant from the

correct one. For this reason, we repeated the last simulation, but for each source position

we calculated the distance between the twin solutions in the case where two solutions

exist. The result is shown in Figure 17, where distances higher than 100 cm are limited

to 100 cm to ease visualization.

From Figure 17, we conclude that picking the wrong solution does cause a relevant

localization error for most source positions where a double solution exists. This error can

be higher than 100 cm for sources located inside the triangle formed by the sensors for

position that are very close to a sensor. The double solutions coincide at the three lines
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that connect the sensors, but their distance grows as the source position distances itself

from these lines.
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Figure 17: Distance between multiple solutions (cm) in terms of the source position.
Distances higher than 100 cm are limited to 100 cm to ease visualization.

Another question that may arise is if the number of solutions is sensitive to noise.

Naturally, the answer to this question depends on the source position. For this reason, we

ran a simulation in the same conditions as before, except that TOAs measured by sensors

are now subjected to a small zero-mean Gaussian noise of standard deviation σ = 1µs.

For each source position, we calculated the mean number of solutions using 200 noisy

TOA realizations. We show the average number of solutions for each source position in

Figure 18.

For noisy TOAs, there are unstable regions around the three lines that connect the

sensors. Even a small noise of standard deviation σ = 1µs may generate TOAs for which

the localization problem has no exact solution, that is, it is not possible to find a source

position that generates those TOAs. Note from Figure 16 that sources in the unstable

regions cannot generate TOAs for which the localization problem has no solution for

noiseless TOAs, as in this case the actual source position always satisfies the system of

equations (3.23).
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Figure 18: Average number of multiple solutions for noisy TOAs. The sensors are repre-
sented as three red circles.

It is worth noting that if TOAs from four or more sensors are available and a cost

function minimization is used to locate the source, the secondary solutions disappear in

most cases because the fundamental system of equations (1.3) becomes overdetermined

in general, and in this case the system does not admit any exact solution.

3.3 TOA Estimation based on the Akaike Informa-

tion Criterion (AIC)

The Akaike Information Criterion (AIC) [23] is a method to assess the quality of a

statistical estimator or model using a set of samples. Even though it was developed in

1973, it was only applied to TOA estimation in practical problems much later [24,25]. In

this section, we deduce the TOA estimation method based on AIC presented in [24, 25]

and compare it to the fixed threshold method, showing that AIC has several advantages

with respect to the fixed threshold method (as lack of TOA bias and good performance

in noisy scenarios), and we also point its limitations.
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3.3.1 Derivation of the AIC-based TOA estimator

Suppose we want to have a model for the likelihood function f(x;θθθ) of a vector of

samples x that depends on an p× 1 vector of estimated parameters θθθ. The AIC for this

model is [23]

AIC = 2p− 2 max
θθθ
{ln(f(x;θθθ))}. (3.32)

Ideally, better models should have lower AICs — If the model fits well the data, its

maximum likelihood maxθθθ{ln(f(x;θθθ))} will be large, yielding a low value for AIC. On the

other hand, in order to prevent low AIC for overfitted models, the number of parameters

of the model is penalized by the term p.

It is also possible to use AIC to choose a model from a set of possible models by

picking the one with the smallest AIC value. This is how the AIC is used to estimate

the time of arrival from a signal. Let us model the signal x[n] received by a sensor as a

white stochastic process whose samples are Gaussian random variables with mean µ[n]

and variance σ2[n] in the interval N1 ≤ n ≤ N2, where

µ[n] =

µ1, N1 ≤ n < n∗

µ2, n∗ ≤ n ≤ N2

(3.33)

and

σ2[n] =

σ2
1, N1 ≤ n < n∗

σ2
2, n∗ ≤ n ≤ N2

. (3.34)

The bounds N1 and N2 are known, and we consider that there is an instant n∗ between

N1 and N2 where the variance suddenly changes. Ideally, the estimated TOA must be the

instant n∗, as the sudden change of mean and variance means that the wave has reached

the sensor. Our objective is to choose the parameters of this model (σ1, σ2, µ1, µ2) in

terms of n∗ that maximize the likelihood function. Then, we pick n∗ that maximizes

the likelihood function. Thus, the estimated TOA will be ti = n∗T + t0, where T is the

sampling period and t0 is the instant of the first sample at n = 0.

Recalling that x[n] is corrupted by a white Gaussian noise, the likelihood function is

f(x;σ1, σ2, µ1, µ2) =
n∗−1∏
k=N1

1

σ1

√
2π
e
− 1

2σ21
(x[k]−µ1)2

N2∏
k=n∗

1

σ2

√
2π
e
− 1

2σ22
(x[k]−µ2)2

, (3.35)
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which is equivalent to maximize the log-likelihood function

ln f(x;σ1, σ2, µ1, µ2) = −(n∗ −N1) lnσ1 −
1

2σ2
1

n∗−N1∑
k=N1

(x[k]− µ1)2

− (N2 − n∗ + 1) lnσ2 −
1

2σ2
2

N2∑
k=n∗

(x[k]− µ2)2 − (N2 −N1) ln
(√

2π
)
. (3.36)

Equating the partial derivatives of ln f(x|σ1, σ2, µ1, µ2) with respect to σ1, σ2, µ1 and

µ2 to zero, we obtain the maximum likelihood estimates for the parameters:

µ̂1 =
1

n∗ −N1

n∗−1∑
k=N1

x[k], (3.37)

µ̂2 =
1

N2 − n∗ + 1

N2∑
k=n∗

x[k], (3.38)

σ̂1 =
1

n∗ −N1 − 1

n∗−1∑
k=N1

(x[k]− µ̂1)2, (3.39)

σ̂2 =
1

N2 − n∗
N2∑
k=n∗

(x[k]− µ̂2)2. (3.40)

Note that σ̂1 and σ̂2 are the unbiased estimators of the variance of x[n] for N1 ≤ n < n∗

and n∗ ≤ n ≤ N2, respectively. Substituting the parameter estimates into (3.36), we

obtain the expression for the maximum log-likelihood:

ln f(x; σ̂1, σ̂2, µ̂1, µ̂2) =

− (N2 −N1)
√

2π − (n∗ −N1) ln σ̂1 −
n∗ −N1 − 1

2
− (N2 − n∗ + 1) ln σ̂2 −

N2 − n∗

2
=

(N2 −N1)
√

2π − (n∗ −N1) ln σ̂1 − (N2 − n∗ + 1) ln σ̂2 −
N2 −N1 − 1

2
(3.41)

In order to calculate the AIC, the log-likelihood expression must be substituted in

(3.32), where p = 4 parameters are used:

AIC = 8 + 2

(
(N2 −N1)

√
2π + (n∗ −N1) ln σ̂1 + (N2 − n∗ + 1) ln σ̂2 +

N2 −N1 − 1

2

)
.

(3.42)

Now, we must calculate the AIC for several values of n∗ and pick n∗ that yields the

minimum AIC. Hence, the terms of (3.42) that do not depend on n∗ can be disregarded,

as well as the multiplication factor 2. After disregarding these terms, we obtain the
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expression for the AIC as a function of n:

AIC[n] = (n−N1) ln σ̂1 + (N2 − n+ 1) ln σ̂2, (3.43)

and n∗ is estimated as (recall that σ̂1 and σ̂2 depend on n)

n∗ = arg min
n

AIC[n]. (3.44)

3.3.2 Discussion about the AIC

AIC has two huge advantages when compared to the fixed threshold methods: The

first one is that it does not depend on the choice of any parameter (except for choosing the

time interval [N1, N2] that will be used to estimate TOAs), while choosing a bad threshold

for the fixed threshold method may cause hits with small amplitude to be discarded or

may lead to bad TOA estimates [25]. The second advantage is that TOAs estimated by

AIC are not subjected to bias caused by the difference of amplitude between hits, unlike

TOAs obtained by the fixed threshold method (as explained in chapter 2). This happens

because the value of n that minimizes (3.43) does not depend on the sinal amplitude: If

AICx[n] is the AIC of the signal x[n], the AIC of y[n] = kx[n] (where k is a constant) is

AICy[n] = (n−N1) ln(k2σ1) + (N2 − n+ 1) ln(k2σ2)

= (n−N1) lnσ1 + (N − n+ 1) lnσ2 + (N2 −N1 + 1) ln(k2)

= AICx[n] + (N2 −N1 + 1) ln(k2). (3.45)

As the term (N2 −N1 + 1) ln(k2) does not depend on n, we have

arg min
n

AICx[n] = arg min
n

AICy[n]. (3.46)

On the other hand, AIC has much more computational complexity than the fixed

threshold method, which makes it harder for real time implementation. If it is desired to

estimate TOAs using AIC offline (i.e. not in real time), the waveforms must be stored,

leading to the problem of data storage in long acoustic emission tests. Another problem of

AIC is that it is highly dependent on the format of the waveform, as hits whose power is

not concentrated in the initial samples may cause AIC to pick TOAs incorrectly. A third

issue is that AIC assumes that the noise is iid and Gaussian-distributed, thus correlated

and non-Gaussian noise may degrade AIC’s performance.

Figures 19 and 20 show the TOA estimation using AIC for two different waveforms
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Figure 19: Example of a correct TOA estimation using AIC.

collected during a tensile test of an aircraft at Embraer. In Figure 19, the minimum of

AIC[n] is very close to the actual time of arrival of the hit. Note that there is a local

minimum at n = 214, when the wave begins to vanish, but the minimum at n = 87 is

much lower than the one at n = 214. However, in Figure 20, the minimum at the end

of the hit is lower than the minimum at its beginning because the energy of this hit is

not concentrated at its beginning as in Figure 19. Thus, in this case AIC estimates the

TOA as the end of the wave instead of its first samples. For this reason, AIC is very

dependent on the waveform, and may not work on waveforms with high duration, or hits

whose energy is not concentrated in the first samples.

It is worth noting that the AIC estimates the TOA based on the waveform samples

in the interval [N1, N2]. This interval must be chosen correctly in order to AIC function

properly, and even though it must contain the source signal, N2 must not be too large

because AIC may pick the TOA as the last samples of the signal of interest, at the point

where the signal variance falls to zero. Moreover, if N2 is too large, AIC may compute

reflections of the hit, which may lead to less precise TOA estimates if the energy of the

reflections is not negligible.
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Figure 20: Example of a wrong TOA estimation using AIC. In this case, AIC estimates
the TOA as the instant where the high energy components of the wave vanish.
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3.3.3 Comparison of AIC and Fixed Threshold

We added white Gaussian noise to the waveform from Figure 19 (the case where

minimizing AIC[n] works) for SNRs from 0 dB to 70 db. Then, we delayed one of the

waveforms, and for each SNR we performed TOA estimation using AIC and fixed threshold

with three different threshold levels (K = 0.01, K = 0.03 and K = 0.05), and we

compared the obtained TDOAs in Figure 21. It is more interesting to compare estimated

TDOAs than TOAs because the TOA errors that are not present in TDOAs do not affect

localization, as explained in Section 3.1.1. The AIC picker was implemented using N1 = 0,

and N2 was chosen as the instant where the absolute value of the signal is maximum.

We also did another simulation identical the previous one, except that the delayed

waveform is multiplied by 1
2

to take into account the attenuation due to wave propagation,

and we plotted the results in Figure 22. Finally, we did a third simulation in the same

conditions of the others considering the attenuation factor 1
2
, but we performed the bias

correction proposed in Chapter 2, that is, we applied the fixed threshold method to the

modified signals defined in (2.26). The third simulation is shown in Figure 23.

First of all, note that the AIC TDOA estimate is the same for all simulations, con-

firming that TOAs obtained by minimizing AIC do not depend on the amplitude of the

waveform, as discussed in 3.3.2. Furthermore, the mean error curves for the fixed thresh-

old algorithm are much smoother than the AIC curves, which presents a slope between

SNR = 30 dB and SNR = 60 dB that is intrinsic to the waveform. This happens because

the performance of AIC is much more dependent on the waveform than the fixed threshold

method.

For very high SNR (above 60 dB), AIC finds the actual TDOA in all cases. For both

the first simulation — where no attenuation is taken into account (Figure 21) — and the

third one (Figure 23), in which our bias correction method is applied, the fixed threshold

method also estimates TOAs perfectly, but in the second simulation there is a bias in

TDOA measurements for K = 0.03 and K = 0.05. Moreover, the fixed threshold method

achieves zero TDOA error at much lower SNRs than AIC in the first and third simulation,

even though AIC’s mean error for SNR > 10 dB is very small (approximately 1 sample,

or 1µs).

On the other hand, AIC’s mean error is much lower than the worst fixed thresholdK =

0.01 for intermediate SNR levels (between 10 dB and 25 dB), and falls to approximately

1 sample earlier than all other estimators, except for K = 0.05 using debiased TOAs,

whose mean error falls at the same point as AIC.
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Figure 21: Performance of TDOA estimation for different methods. For each SNR, TOAs
are obtained from two noisy hits, and then TDOA is calculated. Attenuation is not
considered in this case, thus the second hit is a delayed version of the first one.

For the waveform used in this simulations, using the fixed threshold method with

K = 0.05 and debiased TOAs yields better performance than AIC. However, it is not

possible to choose the best threshold for each waveform, as it must assume a fixed value,

and K = 0.05 may present worse performance for other waveforms. Depending on the

choice of the threshold, AIC can achieve much smaller error for average SNRs, even if

debiased TOAs are used. Furthermore, using AIC does not lead to TDOA bias, which

may be one of the reasons why AIC is being widely used [7, 24,25,55].

Hence, even though AIC may have worse performance than the best fixed threshold,

it does not depend on choosing the right threshold, while the fixed threshold method

may present worse performance for non-optimal thresholds. The two disadvantages of

AIC with respect to the fixed threshold method are that it has much more computational

complexity, and it may not work for waveforms whose energy is not concentrated in the

first samples.
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Figure 22: Performance of TDOA estimation for different methods. For each SNR, TOAs
are obtained from two noisy hits, and then TDOA is calculated. The second hit is a
delayed and attenuated version of the first one.



70

0 10 20 30 40 50 60 70

SNR (dB)

0

2

4

6

8

10

12

14

16

M
ea

n 
E

rr
or

 (
S

am
pl

es
)

AIC
Threshold, K = 0.01
Threshold, K = 0.03
Threshold, K = 0.05

Figure 23: Performance of TDOA estimation for different methods. For each SNR, TOAs
are obtained from two noisy hits, and then TDOA is calculated. The second hit is a
delayed and attenuated version of the first one. TOAs obtained by the fixed threshold
method are debiased using the algorithm proposed in Chapter 2.
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3.4 Localization using the Elliptical Anisotropic Model

Using data from an AST test performed at Embraer on an anisotropic plate, we esti-

mate the parameters of the Elliptical Anisotropic Model presented in Section 1.1.2, which

is used in the anisotropic version of the cost function JTOA(x, y) (3.3) to localize artificial

sources generated through a pencil-lead break test performed in the same structure. In

AST tests, each sensor pulses one at a time, emitting a wave that is sampled by the others.

The obtained TOAs are then used to obtain the parameters of the model.

The objective of this section is to compare the isotropic and anisotropic versions of the

cost functions JTOA and JTDOA using TOAs obtained by the fixed threshold method, but

we also compare them with the isotropic JTOA using debiased TOAs and TOAs estimated

by the AIC method. In this pencil-lead break test, seven sensors are used to monitor the

structure, but only three sensors are used to localize each source (that is, only the hits

wit three smallest TOAs are used), thus JTOA and JTDOA are equivalent.

3.4.1 Learning the Model

In order to use the anisotropic model in source localization algorithms, its parameters

must be estimated. This can be done by performing an acoustic emission test where the

source position is known (such as a pencil lead break test or an AST test). In AST tests,

the instant t the wave was emitted is known, thus a velocity ci is estimated for each sensor

i as

ci =
di

ti − t
, (3.47)

where di is the distance between the sensor and the source (whose position is known).

The velocity ci represents the a noisy measurement of the velocity in the direction of the

line that connects the i-th sensor to the source position.

The estimated velocity ĉ(θ) at angle θ is modeled as an ellipse that depends on the

parameters a, b and β according to (1.8):

ĉ(θ) =
ab√

a2 sin2(θ − β) + b2 cos2(θ − β)
. (3.48)

The parameters a, b and β are estimated using a least squares approach:

(a, b, β) = arg min
(a,b,β)

N∑
i=1

(
ci −

ab√
a2 sin2(θi − β) + b2 cos2(θi − β)

)2

. (3.49)
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3.4.1.1 Pencil-lead breaks on anisotropic plate

Ten pencil-lead breaks were performed on five different positions on an anisotropic

plate-like structure. We localized each event using both isotropic and anisotropic JTOA(x, y)

(3.3) using TOAs obtained by the fixed threshold method and the isotropic JTOA using

TOAs obtained by our TOA debiasing method proposed in Chapter 2 and by the AIC-

based TOA estimation method. In order to avoid computing reflections in the debiasing

method, only the samples n∗ − 100 to n∗ + 100 were used to calculate the energy of the

hits, where n∗ is the instant the hit crosses the fixed threshold. The AIC method was

implemented using N1 = n∗ − 256 (which is 256µs before the threshold crossing because

the sampling period is 1 µs) and N2 as the instant where the absolute value of the signal

is maximum (recall that AIC estimates n in the interval [N1, N2] to compute the TOA

ti = nTs).

The estimated source positions along with the sensors and the actual pencil lead break

coordinates are presented in Figure 24. The scale of this figure and the exact position of

the sensors in this test are not provided, as requested by Embraer.

We did not use anisotropic JTOA with AIC or debiased TOAs in this test because

the anisotropic parameters were obtained through an AST test whose waveforms are not

available.
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Figure 24: Comparison between both isotropic and anisotropic JTOA using TOAs obtained
by the fixed threshold method and isotropic JTOA using TOAs obtained by AIC and TOAs
obtained by our TOA debiasing method in anisotropic plate.

Isotropic JTOA presents high error in the upper region of the plate, while anisotropic

JTOA concentrates the events close to the break points. For the other points, the perfor-

mance of isotropic JTOA was the same or worse than its anisotropic version, probably due

to uncertainties in the anisotropy parameters. On the other hand, isotropic JTOA with

AIC produces better estimates than the other methods in all cases. This is because AIC

does not present TOA bias as the fixed threshold method, yielding a smaller localization

bias even if a cost function with an imprecise wave velocity is used.

We observed that hits generated by the same pencil-lead break are not approximately

multiple from each other in this test, thus the Constant Velocity Model does not hold for

this structure. That is why our debiasing method did not present a consistently better

performance than JTOA with TOAs obtained by the fixed threshold method because the

constant velocity model is not a good approximation for this structure. However, it

successfully debiased the estimated positions located in the upper right corner of the

figure, achieving better accuracy than isotropic JTOA with original TOAs in this case.
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3.4.2 Isotropic Localization in Anisotropic Plate

In order to further compare the performance of isotropic JTOA and JTDOA in an

anisotropic plate, we simulated an acoustic emission test using an elliptical anisotropy

model where the maximum wave speed is 4000m
s

at 45o and the minimum one is 2000m
s

(at −45o). TOAs were estimated using the fixed threshold method, and the sensor were

positioned at (0, 0), (0, 1), (1, 0) and (1, 1). We simulate a source in several positions and

we localized it using the isotropic versions of both cost functions with c = 3000m
s

— the

average between the maximum and the minimum velocities.

The result is shown in Figure 25, where each source position is connected by lines to

its estimates. The estimated positions produced by JTOA are much closer to the actual

source positions than the ones obtained by JTDOA in most cases, indicating that JTOA is

more robust to uncertainties in the wave velocity.

In Figure 26, the anisotropic versions of JTOA and JTDOA were used with the correct

anisotropy parameters. Both anisotropic cost functions had similar accuracy, but they

performed better than their isotropic versions.

Note that even though JTOA performed better than JTDOA in most cases, JTDOA

produces more accurate results than JTOA for some source positions. This is expected

because the performance of the cost functions depends on the source position and the

geometry of the sensors.
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Figure 25: Localization using isotropic cost functions in anisotropic plate.

Figure 26: Localization using anisotropic cost functions in anisotropic plate.



Concluding remarks

In this chapter, we introduced the cost functions JTOA(x, y, t) and JTDOA(x, y) con-

sidering an anisotropic structure, and we showed that the variable t in JTOA(x, y, t) can

be written in terms of x and y, yielding the cost function JTOA(x, y). We derived the

closed-form solution for anisotropic media considering that three sensors are used, and

we showed that it is possible to generate the same TOAs at two different source posi-

tion, which means that the localization problem may have two solutions depending on

the source position and on the geometry of the sensors.

We presented the TOA estimator based on AIC, which has better performance than

the fixed threshold method in most cases at the cost of more computational complexity.

AIC produces unbiased TOAs and is robust to noise, but it may pick TOAs incorrectly if

the energy of the waveform is not concentrated in the first samples.

Finally, we compared the anisotropic cost functions using TOAs extracted from AIC,

the fixed threshold algorithm and TOAs generated by with our TOA debiasing technique

using data from a pencil lead break in an anisotropic plate. In general, isotropic JTOA

using TOAs obtained from AIC presented better results than the other methods. This is

because AIC reduces the TOA bias more successfully than our debiasing technique, since

in this structure the Constant Velocity Model is not a good approximation due to the large

number of reflections. We also simulated sources at several positions in an anisotropic

plate and localized them using isotropic and anisotropic cost functions, and we concluded

that for anisotropic plates, isotropic JTOA yields more accurate estimates than isotropic

JTDOA in general for anisotropic plates, and the anisotropic cost functions perform much

better than their isotropic versions.
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4 OPTIMAL SOURCE POSITION ESTIMATOR

USING TOAS

Previously, we introduced the cost functions JTOA and JTDOA and showed that JTOA

seems to be more robust than JTDOA. In this chapter, we unify the cost functions JTOA

and JTDOA into a generic cost function, and we derive an expression for the optimal

cost function (that is, the one that yields the minimum mean-square localization error

among all possible TOA-based estimators) when the TOAs follow a Gaussian or mixture

of Gaussians distribution.

Using this generic cost function, we prove that JTOA is the optimal cost function when

the noise is independent and identically distributed (iid) in time and across sensors. For

the sake of simplicity, we assume that the velocities used in the cost functions are the

actual ones.

Although in Chapter 2 we showed that TOA is not Gaussian-distributed when it is

estimated using the fixed threshold algorithm, the Gaussian distribution with a mean not

necessarily zero is a good approximation when the noise level is low and the sampling

frequency is high.

In order to determine the optimal estimator, the Fisher Information Matrix must be

calculated and compared to the inverse of the covariance matrix of our position estimator

(see Section 4.2). The Fisher Information Matrix for the acoustic emission localization

problem using Gaussian TOA or TDOA measurements was calculated in [50] in the case

where only three sensors are used to localize the source — In this case, no cost functions

are needed because the localization problem has a closed-form solution. In this work, we

calculate the Fisher Information Matrix for N > 3 sensors and we also find the optimal

estimator, that is, the one whose covariance matrix is the inverse of the Fisher Information

Matrix.
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4.1 Generalizing the cost functions

It is possible to generalize the cost functions JTOA and JTDOA and write them as a

generic cost function that uses TDOA’s instead of TOAs considering the wave propagates

through an isotropic medium with velocity c. Let τi = 1
c

√
(x− xi)2 + (y − yi)2 be the

time the signal emitted by a source at (x, y) position takes to reach the i-th sensor, placed

at position (xi, yi). Denoting ti as the time of arrival measured by the i-th sensor, the

expressions of JTOA(x, y, t) and JTDOA(x, y) are

JTOA(x, y) =
N∑
i=1

(ti − t(x, y)− τi)2, t(x, y) =
1

N

N∑
i=1

ti −
1

N

N∑
i=1

τi. (4.1)

and

JTDOA(x, y) =
N∑
i=1

(ti − t1 − τi + τ1)2, (4.2)

where t(x, y) is the instant the wave was emitted, which is already written in terms of

(x, y) as explained in Section 3.1. Define u as the measured TOA vectors and v as the

TOA that would ideally be measured if the source position was (x, y):

u = [t1, t2, · · · , tN ]T and v = [τ1 + t(x, y), τ2 + t(x, y), · · · , τN + t(x, y)]T . (4.3)

Vector v is deterministic and depends on (x, y), while u is a random vector that does not

depend on the tentative source position (x, y). These vectors can be used to rewrite the

cost functions JTDOA(x, y) and JTOA(x, y):

JTOA(x, y) =
N∑
i=1

(ui − vi)2 = (u− v)T (u− v) (4.4)

and

JTDOA(x, y) =
N∑
i=1

(ui − vi − u1 + v1)2 = ‖A(u− v)‖2
2 = (u− v)TG(u− v), (4.5)

where ui and vi are the i-th components of u and v, A is a N ×N matrix defined by

A = I− 1eT1 =



0 0 0 · · · 0

−1 1 0 · · · 0

−1 0 1 · · · 0
...

...
...

. . .
...

−1 0 0 · · · 1


(4.6)
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and G = ATA = I − 1eT1 − e11
T + Ne1e

T
1 . We use the notation 1 to denote a vector

whose elements are all equation to 1, and ek the denote a vector whose elements are all

zero, except for the k-th element, which is equal to 1.

Hence, we define the generalized cost function

J(x, y) = (u− v)TG(u− v), (4.7)

where G is any N × N symmetrical positive semi-definite matrix with rank ≥ 2. This

generalized cost function describes both JTDOA and JTOA: If G = I, J(x, y) = JTOA(x, y),

and if G = I− 1eT1 − e11
T +Ne1e

T
1 , J(x, y) = JTDOA(x, y).

There is an interesting interpretation for this generalized cost function: Consider the

system of N equations u = v(x, y), which is similar to the system of constitutive equations

(1.3) presented in Chapter 1, except that the variable t is written in terms of (x, y). If

we choose an equivalent system of equations where each equation is a linear combination

of the equations of the original system, we would have Au = Av(x, y), where the rows

of A are the coefficients used in each linear combination. The least squares solution

corresponding to this system of equations is the minimum of

J(x, y) = (Au−Av)T (Au−Av) = (u− v)TATA(u− v) = (u− v)TG(u− v), (4.8)

where G = ATA. This way, if A = I, we obtain JTOA, and we obtain JTDOA if A = I−1eT1 .

4.1.1 Biased TOA measurements

In Chapter (2) we showed that TOA and TDOA measurements are actually biased

and we derived a model for this bias. It is possible to incorporate the bias model in the

generalized cost function (4.7) to localize the source using debiased TOAs.

Let x =

[
x

y

]
be the vector form of (x, y) and suppose we have a TOA bias model

b(x) such that

E{ui} = bi(x) + τi + t, (4.9)

that is,

b = E{u} − τ − t1. (4.10)

Here, we consider that b(x) is any bias model, so it does not have to be exactly the one

developed in Chapter 2. The bias model b(x) can be used to generalize J(x, y) even
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further. Defining

vi = bi(x) + τi + t, (4.11)

we have E{u} = v. The generalized cost function with debiased TOAs has a similar

expression to (4.7), but the definition of v follows (4.11) instead of (4.3):

J(x, t) = (u− v)TG(u− v), v = E{u} = b(x) + τ(x) + t1. (4.12)

As done before with JTOA, the variable t in J(x, t) can be expressed in terms of x, y by

setting ∂J(x,t)
∂t

= 0:

∂J(x, t)

∂t
= −21TG(u− (b(x) + τ(x) + t1)) = 0, (4.13)

thus

t(x, y) =
1TG(u− (b(x) + τ(x)))

1TG1
. (4.14)

Hence, the generalized cost function written only in terms of x and y is

J(x) = (u− v)TG(u− v), v = E{u} = b(x) + τ(x) + t(x, y)1, (4.15)

where t(x, y) is given by (4.14).

The original cost functions JTOA(x, y) and JTDOA(x, y) are obtained from (4.15) by

setting b(x) = 0. Note that for the Constant Velocity Model, using a bias function b(x) is

not necessary because it is possible to debias TOAs using our debiasing method described

in Chapter 2.

4.1.2 The Maximum Likelihood Estimator for Gaussian Mix-
ture Models

It is possible to generalize (4.7) even further by viewing it as a particular case of

the Maximum Likelihood Estimator (MLE) when TOAs are distributed according to

a Gaussian Mixture Model. In order to avoid large expressions, we employ the notation

N (u; v,C) to denote a multivariate Gaussian function with mean v and covariance matrix

C calculated at point u:

N (u; v,C) =
1√

(2π)N det C
e−

1
2

(u−v)TC−1(u−v). (4.16)

Consider that TOAs follow a mixture of M Gaussian distributions (that is, a Gaussian

Mixture Model — GMM) with weights w1, · · · , wM , covariance matrices C1, · · · ,CM and
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means v1, · · · ,vM given by (4.11):

f(u;x, y, t) =
M∑
m=1

wmN (u; vm,Cm), vm = bm + τ(x, y) + t1, (4.17)

where

τ(x, y) =


τ1(x, y)

τ2(x, y)
...

τM(x, y)

 . (4.18)

We assume that the mixture components do not overlap, that is, we assume that for

each u there are M −1 mixture components that are approximately zero when calculated

at the point u, thus f(u;x, y, t) can be approximated by only one mixture component:

f(u;x, y, t) ≈ N (u; vm,Cm), for some m. (4.19)

Let S1,S2, · · · ,SM be a partition on RN such that the m-th mixture component is different

than zero for u ∈ Sm and approximately zero for u /∈ Sm (that is, each Gaussian mixture

component lies in a single set Sm):

N (u; vk,Ck) ≈ 0 for u ∈ S`, ` 6= k, (4.20)

Figure 27 shown an illustration of f(u;x, y, t) for only one sensor and the intervals

S1, · · · ,SM .

The definition of the partition S1, · · · ,SM allows us to rewrite (4.19) defining m

explicitly:

f(u;x, y, t) ≈ N (u; vm,Cm), m = {k|u ∈ Sk}. (4.21)

The hypothesis of disjoint Gaussian distributions eases the calculation of the param-

eters of the GMM. Under this hypothesis, wm = P{u ∈ Sm} is the probability of u be in

the interval Sm, bm = E{u − t1 − τ(x, y)|u ∈ Sm} is the TOA bias given that u ∈ Sm,

Cm = cov(u|u ∈ Sm) is the covariance matrix of u given that it belongs to Sm and

vm = E{u|u ∈ Sm}.

The maximum likelihood estimator for x, y and t is obtained by maximizing (4.21),

or equivalently, its logarithm:

ln (f(u;x, y, t)) =

(
ln(wm)− ln(

√
(2π)N |Cm|)−

1

2
(u− vm)TC−1

m (u− vm)

)
. (4.22)
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Figure 27: Illustration of f(u;x, y, t) for only one sensor.

Hence, the cost function that yields the maximum likelihood estimator when minimized

is

JMLE(x, y, t) = min
k

(
− ln(wk) + ln(

√
(2π)N |Ck|) +

1

2
(u− vk)

TC−1
k (u− vk)

)
,

vk = τ(x, y) + bk + t1. (4.23)

The estimate produced by JMLE(x, y, t) coincides with (4.7) if there is only one com-

ponent in the mixture (that is, TOAs are Gaussian-distributed) and G = C−1
k .

4.2 Optimal Estimator and the Cramér-Rao Lower

Bound

Suppose we want to estimate a vector of deterministic parameters θθθ using a vector

of measurements u whose pdf fu(u;θθθ) depends on θθθ. It is possible to show that the

covariance matrix Cθ̂θθ of any unbiased estimator θ̂θθ(u) is bounded by the the Cramér-Rao
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Lower Bound inequality [56]:

Cθ̂θθ � I(θθθ)−1, (4.24)

where � is defined as

A � B⇔ (A−B) is positive semi-definite. (4.25)

I(θθθ) is the Fisher Information Matrix, defined by

[I(θθθ)]i,j = −E

{
∂2

∂θi∂θj
ln(fu(u;θθθ))

∣∣∣∣∣ θθθ
}
. (4.26)

Note that the Fisher Information Matrix does not depend on the estimator we are using.

Equation (4.24) means that if λ is the k-th largest eigenvalue of Cθ̂θθ and b is the k-th

smallest eigenvalue of I(θθθ), then λ ≥ 1
b

. In other words, the eigenvalues of the covariance

matrix of any estimator cannot be smaller than a fixed value that depends only on the

pdf of the measurement vector. An unbiased estimator is optimal if the eigenvalues of its

covariance matrix reach their bounds, i.e. Cθ̂θθ = I(θθθ)−1.

4.3 Deriving the Optimal Source Position Estimator

Define the cost functions for k = 1, 2, · · · ,M :

Jk(x, y, t) =
1

2
(u− vk)

TC−1
k (u− vk), vk = τ(x, y) + bk + t(x, y)1, (4.27)

where

t(x, y) =
1

N
1Tu− 1

N
1T (bk + τ). (4.28)

Each one of these M cost functions is a version of (4.15) using a different value for C

and b that is associated to a component of the Gaussian Mixture (recall that M is the

number of disjoint intervals S1, · · · ,SM , that is, the number of mixture components).

Let us define the cost function

J(x, y) = Jm(x, y), m = {k : u ∈ Sk}. (4.29)

In this section, we show that that minimizing (4.29) yields a nearly-optimal unbiased

estimate for the source position. In order to prove the optimality of (4.29), we assume

that m is correctly picked, but we show how to pick m using the signals received by the

sensors in Section 4.3.3.
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Note that the Maximum Likelihood Estimator can be written in a form similar to

(4.29), but using a different value for m:

JMLE(x, y) = Jm(x, y), m = arg min
k

(
− ln(wk) + ln(

√
(2π)N |Ck|) + Jk(x, y)

)
.

(4.30)

Hence, (4.29) may coincide with the MLE if they use the same value for m, but they are

different estimators in general. However, their estimates always coincide if the noise level

is low enough so that the number of components in the Gaussian mixture is M = 1, as

in this case both estimators always pick m = 1.

Since we want to determine if the estimator x̂ = arg minx J(x) is optimal (where

J(x, y) is given by (4.29)), we need to calculate its covariance matrix and also the Fisher

Information Matrix.

4.3.1 Obtaining the Fisher Information Matrix

Let us denote the actual source position as x∗ and its instant of emission as t∗. As

derived before, the log-likelihood function L(x∗, t∗) = log(f(u; x∗, t∗)) is

L(x∗, t∗) = ln

(
wm√
|2πCm|

)
− 1

2
(u− τ − bm − t∗1)TC−1

m (u− τ − bm − t∗1). (4.31)

Defining τ̄m = τ + bm, the first and second derivatives of L(x∗, t∗) are

Lx = τ̄Tm,xC
−1
m (u− τ̄m − t∗1), (4.32)

Ly = τ̄Tm,yC
−1
m (u− τ̄m − t∗1), (4.33)

Lt = 1TC−1
m (u− τ̄m − t∗1), (4.34)

Lxx = τ̄Tm,xxC
−1
m (u− τ̄m − t∗1)− τ̄Tm,xC−1τ̄m,x, (4.35)

Lyy = τ̄Tm,yyC
−1
m (u− τ̄m − t∗1)− τ̄Tm,yC−1τ̄m,y, (4.36)

Ltt = −1TC−1
m 1, (4.37)

Lxy = τ̄Tm,xyC
−1
m (u− τ̄m − t∗1)− τ̄Tm,xC−1τ̄m,y, (4.38)

Lxt = −1TC−1
m τ̄m,x, (4.39)

Lyt = −1TC−1
m τ̄m,y. (4.40)
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The Fisher Information Matrix is given by

I(x∗, t∗) = −E



Lxx Lxy Lxt
Lxy Lyy Lyt
Lxt Lyt Ltt


 =

M∑
k=1

wkE



Lxx Lxy Lxt
Lxy Lyy Lyt
Lxt Lyt Ltt


∣∣∣∣∣ u ∈ Sk

 . (4.41)

Each conditional expectation being summed in (4.41) can be computed by assuming u

follows a Gaussian distribution with mean vk = τk + bk − t∗1 and covariance matrix Ck.

Applying each conditional expectation to equations (4.35) to (4.40) and substituting the

results in (4.41), we obtain

I(x∗, t∗) =
M∑
k=1

wk


τ̄Tk,xC

−1
k τ̄k,x τ̄Tk,xC

−1
k τk,y 1TC−1

k τ̄k,x

τ̄Tk,yC
−1
k τ̄k,y τ̄Tk,xC

−1
k τ̄k,y 1TC−1

k τ̄k,y

1TC−1
k τ̄k,x 1TC−1

k τ̄k,y 1TC−1
k 1.

 (4.42)

4.3.2 Covariance Matrix

In order to calculate the covariance matrix of the estimator (x̂, ŷ) = arg minx,y J(x, y),

where J(x, y) is given by (4.29), we will approximate J(x, y) by its second-order Taylor

polynomial around the source position x∗, given by

J(x) ≈ J(x∗) +∇J(x∗)(x− x∗) +
1

2
(x− x∗)TH(x∗)(x− x∗). (4.43)

The estimated position x̂ is calculated by setting ∇J(x̂) = 0. Since ∇J(x) ≈ ∇J(x∗) +

H(x∗)(x− x∗), we have

x̂− x∗ ≈ −H−1(x∗)∇J(x∗), (4.44)

thus

(x̂− x∗)(x̂− x∗)T ≈ H−1(x∗)∇J(x∗)∇J(x∗)TH−1(x∗). (4.45)

We now use the following approximations:

E{x̂− x∗} ≈ −E{H(x∗)}−1E{∇J(x∗)}, (4.46)

E{(x̂− x∗)(x̂− x∗)T} ≈ E{H(x∗)}−1E{∇J(x∗)∇J(x∗)T}E{H(x∗)}−1. (4.47)

These approximations are also used in [54, 57] to derive the optimal estimator for the

source localization problem in the scenario where the instant the source emits a signal is

known, as in radar applications.

The partial derivatives of J(x, y) are needed to compute the expectation of H(x∗) and
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∇J(x∗)∇J(x∗)T :

∂J

∂x
= 2vTm,xC

−1
m (vm − u), (4.48)

∂J

∂y
= 2vTm,yC

−1
m (vm − u), (4.49)

∂2J

∂x2
= 2vTm,xxC

−1
m (vm − u) + 2vTm,xC

−1
m vm,x, (4.50)

∂2J

∂y2
= 2vTm,yyC

−1
m (vm − u) + 2vTm,yC

−1
m vm,y, (4.51)

∂2J

∂x∂y
= 2vTm,xyC

−1
m (vm − u) + 2vTm,xC

−1
m vm,y. (4.52)

Therefore,

∇J(x∗) = 2

[
vTm,xC

−1
m (vm − u)

vTm,yC
−1
m (vm − u)

]
, (4.53)

E{∇J(x∗)} = 2
M∑
k=1

E

{[
vTk,xC

−1
k (vk − u)

vTk,yC
−1
k (vk − u)

] ∣∣∣∣∣ u ∈ Sk

}
, (4.54)

E{∇J(x∗)∇J(x∗)T} =
M∑
k=1

wkE{∇J(x∗)∇J(x∗)T | u ∈ Sk}

= 4
M∑
k=1

wk

[
vTk,xC

−1
k vk,x vTk,xC

−1
k vk,y

vTk,xC
−1
k vk,y vTk,yC

−1
k vk,y

]
(4.55)

and

E{H(x∗)} = 2
M∑
k=1

wk

[
vTk,xC

−1
k vk,x vTk,xC

−1
k vk,y

vTk,xC
−1
k vk,y vTk,yC

−1
k vk,y

]
. (4.56)

As E{u|u ∈ Sk} = vk, we have from (4.53) that E{∇J(x∗)} = 0, thus we conclude

from (4.46) that the position estimator is approximately unbiased:

E{x̂− x∗} ≈ −E{H(x∗)}−1E{∇J(x∗)} = 0, (4.57)

In order to shorten the next expressions, let us define the matrix

Ak =

[
vTk,xC

−1
k vk,x vTk,xC

−1
k vk,y

vTk,xC
−1
k vk,y vTk,yC

−1
k vk,y

]
, (4.58)

such that E{H(x∗)} = 2
∑M

k=1wkAk and E{∇J(x∗)∇J(x∗)T} = 4
∑M

k=1wkAk.

From (4.47), the covariance matrix Cx = E{(x̂ − x∗)(x̂ − x∗)T} of the estimated
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position is

Cx ≈

(
M∑
k=1

wkAk

)−1( M∑
k=1

wkAk

)(
M∑
k=1

wkAk

)−1

=

(
M∑
k=1

wkAk

)−1

. (4.59)

Since vk = τ̄k + t1, we have vk,x = τ̄k,x and vk,y = τ̄k,y. Thus, (4.59) can be written as

Cx ≈

(
M∑
k=1

wk

[
τ̄Tk,xC

−1
k τ̄k,x τ̄Tk,xC

−1
k τ̄k,y

τ̄Tk,yC
−1
k τ̄k,y τ̄Tk,xC

−1
k τ̄k,y

])−1

, (4.60)

which is the inverse of the submatrix of the Fisher Information Matrix (4.42) that contains

only the spatial components. Hence, (4.29) is the optimal TOA-based source position

estimator.

It must be highlighted that we made the following hypotheses to show that this

estimator is optimal:

1. The noise variance is not very high, so that the Taylor approximation (4.43) works.

This is also necessary to guarantee that the estimator is approximately unbiased.

2. The parameters of the TOA pdf wk,bk and Ck are known.

Hence, (4.29) may not be optimal if these conditions are not satisfied.

Note that any modified cost function Jmod(x, y) = kJ(x, y) also yields an optimal

estimator for any k because multiplying J(x, y) by a constant does not affect its critical

points.

4.3.3 Implementation of the Optimal Estimator

In order to show that (4.29) is optimal, we assumed that the parameters of the Gaus-

sian mixture (b1, · · · ,bM), (C1, · · · ,CM) and (w1, · · · , wM) are known, and we also as-

sumed that m is such that u ∈ Sm, but these parameters must be estimated in practical

problems. In this section, we describe a procedure to choose m and to estimate the GMM

parameters using the signals received by the sensors. To ease the comprehension our

method, we assume that the signals are corrupted by white noise and that the noises at

different sensors are independent.

Given the signals r1[n], · · · , rN [n] received by the N sensors, we estimate the TOA

pmf for each sensor using the expression derived in Chapter 2, but we substituted the
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noiseless waveform by the noisy hit:

p[n] = (1− Φ[n])
n−1∏
k=0

Φ[k], Φ[n] = FW (K − |ri[n]|). (4.61)

The obtained pdf is not exactly a Gaussian mixture, but we need to extract the GMM

parameters from it. Thus, we convert the pmf p[n] to a pdf p(t) = 1
Ts
p[round(t/Ts)] and

then we fit p(t) into a Gaussian Mixture Model, as done in Section 2.6 from Chapter 2.

Then, the means µi,1, · · · , µi,M , variances σ2
i,1, · · · , σ2

i,M and weights wi,1, · · · , wi,M of each

mixture component are extracted for each sensor i = 1, 2, · · · , N .

Now, we have to pick the index m. If there are Mi mixture components at the i-th

sensor, there are M = M1M2 · · ·MN possible values for m. Since we are assuming white

noise, we use a simplified notation: Instead of choosing m from M possibilities, we can

choose which mixture to use from each sensor individually because TOAs are independent.

This way, we have to choose an index mi for each sensor that ranges from 1 to Mi.

mi can be picked by extracting the sets S1, · · · ,SMi
from the fitted pdf and finding

the set to which mi belongs. This is equivalent to finding the Gaussian component that

most contributes to the fitted pdf:

mi = arg max
k

wk√
2πσ2

k

e
− (ui−µk)

2σ2
k . (4.62)

Finally, we must extract the TOA bias for the i-th sensor bi from the mean of the

chosen GMM component µmi . Ideally, µmi and bmi would be related by

µmi = τ(x∗, y∗) + t∗ + bmi , (4.63)

but we do not know τ(x∗, y∗) or t∗. We estimate bi with the naive assumption that

τ(x∗, y∗) + t∗ is the first instant where p[n] crosses a very small fixed threshold Kp, that

is, the instant where it assumes a non-negligible value. Hence, bi is estimated as

bi = µmi − n̄Ts, n̄ = min
n
{n : p[n] ≥ Kpdf}. (4.64)

Therefore, the source position estimated by our proposed estimator is

(x̂, ŷ) = arg min
x,y

(u− v)TC−1(u− v), v = τ(x, y) + b + t(x, y)1, (4.65)
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where t(x, y) = 1
N

1Tu− 1
N

1T (b + τ), b =


b1

...

bN

 and C = diag(σ2
m1
, σ2

m2
, · · · , σ2

mN
).

The proposed algorithm is summarized in Algorithm 1.

Note that our method requires the signals sampled by sensors ri[n] to localize the

source, thus it does not use only TOAs as the cost functions JTOA and JTDOA. Storing

waveforms may be an issue for long acoustic emission tests that last weeks or months,

as the waveforms may require an enormous storage capacity. However, it is possible to

use our method without the need to store the whole waveforms because it uses ri[n] only

to calculate p[n] = (1 − Φ[n])
∏n−1

k=0 Φ[k], which can be computed recursively: Defining

Q[n] =
∏n−1

k=0 Φ[k], we have

p[n] = (1− Φ[n])Q[n], Q[n] = Q[n− 1]Φ[n− 1]. (4.66)

Since the computational cost of computing Φ[n] = FW (K − |ri[n]|) is small, it is possible

to compute p[n] in real time and discard the signals r1[n], · · · , rN [n] instead of storing

them. Storing p[n] instead of the signals is much more efficient because p[n] assumes

a non-negligible value for only a small number of samples, thus it is possible to store

only these non-negligible samples. Therefore, our method does not present the problem

of storing a huge number of waveforms in long acoustic emission tests as the methods

presented in Chapter 5.
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Algorithm 1: The proposed optimal TOA-based source position estimator.

Data: TOAs u1, · · · , uN ; Very small threshold Kp; Signals sampled by sensors

r1[n], · · · , rN [n]; Noise cdf FW (w); Fixed threshold K; Sampling period

Ts;

Result: Estimated source position (x̂, ŷ)

for i=1:N do
Estimate the TOA pmf as

p[n] = (1− Φ[n])
n−1∏
k=0

Φ[k], Φ[k] = FW (K − |ri[n]|).

Fit a Gaussian Mixture Model to the function p(t) = 1
Ts
p[round(t/Ts)],

obtaining the means µi,1, · · · , µi,M , variances σ2
i,1, · · · , σ2

i,M and weights

wi,1, · · · , wi,M for each mixture component;

Set mi as

mi = arg max
`

w`√
2πσ2

`

e
− (ui−µ`)

2

2σ2
` .

Calculate n̄ as the first instant where p[n] crosses a very small threshold Kp

and set bi as

bi = µmi − n̄Ts, n̄ = min
n
{n : p[n] ≥ Kp}.

Set C = diag(σ2
m1
, σ2

m2
, · · · , σ2

mN
);

The estimated source position (x̂, ŷ) is

(x̂, ŷ) = arg min
x,y

(u− v)TC−1(u− v), v = τ(x, y) + b + t(x, y)1,

where t(x, y) = 1
N

1Tu− 1
N

1T (b + τ).

4.3.4 Special case: Unbiased i.i.d. Gaussian TOAs

Consider that the noise level is small enough so that TOAs can be approximated by

a Gaussian distribution, in which case M = 1. If TOAs are unbiased and i.i.d. random

variables, then their covariance matrix is

C1 = σ2I, (4.67)

thus

C−1
1 =

1

σ2
I. (4.68)
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In this case, C−1
1 is proportional to G when J(x, y) = JTOA(x, y). Thus, for small

noise, JTOA(x, y) is the optimal cost function when the TOAs are unbiased and inde-

pendent Gaussian random variables with the same variance, which would happen if all

sensors are at approximately the same distance from the source.

4.4 Simulations

In this section, we validate the derivations of this chapter through simulations. First,

we generate unbiased iid Gaussian TOAs artificially at different source positions using two

different noise variances to verify in which conditions JTOA is the optimal cost function.

Then, we test our method for a fixed source position and different SNRs in three

different scenarios: In the first case, we generate artificial TOAs following a Gaussian

Mixture Distribution and estimate the source position using the actual GMM parameters

in order to validate the optimality of our estimator in the case where TOAs follow a GMM.

In the second scenario, we tested our method using noisy hits and parameters estimated

from the noisy signals, and in the third case we applied a lowpass filter to the noisy hits

before extracting parameters to improve the performance of the optimal estimator. In

the three scenarios, our TOA debiasing method described in Chapter 2 was used.

Finally, we compare the performance of the presented localization algorithm using

biased TOAs and TOAs debiased with our method to show that debiasing TOAs reduces

the MSE.

4.4.1 Gaussian TOAs generated at different source positions

We positioned 4 sensors at the coordinates (0, 0), (0, 1), (1, 0) and (1, 1) in order to

estimate the position of sources located inside the convex polygon whose vertices are the

positions of the sensors (in this case, this polygon is a square). The simulated TOAs were

Gaussian random variables with no bias and standard deviation of 1µs. Keeping the y

coordinate of the source position fixed and equal to y = 40cm, we swept the x coordinate

from 0m to 1m. For each position, we calculated the variance of the estimators using

105 samples (defining the variance as the trace of the covariance matrix), and then we

compared it with the trace of the Fisher information matrix inverse. We also plotted its

efficiency as a function of source position, which was calculated as

η =
tr{I(x∗)−1}

tr{Cx}
. (4.69)
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Note that η = 1 if the estimator is optimal.

The standard deviation of the estimator and its efficiency are plotted in Figures 28

and 29, respectively, in function of the source position. The variance of the cost function

JTOA coincides with the optimal one (denoted by CRLB — Cramér-Rao Lower Bound),

and its efficiency is approximately 100% at all source positions (note that the efficiency

can slightly surpass 100% for some positions because we are using a finite number of

samples to estimate the covariance matrix, and also because the position estimates are

not completely unbiased). This is not the case for JTDOA, whose variance is always above

the optimal one and whose efficiency is not close to 1 for most source positions.
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Figure 28: Standard deviation of the source position estimators as a function of source
position for σ = 1µs. The horizontal coordinates of the sensors are x = 0 and x = 1.
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Figure 29: Efficiency of the source position estimators as a function of source position for
σ = 1µs. The horizontal coordinates of the sensors are x = 0 and x = 1.

In the next simulation, we raised the standard deviation to 10µs, and used 105 samples

to calculate the variance. The results are shown in figures 30 and 31.
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Figure 30: Standard deviation of the source position estimators as a function of source
position for σ = 10µs. The horizontal coordinates of the sensors are x = 0 and x = 1.
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Figure 31: Efficiency of the source position estimators as a function of source position for
σ = 10µs. The horizontal coordinates of the sensors are x = 0 and x = 1.

Figure 31 shows us that JTOA is very close to the optimal one when the source lies

inside the region of interest (defined as the convex polygon whose vertexes are the positions

of the sensors). However, outside this polygon, JTOA is no longer the optimal cost function

because the approximations we did in order to prove the estimator is optimal are not

precise in this region. This happens because the approximation x ≈ x∗−H−1(x∗)∇J(x∗)

does not hold when x∗ is in a region where the concavity of J(x, y) is not approximately

constant, and the sensor positions are local maxima of J(x, y). Furthermore, the Hessian

oscillates much faster outside the region of interest than inside it, so the approximations

(4.46) and (4.47) no longer work.

Moreover, when noisy measurements are used, the estimated position may be in a

local but not global minimum of the cost function. Local minima were not considered

when we derived the covariance matrix expression, and they would yield a larger MSE

than the optimal one and also bias the estimator.

The estimator bias as a function of source position is shown in Figures 32 and 33 for

standard deviations σ = 1µs and σ = 10µs, respectively. For σ = 1µs, the bias in the

region of interest is approximately 0.02mm, thus it can be neglected. For σ = 10µs, the

bias in the region of interest is approximately 1mm while the standard deviation is 5cm,

thus the position bias does not interfere much in the MSE at the region of interest (the
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bias when the source lies inside the region of interest is negligible). This also shows us that

even when unbiased TOAs are used (recall that in this simulation TOAs are unbiased),

their variance can still cause a small bias to position estimates since we observed that

bias increased with variance. Nevertheless, the bias would be zero if the approximations

(4.43) and (4.46) were exact.

For a source outside the region of interest, however, there is a non-negligible bias for

both variances because the hypotheses we did to prove that our estimator is unbiased do

not hold in this region. In particular, the Hessian of the cost functions are not constant

approximately constant for sources located outside the region of interest.

It is important to remark that the sensors are scattered around a region we want to

monitor. Although we discussed the performance of our cost function outside the region

of interest, the precision of localization algorithms is much more important when the

source position is inside the region of interest than when it is outside it. Inside the region

of interest, our method presents a very small bias (which is not exactly zero due to the

approximations we made) and a variance that is very close to the optimal one.
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Figure 32: Estimated position bias as a function of source position for σ = 1µs.
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Figure 33: Estimated position bias as a function of source position for σ = 10µs.

4.4.2 Fixed source position and different SNRs

Besides deriving the optimal source position estimator for Gaussian TOAs (which is

a good approximation if the noise level is low), we have also generalized it to TOAs that

follow a Gaussian Mixture distribution, which is an approximation for high noise level.

However, in order to find the optimal estimator, we have assumed two hypotheses:

• The noise level must not be very high, or else the Taylor approximation (4.43) will

not work and the estimator will be biased, since x must not be distant from x∗.

• The TOA pdf is known given the source position, that is, the mean, variance and

weight of each Gaussian Mixture component.

If the first hypothesis is not respected, the performance of our estimator may decrease and

become even worse than the performance of other cost functions. If the second hypothesis

is not true, the derived expression for the CRLB deviates from the true CRLB, thus other

estimators may show lower MSE than the derived CRLB. Nevertheless, even if these

assumptions are not completely true, our estimator may still show better performance

than other methods.

For this reason, we have done four simulations in similar conditions as before, except
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that the source position is fixed at x∗ = (0.3, 0.4) and white Gaussian noise with different

variances was added to the generated signal. In all simulations, a modulated Hann window

was used as equivalent source waveform s[n]:

s[n] = sin2
( πn

1000

)
sin

(
2πn

67

)
. (4.70)

The sampling rate is 10 MHz, hence the frequency of the carrier is 107

67
≈ 150 kHz, the

resonance frequency for some Acoustic Emission sensors. The Constant Velocity Model

was used to generate hits, thus all hits are attenuated and delayed versions of s[n]. How-

ever, a constant TOA bias model b that does not depend on the source position was used

by our estimators.

In all simulations, we calculate TOAs using the TOA debiasing technique proposed

in Section 2.4 from Chapter 2 with a fixed threshold K = 0.3. The Optimal Estimator

was implemented using Algorithm 1, and the Maximum Likelihood Estimator used the

parameters estimated by this algorithm.

4.4.2.1 Gaussian TOAs and known pdf

In this simulation, we used the noisy hits to obtain auxiliary TOAs through the

fixed threshold method. Then, the mean and variance of these auxiliary TOAs were

computed and used to generate TOAs following a Gaussian Mixture distribution with

known parameters, except for τ(x, y), which depends on the source position.

The MSE in terms of noise standard deviation for the presented methods is shown in

Figures 34 and 35. The MSE of the optimal estimator is very close to the Cramér-Rao

Lower Bound, confirming our derivations. Moreover, we conclude from Figure 34 that the

Maximum Likelihood Estimator does not coincide with the optimal one if σ is high, but

Figure 35 shows that the MLE is optimal for low noise level.
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Figure 34: MSE of TOA-based localization methods in terms of noise standard deviation.
The parameters of Gaussian Mixtures used by GMM and Optimal Estimator are the
actual ones, and TOAs are distributed according to a GMM.
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Figure 35: Zoomed version of Figure 34 at small variances.
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4.4.2.2 Empirical TOAs and unknown pdf

In this simulation, the actual TOAs obtained from the fixed threshold method are

used to localize the source. Hence, TOAs are not exactly Gaussian-distributed in this

case. The Cramér-Rao Lower Bound was calculated using the actual Gaussian Mixture

parameters as in the last simulation, but the parameters used by the MLE and the Optimal

Estimator were estimated from noisy hits using Algorithm 1.

Algorithm 1 requires as input the noise cdf to extract the TOA pmf from noisy hits.

The formula to estimate p[n] (2.40) was derived considering that the waveform ri[n] is

noiseless, but as in this case ri[n] is noisy, we used the cdf of a Gaussian random variable

with half the variance of the actual noise as input in Algorithm 1. We have observed

empirically that using the cdf of a Gaussian noise with lower variance than the actual

variance yields better results than using the actual noise cdf.

Figure 36 shows that if the noise variance is very high, the derived optimal estimator

does not perform better than the others, but it does have a significantly better performance

for intermediate variances where the TOA pdfs cannot be approximated as single Gaussian

distributions.

It can be seen at Figure 37 that the optimal estimator has lower MSE than the other

estimators for very low variances, but it may perform worse than them if the variance is

not very low, but low enough so that TOAs pdf is nearly Gaussian. This is because the

MSE of JTOA and JTDOA fall abruptly when the TOA distribution becomes approximately

Gaussian (or a mixture with only one component), while the MLE and the optimal es-

timator do not because they depend on the noisy parameters of the estimated Gaussian

pdf. For smaller variances, the parameters from the pdf approximate well the actual ones,

thus the Optimal Estimator becomes again better than JTOA and JTDOA.

Note that the MSE of the estimators fall below the Cramér-Rao Lower Bound if σ is

small. This happens because we derived the CRLB for TOAs following a known Gaussian

Mixture distribution, but the true distribution is not exactly a mixture of Gaussians.

Even if it were, the parameters used in the mixture of Gaussians used by the estimators

are estimated, not exact.
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Figure 36: MSE of TOA-based localization methods in terms of noise standard deviation.
The parameters of Gaussian Mixtures are obtained from noisy hits.
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Figure 37: Zoomed version of Figure 36 at small variances.
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4.4.2.3 Empirical TOAs obtained from filtered hits and unknown pdf

The main issue of MLE and the optimal estimator is that they depend on the noise

pdf, which is not accessible in practice and must be estimated. If the noise variance is high,

these parameters can be poorly estimated and cause performance loss in the localization

methods, as verified in the last simulation. For this reason, a lowpass filter is applied to

hits before calculating the threshold in this simulation. The filter used was a Butterworth

filter of order 15 and digital cutoff frequency ωc = 0.1π (or 1 MHz), but the TOA pmf

was calculated assuming white Gaussian noise.

The results are shown in Figures 38 and 39. With the filter, the parameters of the

GMM are better estimated, and the optimal estimator has better performance than all

other methods even for high variance. The MLE also presents much lower MSE than

JTOA and JTDOA for high noise level.

If the noise variance is very low, JTOA and JTDOA perform better than the optimal

estimator only in a small interval of σ. Thus, both MLE and the optimal estimator are

better options than JTOA and JTDOA in most cases.

Since the noise is assumed white to calculate the TOA pmf (which is used to extract

the GMM parameters), the optimal estimator may perform worse using filtered hits than

using the original hits for some variances (as for 10−3 < σ < 5× 10−3), but using filtered

hits implies in lower MSE in most cases.
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Figure 38: MSE of TOA-based localization methods in terms of noise standard deviation.
Both TOAs and the parameters of Gaussian Mixtures are obtained from filtered hits.
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Figure 39: Zoomed version of Figure 38 at small variances.
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4.4.2.4 Effect of TOA debiasing

We repeated the simulations in 4.4.2.2 and 4.4.2.3, that is, using empirical TOAs

(extracted or not from filtered hits) and unknown pdf. In all previous simulations, TOAs

were debiased using the method described in Chapter 2. In this simulation, original TOAs

are used by localization methods, whose performance are compared to the same methods

using debiased TOAs.

Figure 40 shows the comparison using TOAs extracted from original hits, and in Fig-

ure 41 hits are filtered before TOAs extraction. In both cases, it is clear that our debiasing

method significantly decreases the MSE of TOA-based localization methods. These fig-

ures also show that the optimal estimator only achieves a much better performance than

JTOA if TOAs are unbiased, since otherwise the MSEs of these estimators are very close

to each other for all values of σ.
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Figure 40: Comparison of localization methods using biased and unbiased TOAs. TOAs
are extracted from original hits.
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Figure 41: Comparison of localization methods using biased and unbiased TOAs. TOAs
are extracted from filtered hits.

Concluding remarks

In this chapter, we derived the optimal source position estimator assuming TOAs

follow a mixture of Gaussian distributions, which is approximately true for high sampling

rate as explored in Chapter 2. This estimator is only optimal if the noise variance is

not very high (so that the Taylor expansion (4.43) is a good approximation), and the

parameters of the mixture are known. Even though these parameters are not known in

practical applications, they can be estimated from noisy waveforms and used to localize

the source, yielding better results than the cost functions JTOA(x, y) and JTDOA(x, y) in

several scenarios, especially if the noise variance is high and in the case where a low-pass

filter is applied to hits before extracting TOAs. In these cases, the optimal estimator has

better performance than JTOA(x, y) even if biased TOAs are used. We also showed that

JTOA(x, y) coincides with the optimal estimator and the maximum likelihood estimator if

TOAs are unbiased i.i.d. Gaussian random variables.

It may be difficult to run algorithms that use the waveforms sampled by sensors in long

acoustic emission tests because storing the signal may require a huge storage capability.

Even though the waveforms are required to estimate the parameters of the mixture, it

is possible to calculate p[n] in real time and store p[n] instead of the whole hit, which



is advantageous because p[n] assumes a non-negligible value for only a small number of

samples, thus it is possible to store only these samples and discard the rest. This way,

the derived optimal estimator avoids the storage problem.
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5 WAVEFORM-BASED SOURCE

LOCALIZATION

In TOA-based localization methods, the waveforms acquired by the sensors are pro-

cessed in real time in order to calculate their TOAs. Once TOAs are estimated, the

waveforms can be discarded because only the information of TOAs is used to determine

the source position. In this chapter, we explore localization techniques that use directly

the waveforms instead of the TOAs, bypassing the TOA calculation step.

Waveform-based localization techniques require much more computational complexity

than TOA-based methods, which makes them harder to be implemented in real time. If

not implemented in real time, the storage of the waveforms is required, unlike TOA-based

methods. On the other hand, when waveforms are used to localize the source instead of

TOAs, more information is available. For this reason, waveform-based methods as [13–16]

in principle should be able to perform better than TOA-based ones. Moreover, some

waveform-based methods may be able to localize sources using less than three sensors

[14,58], unlike traditional TOA-based methods.

We develop in this chapter two versions of a localization technique that uses a linear

propagation model to estimate the source position using the waveforms sampled by the

sensors. While the first version of our method uses a least-squares approach, the second

one considers the source signal is sparse in a known dictionary. The redundancy of

information carried by acoustic emission signals is exploited using sparse reconstruction

methods in [13,59], and the wavelet transform is widely used in acoustic emission [9,60–62]

due to the sparsity of acoustic emission signals in wavelet dictionaries. This motivates us

to assume that the signal emitted by the source is sparse in a known dictionary to improve

our localization method. In this chapter, we use a wavelet dictionary that does not depend

on data. However, if training data is available, it is possible to learn a dictionary where the

source signal is sparse (or improve the existing one) using Dictionary Learning algorithms,

as [63].

Usually, hits from the same source are required by source localization methods, thus
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identifying which hits come from the same source is essential for correct localization. We

also extend our waveform-based localization technique to hit grouping. For this reason,

we also explore hit grouping methods that use the waveform to group hits into events.

5.1 Sparse Reconstruction

Sparse reconstruction is a technique that solves a system of linear equations that does

not admit a single exact solution exploiting the a priori information of the sparsity of the

solution [64]. In other words, the sparse reconstruction problem aims to obtain an L× 1

sparse vector s such that y ≈ Ds, where y is a known M × 1 vector with M < L and D

is a known M × L matrix. One approach to solve this problem is by minimizing a cost

function that penalizes the `p-norm1 of s, with 0 ≤ p < 2, as

Jλ(s;λ) = ‖y −Ds‖2
2 + λ ‖s‖p . (5.1)

In this work, we focus on the case where p = 0, but other cost functions or other values

for p could also be employed. There are several algorithms in the literature that minimize

greedily the cost function Jλ(s;λ) (that is, algorithms that try to minimize the cost

function by solving simpler problems, obtaining an approximation of the global minimum

of the function), as Orthogonal Matching Pursuit (OMP) [65] — used in this chapter —

and Homotopy `0-DCD (H`0-DCD) [66].

We say that two cost functions J1(s) and J2(s) are equivalent if the value of s that

minimizes J1(s) also minimizes J2(s). It is possible to prove that there is an equivalence

between the three of the most common sparse cost functions, as stated in the next propo-

sition. The equivalence between these cost functions is also explored in the literature [67].

It is important to talk about the equivalence of these cost functions because they

depend on different parameters whose choice is not straightforward, and for some appli-

cations it may be easier to choose the parameters for one of these cost functions than for

the others.

Proposition 1. ∀ε > 0 and ∀K > 0, ∃λ > 0 such that the cost function

Jλ(s;λ) = ‖y −Ds‖2
2 + λ ‖s‖0 (5.2)

1If 0 ≤ p < 1, ‖s‖p is not convex, and therefore is a pseudo-norm, not a true norm. For p = 0, ‖s‖0 is
defined as the number of nonzero elements of s. It can be shown that ‖s‖0 = limp→0 ‖s‖p.
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is equivalent to

JK(s;K) = ‖y −Ds‖2
2 s.t. ‖s‖0 ≤ K (5.3)

and

Jε(s; ε) = ‖s‖0 s.t. ‖y −Ds‖2
2 ≤ ε2 (5.4)

Proof. Denote s∗K and s∗ε the values of s that minimize JK(s;K) and Jε(s; ε), respectively.

These solutions also minimize the cost functions

J ′K(s) = ‖y −Ds‖2
2 s.t. ‖s‖0 = ‖s∗K‖0

and

J ′ε(s) = ‖s‖0 s.t. ‖y −Ds‖2
2 = ‖y −Ds∗ε‖

2
2

because J ′K(s) and J ′ε(s) have tighter constraints than JK(s) and Jε(s), and the solutions

that minimize the less constrained cost functions also satisfy the constraints of J ′K(s) and

J ′ε(s).

In order to solve a minimization problem with equality bounds we can use Lagrange

multipliers, yielding cost functions JλK (s) and Jλε(s) that are minimized by s∗K and s∗ε for

some constants λK > 0 and λε > 0:

JλK (s) = ‖y −Ds‖2
2 + λK(‖s‖0 − ‖s

∗
K‖0),

JεK (s) = ‖s‖0 + λε(‖y −Ds‖2
2 − ‖y −Ds∗ε‖

2
2).

Note that unlike the parameter λ, the Lagrange multipliers λK and λε cannot be chosen

arbitrarily, as they depend on y, D and λ.

The cost functions JλK (s) and JεK (s) are equivalent to

J ′λK (s) = ‖y −Ds‖2
2 + λK ‖s‖0

and

J ′εK (s) = ‖y −Ds‖2
2 +

1

λε
‖s‖0

because J ′λK (s) and J ′λε(s) can be written as J ′λK (s) = JλK (s)+bK and J ′λε(s) = aεJλε(s)+

bε, where bK , aε and bε are constants that do not depend on s.

Thus, since J ′λK (s) = Jλ(s;λK) and J ′εK (s) = Jλ(s; 1
λε

) for λ = λK and λ = 1
λε

the cost

functions JK(s;K) and Jε(s; ε) are equivalent to Jλ(s;λ).

From this proposition, it is straightforward to conclude that for any λ > 0, Jλ(s;λ) is
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equivalent to JK(s;K) and Jε(s; ε) for some K > 0 and ε > 0.

5.1.1 Exploring sparsity in Acoustic Emission

In Chapter 2, we defined the equivalent waveform at the source position (denoted in

that chapter as Aψ[n]) as an auxiliary signal that generates the signals received by the

sensors if a propagation model is applied to it. Consider that the equivalent waveform

y0 ∈ RM at the source position (xs, ys) is sparse in a known dictionary D ∈ RM×L that

can either be a fixed dictionary (that does not depend on the data) or a dictionary that

was learned from a training set using a Dictionary Learning algorithm as [63,68–70]:

y0 = Ds0, ‖s0‖0 = K � L, (5.5)

where s0 is the sparse representation of y0 in the dictionary D. Note that y0 is a collection

of M samples of the equivalent source signal.

Also, consider the vectorized signal yi =
[
ri[0] ri[1] · · · ri[M − 1]

]T
received by

sensor i is y0 transformed by a known M×M matrix Hi(x, y) that depends on the source

position (x, y):

yi = Hi(x, y)y0 = Hi(x, y)Ds0, 1 ≤ i ≤ N, (5.6)

where L is the number of sensors. Matrix Hi(x, y) represents a linear system that models

the propagation of the wave from the point (x, y) to the i-th sensor. If the linear system

that deforms the wave is time-invariant, Hi(x, y) is a Toeplitz matrix (because, since the

system is time-invariant, all rows of Hi(x, y) must be a linear-shifted version of its first

row).

It is worth noting that the vectors of samples yi and equivalent waveforms y0 are

represented using bold characters, and they shall not be confused with the actual source

position (xs, ys) or the tentative source position (x, y).

In this chapter, we explore algorithms based on sparsity to create a method that

recovers s0 using the measurement vectors yi and a known propagation model, but we

also derive a least squares approach. We present the methods considering the noiseless

case (that is, we assume the model is exact and there is no measurement noise, in which

case the results are exact), but the tests are performed considering a noisy scenario and

uncertainties over the model.

We assume the measurement vectors y1,y2, · · · ,yN are vectors of synchronized sam-

ples for each sensor. Each measurement vector yi corresponds to M samples taken from
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instant t = t0 to t = (M−1)Ts+ t0, where Ts is the sampling interval and t0 is the instant

of the first sample. This way, each yi represents the hit obtained by each sensor. In our

algorithm, no restrictions about t0 are made – the sensors can start sampling before or

after the wave has reached the first sensor. We also assume that there is only one source

emitting a signal during the period comprised by the measurement vectors, thus we do

not tackle the problem of source separation.

Denote

y =


y1

y2

...

yN

 (5.7)

and

H(x, y) =


H1(x, y)

H2(x, y)
...

HN(x, y)

 . (5.8)

We call H(x, y) the linear propagation model matrix. The system of equations

y1 = H1(x, y)Ds0

y2 = H2(x, y)Ds0

...

yN = HN(x, y)Ds0

(5.9)

can be written in matrix form:
y1

y2

...

yN

 =


H1(x, y)D

H2(x, y)D
...

HN(x, y)D

 s0 =


H1(x, y)

H2(x, y)
...

HN(x, y)

Ds0, (5.10)

or yet,

y = H(x, y)Ds0. (5.11)

If the source position were known, the problem of retrieving s0 could be solved via a sparse

estimation algorithm using y as the measurement vector and H(x, y)D as the dictionary.

Unfortunately, the source position is not known, therefore we retrieve s0 at several possible

source positions. In other words, we calculate dictionaries H(x, y)D at several possible

source positions (x, y) (for example, we choose positions that belong to a grid that cover
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the region that is being monitored) and for each one we estimate s0 independently through

the minimization of Jλ(s;λ), obtaining a residue J∗λ(x, y) = Jλ(ŝ;λ) that depends on (x, y).

Our estimated source position is the one that yields the minimum residue:

(x, y) = arg min
x,y

J∗λ(x, y), J∗λ(x, y) = min
s
‖y −H(x, y)Ds‖2

2 + λ ‖s‖0 . (5.12)

In other words, we choose the source position that makes the reconstructed signal Ds

compatible with H(x, y).

Our method relies on minimizing a minimum – We first minimize the cost function

with respect to the sparse representation s, obtaining a minimum that depends on (x, y),

and then we minimize this minimum with respect to (x, y) to obtain the source position

estimate. Unfortunately, the function J∗λ(x, y) has several local minima, thus minimization

algorithms that seek the point where the gradient is zero will not work unless the initial

condition is very close to the true source position. For this reason, we define a grid of

points and find J∗λ(x, y) for each one. Then, we choose its minimum and refine the grid

so that the edges are close to the minimum found. This refinement procedure is repeated

for a fixed number of iterations. After the refinements, the source position is estimated

using a regular minimization algorithm whose initial condition is the chosen as the last

(most refined) estimate. Our algorithm is detailed in Algorithm 2.

A least squares approach can be derived by setting λ = 0. In this case where the

sparsity is not taken into account, it is straightforward to derive a closed-form expression

for J∗λ(x, y):

J∗λ(x, y) =
∥∥y −H(x, y)H†(x, y)y

∥∥2

2
. (5.13)

It is worth noting that our methods require a propagation model H(x, y). If the chosen

propagation model requires parameters that are not available (for example, attenuation

coefficient), they must be estimated. In this Chapter, we do not address the problem

of estimating unknown parameters from the medium, but in our derivations we consider

that the propagation model may be imprecise.
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Algorithm 2: The proposed waveform-based source localization algorithm.

Data: Measurement vector y; Dictionary D; Sparsity-promoting parameters

K,λ or ε; Linear model matrix H(x, y); Set G of points extracted from an

initial grid; Number of grid refinements T .

Result: Estimated source position (x̂, ŷ)

Define the cost function J(s;x, y) as one the following options:

• J(x, y) = mins ‖y −H(x, y)Ds‖2
2 s.t. ‖s‖0 ≤ K

• J(x, y) = mins ‖y −H(x, y)Ds‖2
2 + λ ‖s‖0

• J(x, y) = mins ‖s‖0 s.t. ‖y −H(x, y)Ds‖2 ≤ ε

• J(x, y) =
∥∥y −H(x, y)H†(x, y)y

∥∥ (Least Squares approach)

for i=1:T do

(x̂(i), ŷ(i))← arg min(x,y)∈G J(x, y);

Refine the grid G around (x̂(i), ŷ(i));

Solve (x̂, ŷ) = arg minx,y J(x, y) using (x̂(T ), ŷ(T )) as initial condition through a

conventional minimization algorithm;

5.1.2 Performance guarantees in the noiseless case

Let K be an integer such that the function JK(s;K) is equivalent to the function

Jλ(s;λ) used in the localization algorithm. Write the estimate for s0 as ŝ = s0 + h. Since

h = ŝ− s0 and ŝ and s0 are K-sparse vectors, h has at most 2K nonzero elements.

At the source position (xs, ys), the cost function JK(ŝ;K) is given by

JK(ŝ;K) = ‖y −H(xs, ys)Dŝ‖2
2 . (5.14)

Considering our model is precise, y can be written as

y = H(xs, ys)Ds0. (5.15)

Substituting (5.15) into (5.14), we have

JK(ŝ;K) = ‖H(xs, ys)Ds0 −H(xs, ys)Dŝ‖2
2 = ‖H(xs, ys)D(ŝ− s0)‖2

2 = ‖H(xs, ys)Dh‖2
2 .

(5.16)

JK(ŝ;K) is minimum and equal to zero for any h ∈ ker{HD} such that ‖ŝ‖0 ≤ K.

Consequently, ŷ = HDŝ = y if and only if HDh = 0.
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Since JK(ŝ;K) = 0, Jλ(ŝ;λ) is a global minimum of Jλ(s;λ), thus (xs, ys) is a minimum

of J∗λ(x, y) and thus the estimate source position is the true one. In other words, our

method retrieves the true source position if there is no 2K-sparse elements in the kernel

of H(xs, ys)D.

5.2 Simulations

We used the first 50 samples of a waveform sampled at 1 MHz and collected during

a tensile test performed by Embraer to synthesize a signal that is sparse in a dictionary

but that is also similar to a real one. For this, we generated a wavelet-based dictionary

as explained below and we ran the OMP algorithm with K = 5 samples (hence with a

“sparsity rate” of 10%), obtaining a signal whose representation in D has only 5 nonzeros.

The source is positioned at xs = (0.2, 0.3) and the coordinates of the sensors are (0, 0),

(1, 0), (0, 1) and (0.5, 0.5). We used c = 5 km/s for the wave velocity and, in the Power-

Law Attenuation Model, we used f0 = 150 kHz, α(f0) = 2m−1 and γ = 1.5.

The dictionary we used is the default dictionary generated by the MATLAB function

wmpdictionary, which is the concatenation of a sine subdictionary, a DCT-II matrix,

a Daubechies wavelet dictionary with 4 vanishing moments generated with 5 iterations

and a Daubechies wavelet packet dictionary with 4 vanishing moments generated with 5

iterations.

In the first simulation, the constant velocity model was used to generate the waveform

with α = 2m−1, and the same model with the true parameters c and α were used as input

for the localization algorithm. The noise variance at all sensors was the same, and was

calculated as

σ2 = σ2
max10−SNR/10, (5.17)

where σmax is the standard deviation of the signal with the highest variance and SNR was

swept from -10 dB to 30 dB. We used the Least Squares and the K-sparse methods with

K = 5 to estimate the source position.

In the second simulation, although the model used by our algorithm was the constant

velocity model with the same parameters as before (α = 2m−1 and c = 5 km/s), the model

used to generate the waveforms received by the sensors was our causal approximation of

the Power-Law Attenuation Model (1.26), with α(f0) = 2m−1, f0 = 150kHz and γ = 1.5.

For both simulations, 6 refinement iterations of a minimization over a 10× 10 rectan-

gular uniform grid whose edges are {(0, 0), (0, 1), (1, 0), (1, 1)} were performed. Denote xs
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the true source position and x̂ the estimated source position. The MSE was calculated as

MSE = 20 log10(‖x̂− xs‖).

In most acoustic emission tests, the maximum deviation allowed from the true source

position is about 1 cm, thus we can say the source position was correctly estimated if the

MSE is lower than -40 dB.

We also calculated the accuracy of the position estimates obtained through the min-

imization of JTOA(x, y) and JTDOA(x, y), which used TOAs estimated with the fixed

threshold algorithm. The performance of these cost functions depends on the choice

of the threshold level because it impacts on the bias and variance of the estimated TOAs.

In order to get rid of the problem of choosing an adequate threshold level, we generated

position estimates with JTOA(x, y) and JTDOA(x, y) using several threshold levels and for

each realization we used the optimal threshold, i.e. the one that yields the estimate that

is closest to the actual source position.

Even though in practice it is not possible to calculate an optimal threshold because

the actual source position is not known, we used the optimal one in this simulation to

show that our waveform-based localization method yields more precise position estimates

than the ones produced by the cost functions JTOA(x, y) and JTDOA(x, y) regardless of

the threshold. Thus, the performance of JTOA(x, y) and JTDOA(x, y) would be worse if a

single fixed threshold was used. For each SNR, we tested 1000 linearly spaced thresholds

from 2σ (where σ is the noise variance) to the third largest value of {P1, P2, P3, P4}, where

Pk is the maximum absolute value of yk. This maximum threshold was chosen because

if a threshold above it were used, less than three hits would be detected and the source

localization problem would not have a single solution.

The results are shown in Figures 42 and 43. Even at an SNR of 0 dB our method can

successfully estimate the source position within a millimetric precision. When the model

passed to the algorithm was exactly true, sparse regularization showed much better results

than the Least-Squares at an SNR of −5 dB (in which case the MSE of all other methods

is above −40 dB), and slightly better results for higher SNRs. On the other hand, when

we generated the signals with the more complex model, but used the simpler model for the

estimator, the sparse method presented better results than the least squares method only

for SNRs above 15 dB, with the Least Squares being slightly better for lower SNRs. Both

waveform-based localization algorithms perform better than the TOA-based methods in

all cases, except when the localization error is very high for all algorithms (above −20
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Figure 42: Source localization with noisy measurements using the least squares approach
and the sparse regularization method. The constant velocity attenuation model was used
both to generate the waveforms and to locate the source.

dB, or 10 cm), at SNRs lower than 0 dB.

5.3 Hit Grouping

Most source position estimation algorithms need as input the hits that will be used to

localize the source. However, in actual acoustic emission tests, two or more sources may

emit waves at very close instants. A hit grouping algorithm is a method that identifies

which hits will be used in the localization and which hits will be discarded, and the group

of hits that is used in localization is called an event.

In scenarios with multiple active sources, it is important to separate hits from dif-

ferent sources in order to avoid using hits generated by a different source in localization

methods, which causes a large error in the position estimate. For this reason, hit grouping

algorithms are developed and compared in this section.
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Figure 43: Source localization with noisy measurements using the least squares approach
and the sparse regularization method. The constant velocity attenuation model was used
to locate the source, but the Power-Law attenuation model was used to generate the
waveforms.
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Figure 44: Hit grouping by Event Definition Time with different sources emitting waves
at close instants.

5.3.1 Hit Grouping by Event Definition Time

Hit Grouping by Event Definition Time is a very popular hit grouping technique

that is widely used in industry due to its simplicity and low complexity [28, 71]. This

method receives as input the already segmented hits, a predefined constant called ’Event

Definition Time’ (EDT) and the maximum number of hits per group Kmax, and it uses

these inputs to determine which hits belong to the group of the first hit, i.e. the hit with

the smallest measured TOA.

The algorithm is shown in Algorithm 3. The selected hits are those whose TOAs

are delayed from the minimum TOA by at most the interval EDT, and groups cannot

contain two or more hits from the same sensor. However, if the number of hits grouped

with the first hit is higher than Kmax, only the first Kmax hits are selected. On the

other hand, groups containing less than three hits are discarded because conventional

localization algorithms cannot determine the source position with less than three sensors.

After finding the group to which the first hit belongs, the algorithm is reapplied to the

following ungrouped/undiscarded hits.

Even though this technique can be easily implemented in real time as it requires

small computational power, it may not function properly if multiple sources are active

simultaneously because only TOAs are used to group hits, thus hits from different sources

cannot be distinguished.

An illustration of this method working with multiple active sources is shown in Figure

44. In this figure, the first and second sources emit signals at close instants, and for this

reason two hits from source no. 2 (green) reach a sensor before the last hit from source no.

1 (yellow) is acquired. Thus, the first event contains hits that do not come from the first
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source, lowering the accuracy of the localization method. The second event is discarded

because contains less than three hits, thus the second source will not be detected. The

third source (blue) is well grouped because sensors do not received hits from other sources

during the Event Definition Time.

Algorithm 3: The Hit Grouping algorithm based on Event-Definition Time.

Data: TOAs t1, · · · , tN ordered in ascending order and their corresponding

sensors c1, · · · , cN ; Event Definition Time (EDT); Maximum number of

hits per group Kmax.

Result: Set G that contains the first hit.

Set G = {1}, C = {c1} and k = 1;

for i = 2 : N do

if ti ≤ t1 + EDT and k < Kmax and ci /∈ C then

G ← G ∪ i;
C ← C ∪ ci;
k ← k + 1

if |G| < 3 then
G ← {} (the group is discarded).

5.3.2 Hit Grouping by Cross-Correlation

The hit grouping method based on EDT does not consider the waveform, and for this

reason the existence of simultaneous sources may cause incorrect grouping. [72] proposes

two methods to group hits based on their cross-correlation: The first method uses Basic

Sequential Algorithm Scheme (BSAS) [73] to cluster hits into events, while the second one

is a method designed for highly correlated signals and that generates groups with only 3

hits.

The cross-correlation coefficient between the signals ri[n] and rj[n] is defined as

ρ(ri, rj) =

maxm
1

‖ri‖2‖rj‖2

∑N
k=0 ri[k]rj[m+ k], channel(ri) 6= channel(rj)

0, channel(ri) = channel(rj)
, (5.18)

where the `2-norm of a signal is given by

‖ri‖2 =

√√√√ +∞∑
n=−∞

r2
i [n], (5.19)

channel(ri) is the channel that sampled ri, and the similarity between one hit waveform
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ri[n] and a group of hits G is defined as the average cross-relation between ri[n] and each

element from G:

ρ(ri,G) =
1

|G|
∑
g∈G

ρ(ri, g). (5.20)

The cross-correlation between two hits from the same sensor is defined as 0 because

the grouping methods based on cross-correlation cluster high-correlated hits, and we do

not desire to have two hits from the same sensor in the same group.

The method based on BSAS, described in Algorithm 4, chooses the group of each

hit by computing their similarity with respect to each group. If the maximum obtained

similarity is higher than a predefined threshold Θ ∈ [0, 1], the hit is added to the group.

Else, a new group is created.

This method does not work if all hits have very close similarity, as in the case where

they are very correlated, since the choice of the groups may become very sensitive to

noise. Therefore, [72] proposed to construct groups of three hits by clustering pairs of

hits with maximum similarity. This method is described in Algorithm 5.

The main issue of the methods proposed by [72] is that they do not consider TOAs

when adding a hit to a group. Hence, hits with very distant TOAs may be clustered in

the same group. For this reason, this method must be applied to pre-selected hits whose

TOAs are close. For example, it can be applied to hits belonging to the group returned

by the EDT-based method with a high EDT value. Another issue is that the performance

of this method is highly dependent on the similarity threshold θ. If Θ is not well-chosen,

hits may be discarded or over-grouped.
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Algorithm 4: Grouping Algorithm based on Cross-Correlation and BSAS (1st

Wang et al. method)

Data: Hits r1[n], · · · , rN [n] ordered in ascending TOA order; Similarity Measure

Threshold Θ ∈ [0, 1]

Result: Set G1, G2,G3, · · · of grouped hits

Set m← 1, G1 = {r1} and k = 1;

for i = 2 : N do

k ← arg min` ρ(ri,G`) ;

if ρ(ri,Gk) < Θ then

m← m+ 1 ;

Build a new cluster Gm ← {ri}

else
Gk ← Gk ∪ {rk}

Discard all groups that contain less than three hits;

Algorithm 5: Grouping algorithm based on cross-correlation for highly corre-

lated hits (2nd Wang et al. method)

Data: Hits r1[n], · · · , rN [n] ordered in ascending TOA order;

Result: Set G1, G2,G3, · · · of grouped hits

Set m← 1, G1 = {r1}, k = 1, and calculate the similarity matrix S given by

S =


0 ρ(r1, r2) · · · ρ(r1, rN)
... 0

. . .
...

0 0 · · · ρ(rN , rN)

 ;

while S 6= 0 do

(i, j) = maxi,j Si,j ;

Find k such that i ∈ Gk or j ∈ Gk. if k was found then

Gk ← Gk ∪ {i, j};
for u ∈ Gk do

for v = 1 : N do

Su,v ← 0;

Sv,u ← 0;

else

m← m+ 1 ;

Build a new cluster Gm ← {i, j};

Discard all groups that contain less than three hits;
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Both methods proposed by [72] try to form groups that maximize the similarity be-

tween elements of the same group. However, since they are greedy algorithms, the groups

returned by them may not be the ones that contain the most similar signals. As the

number of hits that need to be grouped is very low (usually under 10 hits, even in actual

acoustic emission tests), we propose a combinatoric algorithm that assigns a group to a

hit by finding the group of K hits whose minimum similarity between elements of the

group is maximum, where the number of hits per group K is fixed. The algorithm is

shown in Algorithm 6.

Algorithm 6: Our proposed hit grouping method based on cross-correlation.

Data: Hits r1[n], · · · , rN [n] ordered in ascending TOA order; Number of hits per

group K;

Result: Group G that contains the first hit.

Calculate the set C of all possible choices of K hits that contains the first hit and

that does not contain two or more hits from the same sensor ;

G ← arg maxG∈Cminu,v∈G ρ(u, v) ;

5.3.3 Our proposed Hit Grouping method based on Least Squares

The source localization techniques presented in this chapter can be used to group hits

into events, as the minimum of the cost function J∗λ(x, y) will be higher when one of the

hits does not belong to the same event as the other ones. Suppose we want to choose

L hits to locate a source from a set of L′ > L hits that possibly belong to that event.

This can be done by generating all the
(
L′

L

)
possible combinations of hits and for each one

minimizing J∗λ(x, y). The combination that yields the smallest minimum for J∗λ(x, y) is

the best grouping. Since in general L and L′ are small numbers, this brute force search

technique is feasible.

Minimizing J∗λ(x, y) for each possible group is actually a joint grouping and source

localization technique, as the source position is also returned by the method. However,

if we are only interested in grouping hits, the exact location of the source position is

not important. In this case, it is possible to reduce the complexity of our method by

computing Jλ(x̂, ŷ) instead of J∗λ(x, y), where (x̂, ŷ) is the source position estimated by

any low-complexity localization method, as minimizing JTOA using TOAs obtained from

the Fixed Threshold Algorithm. For the same reason, in this work we test our hit grouping

method using λ = 0 (that is, its least squares version) to further reduce complexity.

Our proposed hit grouping algorithm is described in Algorithm 7.
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Algorithm 7: Our proposed hit grouping algorithm based on Least Squares.

Data: Hits r1[n], · · · , rN [n] ordered in ascending TOA order concatenated as a

single vector y; Propagation Model H; Dictionary D; Sparsity penalty

factor λ;

Result: Group G that contains the first hit.

Calculate the set C of all possible choices of K hits that contains the first hit and

that does not contain two or more hits from the same sensor ;

for each G ∈ C do
Estimate the source position (x0, y0) for group G using any low-complexity

localization method;

EG ← mins ‖y −H(x0, y0)Ds‖2
2 + λ ‖s‖0;

G ← arg minG EG;

5.3.4 Simulations

Using waveforms collected from an acoustic emission test on an aircraft performed by

Embraer, we generated a synthetic source at x1 = (0.2, 0.3) and t1 = 0, which we aim to

localize. Three sensors were positioned at (0, 0), (0, 1), (1, 1), and the wave velocity in

the medium is c = 5km/s. We chose to use only three sensors to allow the comparison of

the grouping methods with Algorithm 5, which cannot form groups containing more than

three hits. A spurious source with a different waveform than the one from the source of

interested located at (1.3, 1.3) was generated at several instants t2 ≥ t1. A white Gaussian

noise of standard deviation K/5 was added to the received signals, where K = 0.02 is the

fixed threshold used to compute TOAs.

The stream at each sensor was converted into hits using the HDT/HLT technique

with HDT = HLT = 15 µs and K = 0.02 (see Section 1.1.1 in Chapter 1). This way, each

sensor detects one or two hits, depending if the waves from both sources arrive at close or

distant instants. For each instant of emission of the second source t2, hits were grouped

using all presented grouping methods and the obtained groups were used to localize the

source. The obtained groups were used to localize the source through the minimization

of JTOA(x, y) and TOAs estimated by the fixed threshold method.

Figures 45 and 46 show the MSE for the presented hit grouping methods in terms

of the instant of emission of the second source. In Figure 45, we generated a spurious

source waveform that is not very correlated with the waveform of the source of interest,

while in Figure 46 two similar (yet different) waveforms were used. Both EDT and Least
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Squares present almost the same performance in both scenarios because they do not use

cross-correlation to cluster hits, thus they are not affected by the choice of the waveform

for the spurious source. In both scenarios, our method based on Least Squares has the

smallest MSE between all other techniques.

The first hit always comes from the source of interest, but the second hit may come

from the spurious source if t2 < 64µs, in which case EDT cannot group signals correctly

because it picks the three first hits to form an event. After t = 64µs, the first three hits

come from the first source, thus EDT groups all hits correctly.

Figure 47 shows the number of hits detection by the HDT/HLT method over time for

both simulations (recall that in our simulations all grouping algorithms receive the same

hits as input). There are three sensors and two sources, thus ideally six hits should be

detected. However, only five hits are detected for t2 ∈ [64, 194]µs, which means that two

waves from different sources are overlapped in a hit. That is why all three methods based

on correlation do not perform well in this interval for both simulations.

There is a rise in MSE between t2 = 64 µs and t2 = 129 µs because the TOA from

the overlapped hit cannot be accurately estimated: For t2 ∈ [64, 129] µs, the wave from

the spurious source reaches the sensor before the wave from the source of interest, thus

the picked TOA is actually from the spurious hit.

For low-correlated sources (Figure 45), all methods achieve the minimum MSE for

large t2, that is, very spaced hits. In this scenario, our combinatorial algorithm based on

cross-correlation performs better than all other techniques from [72], and has the same

performance as our grouping method based on Least Squares if hits are not overlapped.

Note that our cross-correlation method has much less computational complexity than our

LS-based method.

On the other hand, for high-correlated sources (Figure 46), all cross-correlation meth-

ods become very sensitive to noise, presenting high MSE for most values of t2. Even the

2nd Wang et al. method (designed for highly-correlated sources) does not cluster hits

correctly because of the noise. Our cross-correlation method finds the actual group at

some instants, but it presents several spikes of high MSE at many instants.

From these simulations, we conclude that our LS-based hit grouping technique per-

forms equal or better than all other methods in all situations. However, its complexity

is much higher than the other methods, and it also requires the knowledge of the prop-

agation model and its parameters. We also conclude that our proposed method based

on similarity performs better than both methods from Wang et al, except in cases with
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highly-correlated sources or overlapped hits, where none of the methods based on cross-

correlation perform well.
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Figure 45: Comparison of hit grouping algorithms for two sources generating distinct
waveforms. The first source emits elastic waves at t = 0, and the second one emits waves
at different instants.
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Figure 46: Comparison of hit grouping algorithms for two sources generating similar
waveforms. The first source emits elastic waves at t = 0, and the second one emits waves
at different instants.
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(a) Simulation from Figure 45
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(b) Simulation from Figure 46

Figure 47: Number of detected hits in terms of the instant of the second source (t2) for
the HDT/HLT method. In our simulations, all grouping algorithms receive as input the
hits extracted by the HDT/HLT method.

Concluding remarks

In this chapter, we presented a localization method that uses the waveforms instead

of TOAs to estimate the source position. Even though the computational complexity of

our method is much higher when compared to TOA-based methods, its accuracy is much

better for most noise levels, even if TOAs are estimated using the best possible threshold

for each realization of the noise. Our method requires a propagation model as input,



but it still shows higher accuracy than TOA-based methods when an imprecise model is

used. It is also possible to exploit the information about the sparsity of the waveforms on

a known dictionary to increase the performance of our method if a precise propagation

model is used, even though using sparsity leads to accuracy gain for high SNRs if the

model is not precise.

We also created two hit grouping algorithms — one method based on Least Squares

and another method based on cross-correlation – and compared them with existing tech-

niques in a scenario where a source emits a wave at instant t = 0 and a second source emits

another wave at different instants. Our hit grouping algorithm based on Least Squares is

an extension of our localization techniques presented in this chapter, and performs better

than all other methods in all scenarios, even though it has high computational complexity.

Our method based on cross-correlation has low complexity and performs better than the

other algorithms based on cross-correlation in most cases, but this class of algorithms

shows poor results if the waveforms emitted by the different sources are highly correlated.
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6 CONCLUSION

In this work, we provided a brief introduction to acoustic emission and presented

several new techniques whose ultimate goal is to improve the accuracy of localization

methods. In Chapter 2, we deduced the TOA probability distribution expression assuming

that TOAs were obtained using the fixed threshold method and that the instant of the first

sample is a uniform random variable, allowing the development of new statistical TOA

and source position estimators that may have better performance than usual methods.

A simplified and approximate expression for the time of arrival pdf under low noise level

condition was also developed, making it possible to test localization algorithms without

the need to simulate the signals using a more precise model for the uncertainty on the

time of arrival estimates than the Gaussian distribution.

Theoretical bounds for TDOA bias were calculated under small noise condition, and

a TDOA bias model was derived from the new bounds. This model makes it possible to

correct localization bias and thus reduce the distance between the estimated and the real

source position. Eliminating the bias also allows the application of the Cramér-Rao Lower

Bound and helps the search for better unbiased TDOA and source position estimators, as

done in Chapter 4. Furthermore, we presented a TDOA debiasing technique for structures

where the Constant Velocity Model is a good approximation of the propagation model.

In Chapter 3, we derived the closed-form solution in the case where only three sensors

are used in isotropic medium and showed that for some geometries two sources at different

positions may generate the same TOAs, in which case the localization problem has more

than one solution. These secondary solutions may lead to local minima in cost function,

causing a large localization error. We presented the TOA estimation method based on

AIC, and we compared it with the fixed threshold method, concluding that AIC is more

robust to noise and does not cause TOA bias, even though it may perform poorly for hits

whose energy is not concentrated in the first samples. We also introduced the anisotropic

cost functions JTOA and JTDOA, and showed they may perform better than their isotropic

versions in anisotropic structures.



In Chapter 4, we derived an expression for the optimal source position estimator based

on TOA estimates for the Gaussian Mixture case, which is a good approximation for the

TOA pdf for high sampling frequency assuming that TOAs were estimated with the fixed

threshold method. The derived estimator is optimal assuming that the noise level is not

very high and the parameters of the mixtures are known, but we showed that it is possible

to estimate these parameters from noisy signals, in which case our estimator may obtain

better performance than other localization methods based on TOAs. Furthermore, we

showed that JTOA(x, y) coincides with the optimal estimator if TOAs are i.i.d, unbiased

and follow a Gaussian distribution.

Then, we derived in Chapter 5 a waveform-based localization method that uses di-

rectly the waveform instead of TOAs to localize the source. The propagation model is also

an input of this method, which accepts any linear propagation model, such as the models

presented in Chapter 1. The two versions of this method — one that relies on sparse

estimation and another that uses a least-squares approach — showed great performance

even when the model used by the algorithm is not the one used to generate the signals

received by the sensors in simulation. Finally, we developed two hit grouping methods

— one based in least squares, and other based on cross-correlation. The method based

on least-squares performed better than all other grouping methods in all scenarios, and

the our method based on cross-correlation performed better than techniques that also use

cross-correlation is most cases.
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aves,” Escola Politécnica da USP / EMBRAER, Tech. Rep., 2015.

[53] H. C. So, Handbook of Position Location. John Wiley & Sons, Ltd, 2011. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118104750.ch2

[54] P. Stoica and J. Li, “Lecture notes - source localization from range-difference mea-
surements,” IEEE Signal Processing Magazine, vol. 23, no. 6, pp. 63–66, Nov 2006.

[55] M. R. Pearson, M. Eaton, C. Featherston, R. Pullin, and K. Holford, “Improved
acoustic emission source location during fatigue and impact events in metallic and
composite structures,” Structural Health Monitoring, vol. 16, no. 4, pp. 382–399,
2017. [Online]. Available: https://doi.org/10.1177/1475921716672206

[56] S. M. Kay, Fundamentals of statistical signal processing, volume I: estimation theory.
Upper Saddle River, NJ: Prentice Hall, 1993.

[57] H. C. So, Y. T. Chan, K. C. Ho, and Y. Chen, “Simple formulae for bias and mean
square error computation [dsp tips and tricks],” IEEE Signal Processing Magazine,
vol. 30, no. 4, pp. 162–165, July 2013.

[58] A. Ebrahimkhanlou and S. Salamone, “Single-sensor acoustic emission source local-
ization in plate-like structures using deep learning,” Aerospace (ISSN 2226-4310),
vol. 5, 05 2018.

[59] B. Dubuc, A. Ebrahimkhanlou, and S. Salamone, “Localization of multiple
acoustic emission events occurring closely in time in thin-walled pipes using
sparse reconstruction,” Journal of Intelligent Material Systems and Structures,
vol. 29, no. 11, pp. 2362–2373, 2018. [Online]. Available: https://doi.org/10.1177/
1045389X18770857

[60] C. Boya, M. Ruiz-Llata, J. Posada, and J. A. Garcia-Souto, “Identification of multiple
partial discharge sources using acoustic emission technique and blind source separa-
tion,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 22, no. 3, pp.
1663–1673, June 2015.

[61] R. Ma, B.-M. Qiao, T.-J. Zhang, L. Wang, S.-N. Zhou, and L.-L. Zhang, “Application
of discrete wavelet operations in the detection of acoustic emission of coal and rock
rupture,” Journal of Coal Science and Engineering (China), vol. 19, no. 2, pp.
160–166, Jun 2013. [Online]. Available: https://doi.org/10.1007/s12404-013-0209-1

[62] D. Aljets, A. Chong, and S. Wilcox, “Acoustic emission source location in plate-like
structures using a closely arranged triangular sensor array,” vol. 28, 01 2010.

[63] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for designing over-
complete dictionaries for sparse representation,” IEEE Transactions on Signal Pro-
cessing, vol. 54, no. 11, pp. 4311–4322, Nov 2006.



[64] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52, no. 4, pp.
1289–1306, Apr. 2006.

[65] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via
orthogonal matching pursuit,” IEEE Transactions on Information Theory, vol. 53,
no. 12, pp. 4655–4666, Dec 2007.

[66] Y. Zakharov, V. Nascimento, R. de Lamare, and F. G. de Almeida Neto, “Low-
complexity DCD-based sparse recovery algorithms,” IEEE Access, 2017.

[67] M. Elad, Sparse and Redundant Representations: From Theory to Applications in
Signal and Image Processing, 1st ed. Springer Publishing Company, Incorporated,
2010.

[68] R. Rubinstein, M. Zibulevsky, and M. Elad, “Double sparsity: Learning sparse dic-
tionaries for sparse signal approximation,” IEEE Transactions on Signal Processing,
vol. 58, no. 3, pp. 1553–1564, March 2010.

[69] ——, “Efficient implementation of the K-SVD algorithm using batch orthogonal
matching pursuit,” CS Technion, vol. 40, 01 2008.

[70] K. Engan, S. O. Aase, and J. H. Husoy, “Method of optimal directions for frame
design,” in 1999 IEEE International Conference on Acoustics, Speech, and Signal
Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), vol. 5, March 1999, pp.
2443–2446 vol.5.

[71] W. S. Pires, “Processamento de dados para a eliminação de falsos positivos ao utilizar
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