
MARCOS VINICIUS MACIEL DA SILVA

SECURETRADE: A SECURE PROTOCOL BASED
ON TRANSFERABLE E-CASH FOR EXCHANGING

CARDS IN P2P TRADING CARD GAMES

Dissertation submitted to Escola Politécnica

da Universidade de São Paulo in partial

fulfillment of the requirements for the degree

of Master of Science.

São Paulo
2016

MARCOS VINICIUS MACIEL DA SILVA

SECURETRADE: A SECURE PROTOCOL BASED
ON TRANSFERABLE E-CASH FOR EXCHANGING

CARDS IN P2P TRADING CARD GAMES

Dissertation submitted to Escola Politécnica

da Universidade de São Paulo in partial

fulfillment of the requirements for the degree

of Master of Science.

Concentration area:

Computer Engineering

Supervisor:

Marcos Antonio Simplicio Junior

São Paulo
2016

Este exemplar foi revisado e corrigido em relação à versão original, sob
responsabilidade única do autor e com a anuência de seu orientador.

São Paulo, ______ de ____________________ de __________

Assinatura do autor: ________________________

Assinatura do orientador: ________________________

Catalogação-na-publicação

Silva, Marcos Vinicius Maciel da
 SecureTrade: A secure protocol based on transferable e-cash for
exchanging cards in P2P trading card games / M. V. M. Silva -- versão corr. --
São Paulo, 2016.
 143 p.

 Dissertação (Mestrado) - Escola Politécnica da Universidade de São
Paulo. Departamento de Engenharia de Computação e Sistemas Digitais.

 1.Criptologia 2.Algoritmos 3.Segurança de computadores 4.Jogos
eletrônicos I.Universidade de São Paulo. Escola Politécnica. Departamento de
Engenharia de Computação e Sistemas Digitais II.t.

RESUMO

Jogos de cartas colecionáveis (TCG, do inglês Trading Card Game) diferem de
jogos de cartas tradicionais principalmente porque as cartas não são compartilhadas
em uma partida. Especificamente, os jogadores usam suas próprias cartas (obtidas,
e.g., por meio de compra ou troca com outros jogadores), as quais correspondem a
um subconjunto de todas as cartas criadas pelo produtor do jogo. Embora a maioria
dos TCGs digitais atuais dependam de um terceiro confiável (TTP, do ingês Trusted
Third-Party) para prevenir trapaças durante trocas, permitir que os jogadores troquem
cartas de maneira segura sem tal entidade, como é o caso em um cenário peer-to-peer
(P2P), ainda é uma tarefa desafiadora. Possíveis soluções para esse desafio podem
ser baseadas em protocolos de moeda eletrônica, mas não sem adaptações decorrentes
dos requisitos diferentes de cada cenário: por exemplo, TCGs devem permitir que
usuários joguem com as suas cartas, não apenas que passem-nas adiante como ocorre
com moedas eletrônicas. Neste trabalho, são apresentados e discutidos os principais
requisitos de segurança para trocas de cartas TCGs e como eles se relacionam com
moedas eletrônicas. Também é proposto um protocolo eficiente que permite trocas de
cartas sem a necessidade de um TTP e com suporte a privacidade. A construção usa
como base um protocolo seguro de moeda eletrônica e um protocolo de assinatura-P
adaptado para utilizar emparelhamentos assimétricos, mais seguros que os simétricos.
De acordo com os experimentos realizados, o protocolo proposto é bastante eficiente
para uso na prática: são necessários apenas 5 MB para armazenar um baralho inteiro,
enquanto a preparação do mesmo leva apenas alguns segundos; a verificação das cartas,
por sua vez, é mais rápida que a duraçãao comum de uma partida e pode ser executada
em plano de fundo, durante a própria partida.

ABSTRACT

Trading card games (TCG) are distinct from traditional card games mainly be-
cause, in the former, the cards are not shared among players in a match. Instead, users
play with the cards they own (e.g., that have been purchased or traded with other play-
ers), which correspond to a subset of all cards produced by the game provider. Even
though most computer-based TCGs rely on a trusted third-party (TTP) for preventing
cheating during trades, allowing them to securely do so in the absence of such entity,
as in a Peer-to-Peer (P2P) scenario, remains a challenging task. Potential solutions for
this challenge can be based on e-cash protocols, but not without adaptations, as those
scenarios display different requirements: for example, TCGs should allow users to play
with the cards under their possession, not only to be able to pass those cards over as
with digital coins. In this work, we present and discuss the security requirements for
allowing cards to be traded in TCGs and how they relate to e-cash. We then propose
a concrete and efficient TTP-free protocol for trading cards in a privacy-preserving
manner. The construction is based on a secure transferable e-cash protocol and on a
P-signature scheme converted to the asymmetric pairing setting. According to our ex-
perimental results, the proposed protocol is quite efficient for use in practice: an entire
deck is stored in less than 5 MB, while it takes a few seconds to be prepared for a
match; the verification of the cards, on its turn, takes less time than an usual match,
and can be performed in background while the game is played.

LIST OF FIGURES

1 Representation of a physical card . 29

2 Representation of a digital card . 30

3 P2P TCG Architecture . 31

4 Elliptic curves in the real plane . 40

5 GSProof: Setup protocol . 54

6 GSProof: Commit protocol . 54

7 GSProof: Prove protocol . 55

8 GSProof: Verify protocol . 56

9 VRF 1: Setup protocol . 59

10 VRF 1: Evaluation protocol . 59

11 VRF 1: Prove protocol . 60

12 VRF 1: Verify protocol . 60

13 VRF 2: Setup protocol . 62

14 VRF 2: Evaluation protocol . 62

15 VRF 2: Prove protocol . 63

16 VRF 2: Verify protocol . 63

17 P-Signature: Setup protocol . 67

18 P-Signature: Key generation protocol 68

19 P-Signature: Commit protocol . 68

20 P-Signature: Update commitment protocol 68

21 P-Signature: Sign protocol . 68

22 P-Signature: Verification protocol 69

23 P-Signature: Witness generation protocol 69

24 P-Signature: Witness verification protocol 69

25 P-Signature: Prove commitment protocol 69

26 P-Signature: Verify proof of commitment protocol 70

27 P-Signature: Obtain/Issue signature protocol 70

28 P-Signature: Prove signature protocol 71

29 P-Signature: Verify proof of signature protocol 71

30 E-cash: Setup protocol . 80

31 E-cash: Register protocol . 80

32 E-cash: Withdrawal protocol . 81

33 E-cash: Spend protocol . 81

34 E-cash: Deposit protocol . 82

35 E-cash: Identification protocol . 82

36 Representation of a digital card in the proposed system 86

37 SecureTrade: Setup protocol . 87

38 SecureTrade: Register protocol . 88

39 SecureTrade: Stamp protocol . 89

40 SecureTrade: Send protocol . 90

41 SecureTrade: Play protocol . 92

42 SecureTrade: Report protocol . 92

43 SecureTrade: Refresh protocol . 94

44 SecureTrade: Identify protocol . 95

45 Growth of storage space required for a deck, with 128 security bits . . 105

46 Communication cost per protocol, considering decks with 50 cards and

128 security bits . 108

47 Growth of message size per hop of card or 50-dard deck, each color

degree corresponds to one additional hop 109

48 Processing time for constant methods, with 128 security bits 109

49 Processing time for variable methods, considering a 50-card deck and

128 security bits . 111

50 P-signature (original): Key generation protocol 126

51 P-signature (original): Sign protocol 126

52 P-signature (original): Verification protocol 126

53 P-signature (original): Commit protocol 128

54 P-signature (original): Witness generation protocol 128

55 P-signature (original): Witness verification protocol 128

56 P-signature (assumptions): l-HSDH instance 128

57 P-signature (assumptions): Security reduction to l-HSDH 129

58 P-signature (assumptions): FlexDH instance 129

59 P-signature (assumptions): Security reduction to FlexDH 130

60 P-signature (assumptions): n-FlexDHE instance 131

61 P-signature (assumptions): Security reduction to n-FlexDHE 131

62 Dependency graph for P-signature protocol KeyGen 132

63 Dependency graph for P-signature protocol Sign 132

64 Dependency graph for P-signature protocol Verify 132

65 Dependency graph for P-signature protocol Commit 133

66 Dependency graph for P-signature protocol WitGen 133

67 Dependency graph for P-signature protocol VerifyWit 133

68 Dependency graph for HSDH instance 134

69 Dependency graph for the reduction to HSDH 134

70 Dependency graph for FlexDH instance 134

71 Dependency graph for the reduction to FlexDH 135

72 Dependency graph n-FlexDHE instance 135

73 Dependency graph for the reduction to n-FlexDHE 135

74 Merged graph for the entire P-signature scheme 136

75 Split dependency graph for elements in G1 for the converted P-

signature scheme . 138

76 Split dependency graph for elements in G1 for the converted P-

signature scheme . 138

77 P-signature (converted): Key generation protocol 140

78 P-signature (converted): Sign protocol 140

79 P-signature (converted): Verification protocol 140

80 P-signature (converted): Commit protocol 141

81 P-signature (converted): Witness generation protocol 141

82 P-signature (converted): Witness verification protocol 141

LIST OF TABLES

1 Parallel methods of E-cash and P2P TCG 32

2 Comparison between the size of parameters and the resulting security

strength for different cryptographic approaches. All values are mea-

sured in number of bits. 41

3 Computational problems assumed hard for the security of each pre-

sented cryptographic tool . 45

4 Analysis of proof of knowledge protocols 47

5 Number of elements from each group when signing n messages 65

6 Size (in bytes) to represent group elements using RELiC toolkit with

128 security bits . 102

7 Processing time of group operations, on a 4 GHz with Hyper Threading

(HT) or 3.6 GHz without it . 103

8 Size to represent proofs of knowledge, with 128 security bits 103

9 Assemble of costs to store a card, with 128 security bits 104

10 Communication cost per protocol, considering decks with 50 cards and

128 security bits . 108

11 Elements of each source group in the converted P-signature scheme

after splitting the pairing groups . 139

12 Compiling parameters for the RELiC library (architecture) 142

13 Compiling parameters for the RELiC library (big numbers) 143

14 Compiling parameters for the RELiC library (elliptic curve and pairings)143

15 Compiling parameters for the RELiC library (hash and pseudorandom

generator) . 143

LIST OF ABBREVIATIONS AND ACRONYMS

CID Class identifier

CL Camenisch-Lysyanskaya

CRS Common reference string

CSAT Circuit satisfiability

DDH Decisional Diffie-Hellman

DDHI Decisional Diffie-Hellman inversion

DH Diffie-Hellman

DHE Diffie-Hellman exponent

DSA Digital signature algorithm

ECA Elliptic curve point addition

ECC Elliptic curve cryptography

ECDSA Elliptic curve digital signature algorithm

ECM Elliptic curve point multiplication

FA Full anonymity

FFA Finite field addition

FFM Finite field multiplication

FlexDHE Flexible Diffie-Hellman exponent

FFC Finite field cryptography

FXE Extended finite field exponentiation

FXM Extended finite field multiplication

GS Groth-Sahai

HSDH Hidden strong Diffie-Hellman

HT Hyper Threading

IFC Integer factorization cryptography

P2P Peer-to-peer

PA Perfect anonymity

PC Pairing computation

PPE Pairing product equation

RSA Rivest-Shamir-Adleman

SA Strong anonymity

SNARK Succinct non-interactive arguments of knowledge

SXDH Symmetric external Diffie-Hellman

TCG Trading card game

TTP Trusted third party

UID Unique identifier

VRF Verifiable random function

WA Weak anonymity

LIST OF SYMBOLS

A P-signature public key

A Adversary

A Game auditor

B Bank

C Groth-Sahai commitment (in G1)

C Registration center

card Card

coin Coin

CID Card class identifier

CS List of deposited coins

D Groth-Sahai commitment (in G2)

DS List of double-spenders

E Groth-Sahai output map

EC Elliptic curve

e Bilinear pairing

eq Equation

F Field

F Evaluation algorithm

G Generator of G1

G Group

G Setup algorithm

G Game server

gk Groth-Sahai setup information

gsparams Groth-Sahai parameters

H Generator of G2

H Cryptographic hash function

h Number of hops

I Group identity element

info Public information from the transference

K P-signature commitment

k Security level

L Wallet size

l Index of the coin from the wallet

M RSA Modulus

M Card market

m Message

N Number of equations

N Set of natural numbers

n Number of messages to sign

O Big-oh (algorithm complexity notation)

O Point at infinity

open Opening

owner Card owner

P Prover algorithm

P Player

pparams P-signature parameters

p Field characteristic

pk Public key

q Sample size of instances (Sec. 3.5)

q Group order

R Matrix of openings to commitments in G1 (Sec. 3.6 only)

R Summary of transference information

r Ownership tag (Sec. 3.9 and forward)

RS List of reported cards

S Matrix of openings to commitments in G2 (Sec. 3.6 only)

S Coin serial number

s Serial seed (Sec. 3.9 and forward)

sk Private key

T Transference tag

t Transference tag seed

U Groth-Sahai common reference string component in G1 (Sec. 3.6)

U P-signature public key component

U0 P-signature public key component

U1 P-signature public key component

U User

UID Card unique identifier

V Groth-Sahai common reference string component in G2 (Sec. 3.6)

V Card validity information

V Verifier algorithm

W P-signature witness

wallet Wallet

Zq Integers modulo q

α P-signature private key component

β P-signature private key component

∆ Matrix of integer exponents

δ Pairing product equation exponent constant

γ P-signature private key component

ι Groth-Sahai input map

κ Groth-Sahai commitment

Λ Pairing setting

ν Groth-Sahai common reference string scalar component

Π List of transferences

π Groth-Sahai proof of knowledge component in G2

σ P-signature

ς Groth-Sahai common reference string

Υ Randomization matrix for Groth-Sahai proofs

υ Groth-Sahai common reference string scalar component

θ Transformation

Θ Set of allowable transformations

φ Proof of knowledge

ϕ Groth-Sahai proof of knowledge component in G1

ψ Group homomorphism

Ω P-signature public key component

ω P-signature private key component

CONTENTS

1 Introduction 22

1.1 Motivation . 22

1.2 Goals . 23

1.3 Related works . 24

1.4 Contribution . 25

1.5 Outline . 26

2 Trading Card Games 27

2.1 TCGs: Scenario description . 27

2.1.1 Card representation . 28

2.1.2 Architecture . 29

2.2 Comparison with e-cash . 31

2.3 System requirements . 34

2.4 Summary . 35

3 Building blocks 36

3.1 Notation . 36

3.2 Mathematical concepts . 37

3.3 Elliptic curves . 39

3.4 Bilinear pairings . 42

3.5 Security assumptions . 43

3.6 Zero-Knowledge Proof of Knowledge 45

3.6.1 Proof of knowledge schemes: a brief review 46

3.6.2 The Groth-Sahai proof system 49

3.6.3 Malleability of Groth-Sahai proofs 50

3.6.4 A Groth-Sahai instantiation 52

3.7 Verifiable Random Function . 55

3.7.1 VRF instantiation 1 . 57

3.7.2 VRF instantiation 2 . 59

3.8 Provable blind signature . 62

3.8.1 P-signature instantiation . 64

3.9 Compact e-cash . 69

3.9.1 Compact e-cash instantiation 77

3.9.2 Using malleable signatures in e-cash schemes 80

3.10 Summary . 84

4 Proposed protocol 85

4.1 Notation . 85

4.2 Construction . 86

Setup . 86

Register . 87

Stamp . 87

Send . 89

Play . 90

Report . 91

Refresh . 93

Identify . 94

4.3 Summary . 95

5 Analysis 96

5.1 Security analysis . 96

5.1.1 Verifiable stamping . 96

5.1.2 TTP-free transferability . 97

5.1.3 Anonymity . 97

5.1.4 Balance . 98

5.1.5 Cheating detection . 98

5.1.6 Exculpability . 99

5.2 Treating an illegal duplication . 100

5.3 Performance analysis . 101

5.3.1 Storage . 103

5.3.2 Communication . 105

5.3.3 Processing time . 109

5.4 Offload methods . 111

5.4.1 Delegate deck verification 112

5.4.2 Reuse match information . 112

5.5 Summary . 113

6 Conclusions 114

6.1 Future work . 116

6.2 Publications . 116

References 118

Appendix A -- Conversion of ILV-signature protocol to asymmetric pairing

setting 124

A.1 Description of the original protocol 125

A.2 Merging the dependency graphs . 127

A.3 Splitting the graph . 137

A.4 Derivating the protocol . 139

Appendix B -- RELiC parameters 142

22

1 INTRODUCTION

A trading card game (TCG) is a type of card game in which, instead of using a

fixed deck, each player creates his/her own deck from a subset of all cards made avail-

able by the game provider (SIMPLICIO JR. et al., 2014). During a match, players

usually do not share their cards with their opponents; hence, as many different cards

may exist, one important part of the game is to build decks that support a target strategy

or game style. To build better decks, users may either trade cards with other users or

purchase them directly from the game provider. To improve their revenue, in the last

years some providers have expanded their markets beyond the realm of physical cards,

creating digital versions of their games. This is the case, for example, of “Magic: the

GatheringTM” 1, one of the first TCGs ever released. There are also TCGs that do not

even have a physical counterpart, but only a digital version, like the case of "Hearth-

stone: Heroes of Warcraft" 2. An extensive list of TCGs can be found in ONLINE

GAMES KINGDOM.

1.1 Motivation

The video game industry is very lucrative and is spreading even more. An annual

report about sales and usage data in video games in the U.S. (ESA, 2015) presents

that, while computer games are stagnating, the revenue of social and casual games is

increasing. More people are playing multiplayer games, and for longer time, specially

1http://magic.wizards.com/en/content/magic-duels
2http://us.battle.net/hearthstone/en/

23

in mobile devices. The complete success multiplayer games depend on how the players

are treated, since they usually present a different business model: instead of profiting

from sales, the profit may be in-game purchases or periodical fees (PRITCHARD,

2000; YAN; CHOI, 2002). The more success these games achieve, higher attempts to

hack and cheat will come. And in this case, cheating undermines success.

To set matches and avoid cheating, digital TCGs typically use a client-server ar-

chitecture, where the centralized system acts as card market and also as referee for the

matches between players. When considering mobile applications, however, a peer-to-

peer (P2P) architecture may present advantages over the client-server one (PITTMAN;

GAUTHIERDICKEY, 2013; SIMPLICIO JR. et al., 2014). The reason is that a client-

server model obliges players to have a continuous Internet connection when trading

or playing, preventing them to do any of those actions otherwise. Using a local con-

nection also unload the central area of the network, concentrating at the peripheral

area (more idle). It helps saving energy and avoids denial of service due to overload

in central hubs. Besides, the game provider does not need to keep an updated list of

each player’s current cards (unless it so desires); after all, trading can happen with-

out connection to the server, so the players themselves are responsible for validating

the ownership of cards. If the game protocols are designed so they do not depend on a

trusted third party (TTP) to prevent cheating, on the other hand, then a local connection

would be enough, bringing convenience to users and also to game providers.

1.2 Goals

The main goals of this work is to define the requirements for secure card exchange

in P2P-based TCGs and then provide a solution that addresses those requirements in

an efficient manner. Due to similarities to transferable e-cash, such requirements and

a concrete protocol instantiation can be adapted from e-cash schemes, at least to fulfill

the most basic properties of trading cards.

24

1.3 Related works

Playing traditional card games in a P2P model was originally proposed in the con-

text of mental poker (SHAMIR; RIVEST; ADLEMAN, 1981), and different solutions

were proposed since then (for a survey, see (ROCA; FEIXAS; DOMINGO-FERRER,

2006)). These works also served as basis for TTP-free solutions for TCGs, such as

Match+Guardian (PITTMAN; GAUTHIERDICKEY, 2013) and SecureTCG (SIMP-

LICIO JR. et al., 2014), which allow the detection of cheating attempts during a match

with two or more players. Despite those advances concerning in-game cheating, such

protocols were constructed so that they still depend on a trusted entity for each card

trading event, leaving the task of reducing this dependence as a subject for future work.

Arguably, the closest solutions to this problem are the ones described in (GAU-

THIERDICKEY; RITZDORF, 2014; GAUTHIERDICKEY; RITZDORF, 2012), in

which fair transference in multiplayer games are allowed. Both schemes rely on the

assumption that all game items (cards, in TCGs) from each player are known to other

players. When crossing the information of transferences and the public inventory of

the sender, it is possible to audit if any player has illegally duplicated some item. If

applied to TCGs, this would violate the confidentiality of the player’s cards, violating

their privacy because each card could be easily linkable to its owner. This is also partic-

ularly undesirable in TCGs because the confidentiality of the users’ decks is commonly

part of their strategy: after all, this prevents players from setting up a deck specifically

designed to counter their opponents’ decks. Since this public inventory is critical to the

correctness of the protocol, an adaptation of these existent protocols will not achieve

the confidentiality required in a TCG protocol.

25

1.4 Contribution

Aiming to tackle the above issues, in this work we: (1) define the requirements

for secure card trading in TCGs in a P2P architecture; and (2) instantiate a protocol

that fulfills those requirements, allowing players to detect cheating attempts when ex-

changing cards with each other even before a match starts.

Trading cards in a TTP-free manner is a problem that resembles the issue tack-

led by transferable e-cash protocols (CHAUM; PEDERSEN, 1993a; FUCHSBAUER;

POINTCHEVAL; VERGNAUD, 2009; CAMENISCH; HOHENBERGER; LYSYAN-

SKAYA, 2005; BALDIMTSI et al., 2015), where the cards replace the digital money.

For example, as in e-cash, a player should be able to anonymously trade cards with

other players without the need of a TTP mediating the transactions. However, if a

player sends the same card to two or more peers (i.e., “double-spends” it), this should

be detectable and the transgressor’s anonymity should be revoked. Nevertheless, TCGs

also have additional requirements, as there is no concept similar to “playing with

owned cards” in the context of e-cash. To the best of our knowledge, the specialized

literature has no clear list of security requirements that apply to card trading, which so

far has hindered further progress in this area.

We propose a scheme based on existing transferable e-cash protocols (namely,

(CAMENISCH; HOHENBERGER; LYSYANSKAYA, 2005) and (BELENKIY et al.,

2009)), with the required adaptations for allowing players to: (1) purchase cards from

the game provider in a privacy-preserving manner, meaning that a card cannot be linked

to any user unless its owner generates a proof of ownership; (2) use the cards they own

in a match; (3) trade cards with other players; (4) verify the validity of a card presented

by any player without the intervention of a TTP, independently of the number of pre-

vious owners the card has ever had; (5) let the game provider know about cheating

events, such as a user playing with a card that has already been handed over to another

26

user. Since the resulting protocol is transparent to how the matches themselves are

handled, it can also be integrated with in-game cheating-detection mechanisms such as

the aforementioned Match+Guardian or SecureTCG, thus allowing the construction of

a secure P2P-based TCG environment.

In addition to the main contributions mentioned, some improvements to the un-

derlying protocol were by-products from our main goals. Namely, the P-signature

scheme (a special digital signature scheme, presented in Section 3.8) was originally

proposed in a symmetric pairing setting. However, this type of pairing suffers from at-

tacks that reduces the security level of protocols constructed over it (BARBULESCU

et al., 2014). For this reason, we convert the original scheme to one based on an asym-

metric pairing setting of the same security level, using the method proposed by (ABE

et al., 2014). Besides better security, this results in a more efficient protocols to prove

knowledge on the commitments and on the signature; more precisely, the resulting

protocols are more concise and faster due to a reduced number of equation and pairing

computations.

1.5 Outline

The rest of this document is organized as follows. Chapter 2 presents the charac-

teristics of TCGs, the main subject of our work; it also compares TCGs with e-cash,

which allows the system requirements for a P2P TCG to be defined. Chapter 3 defines

the notation used, the building blocks for our system and the security assumptions of a

concrete protocol instantiation. The proposed scheme based on e-cash is then defined

in Chapter 4, and its security and efficiency are analyzed in Chapter 5. Finally, we

present our concluding remarks and the ideas for future work in Chapter 6.

27

2 TRADING CARD GAMES

To define the requirements for a secure card exchange protocol, it is necessary to

discuss the terminology associated to this environment, as well as the desired func-

tionalities of a P2P TCG. In this chapter, we discuss the TCG environment, which is

the focus of the proposed solution, and how it works in the digital world. We begin

with details regarding which features are expected from a TCG, defining the associated

terminology. Then, we analyze the architectures proposed in the literature for in-game

cheating-detection and how the entities of the system are thereby represented, since,

for better compatibility of the discussion, the same entities are employed in this work.

Finally, we compare the game system with that of a transferable e-cash, enlightening

similarities and distinctions between them, which allows the requirements of a secure

P2P TCG to be defined.

2.1 TCGs: Scenario description

Each TCG has its own set of rules, which vary from the order of steps in a match to

how the cards are used. The cards also vary from game to game, since each may have

different properties and some cards are produced in limited amount. Some games also

allow players to use several cards of the same kind in their deck, depending on specific

rules for those matches. Some common game styles are the following (WIZARDS,

2014):

• Constructed deck: Players build their decks with cards of their own, thus relying

28

on the cards they had before the match.

• Uniform deck: Players receive the same set of cards from the game provider and

choose which ones are going to be put in their decks.

• Sealed deck: Players receive random sets of cards from the game provider and

select the cards to be put in their decks.

• Draft deck: Players receive a single set o cards and, in a round-robin fashion,

each one takes a turn to pick a card from the set, passing the remaining cards to

the next player in the queue.

Despite those differences, the method to obtain cards is basically the same in all

TCGs: cards can be bought directly from the game provider or can be traded with other

users.

2.1.1 Card representation

Cards (card) have different effects in the game, and each card may have a distinct

description of its properties (e.g., name, attack/defense power, abilities, or reactions

to certain game events). If they present the same set of properties, they belong to the

same class of cards (as shown in Figure 1), similarly to coins having the same value in

e-cash schemes. Cards of the same class have the same class identifier number (CID),

and in games that allow players to have several cards of the same class, each instance

of these cards has a unique identifier (UID), that univocally identifies that card in the

system. This UID can then be used by in-game cheat-detection protocols to identify

the card (PITTMAN; GAUTHIERDICKEY, 2013; SIMPLICIO JR. et al., 2014).

Each card should belong to only one player, and some information (owner) allows

the card’s owner to be identified. This information may be mutable, since, after each

trade, ownership is passed to the receiver.

29

Figure 1: Representation of a physical card

Name

Image

Title

Edition

Abilities

Power

Resistance

...

Class

Name

Image

Abilities
Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Integer a malesuada nisi.

Nullam vel euismod ligula.

Title

Power

Edition

Resistance

Source: Author

Finally, each card depends on some validity information V , which can be verified

without the direct intervention from a trusted party. This information is used to verify

that the card has been correctly stamped by the market, as well as to detect if some

player has illegally used a duplicate of some card after having handed it over in a

trade.

Combining this information, a card in our work can be represented by the tuple

(also represented in Figure 2):

card = (UID,CID, owner,V)

The manner by which this information is specified in our construction is described

in Chapter 4, in which a concrete instantiation of the proposed protocol is described.

2.1.2 Architecture

Following the notation of Pittman and GauthierDickey (2013) and Simplicio Jr. et

al. (2014), the architecture (presented in Figure 3) of a P2P TCG encompasses a game

server and the players.

The game server (G) is responsible for any action that requires a trusted authority

30

Figure 2: Representation of a digital card

UID

CID

owner

V

Name

Image

Abilities
Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Integer a malesuada nisi.

Nullam vel euismod ligula.

Title

Power

Edition

Resistance

0010101010101101100100110111110001010101
0101100000111001101010011101001011111010
0010110011011001110101010011101001011010
1001010101010110101010101000101101011010
1010101010101110101010101010101010100010
1010101010101000100111110101001101111101
0101011101110101010001101000111101010111
0100001110101011111000111010101010001101
1101110100110001111110110101000111001101
1101110100010110101110000111010110100110
1101010110101000100101010110101111101111
0101101011101101010001101101001011010100
0010100010111010110101011010100011101010
1001010101010011010101010100101010110010
1010101001010010101100010100010100111101
0101011010101011110001101010011110111011
0100011110100000101111011011010100111101
1101110001001100010100111010100111010100
1010110101010101101010101010101010011110
1011110010111101011101000011000000000101
0011110111011010101010100000000101011110
1101011000011101100111100011000101110000
1111101101101000011111111100110000110101
1001011101010101010110110101011010101011
0001101010110100010111010101010110010111

Source: Author

or centralized information storage. One of its primary roles is to serve as a registration

center (C) for players: to enroll in the system, a user must register with a unique

identifier (e.g., an e-mail or social security number) and provide his/her public key;

the game server then generates a digital certificate to assert this information, allowing

anyone to verify who are the system’s authorized users.

The game server also acts as a card market (M), being responsible for selling

and digitally signing cards, so the buyer can prove that a card is valid, as well as its

ownership. As a result, the server does not need to keep record of the cards possessed

by each player, as ownership varies with time and, as proposed in this work, trading

may occur without the server’s knowledge. The server is also responsible for informing

players of the valid CIDs of all cards available, as new releases usually add several new

cards to the game.

Finally, the server also plays the role of game auditor (A), verifying claims regard-

ing cheating attempts and eventually punishing those responsible for misbehavior. For

example, in (PITTMAN; GAUTHIERDICKEY, 2013; SIMPLICIO JR. et al., 2014),

the players may send after-match information to the server to prove that a user tried

to cheat, e.g., by modifying the sequence or contents of their deck during a match.

31

Figure 3: P2P TCG Architecture

 Game Server

Register

Buy cards Report
(cheats/matches)

Play / Trade

C

Registration center

M

Card Market

A

Game auditor

Players

Source: Author

If a player sends to the server the list of cards employed by an adversary, the server

should also be able to verify the usage of cards that were not under a malicious player’s

possession at the time of the match (e.g., because he/she had traded it earlier). Pro-

viding such after-match data is actually very common, as this information is normally

required to rank players depending on the number of victories in matches.

Any other action that does not require a trusted third party (TTP), such as playing

the game or trading cards, ideally should be allowed to be performed in a purely P2P

fashion, while still being protected by cheating-detection mechanisms. As in-game

cheating is quite thoroughly covered in (SIMPLICIO JR. et al., 2014), in this work we

focus only on cheating-detection during card trading.

2.2 Comparison with e-cash

The security issues that appear when trading cards are somewhat similar to those

faced by transferable e-cash. Indeed, both systems must provide some sort of balance,

32

Table 1: Parallel methods of E-cash and P2P TCG
E-cash P2P TCG
Setup Setup

Register Register
Mint Stamp

Spend Trade
Self-spend * Play

Deposit Refresh/Report *
Identify Identify

* Methods not originally developed for e-cash

Source: Author

so that the number of elements (coins or cards) of the system should not grow without

the central server’s authorization. Hence, no user should be able to produce more

elements than what the central server has emitted, which could be done by forging a

new element or duplicating an existing valid one. As shown in Table 1, many actions

supported by card trading and transferable e-cash protocols are also similar: stamping

new cards is similar to minting new coins, while trading cards is equivalent to spending

coins. The anonymity of the users that participated in the trades of a card is also

desirable in both scenarios for protecting the privacy of the users in those transactions.

It is, thus, reasonable to build a secure card trading protocol from a transferable

e-cash scheme. In this case, like coins, the card’s portion that indicates ownership

(owner), grows in size with each transference (CHAUM; PEDERSEN, 1993a), or need

to be stored somewhere else to prevent such growth (e.g., in a receipt (FUCHSBAUER;

POINTCHEVAL; VERGNAUD, 2009)). To avoid indefinite growth, players may re-

fresh their cards, which is equivalent to deposit a coin and get a new, mint version of it.

TTP-free transferability also raises the problem of duplicating existing elements, an is-

sue that cannot be prevented but can be detected so that the culprit is identifiable when

the coin is deposited at the central server. More precisely, in case of double-spending

in transferable e-cash schemes, the central server is able to revoke the anonymity of

the user responsible for misbehavior, and only of that user, independently of how many

owners the coin had before or after it was copied.

33

In the context of TCGs, however, the double spending problem is a more compli-

cated issue because players may not only trade, but also use a card (i.e., play with it

during matches) without transferring its ownership. Therefore, TCGs also need mecha-

nisms for detecting a scenario in which a user irregularly plays with a card that has been

previously traded. As further discussed in Section 4, this can be accomplished if the

server crosses the information about refreshed cards with those received from match

reports. Hence, refreshing cards benefits both honest players and the game server: the

former get a shorter copy of the card, which is less computationally expensive to verify

and trade, while the latter is able to audit trades by using the information stored in the

cards submitted for refreshing. The same mutual benefit applies to the match reports:

honest players who win matches can raise their ranks by informing their victories to

the server; honest players who lose matches can make sure the opponent played fairly;

and the server can audit if some refreshed or traded card has been illicitly used in a

match. It should, thus, be quite easy to encourage players to provide such information

often to the server.

There are, thus, five main types of cheating that can appear when cards are traded

in TCGs:

1. Double-refresh: refreshing the same card twice, obtaining several valid instances

of the same card but purchasing a single one;

2. Double-trade: sending copies of the same card to different users;

3. Trade-then-play: playing with a card that has already been passed to another

user;

4. Refresh-then-trade: refreshing a card card to obtain a mint version of it, card′,

but then trading copies of card with other users; and

5. Refresh-then-play: refreshing a card card to obtain a mint version of it, card′, but

then using card in matches with other players.

34

Whenever a player provides a match’s report information or refresh their cards, it

is trivial to the game server to identify that someone has cheated, even if the cheater

is in collusion with other players. For example, suppose that a player PD duplicates a

card and sends it to two other players PR,0 and PR,1. Even if both know that this card

is duplicated, when each one plays with the duplicated card against honest players

PH,0 and PH,1, the “self-spend” operation will modify the card, creating two different

instances of it. When the honest players report the usage of these cards after a match is

over, the game server is able to identifyPD as the one responsible for the Double-trade,

without revealing any information about the other owners. Other collusion situations

are handled similarly, as they are basically a direct result of the underlying e-cash

protocol’s resistance against collusion.

2.3 System requirements

From the previous discussion, we can postulate that the following security and us-

ability requirements must be met in by secure P2P-based TCG system. They are exten-

sions to e-cash properties, as defined in (CAMENISCH; HOHENBERGER; LYSYAN-

SKAYA, 2005), extended to fulfill the TCG environment.

• Verifiable stamping: The card market must stamp cards, so their validity and

ownership can be verified without the need of contacting the central server.

• TTP-free transferability: Players should be able to trade cards with each other

without the intervention of a TTP, and the new ownership can also be verified

without the need of contacting a trusted server.

• Anonymity: Suppose that user U0 purchases a given card card, and then that card

is repeatedly traded among a set of users {U j} j=1...n before the last owner, Un+1,

informs the server about this ownership. In this case, the server only learns the

identity of Un+1, while card’s previous owners remain anonymous. In addition,

35

during this process user U j only learns the identity of U j−1 and U j+1, i.e., each

player only knows the users with which he/she has traded directly. In collusion

with others users, the server cannot prove that the card has belonged to any other

player.

• Balance: The number of cards in the system cannot grow unless the central

server stamps new cards, with invalid duplicates being detected and removed.

• Cheat detection: Players cannot trade a card more than once without losing their

anonymity toward the server, nor play with a card after having traded it.

• Exculpability: The game server, even if in collusion with users, cannot falsely

prove that an honest user has cheated, i.e., the cheating-detection mechanism

only allows to identify users who have duplicated a card (either for trading or

playing with it).

2.4 Summary

In this Chapter we have presented the scenario of our work, introducing how cards

are represented in a secure digital TCG and which roles are necessary in a TCG-

oriented architecture, following the notation of the literature in this area (in especial,

(PITTMAN; GAUTHIERDICKEY, 2013; SIMPLICIO JR. et al., 2014)). We have

also compared P2P TCGs with transferable e-cash, which allowed (1) the identifica-

tion of which situations could be interpreted as cheating attempts and (2) the definition

of the main security and usability requirements in this context. This analysis also in-

dicates that a secure protocol for trading cards in P2P TCGs can indeed be built using

transferable e-cash schemes as basis, although some are necessary to cover the dissim-

ilarities in the two scenarios’ requirements.

36

3 BUILDING BLOCKS

This chapter presents the mechanisms necessary for a concrete construction of a se-

cure trading protocol for P2P-based TCGs. Specifically, the proposed scheme is based

on the transferable e-cash scheme described in (CAMENISCH; HOHENBERGER;

LYSYANSKAYA, 2005) and revisited in (BELENKIY et al., 2009), which relies on

asymmetric pairings, witness-indistinguishable non-interactive proofs, verifiable ran-

dom functions and structure-preserving blind signatures. We start with a discussion of

the basic definitions of elliptic curves and bilinear pairings, introducing the notation

hereby employed and the underlying assumptions on the hardness of some security

problems (Sections 3.1 to 3.5); we note that these definitions are quite standard and,

thus, readers with background in pairing-based cryptography may prefer to skip those

sections. We then describe each of the cryptographic building blocks employed in the

aforementioned e-cash scheme (Sections 3.6 to 3.8) before discussing the scheme itself

(Section 3.9).

3.1 Notation

Throughout the document, we employ the following basic notation and definitions.

Given a finite set S, s ← S denotes the process of selecting an element s of S.

When we write s
$
← S, the element s is sampled uniformly at random from S.

Given two functions f , g : N → [0, 1], we say f (k) ≈ g(k) if | f (k) − g(k)| =

O(k−c) for all constants c (i.e., the between f and g difference is upper bounded by an

37

exponentially small constant). We say that f (k) is negligible if f (k) ≈ 0, and f (k) is

called overwhelming if f (k) ≈ 1.

Given an algorithm F , the execution of F with input x and output y is writ-

ten as F (x) → y. If F is an interactive algorithm between parties A and B,

F (A(a)↔ B(b)) → y is the execution of F with inputs a for A and b for B and

output y.

We also consider a cryptographic hash functionH : {0, 1}∗ → {0, 1}2k (e.g., SHA-3

(NIST, 2015)). If H has more than one input, we assume the inputs are concatenated

in the order they are presented.

3.2 Mathematical concepts

For the sake of completeness, and aiming to provide a better understanding of the

cryptographic concepts that allow the construction of more complex systems based in

elliptic curves and bilinear pairings, in this section we list the basic definitions related

to the arithmetic in finite fields. The definitions were extracted from Shoup (2008, ch.

1).

Definition 1 (Abelian group). An abelian group (G, ?) is a set G together with an

operation ? on G such that:

1. ? is associative, i.e., ∀A, B,C ∈ G, A ? (B ?C) = (A ? B) ?C;

2. ? has a unique identity element I, such that ∀B ∈ G, A ? I = A = I ? A;

3. ∀A ∈ G, ? has an inverse element A′, such that A ? A′ = I = A′ ? A;

4. ? is commutative, i.e., ∀A, B ∈ G, A ? B = B ? A.

This ? operation may be replaced by some named operation in the group, called

addition (denoted by +) to an additive group (with identity I = 0 and inverse A′ = −A)

38

or multiplication (denoted by ·) to a multiplicative group (with identity I = 1 and

inverse A′ = A−1). The n-fold composition of ? also depends on the notation; in the

additive notation, it is represented by nA = A + . . . + A (n times A) and nA is called

multiple of A, while in the multiplicative notation it is represented by An = A · · · A

(n factors A) and An is called a power of A. Such notations can be interchangeable

without affecting the defined operation.

Definition 2 (Cyclic group). A multiplicative (resp., additive) group G is said to be

cyclic if there is an element G ∈ G so that, for any P ∈ G, there is some integer a

satisfying P = Ga (resp., P = a G). Such element G is called a generator of G, and we

write G = 〈G〉.

Abelian groups can also be classified depending on their cardinality (the number

of their elements).

Definition 3 (Finite and infinite groups). A group G is called finite (resp. infinite) if

it contains finitely (resp. infinitely) many elements. The number of elements of a finite

group is called its order and is represented by |G|.

For some element P ∈ G, the subset 〈P〉 may not contain all elements of G. If 〈P〉

is also a group regarding the same operation ? of G, 〈P〉 is called a subgroup of G.

Definition 4 (Subgroup generated (LIDL; NIEDERREITER, 1997, p. 6)). The sub-

group of G consisting of all powers of the element G ∈ G is called the subgroup

generated by G and is denoted by 〈G〉. This subgroup is necessarily cyclic. If 〈G〉 is

finite, then its order (represented by #G) is called the order of the element G; otherwise

it is said that G has infinite order.

Usually, we work in sets with two operations, addition and multiplication, which

lead to the definition of fields, as follows.

39

Definition 5 (Field). A field (F,+, ·) is a set F together with two operations, addi-

tion (denoted by +) and multiplication (denoted by ·), that satisfy the usual arithmetic

properties:

1. (F,+) is an abelian group with additive identity denoted by 0.

2. (F, ·) is an abelian group with multiplicative identity denoted by 1.

3. The distributive law holds: ∀a, b, c ∈ F, (a + b) · c = a · c + b · c.

For some prime n, a field with finite n elements may be represented by Fn, and it

is called a finite field or a Galois field of order n. This prime n (or the prime base p of

some power n = pb, b > 0) is the characteristic of Fn and is defined as:

Definition 6 (Characteristic of finite field). If F is a field and there is a positive integer

p such that pa = 0 for every a ∈ F, then the least such positive integer p is called the

characteristic of F and F is said to have characteristic p. If there is no such integer p, F

is said to have characteristic 0 (then n is not a prime power and F is not a finite field).

3.3 Elliptic curves

An elliptic curve EC, viewed as a plane curve, is represented by the solution to

some cubic equation, as illustrated in Figure 4. Their usage in the context of cryp-

tography was originally proposed for cryptanalysis to factor large integers (LENSTRA

JR, 1987) and only later in the construction of cryptographic schemes. In modern

cryptography, the usage of elliptic curves involves the selection of a subset of rational

points from EC in a way that they have an abelian group operation, which can be more

formally described as follows:

Definition 7 (Elliptic curves). An elliptic curve EC defined over a field Fn is the set

(x, y) ∈ Fn
2 of solutions to the cubic equation:

EC/Fn : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6, a1, a2, a3, a4, a6 ∈ Fn (3.1)

40

Figure 4: Elliptic curves in the real plane

Source: (HANKERSON; MENEZES; VANSTONE, 2004, p. 77)

, together with a "point at infinity" O. Equation 3.1 is in the generalized Weierstrass

form, and if the field has prime characteristic larger than 2, the curve equation can be

represented by the Weierstrass equation, presented in Equation 3.2.

EC/Fn : y2 = x3 + ax + b, a, b ∈ Fn (3.2)

If the cubic equation that represents the curve EC is nonsingular, meaning that it

does not have repeated roots (HUSEMÖLLER, 2004, Remarks 2.1 and 5.3), the point

addition operation (defined by the chord-tangent law of composition) of points in a

curve is an abelian group operation in the set of the solutions to the curve equation,

and the point O is the identity element (WEIL, 1928).

The use of elliptic curves in cryptography began with the independent works of

Koblitz (1987) and Miller (1986), in which they present the elliptic curve equivalent to

the discrete logarithm problem.

Definition 8 (Elliptic curve discrete logarithm problem (MILLER, 1986)). Given an

elliptic curve EC defined over Fn and two points P,Q ∈ EC, find an integer a such that

41

Q = aP, if such a exists.

One of the main reasons to its use is probably that Elliptic Curve Cryptography

(ECC) leads to shorter parameters than more traditional cryptographic schemes, as

illustrated in Table 2 for different families of algorithms: protocols based on finite-

field cryptography (FFC, a.k.a. protocols based on discrete logarithm), such as Digital

Signature Algorithm (DSA) (NIST, 2013) and Diffie-Hellman (DH) (DIFFIE; HELL-

MAN, 1976), whose parameters are measured in terms of the size of the public key

pk and of the private key sk; on integer factorization cryptography (IFC), such as the

Rivest Shamir Adleman (RSA) (RIVEST; SHAMIR; ADLEMAN, 1978), measured in

terms of the size of the modulus M; and based on elliptic curve cryptography (ECC),

such as the Elliptic Curve Digital Signature Algorithm (ECDSA) (NIST, 2013), which

is measured in terms of the size of the order #G of the base point G. In Table 2, column

1 represents the number of steps to break the protocol (for k bits of security, it would

take 2k steps to break it). The ranges in column 4 represent the equivalence between

the order of elliptic curves and standardized security levels (rounded down).

Table 2: Comparison between the size of parameters and the resulting security strength
for different cryptographic approaches. All values are measured in number of bits.

Bits of security FFC IFC ECC
80 pk = 1024; sk = 160 M = 1024 #G = 160 − 223
112 pk = 2048; sk = 224 M = 2048 #G = 224 − 255
128 pk = 3072; sk = 256 M = 3072 #G = 256 − 383
192 pk = 7680; sk = 384 M = 7680 #G = 384 − 511
256 pk = 15360; sk = 512 M = 15360 #G = 512+

Source: adapted from (NIST, 2012a)

As several cryptographic schemes had been constructed over the discrete loga-

rithm problem for cyclic abelian groups, and with the equivalence for the elliptic curve

counterpart, it has induced research focused on efficient implementation of elliptic

curve operations (HANKERSON; MENEZES; VANSTONE, 2004).

42

3.4 Bilinear pairings

Constructions of elliptic curves are important not only on its own, but also because

they are the basis for more complex constructions, such as bilinear pairings. Generi-

cally, a bilinear pairing can be defined as follows:

Definition 9 (Bilinear pairing). Consider the additive groups G1 and G2 with identity

O, and the multiplicative group GT with identity 1, all of prime order q. A bilinear

pairing is a map e : G1 × G2 → GT with the properties:

1. Bilinearity: ∀(P,Q) ∈ G1 × G2,∀a, b ∈ Zq : e(aP, bQ) = e(P,Q)ab.

2. Non-degeneracy: ∀P ∈ G1,∀Q ∈ G2, P , OG1 ,Q , OG2 : e(P,Q) , 1GT .

3. Computability: ∀(P,Q) ∈ G1 × G2, e(P,Q) is efficiently computable.

It is important to note that the source groups G1 and G2 are presented in additive

notation and GT in multiplicative notation. It is usually so because G1 and G2 are

subgroups of the group of points of some elliptic curves EC1 and EC2, whose operation

is usually called point addition. However, the target group GT is presented in the

multiplicative notation because its operation is different (and more cumbersome) than

that from G1 and G2.

The pairings can be classified depending on the relation of the source groups.

When both groups are the same, i.e., G1 = G2 = G, it is called a symmetric pairing.

When G1 , G2, it is called an asymmetric pairing. More specifically:

Definition 10 (Pairing types (GALBRAITH; PATERSON; SMART, 2008)). Given the

bilinear pairing e : G1 × G2 → GT , it is possible to separate pairings in three basic

types:

Type 1: G1 = G2.

43

Type 2: G1 , G2 but there is an efficiently computable homomorphism ψ : G2 →

G1.

Type 3: G1 , G2 and there is no efficiently computable homomorphism between

G1 and G2.

Distinguishing between these types is important because the construction of such

pairings depends on the source groups, and the existence of the homomorphism may

create differences in the efficiency of the methods in such groups. Type 1 pairings are

constructed over supersingular elliptic curves with small embedding degree (d ≤ 6),

and the attack presented in (BARBULESCU et al., 2014) for computing the discrete

logarithm in these groups makes these constructions impracticable. Type 3 pairings are

at least as efficient as Type 2 pairings, and usually outperform them, and there is always

an equivalent complexity assumption in Type 3 as hard as the one in Type 2 when the

parameters are appropriately chosen (CHATTERJEE; MENEZES, 2011). Therefore

in this work we consider only Type 3 pairings, which will be simply called asymmetric

pairings. More precisely, along the discussion we consider the asymmetric (Type 3)

pairing e : G1 × G2 → GT , where the source groups G1 and G2 are elliptic curves, all

groups have the same prime order q, and there is some map functions from G1, G2 and

GT to {0, 1}∗, such that any group can be used as input to the hash functionH .

3.5 Security assumptions

The security of cryptographic blocks used in our scheme are based in reducing

some attack (e.g., forgery, capability of inverting some function) to problems that are

considered hard in the adopted settings (summarized in Table 3). In the constructions

hereby discussed, we assume the hardness of the following computational problems:

Definition 11 (Decision Diffie-Hellman (DDH) (BONEH, 1998)). Given a non-trivial

triple (a G, b G, P) ∈ G3
i , i = {1, 2}, the decision Diffie-Hellman problem is to decide

44

whether or not P = ab G.

Definition 12 (Symmetric external Diffie-Hellman (SXDH) (BALLARD et al., 2005)).

The symmetric external Diffie-Hellman problem is to solve the DDH in G1 or in G2.

Definition 13 (q-decisional Diffie-Hellman inversion (q-DDHI) (DODIS; YAMPOL-

SKIY, 2005)). Given a non-trivial q-uple (a G, a2 G, . . . , aq−1 G, P) ∈ Gq
i , i = {1, 2}, the

q-decisional Diffie-Hellman inversion problem is to determine whether or not P = 1
a G.

Definition 14 (q-hidden strong Diffie-Hellman (q-HSDH) (BOYEN; WATERS,

2007)). Given a non-trivial triple (G,U, ωG) ∈ G3
i , i = {1, 2} and a set of q triples

(1
ω+c j

G, c j G, c j U) ∈ G3
i , with ∀ j ∈ [1, q] : c j

$
← Z∗q, the q-hidden strong Diffie-

Hellman problem is to find an additional non-trivial triple (1
ω+c G, c G, c U) ∈ G3

i such

that ∀ j ∈ [1, q] : c , c j.

Definition 15 (n-Diffie-Hellman exponent (n-DHE) (BONEH; GENTRY; WATERS,

2005)). Given ∀ j ∈ [0, 2n] \ (n + 1) : G j = α j G ∈ Gi, i ∈ {1, 2} for some α ∈ Z∗q, the

n-Diffie-Hellman exponent problem is to compute the missing element Gn+1 = αn+1 G ∈

Gi.

Definition 16 (Flexible n-Diffie-Hellman exponent (n-FlexDHE) (IZABACHÈNE;

LIBERT; VERGNAUD, 2011)). Given ∀ j ∈ [0, 2n]\ (n+1) : G j = α j G ∈ Gi, i ∈ {1, 2}

for some α ∈ Z∗q, the flexible n-Diffie-Hellman exponent problem is to compute a triple

(µG, µGn+1, µG2n) ∈ G3
i such that µ , 0 and Gn+1 = αn+1 G.

Besides these computational problems, when we convert the signature scheme

described in (IZABACHÈNE; LIBERT; VERGNAUD, 2011) from a Type 1 pairing

setting to a Type 3 pairing following the methods from (ABE et al., 2014), the asso-

ciated security assumptions are also modified. When some element has to be part of

both source groups in the pairing, they have to be duplicated. If these duplicated ele-

ments are elements from the assumption instance, the very assumption is altered to its

45

Table 3: Computational problems assumed hard for the security of each presented
cryptographic tool

Assumption Cryptographic primitive
SXDH Proof of knowledge (Section 3.6.4)
q-DDHI (in G1) Verifiable Random Function (Sections 3.7.1 and 3.7.2)
co-q-HSDH+1 P-signature (Section 3.8.1)
co-Flex-DH+3 P-signature (Section 3.8.1)
co-n-FlexDHE+2n P-signature (Section 3.8.1)

Source: Author

asymmetric counterpart, namely a co- security assumption. From our conversion, the

following assumptions are defined:

Definition 17 (co-q-hidden strong Diffie-Hellman (co-q-HSDH+1)). Given a non-

trivial tuple (G,H,U, ωG) ∈ G1 × G2 × G1 × G1 and a set of q quadruples

(1
ω+c j

G, c j G, c j H, c j U) ∈ (G1 × G1 × G2 × G1), with ∀ j ∈ [1, q] : c j
$
← Z∗q, the

co-q-hidden strong Diffie-Hellman problem is to find an additional non-trivial triple

(1
ω+c G, c G, c U) ∈ G3

1 or (1
ω+c G, c H, c U) ∈ (G1 × G2 × G1) such that ∀ j ∈ [1, q] : c ,

c j.

Definition 18 (co-flexible Diffie-Hellman (co-Flex-DH+3)). Given a non-trivial tuple

(G, a G, b G,H, a H, b H) ∈ (G3
1 ×G

3
2), the co-flexible Diffie-Hellman problem is to find

either (µ G, µa G, µab G) ∈ G3
1 or (µ H, µa H, µab H) ∈ G3

2 such that µ , 0.

Definition 19 (co-flexible n-Diffie-Hellman exponent (co-n-FlexDHE+2n)). Given

∀ j ∈ [0, 2n]\ (n+1) : G j = α j G ∈ G1,H j = α j H ∈ G2 for some α ∈ Z∗q, the co-flexible

n-Diffie-Hellman exponent problem is to compute either (µG, µGn+1, µG2n) ∈ G3
1 or

(µH, µHn+1, µH2n) ∈ G3
2 such that µ , 0, Gn+1 = αn+1 G and Hn+1 = αn+1 H.

3.6 Zero-Knowledge Proof of Knowledge

Proofs of knowledge allow a party to prove knowledge of some secret value with-

out revealing it, which is done by showing a witness satisfying some relation that

46

depends on the secret. Moreover, a zero-knowledge proof of knowledge does not re-

veal any information about this secret. A zero-knowledge proof system is a proof of

knowledge if the completeness, soundness and zero-knowledge properties are satisfied

(MENEZES; OORSCHOT; VANSTONE, 1996, Chapter 10.4), which are defined as

follows.

Definition 20 (Completeness). A proof system is complete if, given an honest prover

and an honest verifier, the protocol succeeds with overwhelming probability (i.e., the

verifier accepts the prover’s claim).

Definition 21 (Soundness). A proof system is sound if, given an honest verifier and a

dishonest prover trying to impersonate the honest prover (the dishonest prover does

not know the secret), the protocol succeeds with negligible probability (i.e., the verifier

does not accept the prover’s false claim).

Definition 22 (Zero-knowledge). A proof system is zero-knowledge if there is a

polynomial-time simulator which can produce, upon input of the assertions to be

proven but without interacting with the real prover, transcripts indistinguishable from

those resulting from interaction with the real prover.

3.6.1 Proof of knowledge schemes: a brief review

In the protocol proposed in this work, we use the Groth-Sahai proof of knowledge

(GROTH; SAHAI, 2008). This choice was motivated by the fact that their structure

conforms with automorphic signature schemes (more details in Section 3.8), it is effi-

cient when proving sentences in a well-defined language (witnesses that satisfy pair-

ing product equations – PPE), and it guarantees all security properties for an e-cash

scheme.

We notice, however, that many other schemes were considered before the choice

for Groth-Sahai proofs of knowledge was made. In special, some quite efficient

47

Table 4: Analysis of proof of knowledge protocols
Method Analysis

Challenge-response

Interactive methods

Pros:
Most efficient (only group operations)
Prove a plethora of algebraic relations

Cons:
Does not provide transferability

Fiat-Shamir heuristic

Pros:
Most efficient (group operations and hash function)
Prove a plethora of algebraic relations

Cons:
Proofs are not sound

CRS

CSAT Proofs

Pros:
Very efficient
Prove any NP-problem instance

Cons:
Problem reduction necessary
Reduction can be inefficient

Groth-Sahai proofs

Pros:
Efficient
Prove a plethora of group equations

Cons:
Necessity of pairing computations

Source: Author

schemes were considered but discarded due to the lack of required security properties

in the target scenario as summarized in Table 4. Among them some interactive proof

of knowledge systems were considered. They have already been proposed from a large

range of algebraic relations (e.g., discrete logarithm of a group element (CHAUM;

EVERTSE; GRAAF, 1988), and equality of two discrete logarithms in different bases

(CHAUM; PEDERSEN, 1993b)). These proofs are based on a challenge-response

method, so each proof is only accepted by one verifier. For transferable elements,

however, one cannot expect any interaction with the parties not directly involved in the

current transference. Therefore, they would simply not fit the scenario of secure card

trading.

Using the Fiat-Shamir heuristic (FIAT; SHAMIR, 1987), i.e., with random oracles

48

to simulate a random challenge, it would be possible to transform interactive proofs

of knowledge into signatures of knowledge (signatures that endorse the interactive

proof of knowledge). However, unfortunately it is not possible to create a sound zero-

knowledge signature with this approach due to the very simulatability of the protocol,

which allows one to create signature forgeries (OKAMOTO, 1993).

One alternative approach for creating sound zero-knowledge proofs is to employ

a common reference string (CRS) generated by some trusted party (BLUM; FELD-

MAN; MICALI, 1988), a strategy that is also adopted in this work. It consists on a

trusted entity generating some common information (namely, the CRS), alike a public

key, that can be used by all other entities in the system to prove a statement. When

first received by the users, the CRS can be signed or proved well-formed (using the

proof of knowledge) to guarantee its validity. The advantage of this strategy is that

it allows the construction of very efficient systems that prove generic constructions

while avoiding the mentioned issues with zero-knowledge signatures (GROTH; OS-

TROVSKY; SAHAI, 2006a; GROTH; OSTROVSKY; SAHAI, 2006b). Nevertheless,

many of the existing schemes that adopt a CRS are built to prove the problem of Circuit

Satisfiability (CSAT), which also means that, to prove other NP-problems, the instance

must firstly be reduced to CSAT previously to the proof. This reduction may be cum-

bersome, since the statement to be proven is composed of several bits and, thus, the

circuit involved in the proof may end up having from hundreds to thousands of gates.

Since in this work we need to prove knowledge of group elements (e.g., signatures,

encryption, discrete logarithm), group-dependent proofs are good alternatives to CSAT

proofs. Nevertheless, as shown in (GROTH; SAHAI, 2008), non-interactive proofs

can still be performed in an efficient manner when the relation to be proved is a set

of equations in some defined format and the witnesses are variables that belong to the

solutions set. The equations must be a pairing product equation (PPE), a multi-scalar

multiplication equation, or a quadratic equation. In this work, we focus on PPE since

49

several signature schemes were constructed to be proven in a zero-knowledge fashion

by means of these equations. More precisely, in the bilinear map e : G1 ×G2 → GT of

order q, a PPE is of the form:

m∏
i=0

e(Xi, Bi)
n∏

j=0

e(A j,Y j)
m∏

i=0

n∏
j=0

e(Xi,Y j)δi j = c

where A j ∈ G1, Bi ∈ G2, c ∈ GT and δi j ∈ Zq are constants, and Xi ∈ G1 and Y j ∈

G2 are variables. To create a proof of knowledge, all variables are committed with a

random opening, so that these values can be shown without revealing any information,

but are still bound by the relation defined by the PPE.

3.6.2 The Groth-Sahai proof system

The Groth-Sahai proof system is a witness-indistinguishable proof of knowledge.

Besides satisfying the completeness and soundness properties, it also satisfies the

witness-indistinguishability property.

Definition 23 (Witness-indistinguishability (FEIGE; SHAMIR, 1990)). A proof system

is witness-indistinguishable if, given an honest prover, the probability of distinguishing

two transcripts generated by the same prover with two different witnesses (i.e., two

instances with different solutions) is negligible.

The algorithms employed by the Groth-Sahai proof system are the following:

• GS S etup(1k)→ (gk, ς)

Creates a setup information gk and a CRS ς for input on the proving algorithms,

for some security parameter k.

• GS Commit(gk, ς, P [, r])→ κ

Creates a commitment κ that completely hides the input value P with some ran-

dom opening r.

50

• GS Prove(gk, ς, {eqk}k=1...N , ~X, ~Y [,~r] [, ~s])→ φ

Generates a proof {πk, ϕk}k=1...N such that the input values (~X, ~Y) satisfy the rela-

tion defined by the set of equations {eqk}k=1...N . Random values (~r, ~s) are used to

commit inputs (~X, ~Y), randomizing the proof.

• GS Veri f y(gk, ς, {eqk}k=1...N , ~C, ~D, {πk, ϕk}k=1...N)→ {0, 1}

Verifies if a proof {πk, ϕk}k=1...N was correctly constructed, and that the values

committed to (~C, ~D) satisfy the set of equations {eqk}k=1...N .

A witness-indistinguishable proof reveals more information than a zero-

knowledge proof, since it is not possible to distinguish a valid instance from the simu-

lated one. Hence, additional restrictions must be defined to guarantee zero-knowledge

in Groth-Sahai proofs. First we need a trivial equation to hide the group generator.

More specifically, we need to prove that e(P,H) = e(G,H), where P = 1G (resp.

e(G,Q) = e(G,H), where Q = 1H). Then, each proved variable Xi ∈ G1 (resp.

Y j ∈ G2) must be duplicated to X′i = Xi (resp. Y ′j = Y j) and hidden by the equal-

ity equation e(X′i ,Q) e(Xi,Q)−1 = 1 (resp. e(P,Y ′j) e(P,Y j)−1 = 1). Furthermore,

the simulator generates a simulated CRS with a simulation trapdoor indistinguishable

from the real CRS. This allows simulating proofs for statements without knowing the

corresponding witnesses.

For a Groth-Sahai proof instantiation under SXDH assumption (presented in Sec-

tion 3.6.4), we need 4 elements in G1 and 4 elements in G2 for each equation, whereas

each variable will be committed to 2 elements in their group.

3.6.3 Malleability of Groth-Sahai proofs

Malleability is a property of some encryption protocols that allows someone with

access to a valid ciphertext to maul it, i.e., to create another valid ciphertext to the same

message or to a transformed message. This notion is analogously applied to digital sig-

51

natures. Although this property is usually undesirable for cryptographic protocols, as

it might allow signature to be forged, for example, controlled-malleability provides

interesting features in some scenarios. For example, one can apply homomorphic op-

erations over encrypted messages, in such a manner that some operations performed

with the ciphertexts will consistently lead to some operations over the corresponding

plaintexts after decryption; it is also possible to re-randomize signatures present in a

document, so that they are unlinkable to the original ones when that same document is

forwarded from user to user.

The Groth-Sahai proof system presents two levels of malleability: one for its com-

mitments and another for its proofs. In order to achieve zero-knowledge composition,

Groth-Sahai proofs produce simulatable commitments based on ElGamal encryption

(ELGAMAL, 1984). Due to this fact, the commitments share the malleability property

with the encryption scheme. Given a valid commitment κw from a witness w, any en-

tity is able to produce another valid commitment κ′ ← θκ(κw) to another valid witness

w′ ← θw(w), for some valid transformation θ = (θκ, θw). Even though this breaks the

integrity of the encrypted data, the proofs cannot be forged unless the forger knows the

secret values used to hide the committed values. This composition is used to compose

the proof of knowledge of a verifiable random function, as we present in Section 3.7.

On top of that, the entire proof of knowledge is malleable. If we have a proof φ

that the relation R(φ, x) holds (e.g., that x is a solution to a PPE), a prover is able to

produce another valid proof φ′ ← θφ(φ) for a new solution x′ ← θx(x) to the same

relation R, and the relation R(φ′, x′) also holds. The transformations θ = (θφ, θx) are

composed by operations over commitments, equations and proofs (to maul φ), and by

some transformation that generates another solution to R (that depends on the equation

to prove).

Definition 24 (Allowable set of transformations (CHASE et al., 2012)). An efficient

relation R is closed under an n-ary transformation θ = (θa, θb) if for any n-tuple

52

{(a1, b1), . . . , (an, bn)} ∈ Rn, the pair (θa(a1, . . . , an), θb(b1, . . . , bn)) ∈ R. If R is closed

under θ, then we say that θ is admissible for R. Let Θ be a set of transformations; if for

every θ ∈ Θ, θ is admissible for R, then Θ is an allowable set of transformations.

When a non-interactive proof of knowledge accepts those transformations, it is

called a malleable proof of knowledge.

Definition 25 (Malleable proof of knowledge (CHASE et al., 2012)). Let (G,P,V) be

a proof of knowledge for some relation R, and Θ be an allowable set of transformations

for R. The proof system is malleable with respect to Θ if there is an efficient algorithm

F that on input (ς, θ, {xi, φi}i∈[1;n]), where θ ∈ Θ is an n-ary transformation, xi is the

input for a proof, φi is the proof of knowledge of x, and V(ς, xi, φi) = 1 for all i ∈

[1; n], outputs a valid proof φ′ for the statement x = θx({xi}) (i.e., a proof φ such that

V(ς, x, φ) = 1).

Specifically for the Groth-Sahai proofs, the set of transformations contains trans-

formations on either variables or equations. They allow a prover that knows the com-

mitted values to create new proofs that complement or modify the original PPE rela-

tion. Namely: merge equations, merge variables, exponentiate variables, add constant

equation, remove equation, and remove variable. We refer to (CHASE et al., 2012) for

a complete description of these transformations.

3.6.4 A Groth-Sahai instantiation

In what follows, we present a concrete instantiation of Groth-Sahai proof under

SXDH assumption for proving PPE.

• GS S etup(1k)→ (gk, ς)

For the security parameter k, consider the asymmetric bilinear setting Λ =

(G1,G2,GT , e,G,H, q). The CRS can be produced in two different settings, in-

distinguishable from each other:

53

Soundness string: Get random υ1, υ2
$
← Z∗q, set U1 = (G, υ1 G) ∈ G2

1 and

U2 = (υ2 G, υ1 υ2 G) ∈ G2
1. Get random ν1, ν2

$
← Z∗q, set V1 = (H, ν1 H) ∈

G2
2 and V2 = (ν2 H, ν1 ν2 H) ∈ G2

2.

Witness-indistinguishability string: Get random υ1, υ2
$
← Z∗q, set U1 =

(G, υ1 G) ∈ G2
1 and U2 = (υ2 G, υ1 (υ2 − 1) G) ∈ G2

1. Get random ν1, ν2
$
←

Z∗q, set V1 = (H, ν1 H) ∈ G2
2 and V2 = (ν2 H, ν1 (ν2 − 1) H) ∈ G2

2.

The CRS is defined as ς = (~U = (U1,U2), ~V = (V1,V2)).

We also define the following operations for P ∈ G1, Q ∈ G2, and z ∈ GT :

ι1 : G1 → G
2
1 such that ι1(P) = (O, P).

ι2 : G2 → G
2
2 such that ι2(Q) = (O,Q).

ιT : GT → G
4
T such that ιT (z) =

1 1

1 z

.
E : G2

1×G
2
2 → G

4
T such that E ((P1, P2), (Q1,Q2)) =

e(P1,Q1) e(P1,Q2)

e(P2,Q1) e(P2,Q2)

.
The addition operation in either G2

1, G2
2 or G4

T is computed component-wise,

and the multiplication by a scalar number is computed distributing the scalar,

resulting in the product of each component by the scalar number.

The implicit setup (i.e., the group operations and mappings used for all CRS

instances) is defined as gk = (Λ, ι1, ι2, ιT , E).

Figure 5 illustrates the GSSetup method.

• GS Commit(gk, ς, P [, r])→ κ

From the setup gk and from the CRS ς, the value P is committed to κ with the

random opening r = (r1, r2)
$
← Z2

q as follows:

C : G1 × Z
2
q → G

2
1 such that C(P, r) = ι1(P) + r1 U1 + r2 U2.

D : G2 × Z
2
q → G

2
2 such that D(P, r) = ι2(P) + r1 V1 + r2 V2.

54

Figure 5: GSProof: Setup protocol

Setup server G(1k,Λ = (G1,G2,GT, e,G, H, q))

υ1, υ2, ν1, ν2
$
← Zq

~U =
(
(G, υ1 G), (υ2 G, υ1 υ2 G)

)
~V =

(
(H, ν1 H), (ν2 H, ν1 ν2 H)

)
ς = (~U, ~V)

ι1 : G1 → G
2
1 such that ι1(P) = (O, P)

ι2 : G2 → G
2
2 such that ι2(Q) = (O,Q)

ιT : GT → G
4
T such that ιT (z) =

(
1 1
1 z

)
E : G2

1 × G
2
2 → G

4
T such that E ((P1, P2), (Q1,Q2)) =

(
e(P1,Q1) e(P1,Q2)
e(P2,Q1) e(P2,Q2)

)
gk = (Λ, ι1, ι2, ιT , E)

=⇒ (gk, ς)

Source: Author

The commitment is κ =


C(P, r) if P ∈ G1

D(P, r) if P ∈ G2

.

Figure 6 illustrates the GSCommit method.

Figure 6: GSProof: Commit protocol

Prover P(gk, ς, P [, r])

r = (r1, r2)
$
← Z2

q

If P ∈ G1:
κ = ι1(P) + r1 U1 + r2 U2

Else (if P ∈ G2):
κ = ι2(P) + r1 V1 + r2 V2

=⇒ κ

Source: Author

• GS Prove(gk, ς, {eqk}i=k...N , ~X, ~Y [, ~R] [, ~S])→ ~C, ~D, {πk, ϕk}k=1...N

Commit all variables Xi ∈ ~X ⊂ Gm
1 (resp. Y j ∈ ~Y ⊂ Gn

2) with random opening ri ∈

~R ⊂ Matm×2(Zq) (resp. s j ∈ ~S ⊂ Matn×2(Zq)) as Ci ← GS Commit(gk, ς, Xi, ri)

(resp. D j ← GS Commit(gk, ς,Y j, s j)), representing them as ~C = {Ci}i=1...m ∈

(G2
1)m (resp. ~D = {D j} j=1...n ∈ (G2

2)n).

For each equation eqk :=
∏n

j=1 e(A j,Y j)
∏m

i=1 e(Xi, Bi)
∏m

i=1
∏n

j=1 e(Xi,Y j)δ(i, j) = c

55

and random Υ
$
← Mat2×2(Zq), we represent δ(i, j) ∈ ∆ ⊂ Matm×n, A j ∈ ~A ⊂ Gn

1

and Bi ∈ ~B ⊂ Gm
2 . The relation ιi : Gn

i → (Gm
i)n, for i = {1, 2,T }, is defined as

∀x j ∈ ~x : ιi(~x) = {ιi(x j)} j=1...n.

The proof is


ϕk = ~S ι1(~A) + ~S ∆T ι1(~X) + Υ ~U

πk = ~RT ι2(~B) + ~RT ∆ ι2(~Y) +
(
~RT ∆ ~S − ΥT

)
~V

.

Output also the auxiliary commitments ~C and ~D.

Figure 7 illustrates the GSProve method.

Figure 7: GSProof: Prove protocol

Prover P(gk, ς, {eqk}i=k...N, ~X, ~Y)

eqk :=
∏n

j=1 e(A j,Y j)
∏m

i=1 e(Xi, Bi)
∏m

i=1
∏n

j=1 e(Xi,Y j)δ(i, j) = c

R
$
← Matm×2(Zq) S

$
← Mat2×n(Zq) Υ

$
← Mat2×2(Zq)

∀i ∈ [1,m] : Ci ← GS Commit(gk, ς, Xi,Ri)

∀i ∈ [1,m] : ~XI,i ← ι1(Xi) ~AI,i ← ι1(Ai)
∀ j ∈ [1, n] : D j ← GS Commit(gk, ς,Y j, S T

j)

∀ j ∈ [1, n] : ~YI, j ← ι2(Y j) ~BI, j ← ι2(B j)
For each k ∈ [1,N]:

ϕk = ~S ~AI + ~S ∆T ~XI + Υ ~U

πk = ~RT ~BI + ~RT ∆ ~YI +
(
~RT ∆ ~S − ΥT

)
~V

=⇒ (~C, ~D, {ϕk, πk}k=1...N)

Source: Author

• GS Veri f y(gk, ς, {eqk}k=1...N , ~C, ~D, {πk, ϕk}k=1...N)→ {0, 1}

Output 1 if and only if for all equations {eqk}k=1...N the verification equation holds:

E(ι1(~A), ~D) + E(~C, ι2(~B)) + E(~C,∆ ~D) = ιT (c) + E(~U, πk) + E(ϕk, ~V).

Figure 8 illustrates the GSVerify method.

3.7 Verifiable Random Function

A verifiable random function (VRF) is a especial type of pseudorandom function

that allows anyone who knows the secret seed to evaluate the result at some point to

56

Figure 8: GSProof: Verify protocol

VerifierV(gk, ς, , {eqk}i=k...N, ~C, ~D, {πk, ϕk}k=1...N)

eqk :=
∏n

j=1 e(A j,Y j)
∏m

i=1 e(Xi, Bi)
∏m

i=1
∏n

j=1 e(Xi,Y j)δ(i, j) = c

∀i ∈ [1,m] : ~AI,i ← ι1(Ai)

∀ j ∈ [1, n] : ~BI, j ← ι2(B j)
For each k ∈ [1,N]:

=⇒ E(~AI , ~D) + E(~C, ~BI) + E(~C,∆ ~D) ?
= ιT (c) + E(~U, πk) + E(ϕk, ~V)

Source: Author

a value indistinguishable from a number sampled at random from some distribution.

It also allows the evaluator to produce a proof that the computation is indeed correct

without compromising the unpredictability of the evaluation at any other point (MI-

CALI; RABIN; VADHAN, 1999). More formally, it is defined as follows:

Definition 26 (Verifiable random function (MICALI; RABIN; VADHAN, 1999)). A

set of algorithms (G,F ,P,V), with function generatorG, function evaluatorF , prover

P and verifierV, is a verifiable random function if the following properties hold:

Domain-range correctness: if the evaluation’s input (seed and chosen point) is

in valid range, then its output will also be in valid range with overwhelming

probability.

Complete provability: if an honest prover outputs a valid proof, the honest veri-

fier accepts this proof with overwhelming probability.

Unique provability: if a dishonest prover could generate two proofs for different

evaluations at the same point, the honest verifier would accept both proofs with

negligible probability (i.e., an honest prover cannot evaluate the same point to

two distinct evaluations).

Residual pseudorandomness: the probability that an adversary is able to guess

the evaluation at some point that has not been queried yet is negligible.

57

The algorithms proposed to these methods are the following:

• VRFS etup(1k [, s])→ (sk, pk)

Creates the function’s secret key sk from some random seed s, as well as its

public key pk, given the security parameter k.

• VRFEval(sk, x)→ Y

Evaluates the function to Y using the secret key sk at some point x.

• VRFProve(sk, x)→ φY

Evaluates the function to Y and generates the proof φY that the evaluation is

correct with respect to the secret key sk and the point x.

• VRFVeri f y(pk, x,Y, φY)→ {0, 1}

Verifies if the proof φY was correctly constructed, with regard to the evaluation

Y at point x, using the public key pk.

Of especial interest to this work are two VRF instantiations described in (BE-

LENKIY et al., 2009), in which the verification of x uses a PPE, so knowledge of s

and x can be proved by the Groth-Sahai method. The first instantiation, presented in

Section 3.7.1, is a simulatable (i.e., zero-knowledge provable) VRF, which is used in

the proposed scheme to generate a serial number and a proof of ownership of the digi-

tal card having this serial number. The second one, presented in Section 3.7.2, receives

additional parameters that are used to generate a transference tag number, which al-

lows illegal duplications to be identified, both in e-cash protocols and in the proposed

trade carding protocol. Both are secure under q-DDHI assumption (in G1) and SXDH

(for the Groth-Sahai proof).

3.7.1 VRF instantiation 1

In what follows, we present a concrete instantiation of a VRF secure under q-DDHI

assumption in G1, with proofs secure under the SXDH assumption. As previously

58

mentioned, this instantiation allows the generation of a card’s serial number and the

proof of ownership. The methods VRFSetup, VRFEval, VRFProve and VRFVerify are

presented in Figures 9, 10, 11 and 12, respectively.

• VRFS etup(1k [, s [, opens]])→ (sk, pk)

For security parameter k, consider the asymmetric bilinear pairing setting Λ =

(G1,G2,GT , e,G,H, q) in the setup (gk, ς) ← GS S etup(1k) of a Groth-Sahai

instantiation secure under SXDH assumption. Get random seed s
$
← Zq and

a random opening opens
$
← Z2

q of a Groth-Sahai commitment. Set the private

input sk = (s, opens) and the public input pk ← GS Commit(gk, ς, sH, opens).

• VRFEval(sk, x)→ Y

Given the private input sk and some offset x, compute and output Y = 1
s+x G.

• VRFProve(sk, x)→ φY

Given the private input sk and the offset x of an evaluation Y ←

VRFEval(sk, x), set Y ′ = Y , s′ = s and x′ = x. Consider equa-

tions eq = {e(Y, 1H) e(Y ′, 1H)−1 = 1; e(1G, sH) e(1G, s′H)−1 = 1;

e(1G, xH) e(1G, x′H)−1 = 1; e(Y ′, s′H) e(Y ′, x′H) = e(G,H); e(1G,H) =

e(G,H); e(G, 1H) = e(G,H)}, with variables ~X = {1G,Y ′} in G1 and ~Y =

{1H, sH, s′H, xH, x′H} in G2. Create proof φY = (~C, ~D, {πk, ϕk}k=1...6) ←

GS Prove(gk, ς, eq, ~X, ~Y , {_, _}, {_, opens, _, _, _}) (where the symbol _ represent

an empty input).

• VRFVeri f y(pk,Y, φY)→ {0, 1}

Parse φY = (~C, ~D, {πk, ϕk}k=1...6) and consider the equations eq =

{e(Y, 1H) e(Y ′, 1H)−1 = 1; e(1G, sH) e(1G, s′H)−1 = 1; e(1G, xH) e(1G, x′H)−1 =

1; e(Y ′, s′H) e(Y ′, x′H) = e(G,H); e(1G,H) = e(G,H); e(G, 1H) = e(G,H)}.

Output GS Veri f y(gk, ς, eq, ~C, ~D, {πk, ϕk}k=1...6).

59

Figure 9: VRF 1: Setup protocol

Setup server G(1k,Λ = (G1,G2,GT, e,G, H, q) [, s [, opens]])

(gk, ς)← GS S etup(1k,Λ)

s
$
← Zq opens

$
← Z2

q

sk = (s, opens)
pk = (gk, ς,GS Commit(gk, ς, sH, opens))

=⇒ (gk, ς, sk, pk)

Source: Author

Figure 10: VRF 1: Evaluation protocol

Evaluator F (sk, x)

Y = 1
s+xG
=⇒ Y

Source: Author

When compared to Definition 26, the method VRFVeri f y has a slight difference

in its parameters because the proof is zero-knowledge, so the offset x is kept secret

even when proving the evaluation.

In this proof, we need 2 commitments in G1 (1G,Y ′) and 5 commitments in G2

(1H, sH, s′H, xH, x′H), resulting in 4 elements in G1 and 10 elements in G2. We also

have 6 equations to prove, which correspond to 24 extra elements in G1 and 24 in

G2. Therefore, the proof φY has 28 elements in G1 and 34 elements in G2, and the

evaluation Y has 1 extra element in G1.

3.7.2 VRF instantiation 2

Now we present the adapted instantiation of a VRF secure under q-DDHI assump-

tion in G1, with proofs secure under SXDH assumption, which is employed in the

proposed scheme for creating transference tag numbers. The methods VRF2Setup,

VRF2Eval, VRF2Prove and VRF2Verify are presented in Figures 13, 14, 15 and 16,

respectively.

60

Figure 11: VRF 1: Prove protocol

Prover P(sk, x)
Y ← VRFEval(sk, x)
Y ′ = Y s′ = s x′ = x

eqY := e(Y, 1H) e(Y ′, 1H)−1 = 1

eqs := e(1G, sH) e(1G, s′H)−1 = 1

eqx := e(1G, xH) e(1G, x′H)−1 = 1

eqeval := e(Y ′, s′H) e(Y ′, x′H) = e(G,H)

eqG := e(1G,H) = e(G,H)

eqH := e(G, 1H) = e(G,H)

eq = eqY ∪ eqs ∪ eqx ∪ eqeval ∪ eqG ∪ eqH

φY ← GS Prove(gk, ς, eq, {1G,Y ′}, {1H, sH, s′H, xH, x′H}, {_, _}, {_, opens, _, _, _})
=⇒ φY

Source: Author

Figure 12: VRF 1: Verify protocol

VerifierV(pk, Y, φY)

φY = (~C, ~D, {πk, ϕk}k=1...6)

eqY := e(Y, 1H) e(Y ′, 1H)−1 = 1

eqs := e(1G, sH) e(1G, s′H)−1 = 1

eqx := e(1G, xH) e(1G, x′H)−1 = 1

eqeval := e(Y ′, s′H) e(Y ′, x′H) = e(G,H)

eqG := e(1G,H) = e(G,H)

eqH := e(G, 1H) = e(G,H)

eq = eqY ∪ eqs ∪ eqx ∪ eqeval ∪ eqG ∪ eqH

=⇒ GS Veri f y(gk, ς, eq, ~C, ~D, {πk, ϕk}k=1...6)

Source: Author

61

• VRF2S etup(1k [, s [, opens]])→ (sk, pk)

Just like instantiation 1, output VRFS etup(1k [, s [opens]]).

• VRF2Eval(sk, x,w,R)→ T

Given the private input sk, some offset x, and two factors, one public R and one

private w, compute and output T = (GR)w 1
s+x G.

• VRF2Prove(sk, x,w,R)→ φT

Given the private input sk and the offset x of an evaluation from instan-

tiation 1, Y ← VRFEval(sk, x), and the factors R and w of an eval-

uation from this instance, T ← VRF2Eval(sk, x,w,R), set T ′ = T ,

s′ = s, x′ = x and w′′ = w′ = w. Consider equations eq =

{e(T, 1H)e(T ′, 1H)−1 = 1; e(1G, sH)e(1G, s′H)−1 = 1; e(1G, xH)e(1G, x′H)−1 =

1; e(1G,wH) e(1G,w′H)−1 = 1; e(w′′G,H) e(−G,w′H) = 1; e(Y, s′H) e(Y, x′H) =

e(G,H); e(1G,H) = e(G,H); e(G, 1H) = e(G,H)}, with variables ~X =

{1G,Y,w′′G,T ′} in G1 and ~Y = {1H, sH, s′H, xH, x′H,wH,w′H} in G2. Create

proof φT = (~C, ~D, {πk, ϕk}k=1...8) = GS Prove(gk, ς, eq, ~X, ~Y , {_, _, _, (openw′′G R +

openY)}, {_, opens, _, _, _, _, _}) (where the symbol _ represents an empty input,

and openw′′G and openY are openings produced by GS Proo f for the variables

w′′G and Y , respectively).

• VRF2Veri f y(pk,R,T, φT)→ {0, 1}

Parse φT = (~C, ~D, {πk, ϕk}k=1...8) and consider the equations eq =

{e(T, 1H) e(T ′, 1H)−1 = 1; e(1G, sH)e(1G, s′H)−1 = 1; e(1G, xH)e(1G, x′H)−1 =

1; e(1G,wH) e(1G,w′H)−1 = 1; e(w′′G,H) e(−G,w′H) = 1; e(Y, s′H) e(Y, x′H) =

e(G,H); e(1G,H) = e(G,H); e(G, 1H) = e(G,H)}. Get Cw′′G, CY and

CT from ~C, and, if CT , Cw′′G R + CY , output 0; otherwise, output

GS Veri f y(gk, ς, eq, ~C, ~D, {πk, ϕk}k=1...8).

Similarly to instantiation 1, the method VRF2Veri f y has a slight difference in its

62

Figure 13: VRF 2: Setup protocol

Setup server G(1k,Λ = (G1,G2,GT, e,G, H, q) [, s [, opens]])

=⇒ VRFS etup(1k [, s [, opens]])

Source: Author

Figure 14: VRF 2: Evaluation protocol

Evaluator F (sk, x,w, R)

T = (GR)w 1
s+xG

=⇒ T

Source: Author

parameters when compared to Definition 26 because the proof is zero-knowledge, so

the offset x is kept secret even when proving the evaluation.

In this proof, we need 4 commitments in G1 (1G,Y,w′′G,T) and 7 commitments

in G2 (1H, sH, s′H, xH, x′H,wH,w′H), resulting in 8 elements in G1 and 14 elements

in G2. We also have 8 equations to prove, which leads to additional 32 elements in G1

and 32 in G2. As a result, the proof φT has 40 elements in G1 and 46 elements in G2,

and the evaluation T has 1 extra element in G1.

3.8 Provable blind signature

Blind signatures were originally proposed in the context of anonymous e-cash

(CHAUM, 1983), allowing a user to obtain a valid signature on values unknown to

the signer. If transferability is required, the user doing the transfer also needs to prove

knowledge of the signed values.

Two important classes of provable signatures are Camenisch-Lysyanskaya (CL)

signatures (CAMENISCH; LYSYANSKAYA, 2003) and structure-preserving (or au-

tomorphic) signatures (ABE et al., 2010). Structure-preserving signatures are far more

important to transferable e-cash since their protocols were built to use non-interactive

proofs of knowledge (Groth-Sahai proofs), while CL-signatures use interactive ones.

63

Figure 15: VRF 2: Prove protocol

Prover P(sk, x,w, R)
Y ← VRFEval(sk, x) T ← VEF2Eval(sk, x,w,R)
Y ′ = Y T ′ = T s′ = s x′ = x w′ = w

eqT := e(T, 1H) e(T ′, 1H)−1 = 1

eqs := e(1G, sH) e(1G, s′H)−1 = 1

eqx := e(1G, xH) e(1G, x′H)−1 = 1

eqw := e(1G,wH) e(1G,w′H)−1 = 1

eqw′ := e(w′′G,H) e(−G,w′H) = 1

eqeval := e(Y, s′H) e(Y, x′H) = e(G,H)

eqG := e(1G,H) = e(G,H)

eqH := e(G, 1H) = e(G,H)

eq = eqT ∪ eqs ∪ eqx ∪ eqw ∪ eqw′ ∪ eqeval ∪ eqG ∪ eqH

~X = {1G,Y,w′′G,T ′} ~R = {_, _, _, (openw′′G R + openY)}
~Y = {1H, sH, s′H, xH, x′H,wH,w′H} ~S = {_, opens, _, _, _, _, _}

φT ← GS Prove(gk, ς, eq, ~X, ~Y , ~R, ~S)
=⇒ φT

Source: Author

Figure 16: VRF 2: Verify protocol

VerifierV(pk, T, φT)

φY = (~C, ~D, {πk, ϕk}k=1...6)

eqT := e(T, 1H) e(T ′, 1H)−1 = 1

eqs := e(1G, sH) e(1G, s′H)−1 = 1

eqx := e(1G, xH) e(1G, x′H)−1 = 1

eqw := e(1G,wH) e(1G,w′H)−1 = 1

eqw′ := e(w′′G,H) e(−G,w′H) = 1

eqeval := e(Y, s′H) e(Y, x′H) = e(G,H)

eqG := e(1G,H) = e(G,H)

eqH := e(G, 1H) = e(G,H)

eq = eqT ∪ eqs ∪ eqx ∪ eqw ∪ eqw′ ∪ eqeval ∪ eqG ∪ eqH

=⇒ (CT
?
= Cw′′GR + CY) ∧GS Veri f y(gk, ς, eq, ~C, ~D, {πk, ϕk}k=1...6)

Source: Author

64

The most efficient CL-signature schemes are built in RSA groups or in the target

group of pairings (CAMENISCH; LYSYANSKAYA, 2003; CAMENISCH; LYSYAN-

SKAYA, 2004). Even though we can use the Fiat-Shamir heuristic to transform in-

teractive proofs into non-interactive ones, the arbitrary size of the input (the size of

the message vector) does not guarantee security using function ensembles for imple-

mentation of the random oracle (CANETTI; GOLDREICH; HALEVI, 2004; GOLD-

WASSER; KALAI, 2003), and the original signature schemes do not prove security of

non-interactive proofs.

Although structure-preserving signatures can be proved, a P-signature scheme

(BELENKIY et al., 2008) (signatures with efficient Protocols) offer stronger protocols

for proofs. More specifically, a P-signature scheme applies three efficient protocols:

(1) an interactive protocol to obtain a blind signature, (2) a non-interactive protocol

to prove (and verify) knowledge of a signature, and (3) a non-interactive protocol to

prove (and verify) that two commitments hide the same values.

For the purposes of this work, we adapt the P-signature scheme proposed by (IZ-

ABACHÈNE; LIBERT; VERGNAUD, 2011), converting it to an asymmetric pairing

setting by means of the method proposed in (ABE et al., 2014). The reason for this

modification is that, even though (IZABACHÈNE; LIBERT; VERGNAUD, 2011) is

quite efficient, it uses symmetric pairing and supersingular elliptic curves, requiring

fields of larger size to achieve a security level similar to what can be obtained with

an asymmetric pairing (BARBULESCU et al., 2014). A concrete instantiation of the

adapted P-signature is presented in Section 3.8.1.

3.8.1 P-signature instantiation

We now present the adaptation of the protocol proposed by Izabachène, Libert

and Vergnaud (2011) converted to an asymmetric pairing setting. For conciseness, we

do not show the conversion details here, leaving the step by step following the method

65

Table 5: Number of elements from each group when signing n messages
Object Zq G1 G2 Object Zq G1 G2

Private key (sk) 3 0 0 Opening (r) 1 0 0
Public key (pk) 0 3 + n 2 + n Signature (σ) 1 5 1
Message (~m) n 0 0 Proof of commitment (φK) 0 2 + 8n 4
Commitment (K) 0 1 0 Proof of signature (φσ) 0 20 + 4n 12

Source: Author

proposed by Abe et al. (2014) to Appendix A. The resulting protocol is secure under the

following assuming the hardness of the following computational problems mentioned

in Section 3.5: co-q-HSDH+1, co-Flex-DH+3 and co-n-FlexDHE+2n. For convenience

of the reader, Table 5 lists the number of elements necessary for the signature scheme

when signing n messages.

The methods PSetup, PKeyGen, PCommit, PUpdateComm, PSign, PVeri-

fySig, PWitGen, PVerifyWit, PProveCom, PVerifyProofCom, PObtainSig/PIssueSig,

PProveSig and PVerifyProofSig are presented, in order, in Figures 17 to 29.

• PS etup(1k) → pparams: For the security parameter k, consider the asymmet-

ric bilinear pairing setting Λ = (G1,G2,GT , e,G,H, q) in the setup (gk, ς) ←

GS S etup(1k) of Groth-Sahai instantiation secure under SXDH assumption. For

the sake of simplicity, these parameters params = (gk, ς) are omitted in the

descriptions of the remainder operations.

• PKeyGen(n) → (pk, sk): Choose random α, β, γ, ω
$
← Z∗q and U,U0

$
← G1.

Compute U1 = βH,Ω = ωH, A = γG, as well as ∀ j ∈ [1, 2n] \ (n + 1) : G j =

α j G,H j = α j H, to sign n messages. Output the private key sk = (γ, ω, β) and

the public key pk = (U,U0,U1,Ω, A, {G j} j=1...n, {H j} j=1...n).

• PS ign(sk, ~m) → σ: For ~m = (m1, ...,mn), pick random r
$
← Z∗q and compute

K = rG +
∑n

j=1 m j Gn+1− j. Choose random c
$
← Z∗q and compute: σ1 =

γ

ω+c G,

σ2 = cH, σ3 = cU, σ4 = c(U0 + βK), σ5 = cK, σ6 = K, σr = r.

Output the signature σ = (σ1, σ2, σ3, σ4, σ5, σ6, σr).

66

• PVeri f yS ig(pk, σ, ~m) → {0, 1}: Return 1 if and only if the following verifica-

tion equations hold: e(A,H) = e(σ1,Ω + σ2), e(U, σ2) = e(σ3,H), e(σ4,H) =

e(U0, σ2) e(σ5,U1), e(σ5,H) = e(σ6, σ2), and σ6 = σrG +
∑n

j=1 m j Gn+1− j.

• PCommit(pk, ~m) → (K, r): Choose random opening r
$
← Z∗q and compute K =

rG +
∑n

j=1 m j Gn+1− j. Output the commitment comm = (K, r).

• PU pdateComm(pk, ~m,K)→ K′: Compute and output the updated commitment

K′ = K +
∑n

j=1 m j Gn+1− j.

• PWitGen(pk, i, ~m,K, r)→ Wi: If K is a commitment to message ~m with opening

r, compute and output the i-th witness Wi = rGi +
∑n

j=1; j,i m j Gn+1+i− j.

• PVeri f yWit(pk, j,m j,W j,K) → {0, 1}: Return 1 if and only if the following

equation holds: e(K,H j) = e(Gn,H1)m j · e(W j,H).

• PProveCom(pk, ~m,K, r) → φK: Generate witnesses for each message com-

mitted, ∀ j ∈ [1, n] : W j ← WitGen(pk, j, ~m,K, r). Set equations eq =

{∀ j ∈ [1, n] : e(K,−H j) e(m j G1,Hn) e(W j,H) = 1, e(m j G,H1) e(m j G1,−H) =

1, e(m j G,H2n) e(m j G2n,−H) = 1} for variables ~X = {K,∀ j ∈ [1, n] :

W j,m j G1,m j G,m j G2n} and ~Y = ∅. Generate and output a Groth-Sahai proof of

knowledge φK = (~C, ~D, {πk, ϕk}k=1...3n)← GS Prove(gk, ς, eq, ~X, ~Y).

• PVeri f yProo fCom(φK) → {0, 1}: Parse φK = (~C, ~D, {πk, ϕk}k=1...3n) and output

GS Veri f y(gk, ς, eq, ~C, ~D, {πk, ϕk}k=1...3n).

•
(
PObtainS ig(pk, ~mP)↔ PIssueS ig(sk, ~mS)

)
→ σ:

– The User commits the message ~mP as (K, r′) ← PCommit(pk, ~mP), then

sends K to the Signer with a proof of knowledge φK ← PProveCom(pk,

~mP,K, r′) that the commitment is valid.

– The Signer verifies the proof of knowledge PVeri f yProo fCom(φK), up-

dates the commitment to K′ ← PU pdateCom(pk, ~mS ,K), and blindly signs

67

the commitment with random seeds c, r′′
$
← Z∗q as: σ1 =

γ

ω+c G, σ2 = cH,

σ3 = cU, σ4 = c(U0 + β (K′ + r′′G)), σ5 = c(K′ + r′′G), σ6 = K′ + r′′G,

and σ′r = r′′ and sends σ′ = (σ1, σ2, σ3, σ4, σ5, σ6, σ
′
r) to the User.

– The User updates σr = r′ +σ′r and outputs σ = (σ1, σ2, σ3, σ4, σ5, σ6, σr).

• PProveS ig(pk, ~m, σ) → φσ: Parse signature σ = (σ1, σ2, σ3, σ4, σ5, σ6, σr).

Generate witnesses for each message signed ∀ j ∈ [1, n] : W j ←

WitGen(pk, j, ~m, σ6, σr). Set signature equation validation: eqσ =

{e(σ1,Ω) e(σ1, σ2) e(−A,H) = 1, e(U0, σ2) e(σ5,U1) e(σ4,H) =

1, e(U, σ2) e(σ3,−H) = 1, e(σ5,H) e(σ6, σ2)−1 = 1}, message pertinence

validation: eq~m = {∀ j ∈ [1, n] : e(σ6,−H j) e(m j G1,Hn) e(W j,H) =

1, e(m j G,H1) e(m j G1,H) = 1, e(m j G,H2n) e(m j G2n,−H) = 1}, and equality

commitment validation: eqK = {e(A, 1H) e(−A, 1H) = 1, e(G, 1H) = e(G,H)},

with variables ~X = {−A,U,U0, σ1, σ3, σ4, σ5, σ6,∀ j ∈ [1, n] :

W j,m j G1,m j G,m j G2n} and ~Y = {U1,Ω, σ2, 1H}.

Generate and output a Groth-Sahai proof of knowledge φσ =

(~C, ~D, {πk, ϕk}k=1...(6+3n))← GS Prove(gk, ς, eqσ ∪ eqm ∪ eqK , ~X, ~Y).

• PVeri f yProo f S ig(φσ) → {0, 1}: Parse φσ = (~C, ~D, {πk, ϕk}k=1...(6+3n)) and output

GS Veri f y(gk, ς, ~C, ~D, {πk, ϕk}k=1...(6+3n)).

Figure 17: P-Signature: Setup protocol

Setup server G(1k,Λ = (G1,G2,GT, e,G, H, q))

(gk, ς)← GS S etup(1k,Λ)
=⇒ (gk, ς)

Source: Author

68

Figure 18: P-Signature: Key generation protocol

Signer B(n)

α, β, γ, ω
$
← Z∗q

U,U0
$
← G1

U1 = βH Ω = ωH A = γG
∀ j ∈ [1, 2n] \ (n + 1) : G j = α j G,H j = α j H

sk = (γ, ω, β)
pk = (U,U0,U1,Ω, A, {G j} j=1...n, {H j} j=1...n)

=⇒ (sk, pk)

Source: Author

Figure 19: P-Signature: Commit protocol

Signer B(sk, ~m [, r])

r
$
← Zq

K = rG +
∑n

j=1 m j Gn+1− j

=⇒ K

Source: Author

Figure 20: P-Signature: Update commitment protocol

Signer B(pk, ~m, K)

K′ = K +
∑n

j=1 m j Gn+1− j

=⇒ K′

Source: Author

Figure 21: P-Signature: Sign protocol

Signer B(sk, ~m)

c, r
$
← Zq

K ← PCommit(pk, ~m, r)
σr = r σ1 =

γ

ω+cG σ2 = cH σ3 = cU
σ4 = (U0 + βK) σ5 = cK σ6 = K
σ = (σ1, σ2, σ3, σ4, σ5, σ6, σr)

=⇒ σ

Source: Author

69

Figure 22: P-Signature: Verification protocol

User U(sk, ~m)

eq1 = e(A,H) ?
= e(σ1,Ω + σ2)

eq2 = e(U, σ2) ?
= e(σ3,H)

eq3 = e(σ4,H) ?
= e(U0, σ2) e(σ5,U1)

eq4 = e(σ5,H) ?
= e(σ6, σ2)

eq5 = σ6
?
= σrG +

∑n
j=1 m j Gn+1− j

=⇒ (eq1 ∧ eq2 ∧ eq3 ∧ eq4 ∧ eq5)

Source: Author

Figure 23: P-Signature: Witness generation protocol

Signer B(pk, i, ~m, K, r)

Wi = rGi +
∑n

j=1; j,i m j Gn+1+i− j

=⇒ Wi

Source: Author

Figure 24: P-Signature: Witness verification protocol

User U(pk, i, mi,Wi, K)

=⇒ e(K,Hi)
?
= e(Gn,H1)mi · e(Wi,H)

Source: Author

Figure 25: P-Signature: Prove commitment protocol

Prover P(pk, ~m, K, r)

∀ j ∈ [1, n] : W j ← WitGen(pk, j, ~m,K, r)

∀ j ∈ [1, n] : eqm, j := e(K,−H j) e(m j G1,Hn) e(W j,H) = 1

∀ j ∈ [1, n] : eqm,1, j := e(m j G,H1) e(m j G1,−H) = 1

∀ j ∈ [1, n] : eqm,2n, j := e(m j G,H2n) e(m j G2n,−H) = 1

eq =
⋃n

j=1(eqm, j ∪ eqm,1, j ∪ eqm,2n, j)

φK ← GS Prove(gk, ς, eq, {K,∀ j ∈ [1, n] : W j,m j G1,m j G,m j G2n},∅)
=⇒ φK

Source: Author

3.9 Compact e-cash

As electronic cash aims to emulate real cash, ensuring the result has strong secu-

rity properties is of great interest for these protocols. Providing transferability is one

70

Figure 26: P-Signature: Verify proof of commitment protocol

VerifierV(pk, K, φK)

φK = (~C, ~D, {πk, ϕk}k=1...3n)

∀ j ∈ [1, n] : eqm, j := e(K,−H j) e(m j G1,Hn) e(W j,H) = 1

∀ j ∈ [1, n] : eqm,1, j := e(m j G,H1) e(m j G1,−H) = 1

∀ j ∈ [1, n] : eqm,2n, j := e(m j G,H2n) e(m j G2n,−H) = 1

eq =
⋃n

j=1(eqm, j ∪ eqm,1, j ∪ eqm,2n, j)

=⇒ GS Veri f y(gk, ς, eq, ~C, ~D, {πk, ϕk}k=1...3n)

Source: Author

Figure 27: P-Signature: Obtain/Issue signature protocol

User U(pk, ~mP) Signer B(sk, ~mS)

r′
$
← Zq

K ← PCommit(pk, ~mP, r′)
φK ← PProveCom(pk, ~mP,K, r′)

(K, φK)
Abort if PVeri f yProo fCom(φK) , 1

c, r′′
$
← Z∗q

K′ ← PU pdateComm(pk, ~mS ,K)
σ′r = r′′ σ1 =

γ

ω+c G σ2 = cH σ3 = cU
σ4 = c(U0 + β (K′ + r′′G)) σ5 = c(K′ + r′′G) σ6 = K′ + r′′G
σ′ = (σ1, σ2, σ3, σ4, σ5, σ6, σ

′
r)

σ′

σr = r′ + σ′r
σ = (σ1, σ2, σ3, σ4, σ5, σ6, σr)

=⇒ σ

Source: Author

of the most commonly discussed matters, since it is not possible to completely prevent

double-spending (after all, the bits that represent a coin can be easily copied), but only

ensure its detection. An online system in which a server intermediates every trans-

action can solve this problem by breaking the anonymity of the payment parties, the

spender and the receiver, whenever a copy of a coin is duplicated. For an offline sys-

tem, however, the sundry security protocols available in the literature provide different

levels of anonymity, which can be informally defined as follows:

Definition 27 (Anonymity properties in e-cash (CANARD; GOUGET, 2008)). An e-

cash scheme can obtain one of the following anonymity properties:

71

Figure 28: P-Signature: Prove signature protocol

Prover P(pk, ~m, σ)

∀ j ∈ [1, n] : W j ← WitGen(pk, j, ~m,K, σr)

eq1 := e(σ1,Ω) e(σ1, σ2) e(−A,H) = 1

eq2 := e(U0, σ2) e(σ5,U1) e(σ4,H) = 1

eq3 := e(U, σ2) e(σ3,−H) = 1

eq4 := e(σ5,H) e(σ6, σ2)−1 = 1

eqA := e(A, 1H) e(−A, 1H) = 1

eqH := e(G, 1H) = e(G,H)

∀ j ∈ [1, n] : eqm, j := e(σ6,−H j) e(m j G1,Hn) e(W j,H) = 1

∀ j ∈ [1, n] : eqm,1, j := e(m j G,H1) e(m j G1,H) = 1

∀ j ∈ [1, n] : eqm,2n, j := e(m j G,H2n) e(m j G2n,−H) = 1

eq = eq1 ∪ eq2 ∪ eq3 ∪ eq4 ∪ eqA ∪ eqH ∪
⋃n

j=1(eqm, j ∪ eqm,1, j ∪ eqm,2n, j)

~X = {−A,U,U0, σ1, σ3, σ4, σ5, σ6,∀ j ∈ [1, n] : W j,m j G1,m j G,m j G2n}

~Y = {U1,Ω, σ2, 1H}

φσ ← GS Prove(gk, ς, eq, ~X, ~Y)
=⇒ φσ

Source: Author

Figure 29: P-Signature: Verify proof of signature protocol

VerifierV(φσ)

φσ = (~C, ~D, {πk, ϕk}k=1...(6+3n))

eq1 := e(σ1,Ω) e(σ1, σ2) e(−A,H) = 1

eq2 := e(U0, σ2) e(σ5,U1) e(σ4,H) = 1

eq3 := e(U, σ2) e(σ3,−H) = 1

eq4 := e(σ5,H) e(σ6, σ2)−1 = 1

eqA := e(A, 1H) e(−A, 1H) = 1

eqH := e(G, 1H) = e(G,H)

∀ j ∈ [1, n] : eqm, j := e(σ6,−H j) e(m j G1,Hn) e(W j,H) = 1

∀ j ∈ [1, n] : eqm,1, j := e(m j G,H1) e(m j G1,H) = 1

∀ j ∈ [1, n] : eqm,2n, j := e(m j G,H2n) e(m j G2n,−H) = 1

eq = eq1 ∪ eq2 ∪ eq3 ∪ eq4 ∪ eqA ∪ eqH ∪
⋃n

j=1(eqm, j ∪ eqm,1, j ∪ eqm,2n, j)

=⇒ GS Veri f y(gk, ς, ~C, ~D, {πk, ϕk}k=1...(6+3n))

Source: Author

72

Weak Anonymity (WA): An adversary cannot link a spending to a withdrawal.

However, the adversary can find out if two spending operations were done by the

same user.

Strong Anonymity (SA): The scheme achieves WA and the adversary cannot

distinguish if two spending operations were done by the same user. However, the

adversary can recognize a coin that was observed in a previous spending.

Full Anonymity (FA): The scheme achieves SA and the adversary cannot recog-

nize a coin that was observed in a previous spending operation. However, the

adversary can recognize a coin that he/she previously owned.

Perfect Anonymity (PA): The scheme achieves FA and the adversary cannot

decide whether or not he/she has owned a coin he/she received.

Since it is proved that PA cannot be achieved if the bank is itself a possible adver-

sary, two other properties can be defined by modifying this last property:

Spend-then-Observe (PA1): The scheme achieves SA and the adversary control-

ling the bank cannot link a coin he/she has previously possessed to one trans-

ferred between two honest users. However, the adversary can recognize a coin

that he/she receives if he/she had previously owned it.

Spend-then-Receive (PA2): The scheme achieves SA and the adversary cannot

link a coin he/she has previously possessed to one transferred between two honest

users. The adversary cannot control the bank.

There is an inclusion relation among some of the properties (namely, PA⇒ FA⇒

SA⇒ WA), but PA1 and PA2 do not satisfy FA.

In the context of P2P TCGs, it is desirable to use a scheme that is both efficient

and that provides the highest level of anonymity, thus protecting the players’ privacy

73

without impairing usability. The compact e-cash scheme originally described in (CA-

MENISCH; HOHENBERGER; LYSYANSKAYA, 2005) and revised in (BELENKIY

et al., 2009) is interesting for this purpose because (1) it allows several seed parameters

(instead of coins) to be signed altogether and (2) it provides a direct method for iden-

tifying cheaters, who have their public key recovered, so the server does not need to

screen the whole users’ database in search for the culprit. Withdrawing several coins

(i.e., a wallet) in a single message is not an essential property for a card game. It is

an expensive operation, that increases the number of proofs of knowledge, and can be

uncoupled from the protocol by reducing the size of the wallet to 1 coin. The proto-

col is also modular, allowing specific protocols to be replaced by more efficient ones

whenever necessary. In addition, even though it only provides SA, in a physical TCG

a player can also observe the cards being exchanged, which allows him/her to recog-

nize that card in some future use; therefore, having FA or PA is not critical, as SA is

enough to emulate quite accurately cart tradings in real life. In summary, building a

TCG-oriented trading protocol over such e-cash scheme leads the following properties:

Correctness: When the bank and the users are honest, Withdraw will always suc-

ceed by generating a valid coin, Spend will succeed by the merchant accepting

the received coin, the Deposit will succeed by accepting the deposited coin.

Strong anonymity: The bank, even in collusion with merchants, cannot link an

execution of Spend with the execution of Withdraw that had generated the trans-

fered coin.

Balance: No coalition of users is able to deposit more coins than the ones they

withdrew without revoking the anonymity of at least one user of the coalition.

Identification of double-spenders: The bank can identify any user who has gen-

erated two valid coins with the same serial number.

Strong Exculpability: The bank, even in collusion with other users, cannot frame

74

a user that has never double-spent by generating two coins that identify the hon-

est user. Furthermore, the transgressor is only responsible by the coins he/she

had actually duplicated.

The original scheme is not transferable, but the version actually adopted in the

proposed solution is based on the adaptation from (CANARD; GOUGET; TRAORÉ,

2008), which achieves transferability with strong anonymity, by means of the following

operations (for a concrete instantiation and details, see (BELENKIY et al., 2009)):

• S etup: The bank generates a public/private key pair and publishes its public key

together with the system’s public parameters.

• Register: The user randomly generates a public/private key pair based on the

system parameters and retrieves a certificate from the bank for the public key

generated in this manner. The bank stores the user’s identity and corresponding

public keys, which allows users to be identified in case of double-spending.

• Withdraw: The user produces seed values and commits them to the bank, which

in turn blindly signs those values. This creates a new anonymous wallet with as

many coins as the number of seeds provided.

• S pend: Users may exchange either unspent coins from their wallets or coins

previously received. In the former case, the user creates a new coin from the

serial seed and treats it just like a received coin. Each time a coin is spent, a tag

giving ownership of it to the receiver is added to the coin representation, making

it grow in size. All tags must be verified by the receiver to ensure the previous

transaction are valid and, thus, that the coin actually holds value.

• Deposit: The user sends the coin to the bank, which verifies if this coin had

already been deposited. If it has, the bank verifies if this is a case of double-

75

deposit (i.e., if the user is trying to deposit the same coin twice) or of double-

spending (i.e., if it was sent to two different users at some point in time).

• Identi f y: In case of double-spending, the bank retrieves the public key of the

perpetrator, so the required administrative penalties can be applied.

Users may withdraw wallets with fixed L coins by obtaining a blind signature from

the bank. It signs the seed parameter used to compute tags that identify the coin and

verify if it was double-spent, the current owner to allow him/her to spend it, and the

previous owners to identify the double-spender.

Each coin is identified by a serial number S , a random-like number to provide

a unique identifier. It is then retrieved from the serial number generation function, a

VRF which uses as input the index l of the coin, if more than one coin can be withdrawn

(or the private key of the owner l = skU), and a seed s signed in the wallet. It is executed

by the following algorithms:

• FS (l, s) → S : For an implicit security level k, generate key-pair (sk, pk) ←

VRFS etup(1k, l). Then, compute and output S ← VRFEval(sk, s).

• PS (l, s) → φS : For an implicit security level k, generate key-pair (sk, pk) ←

VRFS etup(1k, l). Then, compute and output φS ← VRFProve(sk, s).

• VS (S , φS) → {0, 1}: Parse the Groth-Sahai proof φS = (~C, ~D, {πk, ϕk}k=1...6). Set

pk = ClH, retrieved from ~D. Output VRFVeri f y(pk, S , φS).

The transference tag T identifies each transference, which allows the bank to iden-

tify a double-spender. It is concatenated to a list of transferences in the coin, thus

allowing the bank to identify the transgressor, even if he/she is not the owner anymore.

It is also retrieved from the transference tag generation, a modified version of the VRF

(instantiation 2, Section 3.7.2) which inputs the private key of the owner skU , a seed

76

t signed in the wallet, and the hash of the private (that contains the owner) and public

(e.g., a timestamp) information of the transference. It is executed by the following

algorithms:

• FT (skU , t,R)→ T : For an implicit security level k, generate key-pair (sk, pk)←

VRF2S etup(1k, skU). Then, compute and output T ← VRF2Eval(sk, t, skU ,R).

• PT (skU , t,R) → φT : For an implicit security level k, generate key-pair

(sk, pk) ← VRF2S etup(1k, skU). Then, compute and output φT ←

VRF2Prove(sk, t, skU ,R).

• VT (R,T, φT) → {0, 1}: Parse the Groth-Sahai proof φT = (~C, ~D, {πk, ϕk}k=1...8).

Set pk = CskU H, retrieved from ~D. Output VRF2Veri f y(pk,R,T, φT).

Finally, the ownership tag r is used to hide the private key of the coin’s owner.

Similarly to S , it is retrieved from the ownership tag generation function, a VRF which

inputs the private key of the owner skU and some public information info related to the

transference. This tag is used to create the transference tag that allows the owner of

the coin to prove that the last transference was directed to him/her, so this information

is used to compute R, linking the transference tag T to the owner, represented by r. It

is executed by the following algorithms:

• Fr(skU , info) → r: For an implicit security level k, generate key-pair (sk, pk) ←

VRFS etup(1k, skU). Then, compute and output r ← VRFEval(sk, info).

• Pr(skU , info)→ φr: For an implicit security level k, generate key-pair (sk, pk)←

VRFS etup(1k, skU). Then, compute and output φr ← VRFProve(sk, info).

• Vr(pkU , r, φr) → {0, 1}: Parse the Groth-Sahai proof φr = (~C, ~D, {πk, ϕk}k=1...6).

Set pk = CskU H, retrieved from ~D. Output VRFVeri f y(pk, r, φr) ∧

GS Veri f y(gk, ς, {e(1G, skU H) = pkU ; e(1G,H) = e(G,H)}, {1G}, {pk}).

77

We present a concrete instantiation of the protocol in Section 3.9.1

3.9.1 Compact e-cash instantiation

We now present the compact e-cash protocol proposed in (BELENKIY et al.,

2009). This protocol is secure, given the security of the Groth-Sahai proof of knowl-

edge, the VRFs and the P-signature. Figures 30, 31, 32, 33, 34 and 35 illustrate,

respectively, the steps of the methods Setup, Register, Withdraw, Spend, Deposit and

Identify.

• S etup(1k) → (pparams, pkR, pkC, pkL, {φL,l}l=1...L): For the security parame-

ter k, the central bank generates the system parameters of a signature setup

pparams = (gk, ς) ← PS etup(1k), which comprises the asymmetric pairing

setting Λ = (G1,G2,GT , e,G,H, q) in the setup of a Groth-Sahai proof (gk, ς).

These parameters are used by the subsequent methods and, for shortness, are

omitted in their descriptions.

It initializes an empty list of deposited coins CS = ∅, and generates three key-

pairs: (skR, pkR) ← PKeyGen(2) to register users, (skC, pkC) ← PKeyGen(3)

to mint coins, and (skL, pkL) ← PKeyGen(1) to sign coin indexes. It pro-

duces ∀l ∈ [1, L] : σl = PS ign(skL, {l}), and the proofs ∀l ∈ [1, L] : φL,l ←

PProo f S ig(pkL, {l}, σl). It then publishes (pparams, pkR, pkC, pkL, {φL,l}l=1...L).

• Register
(
U(pkR, idU[, skU]) ↔ B(skR)

)
→ σU : User U with identity idU

generates a secret key skU
$
← Zq and computes the public key pkU =

e(G, skU H). U generates a proof of knowledge φU = (~C, ~D, {πk, ϕk}k=1,2) ←

GS Proo f (gk, ς, {e(1G, skU H) = pkU ; e(1G,H) = e(G,H)}, {1G}, {skU H}). The

triple (idU , pkU , φU) is sent to the bank B.

If the proof φU is valid by GS Veri f y(gk, ς, {e(1G, skU H) =

pkU ; e(1G,H) = e(G,H)}, ~C, ~D, {πk, ϕk}k=1,2) ?
= 1, B generates a signa-

78

ture σU ← PS ign(skR, {idU , pkU}) and sends it to U. If the verification

PVeri f yS ig(pkR, σU , {idU , pkU})
?
= 1 is accepted, U can then present σU as

his/her certificate.

• Withdraw
(
U(skU , pkC) ↔ B(skC, pkC)

)
→ wallet: To withdraw a wallet with L

coins, the user U generates a partial identifier seed s′
$
← Zq and a transference

seed t
$
← Zq, and the bank B generates the coin’s partial identifier component

s′′
$
← Zq. Both parties execute the interactive protocol to obtain a blind signa-

ture σW ←
(
PObtainS ig(pkC, {skU , s′, t}) ↔ PIssueS ig(skC, {0, s′′, 0})

)
that is

returned to U together with s′′. U stores the walletwallet = (s = s′+ s′′, t, L, σW).

• S pend
(
U1(skU1 , pkU2 , {wallet|coin}) ↔ U2(skU2 , pkU1)

)
→ (coin′[,wallet′]): The

receiver U2 chooses some public information info ← {0, 1}∗ (e.g., a times-

tamp) and computes r ← Fr(skU2 ,H(info)) and a proof of validity φr ←

Pr(skU2 ,H(info)). U2 then sends the tuple (info, r, φr) to the current card holder,

U1.

– If U1 is sending a fresh coin from his/her wallet wallet = (s = s′ +

s′′, t, L, σW) and the proof of validity holdsVr(pkU2 , r, φr)
?
= 1, he/she gen-

erates a proof of knowledge φσ ← PProveS ig(pkC, {skU1 , s, t}, σ). After

that, U1 sets info0 = info, r0 = r and computes R0 ← H(r0, info0). U1

then generates the serial number S ← FS (L, s) and the transference tag

T0 ← FT (L, t,R0), together with proofs of knowledge φS ← PS (L, s) and

φT0 ← PT (L, t,R0) of the construction, associated with the commitments

in the proofs of signature φσW and φL,l. Finally, U1 sends the new coin

coin = (S , φS , l, φL,l, φσ,ΠT = {T0, φT0 , r0, info0}) to U2, and keeps the up-

dated wallet wallet′ = (s = s′ + s′′, t, L − 1, σW) if L − 1 > 0.

– If U1 is sending a received coin coin = (S , φS , l, φL,l, φσ,ΠT =

{T j, φT j , r j, info j} j=0...h) and the proof of validity holds Vr(pkU2 , r, φr)
?
= 1,

he/she first sets infoh+1 = info and rh+1 = r, and then computes Rh+1 ←

79

H(rh+1, infoh+1) and t ← H(S , {T j} j=0...h). U1 generates a new transfer-

ence tag Th+1 ← FT (skU1 , t,Rh+1) and a proof of knowledge φTh+1 ←

PT (skU1 , t,Rh+1) of the construction. Finally, U1 generates the proof of

ownership φrh ← Pr(pkU1 ,H(infoh)) that the coin belongs to him/her. The

coin coin′ = (S , φS , l, φL,l, φσ,ΠT = {T j, φT j , r j, info j} j=0...(h+1)) and the proof

of ownership φrh are sent to U2.

Upon reception, U2 asserts if coin′ was a coin of U1’s by Vr(pkU1 , rh, φrh)
?
= 1.

Then, he/she verifies the construction of the serial number S by VS (S , φS) ?
= 1

and the tags {T j} j=0...(h+1) by
∧h+1

j=0
(
VT (H(r j, info j),T j, φT j)

?
= 1

)
, as well as if the

tag of ownership rh+1 is the one he/she had generated (i.e., if r ?
= rh+1).

If all proofs are correct, U2 stores the coin coin′ as his/her own.

• Deposit
(
U(coin) ↔ B(CS)

)
→ DS: User U sends to the bank B a coin

coin = (S , φS , l, φL,l, φσ,ΠT = {T j, φT j , r j, info j} j=0...h) to be deposited. It ver-

ifies if the user had not modified the coin before by verifying if the serial

number and the transference tags were correctly constructed by VS (S , φS) ?
=

1 ∧
∧h

j=0VT (H(r j, info j),T j, φT j). B simplifies the coin by removing all proofs,

forming a coin ĉoin = (S , πD = {T j, r j, info j} j=1...h) that is stored in the set of de-

posited coins CS. Then it verifies if there is any coin coin with identifier S = S

already deposited in CS. For each coin coin, B executes Identi f y(coin, coin),

retrieving the list of public keysDS of users who had illegally double-spent.

• Identi f y(coin, coin) → pkD: The bank B parses coins coin = (S , πD =

{T j, r j, info j} j=0...h) and coin = (S , πD = {T j, r j, info j} j=0...h) with the same se-

rial number S = S . It searches for the first index j in which T j , T j, computes

R j ← H(r j, info j) and R j ← H(r j, info j), and retrieves the public key of the

perpetratorD as pkD =
(T j

T j

) 1
R j−R j .

80

Figure 30: E-cash: Setup protocol

Bank B
Λ = (G1,G2,GT , e,G,H, q)
pparams = (gk, ς)← PS etup(1k,Λ)
CS = ∅

(skR, pkR)← PKeyGen(2)
(skC, pkC)← PKeyGen(3)
(skL, pkL)← PKeyGen(1)
∀l ∈ [1, L] : φL,l ← PProo f S ig(pkL, {l}, σl)

=⇒ (pparams, pkR, pkC, pkL, {φL,l}l=1...L)

Source: Author

Figure 31: E-cash: Register protocol

User U(pkR, idU [, skU]) Bank B(skR)

skU
$
← Zq

pkU = e(skU G,H)

eq1G := e(1G,H) = e(G,H)

eqskU := e(1G, skU H) = pkU

φU ← GS Proo f
(
gk, ς, {eq1G; eqskU }

)
(idU , pkU , φU)

Abort if GS Veri f y(gk, ς, {eq1G; eqskU }, φU) , 1
σU ← PS ign(skR, {idU , pkU})

σU

Abort if PVeri f yS ig(pkR, σU , {idU , pkU}) , 1
=⇒ σU

Source: Author

3.9.2 Using malleable signatures in e-cash schemes

Recent works apply malleable signatures when creating transferable e-cash

(BALDIMTSI et al., 2015). These signatures have the same properties of a digital

signature together with a signature evaluation method, which transforms a known sig-

nature into another valid signature over the same signed values or over transformed

values. This protocol is composed by an efficient randomizable signature scheme (e.g.,

(POINTCHEVAL; SANDERS, 2016) together with a non-interactive proof of knowl-

edge. The generic construction of (CHASE et al., 2014) uses malleable proofs to create

these constructions, such as Groth-Sahai proofs (CHASE et al., 2012) or succinct non-

81

Figure 32: E-cash: Withdrawal protocol

User U(skU, pkC) Bank B(skC, pkU)

s′, t, rs
$
← Zq

Ks ← PCommit(pkC, {skU , s′, t})
φKs ← PProveCom(pkC, {skU , s′, t},Ks, rs)

(Ks, φKs)

Abort if PVeri f yProo fCom(φKs) , 1

s′′
$
← Zq

K′s ← PU pdateComm(pkC, {0, s′′, 0},Ks)
σ′ ← PIssueS ig(skC,K′s)

(s′′, σ′)

σW ← PObtainS ig(pkC, {skU , s = s′ + s′′, t}, σ′)
wallet = (s, t, L, σW)

=⇒ wallet

Source: Author

Figure 33: E-cash: Spend protocol

User U1(skU1 , pkU2 , {wallet | coin}) Merchant U2(skU2 , pkU1)

info← Zq

r ← Fr(skU2 ,H(info))
φr ← Pr(skU2 ,H(info))

(info, r, φr)
Abort ifVr(pkU2 , r, φr) , 1
φrh = Pr(skU1 ,H(infoh))

If spending from wallet:
φσ ← PProveS ig(pkC, {skU1 , s, t}, σ)
info0 = i r0 = r R0 ← H(r0, info0)
S ← FS (L, s) φS ← PS (L, s)
T0 ← FT (L, t,R0) φT0 ← PT (L, t,R0)
wallet′ = (s = s′ + s′′, t, L − 1, σW)
coin

′ = coin = (S , φS , l, φL,l, φσ,ΠT = {T0, φT0 , r0, info0})
=⇒ wallet′

If spending from coin:
infoh+1 = i rh+1 = r Rh+1 ← H(rh+1, infoh+1)
t = H(S , {T j} j=1...h)
Th+1 = FT (skU1 , t,Rh+1) φTh+1 = PT (skU1 , t,Rh+1)
coin

′ = (S , φS , l, φL,l, φσ,ΠT = {T j, φT j , r j, info j} j=0...(h+1))

(coin′, φrh)

Abort if rh+1 , r
Abort ifVr(pkU1 , rh, φrh) , 1
Abort ifVS (S , φS) , 1

Abort if
∨h+1

j=0
(
VT (H(r j, info j),T j, φT j) , 1

)
=⇒ coin

′

Source: Author

82

Figure 34: E-cash: Deposit protocol

Player P(skU, coin) Bank B(CS, skC, pkU)

infoh+1 ← Zq

rh+1 ← Fr(skU ,H(infoh+1))
Rh+1 = H(rh+1,H(infoh+1))
t = H(S , {T j} j=0...h)
Th+1 ← FT (skU , t,Rh+1) φTh+1 ← PT (skU , t,Rh+1)
coin

′ = (S , φS , l, φL,l, φσ,ΠT = {T j, φT j , r j, info j} j=0...(h+1))
φrh ← Pr(skU ,H(infoh)) φrh+1 ← Pr(skU ,H(infoh+1))

(coin′, φrh , φrh+1)

Abort ifVr(pkU , rh, φrh) , 1
Abort ifVr(pkU , rh+1, φrh+1) , 1
Abort ifVS (S , φS) , 1

Abort if
∨h+1

j=0
(
VT (H(r j, info j),T j, φT j) , 1

)
ĉoin = (S ,ΠD = {T j, r j, info j} j=0...h) 7→ CS
DS = ∅

∀coin ∈ CS, If S = S :

DS = DS ∪ {Identi f y(ĉoin, coin)}
IfDS , ∅:

=⇒ DS

Source: Author

Figure 35: E-cash: Identification protocol

Bank B(coin, coin)

l = −1 limit = min(h, h)

∀k ∈ [0, limit], if Tk , Tk : l = k
Abort if l = −1

Rl ← H(rl, infol) Rl ← H(rl, infol)

pkD =

(
Tl

Tl

) 1
(Rl−Rl)

=⇒ pkD

Source: Author

interactive arguments of knowledge (SNARK) (CHASE et al., 2013).

E-cash protocols built from malleable proofs present a higher level of anonymity.

Besides providing SA, it also provides PA1 and PA2, which protects the traders’ pri-

vacy against the bank when it passively observes the communications and against users

that owned the exchanged coins. The serial number (equivalent to S in compact e-

83

cash), the transference tags (equivalent to T j), the ownership tags (equivalent to r j),

and signatures (equivalent to σ) are encrypted and randomized. Their proofs of knowl-

edge (equivalent to φS , φT j , and φσ) are randomized and mauled. As a result, the coin

obtained is unlinkable to the previously owned one.

Despite the advantages of malleability, there is a larger cost involved in its oper-

ations when compared to compact e-cash protocols due to the valid transformations

required for mauling coins. These transformations can be classified in two groups: the

withdrawal transformation and the spending transformation.

To ensure the coin is not linkable to the withdrawn one, each spending operation

needs to transform the information provided by the bank. More precisely, the signature

issued by the bank when a coin is withdrawn is replaced by the one defined in (ABE

et al., 2012); this leads to a larger number of point elements to the signature’s repre-

sentation, but reduces the number of pairing computations to its verification. Although

we seek more efficiency for our protocol, we cannot replace the one from Section 3.8

because this new one is a plain signature (and not a blind signature, as required in our

protocol). By applying the valid transformations for the malleable proof of knowl-

edge, this signature can be transformed before each spending. This transformation re-

randomizes the signature, and the commitments to the proof of knowledge are mauled,

resulting in new point multiplications. When the signature is completely randomizable

(as it is necessary for FA, PA1 and PA2), the cost is equivalent to creating an entire

new proof. While it does not influence the verification execution from the receiver, the

spender will have a larger cost to send this coin.

Another information from the withdrawal is the serial number, that now must

be encrypted with a homomorphic encryption scheme (e.g., ElGamal (ELGAMAL,

1984)). Although the additional cost of the encryption is small (two point multiplica-

tions), the serial number must increase in size just like the transference tag, and new

proofs of knowledge must be created. Each transference will have the previous serial

84

numbers transformed and their proofs mauled. It will result in more point multiplica-

tions to prove and additional pairing computations to verify that, as the coin grows,

will continually increase.

To protect spending privacy, the information related to each transference also is

transformed. Alike the serial number, the transference tag is encrypted and random-

ized. Each one will be randomized and its proof mauled. The resulting verification

will have no additional cost, but the spender will have greater costs to transform the

previous proofs and create the new one.

Providing improved anonymity will largely increase the costs for spending. The

number of point multiplications will increase linearly with how many times a coin was

spent, and the receiver will have additional pairing computations to verify the received

coin.

3.10 Summary

In this Chapter we have introduced the mathematical and cryptographic concepts

regarding finite fields, elliptic curves and bilinear pairings. Having those in mind, we

defined the building blocks for a transferable e-cash scheme, focusing on the reasons

for our choices and on the properties these blocks provide. Namely, we presented a

proof of knowledge, a verifiable random function and provable signature, and con-

cluded by presenting the methods for the chosen e-cash scheme (compact e-cash), its

security properties and inner functions that will base the construction of our P2P TCG.

85

4 PROPOSED PROTOCOL

After defining the building blocks of a transferable e-cash scheme in Chapter 3, we

set off for a concrete instantiation of the proposed protocol for securely trading cards.

This instantiation relies on the methods and notation presented on previous chapters.

We start by presenting specific notation for our construction, which comprises the

definition of roles and of which values are used in the representation of our cards.

Then we propose the complete protocol for securely exchanging cards.

4.1 Notation

Each method refers to roles of players Pi with index (if any) i, and of the game

server G, comprised by the registration center C, card marketM and game auditor A.

A card card is represented by the tuple card = (UID,CID,V, owner), where: UID ∈

G1 is its unique identifier; CID ∈ Zq is the numeric representation of the card’s class

using some suitable encoding; V = (φUID, φσ, {φT j} j=1...N), where φUID, φσ and φT j are,

respectively, proofs of knowledge of the construction of the UID, of the signature from

the market, and of the j-th transference tag; and owner = ΠT = {T j, r j, info j} j=1...N

corresponds to the records of all owners of the cards, so that, for each index j ∈ [1,N],

T j is the transference tag, r j is the ownership tag and info j is the public information

regarding the transference. Figure 36 exemplify this representation.

86

Figure 36: Representation of a digital card in the proposed system

UID

CID

owner

V

Name

Image

Abilities
Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Integer a malesuada nisi.

Nullam vel euismod ligula.

Title

Power

Edition

Resistance

0010101010101101100100110111110001010101
0101100000111001101010011101001011111010
0010110011011001110101010011101001011010
1001010101010110101010101000101101011010
1010101010101110101010101010101010100010
1010101010101000100111110101001101111101
0101011101110101010001101000111101010111
0100001110101011111000111010101010001101
1101110100110001111110110101000111001101
1101110100010110101110000111010110100110
1101010110101000100101010110101111101111
0101101011101101010001101101001011010100
0010100010111010110101011010100011101010
1001010101010011010101010100101010110010
1010101001010010101100010100010100111101
0101011010101011110001101010011110111011
0100011110100000101111011011010100111101
1101110001001100010100111010100111010100
1010110101010101101010101010101010011110
1011110010111101011101000011000000000101
0011110111011010101010100000000101011110
1101011000011101100111100011000101110000
1111101101101000011111111100110000110101
1001011101010101010110110101011010101011
0001101010110100010111010101010110010111

UID

CID

φσ

φUID

{φTj}j=1...N

{Tj}j=1...N

{rj}j=1...N

{ij}j=1...N

Source: Author

4.2 Construction

The operations comprised by the proposed scheme are, then:

Setup

This method generates the public parameters of the system, enclosing the underly-

ing pairing setting, proof of knowledge, the verifiable random function and the signa-

ture scheme. It also generates the key pair for registering new players and for stamping

new cards. Figure 37 summarizes the operations.

S etup(1k)→ (pparams, pkC, pkM)

The game server generates the system parameters, that is the same of a signature

setup pparams = (gk, ς) ← PS etup(1k), which comprises the asymmetric pairing

setting Λ = (G1,G2,GT , e,G,H, q) in the setup of a Groth-Sahai proof (gk, ς). These

parameters are used by the subsequent operations and, for shortness, are omitted in

their descriptions.

It initializes an empty list of reported cards RS = ∅. The game server also gen-

erates two key-pairs: (skC, pkC) ← PKeyGen(2) to register players and (skM, pkM) ←

PKeyGen(4) to stamp cards. It then publishes (pparams, pkC, pkM).

87

Figure 37: SecureTrade: Setup protocol

Game server G

pparams = PS etup(1k)
RS = ∅

(skC, pkC) = PKeyGen(2)
(skM, pkM) = PKeyGen(4)

=⇒ (pparams, pkC, pkM)

Source: Author

Register

This method allows a user to enroll in the game server, allowing him to be verified

as a valid player in the system. It also allows the game server to receive the public key

associated to the player’s ID, so that he/she can be identified if he/she cheats. Figure

38 summarizes the operations.

Register
(
P(pkC, idP[, skP])↔ C(skC)

)
→ σP

PlayerPwith identity idP generates a secret key skP
$
← Zq and computes the public

key pkP = e(G, skP H). P generates a proof of knowledge φP = (~C, ~D, {πk, ϕk}k=1,2) ←

GS Proo f (gk, ς, {e(1G, skP H) = pkP; e(1G,H) = e(G,H)}, {1G}, {skP H}). The triple

(idP, pkP, φP) is sent to the registration center C.

If the proof φP is valid by GS Veri f y(gk, ς, {e(1G, skP H) = pkP; e(1G,H) =

e(G,H)}, ~C, ~D, {πk, ϕk}k=1,2) ?
= 1, C generates a signature σP ← PS ign(skC, {idP, pkP})

and sends it to P. If the verification PVeri f yS ig(pkC, σP, {idP, pkP})
?
= 1 is accepted,

P can then present σP as his/her certificate.

Stamp

This method is used so that a registered player can stamp a new valid card. The

card retrieved by this method is unknown to the card market, so that it is unlinkable to

the instance of the stamping. Figure 39 summarizes the operations.

88

Figure 38: SecureTrade: Register protocol

Player P(pkC, idP) Registration center C(skC)

skP
$
← Zq

pkP = e(skP G,H)

eq1G := e(1G,H) = e(G,H)

eqskP := e(1G, skP H) = pkP

φP ← GS Proo f
(
gk, ς, {eq1G; eqskP}

)
(idP, pkP, φP)

Abort if GS Veri f y(gk, ς, {eq1G; eqskP}, φP) , 1
σP ← PS ign(skC, {idP, pkP})

σP

Abort if PVeri f yS ig(pkC, σP, {idP, pkP}) , 1
=⇒ σP

Source: Author

S tamp
(
P(skP, pkM,CID)↔ M(skM, pkM)

)
→ card:

To purchase an instance of a card with class CID, player P generates a partial

identifier seed s′
$
← Zq and a transference seed t

$
← Zq, and the card market M gen-

erates the card’s partial identifier component s′′
$
← Zq. Both parties execute the in-

teractive protocol to obtain a blind signature σ ←
(
PObtainS ig(pkM, {skP, s′, t, 0}) ↔

PIssueS ig(skM, {0, s′′, 0,CID})
)

that is returned to P together with s′′.

The player then generates a proof of knowledge φσ ← PProveS ig(pkM, {skP, s =

s′ + s′′, t,CID}, σ). After that, P chooses some unique public information info0 ←

{0, 1}∗ (e.g., a timestamp) and computes r0 ← Fr(skP,H(info0)) and R0 ← H(r0, info0).

P then generates the unique identifier UID ← FS (skP, s) and the transference tag

T0 ← FT (skP, t,R0), together with proofs of knowledge φUID ← PS (skP, s) and φT0 ←

PT (skP, t,R0) of the construction, associated with the commitments in the proof of

signature φσ. Finally, the player stores the card card = (UID,CID, φUID, φσ,ΠT =

{T0, φT0 , r0, info0}).

89

Figure 39: SecureTrade: Stamp protocol

Player P(skP, pkM,CID) Card marketM(skM, pkP)

s′, t
$
← Zq

(Ks, rs)← PCommit(pkM, {skP, s′, t, 0})
φKs ← PProveCom(pkM, {skP, s′, t, 0}, rs,Ks)

(Ks, φKs ,CID)

Abort if PVeri f yProo fCom(φKs) , 1

s′′
$
← Zq

K′s ← PU pdateComm(pkM, {0, s′′, 0,CID},Ks)
σ′ ← PIssueS ig(skM,K′′s)

(s′′, σ′)

σ← PObtainS ig(pkM, {skP, s = s′ + s′′, t,CID}, σ′)
φσ ← PProveS ig(pkM, {skP, s, t,CID}, σ)
info0 ← Zq r0 ← Fr(skP,H(info0))
R0 ← H(r0, info0)
UID← FS (skP, s) φUID ← PS (skP, s)
T0 ← FT (skP, t,R0) φT0 ← PT (skP, t,R0)

=⇒ card = (UID,CID, φUID, φσ,ΠT = {T0, φT0 , r0, info0})

Source: Author

Send

This method allows a player (the sender) to send a card to another one (the re-

ceiver). If the sender continues using the card, the game server can identify the trans-

gressor when the usage is reported by an opponent of his/hers. Besides, the receiver

becomes the new owner of the card and will be the only one able to prove ownership

of the card. Figure 40 summarizes the operations.

S end
(
P1(skP1 , pkP2 , card)↔ P2(skP2 , pkP1)

)
→ card′:

The receiver P2 chooses some public information info ← {0, 1}∗ (e.g., a

timestamp) and computes r ← Fr(skP2 ,H(info)) and a proof of validity φr ←

Pr(skP2 ,H(info)). P2 then sends the tuple (info, r, φr) to the current card holder, P1.

P1 parses card = (UID,CID, φUID, φσ,ΠT = {T j, φT j , r j, info j} j=0...h) and ver-

ifies the proof of validity Vr(pkP2 , r, φr)
?
= 1. If everything is correct, P1 first

sets infoh+1 = info and rh+1 = r, and then computes Rh+1 ← H(rh+1, infoh+1) and

t ← H(UID, {T j} j=0...h). P1 generates a new transference tag Th+1 ← FT (skP1 , t,Rh+1)

and a proof of knowledge φTh+1 ← PT (skP1 , t,Rh+1) of the construction. Finally, P1

90

generates the proof of ownership φrh ← Pr(pkP1 ,H(infoh)) that the card belongs to

him/her. The card card′ = (UID,CID, φUID, φσ,ΠT = {T j, φT j , r j, info j} j=0...(h+1)) and

the proof of ownership φrh are sent to P2.

Upon reception, P2 asserts if card′ was a card of P1’s by Vr(pkP1 , rh, φrh)
?
=

1. Then, he/she verifies the construction of the unique identifier UID by

VS (UID, φUID) ?
= 1 and the tags {T j} j=0...(h+1) by

∧h+1
j=0

(
VT (H(r j, info j),T j, φT j)

?
= 1

)
,

as well as if the tag of ownership rh+1 is the one he/she had generated (i.e., if r ?
= rh+1).

If all proofs are correct, P2 stores the card card′ as his/her own.

Figure 40: SecureTrade: Send protocol

Sender P1(skP1 , pkP2 , card) Receiver P2(skP2 , pkP1)

info← Zq

r ← Fr(skP2 ,H(info))
φr ← Pr(skP2 ,H(info))

(info, r, φr)
Abort ifVr(pkP2 , r, φr) , 1
infoh+1 = i rh+1 = r
Rh+1 = H(rh+1, infoh+1)
φrh = Pr(skP1 ,H(infoh))
t = H(UID, {T j} j=1...h)
Th+1 = FT (skP1 , t,Rh+1) φTh+1 = PT (skP1 , t,Rh+1)
card′ = (UID,CID, φUID, φσ,ΠT = {T j, φT j , r j, info j} j=0...(h+1))

(card′, φrh)

Abort if rh+1 , r
Abort ifVr(pkP1 , rh, φrh) , 1
Abort ifVS (UID, φUID) , 1

Abort if
∨h+1

j=0
(
VT (H(r j, info j),T j, φT j) , 1

)
=⇒ card′

Source: Author

Play

This method allows a player to prepare his/her cards so that they can be used in

a match with other players (the opponents). The used card still belongs to the first

player, and no opponent is able to send or play with the card even after the owner has

applied this method. Any opponent may deny the match if the used card is not a valid

91

one. Figure 41 summarizes the operations.

Play
(
P1(skP1 , card) ↔ P2(pkP1)

)
: Player P1 prepares a card card =

(UID,CID, φUID, φσ,ΠT = {T j, φT j , r j, info j} j=0...h) that has been updated h times.

P1 chooses some public information infoh+1 ← {0, 1}∗ and computes rh+1 ←

Fr(skP1 ,H(infoh+1)), Rh+1 ← H(rh+1, infoh+1) and t ← H(UID, {T j} j=0...h). Then P1

generates a new transference tag Th+1 ← FT (skP1 , t,Rh+1), together with proof of

knowledge φTh+1 ← PT (skP1 , t,Rh+1) of the construction. The card card is updated

to card′ = (UID,CID, φUID, φσ,ΠT = {T j, φT j , r j, info j} j=0...(h+1)). P1 also prepares two

proofs of ownership φrh ← Pr(skP1 ,H(infoh)) and φrh+1 ← P(skP1 ,H(infoh+1)) to prove

that the card was correctly prepared. The triple (card′, φrh , φrh+1) is sent to his/her oppo-

nent P2 (that can actually be several players).

Upon reception, P2 asserts if card′ belongs to P1 by Vr(pkP1 , rh, φrh)
?
=

1 ∧ Vr(pkP1 , rh+1, φrh+1)
?
= 1. Then, he/she verifies the construction of the

unique identifier UID by VS (UID, φUID) and transference tags {T j} j=0...(h+1) by∧h+1
j=0

(
VT (H(r j, info j),T j, φT j)

?
= 1

)
. If they are all valid, P2 then stores this card

card′ locally, so it can report this information to the game server later, and uses the

unique identifier UID to identify this card during the match.

Report

This method allows any player to submit a report of valid cards that their opponents

had played with, altogether with any other information relevant to the system (e.g., the

match result, in-game cheating proof). The reported cards are stored in a list with only

relevant information to identify any player that had illegally duplicated cards. Figure

42 summarizes the operations.

Report
(
P(card)↔ A(RS)

)
→ DS:

Player P sends to the game auditor A a card card = (UID,CID, φUID, φσ,ΠT =

92

Figure 41: SecureTrade: Play protocol

Player P1(skP1 , card) Opponent P2(pkP1)

infoh+1 ← Zq

rh+1 ← Fr(skP1 ,H(infoh+1))
Rh+1 = H(rh+1,H(infoh+1))
t = H(UID, {T j} j=0...h)
Th+1 ← FT (skP1 , t,Rh+1) φTh+1 ← PT (skP1 , t,Rh+1)
card′ = (UID,CID, φUID, φσ,ΠT = {T j, φT j , r j, info j} j=0...(h+1))
φrh ← Pr(skP1 ,H(infoh)) φrh+1 ← Pr(skP1 ,H(infoh+1))

(card′, φrh , φrh+1)

Abort ifVr(pkP1 , rh, φrh) , 1
Abort ifVr(pkP1 , rh+1, φrh+1) , 1
Abort ifVS (UID, φUID) , 1

Abort if
∨h+1

j=0
(
VT (H(r j, info j),T j, φT j) , 1

)
=⇒ UID

Source: Author

{T j, φT j , r j, info j} j=0...h) that an opponent has used in some match. It verifies if the

player had not modified the card before he/she reported by verifying if the unique

identifier and the transference tags were correctly constructed by VS (UID, φUID) ?
=

1 ∧
∧h

j=0VT (H(r j, info j),T j, φT j). A simplifies the card by removing all proofs, form-

ing a card ĉard = (UID,ΠD = {T j, r j, info j} j=1...h) that is stored in the set of reported

cards RS. Then it verifies if there is any card card with identifier UID = UID already

reported in RS. For each card card, A executes Identi f y(ĉard, card), retrieving the list

of public keysDS of users who had illegally duplicated this card.

Figure 42: SecureTrade: Report protocol

Player P(card) Auditor A(RS)
card

Abort ifVS (UID, φUID) , 1

Abort if
∨h+1

j=0
(
VT (H(r j, info j),T j, φT j) , 1

)
ĉard = (UID,ΠD = {T j, r j, info j} j=0...h) 7→ RS
DS = ∅

∀card ∈ RS, If UID = UID : DS = DS ∪ {Identi f y(ĉard, card)}
=⇒ DS

Source: Author

93

Refresh

This method is used to lessen the size of some stamped card. First the game server

verifies that the card is valid, then that the card belongs to the player who wishes to

refresh it. Afterwards, it stores the bigger card in the list of reported cards to avoid

duplication by the last owner, and stamps a mint version of a card with the same class.

Figure 43 summarizes the operations.

Re f resh
(
P(skP, pkM, card)↔

(
G = A(RS) ∪M(skM, pkP)

))
→ (card′′|DS):

Player P prepares a card card = (UID,CID, φUID, φσ,ΠT = {T j, φT j , r j, info j} j=0...h)

that has been updated h times. P chooses some public information infoh+1 ← {0, 1}∗

(e.g., a timestamp) and computes rh+1 ← Fr(skP,H(infoh+1)), Rh+1 ← H(rh+1, infoh+1)

and t ← H(UID, {T j} j=0...h). Then P generates a new transference tag Th+1 ←

FT (skP, t,Rh+1), together with proof of knowledge φTh+1 ← PT (skP, t,Rh+1) of the

construction. The card card is updated to card′ = (UID,CID, φUID, φσ,ΠT =

{T j, φT j , r j, info j} j=0...(h+1)). At last, P produces two proofs of ownership φrh =

P(skP,H(infoh)) and φrh+1 = P(skP,H(infoh+1)), that card′ belongs to him/her, and

sends the tuple (card′, φrh , φrh+1) to the game server G.

The game auditor A verifies the validity of the card by verifying if the unique

identifier and the transference tags were correctly constructed byVS (UID, φUID) ?
= 1∧∧h

j=0VT (H(r j, info j),T j, φT j), and verifies if the card really belongs to P by verifying

Vr(pkP, rh, φrh)
?
= 1 ∧ Vr(pkP, rh+1, φrh+1)

?
= 1. If they are valid, A simplifies the card

by removing all proofs, forming a card ĉard = (UID,ΠD = {T j, r j, info j} j=1...h) that

is stored in the set of reported cards RS. Then if verifies if there is any card card

with identifier UID = UID already reported in RS. For each card card, A executes

Identi f y(card′, card), retrieving the list of public keys DS of users who had illegally

duplicated this card. If identifying card′ did not return any transgressor, both parties

execute S tamp
(
P(skP, pkM,CID)↔ M(skM, pkP)

)
to produce a fresh card card′′ to P.

94

Figure 43: SecureTrade: Refresh protocol

Player P(skP, card) Server G(A(RS) ∪M(skM, pkP))

infoh+1 ← Zq

rh+1 ← Fr(skP1 ,H(infoh+1))
Rh+1 = H(rh+1,H(infoh+1))
t = H(UID, {T j} j=0...h)
Th+1 ← FT (skP1 , t,Rh+1) φTh+1 ← PT (skP1 , t,Rh+1)
card′ = (UID,CID, φUID, φσ,ΠT = {T j, φT j , r j, info j} j=0...(h+1))
φrh ← Pr(skP1 ,H(infoh)) φrh+1 ← Pr(skP1 ,H(infoh+1))

(card′, φrh , φrh+1)

Abort ifVr(pkP1 , rh, φrh) , 1
Abort ifVr(pkP1 , rh+1, φrh+1) , 1
Abort ifVS (UID, φUID) , 1

Abort if
∨h+1

j=0
(
VT (H(r j, info j),T j, φT j) , 1

)
ĉard = (UID,ΠD = {T j, r j, info j} j=0...h) 7→ RS
DS = ∅

∀card ∈ RS, If UID = UID :

DS = DS ∪ {Identi f y(ĉard, card)}
IfDS , ∅ : =⇒ DS

card′′ S tamp(P(skP, pkM,CID)↔ M(skM, pkP))

=⇒ card′′

Source: Author

Identify

This method identifies the perpetrator that had duplicated the reported/refreshed

card by comparing information related to previous and current owners of two cards

with the same unique identifier. Figure 44 summarizes the operations.

Identi f y(card, card)→ pkD:

The game auditor A parses cards card = (UID,ΠD = {T j, r j, info j} j=0...h) and card =

(UID,ΠD = {T j, r j, info j} j=0...h) with the same identifier UID = UID. It searches for

the first index l in which Tl , Tl, computes Rl ← H(rl, infol) and Rl ← H(rl, infol), and

retrieves the public key of the perpetrator D as pkD =
(Tl

Tl

) 1
Rl−Rl . If the index l is larger

than the number of hops for any card (h or h), this card had already been reported but

had not been duplicated, so the output is empty.

95

Figure 44: SecureTrade: Identify protocol

Game auditor A(card, card)

l = −1 limit = min(h, h)

∀k ∈ [0, limit], if Tk , Tk : l = k
Abort if l = −1

Rl ← H(rl, infol) Rl ← H(rl, infol)

pkD =

(
Tl

Tl

) 1
(Rl−Rl)

=⇒ pkD

Source: Author

4.3 Summary

In this section we have described an e-cash based protocol for securely trading

cards in a TTP-free TCG. Our solution, based on (BELENKIY et al., 2009), applies

methods Setup, Register, Stamp, Send, Play, Report, Refresh and Identify. For each

method, we detailedly present all operation required to execute it by using methods

described in Section 3. From now, we can analyze the efficiency of our proposed

solution.

96

5 ANALYSIS

In this chapter, we analyze qualitatively and quantitatively the protocol described

in Chapter 4 in different levels. First, we analyze the compliance with the security

requirements we have defined in Section 2.3 for a P2P TCG. This description opens the

discussion of what should the game server do when it encounters an illegal duplication.

Then, we analyze the efficiency of the protocol using a known library for cryptographic

applications. We complete the analysis with the discussion on methods to reduce load

on less powerful devices.

5.1 Security analysis

In this section, we analyze the security requirements of a secure card trading sys-

tem and discuss how they are fulfilled by the underlying e-cash scheme, identifying

the underlying blocks that provide each property.

5.1.1 Verifiable stamping

The use of digital signatures and of proofs of knowledge ensures that stamped

cards can be verified without new contacts with the game server.

By applying the P-signature scheme from Section 3.8, the first owner can verify

that the card was correctly signed by the card market and complete the production

of the first valid hop. To forward this information to receivers, the card owner creates

non-interactive proofs of knowledge, as described in Section 3.6, thus guaranteeing the

97

correctness of the relayed information. For the scheme to work correctly, the market’s

public key must be published to all players (e.g., when they register into the system).

5.1.2 TTP-free transferability

Transferability is obtained by creating proofs of knowledge: then anyone can ver-

ify that all values created by previous owners are correct, including the values from

stamping (unique identifier and market signature) and the values for each transfer-

ence (transference and ownership tags). The construction of non-interactive proofs

of knowledge allows subsequent owners to verify the correctness of a card that was

transferred among several owners without contacting them. It is important to note that

transferability only proves correctness, but does not prevent illegal duplication (identi-

fied by the cheating detection process) or prevent the creation of forged cards (which

can be identified as fake by verifiable stamping).

5.1.3 Anonymity

Weak Anonymity is attained by attaching the proof of knowledge to a blind signa-

ture.

Blind signatures are commonly found in e-cash schemes to protect the identity of a

user when spending cash. Whereas the bank cannot link a withdrawal to a spending in

the e-cash context, the game server cannot link the stamping (variant of a withdrawal)

to the usage or trading of a card (both methods derived from the underlying e-cash’s

algorithm spending process). Since a fresh card is obtained using the same method

employed for creating a new stamped card, the equivalence is maintained.

When coupled to the transferability property, the trades can be linked to each

other. To protect against passive adversaries, zero-knowledge proofs of knowledge

hide the outputs from VRFs and the blind signature, which guarantees that they cannot

be linked. Thus, an adversary that observes the data that represents the card cannot

98

link it to the current or previous owners. However, an adversary that receives the card,

or that observes the trade, is able to recognize the card because the unique identifier is

not modified when the card is traded. This problem can be solved in a straightforward

manner, though, as it suffices for the players to communicate using an authenticated

and encrypted channel, such as Bluetooth R© Security Mode 2, 3 or 4 (NIST, 2012b).

Since this is a standard security procedure, the encryption of the cards’ identifiers are

not directly treated by the proposed protocol.

5.1.4 Balance

There are two methods an adversary can use to create more cards than the market

has stamped: it can either forge a new card or duplicate a valid card.

The adoption of digital signatures prevents forgery attempts by entities that do not

know the market’s private key, although if an adversary gains control over the market

itself, it can create as many cards as desired. Honest players should not accept cards

released by any entity that is not the market, i.e., that are not correctly signed by it.

Additionally, if some transgressor has illegally duplicated a valid card, already signed

by the card market, the TCG server can break the anonymity of this user by the iden-

tifying his/her public key. Thereby, both the signature scheme and the identification

method from the e-cash scheme are the bases to achieve this property.

5.1.5 Cheating detection

The cheating detection mechanism is directly deployed by the identification pro-

tocol from the e-cash scheme. The process of identifying double-spenders is usually

done by crossing information from the two instances of the duplicated cards, either

from reports or refreshed cards. Following the enumeration of cheating types discussed

in Section 2.2, the detection occurs as follows:

99

• Double-refresh: If the market receives the same card to be refreshed twice, it can

verify that the card with the same universal identifier UID and having the same

number of transferences (i.e., the same length of ΠT) already has a fresh version

and will reject the second refresh.

• Double-trade: When two instances of a same card are reported or refreshed, the

game auditor can identify the transgressor by the first index in which each the

instances have different owners (i.e., the smallest j such that T j differs). It can

then use these instances as proof for identifying the transgressor.

• Trade-then-play: When a valid instance of a card is reported or refreshed, and

the subsequent match is reported, the game auditor can identify the transgressor

by the index of the match (the last T from the reported card). The reported card

and the valid instance can then be used as proof that the player has cheated.

• Refresh-then-trade: When a card that was refreshed is sent to another player, and

then reported or refreshed, the game auditor can identify the transgressor by the

index of the refreshing (the last T from the refreshed card). The game auditor

can then use the refreshed card and the traded one as proof of the transgression.

• Refresh-then-play: When a card that was refreshed is used in a match and then

reported, the game auditor can identify the transgressor by the index of the match

and the card refreshed (the last T from the refreshed card). The refreshed card

and the reported one can be used as proof that the cheating occurred.

5.1.6 Exculpability

Exculpability is also dependent on the identification of the illegal duplicator, sim-

ilarly to what occurs in e-cash schemes.

The equation to compute the public key of the transgressor depends on the trans-

ference tags (T) and on the transference information (R) of the duplicated cards. Even

100

though R could be forged using previous cards from the user, T is computed using the

player’s private key (and is bound to R, so that a forged R will relate to no transfer-

ence). hence, for adversaries to create two coins that will blame some player, they have

to either corrupt the player (but, then, all the cards from this player already become the

adversary’s) or to be able to create a forged card (i.e., forge the underlying proof of

knowledge, which should be unfeasible if the underlying protocol is secure).

5.2 Treating an illegal duplication

While all secure electronic cash schemes provide a method for identifying a

double-spending, they seldomly discuss what to do when it is found. Commonly, the

actions to be taken when the fraud is found is considered an administrative measure

for the implementation, and depends on legislative sanction. For example, the bank

might decide to charge the culprits into paying what they have illegally created (and

take upon itself the costs when charging the adversaries is not possible) or refuse to

pay for duplicated coins. However, it is important to bear in mind that, unless the bank

has some mechanism to detect that the user presenting a duplicated coin is in collusion

with the duplicator, refusing a coin may be illegal, as the bank is appropriating the

user’s assets.

Even though P2P TCGs do not deal with cash directly, this problem is likely even

more complex in this scenario. In some TCGs, some cards are produced in a limited

amount, and for this reason are called rare cards. These cards usually have powerful

effects in the game or have some artwork that reflects the limited production, which

ends up increasing their value for collectors. If the market decides to keep the cards,

accepting duplicated ones, an attacker may multiply a rare card with the sole objective

of flooding the system with such a card. The game server must, thus, have an alterna-

tive to avoid this undertaking. Obliging the transferences to occur in the presence of a

trusted party is an option, but it would go against the requirement of having TTP-free

101

transferability. In paid games, it is also possible to charge the duplicator accordingly,

making the duplication attempts to expensive for attackers. Another way to provide

this balance is to compel the owners rare cards to refresh them before using or trading

them to somebody else. This can be easily done if the owner of the card, P, proves

that all ownership tags of the cards refers to him/herself, i.e., for a card with h tags in

ΠT ,
∧h

j=0Vr(pkP, r j, φr j)
?
= 1.

For common cards, the game server may follow the loose restriction of keeping

both cards, since increasing the number of these cards may not disrupt the fluctuation

of card values. Nonetheless, the registration center may need a way to unregister the

duplicators from the system as a punishment for their misbehavior. For example, it

can set a short expiration date to the user certificate, forcing the players to renovate

their key certificate, and denying further subscription of duplicators, or simply have

a revocation list that should be checked by the players periodically, as usually occurs

with certificates on the Internet.

5.3 Performance analysis

Aiming to evaluate the performance of the proposed scheme, we benchmarked it

using an efficient library for elliptic curve cryptography: RELiC (ARANHA; GOU-

VÊA, —). This library provides efficient methods for the operations necessary in the

proposed protocol: operations in finite field and in elliptic curve points, hash functions,

pairings computation, and efficient storage for points. The implementation supports

presets with a high performance in 64-bit architectures (ARANHA et al., 2011) (for the

game server), and for mobile compatibility (e.g., ARM architectures (ARAUJO, 2013),

for the players’ devices) when working with a 128-bit security level pairing-friendly

curve. We summarize the compiling parameters employed in our implementation in

Appendix B, where we also present the curve parameters and additional information

related to their execution (e.g., hash function and pseudorandom generator).

102

Table 6: Size (in bytes) to represent group elements using RELiC toolkit with 128
security bits

Group element Expanded Compressed
Zq 32
G1 65 33
G2 129 65
GT 384 256

Source: Author

To store the elements that compose the cards, we need to represent elements in

Zq, G1, G2 and GT . RELiC stores them as bit arrays, whose lengths depend on the

group order. Elliptic curve points can be serialized using one out of two possible

representations: compressed and expanded. Compressed points are usually used for

transmitting them to other devices, or for storing values that are more rarely used, such

as each individual card. Expanded points are used for values frequently used, such as

the curve generator or the market public key. The lengths of the representations are

presented in Table 6.

The processing time is computed in the pairing setting mode. We execute opera-

tions in the finite field (scalar addition – FFA – and scalar multiplication – FFM), in

the pairing source groups (elliptic curve addition – ECA – and elliptic curve multipli-

cation – ECM, in G1 or G2), in the pairing target group (extended field multiplication –

FXM – and extended field exponentiation – FXE), and the pairing computation (PC).

Table 7 presents these values for an Intel Core i7 4790, with 3.6 GHz without Hyper

Threading (HT) and 4 GHz with HT.

The timing for each operation and the following timing tests were executed 100

times. The sample size was devised so that the standard deviation did not surpass 10%

of the mean value. The largest standard deviation was 9.57% of the mean value, to

prove knowledge of a signature (φσ).

103

Table 7: Processing time of group operations, on a 4 GHz with Hyper Threading (HT)
or 3.6 GHz without it

Group Operation
Operation (without HT) Operation (with HT)

Cycles Time Cycles Time

Zq
FFA 111 0.031 µs 114 0.029 µs
FFM 1399 0.39 µs 1408 0.35 µs

G1
ECA 4267 1.19 µs 4270 1.10 µs
ECM 76559 0.021 ms 776251 0.19 ms

G2
ECA 11850 0.003 ms 11742 0.003 ms
ECM 1811813 0.50 ms 1811097 0.45 ms

GT

FXM 15637 0.004 ms 15643 0.004 ms
FXE 3455933 0.96 ms 3483206 0.87 ms
PC 4679812 1.30 ms 4713669 1.19 ms

Source: Author

Table 8: Size to represent proofs of knowledge, with 128 security bits

Proof
Elements to prove

Equations
Proof Size

in G1 in G2 G1 G2 Bytes
φUID 2 5 6 28 34 3134
φσ * 24 4 18 120 80 9160
φT j 4 7 8 40 46 4310
φr j 5 8 10 50 56 5290

* Proof for signing 4 messages: the first owner’s private key skP0 , the class identifier CID, the serial
seed s and the transference seed t.

Source: Author

5.3.1 Storage

To store a card card = (UID,CID, φUID, φσ,ΠT = {T j, φT j , r j, info j} j=0...h) that was

used or traded h times, we have to store all elements that are represented. The unique

identifier (UID) and each transference and ownership tags (respectively, T j, r j ∈ ΠT)

are elements in G1; they are output from VRFs, and, hence, 1 + 2h elements are nec-

essary. The class identifier (CID) is a numeric representation of the class and can

be represented by one element in Zq, whereas the public information info j can be any

string of bytes (for simplicity, we consider it here as another element in Zq). Each proof

has different sizes, because they depend on the proved values and the PPE defined for

them. Table 8 summarizes the costs for the proof of construction of UID (φUID), T j

(φTJ), and r j (φr j), and for the proof of signature from the market (φσ).

104

Table 9: Assemble of costs to store a card, with 128 security bits
card UID φUID CID φσ T φT r info

Zq
1 1

1 1

G1
1 28 120 1 40 1

149 42

G2
34 80 46

114 46

bytes
33 3134 32 9160 33 4310 33 32

12359 4408

Combining all costs, as illustrated in Table 9, we deduce the expression:

c(h) =


1(Zq)

149(G1)

114(G2)


+


1(Zq)

42(G1)

46(G2)


h = 12359 + 4408h bytes (5.1)

Since RELiC stores all elements in constant-size variables, this cost was verified

using the library. This expression is also used for cards being transmitted.

As aforementioned, the card grows for each usage or trade. The growth is linear

with each hop, as new T j, φT j , r j and info j are created. For a single card the growth

is not so noticeable. However, if we consider that the players’ decks have around 50

cards, as it is common in commercial TCGs, the storage costs become more relevant,

as illustrated in Figure 45.

In the chart from Figure 45, we set a threshold limit of 5 MB to store security

information related to a deck, which is equivalent to approximately 19 hops. This is

an admissible value if we consider that a game may need more than 100 times more

storage space for data related to the game (functionality and graphical designs): in

Hearthstone, for example, the minimum required storage space is 2 GB for a mobile

device with Android OS (BLIZZARD ENTERTAINMENT, —). In this case, 5 MB

for security measures is equivalent to only 0.25% of the game data.

105

Figure 45: Growth of storage space required for a deck, with 128 security bits

0

1

2

3

4

5

6

0 5 10 15 20 25

D
ec

k
si

ze
 (

M
B

)

Number of hops

1 Card

10 Cards

50 Cards

Threshold

Source: Author

5.3.2 Communication

Almost all protocol methods are interactive, and require communication between

the involved parties. The underlying e-cash protocol was constructed for minimizing

the number of messages exchanged for each method, so the only method that is not

executed with one request and one response is the Refresh protocol. Also, without loss

of generality, the verification step and the stamping step can happen simultaneously,

reducing the number of interactions: after all, the fresh card ought to be returned to the

player if and only if the verification process is successful. In the following, we present

the number of group elements for each message and summarize these values in Table

10, with the corresponding size in bytes using RELiC.

For the Register protocol, a player P sends a message with three parts: his/her

identity idP, his/her public key pkP, and the proof that he/she knows the associated pri-

vate key φP. The registration center responds with the certificate σP if the subscription

is accepted. We can represent idP as a numeric value in Zq and the public key as an

element in GT . The proof of knowledge is a proof of 2 PPEs, with 1 variable in G1 and

106

2 in G2 (which results in 10 elements in G1 and 12 in G2). This adds up to 1 element in

Zq, 10 in G1, 12 G2 and 1 in GT for the complete request. From Table 5, independently

from the number of messages, we need 5 elements in G1, 1 in G2 and 1 element in Zq

to represent a signature with the P-signature scheme presented in Section 3.8, which

represents the entire response message.

For the Stamp protocol, the player sends the commitment Ks for the blind signa-

ture, the proof of construction of the commitment φKs , and the class identifier CID of

the card to buy. The market responds with the partial signature σ′ and the partial serial

seed component s′′. The commitment is an element in G1 and the CID is a value in

Zq. The proof of the commitment for 4 messages (player’s private key skP, serial seed

s′, transference seed t and an empty space for the class identifier CID) is composed

by 12 PPEs with 16 variables in G1, resulting in 80 elements in G1 and 48 in G2. The

signature, independently of the number of messages, contains 5 elements in G1, 1 in

G2 and 1 in Zq. Thus, the request message is formed by 1 element in Zq, 81 elements

in G1 and 48 elements in G2, while the response comprises 2 elements in Zq, 5 in G1

and 1 in G2.

For the Send protocol, the receiver sends the public and private information of the

trade (info and r), and the proof φr that he/she knows the private key of r. After com-

puting the new hop, the sender responds with the proof of ownership φrh that he/she is

the current owner, before passing the card card′ to the new owner. The public infor-

mation info is represented as a numeric value in Zq, and the private information r, as

a value in G1. Both proofs, as presented in Table 8, are represented by 50 elements

in G1 and 56 elements in G2. Finally, the card has the cost associated with Equation

5.1. Thereby, the receiver sends to the sender 1 elements in Zq, 51 in G1 and 56 in G2,

that responds with 50 elements in G1, 56 in G2, and a card ((1 + h) elements in Zq,

(149 + 42h) in G1 and (114 + 46h) in G2).

The Play protocol involves only one message from the sender. He/She sends the

107

card card′ to play, and two proofs of ownership (rh and rh+1). The proofs are each

represented by 50 elements in G1 and 56 elements in G2 (see Table 8), and the card

has the cost associated with Equation 5.1. For a deck of 50 cards (and 2 proofs of

ownership for each card), the player sends (50 + 50h) elements in Zq, (7550 + 2100h)

in G1 and (5812 + 2300h) in G2.

In the Report protocol, the player sends an entire deck of cards to the game auditor,

so the costs are a multiple of the costs of a card. For example, for a deck with 50 cards,

the player sends (50 + 50h) elements in Zq, (7450 + 2100h) in G1 and (5700 + 2300h)

in G2.

Finally, the Refresh protocol is a combination of the Send and Stamp protocols,

and have their costs combined. This results in (1 + h) elements in Zq, (249 + 42h) in

G1 and (226 + 46h) in G2 sent to the server, which responds with 2 elements in Zq, 5

in G1 and 1 in G2.

Table 10 presents the costs in numbers (considering a deck with 50 cards, whenever

applicable). These numbers are also illustrated in Figure 46, in which the messages for

each protocol is presented when the cards are not sent. For the methods that depend

on how many times a card was used or traded, Figure 47 also illustrates the growth

of the message sent if the entire deck is at the same hop, in which each color degree

represents how much the message grows when the card has been used or sent.

Since the presented protocol is intended for P2P architecture, it is expected that the

players will connect via an ad-hoc wireless network, using, for example, Bluetooth R©.

Bluetooth R© connection is efficient for this kind of operation, since the protocol is capa-

ble of transmitting data from 720 kbps up to 54 Mbps if the devices are in line of sight

(BLUETOOTH SIG, 2014). For example, for cards with 10 hops, the slower connec-

tion will take less than 200 ms for sending a card, and around 8 seconds for playing

with the entire deck. This transmission might be performed before the match begins,

when both players must send their decks to one another, in which case the setup time

108

Table 10: Communication cost per protocol, considering decks with 50 cards and 128
security bits

Protocol
Player

Zq G1 G2 GT

Register 1 10 12 1
Stamp 1 81 48 0

Send *
1 51 56 0

1 + h 199 + 42h 170 + 46h 0
Play 50 + 50h 7550 + 2100h 5812 + 2300h 0
Report 50 + 50h 2100h 2300h 0
Refresh 1 + h 249 + 42h 226 + 46h 0

Protocol
Server

Zq G1 G2 GT

Register 1 5 1 0
Stamp 2 5 1 0
Refresh 2 5 1 0

* Values for Receiver/Sender

Source: Author

Figure 46: Communication cost per protocol, considering decks with 50 cards and 128
security bits

0 2 4 6 8 10 12

Register

Stamp

Send

Play

Refresh

Message size (KB)

Server/Receiver Player/Sender

Source: Author

is approximately 20 s; alternatively, the players can simply send the cards’ information

that are strictly required by the application before the match begins, and only later send

the security information related to them for allowing the verification to occur. Even in

the worst scenario, 20 seconds it likely to be considered an acceptable time in a game

109

Figure 47: Growth of message size per hop of card or 50-dard deck, each color degree
corresponds to one additional hop

0 50 100 150

Send

Refresh

Message size of a card (KB)

0 2 4 6

Play

Report

Message size of a deck (MB)

Source: Author

Figure 48: Processing time for constant methods, with 128 security bits

0

50

100

150

200

250

Setup Register Stamp Identity

Ti
m

e
(m

s)

Server-side constant methods

0

2

4

6

8

10

12

14

16

Register Stamp Send
(Sender)

Play (Prover) Refresh

Ti
m

e
(s

)

Player-side constant methods

Source: Author

in which the players usually prepare tables, markers and even dice before a match,

depending on the players’ cards.

5.3.3 Processing time

The execution time for the protocol is likely dominated by the pairing computa-

tions, even though the number of operations in the pairing setting are also cumbersome.

We have analyzed using benchmarks for the RELiC library in a desktop computer,

where the processing power is usually higher than in a mobile device.

Some methods have small variations in the processing time to compute them. They

depend only on their operations and not on the operands passed, and we call them

constant methods. On the server side, the constant methods are: Setup, Register, Stamp

and Identify. On the players’ side, they are: Register, Stamp, Send (sender-side), Play

(prover-side) and Refresh. The mean execution time is presented in Figure 48.

The methods Setup, Identify and Register (player-side) are the fastest methods, for

110

they involved a few and fast operations to compute, so they are computed in less than

20 ms. The methods that include proofs of knowledge to the card (Stamp, Send, Play

and Refresh) are the most expensive ones. The verifier of these proofs is the entity

that ends up with a higher load, because they have to compute bilinear pairings and

operations in GT , while the prover computes operations in the source groups.

The remaining methods also depend on the size of the card, because they have to

verify a large number of proofs of knowledge. These variable methods also limit the

size of the card, due to the fact that bigger cards will have longer verification time.

On the server side, the variable methods are Report and Refresh, while on the players’

side they are Send (receiver-side) and Play (verifier-side). Figure 49 illustrates the

mean execution time of such methods as a card is passed along. For better readability,

the charts are divided in methods that verify one card or the entire deck.

The most expensive methods are those that verify an entire deck: the server-side of

Report and the verifier-side of Play. For a complete deck of 50 cards that has been used

5 times, the verification is complete in less than 3 minutes. If a mobile device is used

instead of a desktop, the times are likely to be higher. For example, the comparison

between the works of Aranha et al. (2011) and of Araujo (2013) shows that a legacy

mobile device (Motorola Milestone 1, ARMv6 600 MHz) is around 10 times slower

to compute a pairing than a desktop with a Intel Core i5 1,6 GHz. Hence, the protocol

would take around 30 min to complete the execution in this device.

All in all, we can argue that these timings are quite reasonable for common trading

card games, even if played with legacy devices. The reason is that the preparation of a

deck can be done beforehand, much before the match starts; in addition, the verification

of the corresponding proofs of knowledge can happen in background during matches,

which usually take several minutes. Therefore, in practice those costs can be made

transparent to players, in especial if the game is played using modern mobile devices,

whose processing capabilities are becoming more and more comparable with those of

111

Figure 49: Processing time for variable methods, considering a 50-card deck and 128
security bits

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9 10

Ti
m

e
(s

)

Hops

Card verification methods

Refresh Send (Receiver)

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6 7 8 9 10

Ti
m

e
(s

)

Hops

Deck verificaton methods

Report Play (Verifier)

Source: Author

desktop computers.

5.4 Offload methods

In Section 5.3 we discussed the costs for storage, communication and execution of

our card trading protocol. Even though they are compliant for usability, some compu-

tations are still expensive for devices with low computational power, for example, for

a mobile device to verify an entire deck. Some policy methods can reduce these costs,

at some cost for an attacker to take advantages of the system. We now describe some

methods to provide more usability, and present how much peril they offer to security.

112

5.4.1 Delegate deck verification

Before two players will play in a match, they execute the Play protocol for every

card in their play deck; during this process, one proves the correctness of each card

in the deck and the other verifies the proofs. Proving is faster than verifying, mainly

because verification is executed for every hop in the cards while proof depends on the

last hop (see Section 5.3 for details).

In the discussion of the previous sections, we proposed that all cards are verified

completely. Nevertheless, an alternative is to have the player delegate this process to

the game auditor. More precisely, if a player verifies only the ownership of each card,

he/she reduces the costs in more than 500 ms per hop. Then, that player can execute

the Report protocol to send the entire deck to the game auditor, which verifies its

correctness completely. If the verification holds, there was no problem in the system.

However, if the prover had forged the cards with which it is playing, the game auditor

can inform the verifier that the cards were malformed. The verifier can then flag the

prover so, the next time they play together, the entire deck will be verified offline to

guarantee integrity.

It is important to notice that such process is not totally foul proof: unfortunately,

the game server cannot blame the said dishonest player (e.g., downgrading his/her

reputation), because it cannot provide any proof to guarantee exculpability. After all,

the verifier may have modified the report to harm an honest player. It can, nevertheless,

consider the match invalid and wait for the corresponding report from the prover to

check for errors.

5.4.2 Reuse match information

To play a match, a player executes the Play protocol to create an auto-transference

of each card in the play deck. If one desires to play several consecutive matches with

113

the same cards, in principle it would be necessary to create new proofs for each match.

However, if the opponent consents, that player may actually reuse an existing proof for

several consecutive matches, saving processing time and storage.

Usually, the public information info j used to compute R j may present the times-

tamp to avoid replay attacks and guarantee that the proof was constructed for that

transference. The usage/trade is to be refused if the timestamp is out of a predefined

time window. However, if the adversary does not change from a match to another,

there is no problem in replaying the last card. If the game server finds several reports

of the same card, it can discard the recurrences and maintain the report of only one

usage. If the opponents vary from match to match, the new one should refuse a card

with a timestamp from outside the acceptable time window. Otherwise the player may

try to replay a card that does not belong to him/her anymore with the preparation for

a previous match he/she had played. Since the card was prepared before the trade, the

game server would not be able to identify the cheat of the type trade-then-play.

5.5 Summary

In this Chapter we have analyzed the protocol, both qualitatively and quantita-

tively. We have discussed how the protocol fulfills the security properties defined in

Section 2.3, and how one implementing a real application using this protocol could

handle the illegal duplication of cards. We have also analyzed the computational costs

of the protocol, in communication, storage and processing time. We have concluded

the analysis discussing methods to lower costs to more constrained devices with minor

security concerns that do not break the security properties required.

114

6 CONCLUSIONS

Given the success of TCGs and the growth of casual and social digital games, it is

important to consider the usage of protocols that allows users to securely trade cards.

In this work, we have expanded the works of SecureTCG (SIMPLICIO JR. et al.,

2014) and Match+Guardian (PITTMAN; GAUTHIERDICKEY, 2013), that provide

in-game cheating detection, but had left as future work the construction of a method

to trade cards in P2P architecture. The scenario described in Chapter 2 introduces

that a central server is not necessary during trading or playing. It works as a central

authority to stamp new cards and register players, aiming to allow the detection of

irregularities when auditing is necessary. Playing and trading can happen without the

TTP, whilst players are still able to verify the validity of cards they are receiving and

of cards their opponents use in a match. The requirements we have proposed address

the transferability required for P2P trading, while providing balance to the system. If

the balance is broken, the game server is capable of identifying the transgressor and

takes the necessary measures to ensure security.

As the requirements for securely trading cards in TCGs are similar to the ones of

transferable e-cash, the proposed protocol was based on an efficient and modular com-

pact e-cash scheme (BELENKIY et al., 2009). The basis to this protocol, presented

in Chapter 3, focus on zero-knowledge proofs of knowledge to provide transferability

to the system. Even though using Groth-Sahai proofs (GROTH; SAHAI, 2008) are

quite efficient, they are still the bottleneck to the system because they rely on com-

putationally expensive operations: bilinear pairings. To comply with this method, we

115

have used and adapted the P-signature scheme from Izabachène, Libert and Vergnaud

(2011). This protocol had suffer a great loss of security level due to attacks on the

building block of symmetric pairings. However, we were able to circumvent this issue

by converting this signature to an asymmetric pairing setting, together with the secu-

rity reductions to hard computational problems. The resulting protocol was derived

selecting the largest set of elements in G1, whose operations are faster and the memory

representation is more efficient than that of elements in G2.

The requirements are fulfilled by the protocol proposed, which is described in

detail in Chapter 4. After the game server has the game set up, the players can register,

so they give enough information to be identified if they cheat. The game market is

responsible for providing new cards to the game, in which the stamping is anonymous

and can be verified offline. Without a TTP, the players can play with their cards or trade

them, relinquishing the ownership to a new player. To avoid the problem of indefinite

growth of cards (inherent to e-cash), players can refresh their cards for computationally

cheaper ones (in storage size and computational power to verify). The refreshed cards,

together with reported information provided by the players, are sufficient to the game

auditor to identify cheaters (illegal duplicators).

The proposed protocol is quite efficient and can be used in practice. A complete

deck of 50 cards require a few MB depending on how many times the cards had been

used or passed along. For example, a deck with 10 hops requires (before the next re-

fresh) around 3 MB of storage space (equivalent to 0.15% of the game data of Hearth-

stone, an example of commercial TCG). Using the same deck in a match, where the

devices are connected via Bluetooth R©, transferring the information will take less than

10 seconds to send the deck to an opponent. In processing time, the same methods

are also the most expensive ones. Verifying an entire deck takes around 5 minutes in a

desktop and may reach 30 minutes in a legacy mobile device. Albeit this time would

usually be impracticable, the verification can be executed in background during the

116

match, that usually takes several minutes, and the costs are made transparent to the

players. Also, it is possible to delegate the verification the the game server, that can

identify illegal duplications on behalf of players with less powerful devices.

6.1 Future work

We leave as future work the analysis in mobile devices to further validate the effi-

ciency of e-cash protocols, and their application in the TCG scenario. This analysis can

provide evidence of the evolution of pairing computation on restricted devices, com-

paring with the evolution of mobile devices, and possibilities to develop applications

in real TCGs and in e-cash.

Further research can also focus on improvements in efficiency and privacy. For

example, the work of Baldimtsi et al. (2015), that uses malleable signatures based on

Groth-Sahai proofs (CHASE et al., 2014), has recently opened an area for complex

protocols with higher privacy. Even though full anonymity is not an essential property

for trading cards, applying malleable signatures to homomorphic encryption with little

loss of efficiency could benefit both TCGs and e-cash protocols.

6.2 Publications

As direct or indirect result of the research carried out during this thesis, we pro-

duced the following publications:

• Conference Paper: in (SILVA; SIMPLICIO JR., 2015), we describe the construc-

tion of the proposed construction in this work. It has received the award of “Best

Paper” (among 77 submissions).

• Journal Article: in (SIMPLICIO JR. et al., 2016), we propose a authenticated

key-agreement for Internet of Things. We provide an escrow-free protocol with

117

implicit certificates to obtain a lightweight protocol and evaluates its perfor-

mance and security, comparing our results with existing solutions, and showing

that some very efficient protocols are actually flawed.

118

REFERENCES

ABE, M. et al. Constant-size structure-preserving signatures: Generic constructions
and simple assumptions. In SPRINGER. Advances in Cryptology (ASIACRYPT’12).
Beijing, China, 2012. p. 4–24.

. Structure-preserving signatures and commitments to group elements. In
SPRINGER. Advances in Cryptology (CRYPTO’10). Santa Barbara, USA, 2010. p.
209–236.

. Converting cryptographic schemes from symmetric to asymmetric bilinear
groups. In SPRINGER. Advances in Cryptology (CRYPTO’14). Santa Barbara, USA,
2014. p. 241–260.

ARANHA, D. F.; GOUVÊA, C. P. L. RELIC is an Efficient LIbrary for Cryptography.
—. Available from Internet: <https://github.com/relic-toolkit/relic>. Cited
11/08/2016.

ARANHA, D. F. et al. Faster explicit formulas for computing pairings over ordinary
curves. In SPRINGER. Advances in Cryptology (EUROCRYPT’11). Tallinn, Estonia,
2011. p. 48–68.

ARAUJO, R. W. M. Autenticação e comunicação segura em dispositivos móveis de
poder computacional restrito. MSc Thesis (MSc) — Universidade de São Paulo,
Instituto de Matemática e Estatística, São Paulo, Brazil, 2013.

BALDIMTSI, F. et al. Anonymous transferable e-cash. In SPRINGER. Practice
and Theory in Public-Key Cryptography (PKC 2015). Gaithersburg, USA, 2015. p.
101–124.

BALLARD, L. et al. Correlation-resistant storage. Baltimore, USA, 2005.
(TR-SP-BGMM-050507).

BARBULESCU, R. et al. A heuristic quasi-polynomial algorithm for discrete
logarithm in finite fields of small characteristic. In SPRINGER. Advances in
Cryptology (EUROCRYPT’14). Copenhagen, Denmark, 2014. p. 1–16.

BELENKIY, M. et al. P-signatures and noninteractive anonymous credentials. In
SPRINGER. 5th Theory of Cryptography Conference. New York, USA, 2008. p.
356–374.

. Compact e-cash and simulatable vrfs revisited. In SHACHAM, H.; WATERS,
B. (Ed.). Pairing-Based Cryptography (Pairing’09). [S.l.]: Springer, 2009. p.
114–131. ISBN 978-3-642-03297-4.

https://github.com/relic-toolkit/relic

119

BLIZZARD ENTERTAINMENT. Hearthstone system requirements.
—. Available from Internet: <https://us.battle.net/support/en/article/

hearthstone-system-requirements>. Cited 11/08/2016.

BLUETOOTH SPECIAL INTEREST GROUP. Specification of the Bluetooth R©

System. [S.l.], 2014. Available from Internet: <https://www.bluetooth.org/en-us/
specification/adopted-specifications>. Cited 11/08/2016.

BLUM, M.; FELDMAN, P.; MICALI, S. Non-interactive zero-knowledge and its
applications. In ACM. 20th annual ACM symposium on theory of computing. Chicago,
USA, 1988. p. 103–112.

BONEH, D. The decision diffie-hellman problem. In SPRINGER. 3th international
symposiun on algorithmic number theory. Portland, Oregon, 1998. p. 48–63.

BONEH, D.; GENTRY, C.; WATERS, B. Collusion resistant broadcast encryption
with short ciphertexts and private keys. In SPRINGER. Advances in Cryptology
(CRYPTO’05). Santa Barbara, USA, 2005. p. 258–275.

BOYEN, X.; WATERS, B. Full-domain subgroup hiding and constant-size group
signatures. In SPRINGER. Practice and Theory in Public-Key Cryptography (PKC
2007). Beijing, China, 2007. p. 1–15.

CAMENISCH, J.; HOHENBERGER, S.; LYSYANSKAYA, A. Compact e-cash. In
SPRINGER. Advances in Cryptology (Eurocrypt’05). Aarhus, Denmark, 2005. p.
302–321.

CAMENISCH, J.; LYSYANSKAYA, A. A signature scheme with efficient protocols.
In SPRINGER. 3rd international conference on security in communication networks.
Amalfi, Italy, 2003. p. 268–289.

. Signature schemes and anonymous credentials from bilinear maps. In
SPRINGER. Advances in Cryptology (CRYPTO’04). Santa Barbara, USA, 2004. p.
56–72.

CANARD, S.; GOUGET, A. Anonymity in transferable e-cash. In SPRINGER.
Applied Cryptography and Network Security (ACNS). New York, USA, 2008. p.
207–223.

CANARD, S.; GOUGET, A.; TRAORÉ, J. Improvement of efficiency in
(unconditional) anonymous transferable e-cash. In TSUDIK, G. (Ed.). Financial
Cryptography and Data Security. [S.l.]: Springer, 2008. p. 202–214. ISBN
978-3-540-85229-2.

CANETTI, R.; GOLDREICH, O.; HALEVI, S. The random oracle methodology,
revisited. Journal of the ACM (JACM), ACM, New York, USA, vol. 51, no. 4, p.
557–594, 2004.

CHASE, M. et al. Malleable proof systems and applications. In SPRINGER. Advances
in Cryptology (Eurocrypt’12). Cambridge, UK, 2012. p. 281–300.

https://us.battle.net/support/en/article/hearthstone-system-requirements
https://us.battle.net/support/en/article/hearthstone-system-requirements
https://www.bluetooth.org/en-us/specification/adopted-specifications
https://www.bluetooth.org/en-us/specification/adopted-specifications

120

. Malleable signatures: Complex unary transformations and delegatable
anonymous credentials. IACR Cryptology ePrint Archive. 2013. Available from
Internet: <http://eprint.iacr.org/2013/179.pdf>. Cited 11/08/2016.

. Malleable signatures: New definitions and delegatable anonymous credentials.
In IEEE. 2014 IEEE 27th Computer Security Foundations Symposium (CSF). Vienna,
Austria, 2014. p. 199–213.

CHATTERJEE, S.; MENEZES, A. On cryptographic protocols employing asymmetric
pairings – the role of ψ revisited. Discrete Applied Mathematics, Elsevier, vol. 159,
no. 13, p. 1311–1322, 2011.

CHAUM, D. Blind signatures for untraceable payments. In SPRINGER. Advances in
cryptology (CRYPTO’82). Santa Barbara, USA, 1983. p. 199–203.

CHAUM, D.; EVERTSE, J.-H.; GRAAF, J. V. D. An improved protocol for
demonstrating possession of discrete logarithms and some generalizations. In
SPRINGER. Advances in Cryptology (EUROCRYPT’87). Amsterdam, The
Netherlands, 1988. p. 127–141.

CHAUM, D.; PEDERSEN, T. P. Transferred cash grows in size. In SPRINGER.
Advances in Cryptology (Eurocrypt’92). Balatonfüred, Hungary, 1993. p. 390–407.

. Wallet databases with observers. In SPRINGER. Advances in Cryptolog
(CRYPTO’92). Santa Barbara, USA, 1993. p. 89–105.

DIFFIE, W.; HELLMAN, M. E. New directions in cryptography. Information Theory,
IEEE Transactions on, IEEE, vol. 22, no. 6, p. 644–654, 1976.

DODIS, Y.; YAMPOLSKIY, A. A verifiable random function with short proofs and
keys. In SPRINGER. Practice and Theory in Public-Key Cryptography (PKC 2005).
Les Diablerets, Switzerlands, 2005. p. 416–431.

ELGAMAL, T. A public key cryptosystem and a signature scheme based on discrete
logarithms. In SPRINGER. Advances in Cryptology (CRYPTO’84). Santa Barbara,
USA, 1984. p. 10–18.

ENTERTAINMENT SOFTWARE ASSOCIATION. Essential facts about the
computer and video game industry. 2015. Available from Internet: <http:
//www.theesa.com/wp-content/uploads/2015/04/ESA-Essential-Facts-2015.pdf>.
Cited 11/08/2016.

FEIGE, U.; SHAMIR, A. Witness indistinguishable and witness hiding protocols. In
ACM. 22nd annual ACM symposium on theory of computing. Baltimore, USA, 1990.
p. 416–426.

FIAT, A.; SHAMIR, A. How to prove yourself: Practical solutions to identification
and signature problems. In SPRINGER. Advances in Cryptology (CRYPTO’86). Santa
Barbara, USA, 1987. p. 186–194.

http://eprint.iacr.org/2013/179.pdf
http://www.theesa.com/wp-content/uploads/2015/04/ESA-Essential-Facts-2015.pdf
http://www.theesa.com/wp-content/uploads/2015/04/ESA-Essential-Facts-2015.pdf

121

FUCHSBAUER, G.; POINTCHEVAL, D.; VERGNAUD, D. Transferable constant-
size fair e-cash. In SPRINGER. 8th International Conference on Cryptology and
Network Security. Kanazawa, Japan, 2009. p. 226–247.

GALBRAITH, S. D.; PATERSON, K. G.; SMART, N. P. Pairings for cryptographers.
Discrete Applied Mathematics, Elsevier, vol. 156, no. 16, p. 3113–3121, 2008.

GAUTHIERDICKEY, C.; RITZDORF, C. Secure peer-to-peer trading for multiplayer
games. In IEEE. 2012 11th Annual Workshop on Network and Systems Support for
Games (NetGames). Venice, Italy, 2012. p. 1–6.

. Secure peer-to-peer trading in small-and large-scale multiplayer games.
Multimedia Systems, Springer Berlin Heidelberg, vol. 20, no. 5, p. 595–607, 2014.

GOLDWASSER, S.; KALAI, Y. T. On the (in) security of the fiat-shamir paradigm.
In IEEE. 44th Annual IEEE Symposium on Foundations of Computer Science, 2003.
Crambridge, UK, 2003. p. 102–113.

GROTH, J.; OSTROVSKY, R.; SAHAI, A. Non-interactive zaps and new techniques
for nizk. In SPRINGER. Advances in Cryptology (CRYPTO’06). Santa Barbara, USA,
2006. p. 97–111.

. Perfect non-interactive zero knowledge for np. In SPRINGER. Advances in
Cryptology (EUROCRYPT’06). Saint Petersburg, Russia, 2006. p. 339–358.

GROTH, J.; SAHAI, A. Efficient non-interactive proof systems for bilinear groups.
In SPRINGER. Advances in Cryptology (Eurocrypt’08). Istanbul, Turkey, 2008. p.
415–432.

HANKERSON, D.; MENEZES, A. J.; VANSTONE, S. Guide to Elliptic Curve
Cryptography. New York, USA: Springer, 2004. ISBN 0-387-95273-X.

HUSEMÖLLER, D. Elliptic curves. 2. ed. New York, USA: Springer, 2004. ISBN
978-0-387-21577-8.

IZABACHÈNE, M.; LIBERT, B.; VERGNAUD, D. Block-wise P-signatures and
non-interactive anonymous credentials with efficient attributes. In SPRINGER. 13th
IMA International Conference on Cryptography and Coding. Oxford, UK, 2011. p.
431–450.

KOBLITZ, N. Elliptic curve cryptosystems. Mathematics of computation, American
Mathematical Society, vol. 48, no. 177, p. 203–209, 1987.

LENSTRA JR, H. W. Factoring integers with elliptic curves. Annals of mathematics,
JSTOR, p. 649–673, 1987.

LIDL, R.; NIEDERREITER, H. Finite Fields. 2. ed. Cambridge, OK: Cambridge
University Press, 1997. ISBN 0-512-39231-4.

MENEZES, A. J.; OORSCHOT, P. C. V.; VANSTONE, S. A. Handbook of applied
cryptography. Florida, USA: CRC press, 1996. ISBN 978-0-8493-8523-0.

122

MICALI, S.; RABIN, M.; VADHAN, S. Verifiable random functions. In IEEE. 40th
Annual Symposium on Foundations of Computer Science. New York, USA, 1999. p.
120–130.

MILLER, V. Use of elliptic curves in cryptography. In SPRINGER. Advances in
Cryptology (CRYPTO’85). Santa Barbara, USA, 1986. p. 417–426.

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, U.S.
DEPARTMENT OF COMMERCE. Recommendation for Key Management – Part
1: General (Revision 3). Gaithersburg, USA, 2012. Available from Internet: <http:
//csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf>.
Cited 11/08/2016.

. Special Publication (SP 800-121 Revision 1): Guide to Bluetooth Security.
Gaithersburg, USA, 2012. Available from Internet: <http://nvlpubs.nist.gov/nistpubs/
Legacy/SP/nistspecialpublication800-121r1.pdf>. Cited 11/08/2016.

. Federal Information Processing Standard (FIPS PUB 186-4): Digital
Signature Standard (DSS). Gaithersburg, USA, 2013. Available from Internet:
<http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf>. Cited 11/08/2016.

. Federal Information Processing Standard (FIPS PUB 202): SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions. Gaithersburg, USA,
2015. Available from Internet: <http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.
202.pdf>. Cited 11/08/2016.

OKAMOTO, T. Provably secure and practical identification schemes and
corresponding signature schemes. In SPRINGER. Advances in Cryptology
(CRYPTO’92). Santa Barbara, USA, 1993. p. 31–53.

ONLINE GAMES KINGDOM. Trading Card Games - Big List of CCGs & TCGs. —.
Available from Internet: <http://tradingcardgames.com/>. Cited 11/08/2016.

PITTMAN, D.; GAUTHIERDICKEY, C. Match+Guardian: a secure peer-to-peer
trading card game protocol. Multimedia systems, Springer-Verlag, vol. 19, no. 3, p.
303–314, 2013.

POINTCHEVAL, D.; SANDERS, O. Short randomizable signatures. In SPRINGER.
Cryptographers’ Track at the RSA Conference. San Francisco, USA, 2016. p.
111–126.

PRITCHARD, M. How to hurt the hackers: The scoop on internet cheating and
how you can combat it. Gamasutra, July, vol. 24, 2000. Available from Internet:
<http://www.gamasutra.com/view/feature/131557/how_to_hurt_the_hackers_the_
scoop_.php>. Cited 11/08/2016.

RIVEST, R. L.; SHAMIR, A.; ADLEMAN, L. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, ACM, New
York, USA, vol. 21, no. 2, p. 120–126, 1978.

http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-121r1.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-121r1.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://tradingcardgames.com/
http://www.gamasutra.com/view/feature/131557/how_to_hurt_the_hackers_the_scoop_.php
http://www.gamasutra.com/view/feature/131557/how_to_hurt_the_hackers_the_scoop_.php

123

ROCA, J. C.; FEIXAS, F. S.; DOMINGO-FERRER, J. Contributions to mental poker.
PhD Thesis (PhD) — Universitat Autònoma de Barcelona, Bellaterra, Spain, 2006.

SHAMIR, A.; RIVEST, R. L.; ADLEMAN, L. M. Mental poker. In KLARNER,
D. A. (Ed.). The Mathematical Gardner. Belmont, USA: Wadsworth International,
1981. p. 37–43. ISBN 978-1-4684-6688-1.

SHOUP, V. A computational introduction to number theory and algebra. 2. ed.
Cambridge, UK: Cambridge University Press, 2008. ISBN 978-0-512-51644-0.

SILVA, M. V. M.; SIMPLICIO JR., M. A. A secure protocol for exchanging cards
in p2p trading card games based on transferable e-cash. In SBC. Proceedings
of the XV Brazilian Symposium on Information and Computational Systems
Security (SBSeg 2015). Florianópolis, Brazil, 2015. p. 184–197. Available from
Internet: <http://sbseg2015.univali.br/anais/AnaisSBSeg2015Completo.pdf>. Cited
11/08/2016.

SIMPLICIO JR., M. A. et al. SecureTCG: a lightweight cheating-detection protocol
for P2P multiplayer online trading card games. Security and Communication
Networks, Wiley Online Library, vol. 7, no. 12, p. 2412–2431, 2014.

. Lightweight and escrow-less authenticated key agreement for the internet of
things. Computer Communications, Elsevier, 2016. In press.

WEIL, A. L’arithmétique sur les courbes algébriques. Thèses françaises de
l’entre-deux-guerres, Kluwer Academic Publishers, vol. 95, p. 1–35, 1928.

WIZARDS OF THE COAST. Magic: the Gathering Tournament Rules. 2014.
Available from Internet: <http://www.wizards.com/contentresources/wizards/
wpn/main/documents/magic_the_gathering_tournament_rules_pdf1.pdf>. Cited
11/08/2016.

YAN, J. J.; CHOI, H.-J. Security issues in online games. The Electronic Library,
MCB UP Ltd, vol. 20, no. 2, p. 125–133, 2002.

http://sbseg2015.univali.br/anais/AnaisSBSeg2015Completo.pdf
http://www.wizards.com/contentresources/wizards/wpn/main/documents/magic_the_gathering_tournament_rules_pdf1.pdf
http://www.wizards.com/contentresources/wizards/wpn/main/documents/magic_the_gathering_tournament_rules_pdf1.pdf

124

APPENDIX A -- CONVERSION OF
ILV-SIGNATURE
PROTOCOL TO
ASYMMETRIC PAIRING
SETTING

The method proposed in (ABE et al., 2014) for converting a cryptographic protocol

from Type 1 (symmetric) pairing to Type 3 (asymmetric) is divided in four steps:

Describe: In this step, the dependency graph for each method is created, asso-

ciating each group element of the original system (object elements and security

problem elements) to the ones used in its computation, and tracing it to group

elements that cannot be part of the same source group when both are inputs to

the same pairing.

Merge: The dependency graphs are merged into one whole graph, blending the

dependencies for the entire system.

Split: The whole dependency graph is split into two graphs, one for each group,

respecting the elements that must (or must not) be on the same group, duplicating

elements when necessary.

Derivate: Describe the resulting scheme in function on the new elements, con-

sidering order in they are input to pairings, and with converted security assump-

tions with duplicated elements.

125

As described in Section 3.8, this method is applied on the signature scheme from

(IZABACHÈNE; LIBERT; VERGNAUD, 2011) that was originally proposed in the

symmetric setting. The summary of the resulting scheme is presented in Section 3.8.1,

and here we present the detailed application of the conversion.

Here, we use the original notation from (IZABACHÈNE; LIBERT; VERGNAUD,

2011), that sometimes differs from that of the rest of this document.

A.1 Description of the original protocol

First we need to describe the original protocol from which we will build the depen-

dency graph. This description is necessary because elements that are directly derivated

from other elements must belong to the same group, and elements that are used to-

gether in some bilinear pairing must belong to different source groups. To build the

graph, each pairing is indexed to differentiate its input elements. Since not all methods

create new elements, only the ones that do are described here. Namely: KeyGen (Fig-

ure 50), Sign (Figure 51), Verify (Figure 52), Commit (Figure 53), WitGen (Figure 54)

and VerifyWit (Figure 55).

The remaining methods do not provide new elements or are directly adapted from

the previous ones. UpdateComm uses the same objects as Commit, and ObtainSig –

IssueSig uses the same as Commit and Sign. And the proof methods ProveCom and

VerifyProofCom use the same equations as VerifyWit, and ProveSig and VerifyProof-

Sig use the same equation as VerifyWit and Sign, all together with unconstrained zero

knowledge equations.

Besides the methods, the resulting protocol must consider all computational prob-

lems considered unsolvable to guarantee its security. As each instance is presented,

the reduction of a forgery to one problem is also presented, so that the proof of secu-

rity results in alternative problems with the corresponding elements. We present the

126

Figure 50: P-signature (original): Key generation protocol

KeyGen (B(n)) → (sk, pk)

α, β, β0, β1, γ, ω
$
← Zq

U = β G

U0 = β0 G

U1 = β1 G

A = γ G

Ω = ω G

∀ j ∈ [1, 2n] \ (n + 1) : G j = α j G

sk = (γ, ω, β1)
pk = (U,U0,U1, A,Ω, {G j} j=1...n)

=⇒ (sk, pk)

Figure 51: P-signature (original): Sign protocol

Sign
(
B(skB, ~m)

)
→ σ

r, c
$
← Zq

σ1 =
γ

ω+c G

σ2 = c G

σ3 = c U

σ4 = c (U0 + β1 σ6)
σ5 = c σ6

σ6 = r G +
∑n

j=1 m j Gn+1− j

σr = r
σ = (σ1, σ2, σ3, σ4, σ5, σ6, σr)

=⇒ σ

Figure 52: P-signature (original): Verification protocol

Veri f y
(
U(pkB, ~m, σ)

)
→ {0, 1}

P1 = e(A,G)

P2 = e(σ1,Ω + σ2)

P3 = e(U, σ2)

P4 = e(σ3,G)

P5 = e(G, σ4)

P6 = e(U0, σ2)

P7 = e(U1, σ5)

P8 = e(G, σ5)

P9 = e(σ6, σ2)

=⇒
(
(P1 ?

= P2) ∧ (P3 ?
= P4) ∧ (P5 ?

= P6 · P7) ∧ (P8 ?
= P9)

)

127

instances to the problems HSDH, l-FlexDH and n-FlexDHE in Figures 56, 58 and 60,

respectively. The reduction to these instances are presented, respectively, in Figures

57, 59 and 61.

For our construction, only the equality (or pertinence) relation is necessary, so the

inequality and inner product relations are disconsidered in our conversion.

With the protocol completely defined, we can construct the dependency graphs.

The nodes of these graphs are all elements used or produced from any derivation, and

the index of the input of pairing computation (nodes with larger . For each element

derivated from another one, a straight arrow indicates that both elements must belong

to the same group. The same arrow indicates if an element is used as input of some

pairing computation, to relate to which input (the first or the second) of which pairing

(all indexed by now) it is used.

The resulting graphs for each protocol described above are presented in Figures 62

(KeyGen), 63 (Sign), 64 (Verify), 65 (Commit), 66 (WitGen) and 67 (VerifyWit).

We also include dependency graphs for each computational problem instance and

its respective security reduction. They are described in Figures 68 (HSDH instance), 69

(reduction to HSDH), 70 (FlexDH instance), 71 (reduction to FlexDH), 72 (n-FlexDHE

instance) and 73 (reduction to n-FlexDHE).

A.2 Merging the dependency graphs

When all graphs are defined, we need to merge all graphs in one graph that repre-

sents all group elements of the protocol. For any pair of node with the same identifier,

they become only one note that receives all ancestors and sends all successors from

both nodes. The resulting graph is presented in Figure 74. It is important to note that,

for this protocol, the commitment C and the sixth element of the signature σ6 represent

the same element. Therefore, they are merged into one node represented by σ6.

128

Figure 53: P-signature (original): Commit protocol

Commit
(
U(pkB, ~m)

)
→ C

r
$
← Zq

C = r G +
∑n

j=1 m j Gn+1− j

=⇒ C

Figure 54: P-signature (original): Witness generation protocol

WitGen
(
U(pkB, i, ~m,C, r)

)
→ Wi

Wi = r Gi +
∑n

j=1; j,i m j Gn+1+i− j

=⇒ Wi

Figure 55: P-signature (original): Witness verification protocol

VerWit
(
U(pkB, i, ~m,Wi,C)

)
→ {0, 1}

P10 = e(Gi,C)

P11 = e(G1,Gn)

P12 = e(G,Wi)

=⇒ (P10 ?
= P11mi · P12)

Figure 56: P-signature (assumptions): l-HSDH instance

S(G,U, ωG,I = {Aj = 1
ω+cj

G,Bj = cj G,Cj = cj U}j=1...(l−1))

c∗ ← Zq

A = 1
ω+c∗ G

B = c∗ G

C = c∗ U

=⇒ ΛHS DH = ((A, B,C) < I)

129

Figure 57: P-signature (assumptions): Security reduction to l-HSDH

S (G,U,Ω = ω G, m̃,I) A(Λl−HSDH)

I = {ci
$
← Zq : A j = 1

ω+c j
G, B j = c j G,C j = c j U} j=1...(l−1)

α, β0, β1, γ,
$
← Zq

U0 = β0 G
U1 = β1 G
A = γ G
∀ j ∈ [1, 2n] \ (n + 1) : G j = α j G

pk =
(
G,U,U0,U1,Ω, A, {G j} j=1...n

)
(pk,I)

((A∗, B∗,C∗)← Λl−HS DH) < I
(A∗, B∗,C∗)

r
$
← Zq

σ6,l = r G +
∑n

j=1 m j Gn+1− j

P~m(α) = r +
∑n

j=1 mn+1− j α
i

σ1,l = γ A∗

σ2,l = B∗

σ3,l = C∗

σ4,l = β0 + β1 P~m(α) B∗

σ5,l = P~m(α) B∗

σr,l = r
σl = (σ1,l, σ2,l, σ3,l, σ4,l, σ5,l, σ6,l, σr,l)

=⇒ σl

Figure 58: P-signature (assumptions): FlexDH instance

S(G,Ga = a G,Gb = b G)

µ← Z∗q

R = µ G

Ra = µa G

Rab = µab G

=⇒ ΛFlexDH = (R,Ra,Rab)

130

Figure 59: P-signature (assumptions): Security reduction to FlexDH

S(G,Ga = a G,Gb = b G,U, {m̃j}j=1...l) A(ΛFlexDH)

ω, γa, γu, τ0, τ1, ρ0, ρ1, α
$
← Zq

Ω = ω G

A = γa (Ga + Ω)

U = γu G

U0 = ρ0 G + τ0 Gb

U1 = ρ1 G + τ1 Gb

∀ j ∈ [1, 2n] \ (n + 1) : G j = α j G
q∗ ← [1, l]

pk =
(
G,U,U0,U1,Ω, A, {G j} j=1...n

)
For each k ∈ [1, l], ~m = ~mi

P0(α) =
∑|m|

j=1 m|m|+1− j α
j

If k , q∗:

r, ck
$
← Zq

σ6 = r G +
∑n

j=1 m j Gn+1− j

P~m(α) = r + P0(α)
σ1 =

γa
ω+ck

(Ga + Ω)
σ2 = ck G
σ3 = ck U
σ4 = ck

(
(ρ0 + P~m(α) ρ1) G + (τ0 + P~m(α) τ1) Gb

)
σ5 = ck P~m(α) G, σr = r

If k = q∗:
r = P0(α) − τ0

τ1
ck = cq∗ = a
P~m(α) = r + P0(α)
σ6 = r G +

∑n
j=1 m j Gn+1− j

σ1 = γa G

σ2 = Ga

σ3 = γu Ga

σ4 = (ρ0 + P~m(α) ρ1) Ga

σ5 = P~m(α) Ga

σr = r
σk = (σ1,k, σ2,k, σ3,k, σ4,k, σ5,k, σ6,k, σr,k)

pk, {~m j, σ j} j=1...l

σ∗
$
← {σ j} j=1...l

If σ∗ , σq∗: FAIL
σq∗ ← {σ j} j=1...l, σq∗ , σ

∗ such that (R,Ra,Rab) ∈ ΛFlexDH, where:

R = σ∗6 − σq∗,6

Ra = σ∗5 − σq∗,5

Rab = σ∗4 + σq∗,5 − σq∗,5 − σ
∗
4

σ∗ = (σ∗1, σ
∗
2, σ

∗
3, σq∗,4, σq∗,5, σq∗,6, σq∗,r)

σ∗

=⇒ σ∗

131

Figure 60: P-signature (assumptions): n-FlexDHE instance

S(G, {Gi = αiG}i∈[1,2n]\(n+1))

µ← Z∗q

T = µ G

Tn+1 = µ αn+1 G

T2n = µ G2n

=⇒ Λn−FlexDHE = (T,Tn+1,T2n)

Figure 61: P-signature (assumptions): Security reduction to n-FlexDHE

S({Gi = Gαi
}i∈[1,2n]\(n+1)) A(Λn−FlexDHE)

β, β0, β1, γ, ω
$
← Zq

U = β G
U0 = β0 G
U1 = β1 G
A = γ G
Ω = ω G
sk = (γ, ω, β1)
pk = (G,U,U0,U1,Ω, A, {Gi}i∈[1,2n]\(n+1))

~m← Zn
q

σ = S ign(sk, ~m)
(pk, σ)

~x∗ ← Zn
q =⇒ ∃i ∈ [1, n] : x∗i , mi

Fi,1 = x∗i G1

Fi,2 = x∗i G

Fi,3 = x∗i G2n

F(x∗i) = (Fi,1, Fi,2, Fi,3)

P13 = e(Gi, σ6)

P14 = e(G,W∗)

P15 = e(Fi,1,Gn)

W∗ ← G : P13 = P14 · P15 such that (T,Tn+1,T2n) ∈ Λn−FlexDHE, where:

T = mi G − Fi,2

Tn+1 = W∗ −W ′

T2n = mi G2n − Fi,3

Pred∗ = (W∗, i, F(x∗i))
Pred∗

=⇒ (σ, Pred∗)

132

Figure 62: Dependency graph for P-signature protocol KeyGen

G

A Ω GiU U0 U1

Source: Author

Figure 63: Dependency graph for P-signature protocol Sign

G

U U0

Gi

σ2σ1

σ3

σ6

σ5σ4

Source: Author

Figure 64: Dependency graph for P-signature protocol Verify

A

P1[0]

G

σ1

UΩ

σ2

σ3 σ4 σ5

U0

σ6

P1[1] P8[0]P4[1]

P9[1]P2[0]

P2[1]

P3[1]

P5[0]

P6[1]

P3[0]

P7[0]

P4[0] P5[1]

P6[0] P2[1]

P7[1] P8[1] P9[0]

U1

Source: Author

133

Figure 65: Dependency graph for P-signature protocol Commit

G

Gi

C

Source: Author

Figure 66: Dependency graph for P-signature protocol WitGen

Gi

Wi

Source: Author

Figure 67: Dependency graph for P-signature protocol VerifyWit

G

WiC

P12[0]

P10[0] P11[1]

P12[1]

P11[0]

P10[1]

Gi

Source: Author

134

Figure 68: Dependency graph for HSDH instance

G

A B

C

U

Source: Author

Figure 69: Dependency graph for the reduction to HSDH

GBC

Giσ2

A

σ3

σ6

σ5σ4σ1

Source: Author

Figure 70: Dependency graph for FlexDH instance

G

Ga Gb Ra Rb Rab

Source: Author

135

Figure 71: Dependency graph for the reduction to FlexDH

G

σ2 σ3 σ5σ4 σ1

Ga Gb

Gi

σ6A

Ω U U0 U1

R

RaRab

Source: Author

Figure 72: Dependency graph n-FlexDHE instance

G

Gi Tn+1T T2n

Source: Author

Figure 73: Dependency graph for the reduction to n-FlexDHE

G

Gi

Fi,1

Fi,2

Fi,3σ6 P13[0]

P13[1]

P14[0]

P14[1] P15[0]

P15[1]W T

Tn+1 T2n

Source: Author

136

Figure 74: Merged graph for the entire P-signature scheme

G

A

Ω

G
i

U
U

0

U
1

σ
2

σ
1

σ
3

σ
6

σ
5

σ
4

P
1

[0
]

P
2

[0
]

P
2

[1
]

P
3

[0
]

P
7

[0
]

P
4

[0
]

P
5

[1
]

P
6

[0
]

P
7

[1
]

P
8

[1
]

P
9

[0
]

P
13

[1
]

C

W
i

P
1

2
[1

]
P

14
[1

]

P
10

[1
]

A

B

C
T n

+
1

G
a

G
b

RR
a

R
ab

F i
,1

F i
,2

F i
,3

P
15

[0
]

T

T n
+
1

T 2
n

P
2

[1
]

P
3

[1
]

P
6

[1
]

P
9

[1
]

P
1

[1
]

P
4

[1
]

P
5

[0
]

P
8

[0
]

P
1

2
[0

]
P

1
4

[0
]

P
1

0
[0

]
P

1
1

[0
]

P
1

1
[1

]
P

1
3

[0
]

P
1

5
[1

]

Source: Author

137

A.3 Splitting the graph

With the entire graph structure, it becomes necessary to split the graph into two

parts, one for each source group of the pairing. First we begin by choosing a strategy

to choose with partition to use (since there are 2nP possible partitions, although not all

of them are valid ones).

For this application, a valid strategy is to reduce storage and communication. El-

ements of G2 are usually bigger than elements of G1, and the operations among them

are more cumbersome. To achieve the splitting objective, we will try to minimize the

number of elements in G2.

For each described pairing, one source element belongs to G1 and the other to G2.

Whenever possible, we maintain “volatile” elements (i.e., signature elements, commit-

ments) in G1, if the “static” elements (i.e., generators, public key elements) can belong

to G1. If some element is required by both pairing source groups, then it is duplicated

and each node belongs exclusively to one group. Even though it reduces the number

of group elements to represent each protocol element, the proof of knowledge protocol

uses commitments to variables and constants with the same size to both pairing source

groups. Thereby this strategy does not reduces the proof’s load.

By analyzing the graph, it is possible to select the witnesses Wi and almost all

signature elements (except for σ2) to G1. The resulting graphs as presented in Figure

75 and 76, for elements that belongs to G1 and to G2 respectively.

To simplify viewing the splitting results, Table 11 presents the elements that belong

to each group, including the duplicated elements.

We also note that this partition is likely different from the one presented in (SILVA;

SIMPLICIO JR., 2015) because different strategies were used to find them. While here

we intend to reduce the number of elements in G2, the partition chosen in (SILVA;

138

Figure 75: Split dependency graph for elements in G1 for the converted P-signature
scheme

G

A

Gi

U

U0

σ1

σ3

σ6

σ5

σ4

P1[0]

P2[0]

P3[0]

P4[0] P5[1]

P6[0]
P7[1]
P8[1]

P9[0]
P10[1]
P13[1]

Wi

P12[1]
P14[1]

A

BG

C

Ga

Gb

R

Ra

Rab

Fi,1

Fi,2

Fi,3

P15[0]

T

Tn+1

T2n

P11[0]

H

Ω

Hi

U1

σ2

P2[1]

P7[0]BH

Ha

Hb

P2[1]
P3[1]
P6[1]
P9[1]

P1[1]
P4[1]
P5[0]
P8[0]

P12[0]
P14[0]

P10[0]
P11[1]
P13[0]
P15[1]

Source: Author

Figure 76: Split dependency graph for elements in G1 for the converted P-signature
scheme

G

A

Gi

U

U0

σ1

σ3

σ6

σ5

σ4

P1[0]

P2[0]

P3[0]

P4[0] P5[1]

P6[0]
P7[1]
P8[1]

P9[0]
P10[1]
P13[1]

Wi

P12[1]
P14[1]

A

BG

C

Ga

Gb

R

Ra

Rab

Fi,1

Fi,2

Fi,3

P15[0]

T

Tn+1

T2n

P11[0]

H

Ω

Hi

U1

σ2

P2[1]

P7[0]BH

Ha

Hb

P2[1]
P3[1]
P6[1]
P9[1]

P1[1]
P4[1]
P5[0]
P8[0]

P12[0]
P14[0]

P10[0]
P11[1]
P13[0]
P15[1]

Source: Author

139

Table 11: Elements of each source group in the converted P-signature scheme after
splitting the pairing groups

Protocol element G1 G2 (G1,G2)
Generator (G,H)
Public Key U,U0, A U1,Ω (Gi,Hi)
Signature σ1, σ3, σ4, σ5, σ6 σ2

Witness Wi

q-HSDH Instance A,C (BG, BH)
FlexDH Instance Ra,Rb,Rab (Ga,Ha), (Gb,Hb)
n-FlexDHE Instance T,Tn+1,T2n, Fi,1, Fi,2, Fi,3 (Gi,Hi)

Source: Author

SIMPLICIO JR., 2015) was found by a greedy algorithm.

A.4 Derivating the protocol

After defining to which group each protocol element must belong, it is just

necessary to rewrite the entire protocol so that it is set in the asymmetric setting

Λ = (q,G1,G2,GT ,G,H, e). The following protocols are presented: Namely: Key-

Gen (Figure 77), Sign (Figure 78), Verify (Figure 79), Commit (Figure 80), WitGen

(Figure 81) and VerifyWit (Figure 82).

Besides updating the protocols, we also have to update the computational problems

assumed unsolvable in viable time. The new problems were defined in Section 3.5.

140

Figure 77: P-signature (converted): Key generation protocol

KeyGen (B(n)) → (sk, pk)

α, β, β0, β1, γ, ω
$
← Zq

U = β G

U0 = β0 G

U1 = β1 H

A = γ G

Ω = ω H

∀ j ∈ [1, 2n] \ (n + 1) : G j = α j G

∀ j ∈ [1, 2n] \ (n + 1) : H j = α j H

sk = (γ, ω, β1)
pk = (U,U0,U1, A,Ω, {G j} j=1...n, {H j} j=1...n)

=⇒ (sk, pk)

Figure 78: P-signature (converted): Sign protocol

Sign
(
B(skB, ~m)

)
→ σ

r, c
$
← Zq

σ1 =
γ

ω+c G

σ2 = c H

σ3 = c U

σ4 = c (U0 + β1 σ6)
σ5 = c σ6

σ6 = r G +
∑n

j=1 m j Gn+1− j

σr = r
σ = (σ1, σ2, σ3, σ4, σ5, σ6, σr)

=⇒ σ

Figure 79: P-signature (converted): Verification protocol

Veri f y
(
U(pkB, ~m, σ)

)
→ {0, 1}

P1 = e(A,H)

P2 = e(σ1,Ω + σ2)

P3 = e(U, σ2)

P4 = e(σ3,H)

P5 = e(σ4,H)

P6 = e(U0, σ2)

P7 = e(σ5,U1)

P8 = e(σ5,H)

P9 = e(σ6, σ2)

=⇒
(
(P1 ?

= P2) ∧ (P3 ?
= P4) ∧ (P5 ?

= P6 · P7) ∧ (P8 ?
= P9)

)

141

Figure 80: P-signature (converted): Commit protocol

Commit
(
U(pkB, ~m)

)
→ C

r
$
← Zq

C = r G +
∑n

j=1 m j Gn+1− j

=⇒ C

Figure 81: P-signature (converted): Witness generation protocol

WitGen
(
U(pkB, i, ~m,C, r)

)
→ Wi

Wi = r Gi +
∑n

j=1; j,i m j Gn+1+i− j

=⇒ Wi

Figure 82: P-signature (converted): Witness verification protocol

VerWit
(
U(pkB, i, ~m,Wi,C)

)
→ {0, 1}

P10 = e(C,Hi)

P11 = e(G1,Hn)

P12 = e(Wi,H)

=⇒ (P10 ?
= P11mi · P12)

142

APPENDIX B -- RELIC PARAMETERS

We now summarize the relevant options for compiling the RELiC toolkit. The

64-bit architecture parameters are presented in Table 12. The methods for operations

with large integers are presented in Table 13. The groups for the pairing computation

and elliptic curves are presented in Table 14. And the miscellaneous algorithms are

presented in Table 15.

This results in the use of the SHA-256 hash function, the underlying operating

system’s pseudorandom number generator and the use of the curve EC/Fn : y2 = x3 +2

with the following parameters group and generator coordinates:

n 9975694786560007335069696000002197324800000000318240000000000019

G.x 0x2523648240000001BA344D80000000086121000000000013A700000000000012

G.y 1

Table 12: Compiling parameters for the RELiC library (architecture)
ALLOC= AUTO Automatic memory allocation (dynamically on demand)
ARCH= X64 64-bit architecture
ARITH= x64-asm-254 Use architecture specific assembly code
WORD= 64 Operations in words of 64 bits

Source: Author

143

Table 13: Compiling parameters for the RELiC library (big numbers)
BN_MAGNI= DOUBLE Double precision integers store twice as many words
BN_METHD= COMBA; Comba multiplication

COMBA; Comba squaring
MONTY; Montgomery modular reduction
SLIDE; Sliding windows modular exponentiation
BASIC; Euclid’s sieve GCD algorithm
BASIC Standard prime generation

BN_PRECI= 1024 Use big numbers of up to 1024 bits
FP-METHD= INTEG; Integrated modular addition

INTEG; Integrated modular multiplication
INTEG; Integrated modular squaring
MONTY; Montgomery modular reduction
LOWER; Inversion to lower level
SLIDE Sliding windows exponentiation

FP_PRIME= 254 Use finite field of 254-bit integers
FP_WIDTH= 4 Window width for exponentiation method

Source: Author

Table 14: Compiling parameters for the RELiC library (elliptic curve and pairings)
EC=METHD= PRIME Use prime elliptic curve
EP=DEPTH= 4 Depth of precomputation table
EP_METHD= PROJC; Jacobin projective coordinates

LWNAF; Left-to-right windows NAF method
COMBS; Single-table Comb method for point multiplication
INTER Interleaving of windows NAF for simultaneous scalar multiplication

EP_MIXED= ON Use mixed coordinates (affine and Jacobian)
EP_PLAIN= ON Ordinary elliptic curve (without endomorphism)
EP_PRECO= ON Use precomputed table for curve generator
FPX_METHD= INTEG; Quadratic extension field with embedded modular reduction

INTEG; Cubic extension field with embedded modular reduction
LAZYR Lazy-reduced extension field arithmetic

PP_METHD= LAZYR; Lazy-reduced extension field
OATEP Use optimal ate pairing

Source: Author

Table 15: Compiling parameters for the RELiC library (hash and pseudorandom gen-
erator)

MD_METHD= SH256 Using SHA-256 hash function
RAND= UDEV Unix udev blocking pseudorandom generator

Source: Author

