
EDUARDO LOPES COMINETTI

IMPROVING CLOUD BASED ENCRYPTED
DATABASES

Master Dissertation presented to the Depar-

tamento de Engenharia de Computação e

Sistemas Digitais at the Escola Politécnica,

Universidade de São Paulo, Brazil to obtain

the degree of Master of Science.

São Paulo
2019

EDUARDO LOPES COMINETTI

IMPROVING CLOUD BASED ENCRYPTED
DATABASES

Master Dissertation presented to the Depar-

tamento de Engenharia de Computação e

Sistemas Digitais at the Escola Politécnica,

Universidade de São Paulo, Brazil to obtain

the degree of Master of Science.

Concentration area:

Computer Engineering

Advisor:

Marcos Antonio Simplicio Junior

São Paulo
2019

 Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio
convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

Este exemplar foi revisado e corrigido em relação à versão original, sob
responsabilidade única do autor e com a anuência de seu orientador.

São Paulo, ______ de ____________________ de __________

Assinatura do autor: ________________________

Assinatura do orientador: ________________________

Catalogação-na-publicação

Cominetti, Eduardo Lopes
 Improving Cloud Based Encrypted Databases / E. L. Cominetti -- versão
corr. -- São Paulo, 2019.
 143 p.

 Dissertação (Mestrado) - Escola Politécnica da Universidade de São
Paulo. Departamento de Engenharia de Computação e Sistemas Digitais.

 1.Criptologia 2.Algoritmos 3.Segurança de computadores 4.Banco de
dados I.Universidade de São Paulo. Escola Politécnica. Departamento de
Engenharia de Computação e Sistemas Digitais II.t.

RESUMO

Bancos de Dados são essenciais para a operação de diversos serviços, como ban-
cos, lojas onlines e até mesmo assistência médica. O custo de manutenção local dessa
grande coleção de dados é alto, e a nuvem pode ser utilizada para compartilhar recursos
computacionais e atenuar esse problema. Infelizmente, grande parte desses dados pode
ser confidencial ou privada, necessitando, portanto, de proteção contra terceiros. Além
disso, esses dados precisam ser manipulados para que seu dono consiga extrair infor-
mações relevantes. Nesse cenário, bancos de dados cifrados na nuvem que permitam a
manipulação de seus dados foram desenvolvidos nos últimos anos. Embora promisso-
ras, as soluções propostas até então apresentam oportunidades de melhorias em termos
de eficiência, flexibilidade e também segurança. Neste trabalho, modificações são pro-
postas para o CryptDB, uma solução de banco de dados cifrado na nuvem que faz parte
do estado da arte, visando melhorar sua eficiência, flexibilidade e segurança, através do
aprimoramento ou troca das primitivas criptográficas utilizadas. A eficiência foi mel-
horada através da substituição do algoritmo de Paillier presente no CryptDB por um
novo algoritmo homomórfico proposto neste trabalho. A flexibilidade foi aprimorada
através de uma modificação prévia no texto antes de sua cifração com o algoritmo de
Song, Wagner e Perrig, o que permite a busca por wildcards no banco de dados. Por
fim, a segurança foi incrementada através da substituição do algoritmo AES em modo
CMC na camada determinística do banco de dados pelo algoritmo de Song, Wagner e
Perrig.

ABSTRACT

Databases are a cornerstone for the operation of many services, such as banking,
web stores and even health care. The cost of maintaining such a large collection of
data on-premise is high, and the cloud can be used to share computational resources
and mitigate this problem. Unfortunately, a great amount of data may be private or
confidential, thus requiring to be protected from agents. Moreover, this data needs to
be manipulated to provide useful information to its owner. Hence, encrypted databases
that allow the manipulation of data without compromising its privacy have surfaced
in the recent years. Albeit promising, the solutions available in the literature can still
be improved in terms of efficiency, flexibility and even security. In this work, we
propose modifications to CryptDB, a state-of-the-art encrypted cloud database, aiming
to enhance its efficiency, flexibility and security; this is accomplished by improving
or changing its underlying cryptographic primitives. The efficiency of CryptDB was
improved by substituting a new homomorphic algorithm proposed by us for the Paillier
cryptosystem. The flexibility of the cloud database was augmented by modifying how a
text is encrypted using the Song, Wagner and Perrig algorithm, thus enabling wildcard
searches. Finally, the security of the system was enhanced by substituting the Song,
Wagner and Perrig algorithm for the AES in CMC mode at the deterministic layer.

LIST OF FIGURES

1 Homomorphic Encryption: there is a morphism between operation ?

performed in the plaintexts m1 and m2 and operation � performed in

the ciphertexts c1 and c2. 16

2 CBC encryption. 27

3 CBC decryption. 28

4 CTR encryption. 29

5 CTR decryption. 30

6 CMC encryption. 31

7 CMC decryption. 33

8 SWP encryption. 41

9 CryptDB architecture . 46

10 CryptDB multiple onions with layers 48

11 A visual description of FAHE1’s encryption process. Parameter q is

larger than p and is partially represented. 54

12 A visual description of FAHE2’s encryption process. Parameter q is

larger than p and is partially represented. 57

13 Variation of ciphertext size for FAHE1 and FAHE2 for different num-

bers of additions supported. Paillier is included as a reference. 67

14 Word fragmentation process. 73

15 Query rewrite process. “cr*” is a search for words that begin with

“cr”; “*to*” is a search for words that contain “to”; “*hy” is a search

for words that end with “hy”. 74

16 Word expansion and encryption together with the creation of the inter-

mediate key ki for the traditional search. 89

17 Creation of S and F blocks for both search algorithms. 90

18 Creation of the final ciphertext for both search algorithms. 91

19 Character split and individual encryption together with the creation of

the multiple intermediate keys ki for the wildcard search. 92

20 Execution time to perform a wildcard search using multiple cores and

multiple possible positions. 94

LIST OF TABLES

1 General notation for FAHE. 53

2 Parameters for FAHE1 and FAHE2 for λ = 128. 66

3 Parameters for FAHE1 and FAHE2 for λ = 256. 68

4 Proposed modifications . 78

5 FAHE1 results (in cycles) compared to Pailler at the same (pre-

quantum) λ = 128 security level. 81

6 FAHE2 results (in cycles) compared to Pailler at the same (pre-

quantum) λ = 128 security level. 81

7 FAHE1 and FAHE2 results (in cycles) for λ = 256, |mmax| = 64 and

α = 33. 81

8 AES-CMC and peppered SHA2 results (in cycles) to hide a 49057

entries dictionary and to search a single entry. 85

9 Traditional and modified Search results (in cycles) to encrypt a 49057

entries dictionary, to generate the search token and to search all en-

crypted entries. 91

10 Summary of the comparison operation using the deterministic AES-

CMC algorithm with a b-tree and the probabilistic SWP algorithm, for

n total entries and nd number of different entries. 95

11 Summary of the modifications required by the SWP algorithm for the

COUNT DISTINCT operation, considering worst case scenario for n to-

tal entries and nd number of different entries. 96

LIST OF ABBREVIATIONS AND ACRONYMS

ACD Approximate Common Divisor

ACPC Activation Codes for Pseudonym Certificates

AES Advanced Encryption Standard

AJE Adjustable Join Encryption

BCLO Boldyreva, Chenette, Lee and O’Neil Order Preserving Encryption

CBC Cipher Block Chaining

CMC CBC-Mask-CBC

CRL Certificate Revocation List

DB Database

DBMS Database Management System

DET CryptDB’s Deterministic Layer

EC Elliptic Curve

ECEGES Elliptic Curve ElGamal Encryption Scheme

EGES ElGamal Encryption Scheme

FAHE Fast Additive Homomorphic Encryption Scheme

FHE Fully Homomorphic Encryption

GCD Greatest Common Divisor

HOM CryptDB’s Homomorphic Addition Layer

IND-CCA1 Indistinguishability under non-adaptive Chosen-Ciphertext Attack

IND-CCA2 Indistinguishability under adaptive Chosen-Ciphertext Attack

IND-CPA Indistinguishability under Chosen-Plaintext Attack

IV Initialization Vector

JOIN CryptDB’s Join Layer

KDF Key Derivation Function

mOPE Mutable Order Preserving Encoding

NIST National Institute of Standards and Technology

OPE CryptDB’s Order Preserving Layer

OPE-JOIN CryptDB’s Order Join Layer

PHE Partially Homomorphic Encryption

PHPE Paillier Homomorphic Probabilist Encryption

PRF Pseudo-Random Function

PRP Pseudo-Random Permutation

RND CryptDB’s Random Layer

SCMS Security Credential Management System

SEARCH CryptDB’s Search Layer

stOPE Storage-Aware Order Preserving Encoding

SWP Song, Wagner and Perrig Searchable Encryption

UTF-8 Unicode Transformation Format using 8 bits

UTF-16 Unicode Transformation Format using 16 bits

UTF-32 Unicode Transformation Format using 32 bits

XOR Exclusive-or operation

LIST OF SYMBOLS

∗ Database wildcard operator

a � b Left Shift operation of string a by b positions

a � b Right Shift operation of string a by b positions

‖ Concatenation operator

|x| String x size in bits

⊕ Exclusive-or operator

Fp Finite Field modulo p

gcd(a, b) Greatest Common Divisor of a and b

H Cryptographic Hash Function

O Big O notation

CONTENTS

1 Introduction 15

1.1 Motivation . 15

1.2 Goals . 17

1.3 Related Works . 18

1.3.1 CryptDB . 18

1.3.2 Cipherbase . 19

1.3.3 Ciphercloud . 19

1.3.4 ZeroDB . 19

1.3.5 Arx . 20

1.4 Contributions . 21

1.5 Outline . 21

2 Building Blocks 23

2.1 Some Basic Notation . 23

2.2 Pseudo-Random Function (PRF), Pseudo-Random Permutation (PRP)

and Block Cipher . 23

2.2.1 Advanced Encryption Standard (AES) 24

2.2.2 Modes of Operation . 26

2.2.2.1 Cipher Block Chaining (CBC) 26

2.2.2.2 Counter (CTR) . 28

2.2.2.3 CBC-Mask-CBC (CMC) 30

2.2.3 Indistinguishability of Encryptions 33

2.2.3.1 Indistinguishability under Chosen-Plaintext 34

2.2.3.2 Indistinguishability under Chosen-Ciphertext 35

2.2.4 Cryptographic Hash Function (H) 36

2.3 Other Encryption Algorithms . 37

2.3.1 ElGamal Encryption Scheme (EGES) 37

2.3.2 Elliptic Curve ElGamal Encryption Scheme (ECEGES) 38

2.3.3 Paillier Homomorphic Probabilistic Encryption (PHPE) . . . 39

2.3.4 Song, Wagner and Perrig Searchable Encryption (SWP) . . . 40

2.4 Approximate Common Divisor . 42

2.5 Summary . 43

3 CryptDB 45

3.1 Overview . 45

3.1.1 Client-side . 45

3.1.2 Server-side . 47

3.2 CryptDB’s Structure . 47

3.2.1 Onions . 47

3.2.2 Encryption Layers . 48

3.3 CryptDB’s Flaws, Limitations and Efficiency 50

3.4 Summary . 51

4 New Fast Additive Partially Homomorphic Encryption 52

4.1 Notation . 53

4.2 FAHE1 . 53

4.2.1 Key generation, encryption, decryption and homomorphic ad-

dition . 53

4.2.2 Correctness . 55

4.3 FAHE2 . 57

4.3.1 Key Generation, Encryption and Decryption 57

4.3.2 Correctness . 58

4.4 Security analysis . 61

4.4.1 Security of FAHE1 . 62

4.4.2 Security of FAHE2 . 63

4.4.3 Security against the Simultaneous Diophantine Approxima-

tion (SDA) attack . 64

4.4.4 A Key Recovery Attack with (Adaptive) Decryption Queries . 64

4.5 Parameter Selection Example . 65

4.6 Summary . 68

5 Modifications 69

5.1 Efficiency Improvement in CryptDB’s homomorphic addition layer

(HOM) . 69

5.1.1 Other Attempted Solutions 71

5.2 Functionality Improvement in SEARCH 72

5.3 Security Improvement in DET . 76

5.3.1 Alternate modification to DET 77

5.4 Summary . 78

6 Results 79

6.1 Efficiency Improvement in CryptDB’s Homomorphic Addition Layer

(HOM) . 79

6.1.1 Experimental Results . 79

6.1.2 Analysis and comparison with Paillier 81

6.2 Efficiency Improvement in CryptDB’s Deterministic Layer (DET) . . 83

6.2.1 Experimental Results . 83

6.3 Functionality Improvement in CryptDB’s Search Layer (SEARCH) . 85

6.3.1 Theoretical Storage Expansion 86

6.3.2 Experimental Results . 88

6.4 Security Improvement in CryptDB’s Deterministic Layer (DET) . . . 93

6.4.1 Security Improvement Discussion 94

6.5 Results Summary . 97

7 Conclusion 99

7.1 Publications . 100

7.2 Future Work . 101

References 102

Appendix A -- A Key Recovery Attack Example on FAHE 108

15

1 INTRODUCTION

A database is a usually large collection of data organized especially for rapid

search and retrieval (Merriam-Webster, 2017). Databases are used in processes that

need to correlate information, such as maintaining and operating a web store, which

requires the association of a person, his/her address, a purchase, and a payment method

to process a sale.

Generally, a database is stored on-premise, which means that its owner is respon-

sible for providing the infrastructure and for maintaining the system. However, on-

premise costs for large databases are quite high (BUCKEL, 2013). In comparison,

using the cloud to store a database can help mitigate the costs by sharing resources

among different companies. (ARASU et al., 2013; ROGGERO, 2013) Unfortunately,

though, the data stored may be private or confidential, which is the case for credit card

numbers or medical history, for example. Therefore, it must be protected from internal

and external agents. As a result, privacy-preserving cloud databases become essential

to the deployment of confidential data in the cloud environment.

1.1 Motivation

Security and privacy concerns remain among the major cornerstones for the

widespread adoption of cloud solutions (ORACLE, 2015; SCHULZE, 2016). These

concerns are legitimate, since the number of online attacks that try to recover con-

fidential data is considerable: only in the United States, more than 5,000 data sets

16

Figure 1: Homomorphic Encryption: there is a morphism between operation ? per-
formed in the plaintexts m1 and m2 and operation � performed in the ciphertexts c1 and
c2.

m1

m2

m1 ? m2

c1

c2

c1 � c2

Operation ?

Encryption

Decryption

Operation �

Encryption

Decryption

Source: Author.

were made public, which translates to more than 9 million records compromised since

2005 (Privacy Rights Clearinghouse, 2017).

Data must be encrypted to prevent its disclosure in case of attacks. However,

it is not always possible to use traditional encryption schemes in databases, as then

the encrypted data cannot be manipulated and correlated without decryption. This

limitation of traditional schemes brings forward a challenge: is it possible to encrypt

data and still be able to compute on it without decryption?

In 1978, Rivest, Adleman, and Dertouzos proposed a class of special encryp-

tion functions they called “privacy homomorphisms” (RIVEST; ADLEMAN; DER-

TOUZOS, 1978). These special encryption functions allow encrypted data to be op-

erated without decryption. Figure 1 presents a visual reference of homomorphic en-

cryption. Given two plaintexts m1 and m2 and their encryptions c1 and c2, there is an

operation � performed on the ciphertexts that is equivalent to an operation ? performed

on the plaintexts. In other words, the decryption of c1 � c2 is equal to m1 ? m2. If they

17

can be used on a database, the underlying data can be protected and operated on the

cloud without revealing classified information. For instance, an addition of multiple

rows can be simply achieved by homomorphically adding these rows. Furthermore,

convoluted database operations can be expressed as logic gate digital circuits. Hence,

if there is an homomorphic encryption that allows any operation to be performed, it

can be used to create logic gates and any database operation can be performed homo-

morphically. Following this concept, many Partially Homomorphic Encryption (PHE)

schemes that allow one function to be computed over encrypted data were proposed.

Unfortunately, schemes that allow any operation to be performed on encrypted data,

called Fully Homomorphic Encryption (FHE), are still impractical for real world ap-

plications (BAJAJ; SION, 2011).

FHE’s poor performance compels cloud database developers to adopt new and

creative strategies. One of such strategies is to use a collection of different encryption

functions, each one allowing a specific database operation to be performed. An ex-

ample is CryptDB, a cloud database designed by MIT in 2011 (POPA et al., 2011). It

uses a myriad of encryption schemes and encryption modes to permit the database to

operate on data without publicly exposing it. As the solution relies on many different

algorithms, overall database performance, functionality and even security is greatly af-

fected by their individual behaviour. Thus, the study, improvement and modification

of these algorithms is essential to enhance cloud databases and make them a better

alternative to on-premise systems.

1.2 Goals

Our main goal is to improve the cryptographic schemes used on privacy preserving

cloud databases in order to enhance their security, functionality and efficiency. To

accomplish this, we use CryptDB as a basis, for it is considered one of the state-of-the-

art privacy preserving cloud databases and its framework and source code are publicly

18

available.

1.3 Related Works

In this section, we present some cloud database solutions that provide data security,

giving an overview of the state-of-the-art. The solutions are presented in chronological

order.

1.3.1 CryptDB

CryptDB (POPA et al., 2011) is an encrypted database designed by MIT. As it is

the basis for this work, a more thorough description is presented in chapter 3.

CryptDB uses a (User)-(Secure Proxy)-(Server) framework, so that (1) the user

interacts with the secure proxy as if the proxy was a plain database, and (2) the secure

proxy is responsible for encrypting data and storing it on the server. The data encryp-

tion by the secure proxy in done in "onion layers". There are multiple onions for each

data and each onion has multiple layers. Data is encrypted from "more information

revealing" layers to "less information revealing" layers. Each layer uses a different

algorithm and is responsible for a specific database operation. Moreover, CryptDB’s

secure proxy is responsible for data encryption, storage of keys and conversion of a

plain SQL query provided by the user to an encrypted query sent to the server.

Improvements to CryptDB’s security, functionality and efficiency can be achieved

by changing individual layer algorithms, since each layer deals with specific SQL op-

erations. This modularity is an important feature of CryptDB, since it allows a more

structured analysis when looking for improvement opportunities.

19

1.3.2 Cipherbase

Cipherbase (ARASU et al., 2013) is a cloud database that relies on secure hard-

ware to maintain privacy. Its architecture is divided in two groups. The first group is

known as “Untrusted Machine”, which comprises the traditional cloud environment.

The second group, called “Trusted Machine”, comprises trusted Field-Programmable

Gate Arrays (FPGAs) deployed inside the cloud by trusted authorities.

Data is stored encrypted in the unstrusted machine and, when some computation on

it is required, it is sent to the trusted machine. The trusted machine decrypts the data,

performs the requested operation, and finally encrypts the result and corresponding

data before returning them to the untrusted machine. For some functions, PHEs can be

used on data so it can be operated directly on the untrusted machine.

This approach requires the deployment and maintenance of specific hardware on

the cloud environment. Moreover, it also requires the existence of a trusted third party

that will be able to access the whole database.

1.3.3 Ciphercloud

Ciphercloud (CipherCloud, 2015) is a patented cloud database system that relies

on AES to provide cloud security. Its white paper describes the use of AES in tokeniza-

tion schemes, local stored mapping tables, and secure gateways to provide function-

ality while maintaining database privacy. Such description does not provide enough

information for a security analysis of the solution. The only achievable conclusion is

that Ciphercloud provides security through obscurity.

1.3.4 ZeroDB

ZeroDB (EGOROV; WILKISON, 2016) is an end-to-end encrypted database that

performs its operations by traversing b-trees. This is achieved with a client-server

20

cooperation.

Data is encrypted into buckets at client-side. Afterwards, these buckets are stored

and indexed logically on a b-tree at server-side.

Whenever the client queries the database, it chooses a tree whose logical index

matches the query. The server sends the client the tree root for decryption and analysis.

After the decryption, the client is able to compare the data with the desired data and

informs the server to which sequential leaf it should go. This process is repeated until

the leaf with the desired data is reached.

AES or any other secure cipher is used to encrypt the client information and PHE

can be used to perform some operations without the need to send the client every

matching bucket. Additionally, frequent and small sub-trees can be prefetched to the

client to speed up the system.

This approach relies heavily on client-server communication and information ex-

change, thus network traffic is a constraining factor.

1.3.5 Arx

Arx (PODDAR; BOELTER; POPA, 2016) is an encrypted database that builds

upon ZeroDB. It provides a series of schemes to enable database operations. Arx-EQ,

Arx-AGG and Arx-Range enable equality checks, aggregations and order operations

respectively. Arx-EQ is constructed using a block cipher and a key derivation func-

tion, KDF. Arx-AGG is implemented using Paillier’s cryptosystem (PAILLIER, 1999).

Arx-Range expands over the ZeroDB idea. Arx-Range also uses a binary tree to im-

plement order. Differently from ZeroDB, though, this tree is constructed with garbled

circuits (YAO, 1986). Garbled circuits allow the tree to be traversed without exposing

the searched value. The garbled circuit receives an encrypted value and outputs an-

other encrypted value together with the next leaf to be used (left or right). This allows

21

the tree to be traversed without a client-server interaction.

Although "order by" operations are now performed without overburdening the net-

work, garbled circuits maintain the secrecy property only for a single use. Therefore,

every time the binary tree is used, the database must destroy all utilized nodes and the

client must reconstruct them. Another problem is that a tree can be used by just one

client, which limits the application’s parallelism capabilities.

1.4 Contributions

Aiming to improve the CryptDB database system, in this work we:

1. enhanced CryptDB’s homomorphic layer performance by up to 1300 times

through the replacement of the layer’s algorithm by a novel PHE scheme pre-

sented in chapter 4, at the cost of additional storage space;

2. enhanced CryptDB’s deterministic layer performance by up to 7.4 times through

the replacement of the layer’s algorithm by a hash function, at the cost of addi-

tional storage space;

3. enabled wildcard search, thus expanding the system’s functionality, through the

modification of the CryptDB’s search layer algorithm, at the cost of additional

storage space and additional performance overhead; and

4. improved CryptDB’s deterministic layer security through the replacement of

CryptDB’s deterministic layer algorithm by CryptDB’s search layer algorithm,

at the cost of additional perfomance overhead.

1.5 Outline

The rest of this document is organized as follows. Chapter 2 presents the concepts,

algorithms, and encryption schemes already in use by CryptDB database. Chapter 3

22

gives a more in-depth view of CryptDB database system, discussing its limitations

and flaws. Chapter 4 introduces a novel symmetric PHE, created specifically for the

scenario of privacy-preserving cloud databases. Chapter 5 presents our modifications

to CryptDB together with their security analysis. The results of these modifications are

analyzed in Chapter 6. Finally, we present our concluding remarks and ideas for future

work in Chapter 7.

23

2 BUILDING BLOCKS

In this chapter, we present fundamental concepts and algorithms that are required

to understand and construct CryptDB and our solution.

2.1 Some Basic Notation

The symbol ⊕ is used to represent the exclusive-or (XOR) operation. The symbol

|| is used to represent the concatenation operation.

2.2 Pseudo-Random Function (PRF), Pseudo-Random
Permutation (PRP) and Block Cipher

The definitions for Pseudo-Random Function (PRF), Pseudo-Random Permutation

(PRP) and Block Cipher are taken from (BELLARE; ROGAWAY, 2005) and (GOLD-

WASSER; BELLARE, 1996).

Let F : K × D→ R be a family of functions, where K = {0, 1}k is the key space of

F, D = {0, 1}l is the domain of F, R = {0, 1}L is the range of F, and k, l, L ≥ 1.

F is a pseudo-random function (PRF) if:

1. there is a polynomial-time algorithm to compute F and

2. a random instance of F is poly-time indistinguishable from a random function.

24

“Poly-time indistinguishable” means that there is no adversary A who can distin-

guish F from a real random function f with a probability greater than 1
Q(n) , where Q(n)

is a polynomial and n is a security parameter.

F is a pseudo-random permutation (PRP) if:

1. F is a PRF;

2. F is a bijection with D = R and

3. there is a polynomial-time algorithm to compute F−1.

A block cipher is a family of PRPs with fixed K, D and R. Block ciphers are

symmetric as they use the same key k ∈ K to encrypt and to decrypt data. Block

ciphers are deterministic as their output is always the same for a given input under the

same key. The Advanced Encryption Standard (AES) is an example of block cipher.

2.2.1 Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) is a block cipher with K = {0, 1}k,

D = {0, 1}n, R = {0, 1}n, where k = 128 or k = 192 or k = 256 and n = 128. It was

standardized by the National Institute of Standards and Technology (NIST) in 2001

(Federal Information Processing Standards Publication 197, 2001).

AES is based on the Rijndael cipher (DAEMEN; RIJMEN, 1999) and is considered

to be a secure cipher (BARKER; ROGINSKY, 2015). AES works by first organizing

the plaintext (i.e., the unencrypted information that needs to be secured) in a 4 × 4

matrix, where every element of the matrix corresponds to one byte of the plaintext.

The encryption key is also organized in a 4 × 4 matrix. Next, it performs n rounds of

encryption, where n = 10 if k = 128, n = 12 if k = 192, and n = 14 if k = 256. The

encryption key matrix is expanded, producing n + 1 RoundKey 4 × 4 matrices. Each

round but the last performs the following transformations:

25

1. SubBytes: each byte of the matrix is substituted by another according to a

lookup table;

2. ShiftRows: each matrix row is cyclically left shifted according to its number,

the first row is not shifted, the second is shifted one position, the third is shifted

two positions, and the fourth is shifted three positions;

3. MixColumns: each matrix column is left multiplied by a fixed 4 × 4 matrix;

4. AddRoundKey: each byte of the matrix is added to the corresponding round

key byte

Additions are performed using the exclusive-or (XOR) operation, and for multiplica-

tions the vectors are treated as polynomials over a finite field modulo the polynomial

x8 + x4 + x3 + x + 1. The last AES round is similar to the intermediate rounds, the main

difference being that it does not execute the MixColumns step. Having defined how

each round is set, AES’s overall operation can be described as follows:

1. The plaintext is organized in a matrix and the key is organized in a matrix and

expanded;

2. An AddRoundKey with the first RoundKey matrix is performed;

3. The intermediate rounds are executed using each one their RoundKey matrix;

4. The last round is executed using the last RoundKey matrix;

The decryption process follows the reverse order of these steps, so the transformations

in each round are also individually applied in reverse order.

Like any block cipher, AES provides security for just one block of plaintext, com-

prising 128 bits. To provide security for larger plaintexts, AES must be used together

with a mode of operation.

26

2.2.2 Modes of Operation

A mode of operation is an algorithm that uses as its core a block cipher to provide

security for plaintexts larger than one block(NIST, 2017). Although many modes of

operation exist, we focus on Cipher Block Chaining (CBC), Counter (CTR), and

CBC-Mask-CBC (CMC) as these modes are used in CryptDB and in the solutions

hereby proposed.

2.2.2.1 Cipher Block Chaining (CBC)

Cipher Block Chaining (CBC) was patented in 1978 by Ehrsam, Meyer, Smith

and Tuchman (EHRSAM et al., 1978). It divides a large plaintext in multiple AES-

sized blocks, i.e., 128 bits. If the plaintext size is not a multiple of the AES-size block,

it is padded: bits are added to the plaintext until it achieves the block length. There

are various recommended padding schemes, one of which is PKCS#7 (IETF, 2009,

Section 6.3).

Once the (padded) plaintext is divided into AES-size blocks, numbered from 1 to

n, the encryption follows these steps:

1. Plaintext block 1 is XORed with a random initialization vector (IV);

2. The new block is encrypted with the AES producing the ciphertext block 1;

3. Ciphertext block 1 is XORed with plaintext block 2;

4. The new block is encrypted with the AES producing the ciphertext block 2;

5. The process is repeated until plaintext block n is encrypted.

Figure 2 illustrates the CBC mode of operation. The initialization vector is a

128 bits value chosen at random, which guarantees that identical plaintext blocks

27

Figure 2: CBC encryption.

Source: Author.

are encrypted into different ciphertext blocks. A ciphertext is the encrypted re-

sult of a plaintext. Thus, CBC is a probabilistic algorithm, since identical plain-

texts are encrypted into different ciphertexts. The resulting ciphertext is set as

IV || ciphertext 1 || ciphertext 2 || · · · || ciphertext n.

To decrypt the ciphertext, it must be divided again in blocks and the process can

be reverted by applying the following steps (and illustrated in Figure 3):

1. Ciphertext block 1 is decrypted by the AES;

2. The decrypted vector is XORed with the IV;

3. The resultant vector is plaintext block 1;

4. Ciphertext block 2 is decrypted by the AES;

5. The decrypted vector is XORed with ciphertext block 1;

6. The resultant vector is plaintext block 2;

7. The process is repeated until ciphertext block n is decrypted.

28

Figure 3: CBC decryption.

Source: Author.

2.2.2.2 Counter (CTR)

Counter (CTR) was proposed by Diffie and Hellman in 1979 (LIPMAA; ROG-

AWAY; WAGNER, 2000). It uses a (blocksize − x) bits random IV concatenated with

a x bits counter, IV || ctr. The plaintext is divided into AES-size blocks, from 1 to n.

Differently from CBC, though, the plaintext does not need to be padded. The last block

remains with any number of bits less than or equal to the AES-size block. The counter

is first set to 0 and is incremented by one every plaintext block. The algorithm follows

these steps:

1. IV || ctr is encrypted with the AES;

2. The result is XORed with plaintext 1 producing ciphertext 1;

3. The counter is incremented by one;

4. The process is repeated until plaintext block n is encrypted.

29

Figure 4: CTR encryption.

Source: Author.

Figure 4 illustrates CTR encryption process. Similar to CBC, the randomness in IV

also makes CTR mode probabilistic. Another approach is to choose a random IV,

cipher it with a different key and treat the result vector as a number which would serve

as a counter. The rest of the algorithm remains the same. The final ciphertext is set as

IV || ciphertext 1 || ciphertext 2 || · · · || ciphertext n. The decryption process is similar

to the encryption and follow these steps:

1. IV || ctr is encrypted with the AES;

2. The result is XORed with ciphertext 1 producing plaintext 1;

3. The counter is incremented by one;

4. The process is repeated until ciphertext block n is decrypted.

Figure 5 shows CTR decryption process. Notice that the encryption and decryption

circuits are symmetric. This is an implementation advantage, as the mode just needs

to be written once.

30

Figure 5: CTR decryption.

Source: Author.

2.2.2.3 CBC-Mask-CBC (CMC)

CBC-Mask-CBC (CMC) was introduced by Halevi and Rogaway in 2003

(HALEVI; ROGAWAY, 2003). It is a mode of operation proposed to encrypt disk

sectors. It works executing CBC twice on the plaintext. First, it uses CBC as usual

on the plaintext. Next, it calculates a mask and XORs it with every ciphertext block.

Finally, it executes an algorithm similar to CBC decryption from the last to the first

block. The overall process follows these steps:

1. CBC is applied to the plaintext, creating the intermediate ciphertext blocks ct′ 1

to n;

2. A mask M = 2(ct′ 1 ⊕ ct′ n) is created;

3. The mask is applied to every ciphertext block ct′ creating ciphertext blocks ct′′

1 to n;

4. Ciphertext block ct′′ n is encrypted using AES resulting in ct′′′ n;

31

5. Ciphertext block ct′′′ n is XORed with the IV creating the final ciphertext block

1;

6. Ciphertext block ct′′′ (n−1) is XORed with ct′′ n creating the final ciphertext

block 2;

7. Steps 4 to 6 are repeated until the final ciphertext block n is created.

The symbol ⊕ represents the XOR operation. Figure 6 illustrates CMC encryption pro-

Figure 6: CMC encryption.

Source: Author.

32

cess. The final ciphertext is set as IV || ciphertext 1 || ciphertext 2 || · · · || ciphertext n.

The decryption process follows these steps:

1. Ciphertext block 1 is XORed with the IV, resulting in ct′′′ n;

2. ct′′′ n is decrypted using AES producing ct′′ n;

3. Ciphertext block 2 is XORed with ct′′ n resulting in ct′′′ (n−1);

4. ct′′′ (n−1) is decrypted using AES producing ct′′ (n−1);

5. Steps 3 to 4 are repeated until ct′′ 1 to ct′′ n are generated;

6. The mask M = 2(ct′′ 1 ⊕ ct′′ n) is created;

7. The mask is applied to every ciphertext block ct′′ creating ciphertext blocks ct′

1 to n;

8. CBC decryption is applied to ciphertext ct′ 1 ‖ ct′ 2 ‖ · · · ‖ ct′ n;

9. The decryption will output the final plaintext blocks 1 to n.

Figure 7 shows CMC decryption process. Notice that CMC encryption and decryption

circuits are also symmetric.

It is possible to define and evaluate the security of modes of operation. To do so, a

scheme can be evaluated by its goals and the possible attack models (BELLARE et al.,

1998). In this work, we use the definition of indistinguishability of encryptions and

the three different attacks. They are indistinguishability under chosen-plaintext and

indistinguishability under chosen-ciphertext (non-adaptative and adaptative).

The presented modes of operation, CBC, CTR and CMC, only achieve Indistin-

guishability under Chosen-Plaintext (IND-CPA) security as they do not provide cipher-

text integrity (BONEH, 2017, Week 2, Week 4).

33

Figure 7: CMC decryption.

Source: Author.

2.2.3 Indistinguishability of Encryptions

Indistinguishability of encryptions is defined as the result of an experiment. Let

A be an adversary regarded as two polynomial-time algorithms, A1 and A2.

In A1, the adversary can ask for the encryption of messages of the same length.

Same length messages are a requirement since encrypted ciphertexts reveal informa-

tion about the original plaintext length. At the end of A1, the adversary outputs a triple

34

(m0,m1, s), where m0 and m1 are different messages of the same length and s is a state

information, which can be all previously encrypted messages. As a requirement, m0

and m1 must not have been previously encrypted in A1.

In A2, the adversary is given the output of A1 plus a challenge ciphertext y, which

is the encryption of either m0 or m1. The adversary goal is to determine b = {0, 1} such

that mb is the plaintext corresponding to ciphertext y. The adversary is successful if he

can, with some advantage, distinguish the two messages m0 and m1. The adversary fails

if he cannot make such distinction with a non-negligible probability. If the adversary

fails, we consider that the encryption algorithm passes the experiment. Otherwise, we

consider that the encryption algorithm fails the experiment. This probability, AdvA, is

given by:

AdvA = 2 · Pr[(m0,m1, s)← Aatk
1 ; b← {0, 1};

y← Encryption(mb) : Aatk
2 (m0,m1, s, y) = b] − 1

where x ← A denotes either that x is the output of algorithm A (if A is an algorithm),

or x is the uniform selection of an element from A (if A is a set). The parameter

atk represents each of the possible attacks. The adversary capabilities changes in A1

and A2 depending on which attack is considered. For atk=cpa, a chosen-plaintext at-

tack is considered; atk=cca1 represents a non-adaptive chosen-ciphertext attack, and

atk=cca2 is an adaptive chosen-ciphertext attack. The probability is considered negli-

gible for AdvA < 2−k. The parameter k is the level of security, in bits, achieved by the

encryption scheme. In AES and its modes of operation, k is equal to the chosen key

size.

2.2.3.1 Indistinguishability under Chosen-Plaintext

A chosen-plaintext attack is the simplest form of attack possible.

In a chosen-plaintext attack, the adversary A is only capable of encrypting plain-

35

texts both in A1 and A2. The only restriction is that he cannot ask for the encryption

of m0 or m1 in A2. If by just encrypting different plaintexts the adversary is capable of

distinguish between the encryption of plaintexts m0 and m1, then the attack is success-

ful. Otherwise, the attack fails and the scheme is said to be indistinguishable under

a chosen-plaintext attack (IND-CPA).

2.2.3.2 Indistinguishability under Chosen-Ciphertext

There are two different chosen-ciphertext attacks possible for an adversary. First,

we describe the simplest one, the non-adaptive, and next the more complex adaptive

variant.

In a non-adaptive chosen-ciphertext attack, the adversary has the same capa-

bilities as the chosen-plaintext attack. Moreover, he is also capable of decrypting ci-

phertexts in A1. If the adversary is capable of distinguishing between the encryption

of m0 and m1 given this improved capability, the attack is successful. If not, the attack

fails and the scheme is said to be indistinguishable under a non-adaptive chosen-

ciphertext attack (IND-CCA1).

For the more complex adaptive chosen-ciphertext attack, the adversary has the

same capabilities as the simpler non-adaptive attack. But, furthermore, he is also ca-

pable of decrypting ciphertexts in A2. The restriction is the impossibility of directly

decrypting the challenge ciphertext y. Similar to the previous scenarios, if he can dis-

tinguish between plaintexts m0 and m1, he is successful. Otherwise, he fails and the

scheme is said to be indistinguishable under an adaptive chosen-ciphertext attack

(IND-CCA2).

The number following the acronym can be viewed as the stage, 1 or 2, at which

the adversary is still capable of decrypting ciphertexts.

36

2.2.4 Cryptographic Hash Function (H)

A Cryptographic Hash Function (H) is a function H : D → R, where D =

{0, 1}t and R = {0, 1}n, t > n (MENEZES; OORSCHOT; VANSTONE, 1996, Chapter

9). It also needs to satisfy the following properties:

1. Compression: H maps an input string from an arbitrary length up to t bits into

a fixed length string of n bits.

2. Ease of Computation: H is easy to compute for an input string x.

3. Preimage Resistance: Given an output string y ofH , it is infeasible to compute

x such thatH(x) = y.

4. 2nd-preimage Resistance: Given an input x, it is infeasible to find an input

x′ , x such thatH(x′) = H(x).

5. Collision Resistance: It is infeasible to find x , x′ such that H(x) = H(x′)

(Note: differently from property 4, the choice of x, x′ is free)

By the pigeonhole principle, the probability of mapping a message of size t bits

to the same output of n bits is 2−n. The pigeonhole principle states that given a itens

to be put in b containers, a > b > 0, at least one of these containers will have more

than 1 item. This gives that the infeasibility of property 4 is true as long as 2−n is small

enough.

By the birthday paradox, finding two different x, x′ that provide the same output

H(x) = H(x′) = y with a high probability takes 2n/2 tries. The birthday paradox

states that given a population set P which has the property α ∈ S , being S an equiprob-

able set of size m, the number i of elements pi ∈ P that must be drawn until αpi′ = αpi ,

for 0 < i′ < i, is i =
√

m. This gives that the infeasibility of property 5 is true as long

as 2−n/2 is small enough.

37

As 2−n/2 is bigger than 2−n, the security parameter for a hash function H is al-

ways half of its output length. At the time of this writing, examples of good secure

cryptographic hash functions are SHA-2 (Federal Information Processing Standards

Publication 180-4, 2015), SHA-3 (Federal Information Processing Standards Publica-

tion 202, 2015), and BLAKE2 (SAARINEN; AUMASSON, 2015). Although SHA-1

was considered a secure hash by NIST in the previous papers, it is no longer secure

and should not be considered a secure cryptographic hash function (BARKER; RO-

GINSKY, 2015; STEVENS et al., 2017).

2.3 Other Encryption Algorithms

Apart from the concepts and algorithms previously presented, there are other en-

cryption algorithms of interest to this work, described in what follows.

2.3.1 ElGamal Encryption Scheme (EGES)

The ElGamal Encryption Scheme (EGES) was proposed by Taher ElGamal in

1984 (ELGAMAL, 1984). The security of the algorithm is based on the difficulty of

computing discrete logarithms over cyclic groups. Let p be the prime order of the mul-

tiplicative cyclic group G and let g be its generator. A generator g is an element of this

group so that ∀a ∈ G, there is an integer j such that g j = a (LIDL; NIEDERREITER,

1994, Chapter 1). The computation of a discrete logarithm over the cyclic group G of

order p is finding the solution x in a = gx, where a, g, and p are known.

EGES is an asymmetric encryption scheme. An asymmetric encryption scheme

is an encryption where there are two keys, known as public key and private key. The

public key is a key publicly disclosed and is used to encrypt a plaintext. The private

key is a key kept in secrecy and used to decrypt a ciphertext. Both keys are correlated

and the computation of the private key from the public key is infeasible.

38

Let A and B be the users Alice and Bob. Bob wants to send a message to Alice.

A starts by choosing a prime p, a generator g ∈ G and a private key k ∈ G, G =

{1, 2, . . . , p − 1}. A computes the public key pk = gk mod p and sends B the tuple

(G, p, g, pk). B then chooses y ∈ G and calculates c1 = gy mod p and h = pky

mod p. Let m be the plaintext Bob wants to send to Alice mapped in G. B proceeds by

computing c2 = m · h mod p and sending Alice the tuple (c1, c2). Now, to reveal m, A

calculates h = ck
1 mod p and finds its inverse h−1. Finally, c2 ·h−1 mod p = m ·h ·h−1

mod p = m.

As a remark that will be later used, observe that for a given (c1, c2) that encrypts

message m and (c′1, c
′
2) that encrypts message m′, the tuple (c′′1 , c

′′
2) = (c1 · c′1, c2 · c′2)

encrypts the message m′′ = m · m′. This is a multiplicative homomorphism.

2.3.2 Elliptic Curve ElGamal Encryption Scheme (ECEGES)

The Elliptic Curve ElGamal Encryption Scheme is a modification to the original

EGES proposed by Neal Koblitz in 1987 (KOBLITZ, 1987). Instead of using integers

and the discrete logarithm problem, it uses elliptic curves (EC) and the discrete loga-

rithm problem over elliptic curves.

“An elliptic curve EK defined over a field K of characteristic , 2 or 3 is the set of

solutions (x, y) ∈ K2 to the equation y2 = x3 + ax + b, a, b ∈ K (where the cubic on

the right has no multiple roots).” (KOBLITZ, 1987). The set of points that satisfies

this equation is an additive cyclic group with the addition operation defined by the

chord-tangent composition. A more detailed and extended explanation can be found in

(SILVERMAN, 2009, Chapter III).

The protocol works similarly to the classical EGES, substituting the integer equa-

tions by EC equations. Let, again, A and B be the users Alice and Bob. Bob wants to

send Alice a message. A chooses an EC EK , and an EC generator G. A also picks a

private key k and computes the public key P = k · G. The tuple (EK ,G, P) is sent to

39

B. B then picks an integer y and calculates C1 = y · G and H = y · P. B proceeds by

mapping the plaintext into an EC point M and produces C2 = M + H. B finally sends

A the tuple (C1,C2). To reveal the message M, A computes H = k · C1 and performs

the subtraction C2 − H = M + H − H = M.

Differently from the EGES, note that for a given (C1,C2) that encrypts message M

and (C′1,C
′
2) that encrypts message M′, the tuple (C′′1 ,C

′′
2) = (C1 +C′1,C2 +C′2) encrypts

the message M′′ = M + M′. Hence, this scheme provides additive homomorphism.

2.3.3 Paillier Homomorphic Probabilistic Encryption (PHPE)

The Paillier Homomorphic Probabilistic Encryption (PHPE) is an encryption

scheme proposed by Pascal Paillier in 1999 (PAILLIER, 1999). It is an asymmetric

probabilistic scheme based on the composite residuosity class problem. Consider an

integer n = p · q, p, q primes and λ the Carmichael function of n (CARMICHAEL,

1914, Chapter 4.6). Let x ∈ Zn, y ∈ Z∗n, g,w ∈ Z∗n2 , where Zn is the set of integers

modulo n, Z∗n is Zn \ {0}, Z∗n2 is Zn2 \ {0}, and the order of g is different from a nonzero

multiple of n. The order of an element a from a group A is the number of elements in

the subgroup of A consisting of all the powers of a (LIDL; NIEDERREITER, 1994,

Chapter 1). The n-th residuosity class of w with respect to g is the unique number

x ∈ Zn for which there exists y ∈ Z∗n such that

gx · yn mod n2 = w

The n-th composite residuosity class problem is the problem of finding the number

x when w and n are known. This is considered a hard problem (BENALOH, 1987,

Chapter 2.8: The Prime Residuosity Assumption). Additionally, for S n = {u < n2 |

u ≡ 1 mod n}, let L(u) = (u − 1)/n.

Let A and B be the users Alice and Bob. Bob wants to send a message to Alice.

A starts by choosing n = p · q, p, q primes and a random suitable g. To verify if g

40

is suitable, A must only verify if gcd(L(gλ mod n2), n) = 1, where gcd(a, b) is the

greatest common divisor of a and b. The private key is the Carmichael function λ of n

and the public keys are the numbers n and g. A sends B the public parameters (n, g).

Let m be the plaintext Bob wants to send to Alice, m < n. B then chooses a random

r < n and calculates c = gm · rn mod n2. B proceeds by sending Alice the ciphertext

c. Now, to reveal m, A checks if c < n2 and, in that case, computes

m = L(cλ mod n2) ·
(
L(gλ mod n2)

)−1
mod n.

Also, PHPE has an additive homomorphism. Notice that for c1 = gm
1 · r

n
1 mod n2

and c2 = gm
2 · r

n
2 mod n2, the ciphertext c3 is such that

c3 = c1 · c2 mod n2

= ((gm1 · rn
1) · (gm2 · rn

2)) mod n2

= (gm1+m2 · (r1 · r2)n) mod n2

= (gm1+m2 · rn
3) mod n2

carries the encryption of m3 = m1 +m2. Hence, the multiplication of ciphertexts results

in the addition of plaintexts.

2.3.4 Song, Wagner and Perrig Searchable Encryption (SWP)

The Song, Wagner and Perrig Searchable Encryption (SWP) is a encryption

scheme designed in 2000 to allow searches to be performed on encrypted data (SONG;

WAGNER; PERRIG, 2000). SWP works by encrypting the plaintext with a determin-

istic PRP and XORing it with a block of the same length, derived from the plaintext

data.

To encrypt a plaintext P, the following steps are performed (see Figure 8):

1. The plaintext P is encrypted using a deterministic PRP E and key k, Ek(P);

41

Figure 8: SWP encryption.

Source: Adapted from (SONG; WAGNER; PERRIG, 2000).

2. Ek(P) is divided into a left block L of size m and a right block R of size n;

3. Some information derived from P, such as the number of its position in the text,

Pos, is encrypted using a PRF F and key k′, resulting in S = Fk′(Pos). S has a

size of m;

4. A new key ki is computed from the left block L, a PRF f and key k′′, ki = fk′′(L);

5. This new key is used to create an encryption of S of size n using a PRF F′,

F′ki
(S);

6. S and F′ki
(S) are concatenated to make the mask which is applied to Ek(P);

7. The mask is XORed to Ek(P), producing the final ciphertext C.

To perform a word search, the plaintext encryption Ek(P) and the key ki are given

to the search engine. The search engine picks every ciphertext C it has stored and

XORs them with Ek(P). It divides the result in m and n size blocks. The first block is

a candidate for S and the second a candidate for F′ki
(S). Let the first block be called

42

S ′. Next, the engine encrypts S ′ with the provided key ki, F′ki
(S ′). If the encryption

matches the second block, the ciphertext C is the encryption of P, otherwise the engine

tries the next C.

2.4 Approximate Common Divisor

The Approximate Common Divisor (ACD) problem was introduced by

Howgrave-Graham in 2001 (HOWGRAVE-GRAHAM, 2001).

Definition 1: The Approximate Common Divisor (ACD) Problem

Let p be a prime number of size η, in bits. Let q be an integer in the interval [0, 2γ/p),

where the γ parameter gives the number final size. And let r be a positive or negative

random noise whose size in bits is defined by the ρ parameter. Define the efficiently

sampleable distributionDγ,ρ(p) as

Dγ,ρ(p) = {p · q + r | q← Z ∩ [0, 2γ/p), r ← Z ∩ (−2ρ, 2ρ)}.

The ACD problem consists in computing p from polynomially-many samples xi

drawn fromDγ,ρ(p).

Later, Cheon and Stehlè proved that the decisional problem of ACD (i.e., to dis-

tinguish between a sample from Dγ,ρ(p) and an integer uniformly chosen in an inter-

val) is not easier than the Learning with Errors (LWE) problem (CHEON; STEHLÈ,

2016). Therefore, since LWE (REGEV, 2009) is the basis of many lattice-based, post-

quantum secure cryptographic primitives (e.g. CRYSTALS (AVANZI et al., 2018;

DUCAS et al., 2018), FRODO (ALKIM et al., 2017b), NewHope (ALKIM et al.,

2017a) and qTesla (BINDEL et al., 2018)), the decisional problem of ACD is also

expected to be hard even in a setting where quantum computers are available.

Methods to solve the ACD were also studied by Galbraith et al.(GALBRAITH;

GEBREGIYORGIS; MURPHY, 2016). Their work corroborates the results of Cheon

43

and Stehlè. They also state that all the methods they studied are essentially equivalent.

All of the algorithms that solve the ACD problem start by using the many samples

xi from Dγ,ρ(p) to construct a lattice matrix. Once it is constructed, a lattice basis

reduction should be performed to solve the problem.

Using the results provided, a choice for the parameters ρ, η, γ ∈ N to provide a

desired security level against classical computers of λ in bits is:

ρ ≥ λ

η > ρ

γ ≥ Ω

(
ρ

log(ρ)
· (η − ρ)2

)
γ − ρ

η − ρ
≥ 800

The first three equations were presented by Cheon and Stehlè (CHEON; STEHLÈ,

2016). The noise parameter ρ is greater than λ in order to prevent brute force attacks on

the noise. The parameter γ is chosen in order to prevent lattice attacks. The parameter

η is selected to allow correct decryption of the ciphertext.

The final equation, the relation between ρ, η and γ, was set heuristically by

Galbraith et al.(GALBRAITH; GEBREGIYORGIS; MURPHY, 2016) to prevent any

practical lattice attack.

2.5 Summary

In this chapter, we described the basic concepts that are used throughout this work:

pseudo-random function and permutation, block cipher and its modes of operation,

indistinguishability of encryptions, cryptographic hash function, and the approximate

common divisor problem. Moreover, some important cryptographic algorithms that

are later used were detailed. In particular, we use the approximate common divisor

problem in chapter 4 as a basis to a new partially additive homomorphic encryption

44

algorithm. In addition, we adopt the Paillier Homomorphic Probabilistic Encryption as

a performance reference for our new algorithm in chapter 6. We also use the Advanced

Encryption Standard and its modes of operation together with hash functions and the

Song, Wagner and Perrig Searchable Encryption in chapter 5 to improve the CryptDB

database system.

45

3 CRYPTDB

CryptDB (POPA et al., 2011) is a property-preserving encrypted database designed

by MIT in 2011. It works by encrypting the same data multiple times using different

algorithms. Each of these algorithms enables a specific database functionality. Al-

gorithms may encrypt the data sequentially generating layers. Multiple layers form a

structure called onion. Each onion is responsible for a DB macro operation, such as

equality, ordering, searching, and addition.

CryptDB utilizes a client proxy to make the encrypted database transparent to the

user. Thus, the end user operates on the database as if it was not encrypted, which is

useful from a usability standpoint.

The next section gives an overview of the system, followed by an in-depth analysis

of its components, limitations and flaws.

3.1 Overview

CryptDB’s architecture can be divided into client-side and server-side components.

On the client-side, there is the end user and the proxy, while on the server side there is

the database itself. This architecture is illustrated in figure 9.

3.1.1 Client-side

The end user and proxy are on the client-side.

46

Figure 9: CryptDB architecture

Source: Adapted from (POPA et al., 2011).

The end user is the data owner or someone authorized to access and manipulate

the data. The encrypted cloud DB is completely transparent to him. He writes plain

SQL queries, that are forwarded to the proxy for adequate processing.

The proxy is a secure application. It is responsible for key management and stor-

age, and query rewriting.

Every DB table, column and encryption layer have their own encryption key. When

a client wants to insert data in the DB, the proxy analyses which operations are required

for that field. It proceeds by determining what onion and layers should be created for

that value and by fetching the appropriate encryption keys. The keys are created if

they do not exist. Afterwards, the value is encrypted for every needed layer, for every

needed onion. Now that the proxy has the encryption of the required onions, it rewrites

the SQL query. First, it encrypts the table and column name to obfuscate them. Next,

it changes the data to the encrypted onions that have been created. Finally, it sends this

rewritten query to the DB.

The proxy works in a similar way when the client needs to operate on the database.

47

Instead of generating multiple onions, the proxy determines which onion and which

layer is required to compute the operation. It encrypts the operand so it matches the

designed layer. Finally, it rewrites the query to operate on the specific layer with the

encrypted operand and sends it to the DB.

3.1.2 Server-side

The database and its management system are on the server side.

The database itself acts as an ordinary database, simply storing the values pro-

vided by the proxy.

The database management system (DBMS) has some slight modifications com-

pared to an unencrypted database version. These modifications are simply a set of user

defined functions, UDFs. They allow the system to interpret and process the encrypted

SQL queries provided by the proxy. Ergo, the DBMS is responsible for the correct

functionality of the database.

3.2 CryptDB’s Structure

As previously mentioned, CryptDB stores the same data encrypted multiple times

in onions. Each onion has multiple layers which are encrypted using different algo-

rithms. Figure 10 illustrates the Onion-layer architecture.

Next, we briefly describe each onion and, subsequently, each individual layer.

3.2.1 Onions

A description for each onion ensues.

The equality onion is responsible for DB operations that require the comparison

of provided and stored data. Simple matching selection and table join are performed

48

Figure 10: CryptDB multiple onions with layers

Source: (POPA et al., 2011).

by this onion.

The order onion is responsible for DB operations that require order relations be-

tween provided and stored data. ORDER BY, smaller/greater than and table range

joins are performed by this onion.

The search onion is responsible for the DB operations that require encrypted text

search between a provided data and stored data. The LIKE operator is implemented by

this onion.

The addition onion is responsible for the DB operations that require sums be-

tween provided data and stored data or multiple stored data. SUM, averages and value

increment are performed by this onion.

3.2.2 Encryption Layers

Each onion is composed of one or multiple layers that store the data appropriately

for a given operation. Figure 10 also shows the layers that constitute each onion.

The Random Layer (RND) is designed to provide IND-CPA security. It has no

database operational function otherwise. This layer uses a block cipher in CBC mode

with a random initialization vector (IV). As a result, the Random Layer implements a

probabilistic encryption.

49

The Deterministic Layer (DET) provides the equality check functionality to the

Equality Onion. It enables the computation of selects with equality operators, GROUP

BY, COUNT, DISTINCT, among others. This layer uses a PRP in CMC mode with

a zero IV. The outcome is a deterministic encryption. This allows the equality check

between values without exposing the unencrypted value.

The Join Layer (JOIN) is responsible for allowing the operation JOIN between

two database columns. This layer uses an algorithm called Adjustable Join Encryp-

tion (AJE). This algorithm was proposed by the creators of CryptDB (POPA; ZEL-

DOVICH, 2012). AJE allows the columns’ ciphertexts to be modified to share the

same key under a deterministic encryption scheme. Hence, equality comparisons can

be made between different columns.

The Order Preserving Layer (OPE) enables order relations between data in the

same column. Thus, ordering is enabled by this layer for the Order Onion. This layer

was first implemented using the Boldyreva, Chenette, Lee and O’Neil Order Preserv-

ing Encryption (BCLO) algorithm (BOLDYREVA et al., 2009). Later, BCLO was

found insecure and it was substituted for the mOPE/stOPE algorithm proposed by the

CryptDB creators (POPA; LI; ZELDOVICH, 2013).

The Order Join Layer (OPE-JOIN) permits order joins to be executed by the

database. It uses the same algorithm as the Join Layer to modify ciphertexts on dif-

ferent columns to share the same encryption key. However, the underlying encryption

scheme is provided by the OPE layer. Consequently, data from two columns can now

be order related.

The Search Layer (SEARCH) allows a word to be searched on the database with-

out revealing it. This layer enables the SQL operand LIKE in the database. It uses the

SWP encryption scheme, presented in chapter 2.

The Homomorphic Addition Layer (HOM) permits the sum of values without

50

first decrypting them. This allows the database to perform the SQL SUM operation

and averages. The layer is implemented by the PHPE algorithm presented in chapter

2.

3.3 CryptDB’s Flaws, Limitations and Efficiency

CryptDB has flaws, limitations and efficiency problems. In this work, we propose

to correct some of them, which are presented next.

CryptDB’s HOM uses the PHPE. PHPE is a slow encryption algorithm as it is

similar to RSA. Since it is a performance bottleneck, we studied possible solutions

to increase HOM’s efficiency. As a result, we designed a new partially homomorphic

encryption that is presented in chapter 4. CryptDB’s modification and other consider-

ations regarding the HOM are presented in chapter 5, section 5.1.

CryptDB’s SEARCH has the limitation of only allowing full word searches to be

performed on encrypted data. The user cannot look up for word fragments or use the

traditional database wildcard operator. This limits the ability of CryptDB to produce

useful information, as a user may not have the entire word at his disposal or wants to

look for multiple cases (e.g., prefixes or suffixes). We propose a work around to this

situation on chapter 5, section 5.2.

Finally, as the encrypted data is deterministic in DET, this can be used to perform

a series of attacks described at (NAVEED; KAMARA; WRIGHT, 2015). Inference

attacks are performed by counting the frequency of a given ciphertext on the database

and matching this ciphertext with a plaintext with a similar frequency on an auxiliary

database. The lp-Optimization attack is an evolution of the inference attack; instead

of analyzing each ciphertext individually, it creates a table of all ciphertexts and their

frequency and a table of all plaintexts and their frequency of an auxiliary database.

After that, it tries to combine these tables until an optimization cost function achieves

51

its minimum value. The resulting combination is likely the plaintext-ciphertext key

table for this database. Both these attacks relies heavily on the fact that the same

plaintext is encrypted to the same ciphertext in the database. We propose a modification

to CryptDB to mitigate these kind of attacks on chapter 5, section 5.3.

For a final consideration, the OPE is susceptible to some attacks, presented in

(NAVEED; KAMARA; WRIGHT, 2015) and (KOLESNIKOV; SHIKFA, 2012). Al-

though we initially planned to mitigate these attacks, an article by Durak, DuBuisson

and Cash (DURAK; DUBUISSON; CASH, 2016) showed that attacks to OPE are in-

herent to its concept. In other words, if encrypted words are simply ordered, their

unencrypted values can be inferred using an auxiliary database. Because of this, we

decided to not treat attacks to OPE.

3.4 Summary

In this chapter we presented the cloud encrypted database CryptDB. Firstly, we de-

scribed CryptDB’s overall framework, with the client-server side separation and com-

ponents. Next, we detailed CryptDB’s internal structure, explaining the Onions con-

struction and their internal layers. Furthermore, we described which operation each

layer is responsible for. Finally, we briefly analyzed CryptDB’s flaws, limitations and

efficiency, outlining our proposals to improve each aspect.

52

4 NEW FAST ADDITIVE PARTIALLY
HOMOMORPHIC ENCRYPTION

In this chapter, we present two novel additive, partially homomorphic encryption

schemes built upon the Approximate Common Divisor (ACD) Problem presented in

section 2.4. The constructions are inspired by similar works that use the ACD problem

(e.g. DGHV (DIJK et al., 2010), Batch DGHV (CHEON et al., 2013), AHE (CHEON;

STEHLÈ, 2016)). We name them Fast Additive Homomorphic Encryption (FAHE) 1

and FAHE2. One of the main particularities of the proposed solutions, which enable

relevant simplifications and optimizations, is that they rely on symmetric keys for data

encryption and decryption. Hence, on one hand, just a trusted party can encrypt

and decrypt data. Homomorphic additions, on the other hand, can be performed very

efficiently by any entity (e.g., cloud servers).

In a nutshell, FAHE1 and FAHE2 are symmetric probabilistic encryption algo-

rithms that use a prime number as private key. Both schemes rely on the ACD as

underlying security problem. However, whereas FAHE1 is a simple application of

the ACD, FAHE2 provides shorter ciphertexts but requires slightly stronger security

assumptions.

For both protocols, we assume the following: the security parameter is λ; the

maximum plaintext message size is |mmax|; the noise size is ρ; the secret key size is η;

the final ciphertext’s maximum size is γ; and the total number of additions supported

is at least 2α−1. This notation is summarized in Table 1.

53

Table 1: General notation for FAHE.
Symbol Definition

λ Security parameter
|mmax| Maximum plaintext message size
ρ Noise size
η Secret prime number size
γ Ciphertext size
α Number of supported additions (log)

Source: Author.

4.1 Notation

The following notation is used throughout this chapter.

The notation a ← A refers to sampling uniformly at random an element from the

set A. We write |a| to denote the size of a bit string a, and 0l to refer to a l-bit long

string composed of 0s. The concatenation of bit strings a and b is denoted a ‖ b. The

operation x � y (resp. x � y) corresponds to the left (resp. right) shift of x by y

positions, where x, y ∈ N. Finally, log x is the base-2 logarithm of x.

4.2 FAHE1

The main idea for FAHE1 is to use the ACD problem and append the message m

to be encrypted at the end of the noise noise, before adding the result to p · q. Since

the resulting string containing m and noise remains smaller than the η-bit prime p, the

corresponding plaintext can be recovered via modular reduction, during the decryption

procedure. Figure 11 illustrates FAHE1’s ciphertext structure.

4.2.1 Key generation, encryption, decryption and homomorphic
addition

The key generation, encryption, decryption and homomorphic addition processes

of FAHE1 are defined as follows:

54

Figure 11: A visual description of FAHE1’s encryption process. Parameter q is larger
than p and is partially represented.

q p

noise0s0s message

Source: Author.

FAHE1.Keygen(λ, |mmax|, α). Choose a suitable security parameter λ, the max-

imum message size |mmax| and the parameter α that defines the total number of

supported additions. Then, compute the set of parameters (ρ, η, γ), given by:

ρ = λ, η = ρ + 2α + |mmax|, γ = (ρ

log ρ · (η − ρ)2). Finally, pick a prime p of size

η and set X = 2γ/p.

Set the scheme’s key to k = (p, |mmax|, X, ρ, α). In the encryption process, the

subset ek = (p, X, ρ, α) is required. For decryption, the user employs the subset

dk = (p, |mmax|, ρ, α).

FAHE1.Encek(m). Given a message m, sample q ← [0, X), noise ← {0, 1}ρ

and let M = (m � (ρ + α)) + noise. Then, compute n = p · q and output

c = n + M.

FAHE1.Add(c1, c2). Given two ciphertexts c1 and c2, output cadd = c1 +c2. Note

that the ciphertext size can increase during this operation due to carries.

FAHE1.Decdk(c). Given the ciphertext c, output the least significant |mmax| bits

of

m = (c mod p) � (ρ + α)

55

4.2.2 Correctness

The correctness of the encryption and decryption processes is quite simple to ver-

ify. First, the encryption of plaintext m consists in placing, via addition, its encoded

form M = m � (ρ + α) + noise into a fixed position of n = p · q. Since M < p by

construction, the resulting ciphertext c = n + M can be decrypted as:

m = (c mod p) � (ρ + α)

= ((p · q + M) mod p) � (ρ + α)

= M � (ρ + α)

= ((m � (ρ + α)) + noise) � (ρ + α)

=
(
(m � (ρ + α)) � (ρ + α)

)
+

(
noise � (ρ + α)

)
= m

The correctness of the homomorphic operations, in turn, is highly dependent on the

α-bit sequences of 0’s placed around the plaintext m while it is encoded into M. The

reason is that such sequences handle the carry propagation resulting from additions,

acting as buffers for those carry bits. Namely, the buffer placed on the right side of

message m (i.e., between its least significant bit and the noise) is reserved for the

noise growth resulting from each addition, preventing such noise from mixing with the

message itself. Similarly, the buffer placed on the left side of m is reserved for the

carry-outs that may result when the plaintext messages are themselves added together.

For a concrete example, suppose that ciphertexts {c1, . . . , ca} are (homomorphically)

added together; the resulting ciphertext c+ is then computed as:

c+ =
∑a

i=1(ci)

=
∑a

i=1(ni + Mi)

=
∑a

i=1(ni) +
∑a

i=1(mi) � (ρ + α) +
∑a

i=1(noisei)

56

Even though the
∑a

i=1(noisei) expression can generate carries, those carries would

only affect the buffer on the right side of the message, not the bits on the message itself.

For an α-bit long buffer, up to 2α bits can be captured in this manner, meaning that

the addition of noises would only start to affect the bits on the expression
∑a

i=1(mi) �

(ρ+α) after at least 2α additions are performed. Analogously, even if
∑a

i=1(mi) � (ρ+α)

results in carry-outs, the corresponding bits are captured by the α-bit long buffer on the

left side of each mi. As long as less than 2α−1 additions are performed, it is ensured that

the most significant bit of this buffer remains at 0. As a result, we have
∑a

i=1(Mi) < p,

and the decryption of c+ is correctly performed as:

m+ = (c+ mod p) � (ρ + α)

= (
∑a

i=1(ni + Mi) mod p) � (ρ + α)

= (
∑a

i=1(Mi)) � (ρ + α)

= (
∑a

i=1(mi � (ρ + α) + noisei)) � (ρ + α)

=
∑a

i=1(mi)

Therefore, by choosing a suitable α parameter, it is ensured that 2α−1 homomorphic

additions can be performed in FAHE1. Those additions can include both unsigned

numbers and signed numbers represented in two’s complement, since the carry-out

bit of the resulting operation is ignored anyway (as dictated by the two’s complement

arithmetic).

As a final remark, we note that, for some values of α, the ciphertext size γ =

(ρ

log ρ · (η − ρ)2) could be theoretically smaller than the prime size η. However, for the

security reasons presented in section 4.4 and to prevent invalid values for γ, we suggest

setting the minimum value of α in FAHE1 as described in section 4.5.

57

Figure 12: A visual description of FAHE2’s encryption process. Parameter q is larger
than p and is partially represented.

q p

noise10s0s messagenoise2

pos

Source: Author.

4.3 FAHE2

The basic idea behind FAHE2’s design is to create an open space at a given posi-

tion pos inside the noise employed in the ACD problem. Then, we embed the message

in that position before adding the result to p · q. As a result, the difference between

the noise size ρ and the key size η is smaller than in FAHE1. Consequently, the ci-

phertext size is also smaller than in the previous variant. Figure 12 illustrates FAHE2’s

structure.

4.3.1 Key Generation, Encryption and Decryption

The key generation, encryption, decryption and homomorphic addition processes

of FAHE2 are defined as follows:

FAHE2.Keygen(λ, |mmax|, α). Choose a suitable security parameter λ, the max-

imum message size |mmax| and the parameter α that defines the total number of

supported additions. Then, compute the set of parameters (ρ, η, γ, p, X, pos),

given by: ρ = λ + α + |mmax|, η = ρ + α, γ = (ρ

log ρ · (η − ρ)2). Finally, pick a

prime p of size η and set X = 2γ/p and pos← [0, λ].

Set the scheme’s key to k = (p, X, pos, |mmax|, λ, α). In the encryption process,

58

the subset ek = (p, X, pos, |mmax|, λ, α) is required. For decryption, the user

employs the subset dk = (p, pos, |mmax|, α).

FAHE2.Encek(m). Given a message m, sample q← [0, X), noise1← {0, 1}pos,

noise2 ← {0, 1}λ−pos, and make M = (noise2 � (pos + |mmax| + α)) + (m �

(pos + α)) + noise1. Next, compute n = p · q and output

c = n + M.

FAHE2.Add(c1, c2). Given two ciphertexts c1 and c2, output cadd = c1 +c2. Note

that the ciphertext size can increase during this operation due to carries.

FAHE2.Decdk(c). Given the ciphertext c, output the least significant |mmax| bits

of

m = (c mod p) � (pos + α)

4.3.2 Correctness

The correctness of the encryption and decryption processes can be verified simi-

larly to FAHE1. Indeed, encryption consists in placing the plaintext’s encoded form

M = (noise2 � (pos + |mmax| + α)) + (m � (pos + α)) + noise1 into n = p · q,

at the position defined by the pos variable. Since we once again have M < p (by

59

construction), the ciphertext c = n + M can be decrypted as:

m = (c mod p) � (pos + α)

= ((p · q + M) mod p) � (pos + α)

= M � (pos + α)

= ((noise2 � (pos + |mmax| + α)) + (m � (pos + α)) + noise1) � (pos + α)

= ((noise2 � (pos + |mmax| + α)) + (m � (pos + α))) � (pos + α)

+ (noise1) � (pos + α)

= (noise2 � |mmax|) + m

= m . note: only the |mmax| least significant bits are output

The correctness of the homomorphic operations, in turn, is also dependent on the

α-bit sequences of 0’s placed at the end of both noise1 and noise2, which work as

buffers for carry bits. Namely, the buffer placed after noise1 handles its growth due

to additions, thus preventing this part of the noise from reaching the message itself for

less than 2α additions. Then, the buffer placed after noise2 prevents M from growing

larger than p as long as less than 2α−1 additions are performed. This can be verified

if we once again consider the (homomorphic) addition of ciphertexts {c1, ·, ca}, leading

to ciphertext c+:

60

c+ =
∑a

i=1(ci)

=
∑a

i=1(ni + Mi)

=
∑a

i=1(ni) +
∑a

i=1((noise2i � (pos + |mmax| + α)) + (mi � (pos + α)) + noise1i)

=
∑a

i=1(ni) +
∑a

i=1(noise2i � (pos + |mmax| + α))

+
∑a

i=1(mi � (pos + α))

+
∑a

i=1(noise1i)

Similarly to FAHE1, we have
∑a

i=1(Mi) < p for less than 2α−1 addition, so the

decryption of c+ is correctly performed as:

m+ = (c+ mod p) � (pos + α)

= (
∑a

i=1((ni + Mi) mod p)) � (pos + α)

= (
∑a

i=1(Mi)) � (pos + α)

= (
∑a

i=1((noise2i � (pos + |mmax| + α)) + (mi � (pos + α)) + noise1i)) � (pos + α)

= (
∑a

i=1(noise2i � (pos + |mmax| + α)) + (
∑a

i=1(mi � (pos + α)))) � (pos + α)

+ (
∑a

i=1(noise1i)) � (pos + α)

=
∑a

i=1(noise2i � |mmax|) +
∑a

i=1(mi)

=
∑a

i=1(mi)) . note: only the |mmax| least significant bits are output

Also like in FAHE1, FAHE2 support additions for both unsigned numbers and

signed numbers represented in two’s complement. After all, carry-outs in this case are

61

stored in noise2, which is discarded during the decryption of ciphertexts.

Finally, the same remark regarding how the ciphertext sizes in FAHE1 relate to

α is also valid for FAHE2. More precisely, for some values of α the ciphertext size

γ = (ρ

log ρ · (η − ρ)2) could be theoretically smaller than the prime size η. For the

security reasons presented in section 4.4 and to prevent invalid values for γ, though,

we suggest the minimum value of α in FAHE2 as described in section 4.5.

4.4 Security analysis

Both FAHE and FAHE2 rely on the post-quantum secure Approximate Com-

mon Divisor (ACD) as underlying security problem. Nevertheless, to avoid possible

borrow-ins from the message text when performing homomorphic additions, we only

use the positive interval for the noise added to p · q. Therefore, and even though the

ACD problem states that the noise interval comprehends negative and positive values,

we argue that using only positive values does not affect the noise’s distribution and,

hence, the overall security of the ACD decisional problem. This argument is based on

the result shown in Theorem 1.

Theorem 1. Let D be a sampleable distribution built from the original ACD prob-

lem, andD
′

be a sampleable distribution built from the ACD problem where the noise

consists only in positive integers. Samples taken from D are as indistinguisable from

random as samples taken fromD
′

.

Proof. (Sketch) Let xi be elements sampled from the ACD distribution Dγ,ρ(p) = {p ·

q + r | q ← Z ∩ [0, 2γ/p), r ← Z ∩ (−2ρ, 2ρ)}. Remember that every xi sampled in

this manner is indistinguishable from random (see section 2.4). Now, take t = 2ρ and

compute x′i = xi + t for every xi, thus "shifting" those elements by the fixed threshold

2ρ. The result of this sum x′i = xi + t, where the biggest addend xi is indistinguishable

from random and t is a constant, is still indistinguishable from random. Therefore, the

62

new element x′i can then be rewritten as x′i = {p · q + r′ | r′ ← Z ∩ (0, 2ρ+1)}, which is

an instance of the ACD problem where the noise consists only in positive integers. �

Building upon Theorem 1, we analyze the security of FAHE1 and FAHE2 in what

follows.

4.4.1 Security of FAHE1

FAHE1 uses just the distribution with positive noise to encrypt messages and

it is indistinguishable under a chosen plaintext attack (IND-CPA) (see subsubsec-

tion 2.2.3.1). In other words, given polynomial encryption samples c1, c2, . . . , ca cor-

responding to plaintexts messages m1,m2, . . . ,ma of the same size and a challenge

ciphertext cx from mc0 or mc1, an adversary cannot determine if x = c0 or x = c1 with

non-negligible probability.

Theorem 2. Encryption with FAHE1 is indistinguishable under a chosen plaintext

attack (IND-CPA).

Proof. (Sketch) A sample cn is computed by adding together the message mn and an

element n ← Dγ,ρ(p) = {p · q + r | q ← Z ∩ [0, 2γ/p), r ← Z ∩ (0, 2ρ+1)} from the

ACD distribution with positive noise. Since the element n is indistinguishable from

random, the sampling process acts as a secure pseudorandom function (PRF). After

all, for every message, a distinct element is chosen with high probability: namely, the

probability of repeating an element fromDγ,ρ(p) is approximately 2−
(γ−η)

2 , which is the

probability of drawing the same q considering the birthday paradox. Therefore, n can

be interpreted as an independent pseudorandom one time pad when (γ − η)/2 is big; in

particular, in FAHE1 we have (γ − η)/2 > 1000, so the probability of repeating an element

from Dγ,ρ(p) is negligible. Then, when we perform the addition n + mn = cn, the

element n acts as random mask for every bit of the message mn, since n > mn. The

63

output cn is, thus, a pseudorandom ciphertext produced from a secure PRF, which is

IND-CPA (ROSULEK, 2018, Chapter 8.3). �

4.4.2 Security of FAHE2

FAHE2 embeds the message inside the noise. The noise can then be seen as two

distinct components, noise1 ← [0, 2pos), and noise2 ← [2pos+α+|mmax |, 2η−α) (note:

noise2 can also be 0). Another possible interpretation, which is more useful in

our scenario, is that noise2 is a noise r′ from the interval [0, 2λ−pos) multiplied by

Q = 2pos+α+|mmax |. Therefore, the resulting construction resembles the Chinese Remain-

der Theorem (CRT) message encryption of the batch DGHV scheme (CHEON et al.,

2013), where Q and the key p are coprimes: after all, p is prime and Q a power of

two. The message encryption in FAHE2 can then be rewritten as (Qr′+ qm +noise1),

where q = 2pos+α.

There is evidence in the literature to believe the CRT variant of the ACD to be

hard, but it is still an open problem to provide an algorithm that uses the CRT structure

to solve the problem (GALBRAITH; GEBREGIYORGIS; MURPHY, 2016). Since

we make the total size of the random noise in FAHE2 |noise1| + |noise2| = λ, brute

force attacks on the noise are still prevented. Nevertheless, since FAHE2 relies on an

approximation of the CRT variant of the ACD, the resulting scheme ends up having

stronger security assumptions than FAHE1.

Finally, we note that FAHE2 also uses the ACD distribution with positive noise

for generating a random mask for the message to be encrypted. Hence, using the

same arguments presented for FAHE1 in Theorem 2, we can show that FAHE2 is also

indistinguishable under a chosen plaintext attack (IND-CPA).

64

4.4.3 Security against the Simultaneous Diophantine Approxima-
tion (SDA) attack

As a final remark, we consider the heuristic analysis of the Simultaneous Dio-

phantine Approximation (SDA) attack performed in (GALBRAITH; GEBREGIYOR-

GIS; MURPHY, 2016). Specifically, (GALBRAITH; GEBREGIYORGIS; MURPHY,

2016) concluded that the dimension d of the lattice created by the ACD samples must

present the following condition for the SDA algorithm to succeed:

d + 1 ≥
γ − ρ

η − ρ

The same analysis also concludes that a value of (γ− ρ)/(η− ρ) ≥ 800 is sufficient

to prevent any practical lattice attack. It corresponds to the last relation presented in

section 2.4. To achieve this in our proposed schemes, the term α must have a minimum

value for each algorithm, which are presented in section 4.5.

4.4.4 A Key Recovery Attack with (Adaptive) Decryption Queries

If a decryption oracle is available for attackers, a key recovery attack can be

mounted against both FAHE1 and FAHE2. Basically, the attack works by finding a

multiple of the key p after sending (adaptively) chosen ciphertext decryption queries

to this oracle, as follows.

First, the attacker asks for the decryption of the arbitrary ciphertext c = 100 . . . 000

of size |c| = γ, and saves the output message m. The ciphertext can be interpreted as

c = x · p + M, where x is an integer. Then, the attacker scans that ciphertext, starting

from the bit η (i.e., the position corresponding to the most significant bit of the secret

prime p) to the least significant bit, until a bit 0 is found. That bit 0 is flipped to 1,

and a new decryption oracle query is made with the modified ciphertext. As a result,

there are two possibilities for this new ciphertext: (1) it corresponds to x · p + M′,

where M′ and M are identical except for the flipped bit; or (2) it can be written as

65

(x + 1) · p + W, where W , M. The latter case happens whenever the bit-flipping

leads to an encoded plaintext that is larger than p, so it is affected by the (mod p)

operation during decryption; to correct this, the affected bit is flipped back to 0, so the

multiplicand of p in the ciphertext remains as x. Otherwise, the affected bit is kept

flipped. Whichever the case, the attacker repeats the scanning process, looking for the

next bit 0 to be flipped.

When all bits between η and the least significant bit are processed in this manner,

the resulting ciphertext can be written as c′ = x · p + M∗, where M∗ = p − 1. After

all, the attack ensures that all bits of the encoded message M were flipped so it is just

barely smaller than p. Finally, then, by adding 1 to the modified ciphertext, the attacker

obtains (x · p + p− 1) + 1 = (x + 1) · p, which is an integer multiple of p. By repeating

the attack with another arbitrary ciphertext with the η-least significant bits cleared (e.g.

c = 1100 . . . 000, where |c| = γ), the attacker can simply compute the greatest common

divisor (GCD) between the two ciphertexts obtained in this manner to recover p or a

small multiple of p. We present an example of the key recovery attack on Appendix A.

Albeit powerful, we note that this attack shows that FAHE1 and FAHE2 cannot

be proved to be IND-CCA2 secure, which is actually the case for any malleable (e.g.,

homomorphic) scheme (BELLARE et al., 1998, Theorem 3.3).

4.5 Parameter Selection Example

In this section, we present some suggested parameters size ρ, η, γ for both FAHE1

and FAHE2. We consider a security level λ of 128 bits against classical computers, the

message size |mmax| of 32 and 64 bits, and different values for the minimum number of

supported additions, 2α−1.

To obtain the value (γ−ρ)/(η−ρ) ≥ 800 for FAHE1, we need to enforce α ≥ 6 for

λ = 128 and |mmax| = 32. For FAHE2, we set α ≥ 32 for λ = 128 and |mmax| = 32. The

66

Table 2: Parameters for FAHE1 and FAHE2 for λ = 128.
FAHE1 FAHE2

|mmax| = 32 |mmax| = 64 |mmax| = 32 |mmax| = 64
α = 6 α = 33 α = 6 α = 33 α = 32 α = 33 α = 29 α = 33

ρ 128 128 128 128 192 193 221 225
η 172 226 204 258 224 226 250 258
γ 35402 175616 105619 309029 25921 27683 23866 31359

Source: Author.

minimum α can be set lower for |mmax| = 64. For FAHE1, we decided to keep the same

value as it is already small. For FAHE2, α ≥ 29 considering λ = 128 and |mmax| = 64.

We present the results for both schemes using the minimum α allowed and also

α = 33 (i.e., so at least 232 sums are supported by the schemes). The rationale for the

parameters |mmax| = 64 and α = 33 were that this enables additions among as many

long integers as commonly found in very large databases (e.g., 167 million items in

the Library of Congress (Library of Congress, 2018) and 12 billion total credit card

operations in Brazil in 2016 (Diretoria de Regulação Prudencial, Riscos e Assuntos

Econômicos, 2016, p. 103)).

The parameters are presented in Table 2. We note that the ciphertext size varies

almost linearly with the security parameter λ and almost quadratically with the number

of supported sums α plus the message size |mmax|.

For FAHE1, the smallest ciphertext size is obtained when ρ = 128, η = 172,

γ = 35402 for λ = 128, |mmax| = 32, α = 6. The largest appears at ρ = 128, η = 258,

γ = 309029 for λ = 128, |mmax| = 64, α = 33.

For FAHE2, since the noise size is bigger for |mmax| = 64, α can be reduced. As a

result, the smallest ciphertext size occurs at ρ = 221, η = 150, γ = 23866 for λ = 128,

|mmax| = 64, α = 29. The biggest γ is then obtained with ρ = 225, η = 258, γ = 31359

for λ = 128, |mmax| = 64, α = 33.

Figure 13 presents the variation of ciphertext size with the number of supported

67

Figure 13: Variation of ciphertext size for FAHE1 and FAHE2 for different numbers
of additions supported. Paillier is included as a reference.

Sheet1

Page 1

5 10 15 20 25 30 35 40 45 50
0

50000

100000

150000

200000

250000

300000

350000

Ciphertext Size Vs Additions Supported

Paillier
FAHE1
FAHE2

Additions Supported (log2)

C
ip

h
e

rt
e

x
t

S
iz

e
 (

b
it

s
)

Source: Author.

additions for λ = 128, |mmax| = 32 and valid values of α for FAHE1 and FAHE2.

When we compare these numbers with those obtained with the Paillier scheme, we

observe that, the latter’s ciphertexts have the same length independently of the number

of additions supported. Although FAHE1 and FAHE2 present ciphertexts larger than

Paillier’s, the operations from our algorithms are orders of magnitude more efficient,

as further discussed in chapter 6.

We also evaluated how FAHE1 and FAHE2 would behave for λ = 256, which is

expected to provide a security level of 128 bits against quantum computers (since it

prevents brute force attacks on the noise) (GROVER, 1996). Again, to obtain (γ −

ρ)/(η − ρ) ≥ 800 for FAHE1, we set α ≥ 6. Actually, α can be set lower than 6 for this

configuration, but as it is already small, we suggest keeping the same value calculated

for λ = 128. In FAHE2, we suggest setting α ≥ 22 for |mmax| = 32 and α ≥ 21 for

|mmax| = 64. The parameters are presented in Table 3.

68

Table 3: Parameters for FAHE1 and FAHE2 for λ = 256.
FAHE1 FAHE2

|mmax| = 32 |mmax| = 64 |mmax| = 32 |mmax| = 64
α = 6 α = 33 α = 6 α = 33 α = 22 α = 33 α = 21 α = 33

ρ 256 256 256 256 310 321 341 353
η 300 354 332 386 332 354 362 386
γ 61952 307328 184832 540800 18130 41984 17874 45421

Source: Author.

4.6 Summary

In this chapter, we presented two partially additive homomorphic encryption

schemes based on the approximate common divisor problem. Both schemes are sym-

metric and probabilistic but whilst the first has larger ciphertext size, the second re-

lies on slightly stronger security assumptions. Another noteworthy point is that the

schemes are believed to be resistant against quantum computers because they are built

upon the approximate common divisor problem. We describe the key generation, en-

cryption, decryption and homomorphic addition for them both. We also present their

security analysis and parameter selection for a number of practical scenarios.

69

5 MODIFICATIONS

In this chapter, we present our proposed modifications to CryptDB.

Firstly, we present a modification in CryptDB’s homomorphic addition layer

(HOM) that improves its efficiency by changing the current cryptographic algorithm to

our proposed scheme presented in chapter 4. We also discuss other attempted solutions

and why they were not adopted.

Secondly, we present a modification in CryptDB’s search layer (SEARCH) that

improves its functionality by allowing wildcard searches. In addition, we present an

important drawback to it.

Finally, we present a modification in CryptDB’s deterministic layer (DET) that

improves its security by mitigating the attacks presented in chapter 3. A drawback is

also presented to our solution.

5.1 Efficiency Improvement in CryptDB’s homomor-
phic addition layer (HOM)

We propose the substitution of the Paillier Homomorphic Probabilistic Encryp-

tion (PHPE) on CryptDB’s homomorphic addition layer (HOM) by our algorithm Fast

Additive Homomorphic Encryption (FAHE) 2, presented in chapter 4.

CryptDB’s HOM uses PHPE to provide additive homomorphism in the encrypted

database values. PHPE’s n-th composite residuosity class problem (see subsec-

70

tion 2.3.3 for the definition) requires a public key n of size similar to RSA. For a

desired security level λ = 128 bits, n = 3072 (BARKER; DANG, 2016, Table 2).

Since PHPE uses the square of the key, n2, to operate, the ciphertext final size is 6144

bits. As a result, the encryption and decryption require modular exponentiations and

multiplications over a large cyclic group. Moreover, PHPE is not secure against quan-

tum computer attacks, as the integer factorization of n allows the computation of the

private key (SHOR, 1997).

In opposition, our algorithms allow considerable speed ups in every process

(key generation, encryption, decryption, and homomorphic sum). Furthermore, our

schemes are based on the Approximate Common Divisor (ACD) problem, believed to

be resistant to quantum computer attacks.

Another difference between PHPE and FAHE is that the first is an asymmetric

scheme while ours is symmetric. It means that PHPE allows multiple entities to en-

crypt data, but just a single one (the one that possesses the private key) is capable of

decrypting it. Meanwhile, in FAHE, just the entity that can decrypt data can also en-

crypt it. Although this limits the scenarios where FAHE can substitute PHPE, CryptDB

is one of the scenarios where the substitution can be made. In CryptDB, a single entity,

the proxy, is responsible for encrypting the client data before sending it to the cloud

database, as well as decrypting the cloud database data before returning it to the client.

Hence, a symmetric key can be used and PHPE can be substituted by FAHE.

As a result of the substitution, the entire HOM benefits from a performance gain.

Improvements to all the processes, including the key generation, aid the layer’s effi-

ciency. Albeit for most systems the key generation process is performed only once,

every addition enabled column of a CryptDB’s database is encrypted using a different

key. Thus, the generation of multiple keys is necessary and its enhancement represents

a benefit.

Although PHPE achieves Indistinguishability under Chosen-Ciphertext 1 (IND-

71

CCA1) (ARMKNECHT; KATZENBEISSER; PETER, 2013) while FAHE provides

only Indistinguishability under Chosen-Plaintext (IND-CPA) (see section 4.4), this

does not represent a problem. Firstly, only the proxy knows the cryptographic keys

and only it is capable of encrypting or decrypting data. In CryptDB, it is assumed that

the proxy is a secure entity. Hence, a decryption oracle is not provided to a possi-

ble attacker. Secondly, CryptDB’s Random layer (RND) is responsible for providing

data security to the database. RND is implemented using AES in Cipher Block Chain-

ing (CBC) mode, which also only achieves IND-CPA (see subsection 2.2.2). Conse-

quently, CryptDB is already limited by an IND-CPA algorithm and the change from

PHPE to FAHE does not incur in a security loss.

The major drawback of the modification is the increased ciphertext size. FAHE2

presents a 5 times increase, approximately, in ciphertext size compared to PHPE.

FAHE2’s ciphertext size is 31359 bits (Table 2; λ = 128, |mmax| = 64, α = 33) and

PHPE’s ciphertext size is 6144 bits (λ = 128, n2 = 6144).

5.1.1 Other Attempted Solutions

In chapter 2, we presented the Eliptic Curve ElGamal Encryption Scheme

(ECEGES). This algorithm also has an additive homomorphism property.

Our first attempt to improve the HOM was replacing PHPE by the ECEGES. Un-

fortunately, as presented on the algorithm description, a message should be mapped to

an Elliptic Curve (EC) point before the encryption. Although the homomorphism is

preserved for the points, the homomorphism is not preserved for the map and reverse

map of the messages to points and the opposite. Using the Elligator2 map (BERN-

STEIN et al., 2013), we observed that the addition of the points was not inverted back

to the addition of the messages. Further studies showed that the range size of any map

from a string to an EC point should have twice the domain size (FOUQUE; JOUX;

TIBOUCHI, 2013). Therefore, a map from a string to a point is an injective function

72

only and there are elements in the range that do not have a corresponding string.

Another solution would be to map a message to an EC point by multiplying the

message value by the curve generator point G. Despite the fact that this map would

correctly preserve the additive homomorphism, the decryption process would have a

major drawback. To invert the map, it is required to compute the EC discrete logarithm.

The decryption of a ciphertext would result in the sum of messages multiplied by the

curve generator. Although the message space could be made small (e.g., 232), this is

still a hard problem. The time complexity of the EC discrete logarithm problem can

be traded for space complexity by storing a precomputed table on the proxy. For this,

all the message possibilities should be computed and the result should be stored in

this table. Hence, when the map needs to be inverted, the proxy simply looks at the

table to find the correspondence between EC point and message. The drawback is that

this table reaches a couple of hundred gigabytes that must be stored in the proxy. The

storage of large data on the local proxy goes against the idea of a cloud database Hence,

this approach is not ideal.

5.2 Functionality Improvement in SEARCH

CryptDB’s search layer (SEARCH) uses the Song, Wagner and Perrig Searchable

Encryption (SWP) algorithm presented in chapter 2 to enable search on encrypted

data. The algorithm, as it is implemented, is able to search only for full words. In a

database, a fragment word search is desirable, as the user may want to look for data

patterns. To allow word fragments to be searched, we propose a modification on how

data is encrypted by SWP.

Instead of encrypting the whole word, we propose that the user chose a token size.

This token size is the fragment word size to be encrypted. The word will be divided

in multiple tokens. Appended to the token, the position of the fragment in the word

73

is added, forming the final plaintext to be encrypted. The last token also has a second

copy with the special terminator, `. Moreover, if the last token is smaller than the token

size, the final token repeats part of the previous fragment to reach the token size. For

instance, the word “cryptography”, with a token size 2, will be divided in the fragments

“cr1”, “yp2”, “to3”, “gr4”, “ap5”, “hy6”, and “hy`”. The word “Alice”, with the same

token size, will be divided into “Al1”, “ic”, “ce3”, and “ce`”. These fragments will be

then encrypted instead of the whole word. This process is depicted in Figure 14.

Figure 14: Word fragmentation process.

Source: Author.

When the user searches for a fragment, the proxy rewrites the search query and

adds the appropriate positions to the fragment. One search query may have to be

rewritten as many times as there are possible positions for the fragment. This modified

query is then used to perform the search. An overview of the query rewrite step is

presented in Figure 15.

Our solution presents no modification to the algorithm security since it is changing

the data which will be encrypted, and not how the data is encrypted. Nonetheless,

there are fewer possible fragments as the token gets smaller. When the token reaches

the value of 1, there are only 52 possible fragments (the letters “a” to “z” and their

capitals), followed by their position in the word. Assuming that the number of positions

is finite and small, all possible combinations make up a small group. SWP uses an

74

Figure 15: Query rewrite process. “cr*” is a search for words that begin with “cr”;
“*to*” is a search for words that contain “to”; “*hy” is a search for words that end
with “hy”.

Source: Author.

information about the text to be encrypted to create the final ciphertext. In a database

this information can be the primary key of the entry the fragments belong to. This

guarantees that even equal fragments will be encrypted different. However, when a

search is performed, the proxy must provide the encryption of the fragment. With few

possible fragments, it is possible to infer what fragments the proxy is searching for after

analyzing a number of queries. This problem was already present on the SEARCH,

but the number of possible words is greater than the number of possible fragments

(i.e., there are more possible full words than numbered word fragments). Hence, our

modification makes it easier to deduce what is being searched given enough queries

and worsens the already presented issue.

Unfortunately, the solution has drawbacks and one limitation. The fragment word

search is still limited to fragments of a giving size. Moreover, if the fragment is par-

tially in one token and partially in other (e.g. searching for the fragment “ry” in our

example), this result will not be produced. Because of this, the wildcard operator is

not fully enabled. To fully enable the wildcard operator, the token size must be made

75

equal to 1. This brings forth the important drawback of our solution.

The major drawback of our solution is that it increases the ciphertext size. Since

each fragment must be individually encrypted to allow its search, there is a cipher-

text expansion compared to the unmodified protocol. In the unmodified protocol, the

words are divided to entirely fill the underlying SWP Pseudo Random Permutation

(PRP) block. As a result, every PRP block encrypts as much plaintext as possible.

However, on the modified SEARCH, each fragment demands an entire block. Con-

sequently, each block is not entirely filled and more blocks are needed to encrypt the

same plaintext. The need of more blocks to encrypt the same plaintext produces larger

ciphertexts. However, the ciphertext size and consequently its expansion rate are inde-

pendent from individual plaintext sizes. All plaintexts should be expanded to the same

size (e.g., by adding space characters at the end) to avoid inference attacks. If plain-

texts of multiple sizes are simple encrypted, the resulting ciphertexts will also have

different sizes. Then, an attacker who looks at the encrypted database can associate

larger ciphertexts with larger plaintexts and infer the original plaintext size. As a con-

sequence, the data storage expansion ratio from the original to the modified search is

constant.

The final drawback of our solution is that the query translation by the proxy into

multiple queries increases the network data transmitted as the overall query size will

be greater. In the original scheme, the full encrypted word must be sent by the proxy

to the cloud database. In our modified scheme, the proxy must send the fragment

with every possible word position. Although the search for a first or last character

only demands one fragment (the one which is searched with the position 1 or `), the

proxy must still complete the query data with other (invalid) fragments until the final

ciphertext size is achieved. The reasoning behind sending unneeded data is similar to

the one presented for the immutability of SEARCH’s ciphertext size. If the proxy sends

just one fragment, an attacker can infer that the database is searching for a starting or

76

ending character. This way, the network data transmitted also increases by the same

ratio as the ciphertext size.

5.3 Security Improvement in DET

CryptDB’s deterministic layer (DET) uses the CBC-masks-CBC (CMC) mode

with a zero initialization vector (IV) presented in chapter 2 to encrypt plaintexts and

allow equality checks. The use of a zero IV makes the algorithm deterministic and

equal plaintexts are encrypted to equal ciphertexts. Also, CMC is used in the place of

CBC because CBC leaks prefix information. As CMC applies a mask created using

information about the entire plaintext, only full word equalities can be checked.

Encrypting equal plaintexts to equal ciphertexts poses a security issue. As de-

scribed in section 3.3, inference and lp-Optimization attacks are possible. Fields such

as age, date of birth, cities and so on are the ideal scenario for those attacks because

the diversity of plaintexts and, consequently, ciphertexts is small. Unfortunately, these

fields are also very likely to be encrypted for DET.

To mitigate these problems, we propose a modification to DET. CMC encryption

mode should be substituted by the SWP algorithm already used in SEARCH with a

singularity allowed by a database. Noting that SWP uses an information about the

plaintext to encrypt it, we propose the algorithm to use the database primary key as-

sociated with that plaintext. The primary key is guaranteed to be unique for every

and each entry in a database. As the primary key is unique, its encryption will also

be unique and when the exclusive-or (XOR) with the encrypted plaintext is performed

by SWP, the result will also be unique. It stands true even if equal plaintexts are

encrypted, as each will have a different primary key and, then, different ciphertexts.

Although each ciphertext is unique, equality checks will continue to be possible due to

SWP structure.

77

The substitution creates some drawbacks. Firstly, it is not possible to build an

index to perform the equality check as every single ciphertext has to be searched to de-

termine if a match occurred. In addition, SWP has to perform an XOR, an encryption

and a comparison to check for a match, while CMC mode required a simple compar-

ison. This increases the time to perform an equality check. Secondly, operations that

required a simple ciphertext mismatch, such as COUNT DISTINCT, need the proxy’s

help to be performed. The proxy chooses one entry at random, decrypts it and sends

the server the SWP search term for that entry. The server goes through each entry in

the database and performs the equality check, marking every successful check. Next,

the proxy chooses one not marked entry at random and repeats the process. The server

goes through every non-marked entry and performs the equality check, putting a dif-

ferent mark on every successful result. The process is repeated until every entry is

marked. Then, the server can simple perform a COUNT DISTINCT on the marks to

produce the desired result. This process increases the time to perform the operation

greatly. Furthermore, now the server and the proxy have to engage in an interactive

protocol, also increasing the network traffic.

5.3.1 Alternate modification to DET

Another possible modification to DET is the substitution of CMC mode by a sim-

ple hash with a pepper. A pepper is a constant secret string concatenated with the

hash’s input.

Since a hash output is different for every different input, even plaintexts that share

all bits but one have different hash values. The pepper’s function is to be an affix to

randomize the hash’s output. Because the pepper is a secret, an attacker cannot build

a lookup table to discover the hash input. Additionaly, an attacker cannot recover

a secure hash preimage, by definition. Also, the hash’s output has a fixed length,

preventing inference attacks due to the database entry size.

78

The modification promotes an efficiency gain and has one drawback. For the rea-

son that a hash is faster than CMC, the cost to create the DET is greatly reduced.

Moreover, the database can perform any DET operation using the hash values.

The major drawback is that the ciphertext can no longer be decrypted since it

would be necessary to compute a hash preimage. As CryptDB works with multiple

onions, this can be circumvented by separating the DET layer even further. The new

DET layer would be used just for DET operations and the ciphertext of other onions

would be used to provide the data for decryption.

5.4 Summary

In this chapter, we presented our proposed modifications to the CryptDB system.

The table 4 gives a brief summary of the planned modifications with the improvements

they bring and their drawbacks.

Table 4: Proposed modifications
Improvement Modification Drawback

Efficiency

Replaces PHPE for FAHE
in HOM

Increased ciphertext size (security
is limited by RND)

Replaces CMC for pep-
pered hash in DET

Additional exclusive onion required
for DET

Functionality
Modification in SEARCH
to allow wildcard operator

Still limited to token size; cipher-
text expansion; bigger SQL query

Security
Replaces AES-CMC for
SWP in DET

Operation takes longer to process;
Increased network traffic

Source: Author.

79

6 RESULTS

In this chapter, we present the results of the modifications proposed in chapter 5.

The modifications were compared outside the CryptDB’s system for two reasons.

The first is to prevent noise from other CryptDB’s operations not related with the tested

solutions. The second is that CryptDB’s code is convoluted and any modification to it

is extremely time consuming. Nonetheless, another team is implementing the changes

in CryptDB to compare both versions.

6.1 Efficiency Improvement in CryptDB’s Homomor-
phic Addition Layer (HOM)

In this section we present the experimental results of the Fast Additive Homomor-

phic Encryption (FAHE) algorithm and we compare them to the Paillier Homomorphic

Probabilistic Encryption (PHPE).

For completeness, we present the results and comparison of PHPE and both

FAHE1 and FAHE2.

6.1.1 Experimental Results

We implemented FAHE1 and FAHE2 using the RELIC toolkit (ARANHA; GOU-

VÊA,) version 0.4.1 in C language, and used the Paillier implementation provided

by the same library. The benchmark was performed on an Intel Core i7-7700K CPU,

80

operating at 4.2 Ghz and running on an Ubuntu 16.04.4 LTS operating system. The re-

sults are measured in cycles using the instruction RDTSCP (Read Time-Stamp Counter

and Processor ID) (PAOLONI, 2010). We set the big number precision to twice the

size of the ciphertext. We noted that RELIC’s Paillier decryption computes the L(gλ

mod n2)−1 mod n term for every call. As this term can be precomputed, we subtracted

the cycles needed for this operation from the decryption result.

The benchmarked operations were key generation, encryption, decryption and ho-

momorphic addition. The results hereby presented are given in cycles, and correspond

to the average of 10000 executions of each operation, which resulted in a standard

deviation below 1%. Aiming at obtaining an uniform distribution for input messages,

random samples were generated beforehand for each test (the generation time is not

included in the benchmark).

For Paillier, we adopt 3072 bits for n. This is equivalent to RSA-3072, which

provides a 128-bits security level (BARKER; DANG, 2016, Table 2). For FAHE1 and

FAHE2, we use λ = 128, |mmax| = 32, and the minimum α for each scheme; we also

consider λ = 128, |mmax| = 64, and α = 33. Aiming at obtaining a post-quantum secure

implementation, we also benchmark both schemes for λ = 256, |mmax| = 64, α = 33.

The cycles needed for each FAHE1 and FAHE2 process (key generation, encryp-

tion, homomorphic addition and decryption) are presented, respectively, in Tables 5

and 6. For convenience, we repeat in both tables the number of cycles needed for the

same processes in the Paillier cryptosystem, presenting the comparative gain of each

proposed scheme. As shown in these tables, the more time consuming process is all

schemes is the key generation. The reason is that FAHE1 and FAHE2 require the cre-

ation of a single prime of size η, whereas Paillier involves the the generation of two

primes of size around n/2 (i.e., 1536 bits).

Finally, the cycles needed for FAHE1 and FAHE2 considering a quantum com-

puter scenario are presented in Table 7. We show only the results for |mmax| = 64 and

81

Table 5: FAHE1 results (in cycles) compared to Pailler at the same (pre-quantum)
λ = 128 security level.

Process
|mmax| = 32 |mmax| = 64

Pailler
Gain

α = 6 α = 33 (Paillier/FAHE1)
KeyGen 16341812 117428129 2253611712 19.19

Enc 330027 2895834 351458572 121.37
Add 3045 25574 211829 8.28
Dec 293469 13388410 347251790 25.94

Source: Author.

Table 6: FAHE2 results (in cycles) compared to Pailler at the same (pre-quantum)
λ = 128 security level.

Process
|mmax| = 32 |mmax| = 64

Pailler
Gain

α = 32 α = 33 (Paillier/FAHE2)
KeyGen 17651582 23832773 2253611712 94.56

Enc 254619 294839 351458572 1192.04
Add 1820 2384 211829 88.85
Dec 198096 262719 347251790 1321.76

Source: Author.

α = 33 for both algorithms, since this is the worst-case performance scenario for both

schemes. Since Paillier is not quantum secure, we do not provide any direct compari-

son with it.

6.1.2 Analysis and comparison with Paillier

As shown in in Tables 5 and 6, improved performance is the main advantage of

FAHE1 and FAHE2 in comparison to Paillier. Specifically, FAHE1 is around 20 times

faster than Paillier for generating keys. It is also over 120 times faster for encrypt-

ing a message and over 25 times quicker to decrypt a ciphertext. There is also an 8

Table 7: FAHE1 and FAHE2 results (in cycles) for λ = 256, |mmax| = 64 and α = 33.
Process FAHE1 FAHE2
KeyGen 213369339 52678469

Enc 5119900 426348
Add 45287 3413
Dec 40875523 480605

Source: Author.

82

times gain in the homomorphic operation. FAHE2 takes advantage of the shorter ci-

phertext relatively to FAHE1 and is even faster. The key generation gain is almost 95

times. The encryption is approximately 1200 times faster and the decryption is over

1300 times quicker than Paillier. Finally, the homomorphic operation has a gain of

around 90 times. As an additional benefit, the proposed schemes can also be made

resistant to quantum computer attacks, whereas the underlying problem in the Paillier

cryptosystem is known to be vulnerable to attacks by quantum computers.

On the other hand, FAHE1 and FAHE2 also present some drawbacks compared

to Paillier. In particular, the performance gains of both schemes are traded by larger

ciphertexts than those computed with Paillier. For example, with the suggested pa-

rameters the ciphertext expansion is approximately 50 and 5 times using FAHE1 and

FAHE2, respectively, assuming the largest message space and number of supported

additions.

In addition, Paillier can encrypt messages in the [0, n− 1] interval and perform ho-

momorphic additions until an overflow in the message. Therefore, when dealing with

32-bit and 64-bit input messages, it would support up to 2|n|−32 and 2|n|−64 additions,

respectively. For concrete parameters, such as 3072 bits for n, this means that Paillier

supports a practically unlimited number of additions. In comparison, the number of

additions of FAHE1 and FAHE2 is bounded by 2α−1, where α is a chosen parameter.

In our examples, we chose the largest α as 33, although some scenarios may employ

a larger value. All in all, FAHE1 and FAHE2 allow speed-ups for many practical val-

ues of α. This flexibility is not available in the Paillier cryptosystem, for which the

number of supported operations is way beyond the need of any conceivable real-world

application.

Finally, another distinctive feature of FAHE1 and FAHE2 is that they rely on sym-

metric keys, in contrast with Paillier’s asymmetric cryptosystem. More precisely, Pail-

lier allows several entities to produce encrypted data using the target user’s public key;

83

this enables the construction, for example, of collaborative databases where in princi-

ple even untrusted users can input data. Conversely, FAHE1 and FAHE2 are symmetric

cryptosystems, since the same secret key is required for encryption and decryption (al-

though not for homomorphic additions); therefore, every data source must be entrusted

with the secret key before it can participate in the system.

In CryptDB, the proxy is the only entity entrusted with secret keys. Hence, Paillier

can be substituted by our schemes without loss of functionality. For this reason, we

recommend the substitution of Paillier by FAHE2 in CryptDB.

6.2 Efficiency Improvement in CryptDB’s Determinis-
tic Layer (DET)

In this section we present the experimental results of the exchange of the AES

algorithm using CBC-masks-CBC (CMC) mode with a constant initialization vector

(IV) for a peppered hash function. The hash function is the SHA2 (Federal Information

Processing Standards Publication 180-4, 2015).

We present the cycles needed to encrypt data using both methods as well as the ad-

ditional storage required by our alternative. The operation performed by the DET layer

is not impacted in any way since our approach also produces deterministic ciphertexts.

Actually, the deterministic ciphertext produced by our solution is smaller than the one

produced by the original algorithm. Hence, a simple equality check is quicker than the

unmodified version as the comparison element is smaller.

6.2.1 Experimental Results

Similar to subsection 6.1.1, we implemented both AES-CMC and the peppered

SHA2 method using the RELIC toolkit version 0.4.1 in C language. The benchmark

was performed on the same Intel Core i7-7700K CPU, but running on an Ubuntu

84

18.04.1 LTS operating system. The results are once again measured in cycles using

the instruction Read Time-Stamp Counter and Processor ID (RDTSCP). The results

are the mean of 10000 of each operation so it results in a standard deviation below 1%.

We used Thunderbird’s English dictionary as the input to be encrypted. The dic-

tionary has 49057 entries encoded using the Unicode Transformation Format using 8

bits (UTF-8) (Unicode Consortium, 2018). For the AES-CMC method, each word in

the dictionary is expanded to 256 bytes by padding 0’s to it. We expanded the word

to 256 bytes as this is the maximum length supported by CryptDB’s rows and every

word has to have the same size to avoid inference attacks. If the word was not ex-

panded, each AES-CMC ciphertext would have a different size and an attacker could

infer the plaintext word size using this information. Differently, the word does not need

to be expanded for the peppered SHA2 method. Since the output of a hash has a fixed

length independently of the input size, the expansion is not required. Additionally, the

constant IV for AES-CMC is set to the string of 0s.

Table 8 presents the hiding (encrypting or hashing) cycles results for both meth-

ods. We also present the cycles required to perform a comparison where the data is

found (positive) and not found (negative). Considering that both methods provide de-

terministic outputs, the search structure (e.g., indexed, binary tree) is the same and

any difference comes from the individual search time. We remember that the peppered

SHA2 method cannot be decrypted and needs an additional layer on the database. The

additional layer adds 256 bits for each hidden row. To decrypt data using our method,

another onion of CryptDB must be used. Hence, a decryption comparison is not pos-

sible. Finally, the key generation for both methods is not compared because it is a

random selection of 128 bits for the AES-CMC and a random selection of 256 bits for

the peppered hash. Considering that random selections of bytes are extremely fast, any

difference is negligible.

Table 8 shows an improvement of around 7.4 times for hiding the entire dictionary

85

Table 8: AES-CMC and peppered SHA2 results (in cycles) to hide a 49057 entries
dictionary and to search a single entry.

AES-CMC Peppered SHA2
Hiding (entire dictionary) 697580460 93961082

Search (single entry)
Positive 2110 444
Negative 2018 290

Source: Author.

using our method. It also shows an improvement of 4.75 and 6.95 times for searching

a single entry when the result is “found” and “not found”, respectively. Although the

search function is not isochronous, it does not represent a problem and is beneficial

in this scenario. It does not represent a problem in this scenario because an adversary

does not gain any advantage from it. The search function is a simple bitwise compar-

ison between two known strings. The time analysis shows whether one of the strings

matches or does not match the other, which is exactly the output of the function. It is

beneficial because in the majority of cases, the number of strings that does not match

the search term is greater than the number of strings that match the search term. Hence,

it is beneficial to spend less time in this case that represents the larger part of the data.

6.3 Functionality Improvement in CryptDB’s Search
Layer (SEARCH)

In this section, we present the experimental results of the modification in the

SEARCH layer to allow wildcard searches to be performed.

We briefly present a theoretical storage expansion from the presented scheme to

the modified version. Next, we present the experimental results in cycles to encrypt

and search data using both schemes. We also present the experimental storage size of

a dictionary using both methods.

86

6.3.1 Theoretical Storage Expansion

Consider w as the largest unencrypted word size possible in bytes. Take b as the

Song, Wagner and Perrig Searcheable Encryption (SWP) Pseudo Random Permutation

(PRP) block size in bytes. For the traditional search, to obtain the maximum ciphertext

size we need to first divide w by b and round up:

rt =
⌈w

b

⌉
The number of PRP blocks required do encrypt a word is given by rt. Next, to find the

final size st we need to multiply rt by the block size b again:

st = rt · b

= b ·
⌈w

b

⌉
For our fragmented search, to find the maximum ciphertext size, first we have to

determine the token size t in bytes. For that, we need to discover how many bytes the

word fragment has and how many bytes is required to represent the maximum fragment

position in the word. Hence:

t = sizeword + sizepos

Next, we need to discover how many PRP blocks are required to encrypt the token:

r f =
⌈ t
b

⌉
Finally, we multiply the previous result r f by the maximum possible number of frag-

ments n and by the PRP block size b. Therefore, the maximum ciphertext size in bytes

for the fragmented search is:

s f = n · b · r f

= n · b ·
⌈ t
b

⌉
Let us assume that the Unicode Transformation Format using 8 bits (UTF-8) is

87

used to represent the words. In CryptDB, the largest word possible has 256 characters

and each character is represented by 1 byte. Additionally, let the word fragment be 1

character (i.e., perfect wildcard functionality with one letter each fragment). Conse-

quently, there are 257 possible positions for each fragment, the 256 positions from the

word plus the supplementary end character `. Finally, we use AES as the PRP block,

providing b = 16 bytes. Then, for the traditional search, we have w = 256 bytes and:

st = b ·
⌈w

b

⌉
st = 16 ·

⌈256
16

⌉
st = 256

For the modified search, the word fragment size is 1 byte and we need 2 bytes to

represent the maximum fragment position. This gives:

t = sizeword + sizepos

t = 1 + 2

t = 3

And:

s f = n · b · r f

s f = 256 · 16 ·
⌈ 3
16

⌉
s f = 256 · 16 · 1

s f = 4096

Thus, the storage expansion from the traditional search to the fragmented search is 16

times.

Finally, we note that using UTF-8 represents the worse scenario compared to using

UTF-16 or UTF-32 (UTF using 16 and 32 bits). This is true because UTF-8 allows 16

characters to be encrypted within a single PRP block in the traditional algorithm, while

UTF-16 allows 8 characters and UTF-32 allows only 4 characters. For the modified

scheme, in the perfect wildcard scenario, the number of PRP blocks required to encrypt

a word fragment is still 1 for both UTF-16 and UTF-32. If UTF-16 or UTF-32 are used,

88

the storage expansion is 8 and 4 times, respectively.

6.3.2 Experimental Results

Similar to subsection 6.2.1, we implemented both search schemes using the RELIC

toolkit version 0.4.1 in C language. The benchmark was performed on an Intel Core

i7-7700K CPU running on an Ubuntu 18.04.1 LTS operating system. The results are

measured in cycles using the instruction Read Time-Stamp Counter and Processor ID

(RDTSCP). The results are the mean of 10000 of each operation so it results in a

standard deviation below 1%.

We used Thunderbird’s English dictionary as the input to be encrypted. The dictio-

nary has 49057 entries encoded using the Unicode Transformation Format using 8 bits

(UTF-8). For similar reasons presented in subsection 6.2.1, the traditional search has

each word expanded to 256 bytes by padding 0’s to it to prevent inference attacks. We

create 3 keys, key1 of 128 bits, key2 of 256 bits and key3 of 256 bits. Then, the word

is encrypted using the SWP algorithm. First, we encrypt the expanded word using

AES-CBC with a constant IV (composed of 0’s) and key1. Next, we produce an inter-

mediate key ki by hashing the concatenation of the first 8 bytes of every AES block and

key3. These steps are illustrated in Figure 16. Then, we use the position of the word

in the dictionary concatenated with key2 to generate the S block of SWP using SHA2.

The output is successively concatenated with key2 and hashed until enough S blocks

are created for the entire word. Following that, each S block is concatenated with ki

and hashed to produce the F blocks. The process is shown in Figure 17. Finally, each

S and F are concatenated and XORed (exclusive-or operation) with the correct AES

block, creating the final ciphertext, as presented in Figure 18. The only difference from

this process to the practical CryptDB system is that instead of using the word position

in the dictionary, CryptDB would use an encryption of the word’s primary key in the

database.

89

Figure 16: Word expansion and encryption together with the creation of the interme-
diate key ki for the traditional search.

WORD

WORD 256 BYTES

Expansion

AES (key1)

AES BLOCK 1 AES BLOCK 2 AES BLOCK 16...
8 BYTES 8 BYTES 8 BYTES

H(||key3)=ki
Source: Author.

For the modified search, the process is similar, but each character is encrypted

individually. First, each character is concatenated with its position in the word. The

last one is replicated with the supplementary end character `. In our implementation,

we used the 2 bytes 0xFFFF to represent it. As every word has to have 256 characters to

avoid inference attacks, we use random 16-byte strings to fill the remaining positions.

Next, each fragment is encrypted using the AES cipher directly. Differently from the

traditional search, multiple ki are created, one for each fragment. The above steps

are illustrated in Figure 19. After that, the S blocks are computed similarly to the

traditional search and the F blocks are generated individually for each block with their

respective ki. Finally, the final ciphertext is created by XORing the AES block with

the concatenation of the correct S and F.

To execute a search, a search token is created. The search token consists of the

90

Figure 17: Creation of S and F blocks for both search algorithms.

WORD POSITION

H(||key2)= S 1 S 2 S 3 S 4

H(||key2)= S 5 S 6 S 7 S 8

S n-3 S n-2 S n-1 S n

...
H(||key2)=

S n

H(||ki)= F n

Source: Author.

encrypted AES block and ki. They are created analogously to the methods described

above for the traditional and modified versions. We executed two tests, one for the tra-

ditional search and one for the wildcard search. For the traditional algorithm, a search

token of an entire word is created. For the modified search, one token is created using

a single character in a specific position to simulate a search for words that begin or end

with it (e.g., “a*” or “*a”). The search for a single character in any position (a true

wildcard search) can be estimated by multiplying the previous result by 256, which is

the number of tokens required to cover every possible position for a character. Then

the entire database is searched since the SWP algorithm is probabilistic and it is not

91

Figure 18: Creation of the final ciphertext for both search algorithms.

AES BLOCK 1 ...

S 1 F 1

AES BLOCK 2

S 2 F 2

AES BLOCK n

S n F n

CYPHERTEXT

=

Source: Author.

Table 9: Traditional and modified Search results (in cycles) to encrypt a 49057 entries
dictionary, to generate the search token and to search all encrypted entries.

Traditional Modified
(Full words) (Single character, fixed position)

Encrypting (entire dictionary) 2486218658 59039053083
Generate search token 9140 8420

Search (all encrypted entries) 1366376385 21827182139

Source: Author.

possible to order the ciphertexts in a search structure (e.g., different unrelated cipher-

texts can be the encryption of the same word/fragment). Additionally, the wildcard

search does not reveal the position of the fragment in the word. Since every character

is marked with its original position, the characters can be shuffled before encryption.

The result is that there is no correlation between the position of the encrypted fragment

in the ciphertext and its plaintext position. Hence, if there is a positive match of the

search token in the n-th block of the ciphertext, the match may not correspond to the n-

th position of the plaintext word. If decryption is required, the ciphertext is decrypted

and the plaintext is reassembled using the position associated with each character to

yield the final output.

Table 9 shows the result in cycles to encrypt the dictionary using both methods. It

92

Figure 19: Character split and individual encryption together with the creation of the
multiple intermediate keys ki for the wildcard search.

WORD
Character

split

AES (key1)

AES BLOCK 1 AES BLOCK 2 AES BLOCK 256...
8 BYTES 8 BYTES 8 BYTES

H(||key3)=ki1

C1 C2 ... Cn C├

Random
Strings

R1 ... Rn

H(||key3)=ki2

H(||key3)=kin

Source: Author.

also presents the results to create a search token for one word in the traditional scheme

and for one fragment in a fixed position in the modified version. Finally, it also gives

the result in cycles to search the entire encrypted dictionary using this token.

The modified search needs to perform 16 times more AES encryptions and 256

times more hashes to generate the intermediate key ki than the traditional algorithm.

As a result, it is around 23.75 times slower to encrypt the entire dictionary compared

to the full word scheme. To generate the search token, both schemes take around the

same time, with a slight advantage to the modified scheme. Additionally, to search

all the entries, the new search is about 16 times slower than the original search. The

result is explained by the encrypted dictionary file size. The modified scheme has a file

size of 201, 220, 704 bytes and the original scheme possesses a file size of 12, 841, 824

93

bytes. Hence, the result is expected since the data expansion between the two methods

is 15.67 times and all data needs to be traversed for the process execution. We note

that the file size expansion is not exactly the predicted 16 times from the theoretical

analysis for we added an index to each entry. It was done purely to verify if the search

was returning the correct result using the unencrypted dictionary as a reference.

Finally, we can predict the number of cycles required to perform a search for a

character in any position of the word. For this, we multiply the modified search result

by 256, which is the number of tokens needed to cover every possible position in the

word, resulting in 5587758627584 cycles. If we consider that our processor has a clock

of 4.2GHz, this translates to roughly 1330 seconds, or 22 minutes. Although it seems

impractical to implement a wildcard search in a real world database, we recall some

facts that can improve the process: (1) the search can be performed simultaneously

by multiple cores instead of a single core as in our test, since data is static during the

algorithm execution; (2) considering that words are stored separately, we can create a

smaller number of tokens (e.g., 30) and still cover every possible word since no word

has 256 characters. As a result, if we use 30 tokens, the estimated number of cycles

is 654815464170 which translates to 156 seconds. And using 4 cores to execute the

search, the final time is estimated to be around 40 seconds to execute an encrypted

wildcard search on a dictionary of 49057 entries. In Figure 20, we present the ex-

ecution time to perform a wildcard search considering various numbers of possible

positions and multiple number of cores available.

6.4 Security Improvement in CryptDB’s Deterministic
Layer (DET)

In this section, we present a discussion about the exchange of the AES-CMC by

the SWP in the DET layer of CryptDB.

The swap of the algorithms requires some database operations performed by the

94

Figure 20: Execution time to perform a wildcard search using multiple cores and mul-
tiple possible positions.

0

200

400

600

800

1000

1200

1400

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Ti
m

e(
s)

Number of Positions

1 Core

2 Cores

4 Cores

8 cores

Source: Author.

DET layer to be modified to ensure their correctness. We use data from section 6.2

and from section 6.3 for the AES-CMC and the SWP, respectively, together with a

theoretical approach to evaluate the impact of the required changes.

6.4.1 Security Improvement Discussion

The replacement of AES-CMC by SWP makes the data from the DET layer prob-

abilistic. The substitution thwarts inference attacks on these data, but some modifi-

cations have to be made so the layer’s functionality is not affected. Moreover, some

processes present an overhead compared to the original scheme. Let us assume the

total number of entries present in the database is n and the number of different entries

is nd.

When a comparison is made (i.e., SQL operator “=”), the Database Management

System (DBMS) does not need to look all the database’s entries when AES-CMC is

used. Since the algorithm is deterministic, the DBMS can build an index for these

95

Table 10: Summary of the comparison operation using the deterministic AES-CMC
algorithm with a b-tree and the probabilistic SWP algorithm, for n total entries and nd

number of different entries.
AES-CMC SWP

Complexity O(logb(nd)) O(n)
Cycles for each step 2018 27853

Source: Author.

values. We assume this index to be a b-tree, where each node has one of the different

values stored in the database together with the primary keys of the rows where this

value is present. To perform the operation, the DBMS has to simply search this tree

and obtain the primary keys of the correct node. The complexity of this operation is

O(logb(nd)) and the cycles required for each step is the AES-CMC negative search for

a single entry from Table 8, 2018 cycles. The negative search value is used since each

step except the last is a negative match for the searched value.

If SWP is used, the data becomes probabilistic and no index can be created for

them. As a result, the operation has to traverse the entire database, which has a com-

plexity of O(n). Moreover, the cycles needed to execute each step can be obtained by

dividing the traditional search result from Table 9 by the dictionary size, 49057, which

equals to 27853 cycles.

The summary of the comparison operation is presented in Table 10

Another operation that uses the deterministic layer is the SQL instruction

“COUNT DISTINCT”. When AES-CMC is used, the DBMS can perform this operation

in a similar way as if the data were unencrypted. Since data is deterministic, the DBMS

has to just count how many different entries are present and return this value. How-

ever, if the database adopts the SWP algorithm, the CryptDB proxy’s help is required

to implement the operation. Since data is probabilistic, equal values are recorded using

different strings. To solve the problem, first the DBMS creates a counter and selects

one random entry to be sent to the proxy. The proxy decrypts it and generates the

search token for this value, which is returned. The DBMS searches all the data using

96

Table 11: Summary of the modifications required by the SWP algorithm for the
COUNT DISTINCT operation, considering worst case scenario for n total entries and
nd number of different entries.

Interactions Database-Proxy nd

Number of elements searched
nd

2
·
(
2 · n − (nd − 1)

)
Cycles spent on each element 27853

Source: Author.

this token and whenever a positive result is found, the row is marked with the counter

value. After that, the counter is incremented and one unmarked value is sent to the

proxy, where it will be decrypted and a search token created and returned. The DBMS

searches all the unmarked data, marks the positive results and repeats the process until

all data has been marked. Finally, the DBMS counts the different marks. The com-

putation requires nd interactions between DBMS and proxy. The worst case search

scenario is when the data set is unbalanced and nd − 1 values appear once and the nd-th

value composes the remaining entries and the nd-th element is the one last searched.

The number of elements searched in the worst case scenario is:

S =
nd

2
·
(
2 · n − (nd − 1)

)
We remember that each element takes 27853 cycles to be searched. A summary of the

modifications required for the correctness of the COUNT DISTINCT operation is pre-

sented in Table 11. As a final remark, the COUNT DISTINCT removes the probabilistic

nature for all the values currently presented in the database. If the data set does not

change regularly, the use of SWP is discouraged if COUNT DISTINCT is expected to

be used. After all, the algorithm exceedingly increases the complexity of the process

without providing any practical benefits.

Any other operation which is performed by DET can be reduced to either the

comparison and/or the COUNT DISTINCTmethod. Therefore, no further analysis about

the exchange of the AES-CMC by the SWP is required.

97

6.5 Results Summary

In this chapter we presented the results of the modifications proposed in chapter 5.

Firstly, we showed the results of the main modification proposed, the exchange of

the Paillier Homomorphic Probabilistic Encryption for the Fast Additive Homomor-

phic Encryption, described in chapter 4, in the homomorphic layer. The result reveals

a performance gain for key generation, encryption, decryption and homomorphic ad-

dition. In particular, the second variation of our algorithm (FAHE2) offers a gain of

almost 95 times, 1192 times, 1322 times, and 89 times respectively for the above men-

tioned processes.

Secondly, we presented the results of the exchange of the AES CBC-masks-CBC

algorithm for a peppered hash function in the deterministic layer. The result shows a

gain of approximately 7.5 times to hide the entire dictionary and a gain of 4.75 and 7

times to search a matching and non-matching entry, respectively. We remember that

this modification has the drawback of requiring an additional layer in the database,

which increments its storage space by 32 bytes per entry.

Thirdly, we showed the results of the modification in the search layer that allow

wildcard searches to be performed. We enabled the wildcard search in the database

but we increased the overhead required to perform the operation. In particular, the

wildcard method is 23.75 times slower to encrypt the entire dictionary and around 16

times slower to search for a single character in a specified position. To perform a true

wildcard search (i.e., a single character in any position) in a reasonable time, we had

to make some workarounds, such as reducing the number of possible positions to 30

and using multiple cores to search the database.

Lastly, we discussed the exchange of the AES CBC-masks-CBC algorithm by the

Song, Wagner and Perrig Searcheable Encryption (SWP) algorithm in the determin-

istic layer to improve the layer’s security. We were able to improve the layer’s secu-

98

rity by exchanging a deterministic algorithm for a probabilistic one while maintaining

the layer’s functionality. Nonetheless, we greatly increased the layer’s overhead. In

particular, the SQL operator “=” went from a complexity O(logb(nd)) to O(n), where

b comes from the b-tree data structure, n is the number of entries in the database,

and nd is the number of different entries in the database. Moreover, the time to per-

form the comparison increased 13.8 times for each entry. Finally, the execution of the

“COUNT DISTINCT” operation reduces all the probabilistic data currently present in

the database to deterministic data. Hence, the modification is not recommended if the

data set does not change regularly and the COUNT DISTINCT operation is expected to

be used.

99

7 CONCLUSION

In this work, we presented methods to improve the CryptDB system, a cloud based

encrypted database. We described the inner-workings of CryptDB, enumerating the

various algorithms used and how they work together to provide multiple SQL func-

tionality. Then, we raised some weaknesses of the system regarding its efficiency,

functionality and security. We proceeded to address these issues by: (1) designing a

new partially additive homomorphic algorithm which is more efficient than the current

state of the art used on CryptDB; (2) exchanging the deterministic layer’s AES-CMC

algorithm for the SHA2 hash function to improve the layer’s performance; (3) mod-

ifying the search layer’s SWP algorithm to allow wildcard searches to be executed,

adding a new functionality to the system; (4) replacing the deterministic layer’s AES-

CMC algorithm for the SWP to make data encryption probabilistic, increasing the

layer’s security.

According to our experimental results and analysis, all our solutions except 4 are

satisfactory. Solutions 1 and 2 are able to improve the system performance by increas-

ing the system storage. Solution 3 enables wildcard search if the size of the words to

be stored are decreased to a still reasonable value. Finally, solution 4 increases the

security of the database but imposes a considerable performance overhead and one

operation requires special attention.

100

7.1 Publications

As a direct result of this work, a paper describing the new homomomorphic

algorithm FAHE was submitted to the IEEE Transactions of Information, Forensics

and Security. This paper is currently under review. Also, during the period of this

work, we participated in the project Key Management for Vehicular Communications,

supported by LG Electronics. This project produced the following publications:

• (SIMPLICIO et al., 2018b): In this article, we improve the Security Credential

Management System (SCMS), which is one the leading candidates for protecting

Vehicle-to-Infrastructure and Vehicle-to-Vehicle communications. In particular,

we present two birthday attacks against SCMS’s certificate revocation process

and mitigate these attacks by applying security strings to the process. Our solu-

tion also further improves the certificate revocation procedure by increasing its

flexibility through the use of linkage hooks.

• (SIMPLICIO et al., 2018a): In this article, we further expand upon the SCMS’s

certificate revocation process. We propose a new design called Activation Codes

for Pseudonym Certificates (ACPC) in order to shorten the system’s Certificate

Revocation List (CRL). With ACPC, vehicles require short bit-strings to activate

their pseudonym certificates. These bit-strings are periodically distributed by

the system to non-revoked vehicles, while revoked vehicles cannot obtain their

activation codes. Hence, a revoked vehicle needs to be kept in the CRL only

during the time their current activation code is valid. Afterwards, the vehicle can

be removed from the CRL, which shortens the list.

• (SIMPLICIO et al., 2018c): In this article, we expand upon the SCMS’s but-

terfly key expansion process. The butterfly key expansion process allows SCMS

to issue large batches of pseudonym certificates with a single request by a vehi-

cle. The request consists of two separate private/public key pairs. We improve

101

the process by unifying both keys without reducing SCMS’s security, flexibility

or scalability. As a result, the bandwidth utilization for certificate provisioning

is reduced. Moreover, we are able to remove a signature from the certificate

process, lessening the system’s processing overhead.

7.2 Future Work

The new partially additive homomorphic encryption algorithm described in chap-

ter 4 is planned to be submitted to a journal or conference. We let as future work the

integration of our solutions into the CryptDB system, as well as their benchmarking in

a real cloud environment. This step can measure the real impact of our modifications in

the system, where they will be subject to other CryptDB’s operation noise and network

overheads.

Further research on encrypted search algorithms are required. In particular, pro-

tocols which allow partial information to be matched (i.e., wildcard search) can be

useful. Moreover, it is interesting to study a search mechanism that does not allow

future data to be searched using previous search terms (e.g., a single use search token).

Such mechanism would provide stronger forward secrecy to the system, as no future

data could be linked to a previous one.

102

REFERENCES

ALKIM, E.; AVANZI, R.; BOS, J. W.; DUCAS, L.; PIEDRA, A. d. l.;
PÖPPELMANN, T.; SCHWABE, P.; STEBILA, D. NewHope. 2017. <https:
//newhopecrypto.org/data/NewHope_2017_12_21.pdf>.

ALKIM, E.; BOS, J. W.; DUCAS, L.; LONGA, P.; MIRONOV, I.; NAEHRIG,
M.; NIKOLAENKO, V.; PEIKERT, C.; RAGHUNATHAN, A.; STEBILA,
D.; EASTERBROOK, K.; LAMACCHIA, B. FrodoKEM. 2017. <https:
//frodokem.org/files/FrodoKEM-specification-20171130.pdf>.

ARANHA, D. F.; GOUVÊA, C. P. L. RELIC is an Efficient LIbrary for Cryptography.
<https://github.com/relic-toolkit/relic>.

ARASU, A.; BLANAS, S.; EGURO, K.; KAUSHIK, R.; KOSSMANN, D.;
RAMAMURTHY, R.; VENKATESAN, R. Orthogonal security with cipherbase. In
CITESEER. CIDR. Asilomar, CA, USA, 2013.

ARMKNECHT, F.; KATZENBEISSER, S.; PETER, A. Group homomorphic
encryption: characterizations, impossibility results, and applications. Designs, codes
and cryptography, Springer, p. 1–24, 2013.

AVANZI, R.; BOS, J.; DUCAS, L.; KILTZ, E.; LEPOINT, T.; LYUBASHEVSKY, V.;
SCHANCK, J. M.; SCHWABE, P.; SEILER, G.; STEHLÉ, D. CRYSTALS-Kyber: a
CCA-secure module-lattice-based KEM. 2018. <https://pq-crystals.org/kyber/data/

kyber-specification.pdf>.

BAJAJ, S.; SION, R. Trusteddb: A trusted hardware based database with
privacy and data confidentiality. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data. New York, NY, USA: ACM, 2011.
(SIGMOD ’11), p. 205–216. ISBN 978-1-4503-0661-4. Available from Internet:
<http://doi.acm.org/10.1145/1989323.1989346>.

BARKER, E.; DANG, Q. NIST Special Publication 800–57 Part 1, Revision 4. 2016.

BARKER, E.; ROGINSKY, A. Transitions: Recommendation for transitioning the
use of cryptographic algorithms and key lengths. In NIST. 2015. Accessed August 16,
2017. Available from Internet: <http://dx.doi.org/10.6028/NIST.SP.800-131Ar1>.

BELLARE, M.; DESAI, A.; POINTCHEVAL, D.; ROGAWAY, P. Relations among
notions of security for public-key encryption schemes. In SPRINGER. Advances in
Cryptology-CRYPTO’98. Santa Barbara, CA, USA, 1998. p. 26–45.

BELLARE, M.; ROGAWAY, P. Introduction to modern cryptography. UC San Diego,
2005. Available from Internet: <https://cseweb.ucsd.edu/~mihir/cse207/classnotes.
html>.

https://newhopecrypto.org/data/NewHope_2017_12_21.pdf
https://newhopecrypto.org/data/NewHope_2017_12_21.pdf
https://frodokem.org/files/FrodoKEM-specification-20171130.pdf
https://frodokem.org/files/FrodoKEM-specification-20171130.pdf
https://github.com/relic-toolkit/relic
https://pq-crystals.org/kyber/data/kyber-specification.pdf
https://pq-crystals.org/kyber/data/kyber-specification.pdf
http://doi.acm.org/10.1145/1989323.1989346
http://dx.doi.org/10.6028/NIST.SP.800-131Ar1
https://cseweb.ucsd.edu/~mihir/cse207/classnotes.html
https://cseweb.ucsd.edu/~mihir/cse207/classnotes.html

103

BENALOH, J. D. C. Verifiable Secret-Ballot Elections,. PhD Thesis (PhD) — Yale
University, 1987.

BERNSTEIN, D. J.; HAMBURG, M.; KRASNOVA, A.; LANGE, T. Elligator:
Elliptic-curve points indistinguishable from uniform random strings. In ACM.
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. Berlin, Germany, 2013. p. 967–980.

BINDEL, N.; AKLEYLEK, S.; ALKIM, E.; BARRETO, P. S. L. M.; BUCHMANN,
J.; EATON, E.; GUTOSKI, G.; KRÄMER, J.; LONGA, P.; POLAT, H.; RICARDINI,
J. E.; ZANON, G. qTESLA. 2018. <https://qtesla.org/wp-content/uploads/2018/07/

qTESLA_v2.1_06.30.2018.pdf>.

BOLDYREVA, A.; CHENETTE, N.; LEE, Y.; O’NEILL, A. et al. Order-preserving
symmetric encryption. In SPRINGER. Eurocrypt. Cologne, Germany, 2009. vol. 5479,
p. 224–241.

BONEH, D. Cryptography I. 2017. Accessed July 12, 2017. Available from Internet:
<https://www.coursera.org/learn/crypto/home/welcome>.

BUCKEL, C. The Real Cost of Enterprise Database Software. 2013. Accessed
April 3, 2017. Available from Internet: <https://flashdba.com/2013/09/10/

the-real-cost-of-enterprise-database-software/>.

CARMICHAEL, R. D. The Theory of Numbers. JOHN WILEY & SONS,
Inc., NEW YORK, 1914. Accessed August 16, 2017. Available from Internet:
<http://www.gutenberg.org/files/13693/13693-pdf.pdf>.

CHEON, J. H.; CORON, J.-S.; KIM, J.; LEE, M. S.; LEPOINT, T.; TIBOUCHI, M.;
YUN, A. Batch fully homomorphic encryption over the integers. In JOHANSSON,
T.; NGUYEN, P. Q. (Ed.). Advances in Cryptology – EUROCRYPT 2013. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013. p. 315–335. ISBN 978-3-642-38348-9.

CHEON, J. H.; STEHLÈ, D. Fully Homomophic Encryption over the Integers
Revisited. 2016. Cryptology ePrint Archive, Report 2016/837. <https://eprint.iacr.org/

2016/837>.

CipherCloud. Guide to Cloud Data Protection. 2015. Available from Internet:
<http://pages.ciphercloud.com/Guide-to-Cloud-Data-Protection.html>.

DAEMEN, J.; RIJMEN, V. AES proposal: Rijndael. 1999.

DIJK, M. v.; GENTRY, C.; HALEVI, S.; VAIKUNTANATHAN, V. Fully
homomorphic encryption over the integers. In SPRINGER. Annual International
Conference on the Theory and Applications of Cryptographic Techniques. French
Riviera, France, 2010. p. 24–43.

Diretoria de Regulação Prudencial, Riscos e Assuntos Econômicos. Painel Econômico
e Financeiro. 2016. <https://cmsportal.febraban.org.br/Arquivos/documentos/PDF/

-L06_painel_port.pdf>.

https://qtesla.org/wp-content/uploads/2018/07/qTESLA_v2.1_06.30.2018.pdf
https://qtesla.org/wp-content/uploads/2018/07/qTESLA_v2.1_06.30.2018.pdf
https://www.coursera.org/learn/crypto/home/welcome
https://flashdba.com/2013/09/10/the-real-cost-of-enterprise-database-software/
https://flashdba.com/2013/09/10/the-real-cost-of-enterprise-database-software/
http://www.gutenberg.org/files/13693/13693-pdf.pdf
https://eprint.iacr.org/2016/837
https://eprint.iacr.org/2016/837
http://pages.ciphercloud.com/Guide-to-Cloud-Data-Protection.html
https://cmsportal.febraban.org.br/Arquivos/documentos/PDF/-L06_painel_port.pdf
https://cmsportal.febraban.org.br/Arquivos/documentos/PDF/-L06_painel_port.pdf

104

DUCAS, L.; KILTZ, E.; LEPOINT, T.; LYUBASHEVSKY, V.; SCHWABE, P.;
SEILER, G.; STEHLÉ, D. CRYSTALS-Dilithium: a Digital Signatures from Module
Lattices. 2018. <https://pq-crystals.org/dilithium/data/dilithium-specification.pdf>.

DURAK, F. B.; DUBUISSON, T. M.; CASH, D. What else is revealed by order-
revealing encryption? In ACM. Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. Vienna, Austria, 2016. p. 1155–1166.

EGOROV, M.; WILKISON, M. Zerodb white paper. arXiv preprint arXiv:1602.07168,
2016.

EHRSAM, W. F.; MEYER, C. H.; SMITH, J. L.; TUCHMAN, W. L. Message
verification and transmission error detection by block chaining. 1978. US Patent
4,074,066.

ELGAMAL, T. A public key cryptosystem and a signature scheme based on discrete
logarithms. In SPRINGER. Advances in cryptology. Santa Barbara, CA, USA, 1984.
p. 10–18.

Federal Information Processing Standards Publication 180-4. Secure hash standard
(SHS). In NIST. 2015. Available from Internet: <http://dx.doi.org/10.6028/NIST.
FIPS.180-4>.

Federal Information Processing Standards Publication 197. Announcing the
advanced encryption standard (AES). In NIST. 2001. Available from Internet:
<https://doi.org/10.6028/NIST.FIPS.197>.

Federal Information Processing Standards Publication 202. SHA-3 standard:
Permutation-based hash and extendable-output functions. In NIST. 2015. Available
from Internet: <http://dx.doi.org/10.6028/NIST.FIPS.202>.

FOUQUE, P.-A.; JOUX, A.; TIBOUCHI, M. Injective encodings to elliptic curves. In
SPRINGER. Australasian Conference on Information Security and Privacy. Brisbane,
Australia, 2013. p. 203–218.

GALBRAITH, S. D.; GEBREGIYORGIS, S. W.; MURPHY, S. Algorithms for
the approximate common divisor problem. LMS Journal of Computation and
Mathematics, London Mathematical Society, vol. 19, no. A, p. 58–72, 2016.

GOLDWASSER, S.; BELLARE, M. Lecture notes on cryptography. 1996.

GROVER, L. K. A fast quantum mechanical algorithm for database search. In ACM.
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing.
Philadelphia, PA, USA, 1996. p. 212–219.

HALEVI, S.; ROGAWAY, P. A tweakable enciphering mode. In SPRINGER. Annual
International Cryptology Conference. Santa Barbara, CA, USA, 2003. p. 482–499.

HOWGRAVE-GRAHAM, N. Approximate integer common divisors. In SPRINGER.
CaLC. Providence, RI, USA, 2001. vol. 1, p. 51–66.

https://pq-crystals.org/dilithium/data/dilithium-specification.pdf
http://dx.doi.org/10.6028/NIST.FIPS.180-4
http://dx.doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.197
http://dx.doi.org/10.6028/NIST.FIPS.202

105

IETF. Request for Comments (RFC) 5652. 2009. Accessed July 3, 2017. Available
from Internet: <https://tools.ietf.org/html/rfc5652>.

KOBLITZ, N. Elliptic curve cryptosystems. Mathematics of computation, vol. 48,
no. 177, p. 203–209, 1987.

KOLESNIKOV, V.; SHIKFA, A. On the limits of privacy provided by order-preserving
encryption. Bell Labs Technical Journal, Wiley Online Library, vol. 17, no. 3, p.
135–146, 2012.

Library of Congress. Library of Congress - Statistics. 2018. <https://www.loc.gov/

about/fascinating-facts/>.

LIDL, R.; NIEDERREITER, H. Introduction to finite fields and their applications.
Cambridge, United Kingdom: Cambridge university press, 1994.

LIPMAA, H.; ROGAWAY, P.; WAGNER, D. CTR-mode encryption. Baltimore,
MD,USA: First NIST Workshop on Modes of Operation, 2000.

MENEZES, A. J.; OORSCHOT, P. C. V.; VANSTONE, S. A. Handbook of applied
cryptography. Boca Raton, FL, United States: CRC press, 1996.

Merriam-Webster. Database. 2017. Accessed March 29, 2017. Available from
Internet: <https://www.merriam-webster.com/dictionary/database>.

NAVEED, M.; KAMARA, S.; WRIGHT, C. V. Inference attacks on property-
preserving encrypted databases. In ACM. Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. Denver, CO, USA, 2015. p.
644–655.

NIST. Block cipher modes. In . 2017. Accessed July 2, 2017. Available from Internet:
<http://csrc.nist.gov/groups/ST/toolkit/BCM/index.html>.

ORACLE. Cloud Computing Comes of Age. 2015. Available from Internet:
<https://www.oracle.com/webfolder/s/delivery_production/docs/FY15h1/doc16/

HBR-Oracle-Report-webview.pdf>.

PAILLIER, P. Public-key cryptosystems based on composite degree residuosity
classes. In SPRINGER. Advances in cryptology - EUROCRYPT’99. Prague, Czech
Republic, 1999. p. 223–238.

PAOLONI, G. How to benchmark code execution times on intel ia-32 and ia-64
instruction set architectures. Intel White Paper, p. 324264–001, 2010.

PODDAR, R.; BOELTER, T.; POPA, R. A. Arx: A Strongly Encrypted
Database System. 2016. Cryptology ePrint Archive, Report 2016/591. <http:
//eprint.iacr.org/2016/591>.

POPA, R. A.; LI, F. H.; ZELDOVICH, N. An ideal-security protocol for order-
preserving encoding. In IEEE. 2013 IEEE Symposium on Security and Privacy (SP).
San Francisco, CA, USA, 2013. p. 463–477.

https://tools.ietf.org/html/rfc5652
https://www.loc.gov/about/fascinating-facts/
https://www.loc.gov/about/fascinating-facts/
https://www.merriam-webster.com/dictionary/database
http://csrc.nist.gov/groups/ST/toolkit/BCM/index.html
https://www.oracle.com/webfolder/s/delivery_production/docs/FY15h1/doc16/HBR-Oracle-Report-webview.pdf
https://www.oracle.com/webfolder/s/delivery_production/docs/FY15h1/doc16/HBR-Oracle-Report-webview.pdf
http://eprint.iacr.org/2016/591
http://eprint.iacr.org/2016/591

106

POPA, R. A.; REDFIELD, C.; ZELDOVICH, N.; BALAKRISHNAN, H. Cryptdb:
protecting confidentiality with encrypted query processing. In ACM. Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles. Cascais,
Portugal, 2011. p. 85–100.

POPA, R. A.; ZELDOVICH, N. Cryptographic treatment of cryptdb’s adjustable join.
2012.

Privacy Rights Clearinghouse. Chronology of data breaches. 2017. Accessed March
29, 2017. Available from Internet: <http://privacyrights.org/data-breach>.

REGEV, O. On lattices, learning with errors, random linear codes, and cryptography.
Journal of the ACM (JACM), ACM, vol. 56, no. 6, p. 34, 2009.

RIVEST, R.; ADLEMAN, L.; DERTOUZOS, M. On data banks and privacy
homomorphisms. Foundations of secure computation, Citeseer, vol. 4, no. 11, p.
169–180, 1978.

ROGGERO, H. Sample Pricing Comparison: On-Premise vs. Private Hosting
vs. Cloud Computing. 2013. Accessed March 29, 2017. Available from Internet:
<http://wblo.gs/dbE>.

ROSULEK, M. The Joy of Cryptography. Oregon State University, 2018. Accessed
August 22, 2018. Available from Internet: <https://web.engr.oregonstate.edu/

~rosulekm/crypto/>.

SAARINEN, M.; AUMASSON, J. The BLAKE2 cryptographic hash and message
authentication code (MAC). 2015.

SCHULZE, H. Cloud Security Spotlight Report. 2016. Available from
Internet: <https://pages.cloudpassage.com/rs/857-FXQ-213/images/
cloud-security-survey-report-2016.pdf>.

SHOR, P. W. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, vol. 26, no. 5, p.
1484–1509, 1997.

SILVERMAN, J. H. The arithmetic of elliptic curves. Berlin, Germany: Springer
Science & Business Media, 2009. vol. 106.

SIMPLICIO, M. A.; COMINETTI, E. L.; PATIL, H. K.; RICARDINI, J. E.;
SILVA, M. V. M. ACPC: Efficient revocation of pseudonym certificates using
activation codes. Ad Hoc Networks, 2018. ISSN 1570-8705. Available from Internet:
<http://www.sciencedirect.com/science/article/pii/S1570870518304761>.

SIMPLICIO, M. A.; COMINETTI, E. L.; PATIL, H. K.; RICARDINI, J. E.;
FERRAZ, L. T. D.; SILVA, M. V. M. da. Privacy-preserving method for
temporarily linking/revoking pseudonym certificates in vanets. In 17th IEEE
International Conference On Trust, Security And Privacy In Computing And
Communications / 12th IEEE International Conference On Big Data Science
And Engineering, TrustCom/BigDataSE 2018, New York, NY, USA, August

http://privacyrights.org/data-breach
http://wblo.gs/dbE
https://web.engr.oregonstate.edu/~rosulekm/crypto/
https://web.engr.oregonstate.edu/~rosulekm/crypto/
https://pages.cloudpassage.com/rs/857-FXQ-213/images/cloud-security-survey-report-2016.pdf
https://pages.cloudpassage.com/rs/857-FXQ-213/images/cloud-security-survey-report-2016.pdf
http://www.sciencedirect.com/science/article/pii/S1570870518304761

107

1-3, 2018. IEEE, 2018. p. 1322–1329. Available from Internet: <https:
//doi.org/10.1109/TrustCom/BigDataSE.2018.00182>.

SIMPLICIO, M. A.; COMINETTI, E. L.; PATIL, H. K.; RICARDINI, J. E.; SILVA,
M. V. M. da. The unified butterfly effect: Efficient security credential management
system for vehicular communications. In IEEE Vehicular Networking Conference
(VNC), Taipei, Taiwan, December 5-7, 2018. IEEE, 2018. p. 1–9. Available from
Internet: <https://eprint.iacr.org/2018/089.pdf>.

SONG, D. X.; WAGNER, D.; PERRIG, A. Practical techniques for searches on
encrypted data. In 2000 IEEE Symposium on Security and Privacy. Berkeley, CA,
USA: IEEE, 2000. p. 44–55. ISSN 1081-6011.

STEVENS, M.; BURSZTEIN, E.; KARPMAN, P.; ALBERTINI, A.; MARKOV, Y.
The first collision for full sha-1. IACR Cryptology ePrint Archive, vol. 2017, p. 23,
2017.

Unicode Consortium. The Unicode Standard - Version 11.0 - Core Specification.
2018. <http://www.unicode.org/versions/Unicode11.0.0/UnicodeStandard-11.0.pdf>.

YAO, A. C.-C. How to generate and exchange secrets. In IEEE. 27th Annual
Symposium on Foundations of Computer Science, 1986. Toronto, Canada, 1986. p.
162–167.

https://doi.org/10.1109/TrustCom/BigDataSE.2018.00182
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00182
https://eprint.iacr.org/2018/089.pdf
http://www.unicode.org/versions/Unicode11.0.0/UnicodeStandard-11.0.pdf

108

APPENDIX A -- A KEY RECOVERY
ATTACK EXAMPLE ON
FAHE

In this appendix, we implement the key recovery attack to the encryption scheme

proposed in chapter 4.

WE implemented the attack using FAHE2 with security parameter λ = 128, max-

imum message size |mmax| = 64, and total number of supported additions α = 29.

We decided to use FAHE2 for its shorter ciphertext size. Nonetheless, the steps are

analogous for FAHE1.

We executed the key generation and obtained the parameters pos = 98 and key

p = 0x03482A6BC4304B9816A2E25C08997689

8F72E333B7C9B16AA3E6BA90FBD95FCB

Finally, as discussed in subsection 4.4.4, we must provide two arbitrary ciphertexts of

length γ = 23866 bits. We choose

c1 = 0x200 . . . 00000000000000000000000000000000

00000000000000000000000000000000

and

c2 = 0x200 . . . 10000000000000000000000000000000

00000000000000000000000000000000

Initially, for ciphertext c1 we obtained the decryption d = 0xF2F69369DBED0E1B.

109

We show now a step-by-step example of the attack using ciphertext c1. For conve-

nience, we present only the last 32 bytes of c1 since every bit flip occurs in this range.

We denote as Q the ciphertext query to the decryption oracle and as A its answer. The

ciphertext’s bits are flipped from the most significant to the least significant bit, one at

a time. We remember that if the decryption changes drastically from the initial one, the

bit is returned to 0. Otherwise, the bit is kept at 1. Additionally, when we change the

bits in the same position where the message is stored (i.e., bits 191 to 127 in this exam-

ple), the decryption is affected. A small change in the decryption from the initial value

(i.e., 1 or 2 bits) represents that the bit must be kept at 1. Moreover, this decryption

value is assumed as the new base value for future comparisons.

Q: 02 00

00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

Q: 01 00

00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

Q: 00 80 00

00 00 00 00 00 00

A: F2 F6 93 69 DB ED 0E 1B

Q: 00 C0 00

00 00 00 00 00 00 00

A: F2 F6 93 69 DB ED 0E 1B

Q: 00 E0 00

00 00 00 00 00 00 00

110

A: C5 B0 CE B1 CA BA 21 08

Q: 00 D0 00

00 00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

Q: 00 C8 00

00 00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

Q: 00 C8 00

00 00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

Q: 00 C4 00

00 00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

Q: 00 C2 00

00 00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

Q: 00 C1 00

00 00 00 00 00 00 00

A: F2 F6 93 69 DB ED 0E 1B

Q: 00 C1 80 00

00 00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

111

Q: 00 C1 40 00

00 00 00 00 00 00 00

A: F2 F6 93 69 DB ED 0E 1B

Q: 00 C1 60 00

00 00 00 00 00 00 00

A: F2 F6 93 69 DB ED 0E 1B

Q: 00 C1 70 00

00 00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

Q: 00 C1 68 00

00 00 00 00 00 00 00

A: F2 F6 93 69 DB ED 0E 1B

Q: 00 C1 6C 00

00 00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

Q: 00 C1 6A 00

00 00 00 00 00 00 00

A: F2 F6 93 69 DB ED 0E 1B

Q: 00 C1 6B 00

00 00 00 00 00 00 00

A: F2 F6 93 69 DB ED 0E 1B

Q: 00 C1 6B 80 00

00 00 00 00 00 00 00

112

A: F2 F6 93 69 DB ED 0E 1B

Q: 00 C1 6B C0 00

00 00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

Q: 00 C1 6B A0 00

00 00 00 00 00 00 00

A: F2 F6 93 69 DB ED 0E 1B

Q: 00 C1 6B B0 00

00 00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

Q: 00 C1 6B A8 00

00 00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

Q: 00 C1 6B A4 00

00 00 00 00 00 00 00

A: F2 F6 93 69 DB ED 0E 1B

Q: 00 C1 6B A6 00

00 00 00 00 00 00 00

A: F2 F6 93 69 DB ED 0E 1B

Q: 00 C1 6B A7 00

00 00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

113

Q: 00 C1 6B A6 80 00

00 00 00 00 00 00 00

A: F2 F6 93 69 DB ED 0E 1B

Q: 00 C1 6B A6 C0 00

00 00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

Q: 00 C1 6B A6 A0 00

00 00 00 00 00 00 00

A: F2 F6 93 69 DB ED 0E 1B

Q: 00 C1 6B A6 B0 00

00 00 00 00 00 00 00

A: F2 F6 93 69 DB ED 0E 1B

Q: 00 C1 6B A6 B8 00

00 00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

Q: 00 C1 6B A6 B4 00

00 00 00 00 00 00 00

A: F2 F6 93 69 DB ED 0E 1B

Q: 00 C1 6B A6 B6 00

00 00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

Q: 00 C1 6B A6 B5 00

00 00 00 00 00 00 00

114

A: F2 F6 93 69 DB ED 0E 1B

Q: 00 C1 6B A6 B5 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

Q: 00 C1 6B A6 B5 40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: F2 F6 93 69 DB ED 0E 1B

Q: 00 C1 6B A6 B5 60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

Q: 00 C1 6B A6 B5 50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

Q: 00 C1 6B A6 B5 48 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

Q: 00 C1 6B A6 B5 44 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

Q: 00 C1 6B A6 B5 42 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

115

Q: 00 C1 6B A6 B5 41 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: F2 F6 93 69 DB ED 0E 1B

Q: 00 C1 6B A6 B5 41 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

Q: 00 C1 6B A6 B5 41 40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: F2 F6 93 69 DB ED 0E 1B

Q: 00 C1 6B A6 B5 41 60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: F2 F6 93 69 DB ED 0E 1B

Q: 00 C1 6B A6 B5 41 70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: F2 F6 93 69 DB ED 0E 1B

Q: 00 C1 6B A6 B5 41 78 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

Q: 00 C1 6B A6 B5 41 74 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

Q: 00 C1 6B A6 B5 41 72 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

116

A: C5 B0 CE B1 CA BA 21 08

Q: 00 C1 6B A6 B5 41 71 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

Q: 00 C1 6B A6 B5 41 70 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

Q: 00 C1 6B A6 B5 41 70 40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: F2 F6 93 69 DB ED 0E 1B

Q: 00 C1 6B A6 B5 41 70 60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

Q: 00 C1 6B A6 B5 41 70 50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: F2 F6 93 69 DB ED 0E 1B

Q: 00 C1 6B A6 B5 41 70 58 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: F2 F6 93 69 DB ED 0E 1B

Q: 00 C1 6B A6 B5 41 70 5C 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

117

Q: 00 C1 6B A6 B5 41 70 5A 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: C5 B0 CE B1 CA BA 21 08

Q: 00 C1 6B A6 B5 41 70 59 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: F2 F6 93 69 DB ED 0E 1B

Q: 00 C1 6B A6 B5 41 70 59 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: F2 F6 93 69 DB ED 0E 1B

Q: 00 C1 6B A6 B5 41 70 59 C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 45 B0 CE B1 CA BA 21 08 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 05 B0 CE B1 CA BA 21 08 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 90 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 12 F6 93 69 DB ED 0E 1B (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 98 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 22 F6 93 69 DB ED 0E 1B (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9C 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

118

A: 2A F6 93 69 DB ED 0E 1B (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9E 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 01 B0 CE B1 CA BA 21 08 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 9D 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 2C F6 93 69 DB ED 0E 1B (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 00 B0 CE B1 CA BA 21 08 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 9D 40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 00 30 CE B1 CA BA 21 08 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 9D 20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 2D 36 93 69 DB ED 0E 1B (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 00 10 CE B1 CA BA 21 08 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 9D 28 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 00 00 CE B1 CA BA 21 08 (message bits reached, change in every bit)

119

Q: 00 C1 6B A6 B5 41 70 59 9D 24 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 2D 3E 93 69 DB ED 0E 1B (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 26 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 2D 42 93 69 DB ED 0E 1B (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 2D 44 93 69 DB ED 0E 1B (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 2D 45 93 69 DB ED 0E 1B (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 00 00 4E B1 CA BA 21 08 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 00 00 0E B1 CA BA 21 08 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 90 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 2D 45 B3 69 DB ED 0E 1B (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

120

A: 2D 45 93 69 DB ED 0E 1B (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 9C 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 00 00 06 B1 CA BA 21 08 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 9A 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 00 00 02 B1 CA BA 21 08 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 99 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 00 00 00 B1 CA BA 21 08 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 80 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 2D 45 C4 69 DB ED 0E 1B (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 C0 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 00 00 00 31 CA BA 21 08 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A0 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 2D 45 C4 A9 DB ED 0E 1B (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 B0 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 00 00 00 11 CA BA 21 08 (message bits reached, change in every bit)

121

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A8 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 00 00 00 01 CA BA 21 08 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A4 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 2D 45 C4 B1 DB ED 0E 1B (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A6 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 2D 45 C4 B5 DB ED 0E 1B (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 2D 45 C4 B7 DB ED 0E 1B (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 80 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 00 00 00 00 CA BA 21 08 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 40 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 00 00 00 00 4A BA 21 08 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 20 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 00 00 00 00 0A BA 21 08 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 10 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

122

A: 2D 45 C4 B7 FB ED 0E 1B (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 18 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00

A: 2D 45 C4 B8 0B ED 0E 1B (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1C 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 00 00 00 00 02 BA 21 08 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 0F ED 0E 1B (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1B 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 00 00 00 00 00 BA 21 08 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A 80 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 10 ED 0E 1B (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A C0 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 00 00 00 00 00 3A 21 08 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A0 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 2D 0E 1B (message bits reached, small change, new value)

123

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A B0 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 00 00 00 00 00 1A 21 08 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A8 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 00 00 00 00 00 0A 21 08 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A4 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 00 00 00 00 00 02 21 08 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 31 0E 1B (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A3 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 00 00 00 00 00 00 21 08 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 80 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 0E 1B (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 C0 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 8E 1B (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 E0 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

124

A: 2D 45 C4 B8 11 32 CE 1B (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 F0 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 00 00 00 00 00 00 01 08 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 E8 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 DE 1B (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EC 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 E6 1B (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EE 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 EA 1B (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 EC 1B (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 80 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 00 00 00 00 00 00 00 08 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 40 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 EC 9B (message bits reached, small change, new value)

125

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 60 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 EC DB (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 70 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 EC FB (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 78 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 0B (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7C 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7A 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 0F (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 11 (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B 80 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 12 (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B C0 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

126

A: 21 00 00 00 00 00 00 00 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A0 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13 (message bits reached, small change, new value)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B B0 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A8 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A4 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00 (message bits reached, change in every bit)

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A2 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 80 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

127

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 40 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 60 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 50 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 58 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 5C 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 5A 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 00 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 80 00 00 00 00 00

00 00 00 00 00 00 00 00

128

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 C0 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 E0 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F0 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F8 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F4 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F2 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 00 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

129

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 80 00 00 00 00

00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 40 00 00 00 00

00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 20 00 00 00 00

00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 10 00 00 00 00

00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 08 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0C 00 00 00 00

00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0A 00 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 00 00 00 00

00 00 00 00 00 00 00 00

130

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 80 00 00 00

00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 40 00 00 00

00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 20 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 30 00 00 00

00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 28 00 00 00

00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 24 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 00 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

131

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 27 00 00 00

00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 80 00 00

00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 40 00 00

00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 20 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 30 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 38 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 00 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3E 00 00

00 00 00 00 00 00 00 00

132

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3D 00

00 00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 80 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C C0

00 00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C A0

00 00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 90 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 98 00

00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 94 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

133

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 96 00

00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95 00

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95 80

00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C0 00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

E0 00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

D0 00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 00 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

CC 00 00 00 00 00 00 00 00

134

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

CA 00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C9 00 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 80 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 40 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 20 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 30 00 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 28 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

135

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2C 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2E 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 00 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 80 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 40 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 20 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 10 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 18 00 00 00 00 00 00

136

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1C 00 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1A 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 00 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 80 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 40 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 20 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 10 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

137

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 08 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 04 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 06 00 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 00 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 80 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 40 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 20 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 10 00 00 00 00

138

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 08 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 04 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 00 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 03 00 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 80 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 40 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 20 00 00 00

A: 21 00 00 00 00 00 00 00

139

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 10 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 18 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 14 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 12 00 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 13 00 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 12 80 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 12 40 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 12 60 00 00

140

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 12 70 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 12 68 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 12 6C 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 12 6E 00 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 12 6D 00 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 12 6D 80 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 12 6D 40 00

A: 2D 45 C4 B8 11 32 ED 13

141

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 12 6D 60 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 12 6D 70 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 12 6D 68 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 12 6D 64 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 12 6D 62 00

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 12 6D 61 00

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 12 6D 61 80

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 12 6D 61 40

142

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 12 6D 61 20

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 12 6D 61 30

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 12 6D 61 38

A: 2D 45 C4 B8 11 32 ED 13

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 12 6D 61 3C

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 12 6D 61 3A

A: 21 00 00 00 00 00 00 00

Q: 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B A3 59 F1 0B 26 3C 95

C8 2F 1B 05 02 12 6D 61 39

A: 21 00 00 00 00 00 00 00

Therefore, the final value for ciphertext c1 ends with the following bytes:

c1 = . . . 00 C1 6B A6 B5 41 70 59 9D 27 98 A7 1A A2 EF 7B

A3 59 F1 0B 26 3C 95 C8 2F 1B 05 02 12 6D 61 38

143

Indeed, if we add 1 to this ciphertext, we get a multiple of the key p.

Now, we must repeat the same process with ciphertext c2. As the pro-

cess is analogous to ciphertext c1, we only present the initial decryption d =

0x1099BBD185EE6CBC and the final ciphertext c2. The final value for ciphertext

c2 ends with the following bytes:

c2 = . . . 11 2A 3F C1 8A 32 EA 52 0E 56 04 73 45 A2 40 2B

70 98 61 0D BD 2D 0C DD 62 9C A9 D6 FD AC 40 2F

Similar to c1, by adding 1 to c2 we get a multiple of key p.

Finally, computing gcd(c1 + 1, c2 + 1), we obtain:

gcd(c1 + 1, c2 + 1) = 0x03482A6BC4304B9816A2E25C08997689

8F72E333B7C9B16AA3E6BA90FBD95FCB

This is exactly key p.

