GPU-Assisted Ray Casting of Large Scenes

Daniel A. Balciunas*

Lucas P. Dulley"

Marcelo K. Zuffo*

Laboratory of Integrable Systems
University of Sdo Paulo

ABSTRACT

We implemented a pipelined rendering system that pre-renders a
reduced set of a scene using the raster method built in the graph-
ics hardware. The computation performed by the graphics card is
used as an estimate for evaluating the initial traversal points for a
ray caster running on the CPU. This procedure replaces the use of
complex spatial subdivision structures for primary rays, offloading
work that would traditionally be executed by the CPU and leaving
additional system memory available for loading extra scene data.
The ray traversal algorithm skips even narrow empty spaces, which
are usually hard to map using conventional spatial subdivision. We
achieved interactive frame rates (3—10 frames/s) running the system
on a single computer with conventional hardware.

Keywords: Ray casting, graphics hardware, height field.

Index Terms: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing; 1.3.8 [Computer Graphics]:
Applications; 1.3.3 [Computer Graphics]: Methodology and Tech-
niques

1 INTRODUCTION

For historical reasons, graphics hardware uses the raster method
for 3D rendering. Its execution on current graphics cards is much
faster than any ray caster running on a CPU and it became the most
popular choice for generic image rendering.

However, rendering large scenes can be an arduous task for
graphics hardware, particularly when the amount of data is far
greater than its available memory. This may restrict quick cam-
era displacement movements, hindering the visualization of a scene
with fine details, because scene visualization relies on scene paging
algorithms [8], occlusion culling [5] and on the use of level of detail
[30] to increase performance.

Ray casting systems are an excellent choice for visualization of
huge data sets [9]. They render scenes with billions of polygons at
interactive frame rates. However, these systems usually have to run
on computer clusters to achieve interactive frame rates, and they
do not make intensive use of a valuable and common hardware re-
source: the graphics card. Even when using a ray tracer, the power
of graphics hardware processing is essential for real-time visualiza-
tion.

Our work proposes and implements a ray casting acceleration
system that makes intensive use of the graphics hardware rastering
algorithm to evaluate the starting ray traversal points for primary
rays. The starting traversal points are positioned very close to the
intersection point, avoiding the need to traverse through complex
spatial subdivisions. A simple implementation achieved interactive
frame rates for large scene data sets, running the test program on a
single computer (Figure 1).
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Figure 1: Interactive frame rate acheived for a 268 million vox-
els height field (equivalent to 537 million triangles) with a 16,384 x
16,384 texture.

This paper is organized as follows: Section 2 presents the moti-
vation for this paper. Section 3 discusses the related work. Section
4 presents a case study, the visualization of high definition height
fields. Section 5 describes the use of bounding volumes in our sys-
tem. Section 6 discusses the system architecture. Finally some
results are presented in Section 7 and conclusions in Section 8.

2 MOTIVATION

Since graphics hardware has become a commodity, we decided to
propose and implement a rendering system that makes use of this
common computational resource and the CPU to render large scene
data sets at interactive frame rates. These scenes do not fit the
graphics card memory, but they do fit the main memory.

We had basically two choices: either to implement a common
rendering system using the graphics hardware as the main ren-
derer, or a ray caster rendering system running on the CPU, using
the graphics hardware as a secondary resource for speedup. The
first approach is widely used, but requires complex additional al-
gorithms, such as occlusion culling [5], scene paging [8] and level
of detail [30]. The second approach would use the graphics card
computational power to replace a spatial subdivision algorithm that
would usually be implemented on the CPU to speedup the ray cast-
ing time.

‘We chose the ray casting approach instead of the graphics card
rendering approach. This work shows the speedup achieved when
using a rendering system that makes use of the graphics card’s orig-
inal rendering capabilities in order to accelerate a ray caster running
on the CPU, without the use of complex algorithms or spatial sub-
division for the ray caster. We did not focus on the graphics card
rendering approach as it already has been widely tested. Our aim
is to compare the acceleration of our method with other ray casting
acceleration techniques.



Our acceleration method uses the GPU to render a distance
buffer of a simplified set of bounding volumes of the objects of
a large scene. This is done computing the distance from the camera
to the nearest bounding volume for each pixel. The distance-buffer
is then used to evaluate the starting ray traversal points by the ray
caster running on the CPU, it places these starting traversal points
very close to the intersection, skipping most of the empty regions
of the scene.

The speedup comes from the fact that the CPU does not have to
traverse each primary ray through any complex spatial subdivision.
Whether the bounding volumes are a good approximation of the
represented objects, rays do not traverse long distances across the
scene before hitting an object, strongly reducing the total ray cast-
ing time. For the most generic scenes with large number and kinds
of objects, a simple grid [1] would be enough for object culling.

The architecture is basically a pipeline: the graphics card pro-
cesses the next frame while the ray caster renders the actual frame
(we implemented it using multi-thread parallelism). As the graph-
ics card has its own rendering method initially designed for per-
formance and not for visual accuracy, it becomes a good choice
to render an approximate scene (stored in the GPU), outputting an
approximate distance buffer as the result of its computation. The
distance-buffer is then used for ray casting optimization, rendering
the full resolution scene (stored on the system memory) with max-
imum quality. This procedure is illustrated in Figure 2.

Figure 2: The stages of our rendering system: from simplified scene
geometry to depth-buffer and then ray casting.

The proposed system as described is flexible and can be repro-
duced easily, as it uses only the basics of GPU and thread program-
ming techniques. It requires only hardware that is readily available
on recent computers. It does not use any aggressive or relaxed algo-
rithm that would generate artifacts. It also preserves storage space
by avoiding the use of complex spatial subdivision for primary rays.

Since the whole scene is available for the ray caster renderer, the
camera displacement movements are not restricted: we can quickly
navigate through different parts of the scene, and position the cam-
era to display the entire scene (with fine details) without having to
wait for long cache operation delays.

The ray caster also may handle object data on its native form: it
is not necessary to transform them into a triangle mesh for the ray-
object intersection test. This saves a considerable amount of mem-
ory for the ray caster scene. It is possible to create specific surface
reconstruction intersection tests [15], and choose the appropriate
one depending on the distance between the camera and the object
(surface reconstruction level of detail). These are advantages over
the graphics card raster method rendering approach.

Simple implementations of ray tracers on the CPU usually does
not make any use of the GPU. The graphics card is an important
computation resource commonly present in most computers nowa-
days, with a considerable processing power, fast local memory ac-
cess and recently improved communication interface with the moth-
erboard — PCI Express technology [29]. Currently, to achieve real-
time performance goals with ray tracing applications, it is essen-
tial the use of graphics hardware as an additional computational
resource.

3 RELATED WORK

Rendering large scenes using the raster method of current graph-
ics hardware relies basically on the use of frustum culling, scene
paging and level of detail algorithms.

Scene paging [8] is limited by the transfer rate between the
graphics card and the system memory, which might hinder the ren-
dering response time of the first frame after a quick camera move or
any requisition of a reasonable amount of scene data. This can re-
sult in a camera movement restriction imposed by the visualization
application.

Level of detail [30] helps to decrease the amount of data pro-
cessed by the GPU, increasing the frame rate, but it may severely
increase the total amount of data stored in memory and increase the
traffic between CPU and GPU when rendering large scenes, spe-
cially when soft transitions between the levels are required. Level
of detail algorithms might not mimic the scene with fidelity when
it is necessary to use higher levels with fewer triangles to preserve
the frame rate.

Occlusion culling [5] is a feature unavailable in the graphics card
raster method. It must be implemented apart and consumes extra
processing power. Simple implementations of ray casters already
have native object occlusion culling.

A simple approach for rendering large terrains on the GPU is the
use of geometry clipmaps [2], combining the techniques presented
above and the fact that terrains can be treated as 2D elevation im-
ages, resulting in real-time frame rates.

An interesting ray tracing solution for detailed terrain rendering
using displacement mapped triangles has been proposed in [26], but
interactive frame rates could not be achieved then.

The use of rasterization to find primary ray intersections is intro-
duced in [28]. Our work uses the graphics card rasterization method
to obtain an approximation for the starting ray traversal points — a
subtle but important difference.

An outstanding solution for huge scene data visualization has
been proposed by [9]. An iterative ray tracer uses scene paging
techniques to provide interactive frame rates. Billions of polygons
can be visualized while moving through the scene. The fine de-
tails are loaded when the camera stops moving quickly through the
scene. Although the scene data used for this solution does not even
fit the system memory, the time required to obtain a fine detail frame
is considerable. It also requires the use of several cluster nodes to
render at interactive frame rates.

An implementation of a ray tracer on the GPU [4, 21] would be
limited for our purpose: interactive frame rates were achieved only
for scenes with less than one million triangles. The graphics hard-
ware was not originally designed for this purpose, and ray tracing
usually may not fit well on GPU’s streaming architecture due to the
high number of branches. In addition, if one renders a large scene
with a GPU implemented ray tracer, the local graphics card mem-
ory would not be enough for loading the entire scene, and scene
paging would be required, as in a GPU rendering approach.

4 CASE STUDY: HEIGHT FIELDS

We chose the visualization of high definition height fields as an
example to test our system because it was a faster way to obtain
preliminary results without developing a complete bounding vol-
ume generator solution for generic objects. In future work we plan
to extend our system for GPU accelerated ray tracing of generic
huge scenes. Our aim here is to obtain the frame rate speedup for
the proposed system through the case study of height fields, using
a specific bounding volume generator.

High definition height fields are frequently used for a tridimen-
sional visualization of large satellite images of the surface, combin-
ing them with the topographic height map of the same region.

Spatial subdivision (e.g., quadtree [7], Figure 3) and object-
specific acceleration algorithms (e.g., vertical coherence [6], Fig-



ure 4) allow us to accelerate the ray-object intersection test and
reduce the main memory access, positioning the starting traversal
point after large empty regions.

Figure 4: A height field specific algorithm: vertical coherence among
rays belonging to the same frame.

Because the number of sampling points of a height field grows
quadratically with its dimensions, polygon reducing techniques
[10, 23] would allow us to load larger height fields. However, in
a ray casting approach, the sampling points may be easily stored
in the form of a height matrix and interpreted as voxels during the
intersection test and surface reconstruction process, saving consid-
erable memory space. Thus, we do not use triangle reduction tech-
niques for the ray caster height field scene.

To keep this solution and still reduce the height field definition
on particular regions, it would be necessary to use an additional
spatial subdivision structure such as a quadtree. But this would
not improve the ray casting time for our rendering system, which
already provides empty space skipping. It just would load an extra
unnecessary structure in the system memory, reducing the space
previously reserved for the scene. The quadtree speedup is also
limited to the efficiency of its ray traversal, which depends basically
on the memory access rate, usually the bottleneck.

In the case of the traditional vertical coherence algorithm, some
parts of the terrain that would intersect the ray are skipped, while in
fact they should have been intersected [12]. This usually happens
when the camera direction is not parallel to the height fields base
plane, so it may be considered as an aggressive algorithm in these
cases. Another disadvantage of this algorithm is the restricted cam-
era movement [27]: it is not possible to rotate the camera around

its own direction axis (roll), because up vector must always be per-
pendicular to the height field’s base plane.

5 BOUNDING VOLUME SCENE

A bounding volume is a closed volume that completely contains an
object. In our system, a set of bounding volumes is created from
the original scene’s objects to compose a new simplified scene.

The main objective of this operation is to create a scene with a re-
duced number of polygons, so that it fits the graphics card memory.
Fewer polygons also increase the efficiency when the GPU renders
the distance buffer.

The secondary purpose is to approximate the objects with bound-
ing volumes as closely as possible, avoiding empty spaces inside
them (Figure 5 and Figure 6). This should increase the efficiency
of our system, because the starting traversal points will be placed
closer to the intersection point. The concept of a good bounding
triangle volume is shown in Figure 6.
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Figure 5: Simple bounding box leaves large empty spaces inside the
volume.
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Figure 6: A bounding triangle mesh is a better approximation for the
object.

However, the specifications above are conflicting: raising the
number of triangles for the bounding volumes leads to a better ap-
proximation of the object, but increases the distance buffer render-
ing time, and vice versa when reducing the number of triangles.
Evidently, there is a strong dependency on the hardware specifica-
tion.

To create a height field bounding triangle mesh, we used a sim-
ple method, which reduces the number of triangles by four on each
level of iteration, similar to a quadtree constructor, starting from
the full-resolution height field. We basically compute the maxi-
mum value of a height element and its eight neighbors to get the
new height value for the reduced height field. This ensures that
the triangle on the reduced height field will stay above the original
height field triangles. This can be combined with triangle reduction
techniques [10, 23] to improve the performance of the GPU mod-
ule. The mathematical analysis of optimality of this algorithm is an
interesting subject for future research.

6 SYSTEM ARCHITECTURE

Since the graphics card is capable of evaluating the distances from
the camera’s position to the projected triangles for each pixel, one
can use this information to accelerate the primary rays of a ray
caster rendering a similar scene from the same point of view.

We propose a system with a composed rendering method, mixing
the graphics card rendering and ray casting rendering. It replaces
the use of complex spatial subdivision for primary rays, using the
graphics hardware raster method computation for this purpose.

The system is subdivided in three modules: GPU module, Ray
Casting Module and Display Module. The GPU module runs



mainly on the graphics card, while the Ray Casting module runs
on the CPU. The Display module basically shows a color-buffer on
screen.

6.1 Data Flow: Workspaces

We decided to create workspaces to implement data flow and syn-
chronization between the modules. Each workspace is associated
to a frame. It is merely a data structure composed by a framebuffer
(a color buffer and a distance buffer), camera attributes (position,
direction and field of view), window attributes (width, height), and
scene changes.

The workspaces are necessary because the GPU module and the
Display Module run in parallel with the Ray Casting module, and
each module processes its own frame. Workspaces can be easily
implemented and avoid data mismatching and memory reallocation.
Workspace swapping is fast because it is just a pointer attribution
operation. Data is synchronized before the execution of the mod-
ules, using the swapping process described in the sequel (Figure 7).

Initialization ‘

GPU Module (first run) ‘

‘( Workspace Swapping (CPU) %—
Display Module (GPU)

GPU Module (GPU)

—% Ray Casting Module (CPU) f—

Figure 7: Parallel execution of modules.

The data flow starts on the GPU module, whose workspace re-
ceives the latest changes in the scene (window, camera and scene
changes). The GPU module renders the distance-buffer (distance
between the camera and the nearest object, for a given pixel) and
stores it on its workspace.

At this point, workspaces are swapped: the Ray Casting mod-
ule receives its workspace from the GPU module, which in turn
receives a clear workspace from the Display module. The Ray
Casting module reads the workspace information to collect scene
change information and renders the scene using the distance-buffer
previously outputted by the GPU module. The resulting color
buffer rendered by the Ray Casting module is then stored on the
workspace.

Again, the workspaces are swapped, and the Display module re-
ceives the workspace previously used by the Ray Casting module.
It displays the color buffer on screen and clears the workspace. This
cleanup is needed because GPU module will receive this workspace
on next workspace swap.

All the swapping process is shown in Figure 8. Data flows as in
Figure 9.

6.2 The Pipeline

As both the GPU module and the Display module use graphics card
resources they do not need to run in parallel. This also avoids GPU
resource sharing, which might degrade performance.

The Ray Casting module uses only the CPU and can run in paral-
lel with the GPU and Display modules. This is easily implemented
through the use of threads.

Both the CPU and the GPU can be used simultaneously, taking
advantage of all processing resources available in the computer sys-
tem (Figure 7).

Figure 8: Modules’ workspace swapping: an efficient way to transfer
a module’s output and the scene data changes to the next one.
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Figure 9: Data flow along modules.

In Table 1 it is possible to follow the rendering of different
frames along the pipeline. The greatest disadvantage of this ap-
proach is the delay to render the scene changes. The pipeline needs
two rendering cycles (instead of one rendering cycle) to transmit
the scene changes to the output image. This issue is more notice-
able when frame rates are lower than eight frames per second.

Table 1: Frames processed along the rendering pipeline.

Cycle GPU Ray Cast Display
0 Frame 1  Blank Frame Idle
Idle Frame 1 Blank Frame
1 Frame 2 Frame 1 Idle
Idle Frame 2 Frame 1

Frame 2 Idle

Frame 4
Frame 4

6.3 GPU Module

The GPU module is essentially responsible for the early evaluation
of the distance estimate of each frontmost (visible) object to the
camera position to be used by the Ray Casting module as ray traver-
sal starting points. The general idea of this module is to estimate
the distance of each visible object to the camera position by ren-
dering the scene from the camera’s point of view and using a GPU
generated depth-buffer to evaluate that distance. The distances are
stored in the distance-buffer, which is the desired output of the GPU
module (Figure 10).

The initialization stage of the GPU module is executed once at
our rendering system start-up. During the initialization, we load the
height field from a file and create a reduced bounding volume for
it (triangle mesh), which is stored on a display list, as the height
field is a static object. There is no need to load any texture for the
display list geometry on the GPU, as we are only interested in the
geometry itself. This leaves memory available for extra geometry.



Figure 10: Screenshot of the pre-rendered distance-buffer; white ar-
eas are marked with a special flag for ray casting bypass.

The operation of GPU module can be subdivided in three stages:
the first GPU rendering pass, the second GPU rendering pass and
the distance-buffer readback. These stages are executed on every
rendering cycle of our system. The first rendering pass is respon-
sible for rendering the depth of each pixel to a texture using the
GPU’s original functionality. The second one uses a GLSL [22, 24]
fragment shader program running on the GPU’s fragment proces-
sor. It accesses the previously generated depth texture and evaluates
an estimate of the distance from the triangle associated with each
pixel to the camera position. The output of the second GPU render-
ing pass is written to another texture, the distance-buffer. Finally,
this distance-buffer is readback to the system memory to be used by
the Ray Casting module running on the CPU.

In the first-pass, the OpenGL’s fixed functionality renders the
scene directly to a depth-texture-object. In fact, only the depth-test
is performed and its results are stored in the depth-texture-object.
The depth-texture-object is attached to a framebuffer object (first
FBO) [17]. The first FBO has no color buffer attached to it, as
nothing is rendered to a color buffer (GL_LDRAW_BUFFER set as
GL_NONE).

In the second-pass, the drawing of a screen sized quadrilateral
(quad) [19] triggers the shader execution. For each screen pixel,
the fragment shader evaluates an estimate of the distance between
the front-most triangle associated with the pixel and the camera po-
sition. The shader evaluates this estimate from the supplied near
and far values and from the depth value of the related pixel stored
in the depth-texture, obtained in the first-pass. For each pixel, the
object’s distance to the camera (z in camera coordinates) is evalu-
ated by Equation 1.

near - far

dist(x,y) = (far — depth - (far — near) )

(€]

Due to the GPU’s architecture, many of these operations are pro-
cessed in parallel [20]. The obtained distance value is stored in
a single channel color-buffer (distance-buffer) attached to a FBO
(second FBO). Moreover, if a pixel distance value is greater than or
equal to far, it is tagged for ray casting bypass. Finally, the distance
values from the distance texture are then read back to main memory
to be used by the Ray Casting module to evaluate the starting points
for the ray traversal.

In our implementation, we use OpenGL 2.0 [25, 24] and GLSL.
At the present time, the best way to do proper direct render-to-
texture in OpenGL is using the EXT_framebuffer_object
(FBO) extension [17], which allows texture objects to be used as
render targets. We also use the GLEW library [16], which is only

used to easily enable and initialize the required OpenGL extensions
[18] available in the graphics hardware. We used two FBOs: the
first one has only one texture attached (a 32-bit depth texture buffer)
and is a depth-only framebuffer, this way the OpenGLs fixed func-
tionality depth buffer data is rendered directly to the depth texture.
The second FBO also has only one texture attached to it but this
one is a 32-bit single-color-channel buffer where the shader pro-
gram will render to, storing the the 32-bit floating point distance
value to be read back.

As an alternative method, the generation of the distance-buffer
might also be done by using standard OpenGL calls: we would ren-
der the scene on the GPU to a regular framebuffer (e.g., back buffer)
and then read it back to main memory with glReadPixels. But,
as is widely known, the range of depth buffer values is from 0.0
to 1.0, representing the near and far planes respectively, and it is
not linear. So we would have to do the depth-to-distance transfor-
mation for each pixel on the CPU. The additional computational
cost of this operation added to the read back cost would hinder the
speedup gains obtained by using the GPU. In our system the eval-
uation is done in the GPU rather than on the CPU, offloading the
CPU of performing the depth-to-distance evaluation for the whole
depth buffer.

6.3.1 Graphics Hardware Dependency

The readback transfer rate (GPU to CPU) for the GeForce 7900
GTX is 1.3 GB/s, while the download rate (CPU to GPU) is
575 MB/s [3], although according to the the PCle specification [29]
the nominal maximum data PCle x16 transfer rate in each direc-
tion is 4 GB/s. The AGP 8x readback rate is 170 MB/s, while the
download rate is 500 MB/s. We measured the total time spent with
readback and download operations (Table 2). There is a reason-
able difference between AGP 8x and PCle x16 total transfer time,
thus the performance of this module is directly linked to the graph-
ics card communication interface transfer rate and obviously to its
performance.

Table 2: Data transfer time in our rendering system for a 800 x 600
frame size (*for a 10 frames/s rate).

Interface ‘ Readback ‘ Download ‘ Total transfer ‘ Rendering time %*
AGP (8x) 10.77 ms 3.66 ms 14.43 ms 14.4
PCle (16x) 1.41 ms 3.18 ms 4.59 ms 4.6

6.3.2 Static Scene Data Optimization

From [14] and from initial tests we did, the geometry submission
relative performance from best to worst is display lists, vertex buffer
objects, vertex arrays, immediate mode (g1Begin/glEnd). This
knowledge allows us to minimize CPU-GPU copies, function call
overheads and command buffer traffic.

The solution for the time-consuming data transfer is the use of
display lists, so that we can cache OpenGL commands on graph-
ics hardware, since the use of display lists allows the storage of
OpenGL commands on server side (graphics hardware). Since we
are handling static vertex data, its use would be a suitable solution
for the optimization of the drawing of the height map mesh. The
known drawbacks of using display lists are not an issue for our so-
lution, because the time overhead to compile a display list appears
only in the program initialization. As the scene in our test is static,
there is no need to use vertex buffer objects, hence we opted to
create a display list for it. This optimizes the GPU module scene
rendering, as display lists store a group of OpenGL commands in
the graphics card memory that can be optimized by its driver [25].



6.3.3 Two-pass vs. Single-pass

Although our first and successful choice was the two-pass approach,
we could not disregard trying a single-pass one. We did face major
drawbacks when using a single-pass with a fragment shader: the
performance was worse than expected and, more important, it was
worse than the original two-pass solution.

In a single-pass, the fragment shader has to use the depth data
of the fragment gl _FragCoord. z to evaluate the distance esti-
mates and store the result in a color-buffer which has an associ-
ated depth-buffer for depth-testing. Since shader computing equals
drawing [11], the fragment shader is run for every primitive (inside
the view frustum) stored in a display list, whether they were visi-
ble or occluded. This can introduce a substantial overhead and loss
of performance. Even one of the simplest fragment shaders such
as gl_FragColor.x = —1.0 runs slower than OpenGL fixed
functionality (Table 3).

One might think that an occlusion query may help. But an occlu-
sion query test prior to an eventual single-pass — with the purpose
of reducing the amount of geometry to be processed by the frag-
ment shader — would be pointless, if not redundant, as the data we
actually need is the depth value of the frontmost polygons.

Table 3: GPU Module Performance Test: two-pass vs. single-pass
comparison (*very simple shader).

Height Field Size Single-pass Single-pass® Two-pass
2 Million triangles 20.34 42.81 43.17
1024 x 1024 voxels (frames/s) (frames/s) (frames/s)
8 Million triangles 6.33 13.67 14.74
2048 x 2048 voxels (frames/s) (frames/s) (frames/s)
33 Million triangles 3.19 4.12 4.63
4096 x 4096 voxels (frames/s) (frames/s) (frames/s)

In the two-pass approach the inherent hardware optimization
of the OpenGL’s fixed functionality combined with the direct-
rendering to a depth-texture-object make the first pass very effi-
cient. In the second pass, the fragment shader — which evaluates
the camera-object distance estimate — is executed for each screen
pixel. The only geometry involved in this pass is the quad drawn
for a texel to pixel one-to-one mapping, thus the second pass is in-
dependent of the geometry complexity of the scene.

For the reasons above the original two-pass approach was used
since it suit our needs, runs faster and is more optimized than the
single pass approach.

6.4 Ray Casting Module

After the ray direction generation, the Ray Casting module sets the
ray origin. Instead of using the camera position, it sets the ray origin
of each ray using the distance buffer generated by the GPU module
as in Equation 2:

origin(x,y) = camera + direction - dist(x, y) 2)

Where (x, y) are the coordinates of each pixel on the screen.
This procedure skips all the empty space between the camera and
the closest bounding volume of an object, since the scene in the
GPU module is essentially a set of bounding volumes of the Ray
Casting module’s scene.

To reconstruct the height field surface near to the camera, we
implemented a bilinear analytical intersection test. For regions far
from the camera, the intersection test is a simple height plane recon-
struction test, which allows a quick intersection test without hinder-
ing the image quality. By implementing this kind of reconstruction
level of detail we can efficiently save ray casting time.

A screenshot of the resulting image is shown in Figure 11.

Figure 11: Ray casting resulting image.

As there is no dependency between rays, it is possible to use any
number of threads to render different parts of the screen, signifi-
cantly raising the resulting frame rate for multi-processed CPUs.

For a better image quality, it is possible to use MIP mapping
for the height fields texture. This is a good choice when there are
too many fine details in the texture, as in satellite images of large
cities, preventing texture aliasing. It also reduces the access to the
main memory when rendering regions far from the camera. Shad-
ows may also be pre-processed on the texture using a ray-tracing
algorithm, adding more realism to the scene.

The Ray Casting module’s main output is the color buffer (Fig-
ure 11). Its performance is fundamentally linked to the CPUs pro-
cessor performance and to the data transfer rate of the system mem-
ory bus.

6.5 Display Module

This module downloads the color buffer rendered by the Ray Cast-
ing module to the graphics card to show it on screen. Due this oper-
ation, this module’s performance is directly linked to the graphics
card communication interface transfer rate.

7 RESULTS

Different height field sizes were used to test our rendering system
(Figure 12). The adopted screen size for these tests was 800 x 600
pixels. The height field object covers approximately 90% of the re-
sulting image (Figure 11), and it is possible to view the entire scene
from the rendered point of view. The test computer is a Pentium D
3.0GHz, with 4GB DDR 400MHz system memory, GeForce 7900
GTX 512MB graphics card.

We did not implement our system using specific MMX/SSE in-
struction set, as this is not the main objective of this work. We
just compiled it using MMX/SSE optimization flags, substantially
increasing the performance.

In our case study, we compared our method to a naive ray caster
[13], to a classic object-specific ray traversal acceleration algorithm
(vertical coherence [6]) and to a hierarchical spatial subdivision tree
algorithm (quadtree [7]). We implemented all of them using multi-
thread parallelism. In all cases we used the same surface recon-
struction method (described in section 6.4). The proposed method
achieved better frame rates compared to any of these algorithms.

The frame rate values obtained for the naive ray traversal ex-
ceeded the expected, relatively to the other algorithms. This hap-
pens because the ray caster accesses the same amount of main mem-
ory to get the texture color of the intersection point, for each pixel
in the color buffer. In other words, even using a ray caster, the shad-
ing process still has its weight in the final frame rate measure. In
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Figure 12: Resulting frame rates of different height field ray casting
algorithms and our implemented system.

this way, we should consider the gain of our method at least higher
than the gain shown through the frame rate measured.

The performance of the vertical coherence algorithm raises as the
screen resolution grows and the height fields shrinks. It gets worse
as the intersected terrain becomes more distant from the camera,
as expected, because each subsequent ray must traverse longer dis-
tances. The performance of the quadtree is slightly better than the
vertical coherence one, as memory caching works better for it, re-
ducing system memory access, as expected too.

For the given test computer, we used a reduced scene with 4 Mil-
lion triangles for the GPU, as the resulting GPU module frame rate
for this number of triangles (Table 3) is always above the rendering
system frame rate (Figure 12). This is vital, because the bottleneck
of our system cannot be the GPU Module, as its main functionality
is to accelerate the Ray Casting module. Thus, although there was
a frame rate speedup, the bottleneck of our system must always be
the Ray Casting module, which is the core of our rendering system.

8 CONCLUSION AND FUTURE WORK

The cost of the GPU module operation is balanced by the gain ob-
tained when positioning the ray traversal starting points close to the
intersection, resulting in interactive frame rate. The main disadvan-
tage of the proposed method is that it accelerates only primary rays.
As secondary rays have different starting traversal points, it would
be necessary to change the camera position on the GPU module and
reduce the depth buffer size / the field of view for each secondary
ray. It would also be necessary to increase the number of steps
(modules) in the pipeline to support multiple reflections/refractions,
increasing the total rendering time of a frame, loosing the interac-
tivity.

Since our method requires only a small portion of the system
memory, it does not exclude the use of additional spatial subdivi-
sion algorithms — this would be useful to accelerate the ray cast-
ing of generic scenes. The method also supports ray oversampling
for border anti-aliasing purposes (this could be easily implemented
simply by increasing the distance-buffer size). This method may
also accelerate ray tracing of complex objects through the use of
bounding triangle meshes.

Our work proposed the use of GPU raster method and shader to
assist ray tracers runing on the CPU. Ray casting of generic scenes
and shadow mapping using a similar technique is currently being

developed.

In future work, an algorithm for dynamic scene complexity ad-
justment of the GPU module could also be proposed, removing the
bottleneck from the Ray Caster module and resulting in a better us-
age of processing power for the whole system. It is also possible
to implement this method for dynamic scenes, simply by extending
the module scene data synchronization code.
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