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Mauricio Cirelli
The MiTable Engine for Multi-Touch and Multi-User Tabletop Applications /

M. Cirelli. – São Paulo, 2015. 98 p.

Dissertação (Mestrado) — Escola Politécnica da Universi-
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teria sentido. Eles acreditaram no valor que um mestrado agrega às nossas carreiras e me
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Em seguida, agradeço ao professor Ricardo, pela orientação, apoio, aux́ılio e interminável

dedicação a este trabalho. Não posso deixar de agradecer, também à professora Lucia, que
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acadêmico tem na vida profissional e hoje sou capaz de colher os bons frutos desta escolha.

Por fim, agradeço aos meus amigos Marylia, Eric e Helder pela qualidade excepcional

do trabalho que conduzimos juntos durante a graduação. Aquele trabalho deu a motivação

para este e é a base do desenvolvimento desta pesquisa.



RESUMO

A definição e o reconhecimento de gestos multi-toque são dois dos maiores desafios encontrados
por desenvolvedores de aplicações para tabletops. Após a escolha dos gestos, geralmente após
um longo e custoso estudo de usuário, os desenvolvedores precisam selecionar ou criar um
algoŕıtimo para reconhecê-los e integrá-lo à aplicação e ao hardware.

Muitas bibliotecas e arcabouços para o reconhecimento de gestos multi-toque foram pro-
postos nos últimos anos. Cada um deles buscou endereçar um dos diversos desafios encontra-
dos pelos desenvolvedores quando desenvolvendo protótipos e implementando novas aplicações
para tabletops, como a integração entre a camada de aplicação e a interface de hardware. Em
uma das etapas de nossa pesquisa, foram identificados quatorze requisitos para tais arcabouços,
variando desde o suporte ao multi-toque ao suporte a gestos colaborativos. Entretanto, as
propostas anteriores não conseguiram endereçar todos os requisitos identificados.

Neste trabalho, nós apresentamos o MiTable Engine: um arcabouço flex́ıvel e configurável,
criado com o objetivo de atender a todos os quatorze requisitos. Esta proposta pode ser
utilizada tanto para suportar aplicações em mesas interativas para diversos usuários quanto
aplicações para tablets e smartphones.

O MiTable Engine foi constrúıdo a partir de uma arquitetura de quatro camadas com uma
nova proposta de reconhecimento de gestos baseada em pipeline. Nossa proposta é capaz
de processar diversas entradas de toque simultaneamente com grande desempenho e se torna
muito flex́ıvel para personalizações. O MiTable também inclui alguns dos algoŕıtmos do estado-
da-arte para reconhecimento de gestos além de um conjunto de ferramentas para criação e
inclusão de novos gestos nas aplicações.

Neste trabalho, nós discutimos a engine proposta em detalhes, incluindo sua arquitetura,
algoŕıtmos e como cada requisito é endereçado. Para exercitar a engine e verificar seu funciona-
mento, nós apresentamos duas provas de conceito e desenvolvemos diversos testes unitários
automatizados.



ABSTRACT

Gestures definition and recognition are two of the major challenges for tabletop developers.
After choosing the gestures, usually after a costly user study, developers must select or create
an algorithm to recognize them and integrate it to the main application layer and to the
hardware interface layer.

Several multi-touch gestures recognition systems and frameworks were proposed in the past
years. Each of them tried to address one of several challenges developers have when prototyping
and implementing new tabletop applications and to provide a seamless integration between
the hardware interface and the main application. During our research, we identified fourteen
requirements for multi-touch frameworks, ranging from supporting multi-touch to collaborative
gestures. Although current state of art multi-touch gestures frameworks addresses several of
them, there is no unique solution which addresses all the developers needs.

In this work, we present the MiTable Engine: a flexible and configurable multi-touch
gestures engine aimed to address all these requirements. The proposed engine is suitable
for both large multi-user surfaces and for small single-user tabletops, such as tablets and
smartphones.

The MiTable Engine is built on top of a four layers architecture and introduces a novel
multi-touch gestures recognition pipeline which can process several multi-touch inputs simul-
taneously with high performance and flexibility for customizations. The Engine also includes
some of the state-of-art multi-touch gestures recognizers and a set of tools for creating and
adding custom gestures to the application.

In this work, we discuss the proposed engine in deep details, including its architecture, its
algorithms and how it addresses each requirement. In order to exercise the engine and verify its
functionality, we present two proof of concept applications and developed several automated
unit tests.
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1 INTRODUCTION

The way humans interact with computers has changed a lot in the past two decades. While

during the 90’s, we had basically desktops and some notebooks with which users interact using

mice and keyboards, during the past decade we have seen the mass production of smartphones

and tablets, which allows users to interact with in a much more natural way: by touching.

With the recent development of smart televisions, new video-game consoles and interactive

tables, users can now interact with these devices without even touching them. Devices such

as Kinect1 and LeapMotion2 can detect movements users perform and identify their actions,

generating commands to the applications. Baudisch presented several of these novel interaction

techniques in keynotes at important conferences, such as the International Conference on

Entertainment Computer 2013 (ICEC ’13) in São Paulo (BAUDISCH, 2013).

These novel devices are not only providing more intuitive ways of interaction, but are

changing the way computers perceive their users. In the 70’s and 80’s, computers perceive

users as keyboards. With the introduction of graphical user interfaces and mice, computers

started to perceive users as coordinates on the screen (given by the mice’s pointers). With

these novel devices, computers perceive users as humans and try to understand their actions,

their bodies, their voices and their gestures.

Although the way computers perceive touch input is not much different than the way they

perceive the input from mice (as a set of coordinates on the screen), the way users interact with

computers is completely different and much more natural. The human-computer interaction

(HCI) evolved from the Command-line Interfaces (CLI) to the Graphical User Interfaces (GUI)

and, now, is moving towards the Natural User Interfaces (NUI) (SEOW et al., 2010), putting

together touch devices, computer cameras, movement sensors and other technologies in order

to build a completely new way of interaction.

These new multi-touch based devices have raised several needs from the software point

1Microsoft Kinect: http://www.xbox.com/en-US/KINECT - accessed at 15th, March, 2014
2LeapMotion: https://www.leapmotion.com/ - accessed at 15th, March, 2014

http://www.xbox.com/en-US/KINECT
https://www.leapmotion.com/
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of view. The issues software developers must solve in order to support these new ways of

interaction are the main topic of this research and will be further discussed in the following

chapters.

1.1 Motivation and Objectives

The movements users perform on the touch surface with their fingers or other tangible objects

are called gestures. These gestures vary from usual tap (to click) or drag (to move) to more

complex trajectories with multiple fingers at once, according to what is more natural for the

user in order to activate some function in the applications. Chapter 2 discusses in deep details

the definition of gestures and how they are used in tabletop applications.

Although there may be a set of common gestures that we can identify in different applica-

tions, each application has a set of unique functions that may be activated differently. While

in common GUI applications, these functions are activated by a keyboard shortcut or a menu

item, in new NUI applications, these functions may be activated by a very intuitive gesture.

However, as what is intuitive for one user might not be as intuitive for another one, this

set of gestures may became very complex and large. Hinrichs and Carpendale (HINRICHS;

CARPENDALE, 2011) studied how differently users may interact with the same application by

using gestures. Their study showed that for a single action, users may perform a different set

of gestures. This set of complex gestures must be identified by the application very accurately,

in order to execute the right action, and, at the same time, it must be very fast, in order to not

harm the user’s interaction. The discussion of which gesture is more natural for a given task

is beyond the scope of this research. However, in order to support these natural interfaces, it

is required to develop an accurate and fast recognition system.

Our goal with this research is to develop a novel framework for gestures recognition which

can be integrated to tabletop applications in order to enhance the interaction based on multi-

touch gestures and to ease the development of new tabletop applications.

In chapter 3, we review the state of art multi-touch gestures recognition systems and

discuss their strengths and weaknesses, enumerating fourteen requirements for multi-touch

gestures recognition systems.

The result of this research is a multi-touch gestures recognition engine, which addresses

those requirements and provides a set of tools and Application Programming Interfaces (API)

to ease the creation and integration of new gestures to tabletop applications.
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1.2 Organization

This work is organized in four chapters, besides this one. Our goal is to build a gestures

engine for tabletop applications. Thus, we start by understanding tabletop interaction and

its applications. In Chapter 2, we introduce the definition of gestures, how they are used in

several tabletop applications and scenarios and the underlying hardware technology used in

tabletop devices.

The most important task of a gestures engine is to interpret the gestures performed by

each user and execute its respective action. In Chapter 3, we review the state of art multi-

touch gestures recognition systems and discuss their strengths and weaknesses. The result of

this analysis is a set of fourteen requirements for such recognition system which guides the

development of the MiTable Engine.

In Chapter 4, we present the MiTable Engine itself, exploring its strengths, discussing how

it addresses these fourteen requirements with a novel gestures recognition pipeline. Finally,

we conclude our work in Chapter 5, summarizing this research, its limitations and pointing out

directions for future researches.
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2 TABLETOP INTERACTION

In this research, we define tabletops as computer devices with an integrated multi-touch surface

(a multi-touch sensor). This sensor may be attached to the computer monitor, but it is not

required. Several devices fall into this definition, such as smartphones, tablets, interactive

tables, multi-touch notebooks and multi-touch desktops.

Interactive tables are a subtype of tabletops. They are most often table-like shaped artifacts

with integrated displays or projections from above or below. They are based on computing

devices embedded into them and use an infrastructure of sensors and actuators (GEYER et al.,

2011). The provided interface is similar to smartphones, but with the difference of not having

the same physical limitations, allowing more complicated gestures to be performed.

As we are going to discuss in this chapter, users can interact with the device using many

different techniques: from voice commands and traditional mice or keyboard to cellphones and

other tabletops. However, the most fundamental way to interact with tabletops consists in

one or more users controlling the device by making gestures or putting objects into the surface

(called tangible objects).

Figure 2.1: Evoluce One

In this chapter we are going to present the current state of art concepts in the tabletop

interaction domain from the human-computer interaction perspective. We focus on large in-

teractive tables, which allow the interaction between several users at the same time. Examples
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of such devices are the Evoluce One1 (Figure 2.1) and the ReacTable2 (Figure 2.2).

Figure 2.2: ReacTable

We start by briefly describing the most recent and most common multi-touch technologies

used in these devices in order to detect when one or more users touch the screen and, then,

we go deep into the details of important concepts such as gestures and collaboration on

tabletops and their applications. In the following sections, we have restructured and updated

the literature review provided by our previous work (LIOU et al., 2012). These concepts will

support the requirements for developing tabletop applications, multi-touch engines and gestures

recognizers, as shall be discussed in the following sections and chapters.

2.1 Multi-touch Technologies

In 2009, the NUI Group3 published a book (NUIGroup, 2009) discussing the most common

multi-touch technologies. They define multi-touch technology as a set of interaction techniques

which allow users to control the application using several fingers. It is worth to note that this

definition does not require the fingers to touch the surfaces directly.

Common smartphones and tablets use resistive or capacitive sensors in order to detect

touch inputs. Capacitive sensors detect users input by sensing the human capacitance when

the fingers get close to the sensing surface. Only conductive materials and those which have

a dielectric different from that of air can be used to touch the surface. On the other hand,

resistive touch consists in two flexible sheets coated with a resistive material. One of them

has vertical lines and the other has horizontal ones. When the finger touches the surface, it

presses one sheet to the other and a contact is made in the exact point where the finger is

located.

1Evoluce One: http://www.evoluce.com/multitouch-table.htm - accessed at 12th, March, 2014.
2ReacTable: http://www.reactable.com/ - accessed at 12th, March, 2014.
3NUI Group: http://www.nuigroup.com/ - accessed at 12th, March, 2014.

http://www.evoluce.com/multitouch-table.htm
http://www.reactable.com/
http://www.nuigroup.com/
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However, using these technologies to build large multi-touch surfaces is almost impossible,

due to the loss of precision and high costs. For these large devices, other technologies have

been proposed and are commercially available, which we are going to briefly describe in this

section. Although touch interaction may suggest that the fingers must actually touch a surface,

this is not the case for the most of the current state of art multi-touch technologies for large

multi-touch surfaces.

Figure 2.3: FTIR schematic diagram, from the NUI Group’s Book

Frustrated Total Internal Reflection (FTIR) is an optical technique which consists in de-

tecting reflected infrared (IR) signals using an IR camera sensor. In this technique, two IR

emmitters generate reflected IR signals inside the touch surface material. When a finger gets

close to the surface, it reflects these internal IR signals towards the IR camera sensor (Figure

2.3).

The Diffusion Illumination (DI) is another technique based on IR light. The Infrared light

is shined at the screen from below the touch surface with a diffuser material placed on the top

or on the bottom of this surface. When an object touches the surface, it reflects more light

than the diffuser material, allowing it to be detected by the camera. This is the technique

employed at the Microsoft’s Surface Table (Figure 2.4).

Several authors (MORRIS et al., 2006; HARTMANN et al., 2009; KO et al., 2011) have used

computer vision to detect the screen touches, using one or more cameras to capture the

images of users’ hands. Masoodian et al. (MASOODIAN; McKoy; ROGERS, 2007) have also used

cameras, but each user has his own private touchpad to interact with the system.

Another approach to build a large multi-touch surface has been proposed by Qin et al.

(QIN et al., 2011). They have combined several smaller multi-touch surfaces into a single and

large table, with a capacity for up to ten simultaneous users.
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Figure 2.4: Microsoft Surface Table

In some applications, there is the need to identify which user each finger belongs to.

Marquardt et al. (MARQUARDT et al., 2011) proposed an electronic glove to identify which

user is touching the surface. Their system is also capable to identify if the hand is touching

the screen from its front or back and if it is a left or right hand. Hutama et al. (HUTAMA

et al., 2011) employed movement sensors to identify the users and Meyer et al. (MEYER;

SCHMIDT, 2010) used an IR emitter wristband. Puckdeepun et al. (PUCKDEEPUN et al., 2010)

investigated the use of a stylus (pen) and IR accessories in educational interactive boards.

Recently, some new approaches to identify the users by their touch input have been pro-

posed. Holz and Baudisch presented a novel multi-touch surface which is capable of capture

the user’s fingerprint while touching the screen. This way, it it possible to identify which user

has made which action very accurately (HOLZ; BAUDISCH, 2013).

Regardless of the technology employed by an interactive table, we are going to refer to the

detection infrastructure as multi-touch sensor or, simply, sensor. For simplicity, this definition

considers both electronic devices which are part of the multi-touch sensing system (cameras,

sensors, cables and other elements which might be present in a given technique) as their

software level drivers and their API’s for a given operating system.

Regarding the software technology, most of these interactive tables come with a Software

Development Kit (SDK) and a high-level API in order to support the development of new

applications. While some of these toolkits come with a set of predefined basic gestures such

as drag and drop or tap, there are some frameworks which allow the developers to identify

their own gestures from the input data.

The Tangible User Interface Objects Protocol (TUIO Protocol) (KALTENBRUNNER et al.,

2005) has became the de facto standard protocol to provide touch information from the

sensors to the applications and is implemented by most of current state of art interactive

tables. This protocol is capable of reporting the touch-point position and its acceleration for

each finger touching the surface. Depending on the sensor’s capabilities, it is also possible to
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receive information about objects in contact to the screen. The second version of the protocol

includes support for many different sensors, such as Radio-Frequency Identification (RFID)

readers and accelerometers (KALTENBRUNNER, 2014).

This protocol provides an abstraction of the sensor hardware because any device which

is able to detect the position of each finger and track its trajectory is able to report the

touch information to the applications using the messages defined in the protocol. While

the ReacTable (JORDA et al., 2007) uses computer vision to detect the tangible objects and

fingers, the PQLabs Table4 uses a technique similar to FTIR, both of them implement the

TUIO protocol to report the touch events.

In this section we have discussed the most common and important technologies used in

multi-touch interactive tables. However, this is definitely not an extensive discussion. Other

multi-touch tabletops have been proposed by Wilson et al. (WILSON; SARIN, 2007) and Dietz

et al. (DIETZ; LEIGH, 2001) with their own toolkits and features.

As we could see in this brief introduction, there is not a predominant hardware technology

and this field is still under heavy development. From the software perspective, although TUIO

protocol has been implemented by several devices, each device comes with its own toolkit for

applications development.

For more in depth analysis of multi-touch technologies from the hardware and software

point of view, readers are directed to the NUI Group’s book (NUIGroup, 2009), Hakvoort

paper (HAKVOORT, 2009) and Zeitler’s survey (ZEITLER; HUSSMAN, 2009) on multi-touch

technologies and toolkits.

2.2 Multi-touch Gestures

In this section we are going to discuss the definition of gestures in the context of interac-

tive tables and how they can be classified according to their characteristics from the HCI

perspective.

Gestures are the most fundamental way users interact with multi-touch tables. Back to

1986, Rhyne and Wolf defined gestures as hand markings, entered with a stylus or a mouse,

that indicate scope and commands (RHYNE; WOLF, 1986). We may rewrite this definition

without the need of a stylus or mouse: gestures are movements users perform with their hands

in order to activate an application’s function. This is a very general definition which is applied

4PQLabs Multi-Touch Table: http://multitouch.com/ - accessed at 14th, March, 2014

http://multitouch.com/
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to several different contexts, such as multi-touch surfaces (HINRICHS; CARPENDALE, 2011),

accelerometer-based gestures (WU et al., 2009) and combining hand movements and tangible

objects in the screen (JORDA et al., 2007).

With respect to the space in which the gestures are performed, we can classify them

into two categories: two-dimensional (the gestures are performed on the touch surface) and

three-dimensional (hand gestures are performed freely in the air) (CHEN; FU; HUANG, 2003;

YOON et al., 2001). 3D gestures often use cameras and computer vision techniques to extract

information from the input data. An example of this method is the work by Wilson (WILSON;

BENKO, 2010) that shows the interaction between multiple large screens.

In the context of interactive tables, gestures may also be classified as on the surface or

above the surface, with no physical contact, gathering information about one or more hands

and their projections to the touch surface. Strothoff et al. (STROTHOFF; VALKOV; HINRICHS,

2011) use the projection of users hands to control a triangle in a three dimensional virtual

space.

According to their semantics, gestures may be classified into two categories: symbolic

and direct manipulation gestures (WOBBROCK; MORRIS; WILSON, 2009). The former category

contains gestures defined by their trajectory and they represent a context-dependent sign. The

same gestures may have no meaning if performed in other contexts. The latter are the most

common gestures for direct manipulation of interface objects, like moving or rotating an image

in a picture viewer application (MORRIS et al., 2006) or sharing ideas in a brainstorming activity

(CLAYPHAN et al., 2011). They are used in many different applications and, thus, are weakly

dependent on the application’s context.

Nygärd proposed a set of criteria to classify gestures with respect to their shape and

trajectory (NYGARD; THOMASSEN, 2010). According to his classification, gestures may belong

to three groups: open trajectories, closed trajectories and crossing trajectories. Examples of

such gestures are given in Figure 2.5.

Figure 2.5: Examples of gestures classification accordingly to Nygard’s criteria

In large multi-touch tables, it is common to have several users interacting to each other

through gestures performed on the surface. In this context, gestures may be collaborative or

individual gestures. When the gestures are collaborative we have two or more different users
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combining gestures in order to execute a single action in the application (MORRIS et al., 2006).

The collaborative interaction will be further discussed in the next section, as it plays a major

role in interactive tables.

Finally, gestures may have different meanings when combined in a well-defined sequence

(CIRELLI; NAKAMURA, 2014). Atomic gestures are single movements which users perform with

their hands in order to activate a single function in the application. Several examples fall into

this category, such as dragging an image around the screen, tapping a button or activating a

character’s skill in a game.

Sequential gestures are sets of movements which users must perform with their hands

respecting a set of time constraints in a well-defined sequence, in order to activate a single

application’s function. As an example of use of this kind of gesture, we may describe the use of

special character’s skill in a game (also known as combos). Analogously, in traditional devices,

such as controller based video-games and computer games, users must perform a sequence of

commands in order to activate a character’s special action. Games such as those from the

Mortal Kombat and Harry Potter trademarks make heavy use of this kind of interaction. In

gesture-based devices, such as Nintendo Wii, we also have games, such as Dragon Ball Budokai

Tenkaichi 3, which uses several accelerometer-based gestures in a well-defined sequence in order

to execute a full special action.

Therefore, sequential gestures are sequences of atomic gestures in which the time con-

straints between each gesture in the sequence must be respected. In order to have sequential

gestures available in applications, the sensors must report the gesture information (id and

coordinates) as well as the time each event has been detected.

In this section we started with a very generic definition of gestures. Then, we have

discussed this concept in the interactive tables domain from different perspectives. Table 2.1

summarizes how different gestures may be classified accordingly to several criteria.

Table 2.1: Gestures classes and criteria

Criteria Classes

Degrees of Freedom 2D or 3D
Spatial On the surface or above the surface
Semantics Symbolic or direct manipulation
Trajectory Complexity Open, closed or crossing gestures
Multiple users Individual or collaborative
Timing Atomic or sequential
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2.3 Collaboration with Interactive Tables

Historically, ordinary tables have played an important role in real-time and co-located collabo-

ration. In this section we are going to show in deep details how interactive tables can enhance

the collaboration mechanism, enhance the content management and integrate paper media to

several other digital devices, such as tablets, smartphones, auxiliary displays and notebooks

(WIGDOR et al., 2006).

Accordingly to Tse et al. (TSE et al., 2007) a good collaboration is a consequence of:

• A shared screen

• Users awareness about other users activities

• How people communicate and share ideas through voice commands and gestures

The collaboration in multi-user environments is strictly related to a more general concept:

the Computer-Supported Collaborative Work (CSCW). In this context, Scott et al. (SCOTT;

GRANT; MANDRYK, 2003) classify tabletops in four different categories of CSCW devices:

Digital Desks

Designed to replace the traditional tables, integrating paper and digital media

Workbenches

Users interact with the digital media from a virtual reality environment projected above

the table surface

Drafting Tables

For single users, this device has been designed to replace the traditional artist tables

Collaboration Tables

Tabletops designed to support the collaboration and content sharing of small groups

From the software perspective, groupware is another general and important concept related

to CSCW and large interactive tables. Greenberg defines groupwares as collaborative softwares.

They are computer systems designed to support several people working together in order to

achieve the same goal (GREENBERG, 1991).

By definition, all Tse et al. criteria are met by collaboration tables running a groupware,

without loss of generality for individual tasks. In fact, some individual tasks may also benefit
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from a large screen and a more intuitive input. However, the collaboration happens naturally

on interactive tables (KRUGER et al., 2003) due to the following unique characteristics of these

tabletops (APTED; COLLINS; KAY, 2009):

Collaborative Interaction

Collaborative work is a key activity and shall be focused in small groups

Context of Use

Interactive tables shall be located in shared spaces, suggesting a collaborative work

Orientation

Elements on the screen or surface may assume arbitrary orientations as users may sit

around the tabletop

Tabletop Size

There is significant differences between the surface size in the tabletop domain

Human Reach

Due to its big size, sometimes a user may not reach an element on the surface without

interfering in other users activities

All of these characteristics suggest collaborative works. Due to the large screen dimensions,

an user may not reach an element without asking help for another user. Analogously, due to

the lack of a fixed orientation, users may also need help from a better positioned user in

order to understand some content on the screen. Finally, due to the proximity between the

users, all of them share the same context of use, stimulating the communication between the

participants and helping them to achieve the same goal.

Morris et al. (MORRIS et al., 2006) introduced the concept of cooperative gestures. These

special gestures are also known in literature as collaborative gestures or multi-user gestures.

These gestures are defined as a set of gestures performed by two or more users in order to

activate a single application’s function.

Note that this is different from the sequential gestures discussed in Section 2.2. Collab-

orative gestures must be performed by two or more users, simultaneously or sequentially. On

the other hand, sequential gestures are performed by only one user sequentially.

Collaborative gestures enhance the participation of all users during the collaborative task

and enhance the awareness of the group about important actions, such as saving the current
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work or closing the application. They also ease the content sharing process, enhancing the

user’s reach, and improve the social aspects of the collaborative task.

Collaborative gestures are useful and desirable when the result of the action triggered by

them affects all the users involved in the gesture. Designing collaborative gestures overlooking

this characteristic may sadly harm the user experience. An special attention must be taken

when parts of a collaborative gesture are also a valid single gesture for the application. These

situations should be avoided during the design of the gestures vocabulary.

Collaborative gestures may be classified according to six criteria:

Symmetry

A collaborative gesture is said to be symmetric when all participants involved performs

the same movements. Otherwise, the gesture is said to be asymmetric.

Parallelism

A collaborative gesture is said to be parallel when all involved users perform a movement

at the same time. Otherwise, the gesture is said to be serial or sequential.

Proxemic Distance5

A collaborative gesture is said to be intimate when participants must physically touch

each other. It is said to be personal when participants must touch the same digital

object. It is said to be social when participants must touch the same display. Finally, it

is said to be public when users perform their actions on separated devices (not in the

same display).

Additivity

A collaborative gesture is said to be additive if it is meaningful when executed by only

one user, but its effect is amplified as more users perform the same gesture. It is a

special case of symmetric and parallel gestures.

Number of Users and Number of Devices

The complexity of the collaborative gestures increases with the number of users who

participate on it. Also, collaborative gestures are simpler when performed on a single

and shared display, as users may learn easier from others.

In this section we have discussed how interactive tables are suitable for collaborative tasks

and we have introduced the concept of collaborative gestures. However, there are two major

concepts, strictly related to the unique characteristics of collaborative tables which are useful
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mechanisms for collaboration: territoriality and orientation (TANG, 1991). The first one is

related on how people use and share content in the table, while the other describes how

content orientation influences the collaboration. Finally, we end this section discussing some

heuristics and guidelines for interactive tables software development.

2.3.1 Territoriality

Scott et al. (SCOTT et al., 2004) published a study on how the interactive surface area is used

by several users during collaboration. They have found that this space is split into three parts,

called territories: the personal territory, the group territory and the storage territory. Each

territory has its own functional and spatial characteristics, which we are going to describe in

this section.

2.3.1.1 Personal Territory

In their experiments, they found that people used the space near the borders as their personal

and private territories. In these areas, users are able to perform individual tasks, without

interfering on other users activities.

Although their name suggests that the personal territories are useful only for individual

activities, they play an important role in collaboration. Despite of allowing users to perform

their own tasks, they are a safe place to test and experiment new ideas before introducing

them to the rest of the group.

These territories are located in front of their owners, very near to the border of the surface.

Thus, their size and quantity depend on the number of participants, the size of the table and the

way people are standing (or sitting) around it. The size of these territories are also dependent

on the activity being performed: if it is mostly collaborative, the personal territories tend to

shrink; on the other hand, if it is mostly individual, they tend to grow. They found also that

people are very opportunistic when disputing territories: they tend to take ownership of as

much space as they can.

2.3.1.2 Group Territory

The group territory is all the surface area that is not used by personal territories. In these

territories, people share content between the participants, help other users in several tasks and

collaborate in the main activities.
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2.3.1.3 Storage Territory

During their study, authors found that users organize resources into piles around the table.

These piles of resources move around all the surface, from the personal territories to the group

territories and vice-versa.

One of the most important characteristic of these territories is the ownership. These

territories belong to a respective user if they are over its personal territory. This means that

only this user has access to their contents, reserving them for his private purposes. However,

when these piles are near the center of the table, their contents are shared among all users

(in the group territory). Thus, the storage territories inherit their ownership from the territory

they are located on.

The storage territories are located around the surface and may be replicated, if several

users need them at the same time; or destroyed, when their contents are no longer needed.

Their shape and size depends directly on the amount of content stored on them.

2.3.2 Orientation

Kruger et al. (KRUGER et al., 2003) studied how orientation influences collaboration in deep

details, using a collaborative puzzle application. As with traditional tables, when people stand

around it they see the content from different angles.

One idea to solve this problem would be to automatically reorient items on the screen

towards the user who is manipulating it (SHEN et al., 2004). Another approach would be to

reorient items on the table automatically towards the border of the screen or towards the nearest

personal or group territory (orthogonality). However, they found that these solutions are overly

simplistic and do not care about how people actually use orientation during collaboration. They

found that orientation plays three major roles in such contexts:

Comprehension

Comprehension is related to easing the understanding of an object on the screen. Orien-

tation might be used here to ease reading of texts or to provide an alternative perspective

of some content.

Coordination

Coordination is related to the overall organization of the objects on the screen. People

use orientation to take or give ownership of objects and to define private and group

territories. If an object is oriented towards a particular user, he owns it implicitly.
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Analogously, if this object is oriented towards a group of users, then this object belongs

to that group territory. It is worth to note that users do not need to tell the others if

they are releasing an object or taking ownership of it: it is completely understood by the

orientation of that object.

Communication

When people orient an object towards themselves, they are implicitly telling the others

that they are starting a personal task, with no intention to communicate. On the other

hand, if an user orients an object towards another user (or group), then he is intentionally

starting a communication to that user (or group) about that object.

Authors suggest that the computer system should support freely oriented objects, besides

of being capable of automatically reorient items accordingly to the users or their positions on

the screen.

2.3.3 Heuristics and Guidelines

After discussing how interactive tables work and how they are used (mainly for collaboration

purposes), we are able to enumerate several heuristics and guidelines for tabletops software

development. These heuristics may not only guide the applications development, but also give

the foundation to some requirements we identified for multi-touch gestures engines, which will

be discussed in further details in Chapter 3.

We start by presenting the most general usability heuristics for systems development,

initially proposed by Nielsen (NIELSEN, 1993), which are clearly applicable for tabletop software

development (APTED; COLLINS; KAY, 2009):

1. Visibility of system status

2. Match between system and the real world

3. User control and freedom

4. Consistency and standards

5. Error prevention

6. Recognition rather than recall

7. Flexibility and efficiency of use
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8. Aesthetic and minimalist design

9. Help users recognise, diagnose, and recover from errors

10. Help and documentation

Later, a set of heuristics for generic groupwares have been proposed (BAKER; GREENBERG;

GUTWIN, 2002):

1. Provide the means for intentional and appropriate verbal communication

2. Provide the means for intentional and appropriate gestural communication

3. Provide consequential communication of an individual’s embodiment

4. Provide consequential communication of shared artifacts (i.e. artifact feedthrough)

5. Provide protection

6. Manage the transitions between tightly and loosely-coupled collaboration

7. Support people with the coordination of their actions

8. Facilitate finding collaborators and establishing contact

Some of these heuristics are applicable for tabletop interaction, such as the #6 and #7

(APTED; COLLINS; KAY, 2009). A tabletop groupware developer or engine must handle such

heuristics in order to ease the collaborative process.

The study of usability heuristics for collaborative systems continued with the study pub-

lished by Scott et al. They suggest some guidelines to enhance the collaboration on tabletops

(SCOTT; GRANT; MANDRYK, 2003):

1. Support interpersonal interaction

2. Support fluid transitions between activities

3. Support transitions between personal and group work

4. Support transitions between tabletop collaboration and external work

5. Support the use of physical objects

6. Provide shared access to physical and digital object
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7. Consider the appropriate arrangement of users

8. Support simultaneous users actions

In particular, their last recommendation makes a huge impact on how to design tabletop

applications and engines, as, differently from other devices, tabletops allow the shared and

simultaneous use of its main input method: the touch surface.

Finally, more recent work has brought several heuristics more specific to tabletop softwares

(APTED; COLLINS; KAY, 2009):

Design independently of table size

This may require to adapt screen objects accordingly to the table size and resolution.

Support reorientation

This heuristic corroborates to what have been discussed in Section 2.3.2. Although some

systems are able to automatically change the orientation of objects according to some

criteria, it is mandatory to allow the user to reorient them as they want.

Minimize Human Reach

This heuristic also corroborates to what have been discussed in Section 2.3. Due to its

big size, it is possible that an user can not reach an object on the screen. Although

that may stimulate the collaboration between users and enhance social aspects of the

interaction, it may also be prejudicial to the main activity, stalling or delaying the personal

tasks.

Use large selection points

This is directly related to users input. Tabletop interaction is, in general, harmed by the

occlusion problem: when an user is typing, tapping or dragging an object, his fingers

usually hide the object which is being manipulated, harming the interaction.

For smartphones and tablets, an interesting approach has been employed at the Lucid

Touch project (WIGDOR et al., 2007): using a back-facing camera, they can draw a lucid

shadow of fingers in the main scene. The touch input is, thus, made from two sensor

surfaces: one on the back of the main display and another one over it (Figure 2.6).

However, their approach is not suitable for large tabletop surfaces. In these surfaces,

their large size must be explored in a way to provide a good feedback on what is being

touched by the users.
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Manage Interface Clutter and Use Table Space Efficiently

These heuristics are related to the overall organization of screen objects. As in ordinary

tables, due to its large size, it is easy to lose control of its content and objects. Ap-

plications must allow users to hide or remove screen objects when they are no longer

needed.

Support private and group interactions

This is directly related to the main purpose of collaborative softwares and collaborative

tables: to support people sharing their ideas through an intuitive and natural interface.

Figure 2.6: Lucid Touch: a conceptual sketch

According to the authors, these heuristics provide a solid foundation to evaluate groupwares

on tabletops. However, they recognize that some of them may not be suitable to a particular

application, such as the free orientation: there might be some applications whose orientation

is fixed (e.g. digital desks and drafting tables). It is up to the developers to identify which

heuristics are suitable to their applications and ensure they are applied in order to achieve a

good collaborative interaction.

In this section we have provided an overview of the most general usability heuristics be-

fore specializing them to the context of interactive tables. These heuristics provide a set of

guidelines to tabletop developers in order to support good collaborative interactions. In the

following section we shall present several applications of tabletops and how these heuristics

are used. Also, as shall be discussed in Chapter 3, these heuristics will support the definition

of requisites to multi-touch engines and frameworks.

2.4 Applications of Interactive Tables

Most of the work which have been done on interactive tables are collaborative applications.

Those applications try to take the most from the naturalness of collaboration these devices
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provide. In this section, we will present the most common applications for tabletops, focusing

mostly on the collaborative tables. However, this is not intended to be an extensive discussion

as the possibilities for tabletop applications are many: from multimodal games (TSE et al.,

2007) to biology systems (TABARD et al., 2011).

A tabletop application enhances the physical participation, stimulates reflection and the

collaborative affection between the participants (SHAER et al., 2011). Also, collaborative works

may be of several types: planning, intellectual, creation and competition (MCGRATH, 1984).

Examples of these applications are meetings tools, concept mapping, brainstorming and games,

respectively.

CMate (Figure 2.7) is a concept mapping collaborative application (MALDONADO; KAY;

YACEF, 2010), which has been designed following the heuristics and guidelines discussed pre-

viously (APTED; COLLINS; KAY, 2009; SCOTT; GRANT; MANDRYK, 2003). Authors showed ex-

perimentally that collaborative concept mapping promotes better acknowledgement and richer

concept maps. However, as their application was based on turns, users could not collaborate

simultaneously on the tabletop.

Figure 2.7: CMate: Collaborative Concept Mapping Application

Collaborative brainstorming (CLAYPHAN et al., 2011) (Figure 2.8) and meetings manager

(HUNTER et al., 2011; GEYER et al., 2011; MASOODIAN; McKoy; ROGERS, 2007) applications

have also been proposed. The MemTable, proposed by Hunter et al. is capable of recording

all information generated during the meeting, such as text and speech. In both applications,

authors employed physical keyboards to allow the text input.

The text input method is still under discussion in the tabletop interaction community.

Despite of existence of some applications which employ physical keyboards and get better

results (HARTMANN et al., 2009; HUNTER et al., 2011), there are some studies defending the

use of virtual keyboards (KO et al., 2011).

An application for a drafting table has also been proposed (VANDOREN et al., 2008). It
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Figure 2.8: Participants of the Firestorm experiments

allows artits to paint a virtual canvas simulating the way they would do to a regular one. The

user selects the brush and the color and the system paints where the user touches using the

brush.

Despite of the several examples of collaborative applications for tabletop we have found

in our literature review, an important concept is barely covered: the competitiveness on

tabletops (GROSS; FETTER; LIEBSCH, 2008). Developing tabletop applications which explores

competitiveness has at least one big challenge to overcome: how to hide information between

the competitors? With a single and shared surface, it is very difficult to have privacy. They have

found by experimenting that users try to create mimics and eye signals between members of

the same team to communicate privately. Another option would be to add other devices to the

interaction, such as tablets and smartphones, creating a multi-modal interaction environment.

In this section, we have briefly presented the most common tabletop applications, which

are mostly collaborative, and we have reinforced that the competitive aspects of tabletops

have been barely covered in recent researches, being an open area for further development.

2.5 Summary

In this chapter we have discussed how tabletops are built, from the hardware and software

perspectives. Then, we have discussed what gestures are and how users interact with tabletops

using them. We have seen that large tabletops are most often used to support collaborative

tasks, although some efforts to support competitiveness on tabletops have also been made.

However, from the software point of view, some questions have not been answered yet,

such as:

• How raw input data from sensors, such as TUIO data, is transformed into a meaningful

gesture?
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• How these data is treated to support multi-touch gestures?

• How to support multi-user (collaborative or competitive) interaction with several different

users performing different gestures at the same time?

• How to deal with different orientations at runtime?

• How to support different gestures in different territories, as each territory has its own

set of possible actions?

Such questions are discussed in Chapter 3, where we are going to discuss how gestures are

interpreted by computer programs, called gestures recognizers. Such programs must overcome

these challenges in order to support all tabletop interaction concepts we have discussed in

this chapter and respect the heuristics and guidelines in order to support the best multi-user

tabletop interaction possible.
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3 GESTURES RECOGNITION

In this chapter we start the discussion of the main subject of this research: multi-touch gestures

recognition. In Chapter 2, we discussed how gestures are used as the main input method for

tabletops and how an application may benefit from a large variety of gestures.

A gestures recognizer is a piece of software that is responsible for interpreting the touch

input provided by the sensors and for generating a gesture event to the application whenever

a valid gesture is performed by the users.

Using the above definition, we can build a general architecture for tabletop applications

using three layers (Figure 3.1): the hardware abstraction, which is responsible for getting the

touch input from the sensors (e.g. the TUIO protocol API (KALTENBRUNNER et al., 2005));

the gestures recognition, which is responsible for interpreting these data and for generating

the gesture event; and the main application, which receives the gesture event and process it

according to the application needs.

Figure 3.1: A general architecture for tabletop applications

Previous work showed experimentally that gestures depend on interaction and social con-

texts and that many different gestures could be performed in order to activate a single action

(HINRICHS; CARPENDALE, 2011). This shows that the gestures set may be larger than the

actions set in a given application. Game Designers would say that there might be more verbs

than actions and two or more verbs may be used to perform one action (SCHELL, 2008). Their

study provides us two major requirements for gestures recognizers: to be very fast, in order

to not harm the interaction; and to be very flexible and accurate, in order to allow a large

gestures set to be correctly processed by the applications.

Several authors agree that supporting a new gesture in a given application requires pro-
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cessing low-level touch events (raw input events from the sensors device drivers): a tedious,

complicated and error-prone task which usually delivers a confused and hard to maintain source

code (KIN et al., 2012b; SCHOLLIERS et al., 2011; WOBBROCK; WILSON; LI, 2007). This has been

the core motivation for developing extensible and flexible gestures recognizers.

In our previous work (CIRELLI; NAKAMURA, 2014), we presented a survey on multi-touch

gestures recognition systems. We found two main approaches to build gestures recognizers:

by defining multi-touch gestures formally and, then, using a mathematical or computational

method to identify them; or by specifying the gestures by examples and using a pattern

recognition technique to identify them among other possible gestures. The former method is

discussed in Section 3.1, while the latter is discussed in Section 3.2. We end this chapter in

Section 3.3, presenting a more general architecture for tabletop frameworks and the fourteen

requirements for gestures recognition systems we identified during our research.

3.1 Formal Gestures Definitions

In this section we discuss different models for multi-touch gestures and how a recognizer

would match the raw input data received from the multi-touch sensor to a meaningful gesture

according to the proposed model.

Despite of the differences between these models and their respective interpreters, they share

a common characteristic: the developers must describe each gesture used in the application

using the same formal model. We present two of the most advanced state-of-art gestures

recognizers that fall into this category: Proton++ (KIN et al., 2012a) and Midas (SCHOLLIERS

et al., 2011). For more examples and a chronological review of such techniques, we direct

readers to our survey (CIRELLI; NAKAMURA, 2014).

3.1.1 Defining gestures using regular expressions

Proton (KIN et al., 2012b), and its evolution, Proton++ (KIN et al., 2012a), are gestures

recognizers based on the formalism of regular expressions. Regular expressions are easy to

interpret using finite automata and many modern languages, such as C# and Java, comes

with built-in tools to process them, without the need of a specific compiler.

The idea behind Proton is that a gesture is a sequence of touch events. If we represent

each touch event (and its properties) by a symbol, then a gesture can be described by a string

of symbols of a given language (in this case, a regular language). Their approach has several
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unique features which we shall describe in details in this section.

Proton defines each gesture event as a symbol composed of three properties: the action

(touch down, touch move or touch up), the touch identification (id) and the object touched

(shape, background or anything). The object touched is obtained from a function that de-

velopers must implement and attach to a low-level stream generator. One may have noticed

that the action and the touch identification can be obtained directly from the TUIO protocol

(KALTENBRUNNER et al., 2005).

A drag gesture might be defined according to Proton’s notation as: Ds
1M

s∗
1 U

s
1 , which

means that finger 1 touched down a shape followed by a sequence of touch moves on the

same shape, ending with a touch up over the same shape.

The Proton’s stream generator captures the input data and generates a string of symbols

according to the above notation. Then, the recognition process tries to match this string of

symbols against each of the regular expressions that defines each gesture.

The system also cares about the possible ambiguity between different gestures. For in-

stance, the tap gesture may be defined as Ds
1U

s
1 , which would also be matched by the above

drag regular expression. One could fix the drag gesture in order to solve this ambiguity,

modifying it to Ds
1M

s+
1 U s

1 , however, this might be impossible in many cases. In order to

solve ambiguities, the system allows developers to define a score function, which estimates the

confidence degree of a decision.

Proton has also other two important features: it comes with a gestures editor inspired in the

music tablatures, called gestures tablature (Figure 3.2), and the possibility to generate events

when any part of the regular expression is matched, which is desirable for direct manipulation

gestures.

Figure 3.2: The Proton’s gestures tablature application
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Proton has some limitations: it is defined for single-user applications and it only supports

those three properties on each symbol. Proton++ allows developers to define their own

properties on each symbol (this requires coding a custom property processor) and plug them

into the recognition engine, which overcomes the second limitation. However, the stream

generator still assumes that only one gesture is being performed at once. This makes the

system unsuitable for multi-users applications, but very powerful for single-user ones.

Proton and Proton++ have an additional limitation: regular expressions are, by definition,

a sequence of symbols from a fixed set (the language’s alphabet), which implies in hard

constraints. Using Proton’s notation it is hard to describe the complex trajectories found

in many symbolic gestures. To illustrate that, suppose that we have added four direction

properties to the set of symbols: N , S, E and W . We would have problems if we would like

to create a gesture that moves towards NE. Although we could add NE, SE, NW and SW

directions, we would fall into the same problem if the trajectory is somewhere between N and

NE, for example.

3.1.2 Using logical deduction to recognize gestures

Midas (SCHOLLIERS et al., 2011) is a multi-touch gestures engine which describes gestures as

a set of logical rules. These logical rules are processed by a logical inference engine against

a set of facts, deciding which gesture has been performed. The main motivation of Midas is

to allow the gestures re-usability and extensibility. As gestures are a logical rule, they can be

used to build new gestures.

The facts base consists of all current input detected, called cursor (the moving finger).

Each cursor has the following properties: position (x and y coordinates), speed (x and y

coordinates), time and id. Note that all these information are obtained directly from the TUIO

protocol (KALTENBRUNNER et al., 2005). The rules base consists of the gestures definitions.

An example of a rule to print the X and Y coordinates is given in Listing 3.1 (the Cursor

predicate is a core fact).

Listing 3.1: Printing X and Y coordinates using a logical rule

(defrule PrintCursor(Cursor(x ?x, y ?y))

=>

(printout t "A cursor is moving at (" ?x "," ?y ")."))

They have defined a set of built-in operators (predicates), which are used to build custom
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gestures:

Temporal Operators

The built-in set of temporal operators includes predicates to compare two facts regarding

their timing data. They can be equal to, near (within a tolerance ε) by, contained in,

before or after each other.

Spatial Operators

The built-in set of spatial operators includes predicates to calculate the distance between

two facts, to check if they are near or inside another fact, regarding their X and Y

coordinates.

List Operator

It is common to perform operations against a set of events. Thus, Midas introduced a

special operator to group facts into a list of common facts. The list will contain all facts

that follow the given constraints, such as time period and id.

Movement Operators

Using the List Operator, it is possible to create rules to obtain the direction of the

movement. For instance, moving up can be defined as an operation on a given list as

all facts ∀i, j : i < j ∧ listi(y) > listj(y). Moving down, moving left and moving right

are defined analogously and are part of the built-in operators.

One may have noted that the logical inference engine may deduce two or more possible

gestures for the same set of facts (inputs). However, Midas solves this ambiguity by allowing

developers to define priorities for each gesture. When two or more gestures are possible to be

deduced from the facts base, Midas will chose the one with the highest priority.

The authors provide the Flick Left gesture as an example, which they define as ”an ordered

list of cursor events within a small time interval where all events are accelerated to the left”

(Listing 3.2).

Listing 3.2: The Flick Left gesture in Midas notation

(defrule FlickLeft

?eventList [] <-

(ListOf (Cursor (same: id) (within: 500) (min: 5)))

(movingLeft ?eventList)

=>

(assert (FlickLeft (events ?eventList))))
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One may have noticed that authors define within a small time interval as a time interval of

500 units of time (one may assume, by the TUIO specification, that it means 500 milliseconds).

However, this also adds a hard constraint to the logical definition. Flick gestures will be ignored

if they are slightly slower than this maximum time span, the same way as previously described

techniques. A future development of the Midas language might address this issue using fuzzy

operators, defining vague rules, such as a small time interval. It is also unclear how developers

can define complex trajectories by means of the built-in operators and plug them into the

proposed recognition engine.

To help developers create custom gestures based on complex trajectories, Hoste et al.

have included a gesture spotting algorithm before running the Midas recognition process,

which is, essentially, a pattern matching algorithm based on a set of control points extracted

from examples. This gives developers the ability to create logical rules based on the shape of

such gestures (HOSTE; ROOMS; SIGNER, 2013). It would also be possible to define a logical

rule based on the result of a template matching algorithm and to deny gestures when they

become invalid or if they have been poorly matched.

Midas has also been incorporated to the Mudra multimodal fusion engine, supporting multi-

user environments and collaborative gestures (HOSTE; DUMAS; SIGNER, 2011). Finally, Midas

declarative approach has been exploited in parallel events processing techniques, providing soft

real-time gesture recognition (RENAUX et al., 2012).

Midas is a powerful gestures recognizer, which addresses two important issues seen on other

recognizers: modularization (reuse of logical rules) and composition (defining new gestures

using previously defined ones), which helps developers to build their custom set of gestures for

their applications.

3.2 Defining Gestures by Examples

In this section we are going to discuss a different approach to build multi-touch gestures

recognizers. This new approach can be seen as the dual of the formalisms one: while the

formalism approach defines how users must perform gestures for a given application (users must

reproduce the gestures model), defining gestures by examples lets users define the gestures

they want to use in such application.

This technique is also known as user-defined gestures (WOBBROCK; MORRIS; WILSON,

2009) and has got a great attention from the tabletop community since the $1 recognizer

was published in 2007 (WOBBROCK; WILSON; LI, 2007). However, recognizing gestures from
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examples is an old idea: back to 1991, when touch surfaces were starting to get developed in

academic researches and were far away from the mainstream market we have today, Rubine

proposed GRANDMA: a model to recognize single-touch gestures from a set of examples

(RUBINE, 1991). In this section, we discuss both techniques. For additional techniques and

the chronological evolution of user-defined gestures researches, we direct readers to our survey

(CIRELLI; NAKAMURA, 2014).

3.2.1 Defining Gestures by Example: the GRANDMA recognizer

In his paper, Rubine presents the GRANDMA (Gestures Recognizers Automated in a Novel

Direct Manipulation Architecture) algorithm and is one of the first to use the term gestures

recognizer to name the part of the software which is responsible to identify the gestures

performed by users. As all user-defined gestures techniques which have been proposed so far,

the recognition is done in two steps: training and classification. These are the fundamental

concepts of any machine learning technique for pattern classification.

GRANDMA models a gesture by its trajectory in the two dimensional plane, which means

that each gesture is a single sequence of (x, y, t) points, ignoring points which are less then 3

pixels away from the previous one. Then, it extracts a set of 13 features (properties) from a

given gesture, which should be able to distinguish different gestures properly:

Sin (f1) and Cosine (f2) of the gesture’s initial angle:

f1 = cos(α) = (x2−x0)√
(x2−x0)2+(y2−y0)2

f2 = sin(α) = (y2−y0)√
(x2−x0)2+(y2−y0)2

The length (f3) and the angle (f4) of the gesture’s bounding box diagonal:

f3 =
√

(xmax − xmin)2 + (ymax − ymin)2

f4 = arctg( ymax−ymin

xmax−xmin
)

The distance (f5) between the first and last points:

f5 =
√

(xlast − x0)2 + (ylast − y0)2

Sin (f6) and Cosine (f7) between the first and last points:

f6 = sin(β) = (ylast−y0)
f5

f7 = cos(β) = (xlast−x0)
f5

The gesture length (f8):

Let ∆xp = (xp+1 − xp) and ∆yp = (yp+1 − yp), then:

f8 =
∑p−2

p=0

√
∆x2

p + ∆y2
p
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Sum of transversal angles (f9, f10 and f11):

Let θp = arctg(∆xp∆yp−1−∆xp−1∆yp
∆xp∆xp−1+∆yp−1∆yp

), then:

f9 =
∑p−2

p=1 θp

f10 =
∑p−2

p=1 |θp|
f11 =

∑p−2
p=1 θ

2
p

The maximum speed squared (f12):

Let ∆tp = tp+1 − tp, then:

f12 = max(
∆x2

p+∆y2p
∆t2p

), p ∈ [0, p− 2]

The gesture duration (f13):

f13 = tp−1 − t0

These features can be combined in a 13-dimensional feature vector f and for each possible

classification c, the training process consists on finding the best feature weights (wc) with the

associated bias (wc,0) for that class, accordingly to Equation 3.1:

γc = wc,0 +
F∑
i=1

wc,ifi (3.1)

This matrix of weights (a 13-dimensional vector of weights for each class c) is calculated

during the training step, from the set of examples provided by the users (or developers), using

the classic Linear Discriminant Analysis (LDA) technique.

The classification process is as simple as finding the class c which maximizes γc from

Equation 3.1.

The last step in the GRANDMA’s classification process is the rejection of poorly classified

gestures. Given a gesture g classified as i among the C classes, the estimated probability of

a correct classification is given by Equation 3.2. If the estimated a posteriori probability is

smaller than 0.95, then the gesture is rejected and discarded.

P (i|g) =
1∑C−1

j=0 exp(γj − γi)
(3.2)

Rubine also discusses the possibility of rejecting gestures using the Mahalonobis distance,

which measures how far a sample is from its respective class mean. However, he understands

that this criteria may reject correct classified gestures.

Rubine’s classifier may be extended to support multi-touch gestures if one considers each
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finger trajectory independently and, then, combines the results to classify the unknown gesture

(using a Decision Tree, for example). In this case, one would need more features to identify

gestures with different number of fingers.

From this very first approach one may have noted that building a gestures recognizer

which learns from a given set of examples is a challenging task: it is required to understand

some machine learning techniques and to find features which allow unknown gestures to be

classified properly. However, once one build such recognizer, the effort involved in creating

a gesture-based application is drastically reduced. This is the main motivation for further

development of user-defined gestures recognizers.

3.2.2 A Nearest Neighbours approach

We continue our investigation on user-defined gestures recognizers by discussing the $-Family

of touch gestures recognizers. This family of recognizers has been developed since the release

of the $1 recognizer in 2007 (WOBBROCK; WILSON; LI, 2007). These algorithms share a

common approach: they are based on the K-Nearest Neighbours (KNN) technique, which

consists in defining a distance measure between the unknown gesture and those which have

been previously added to the system during the training step1.

$1 employs the Average Euclidean Distance (also known as path distance) as a distance

measure (Equation 3.3) between a gesture g in the gestures base and the unknown gesture

t. From this distance function, one may derive the $1’s similarity measure between these

gestures, normalized to the [0, 1] interval (Equation 3.4)2.

d(t,g) =

∑N
i ‖ti − gi‖

N
(3.3)

S(t,g) = 1− d(t,g)

0.5 ∗
√
size2 + size2

(3.4)

Different sensors may sample touch-inputs at different rates, generating a different number

of touch-points per trajectory. We have discussed previously that GRANDMA does not care

about the sensors capabilities and extracts exact 13 different features from the sequences of

(x, y, t) coordinates. $1 introduces a new approach: it re-samples each trajectory in order to

have a set of N touch points per sequence of (x, y) coordinates. This process is done for

1Some authors do not consider that such recognizers have a proper training step, as there is no parameters
tuning process. Most often, this step is just a pre-processing phase.

2size is the gesture’s bounding box length used in the pre-processing phase
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each sample gesture during the pre-processing phase and repeated for each unknown gesture

during the classification phase. For a given number of points per trajectory N , the algorithm

performs following steps (Listing 3.3):

1. Calculate the trajectory length (sums of distances between one point to the next one)

2. Divides the obtained distance by N − 1, obtaining the mean distance d̄

3. From the first to the last point, it interpolates the trajectory such as the distance between

each pair of points is d̄.

Listing 3.3: Resampling algorithm proposed by $1

public static List <Point > Resample(List <Point > points , int n)

{

// gets the mean distance between points in the new trajectory

double I = PathLength(points) / (n - 1);

double D = 0.0;

List <Point > oldTrajectory = new List <Point >( points);

List <Point > newTrajectory = new List <Point >(n);

newTrajectory.Add(oldTrajectory [0]);

for (int i = 1; i < oldTrajectory.Count; i++)

{

Point pt1 = (Point) oldTrajectory[i - 1];

Point pt2 = (Point) oldTrajectory[i];

double d = Distance(pt1 , pt2);

if ((D + d) >= I)

{

double qx = pt1.X + ((I - D) / d) * (pt2.X - pt1.X);

double qy = pt1.Y + ((I - D) / d) * (pt2.Y - pt1.Y);

Point q = new Point(qx, qy);

newTrajectory.Add(q);

oldTrajectory.Insert(i, q);

D = 0.0;

}

else

{

D += d;

}

}
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// we may miss the last point due to rounding -errors

if (newTrajectory.Count == n - 1)

{

newTrajectory.Add(oldTrajectory[oldTrajectory.Count - 1]);

}

return newTrajectory;

}

Then, in order to make gestures invariant to translation and scale, $1 re-scales all gestures

to fit into the [−1, 1] square interval and translates their center of mass to (0, 0). These

algorithms are presented in Listing 3.4 and Listing 3.5, respectively.

Listing 3.4: Re-scaling Trajectories

public static List <Point > ScaleTrajectory(List <Point > points)

{

double maxX = MaxX(points);

double minX = MinX(points);

double maxY = MaxY(points);

double minY = MinY(points);

Point fromMax = new Point(maxX , maxY);

Point fromMin = new Point(minX , minY);

Point toMax = new Point(1, 1);

Point toMin = new Point(-1, -1);

List <Point > newTrajectory = new List <Point >( points.Count);

for(int i = 0; i < points.Count; i++)

{

// Scales each coordinate of p from [min , max] to [-1, 1]

Point p = Scale(fromMin , fromMax , toMin , toMax , points[i]);

newTrajectory.Add(p);

}

return newTrajectory;

}

Listing 3.5: Translating Trajectories

public static List <Point > TranslateTrajectory(List <Point > points)

{
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Point centroid = Centroid(points);

List <Point > newTrajectory = new List <Point >( points.Count);

for(int i = 0; i < points.Count; i++)

{

Point p = points[i] - centroid;

newTrajectory.Add(p);

}

return newTrajectory;

}

In order to achieve rotation invariance, $1 rotates each gesture by its indicative angle

(the angle between its centroid and the first point) and applies the Golden-Section Search

approach, which consists in generating new gestures by rotating a gesture from the base by

an angle θ ∈ (0, 2π), step-by-step, while the similarity between the unknown gesture and this

rotated gesture grows.

This approach assumes that the distance function has a global minimum on θ and, there-

fore, the maximum likelihood between an unknown gesture and a gesture from the gestures

base can be found iteratively. The gesture from the base that shows the best similarity to the

unknown one will be the chosen one.

The $1 recognizer has addressed the single-touch gestures recognition problem uniquely:

it has brought an easy-to-implement algorithm (KNN); it has presented a pre-processing step

that will be reused in many subsequent approaches and it has defined gestures as trajectories:

a sequence of (x, y) points.

However, in order to obtain rotation invariant gestures, it employs a brute force approach

which has at least one important drawback: minimizing the distance function on θ requires

lots of iterations per gesture in the gestures base, slowing down the classification process. It

has also some limitations:

• Due to its pre-processing transformations, $1 can not distinguish gestures that depend

on aspect ratio, location or orientation, such as up-arrows or down-arrows

• $1 can not distinguish gestures that depend on time or speed, such as distinguishing

between a tap and a press and hold gestures

Almost at the same time, in 2010, two extensions of the $1 recognizer were published:

the Protractor (LI, 2010) and $N (ANTHONY; WOBBROCK, 2010) recognizers. The former

presented a closed-form solution to the rotation invariance and the aspect-ratio problems of
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$1, improving significantly the time spent to classify an unknown gesture. On the other hand,

the latter presented an extension of $1 for multi-touch gestures. In 2012, both solutions

were merged into a new recognizer: $N-Protractor (ANTHONY; WOBBROCK, 2012), which we

describe now.

We have discussed previously that the Golden-Section Search method iterates through

the (0, 2π) interval until it finds the best angle θ which maximizes the similarity between the

rotated gesture from the gestures base and the unknown gesture. Protractor introduces the

new Inverse Cosine Distance (Equation 3.5) function3 and formulates the problem as finding

the angle θ which, if applied to a given gesture g, maximizes the similarity function S(t,g)

between this gesture and the unknown gesture t (Equation 3.6).

d(t,g) = arccos(
g · t
‖g‖ ‖t‖

) (3.5)

S(t,g) =
1

d(t,g)
(3.6)

In order to maximize Equation 3.6 one can minimize its denominator, by finding θ which

equals its first order derivative to zero (Equation 3.7).

d

dθ

(
g(θ) · t
‖g(θ)‖ ‖t‖

)
= 0 (3.7)

Solving Equation 3.7 gives us the angle θoptimal which we need to rotate the gesture g

in order to maximize its similarity to the unknown gesture t (Equation 3.8). This method

significantly outperforms the Golden-Section Search method because, instead of iteratively

rotating each gesture from the gestures base and testing if θ is optimal, one needs to rotate

each gesture from the gestures base by the calculated θoptimal only once.

θoptimal = arctan(

∑N
i gx,ity,i − gy,itx,i
‖g‖ ‖t‖

) (3.8)

After its pre-processing phase, $1 models each gesture g as a sequence of (x, y) coor-

dinates, defining a (N ∗ 2)-dimensional vector, where N is the number of touch points per

gesture. Extending this model to multi-touch gestures is as easy as considering each finger

trajectory as a (N ∗ 2)-dimensional vector and concatenating them into a new (N ∗ F ∗ 2)-

dimensional vector, where F is the number of fingers used to perform the gesture. This

3The cosine distance actually finds an angle between two vectors in an n-dimensional space
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model works the best if we compare an unknown gesture only to gestures in the gestures

base that contains the same number of fingers (which is a reasonable assumption for most of

applications).

$N has been well-accepted by the tabletop community and the proposed algorithm has

been ported to several different languages, such as C#, Java, Javascript and C++. It is a

powerful prototyping tool which allows developers to easily create new gestures and evaluate

them in their applications. Authors have also published a web-based tool4 to help developers

to create custom gestures and evaluate the $N algorithm. $N has also been modified by

Kratz and Rohs to recognize 3D gestures using accelerometer sensors (KRATZ; ROHS, 2010).

However, $N has some limitations5:

Fingers Permutations

When users input multi-touch gestures, fingers can be placed into the screen in any order.

For instance, a two-fingers gesture (F1 and F2) would generate two different vectors:

[F1, F2] and [F2, F1], which would be classified differently. In order to avoid this

issue, $N automatically adds all possible fingers permutations to the gestures base. This

combinatoric increases the number of gestures in the base, slowing down the classification

process and making this process much more error-prone. This issue has been addressed

by the $P recognizer (VATAVU; ANTHONY; WOBBROCK, 2012), as we describe later in

this section.

Large Gestures Base

$N is good for prototyping because the KNN technique does not require a real training

process, as opposed to GRANDMA. However, this is also a drawback, because the clas-

sification routine must compare the unknown gestures to all gestures (and their fingers

permutations) in the base. In real applications, when tens of different gestures (and

different numbers of fingers) are available, the classification process suffers a significant

loss of speed and, sometimes, precision.

Time-constrained gestures

$N does not use the time information to define gestures. Therefore, it is impossible to

distinguish gestures that differ only by their duration or speed, such as tap and press

and hold gestures.

4$N tool: https://depts.washington.edu/aimgroup/proj/dollar/ndollar.html - accessed at
22nd, April, 2014

5$N limitations: http://depts.washington.edu/aimgroup/proj/dollar/limits/ - accessed at 22nd,
April, 2014

https://depts.washington.edu/aimgroup/proj/dollar/ndollar.html
http://depts.washington.edu/aimgroup/proj/dollar/limits/
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The Drag Gesture

$N is not capable of recognizing the drag gesture because its trajectory is not defined,

since users can freely drag objects around the screen.

Division by Zero

$N’s similarity measure (Equation 3.6) has an issue: if we compare identical gestures, it

will generate a division-by-zero error. It is unlike to happen in real applications, but for

testing purposes, it may be an issue. Fortunately, it is possible to change this function

without loss of precision to the classification process (Equation 3.9):

S(t,g) =
1

1 + d(t,g)
(3.9)

The last member of the $-Family of touch gestures recognizers is $P (VATAVU; ANTHONY;

WOBBROCK, 2012). $P drastically changes the $N gestures model in order to solve the combi-

natoric overhead issue from its predecessors. While $N defines gestures as an ordered sequence

of touch-points (x, y), $P defines gestures as unordered points-clouds (or graphs).

We have seen that $1 iteratively rotates each gesture from the gestures base in order to

find the maximum similarity between different gestures. $P needs to do a similar task in order

to find which touch-point minimizes its distance to a given point in the unknown gestures

cloud. Thus, one needs to calculate the distance between a combination of N ! pairs of points

in each cloud. This problem has already been solved in the Graph Theory and is known as the

classic Assignment Problem (finding the minimum distance between two bipartite graphs). $P

uses an approximation of the Hungarian Algorithm (KUHN, 1955) to solve it.

This approach loses the trajectory information and does not care about the number of

fingers in each gesture. However, authors claim that such information is not relevant in most

applications and only adds more complexity to the recognizer. Authors performed an evaluation

study in order to compare $P to $N and $N-Protractor and found out that $P has a slightly

better accuracy at the cost of a significant loss of performance ($P takes more than 300ms to

classify a gesture while $N-Protractor takes about 0.10ms).

In this section we have covered how $1 and its evolutions have addressed the multi-touch

gestures recognition problem from a learning perspective. The $-family has presented lots of

contributions to the tabletop community:

• A pre-processing algorithm which deals with variations in translation, scale and sampling

• A closed-form distance function which is fast to calculate and is rotation-invariant
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• An easy to implement distance-based classification algorithm

• An extendible model for multi-touch gestures to any number of fingers

• A set of tools for rapid prototyping of gestures-based interfaces

However, time-constrained, free-form or multi-user gestures can not be identified by any of

presented techniques from this family. Also, performance may be harmed if these techniques

are used in a complex system with many different gestures and several fingers per gesture.

Finally, the $-family of algorithms does not include a way to reject poorly classified gestures

nor how to provide continuous feedback to the applications while a user is performing a direct

manipulation gesture.

3.3 Multi-touch Gestures Frameworks

In this section we describe the state of art multi-touch frameworks. A framework is a set

of abstractions, interfaces and standards developed to solve a class of problems in a flexible

and extensible manner (GOVONI, 1999). In our context, a framework abstracts multi-touch

gestures concepts, allowing developers to create custom gestures and handle their respective

events in their applications.

Several multi-touch frameworks were proposed in the past few years, each of them trying

to address different developers needs. Although their implementation varies, their most high-

level architecture (Figure 3.3) remains almost unchanged, because their base goal are still the

same: to link between different input hardware and different graphical toolkits (application

level) (ECHTLER; KLINKER, 2008).

The link between these two parts of the system is built on top of a layered architecture,

which looses coupling between each part of the system and allows great extensibility and

customization. The Hardware Abstraction Layer (HAL) abstracts the sensors hardware and

device drivers, defining a common interface for receiving raw touch events. The TUIO protocol

has became the de facto standard to provide such integration between different frameworks

and the input sensors (KALTENBRUNNER et al., 2005), but other implementations have also

been proposed, such as the Surface SDK (MICROSOFT, 2012).

On top of the HAL, Echtler and Klinker define a transformation layer, which is responsible

for converting input data from the sensors to screen coordinates6. The interpretation layer does

6In some frameworks, this step is embedded into the HAL on top of the TUIO API
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Figure 3.3: Echtler’s and Klinker’s General Architecture for Tabletop Frameworks

the actual gestures recognition, embedding gestures features into an event object, transmitted

to the widgets layer, which represents the GUI components (polygonal regions where gestures

are performed).

It is worth to note that the gestures recognizer, which we have discussed previously, is

only part of this more complex architecture, which abstracts the gestures handling and its

integration to interface objects, allowing developers to easily build new applications on top of

it.

Currently there are lots of frameworks with the most recurring multi-touch gestures like tap

or drag built-in. Examples of these frameworks are MT4j (FRAUNHOFER-INSTITUTE, 2011),

Surface SDK (MICROSOFT, 2012), Multitouch Vista (CODEPLEX, 2009), Sparsh-UI (SPARSH-UI,

2010), .NET4 (MICROSOFT, 2011), Breeze Multitouch (MINDSTORM, 2010) and Miria (CODE-

PLEX, 2011), ranging between proprietary and open source. Usually, when a vendor releases

a new tabletop, it also provides a custom multi-touch framework, such as the DiamondSpin

Framework (SHEN et al., 2004) for the DiamondTouch Table (DIETZ; LEIGH, 2001) or the

reacTIVision (KALTENBRUNNER, 2009) for the reacTable (JORDA et al., 2007).

Kammer et al have defined a set of criteria to compare different multi-touch frameworks,

such as platform and hardware independences, gesture extensibility, standard gestures and

framework’s scope. Their criteria are categorized into three groups (Table 3.1): features,
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scope and architecture, which are useful to compare different multi-touch frameworks and find

the most suitable for a given application (KAMMER et al., 2010).

Table 3.1: Kammer et al Criteria

Classes Criteria

Features
Visualization Support
Gesture Extensibility
Standard Gestures

Scope
Gesture Parameters
Tangible Objects
Touch

Architecture
Event System
Hardware Independence
Platform Independence

The architecture criteria are concerned with the applicability of a given framework on a

given operating system or hardware. Regarding their scope, although some frameworks handle

touch and tangible objects, authors claim that most frameworks are focused on only one of

them. Regarding its features, a framework usually provide a set built-in gestures, most often for

direct manipulation of interface objects, but also can provide abstractions to allow developers

to build their custom gestures. Finally, some frameworks implement the full Echtler’s and

Klinker’s stack, providing a set of abstractions for GUI components integrated to their internal

gestures handling system.

Accordingly to the authors, some of the mentioned frameworks are platform independent

(MT4j, Miria and Splash-UI) and others are not (Surface SDK). There are also frameworks

which are focused on tangible objects (reacTIVision) or on touch (MT4j, Sparsh-UI and Breeze

Multitouch). Some frameworks also provides a presentation layer, which contains some widget

controls specially developed for multi-touch applications (MT4j, Surface SDK and Breeze

Multitouch), implementing the full stack proposed by Echtler and Klinker.

3.4 Requirements for Multi-Touch Frameworks

Kammer’s et al criteria are mostly focused on the developers needs, by evaluating how a given

framework would answer to questions like:

• How to create new gestures?

• How to port my application to different platforms?
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• Does it handle touch input or tangible objects?

• Is it integrated to custom GUI components?

However, from the user experience point of view, which we have discussed extensively in

Chapter 2, Kammer’s et al criteria do not give enough information to decide the most suitable

framework for a given application. As we have discussed previously, different gestures recog-

nizers have their own limitations, which affects users interaction in different ways. Problems

such as orientation invariance, recognition performance and continuous feedback are ignored

by their set of criteria. Due to this problem, we proposed an extended set of fourteen require-

ments that a full-featured tabletop framework should meet (CIRELLI; NAKAMURA, 2014). In

the following list, we describe each requirement and highlight the heuristic each requirement

is addressing.

1. Be Flexible and Extensible

This is the major motivation for all researches presented in this chapter: to allow devel-

opers to create their custom gestures without needing to handle low level input data.

This requirement supports the match between system and the real world heuristic, as

it makes it possible to add more intuitive gestures to the applications. Together with

requirements 2 and 3, this requirement adds flexibility and efficiency of use.

2. Be Fast

Gestures recognition algorithms must be fast in order to not harm the users interaction

due to lagging.

3. Be Accurate

Misidentification of gestures may cause several issues to the interaction, as users may

lose current work or may lose time undoing unwanted actions. This requirement is

related to some of the most basic heuristics, such as error prevention and recognition

rather than recall.

4. Support Multi-Touch and 5. Multi-Users Applications

Tabletops are most often used to support collaborative applications. Thus, handling

multi-touch gestures from several users simultaneously is a requirement for recognition

systems. This requirement has been designed according to the support simultaneous

users actions heuristic.

6. Support Orientation Invariance

One of the heuristics discussed previously states that tabletop applications should support



55

reorientation. Thus, most of tabletop applications must not enforce a fixed orientation

and participants may interact from any position around the table and rotate objects

around the screen.

7. Provide Continuous Feedback

Applications must be continuously notified about gesture events when these gestures

are being used to manipulate objects on the screen, such as rotating, moving or resizing

them. Such gestures changes the system status continuously. By providing continuous

feedback, applications are addressing the visibility of system status heuristic.

8. Allow Easy Prototyping

During the prototyping phase of any tabletop application, developers and interaction

designers work together in order to run several user experiments to identify which gestures

will be used in their applications. This is an iterative process which requires it to be

easy to add new gestures to the gestures set and handle their respective events in the

application level.

9. Support Symbolic Gestures

Symbolic gestures are often used to execute single-shot actions in tabletop applica-

tions, playing the role of command’s shortcuts or hotkeys, which are common in other

platforms. These gestures are defined by their trajectory, both in spatial and time coor-

dinates. This requirement also supports the match between system and the real world,

as symbolic gestures are, in its essence, a gestural representation of a real world object

or action.

10. Allow Time-Constrained Gestures

Most of applications uses tap or press and hold gestures in order to manipulate objects

on the screen. These gestures are examples of gestures spatially identical, but very

different from the timing perspective.

11. Support Territories

Users perform different actions in different tabletop territories. Therefore, a gestures

framework must allow developers to define which gestures are allowed in each territory,

avoiding this decision in the application level. This requirement is based on the support

transitions between personal and group work heuristic.

12. Recognize Free-form Gestures

Gestures such as drag and lasso can not be described by their trajectories. Therefore,
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frameworks must also handle such kind of free-form gestures. Such gestures help to

minimize human reach and to design independently of the table size.

13. Support Sequential Gestures

A well-defined sequence of multi-touch gestures can trigger a new action in the applica-

tion level (combos of gestures). A gestures framework must allow developers to specify

these sequences and must notify the application whenever these sequences are detected.

This is a special kind of gestures that also helps to support fluid transitions between

activities and to support people with the coordination of their actions.

14. Support Cooperative Gestures

Collaborative applications make use of cooperative gestures, which are gestures per-

formed by different users in order to trigger a single command in the application. As

tabletops are often used to support Collaborative Applications, frameworks must support

cooperative gestures. This requirement adds support to private and group interactions.

Table 3.2 evaluates some of the multi-touch gestures frameworks discussed in this chapter

accordingly to the proposed criteria (•: criteria is met; ◦: criteria is not met; −: not enough

data). Unfortunately, none of these frameworks meets all of the proposed criteria.

Table 3.2: Frameworks Comparison using the proposed Criteria

Criteria Midas Proton++ $N-Protractor MT4J

1 • • • •
2 • − • −
3 − − • −
4 • • • •
5 • ◦ ◦ ◦
6 ◦ ◦ • ◦
7 • • ◦ •
8 ◦ • • ◦
9 • ◦ • ◦
10 • • ◦ •
11 • ◦ ◦ •
12 • • ◦ •
13 • • ◦ ◦
14 • ◦ ◦ ◦
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3.5 Summary

In this chapter, we presented the state of art techniques and frameworks for defining and

recognizing multi-touch gestures for tabletop applications. We have discussed their strengths

and weaknesses based on the requirements we have enumerated in our previous research.

Unfortunately, none of the state of art techniques or frameworks discussed in this chapter

meets all of those requirements (Table 3.2). In Chapter 4 we present our research on the

MiTable Engine and how it addresses them.
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4 THE MITABLE ENGINE

So far, we discussed how tabletops are used, which are their typical applications, how people use

gestures to interact with these devices and how a piece of software, called gestures recognizer,

interprets different inputs from different users.

Now, it is time to put all of these concepts together: our main goal is to support the

development of tabletop applications that follows the heuristics and guidelines discussed previ-

ously in Chapter 2. Such applications are controlled by gestures, which must be as natural as

possible and must be well-interpreted by the gestures engine. In order to support and ease such

a complex development task, we propose a new multi-touch gestures engine, called MiTable,

which we discuss in this chapter.

4.1 Introduction

Before presenting the engine itself, we recall the set of requirements from Section 3.3, which

guided the development of the MiTable Engine, from both the architecture and implementation

perspectives:

1. Be Flexible and Extensible

2. Be Fast

3. Be Accurate

4. Support Multi-Touch

5. Support Multi-Users Applications

6. Support Orientation Invariance

7. Provide Continuous Feedback

8. Allow Easy Prototyping
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9. Support Symbolic Gestures

10. Allow Time-Constrained Gestures

11. Support Territories

12. Recognize Free-form Gestures

13. Support Sequential Gestures

14. Support Cooperative Gestures

Each requirements is addressed in a different level of the MiTable engine. On one hand,

requirements such as Be Fast and Be Accurate are very implementation dependent (although

some bad architectural decisions may also harm the engine’s performance), on the other, crite-

ria such as Be Flexible and Extensible and Support Multi-Touch and Multi-Users Applications

define architectural requirements.

In the following sections, we discuss the details of the proposed engine. We start by

presenting the MiTable’s architecture in Section 4.2 and its benefits. The MiTable Engine

consist not only of a set of classes and API’s for application development, but also includes

a set of tools to ease the creation of new gestures and the configuration of different gestures

recognizers. Such tools are presented in Section 4.3. Finally, we end this chapter presenting

our two proof of concept applications and discuss how the proposed engine addresses each of

the fourteen requirements.

4.2 MiTable’s Architecture

In this section we present the MiTable’s architecture and the its internal behaviours. MiTable

is a built on top of a 4-layers architecture (Figure 4.1):

Figure 4.1: MiTable’s Architecture
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Hardware Abstraction Layer (HAL)

This is the bottom-level layer. Its responsibility is to interface the engine to different

hardwares, operating systems and device drivers, abstracting such complexity from the

layers above it and the main application.

Recognition Layer

The recognition layer is responsible for interpreting the raw data received from the sensors

by the HAL components into a meaningful gesture object. For each gesture interpreted,

the recognition algorithm must provide its confidence level about that recognition. The

recognition layer is structured in a novel six customizable steps pipeline, which are further

described in Section 4.2.2.

Filtering Layer

In this layer, the engine filters the gesture objects according to some criteria, such as the

gesture name, the recognizer confidence level or the area (territory) where the gesture

has been performed.

Events Notification Layer

This is the top-level layer which is responsible to notify the main application about the

recognition of a new gesture.

The most basic structure is the multi-touch gesture representation, which consists of an

ordered collection of strokes (fingers movements), which are an ordered collection of raw

touch coordinates (trajectory) as shown in Figure 4.2. Each type of gesture is uniquely iden-

tified by its Name. When recognized, a MultiTouchGesture object receives a Score, which

is the confidence level of that recognition (ranges between 0 and 1) and the classification

Timestamp.

Figure 4.2: MiTable’s Gesture Model
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Before we go deeper into each layer, it is worth to look at the engine from an intermediate

level. Understanding the core components and how they are connected to each other is

important before we dig into the implementation details. Figure 4.3 provides a big picture of

the engine’s internals and the most important components in each layer.

Figure 4.3: MiTable’s Main Components

From top to bottom, the EventsHandlersManager is responsible for registering the call-

backs from the applications for each possible gestures and for calling them accordingly. The

FiltersManager is responsible for running the filtering pipeline, which rejects a gesture accord-

ing to a set of developer-defined criteria. The RecognitionManager is responsible for managing

the recognition pipeline. Finally, the MiTableManager is the core engine component, which

integrates all layers of the engine and provides an abstraction to the underlying hardware.

As we shall discuss in the following sections, the MiTable engine is very flexible and can

be customized by developers according to the application’s and device’s needs. All engine’s

components are defined by a very high-level interface, allowing developers to create their own

implementations. Obviously, the engine comes with several built-in implementations to support

the most usual cases out of the box.
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4.2.1 The Hardware Abstraction Layer (HAL)

The HAL is the engine’s entry point and the AMiTableManager class is its core component.

It defines the interface to the underlying hardware and device drivers and also manages the

communication between all layers (Figure 4.2).

Figure 4.4: MiTable’s Manager

AMiTableManager is an abstract class: it implements the engine’s dynamics and de-

fines the prototypes for the lower level hardware interface, according to the Template Pattern

(GAMMA et al., 1998). The prototype functions define the Data Acquisition Flow and are called

by the platform-dependent hardware interface class. When new touch events are reported by

the lower-level hardware interface, this manager redirects the calls to the recognition layer

(Figure 4.5).

The platform-specific implementation of this manager must connect to the hardware-

specific device driver and call the default Data Acquisition Flow functions according to the

device’s capabilities. The engine has one built-in platform-specific implementation of this

manager: the MiTableTuioAdapter, which connects the engine to TUIO-supported devices,

according to the TUIO Protocol (KALTENBRUNNER et al., 2005).

When the recognition layer identifies a new gesture, it reports back to this manager with

an asynchronous function call. The recognized gesture will, then, be filtered and reported to

the application. The framework’s dynamics is represented in Figure 4.6.

Code provided in Listing 4.1 provides an example of how to initialize the TUIO adapter

using the engine’s API. It will be further developed during the following sections in order to

provide a complete example of how to initialize the MiTable engine and start receiving gestures

events in the main application.
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Figure 4.5: Data Acquisition Flow

Listing 4.1: Initializing the TUIO Adapter

IMiTableManager miTableManager;

public void InitializeEngine ()

{

// screen resolution (e.g. Full HD)

int width = 1920;

int height = 1080;

// TUIO’s socket port

int tuioPort = 3333;

miTableManager = new MiTableTuioAdapter(tuioPort , width , height);

}

4.2.2 The Recognition Layer

The Recognition Layer provides the infrastructure developers need to add standard and custom

gestures to their applications. While some frameworks discussed earlier in Chapter 3 provide a

single recognition algorithm (SCHOLLIERS et al., 2011; KIN et al., 2012a), others provide a generic

interface for developers implement their own recognition algorithm (FRAUNHOFER-INSTITUTE,

2011). There are pros and cons on both approaches. On one hand, having a single recognition

algorithm, developers are limited by the algorithms capabilities and limitations, but everything
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Figure 4.6: Processing Flow

is ready to use out of the box. On the other, by defining a generic interface for recognizers,

developers have flexibility to develop their own algorithms, but it is not a trivial task and

code-reuse is almost impossible.

From our research on multi-touch gestures recognizers, presented in Chapter 3, we con-

clude that a gestures recognizer tries to answer to the following questions:

1. When does a trajectory start and when does it end?

This question is related to a problem in computer vision known as Segmentation. The

goal of segmentation algorithms is to determine the boundaries of the object in study

in a image (MITRA; ACHARYA, 2007), removing the parts that are not important for

the application. By analogy, in multi-touch gestures recognition, we can define the

Segmentation process by the task of identifying when a trajectory starts and finishes,

filtering possible noisy or corrupted data.

2. Which fingers belongs to each gesture (or each user)?

This question is related to scenarios where it is possible to perform different gestures

at the same time (usually, but not restricted to, multi-user applications). When only

one gesture can be performed at the same time, it is clear that all fingers touching the

screen belongs to that gesture. This is a common scenario for smartphones applications,

in which a single user performs just one action at a time. However, in multi-user appli-

cations, users are interacting with the device simultaneously and gestures are performed
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concurrently. Thus, there is the need to identify which fingers belongs to each gesture

being performed.

3. Which gesture is being (or has been) performed?

This is the main purpose of all gestures recognition techniques discussed in Chapter 3:

to identify the gesture performed correctly and take its respective action.

4. How to combine gestures to identify sequential or collaborative gestures?

We have seen in Chapter 2 that gestures can be performed in a sequence to generate an

additive effect or to trigger a completely new event. These gestures are called sequential

gestures. Gestures can be performed by different users in combination to have a different

effect, which are the definition of collaborative gestures. In both cases, the resultant

gesture is the combination of previously identified gestures.

5. What to do when more than one gesture is possible?

This is the ambiguity problem discussed in Chapter 3, which consists in deciding for a

single gesture when more than one classification is possible. This problem happens in

two different scenarios: when we have more than one gestures recognition algorithms

running in parallel and they provide different answers to the same gesture data; or when

a gesture is part of a sequential or collaborative gesture at the same time it is a valid

gesture alone (e.g tap is a valid gesture while it is part of a double-tap gesture). While

the former is usually addressed by a dis-ambiguity function (KIN et al., 2012a), the latter

is usually addressed by a prioritization function (SCHOLLIERS et al., 2011).

When developing the MiTable Engine, we opted for breaking down the recognition process

into a six-steps pipeline (Figure 4.7). This novel architecture allows developers to reuse ex-

isting pipeline blocks while providing a generic interface for custom algorithms. The Pipeline

Pattern (VERMEULEN; BEGED-DOV; THOMPSON, 1995) also allows easy parallelism (to improve

performance) and the customization of the recognition process by skipping or adding custom

blocks.

Each pipeline block is responsible for answering to one of the aforementioned questions

and is defined by a generic interface (Figure 4.8). As fingers touch the screen in a unpredictable

manner, the recognition process is intrinsically asynchronous. Thus, the recognition pipeline

runs in parallel threads inside the engine and, when the whole process is finished for a set of

input data, an event is generated to notify the engine about the captured gesture.

Now, we start a discussion on each of these blocks, explaining how it works and the

algorithms available for use in the engine out of the box. As mentioned earlier, one of the
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Figure 4.7: Recognition Layer

Figure 4.8: Recognition Pipeline Blocks

benefits of the pipeline pattern is that each block is customizable to fit an specific need.

4.2.2.1 The Segmentation Block

The first block in the MiTable Recognition Pipeline is the Segmentation Block. This block

is responsible for identifying valid and independent trajectories from the raw touch events

provided by the HAL. It receives the touch events from the HAL and organizes them into

Strokes, which is our representation of a single moving finger and its trajectory.

Its most challenging task is to decide when to transmit the segmented Stroke object to

the Mixing block. An example of a segmentation algorithm is provided by the GRANDMA

recognizer, discussed earlier in Chapter 3. It ignores touch points that are too close to each

other, to improve performance and remove noisy data (RUBINE, 1991). Another example of a

segmentation algorithm was proposed for 3D gestures based on accelerometers (PREKOPCSAK,
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2008). This is very application-specific and, sometimes, is tight-coupled to the recognition

algorithm itself.

In order to provide continuous feedback, the Segmentation algorithm needs to return the

identified Strokes continuously (e.g. by periodic batches or synchronized to the raw touch

events). Once a touch up event is received from the HAL, the last Stroke information is

returned and the object can be discarded to free up memory.

The MiTable Engine comes with some common implementation of Segmentation algo-

rithms:

The OnRemoveStrokeSegmentator class

This class implements the basic segmentation algorithm for applications that make use

of single-touch symbolic gestures only. A symbolic gesture is defined as a trajectory

and it is identified when the trajectory is completed. Thus, whenever a touch up event

happens, this segmentation algorithm returns the whole Stroke information at once.

The GestureRecorderSegmentator class

This class implements a segmentation algorithms which consists of tracking the Stroke

information whenever the application requests to start recording touch gestures. It tracks

raw touch events until the application requests it to stop. This implementation is very

similar to the one used in the Nintendo WiiMote controller, in which the user holds a

button pressed while performing a gesture.

The PeriodicSegmentator class

This class implements a segmentation algorithm that keeps tracking all raw touch events

continuously and returns the set of identified Strokes periodically. This is useful to

provide continuous feedback to applications that rely on direct manipulation gestures

and to avoid an excessive pipeline process when lots of fingers are touching the screen

simultaneously as the raw touch information can be passed through the pipeline in

periodic batches.

The AllowedAreaSegmentator class

This class implements a segmentation algorithm that tracks only the raw touch events

that happens inside a set of allowed areas in the screen. This is a useful algorithm to

avoid unnecessary pipeline process in GUI-based applications where gestures can only be

performed on the visible widgets or in specific territories.
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4.2.2.2 The Mixing Block

The second block in the MiTable Recognition Pipeline is the Mixing Block. This block is

responsible for grouping the set of Strokes provided by the Segmentation Block into a new

set of one or more gesture objects. In smartphone applications, the Mixing block can be very

simple: it may just map all provided Strokes into the same multi-touch gesture object. When

the application uses only single-touch gestures, the Mixing algorithm is also simple: it just

returns one gesture object for each Stroke performed. However, in multi-user applications

with multi-touch gestures this problem is very challenging.

When the hardware is capable of identifying which fingers belongs to each user, the Mixing

algorithm is also simple: it returns one gesture object containing the Strokes performed by

each user. However, this is not the case for several multi-touch surfaces. Usually, there is no

information about which user is touching the screen at a given time, nor the location of each

user around the tabletop.

Due to these hardware limitations and the different applications requirements, the Mixing

block is very dependent on the platform capabilities and the application design. We provide

a set of four common implementation of Mixing algorithms, but developers can make use of

the Pipeline Pattern to create their own implementation that is more suitable for their devices

and applications:

The AllInOneGestureMixer class

This class implements the simple algorithm for single-user applications: it maps all

Strokes to the same gesture object.

The SingleTouchMixer class

This class implements the simple algorithm for applications based only on single-touch

gestures: each Stroke is mapped to a different gesture object.

The MaxDistanceMixer class

This class implements a Mixing algorithm that consists in grouping near Strokes into

gestures objects. The threshold distance is provided by the developer and all Strokes

within that radius are mapped to the same gesture object. This algorithm is based on

the assumption that fingers from the same gesture cannot be far away from each other

due to the limited reach of the users hands.

The RectangleAreaMixer class

This class implements a Mixing algorithm that consists in grouping Strokes that are
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performed within an area on the screen. The set of areas where gestures are allowed to

be performed is given and may be changed by the application at runtime. This algorithm

is useful for GUI and territory-based applications which define the regions on the surface

where users are allowed to interact with.

4.2.2.3 The Classification Block

The third block in the MiTable Recognition Pipeline is the Classification Block. Since the

gesture is well-defined, we are able to run the classification process. This block receives the

unknown (but segmented and well-defined) gesture and execute its recognition algorithm,

regardless of being based on a machine-learning algorithm or on a formal gestures model.

The goal of this algorithm is to fill the unknown gesture’s Name, Score and Timestamp

properties.

We have discussed several different classification techniques in Chapter 3. There are

those based on machine learning principles and those based on formal models. In order to

accomplish both kinds of gestures recognizers, the Classification Block is defined by just a

single Classify(gesture) method, which can be implemented regardless of the underlying

classification technique used.

As several machine learning techniques have been proposed so far, the engine’s API pro-

vides a set of classes to support the development of new classifiers. All machine learning-based

approaches we discussed previously follow the same recognition flow, such as the $N-Protractor

(ANTHONY; WOBBROCK, 2012) and the GRANDMA (RUBINE, 1991) recognizers. There are

basically three steps: the pre-processing, where the unknown gesture data is normalized and

noise is filtered; the features-extraction, where the characteristics that are important to distin-

guish one gesture from the others are obtained; and the classification process, that runs the

pattern recognition algorithm itself (Figure 4.9).

Figure 4.9: General Classification Pipeline

Besides the Classification Block itself, represented by the IRecognizer interface, the en-

gine’s API provides abstractions for both the pre-processing and features-extraction steps,

which can be used by custom classification blocks.

Lots of pre-processing algorithms are provided out of the box within the engine’s API,
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such as Catmull-Rom Spline, Re-sampling, Translation Normalization, Scale Normalization,

Douglas-Peucker Polygon Simplification (DOUGLAS; PEUCKER, 1973; XIAO-LI; DE, 2010), among

others (Figure 4.10).

Figure 4.10: Built-in Pre-Processors

Sometimes, the pre-processing phase consists in several steps. For instance, the $N recog-

nizer first re-samples the gestures to a certain number of touch-points. Then it rescales and

translates it in order to make it scale and translation invariant (ANTHONY; WOBBROCK, 2012).

Each step may be performed by a different pre-processing class and they can be combined

using the Decorator Pattern (GAMMA et al., 1998).

The same structure is used to the features-extraction interfaces. A features extractor may

be designed to extract only one feature and several different extractors may be combined using

the Decorator Pattern (Figure 4.11).

Using the Decorator Pattern to extract features and pre-process the raw gestures enhances

code reuse and allows developers to compare the performance between recognition algorithms

with the same set of features and same normalization processes easily.

For multi-touch gestures recognition, our engine provides some of the state-of-art tech-

niques built-in: the $1-Protractor and $N-Protractor; a generic K-Nearest Neighbours algo-

rithm (using configurable distance measures); a Dynamic Time Warping (DTW) based method

(SALVADORE; CHAN, 2004); and a Finite-State Machine to recognize the most common direct

manipulation gestures (such as drag, drop, tap, press and flick), which is, in its essence, a

recognition algorithm based on the formalism of Finite Automata and Regular Expressions.
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Figure 4.11: Built-in Features Extractors

4.2.2.4 The Decision Block

The fourth block in the MiTable Recognition Pipeline is the Decision Block. As we discussed

in Chapter 3, there are several different techniques to recognize gestures, each of them with

its own strengths and weaknesses. Sometimes, an algorithm is very specialized for a single

type of gesture, performing just a binary decision: the gesture is c or is not. In others, the

recognition has some degree of confidence that a gesture is c. In such cases, there might be

one algorithm for each possible gesture.

As one may have noticed in Figure 4.7, the recognition pipeline allows the addition of more

than one Classification Block to the pipeline. Each of them runs in parallel to each other and

provides a different gestures classification.

In order to solve this decision problem, we added a Decision Block to the pipeline. In the

simple case where there is just one Classification Block, the decision algorithm just returns

recognized gesture. However, in the general case, there might be more than one Classification

Block in the pipeline and a decision must be taken.

Taking this decision in the general case is not trivial. Different recognition algorithms

estimate the confidence level of their classification in different ways. Thus, using just the

Score property of the classified gesture is usually not enough. In the general case, when we

have different machine learning algorithms in the pipeline, this is worse than insufficient: it is

statistically wrong.
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There are basically two different scenarios for such decision making algorithms: the differ-

ent classification blocks have the same gesture set or they are specialized for different gestures.

In the former case, a voting algorithm could be applied to have the decision taken. Another

possibility would be to apply a statistical test, such as the Cohen’s Kappa Test, to decide if

the classification algorithms agree to a common decision. However, in the latter case, things

are even more complicated, because the universe of possible gestures is not the same for each

classifier.

Due to these technical challenges, current engine provides just a default Decision Block,

which returns the first classified gesture in the given set (which is fine for pipelines with just

one recognition block). The implementation of more complex decision algorithms between

different classifiers is a subject for future researches.

4.2.2.5 The Combination Block

The fifth block in the MiTable Recognition Pipeline is the Combination Block. This block

allows the combination of gestures into a new gesture. As gestures events are triggered to the

application layer, the application would be able to test the combination of different gestures

into new ones. However, as this is a very common scenario we decided that it is worth to

add a specific block for this purpose into the pipeline. The benefit of doing this computation

inside the pipeline is that the gestures can be prioritized and filtered before being handled in

the application layer and it also enhances the code-reuse.

We have basically two kinds of gestures that are identified by the combination of other

gestures: the sequential gestures and the collaborative gestures. As an example, let’s consider

the double tap gesture. This gesture is defined as two tap gestures performed within a given

timespan. After the classification, the Decision Block would report a tap gesture followed

by another tap gesture. It is the responsibility of the Combination Block to create the new

double tap gesture based on the sequence of two tap gestures. This is usually implemented

with Finite Automata and State Machines, but could also be implemented using machine

learning techniques, such as Hidden Markov Models and Decision Trees.

The Combination Block is very application specific and depends on the gestures set and

its definitions. The default implementation of this block in the MiTable Recognition Pipeline

returns the same gesture received by the Decision Block. This is due to the fact that generaliz-

ing the combination algorithm for any application (or, at least, for a set of common use-cases)

is not trivial. One possibility would be to implement a scripts interpreter that receives the

gestures from the Decision Block and runs an application-dependent script engine to try to
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identify if there is a valid combination of gestures.

However, as writing this script is a task to the application developers, it is not much

different than implementing a custom Combination Block class. For this reason, we have

just the default Combination Block implementation and leaves it to the developers to cus-

tomize it according to their needs using the provided pipeline block interfaces. A more generic

implementation is a subject for future researches.

4.2.2.6 The Prioritization Block

The sixth and last block in the MiTable Recognition Pipeline is the Prioritization Block. Let’s

consider the tap and double tap case again. When the Combination Block identifies a double

tap it returns the new double tap and the last tap gesture, because they are both possible

gestures and the Combination Block does not have the responsibility to decide for one of them.

It is the responsibility of the Prioritization Block to decide which gesture event should be

sent to the Filtering Layer. In most of applications, in this case, the double tap gesture is

more valuable to the application than the tap gesture. Thus, the double tap gesture has a

higher priority than the tap one, which is discarded.

The purpose of the Prioritization Block is to solve ambiguities when more than one gesture

is equally possible (e.g. a second tap and a double tap). The default Prioritization Block

available in the pipeline implements the algorithm used in the Midas (SCHOLLIERS et al., 2011)

recognizer: for each gesture, developers may assign a priority. When more than one gesture is

equally possible, the default Prioritization Block returns the one with the highest priority. As

any other block in the pipeline, this behaviour can be customized according to the developers

needs.

Listing 4.2 includes the Recognition Layer configuration code for our hypothetical example:
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Listing 4.2: Configuring the Recognition Algorithm

IMiTableManager miTableManager;

// We set it as a global variable so we can

// add/remove areas as GUI widgets are created

RectangleAreaMixer mixer;

PeriodicSegmentator segmentator;

// The Standard Gestures Classifier

// for drag , drop , tap , press , flick , zoom and rotate gestures

StandardGesturesRecognitionMachine machine;

public void InitializeEngine ()

{

// screen resolution (e.g. Full HD)

int width = 1920;

int height = 1080;

// TUIO’s socket port

int tuioPort = 3333;

miTableManager = new MiTableTuioAdapter(tuioPort , width , height);

// Creates the Segmentation Block

TimerComponent timer = new TimerComponent(this);

PeriodicSegmentator segmentator = new PeriodicSegmentator(timer);

// Creates the Mixing Block

mixer = new RectangleAreaMixer ();

// Creates the Classification Block

StandardGesturesRecognizer classifier = new

StandardGesturesRecognizer ();

// Builds the Recognition Pipeline using default Decision ,

// Combination and Prioritization Blocks

RecognitionPipeline pipeline = new RecognitionPipeline(segmentator ,

mixer , classifier);

// Attaches the Pipeline to the Engine

miTableManager.RecognitionManager.AddPipeline(pipeline);

// Starts the periodic segmentation task

segmentator.Start();

}
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4.2.3 The Filtering Layer

The Filtering Layer is responsible for rejecting recognized gestures based on any kind of criteria.

For instance, developers can program the framework to reject poorly classified gestures (low

recognition confidence) or reject gestures which are not allowed to be performed in current

application state. The filtering process is handled by the Filters Manager, which can handle

any number of filters (Figure 4.12).

Figure 4.12: Filtering Layer

MiTable comes with four built-in filters (Figure 4.13). The NameFilter class, which filters

a given set of gestures, and its special class (StandardGesturesF ilter), which filters the most

common direct manipulation gestures; the ScoreF ilter class, which rejects poorly classified

gestures based on a pre-defined minimum confidence level; and the AllowedAreasF ilter

class, which rejects gestures performed on a set of areas of the screen (allowing developers to

filter gestures in disabled GUI components, for example).

Figure 4.13: Built-in filter classes

The filtering process is also pipelined. The Filters Manager acts as the Pipeline Manager,

each filter class is a pipeline block or handler and the recognized gesture is the pipeline com-

mand (VERMEULEN; BEGED-DOV; THOMPSON, 1995). Listing 4.3 uses the AllowedAreasFilter

class to reject gestures performed out of GUI components bounds.
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Listing 4.3: Configuring the Recognition Algorithm

IMiTableManager miTableManager;

// We set it as a global variable so we can

// add/remove areas as GUI widgets are created

RectangleAreaMixer mixer;

PeriodicSegmentator segmentator;

// The Standard Gestures Classifier

// for drag , drop , tap , press , flick , zoom and rotate gestures

StandardGesturesRecognitionMachine machine;

public void InitializeEngine ()

{

// screen resolution (e.g. Full HD)

int width = 1920;

int height = 1080;

// TUIO’s socket port

int tuioPort = 3333;

miTableManager = new MiTableTuioAdapter(tuioPort , width , height);

// Creates the Segmentation Block

TimerComponent timer = new TimerComponent(this);

PeriodicSegmentator segmentator = new PeriodicSegmentator(timer);

// Creates the Mixing Block

mixer = new RectangleAreaMixer ();

// Creates the Classification Block

StandardGesturesRecognizer classifier = new

StandardGesturesRecognizer ();

// Builds the Recognition Pipeline using default Decision ,

// Combination and Prioritization Blocks

RecognitionPipeline pipeline = new RecognitionPipeline(segmentator ,

mixer , classifier);

// Attaches the Pipeline to the Engine

miTableManager.RecognitionManager.AddPipeline(pipeline);

// Starts the periodic segmentation task

segmentator.Start();

// Create the filter

filter = new AllowedAreasFilter ();

miTableManager.FiltersManager.AddFilter(filter);

}
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4.2.4 The Events Notification Layer

The last step in the Processing Flow is the events notification process (Figure 4.14). The top-

level application registers event handlers for each gesture, using the Events Handlers Manager

methods. Then, when a gesture is processed by the previous layers, it is sent to the specific

application handler. This structure is based on the Observer-Observable Design Pattern: the

gesture event is the observable object and the application’s handlers are the observer objects

(GAMMA et al., 1998).

Figure 4.14: Events Notification Layer

The entry point for receiving gesture events from the application is the Handle(gesture)

method. Application can define a single handler for all gestures or a specific handler object for

each kind of gesture. Listing 4.4 shows how to attach an application event handler to handle

drop gesture events.
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Listing 4.4: Configuring the Recognition Algorithm

IMiTableManager miTableManager;

// We set it as a global variable so we can

// add/remove areas as GUI widgets are created

RectangleAreaMixer mixer;

PeriodicSegmentator segmentator;

// The Standard Gestures Classifier

// for drag , drop , tap , press , flick , zoom and rotate gestures

StandardGesturesRecognitionMachine machine;

public void InitializeEngine ()

{

// screen resolution (e.g. Full HD)

int width = 1920;

int height = 1080;

// TUIO’s socket port

int tuioPort = 3333;

miTableManager = new MiTableTuioAdapter(tuioPort , width , height);

// Creates the Segmentation Block

TimerComponent timer = new TimerComponent(this);

PeriodicSegmentator segmentator = new PeriodicSegmentator(timer);

// Creates the Mixing Block

mixer = new RectangleAreaMixer ();

// Creates the Classification Block

StandardGesturesRecognizer classifier = new

StandardGesturesRecognizer ();

// Builds the Recognition Pipeline using default Decision ,

// Combination and Prioritization Blocks

RecognitionPipeline pipeline = new RecognitionPipeline(segmentator ,

mixer , classifier);

// Attaches the Pipeline to the Engine

miTableManager.RecognitionManager.AddPipeline(pipeline);

// Starts the periodic segmentation task

segmentator.Start();

// Create the filter

filter = new AllowedAreasFilter ();

miTableManager.FiltersManager.AddFilter(filter);

// Drop Event Handler

miTableManager.EventHandlersManager.AddHandler(this ,

StandardGesturesNames.DROP_GESTURE);

}
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Passing the recognized gesture object to the application handler gives application devel-

opers lots of flexibility to obtain the information they need from the recognized gesture, such

as speed, initial or last position and bounding area. In order to ease the developers task, the

engine comes with a set of classes to extract common information from a given gesture.

Such classes extracts information from the gestures which is relevant to the application

context. For each gesture, a different set of data can be extracted using the built-in classes.

As always, there is a generic data extraction interface which can be used by developers to

create their own data extraction algorithms. This API is shown in Figure 4.15.

Figure 4.15: Built-in data extraction classes

4.3 The MiTable Tools Package

MiTable Engine provides the abstractions developers need to create their multi-touch and

multi-user tabletop applications with more efficiency. However, developing new gestures for

such applications is still a difficult task. Also, deciding which gestures recognition package

to use is a very challenging task, which may require deep statistical and machine learning

concepts depending on the nature of the recognition algorithm. In order to help developer

with such tasks, we developed a set of tools, built on top of the MiTable Engine, which eases

the development of new gestures and the recognizer configuration.

In section 4.3.1, we present the MiTable Gestures Recorder, a tool for capturing multi-

touch gestures which can be used in an application. The output of this tool can be used to

train a gestures recognition system or evaluate different systems using the MiTable Gestures
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Benchmark tool (Section 4.3.2).

4.3.1 MiTable Gestures Recorder

The MiTable Gestures Recorder is a tool for capturing multi-touch gestures and storing them

into a text file compatible with the MiTable Engine. These files can be used in other MiTable

tools or in code with the engine’s API.

This tool has three tabs: the Configuration Tab, where new gestures are added; the TUIO

Tab (Figure 4.16), where raw gestures data is obtained with the MiTable TUIO Adapter for

TUIO-compatible devices and the captured gesture is drawn into the screen; and the Gestures

Tab, where developers can visualize each recorded gesture and, if desired, remove them from

the list.

Figure 4.16: Gestures Recorder: TUIO Tab

4.3.2 MiTable Gestures Benchmark

The MiTable Gestures Benchmark is a tool for evaluating different multi-touch gestures recog-

nition algorithms. It is a GUI tool for configuring different algorithms and train them with

the gestures recorded using the Mitable Gestures Recorder tool. It supports all user-defined

multi-touch gestures recognition algorithms supported by the engine itself, helping developers

to chose the best algorithm for their application (Figure 4.17).
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Figure 4.17: MiTable Gestures Benchmark: Evaluating the $N Algorithm

4.4 Proof of Concept: Brainstorming Application

In order to exercise the engine and the interaction between its components, we have designed

(with help of dedicated undergrad students) a simple brainstorming application. In that ap-

plication, users can create their post-its to fill out their ideas and share them among other

participants.

This is a multi-user application that makes use of the following standard gestures: tap,

drag and drop. Other standard gestures are filtered out. The tap gesture is used to type in

the virtual keyboard. The drag gesture is used to move post-its around the table and the drop

gesture is used to discard a post-it, by dropping it into the thrash can.

The application uses the Periodic Segmentation algorithm to receive continuous feedback

from the underlying gestures recognizer. Also, as gestures can only be performed over the GUI

widgets (buttons, text boxes and images), the RectangleArea Mixing Block has been used,

providing true multi-user experience in a surface that cannot detect user’s information. This

has been achieved because, in this application, one widget is controlled by only one user at a

time. In this case, the assumption that all Strokes captured inside the widget belongs to the

same user and the same gesture holds true.

With this application we have been able to validate the concepts proposed, mainly the

new recognition pipeline, which have successfully allowed different users to perform gestures

on different GUI components at the same time, demonstrating how the engine can be used in

true multi-touch and multi-user scenarios.
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4.5 Proof of Concept: Symbolic Gestures Recognition

In order to exercise the Recognition Pipeline using state-of-art recognition algorithms, we

developed an application that recognizes twelve multi-touch symbolic gestures (Figures 4.18

and 4.19). The gestures names are drawn into the screen when they are recognized.

Figure 4.18: Single-touch symbolic gestures used in the Proof of Concept Application

Figure 4.19: Multi-touch symbolic gestures used in the Proof of Concept Application

The applications uses the built-in $N-Protractor algorithm, with its pre-processing and

features extraction steps configured as described in previous work (ANTHONY; WOBBROCK,

2012). The Segmentation Block captures Strokes performed inside an active area for input,

while the Mixing Block considers a single-user scenario, in which all captured Strokes belongs

to the same user. This is a reasonable scenario for most of the smartphone and tablets

applications. This proof of concept application also represents a scenario where user can

execute special actions or take short-cuts by performing gestures.

With this application, we have been able to evaluate the performance of the $N-Protractor

algorithm within the engine, demonstrating the capabilities of the engine regarding symbolic

gestures in a orientation invariant application. This simple application has also demonstrated

the flexibility of the engine’s API’s, which helps developers to integrate existing recognition

algorithms or creating customized ones.
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4.6 Summary

In this chapter we have presented the MiTable Engine, a layered framework for multi-touch

and multi-user applications with a novel recognition pipeline. So far we have presented the

MiTable Engine, its API and infrastructure. Now, we shall summarize how its architecture and

API’s addresses each of the fourteen requirements recalled in Chapter 3.

1. Be Flexible and Extensible

The engine allows developers to define their own gestures. The MultiTouchGesture

class abstracts the multi-touch gesture concept and its type is identified by its Name

property. The recognition pipeline identifies which gesture has been performed and fills

this property accordingly.

2. Be Fast and 3. Be Accurate

The proposed recognition pipeline enhances the performance of the gestures recognition

process by running in separate threads. Also, as the process is broken down into six

simpler blocks, the algorithm is more manageable: only the parts needed to support the

gestures in a specific application are used. However, we understand that the performance

and accuracy is directly related to the performance of the classification block. Inefficient

classification algorithms may harm the user experience. The engine comes with some

of the state-of-art multi-touch gestures recognizer, which have had their performance

accepted by the tabletop community. The engine also allows developers to create their

own algorithm that may fit better to their applications.

4. Support Multi-Touch

This requirement is addressed in the core architecture of the engine by the Multi-

TouchGesture, the Stroke and the TouchPoint classes as shown previously in Figure

4.2.

5. Support Multi-Users Applications

This requirements is addressed by the initial stages in the recognition pipeline. The

Segmentation and Mixing Blocks are responsible for identifying the set of Strokes that

belongs to each user in order to support multi-user applications. This is not a trivial

task, but can be simplified when the hardware provides user information about touch

inputs or when some assumptions about the location and size of users hands hold true.

6. Support Orientation Invariance

This requirement is addressed by the Classification Block algorithm. The $N-Protractor
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implementation supports Orientation Invariance. This is a requirement that can be

addressed not only by the pattern recognition algorithm, but also by the pre-processing

and the features extraction implementations as gestures can be normalized to be rotation

invariant and rotation-invariant features can be extracted before running the pattern

recognition algorithm.

7. Provide Continuous Feedback

This requirement is also addressed by the initial stages of the Recognition Pipeline.

Periodic and touch event driven Segmentation algorithms are available out of the box in

the engine’s API.

8. Allow Easy Prototyping

This requirement is addressed by the engine’s Tools Package. The Gestures Recorder tool

allows developers to record user-defined gestures for their applications and the Gestures

Benchmark tool can be used to tune the recognition algorithm properly. The engine still

lacks a tool to ease the creation of gestures based on formal models, like the Gestures

Tablature (KIN et al., 2012b; KIN et al., 2012a). This is a subject for future works.

9. Support Symbolic Gestures

This requirement is addressed by the Classification Block algorithm. The engine pro-

vides some of the state-of-art recognition algorithms, such as the $N-Protractor, which

supports symbolic gestures (ANTHONY; WOBBROCK, 2012).

10. Allow Time-Constrained Gestures

This requirement is also addressed by the Classification Block algorithm. The engine

provides a standard gestures recognizer which can distinguish a tap from a press and

hold or a flick from a drag. Future works shall include support for other recognizers,

such as the Midas, Proton++ or GRANDMA, in order to have a better support for

time-constrained gestures.

11. Support Territories

This requirement is addressed by the initial stages in the Recognition Pipeline. The

engine’s API comes with Segmentation and Mixing Blocks implementations that allows

developers to define territories where gestures can be performed. Also, gestures that are

not allowed to be performed in some territories can be filtered at the Filtering Layer.

12. Recognize Free-form Gestures

This requirement is also addressed by the Classification Block algorithm. The engine

provides a standard gestures recognizer which recognize one free-form gesture (drag and
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drop). In order to support more complex free-form gestures (such as lasso), developers

must implement their own Classification Block. This is a limitation of the engine which

can also be addressed by including other state-of-art recognizers, such as Midas and

Proton++.

13. Support Sequential Gestures and 14. Support Cooperative Gestures

These requirements are addressed by the last stages in the Recognition Pipeline. The

Combination Block is responsible for combining previously (or simultaneously) made

gestures into new sequential or cooperative gestures. Later, the Prioritization Block is

responsible to decide which gesture should be passed to the filtering layer and sent to

the application handlers. As discussed previously, the Combination algorithm is very

application specific and the engine just provides a default implementation.

We understand that all the requirements have been successfully addressed by the engine.

However, some of them require some effort from the developers to create custom blocks in the

Recognition Pipeline, because their implementation are very application-specific. We claim

that the abstractions and API’s provided by the engine are enough for such task, but we still

have directions for future works. Finally, Table 4.1 compares MiTable to other state-of-art

multi-touch frameworks, according to the criteria we proposed in Chapter 3.

Table 4.1: Multi-touch frameworks comparison

Criteria Midas Proton++ $N-Protractor MT4J MiTable

1 • • • • •
2 • − • − •
3 − − • − •
4 • • • • •
5 • ◦ ◦ ◦ •
6 ◦ ◦ • ◦ •
7 • • ◦ • •
8 ◦ • • ◦ •
9 • ◦ • ◦ •
10 • • ◦ • •
11 • ◦ ◦ • •
12 • • ◦ • •
13 • • ◦ ◦ •
14 • ◦ ◦ ◦ •
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5 CONCLUSION AND FUTURE WORKS

In this work we presented the results of our research on multi-touch gestures recognition sys-

tems with focus on multi-user applications. We started with a review on tabletop technologies

from the hardware and software perspectives. Then, we studied how tabletops are used, which

kinds of interactions are supported, which are their benefits and which kinds of applications

have been developed for large multi-touch surfaces.

From that review, we studied the software engineering aspects of such applications. Most

of those applications are developed on top of a layered architecture, which consists of the

presentation layer, a gestures recognition layer and a hardware abstraction layer. We saw

that the TUIO protocol has been widely used to abstract the hardware technology, while the

presentation layer is driven by GUI engines specific for multi-touch applications.

For the gestures recognition layer, we have seen several different techniques, which can be

categorized as based on machine learning (user-defined gestures) or on formal gestures models.

Each technique has its own strengths and weaknesses. Thus, the gestures recognition problem

is still an open issue for the tabletop community and lots of work have been done in the past

years. In the next sections we summarize our contributions and point out directions for future

researches.

5.1 Conclusion

We studied several different multi-touch gestures frameworks and APIs. Some of them provide

a HAL, others provide a presentation layer with widgets specially designed for tabletop appli-

cations. Also, some of them support tangible objects, while others are focused on multi-touch

gestures. From that research on multi-touch interaction and gestures recognition, we had our

first contribution: the set of fourteen requirements for multi-touch gestures frameworks:

1. Be Flexible and Extensible
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2. Be Fast

3. Be Accurate

4. Support Multi-Touch

5. Support Multi-Users Applications

6. Support Orientation Invariance

7. Provide Continuous Feedback

8. Allow Easy Prototyping

9. Support Symbolic Gestures

10. Allow Time-Constrained Gestures

11. Support Territories

12. Recognize Free-form Gestures

13. Support Sequential Gestures

14. Support Cooperative Gestures

These requirements were designed from the set of heuristics and guidelines for tabletop

applications and from the limitations of current gestures recognition systems, as we discussed

in Chapter 2 and 3.

Some of the issues in other state-of-art frameworks are due to the fact that the recognition

layer is hard-coded for an specific algorithm. On some frameworks, this issue is addressed by

providing an abstraction of the gestures recognition algorithm for customization. However,

this abstraction enforces developers to implement complex algorithms for gestures recognition

and code is hard to be reused and to maintain. This problem gets worse when developers need

to implement one algorithm for each available gesture. Also, this architecture makes it hard

to combine two or more gestures into another (for sequential or collaborative gestures).

In order to address such issues, we proposed a novel recognition layer. In our research,

we have found that the recognition process can be split into six well-defined steps and each

step can be reused in different applications individually. Our second contribution is a novel

Recognition Pipeline with six processing blocks that can run in parallel for best performance:
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Segmentation

Responsible for delimiting the boundaries of a valid finger movement

Mixing

Responsible for identifying which fingers belongs to each gesture

Classification

Responsible for interpreting the unknown gesture

Decision

An optional block used to decide between multiple classification results

Combination

Responsible for combining classified gestures into new gestures

Prioritization

Responsible for solving ambiguities, when more than one valid gesture is possible

Our last contribution is the MiTable Engine: a set of API’s and tools for easing the devel-

opment of multi-touch and multi-user applications. Besides the HAL and the new Recognition

Pipeline that is able to run multiple gestures recognition algorithms at the same time, the

engine provides a Filtering Layer, which is responsible for rejecting undesirable gestures (e.g.

the application does not allow a gesture in a given state or the gesture has a low confidence

level). The connection between the engine and the main application is done through an event-

driven API based on the Observer-Observable design pattern. Thus, the engine addresses the

Kammer’s et al criteria for multi-touch frameworks (with exception to the presentation layer)

and puts together all findings from this research in a single software solution.

Although the engine has been developed with focus on large multi-touch surfaces, the

engine can also be used in small tabletops, such as smartphones and tablets. For multi-touch

gestures recognition, the engine incorporates some of the state-of-art algorithms, such as the

$N-Protractor, K-Nearest Neighbours and a Finite State Machine for standard gestures.

We have demonstrated by the architecture discussion and the two proof of concepts ap-

plications that the resultant engine supports all of the fourteen requirements, although we

understand that some of them still require some work from developers because they are very

application-dependent.

Finally, the engine comes with two tools to support the tabletop application development:

the Gesture Recorder Tool, to record the raw data from gestures into files compatible to the
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engine; and the Benchmark Tool, to ease the tuning of the recognition algorithms available

for use within the engine’s API.

5.2 Future Works

Finally, we would like to point out some directions for future researches:

Include other state-of-art recognizers

It would be a good contribution to the engine if other recognizers were incorporated to

MiTable. Mainly those based on formal gestures models, such as Proton++ and Midas.

The engine also lacks a tool for building gestures according to a formal model, such as

the Proton’s Gestures Tablature.

Include a GUI integration layer

Current engine does not provide a presentation layer. The reason is that there are lots of

good GUI engines for multi-touch applications that could be used together with MiTable.

However, providing an interface for integrating widgets to the recognition pipeline would

improve code reuse and speed up the development, as events could be directed to the

respective widgets.

Include algorithms for the Decision Block

Making the decision between the classification of different recognizers is not a trivial

task. It was out of the scope of this research, but, in order to provide an out of box

solution that supports more than one Classification Blocks we need to study how to

make decisions based on the results of different classifiers.

Include algorithms for the Combination Block

The implementation of the Combination Block is very application-dependent. However,

a research on this subject may find a more general solution for combining previously

identified gestures into new ones, enhancing the support for sequential and collaborative

gestures.

Develop a real application

We have tested the engine with hundreds of unit tests and two proof of concept appli-

cations. However, when developing real applications one may find that the API needs

changes or lacks some functions.
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Besides future works related to the engine itself, the tabletop community would also benefit

from novel recognition algorithms, as there are still open issues on the state-of-art techniques.

Also, an important contribution would be a benchmark for evaluating those algorithms with

gestures from real applications, in order to allow statistical comparisons between them. We

have partially addressed this issue with the Benchmark Tool, with some of the most used

statistical comparison methods for classifiers, but we do not have a set of gestures to build a

benchmark that would be widely accepted by the tabletop community.
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