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RESUMO

Para avaliar o desempenho de um projeto de hardware, é necessário selecionar as
métricas de interesse. Várias métricas podem ser escolhidas, mas em geral três delas
são consideradas básicas: área, latência e potência. A partir delas, podem ser obti-
das outras métricas de interesse prático, tais como vazão e consumo de energia. Essas
métricas relacionam-se entre si, criando trade-offs que os projetistas precisam conhecer
para executar as melhores decisões de projeto. Alguns trabalhos abordam o projeto
de hardware otimizado para melhorar uma dessas métricas. Em outros trabalhos, as
otimizações são feitas para duas delas, mas sem analisar como uma terceira métrica se
relaciona com as demais. Outros analisam o trade-off entre duas dessas métricas. En-
tretanto, a literatura carece de trabalhos que analisem o comportamento de três métri-
cas em conjunto. Neste trabalho, pretendemos contribuir para preencher essa lacuna,
propondo um método que permita a análise de trade-offs entre área, potência e vazão.
Para verificar o método proposto, foi escolhida a função de permutação da esponja
criptográfica BlaMka como estudo de caso. Até o momento, nenhuma implemen-
tação em hardware foi encontrada para esse algoritmo. Dessa forma, uma contribuição
adicional é apresentar seu primeiro projeto de hardware. Circuitos combinacionais e
sequenciais foram projetados e sintetizados para ASIC e FPGA. Com os resultados de
síntese, foi realizada uma análise de desempenho detalhada para cada plataforma, a
partir de uma análise unidimensional, passando por uma análise bidimensional e cul-
minando em uma análise tridimensional. Duas técnicas foram apresentadas para tal
análise tridimensional, chamadas abordagem das projeções e abordagem dos planos.
Embora passivel de melhorias, o método apresentado é um passo inicial mostrando
que, de fato, um trade-off entre três métricas pode ser analisado, e que também é pos-
sível encontrar pontos de desempenho balanceado. A partir das duas abordagens, foi
possível derivar um critério para selecionar otimizações quando há restrições, como
um faixa de vazão desejada ou um tamanho físico máximo, e quando não há restrições,
caso em que é possível escolher a otimização com o desempenho mais balanceado.



ABSTRACT

To evaluate the performance of a hardware design, it is necessary to select the met-
rics of interest. Several metrics can be chosen, but in general three of them are con-
sidered basic: area, latency, and power. From these, other metrics of practical interest
such as throughput and energy consumption can be obtained. These metrics relate to
one another by creating trade-offs that designers need to know to execute the best de-
sign decisions. Some works address optimized hardware design for improving one of
these metrics. In other works, optimizations are made for two of them. Others analyze
the trade-off between two of these metrics. However, the literature lacks of works that
analyze the behavior of three metrics together. In this work, we intend to contribute to
bridge this gap, proposing a method that allow analyzing trade-offs among area, power,
and throughput. To verify the proposed method, the permutation function of crypto-
graphic sponge BlaMka was chosen as a case study. No hardware implementation has
been found for this algorithm yet. Therefore, an additional contribution is to provide
its first hardware design. Combinational and sequential circuits were designed and
synthesized for ASIC and FPGA. With the synthesis results, a detailed performance
analysis was performed for each platform, starting from a one-dimensional analysis,
going through a two-dimensional analysis, and culminating in a three-dimensional ana-
lysis. Two techniques were presented for such analysis, namely projections approach
and planes approach. Although there is room for improvement, the proposed method
is a initial step showing that, in fact, a trade-off between three metrics can be ana-
lyzed, and that it is also possible to find balanced performance points. From the two
approaches presented, it was possible to derive a criterion to select optimizations when
we have restrictions, such as a desired throughput range or a maximum physical size,
and when we do not have restrictions, in which case we can choose the optimization
with the most balanced performance.
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1 INTRODUCTION

To evaluate the performance of a hardware design, it is necessary to select the

metrics of interest. Several metrics can be chosen, but in general three of them are

considered basic: area, latency, and power. From these, other important metrics of

practical interest such as throughput, cost, and energy consumption can be obtained.

Area, latency, and power relate to one another by creating trade-offs that the designers

need to know to execute the best design decisions and accomplish their goals. For

example, when design techniques are used for a small circuit area, there is usually

an increase in latency. If the goal is a low latency circuit, there will usually be an

increase in power consumption. In addition, increasing the area of the circuit leads to

an increase in power. When one of these parameters is changed, the other two vary in

response.

It can be established as a design hypothesis that one of the metrics is limited to

a certain margin, while the other two can be varied in order to find the best trade-off

between them. In another approach, one can accept variations in one of the parame-

ters while a trade-off between the other two is analyzed. There are projects that aim

to obtain the best possible performance specifically in relation to one of these met-

rics, accepting the consequences in the performance of the others, not because they are

indifferent to such variations, but because the application of interest imposes its restric-

tions and costs on this metric. Additionally, other projects, besides a goal for maximum

optimization for only one metric, still aim to obtain satisfactory results in relation to

the remaining ones. Regardless of the type of trade-off analyzed, usually the analysis
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is focused in one or two metrics, becoming, in these two cases, a one-dimensional and

a two-dimensional analysis, respectively. One possibility is to extend this analysis to a

three-dimensional case where a trade-off between three metrics is analyzed. Any met-

rics that have trade-offs between each other could be used in this three-dimensional

analysis, such as throughput, number of clock cycles, maximum frequency, cost, or

efficiency measures such as energy-per-bit and throughput-per-area, among others.

1.1 Motivation

The intensive use of mobile devices in a variety of applications, from entertain-

ment to banking, has created a growing need of security solutions for such platforms

(DAPP, 2012; NACHENBERG, 2011; LOOKOUT, 2014; FEDERAL RESERVE BOARD, 2016;

SVAJCER, 2014; DIMENSIONAL RESEARCH, 2013). Despite the increasing processing

power available in modern devices, many still have limited performance. Further-

more, they have restrictions on the physical size and mainly in energy consumption. In

the information security field, various algorithms are applied to provide users with a

variety of services such as confidentiality, integrity, authenticity, availability, and non-

repudiation. Although many of the algorithms are implemented in software, there is a

rapidly growing demand for hardware implementations, be it for the nature of the ap-

plication, such as embedded technologies and sensor networks, be it for requirements

such as performance, energy, and cost (TANOUGAST et al., 2012; INIEWSKI, 2012). An

important class of algorithms is the cryptographic hash functions used for mapping

data of arbitrary size to a bit string of a fixed size (MERKLE, 1979), that allows the con-

struction of several cryptographic primitives such as stream ciphers, message authen-

tication codes, pseudo-random functions, password hashing schemes, among others.

The cryptographic sponge functions, a generalization of cryptographic hash functions,

take an input bit stream of any length and produce an output bit stream of any desired

length (BERTONI et al., 2011). Considering these observations, the development of ideas
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and design techniques that allow analyzing a three-dimensional trade-off between area,

throughput, and power, thus allowing a balance between them, is of great value within

the field of hardware design, especially for implementations of cryptographic algo-

rithms.

1.2 Goals

Our goal is to present a three-dimensional performance analysis for a hardware

implementation of a cryptographic algorithm, observing the area utilization, circuit

throughput (derived from latency), and the power consumption. The results presented

herein can contribute to the problem of analyzing three-dimensional trade-offs between

any metrics. Furthermore, some ideas that can be used in this type of analysis for hard-

ware implementations of any other algorithm can be delineated. To allow this three-

dimensional performance analysis of a hardware design, it is necessary to choose an

algorithm to be implemented as a case study. The algorithm chosen was the permuta-

tion function of the cryptographic sponge BlaMka (SIMPLICIO et al., 2015).

The BlaMka algorithm (SIMPLICIO et al., 2015) is a cryptographic sponge func-

tion that has been used in Password Hashing Schemes (PHS) (NIST, 2010), which are

algorithms capable of generating a sequence of pseudo-random bits from a certain

user-defined password, usually employed in modern password-based authentication

systems to protect against brute force attacks. Examples of password hashing schemes

are Lyra2 (SIMPLICIO et al., 2015; ANDRADE et al., 2016) and Argon2 (BIRYUKOV; DINU;

KHOVRATOVICH, 2016), both finalists of the Password Hashing Competition (PHC)

(PHC, 2013). It is worth noting that BlaMka was proposed by the same authors of

Lyra2 and presented as a modification of the Blake2b algorithm (AUMASSON et al.,

2013; AUMASSON et al., 2014), integrating multiplications in some stages of its execu-

tion, specifically in its permutation function. The inclusion of multiplications aims to

reduce the hardware performance and to increase the costs for brute force attacks that
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usually use hardware platforms (SIMPLICIO et al., 2015). As far as we are concerned,

there is no hardware implementation for BlaMka, specifically for its permutation func-

tion, which is the structure that incorporates the multiplications and what differentiates

BlaMka from Blake2b. Therefore, an additional contribution is to provide its first

hardware design, besides verifying the impact of the inclusion of multiplications in its

performance compared with a hardware implementation for the permutation function

of Blake2b.

1.3 Method

To successfully accomplish the goals of this work, we follow a well-defined work-

ing method. Initially, a literature research is carried out to survey the state of the art

in hardware design, both for cryptographic and general applications, selecting the rel-

evant works that present results and analyses of different trade-offs between latency,

area, throughput, power, among other metrics. As the next step, the hardware design

and implementation of the BlaMka permutation function algorithm is performed, using

VHDL (Very High Speed Integrated Circuit Hardware Description Language) to de-

scribe the architectures. The resulting circuits are synthesized into programmable logic

devices, specifically in FPGAs (Field-Programmable Gate Array), and in application

specific circuits, the ASICs (Application-Specific Integrated Circuit). Different archi-

tectures are implemented to address the trade-offs between circuit throughput, area

utilization, and power consumption. These metrics are used as a measure of perfor-

mance for the proposed architectures. Other metrics such as throughput-to-area and

energy-per-bit are used to measure the efficiency of the implementations. The perfor-

mance analysis is conducted using the idea of a three-dimensional analysis, observing

together the behavior of the selected basic metrics. In addition, the results for BlaMka

permutation function is compared with the results for a hardware implementation of

the Blake2b permutation function, and the theoretical properties of the algorithm will
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be analyzed experimentally. The thesis writing is developed in conjunction with the

previous steps. Note that such steps are not strictly sequential, but are interleaved

throughout the development of the work.

1.4 Document Organization

This document is organized as follows. Chapter 2 briefly describes some the-

oretical and design concepts. Chapter 3 presents the related works in the literature

containing analyses of several trade-offs between area, power, throughput, latency,

among other possible metrics in hardware design. Chapter 4 presents the hardware

design and implementation of the BlaMka permutation function algorithm. Chapter 5

presents experimental results and performance analyses for the implemented architec-

tures. Chapter 6 presents the final conclusions and also outlines some future work.
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2 THEORETICAL AND DESIGN ASPECTS

In its first part, this chapter presents a brief review of the main concepts of hard-

ware design. In the second part, some concepts related to cryptography are presented.

2.1 Hardware Design Aspects

In this section, we present the main concepts of combinational and sequential cir-

cuits, as well as two main approaches for hardware synthesis, FPGAs and ASICs, and

their characteristics. We describe the main metrics involved in the performance ana-

lysis of a hardware design, the hardware description languages, and the tools used to

accomplish the design and evaluation of the proposed circuits.

2.1.1 Combinational Circuits

Combinational devices are modules that have a set of inputs, a set of outputs, a

functional specification that specifies the output values for each combination of input

values, and a timing specification (usually a propagation delay tpd) that indicates the

time required for the device to generate the outputs from a set of valid inputs. Combi-

national circuits are built from one or more combinational devices. They are circuits

whose outputs are a function of the current input values, that is, they have no memory

elements. In other words, the sequence of input values do not change the behavior of

the outputs. Furthermore, this type of circuit contains no cyclic path that goes from

inputs to outputs. Figure 1 shows a general model of a combinational circuit.
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Figure 1: Combinational circuit model

2.1.2 Sequential Circuits

Sequential circuits are circuits whose outputs depend on the current and past in-

puts, that is, they have some type of memory. Basically, they can be seen as combi-

national circuits with a storage element to remember past inputs, namely an internal

state, and a feedback path to update this state. They also have at least one clock signal

to synchronize their operation. Figure 2 shows a general model of a sequential circuit

called Moore machine, which outputs depend only on the current internal state. Figure

3 shows a general model of a sequential circuit called Mealy machine, which outputs

depend on the current internal state and the current inputs.

Figure 2: Sequential circuit model (Moore)

2.1.3 FPGA and ASIC

FPGAs belong to the category of programmable logic devices. These devices have

several predefined structures in a flexible hardware architecture allowing, according

to the designer’s decisions, such structures to have their function configured and their
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Figure 3: Sequential circuit model (Mealy)

connections defined. This can be done by a configuration file generated by implement-

ing the circuit for a given technology using a synthesis tool. This flexibility allows

testing several different architectures on the same FPGA. It also facilitates the com-

parison between these architectures, and the identification and correction of problems

in the initial stages of the project, before a particular architecture be chosen for man-

ufacturing the final circuit (HORTA, 2013). This makes the design cycle simpler and

predictable, and it also decreases the time for the final product to reach the market.

FPGAs are devices commonly used in the prototyping phase, because they allow the

reusability of the same circuit in a fast and direct way, as well as in applications that

do not require a very large number of units, since their production cost is high. Mod-

ern FPGAs also allow reconfiguring parts of the device, which makes it possible to

reprogram them while the other parts continue to operate, a property called partial

reconfiguration (XILINX INC., 2016a). On the other hand, they do not allow control

over energy optimizations at the level of logic gates. For this reason, they usually con-

sume a greater amount of energy when compared to ASICs. In addition, because a

given FPGA family has limited and specific capabilities, this can be a limiting factor

to the complexity of the design, and the total cost for large manufacturing volumes can

become prohibitive.

ASICs are integrated circuits built for a specific purpose. Their structures and

connections are usually defined in terms of logic gates, but they can also be defined
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at the transistor level, allowing more granular optimizations than possible in FPGAs.

In addition, modern ASICs may present some complete internal blocks such as ROM

(Read-Only Memory) e RAM (Random Access Memory), and even some coprocessors.

Once the circuit is defined and manufactured, it can not be modified. This requires

the use of techniques and tools to design and to validate the architecture developed

before defining the final version. The synthesis for ASIC is performed using a stan-

dard cell library from a particular manufacturing process. Depending on the complex-

ity and on the tools used, the initial cost of ASIC design tends to be high compared

to FPGA design, the so-called non-recurring costs (circuit design, prototyping, tests,

etc.). However, this can be mitigated with future manufacturing costs, which are lower

for a large number of units, facilitating applications that require high manufacturing

volumes. ASICs also provide a greater degree of freedom to the designer for opti-

mizations in the power consumption and in the area utilization. On the other hand, in

addition to the longer time to reach the market, modifications at more advanced stages

of the project become more complicated and costly.

The synthesis of a circuit in FPGA or ASIC has its advantages and disadvantages,

scope and limitations. If these characteristics are known, the designer will be able to

choose the best alternative to meet the objectives of the project. The design flow varies

as we want the implementation to be carried out in one or other of these two tech-

nologies, although they have some common points. Modernly, designers can use the

properties of both, for example using FPGAs for fast prototyping and initial testing.

After achieving a certain degree of maturity in the design, they can migrate to ASIC

for optimizations of power consumption and area utilization, and for the final fabrica-

tion of the circuit. Table 1 and Table 2 show some advantages and disadvantages of

designing with FPGAs and ASICs, respectively (XILINX INC., 2015). More details can

be found in (ALTERA CORPORATION, 2009; XILINX INC., 2015; KUON; ROSE, 2007).
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Table 1: Advantages and disadvantages of designing with FPGA

Advantages Disadvantages
Shorter time to reach the market Higher power consumption compared to

ASIC
Lower non-recurring cost (circuit design,
prototyping, tests)

No control over power optimizations at
logic gate level

Simpler and predictable design cycle Resources limited to those provided by
a given technology, thus restricting the
complexity of the design

Partial configuration / Reusability Higher cost per unit

Table 2: Advantages and disadvantages of designing with ASIC

Advantages Disadvantages
Lower cost per unit for large quantities Longer time to reach the market
Flexibility for area and power optimiza-
tions

Higher difficulty to perform small
changes in advanced design steps

Smaller form factor Higher non-recurring cost

2.1.4 Hardware Description Languages

One of the most important aspects in the design of a digital system is the Hardware

Description Language (HDL) used. Two of the main description languages currently

used are VHDL and Verilog, which allow describing circuits in terms of signals flow

between registers and the operations performed with those signals (Register-Transfer

Level - RTL). VHDL is a rich, powerful language with strong type checking, and its

syntax and constructions are more directly associated with real hardware structures,

thus making the language be considered self-documented. The language regards for

descriptions with unambiguous semantics, in addition to allowing portability between

various hardware design tools, be it for ASIC or FPGA. Verilog is also a rich and

powerful language but with poor type checking. It is also more concise, using a simpler

and more compact notation. All data types are pre-defined by the language, which has

its syntax close to the programming language C. On one hand, based on its structure,

VHDL allows identifying most of the errors in the initial stages of the project. On the
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other hand, Verilog allows creating descriptions faster and more compactly.

In order to describe the architecture of a digital system, basically two different

models are used: structural and behavioral. In the structural model, the architecture is

described in terms of interconnected modules, each implementing a particular function.

Each module can also be built by the interconnection of simpler modules, generating

different levels of abstractions in a hierarchy of descriptions. This makes easier to

maintain and reuse hardware modules. On the other hand, the behavioral description

is the highest level of abstraction provided by an HDL, where all operations are at

only one level of description, and describes the function performed by the module,

responsible for mapping its inputs to its outputs. In general, a mixture of the two forms

of modeling is used. For example, one can begin with the behavioral description of

the most basic and simple modules and, as the level of abstraction is increased, use the

structural description to connect such modules in a specific way. It is also possible to

start with a behavioral description and, as the level of abstraction decreases, each level

above can be seen as a structural description interconnecting simpler modules.

2.1.5 Design Tools

To perform all design steps using the hardware description languages and synthe-

size the circuits for both FPGAs and ASICs, some design tools are required. Here are

some examples.

To perform the synthesis for FPGA, one can use the development tools provided

by Xilinx:

∗ ISE Design Suite: it is used for FPGA design, allowing simulation and synthesis

using hardware description languages and their implementation in a given tech-

nology. In addition, it allows generating synthesis reports, with details about

the usage of various building blocks of the FPGA technology, latency, power
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consumption, among other metrics. (XILINX INC., 2013).

∗ Vivado Design Suite: successor of the ISE Design Suite. One of its main charac-

teristics is allowing the implementation of FPGA designs in 20nm and 16nm

fabrication technology, as well as integrating the tools for working with partial

reconfiguration. (XILINX INC., 2016b).

To perform the ASIC synthesis, one can use various design tools provided by Syn-

opsys:

∗ VCS: allows analyzing and simulating circuits described by hardware description

languages. It supports multiple levels of description, but it is optimized for

transfer-level descriptions between registers (SYNOPSYS INC., 2015c).

∗ Design Compiler: allows synthesizing a description in a circuit at the level of logic

gates. It also allows performing optimizations related to power, area, and latency.

Furthermore, it provides comprehensive synthesis reports with detailed data on

these three metrics and many other details of important interest to the designer

(SYNOPSYS INC., 2015a).

∗ Formality: this tool assists in the formal verification between two designs, that is,

it verifies the functional equivalence between two implementations that perform

the same function, even though both have different levels of description (SYNOP-

SYS INC., 2015b).

2.1.6 Metrics

After implementing a circuit in ASIC or FPGA, we can compare the results using

several metrics (area, latency, frequency of operation, energy, power, throughput, cost).

To allow this comparison, it is necessary to define each metric and how it will be

measured (KUON; ROSE, 2007; POSCHMANN, 2009; AUMASSON et al., 2014).
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2.1.6.1 Cycle Time

This metric corresponds to the critical path delay, that is, the time of the longest

path between two memory elements, an input and a memory element, or a memory

element and an output. It is the minimum period that can be applied to the circuit. The

units commonly used are microsecond [µs] and nanosecond [ns].

2.1.6.2 Latency

The latency is the time required for a particular operation to be performed and its

results to be available in the circuit outputs. It can be obtained using the maximum

clock frequency or the critical path delay. The tools used to synthesize the circuits

have the capabilities to perform such analysis and obtain this information directly. To

calculate the latency using the estimated maximum clock frequency, it is necessary to

divide by it the average number of clock cycles required to perform a given operation.

The units commonly used are millisecond [ms], microsecond [µs], and nanosecond

[ns]. The latency can also be measure in clock cycles and the corresponding measure

in units of time can be obtained by multiplying this number of clock cycles by the cycle

time.

2.1.6.3 Area

This metric measures the total silicon area used by the circuit. For the same de-

sign, due to the intrinsic characteristics of both FPGAs and ASICs, the area is obtained

and measured in different ways. For ASICs, it is simply the total area obtained after

implementation. For FPGAs, it is the sum of the areas occupied by each resource,

even if they are not entirely used. In this way, different area measurements can be

obtained. For synthesis with ASICs, the area is generally measured in square microm-

eters [µm2]. It can also be measured in gate equivalent [GE], whose unit represents

the area required to implement a two-input NAND gate in the fabrication technology
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used. The total area occupied by the circuit can be obtained by dividing the area mea-

sured in [µm2] by the respective two-input NAND gate area, also measured in [µm2]

(POSCHMANN, 2009). For FPGAs, the area is generally measured using the number of

[S lices], and in modern FPGA families it can also be measured using the number of

Configurable Logic Blocks [CLB].

2.1.6.4 Power

Power is usually divided into dynamic power and static power. A test bench with

test vectors to stimulate the implemented circuit and measure the dynamic power can

be used. In the absence of appropriate test benches, it is possible to leave all circuit

networks on the same frequency and assume that all are equally likely to be used.

This is not a realistic scenario, but it provides a first estimate of the dynamic power

consumption of the implemented circuits. Static power measurement is easy to obtain

because it depends on the intrinsic construction characteristics of ASICs and FPGAs.

A component of the static power is the leakage power, an important factor in circuit

technologies with short gate length. The comparison between the power consumption

for a circuit implemented in these two technologies should consider the low operating

frequencies of the FPGAs. This means that more time or greater degree of parallelism

is required to perform the same amount of work as an ASIC. The design tools can

provide estimated power results. Power is usually measured in microwatts [mW], and

its multiples and submultiples can also be used.

2.1.6.5 Energy

Energy is obtained directly from the power consumption in a given period of time.

Many applications have energy restrictions, and knowing the energy curve for the im-

plemented circuit is of extreme importance, since the power curve is not always suffi-

ciently behaved (presence of peak points) to draw direct conclusions about the energy
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consumption. Energy is usually measured in [mJ], and its multiples and submultiples

can also be used.

2.1.6.6 Maximum Frequency

Parameter applied only to sequential circuits. The maximum operating frequency

can be obtained as the inverse of the critical path delay. The units commonly used are

[MHz] and [GHz].

2.1.6.7 Throughput

It defines the rate at which new output bits are generated in relation to the unit of

time. It is calculated by multiplying the number of output bits by the circuit operation

frequency, and dividing the result by the number of clock cycles required to generate

these output bits. For combinational circuits, the throughput is the inverse of the circuit

latency multiplied by the number of output bits. For communication and cryptographic

applications, the common units are [Mbps] and [Gbps], but many other applications

use [operations/s] or [instructions/s].

2.1.6.8 Throughput-to-area

This ratio can be used as a measure of efficiency. For circuits where throughput

is a crucial parameter, it is important to measure how much throughput such a circuit

achieves in relation to its silicon area utilization, since many applications have limita-

tions on physical size. In addition, the area utilization contributes to the total cost of

the final project. It is obtained by dividing the throughput by the circuit area and is

usually measured in [kbps/GE] for ASIC and [Mbps/CLB] for FPGA.
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2.1.6.9 Energy-per-bit

This ratio can be used as a measure of efficiency, indicating how much energy

is spent to generate 1 bit of output. Many applications have restrictions on energy

consumption and this contributes to the total cost of the final project. Its calculation

is done by dividing the total power consumption by the throughput obtained and is

measured in [mJ/Gb].

2.2 Cryptographic Aspects

This section presents some important concepts about cryptographic hash and

sponge functions, as well as password hashing schemes.

2.2.1 Cryptographic Hash Functions

Hash functions are a class of functions that transform an arbitrary-length string

of bits into a fixed-length string of bits. The functions of this class that also satisfy

the one-way or non-invertible condition (One-Way Hash Functions - OWHF) and the

resistance collision condition (Collision-Resistant Hash Functions - CRHF) can be

used in cryptographic applications (SOBTI; GEETHA, 2012). The cryptographic hash

functions are used to achieve several security goals, such as authentication of messages

and entities, integrity, digital signatures, generation of pseudorandom numbers, among

others. Formal definitions for cryptographic hash functions and their requirements can

be found in (MERKLE, 1979; ROMPAY, 2004).

2.2.1.1 Blake2

The Blake2 family of functions is the successor of Blake family, designed and de-

veloped after the SHA-3 (Secure Hash Algorithm 3) contest organized by NIST (Na-

tional Institute of Standards and Technology). It was designed to maintain the high
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efficiency and safety of its predecessor and to optimize it for new applications, with

the main goals being simplicity and usability (AUMASSON et al., 2014).

The Blake2 family consists of two main algorithms: Blake2b, which is optimized

for 64-bit platforms and can generate digests ranging from 1 to 64 bytes, and Blake2s,

which is optimized for platforms up to 32 bits and can generate digests ranging from 1

to 32 bytes. Cryptanalysis results can be found in (GUO et al., 2014). Further details on

Blake and Blake2 are found in (AUMASSON et al., 2014).

2.2.2 Cryptographic Sponge Functions

Sponge functions provide a mechanism for generalizing traditional hash functions

to more general functions with arbitrary-length output. Sponge functions can operate

in two distinct modes: sponge or duplex. These two modes allow implementing a wide

range of symmetric cryptographic functions.

2.2.2.1 Sponge Mode

Figure 4 shows the structure of the sponge mode. Input message M is first extended

by a given padding rule and then divided into blocks of r bits. Permutation function

f operates with fixed-length inputs and outputs of b bits. The state of the sponge

construction also has the size of b bits, where c are the bits considered the inner part

of the state and r represents the bits of the external part. Initially, all bits are initialized

with value zero. Parameter c is called capacity and determines the security level of

the construction (BERTONI et al., 2011). In the absorbing phase, all blocks of r bits

obtained previously from M are XORed with the r bits of the external part of the state,

alternating with the execution of transformation f. In the squeezing phase, the bits in

the external part of the state are iteratively placed in output blocks. Each output block

is generated by the execution of transformation f in the previous output block. The

resulting output has l bits. Thus, the number of iterations of the squeezing phase must
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be such that it allows the generation of a l-bit output.

Figure 4: Sponge mode (BERTONI et al., 2011)

2.2.2.2 Duplex Mode

Figure 5 shows the duplex mode structure. In this mode, the input message σ0 is

extended into a single block of r bits. The block of r bits obtained previously from

σ0 are XORed with the bits from the external part of the state and then undergoes

transformation f. In this step, unlike the sponge construction, the next call of the duplex

construction will have the output of the previous call as the initial state. In this way,

the output at any given time will depend on all the inputs previously used, generating

a memory construction between the calls.

2.2.3 Password Hashing Schemes

A password hashing scheme is an algorithm that uses a pseudorandom function

(NIST, 2011) having as its main input (although it usually has some others) a password

and generating as output a pseudorandom sequence of bits (NIST, 2009). To accom-

plish this operation, this type of algorithm usually uses a hash function as one of its

structures. This hash function must be such that it becomes computationally imprac-
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Figure 5: Duplex mode (BERTONI et al., 2011)

ticable to obtain from the sequence of output bits the password that generated it. The

output of a password hashing scheme can be used in two main ways:

∗ Cryptographic keys generation: from the password, it obtains a key of appropriate

size to be used as input in some algorithm of cyphering and/or authentication.

This process is known as key stretching (NIST, 2009; SIMPLICIO et al., 2015), and

its main purpose is to obtain a key of adequate size from the input password that

makes unfeasible brute force attacks against the original password, which has

less entropy than the resulting key (KELSEY et al., 1998; PERCIVAL, 2009).

∗ Password storage: as a bit string to be stored for later checks of user password, for

example when accessing a computer network or performing a banking operation

over the Internet. Legitimate users will need to perform the password hashing

only once, while attackers on average will need to perform it many times during

a brute force attack. Ideal password hashing schemes for this purpose allow

configurable processing and memory costs to perform their operation. This can

hinder attacks such as the brute force attack.
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The passwords defined by users usually have an average entropy value below the

value required in various protocols and cryptographic schemes used in modern sys-

tems (FLORENCIO; HERLEY, 2007). Thus, dictionary and exhaustive search attacks

allow attackers to overcome the non-invertibility of hash functions, and such a task

can be made easier if attackers have multiple processing cores at their disposal (for

example, modern GPUs (Graphics Processing Unit) and customizable hardware syn-

thesized in FPGA or ASIC), thus enabling many parallel tests (SIMPLICIO et al., 2015).

Modern password hashing schemes often provide the ability to adjust some parame-

ters to control processing and/or memory costs. In addition to the already mentioned

Lyra2 and Argon2, other main password hashing algorithms present in the literature

are PBKDK2 (Password-Based Key Derivation Function 2) (KALISKI, 2000), scrypt

(PERCIVAL, 2009), and bcrypt (PROVOS; MAZIÈRES, 1999).



36

3 RELATED WORK

This chapter contains a survey of works from the literature that are of interest

to this research. The works analyzed present several approaches to deal with area,

power, latency, and throughput metrics, as well as providing proposals and techniques

to analyze some trade-offs between them. The survey are divided in two parts: works

that present hardware designs for cryptographic hash and sponge functions, and works

that present hardware designs for other types of algorithms. At the end of the chapter,

a brief discussion is presented.

3.1 Hardware Designs for Cryptographic Hash and
Sponge Functions

The work by (SUNNY; SARANYA, 2014) presents some implementations of the

Blake-256 algorithm, with a first architecture obtained directly from the specification

of the algorithm, a second architecture oriented towards high speed, and a third and

more compact architecture for a lesser area utilization. Synthesis results for ASIC are

presented for the three architectures in terms of latency, area, and memory usage. The

authors do not make comparisons with other works of the literature or evaluate trade-

offs between the metrics involved. The work only aims to obtain the maximum possi-

ble optimization for one of them in each type of architecture proposed. The third and

more compact architecture presents the best results in terms of area, memory usage,

and latency. The first architecture obtained directly from the algorithm specification
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presents the worst results for the three metrics. The second architecture for higher

speed presents intermediate values for the three metrics. Despite the results, an ana-

lysis of the power or energy consumption is not found. In (AUMASSON et al., 2014),

the authors of the Blake hash function present their reference hardware implementa-

tions, exploiting parallelism for lower latency over an increase in area utilization. They

suggest some alternatives to minimize the area and to balance the trade-off with the la-

tency of the circuit. Complete synthesis results for ASIC are presented for various

degrees of parallelism and compared in terms of area utilization, maximum frequency

of operation, latency, throughput, and efficiency (defined as the ratio of throughput to

area). Other similar proposals synthesized in FPGA can be found in (LATIF et al., 2011;

KUMAR; CHITRAVALAVAN, 2014).

The work by (RAO; NEWE; GROUT, 2014) presents an implementation of the SHA-

3 algorithm in FPGA, which focuses mainly on the analysis of the results for power

consumption. It also presents synthesis results for latency and throughput in various

FPGA families. Despite the several synthesis results, no trade-off analysis between

latency, power, and area is presented. Similar work can be found in (YALLA; HOM-

SIRIKAMOL; KAPS, 2014). The work by (PEREIRA et al., 2013) presents the use of

pipeline and parallelism in the development of architectures for the Keccak sponge

function. The proposed architectures are synthesized in FPGAs, and the results are

presented and compared with other results in the literature. Compared with a reference

implementation without pipeline, when using this technique, despite the greater area

utilization (+15.3%), a higher operating frequency (+370%) and a higher throughput

(+32%) are obtained. The same implementation using pipeline is compared with other

implementations in GPU, comparing the resulting throughput and concluding that it

is about 7 times superior to the best result of the literature presented in their work.

Despite these analyses and comparisons, no ideias are presented to treat trade-offs.

The work by (PROVELENGIOS et al., 2012) presents implementations of the same func-
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tion, showing some techniques to increase the hardware speed using specific blocks

present in FPGAs. They also present specific instructions and features offered by the

manufacturer of the technology, obtaining better results in terms of area utilization

when such techniques and features are exploited. The characteristic of modern FPGAs

to allow manual work with LUT (Look-Up Table) primitives is exploited in (JUNGK;

STOTTINGER; HARTER, 2014). The authors compare implementations with and without

this feature, and explore trade-offs between throughput and area utilization. Although

the throughput results are slightly lower than the related work presented by them, the

reduction in area utilization is substantial. A similar work can be found in (SAN; AT,

2012). The creators of Keccak present their reference hardware implementation for the

function in (BERTONI et al., 2012). An architecture for high performance is presented,

as well as another for small area. A third architecture aiming to deal with the trade-off

between throughput and area is proposed. When this architecture is compared to the

high performance architecture, the authors obtain a decrease of about two times in the

area with a reduction of four times in the throughput. Despite the interesting results,

no power/energy analysis is performed.

The work by (ZHANG et al., 2014) presents a hash function based on the sponge

construction called SHAT (Sponge Hash Algorithm). Initially, the authors present a di-

rect implementation of the algorithm in hardware, comparing the throughput and area

results with those for implementations of other hash functions present in the litera-

ture. Then, they apply various optimization techniques in order to obtain better per-

formance for a specific metric or treat the trade-off between two of them. As the first

optimization, they use the unfolding technique to improve the throughput of the circuit,

obtaining a value 47.97 times greater for this metric as their best result. As a second

optimization, they use the parallelism and pipeline techniques together to reduce the

critical path delay by modifying the permutation function structure, thus obtaining a

6.31% reduction in circuit latency. As a third optimization, a technique is proposed to
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calculate an operating frequency range that can be used to perform a trade-off between

low dynamic power consumption and high throughput. For various frequency ranges,

synthesis results for power consumption, area, and latency are presented. In spite of

presenting the analysis of the measurements for these three metrics as a function of the

variation of the operating frequency, an analysis of how it would be possible to obtain a

balanced performance between these metrics is not performed. However, it constitutes

an interesting example of some ideas to perform a three-dimensional analysis. As the

last optimization, they use the clock gating technique to obtain a reduction in dynamic

power consumption. With this approach, a reduction of 13.65% is obtained.

The work by (TEHRANIPOOR; WANG, 2011) presents some techniques to optimize

the hardware execution speed of the MD5 (Message-Digest algorithm 5) hash function,

such as pipeline and the use of carry-save and carry-ripple adders. When synthesis is

performed in FPGA, blocks of RAM memory can be used to store constants used by

the function, that is, more CLBs become available for the main flow of the algorithm,

resulting in higher performance. The authors do not present any specific implementa-

tion of this algorithm, only a comparison of implementations present in the literature

using pipeline with different stages. They also analyze parallel and iterative architec-

tures, comparing the results in terms of latency and throughput. A similar approach is

used for SHA-2 hash function, but the synthesis is also done in ASIC. No results are

presented for area utilization or power consumption. Thus, no trade-off between them

and latency or throughput is treated. In addition, the authors present a compilation of

synthesis results for several SHA-3 candidates present in the literature, such as Blake,

Keccak, and Skein. Latency, area, throughput, and maximum operating frequency of

the implementations are compared for both FPGA and ASIC, but without analyzing

trade-offs between these metrics. Similar works can be found in (LATIF et al., 2012;

TILLICH et al., 2009). For comparisons involving other metrics, we have the work by

(GUO et al., 2011), where synthesis results are presented and compared for the number
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of cycles, area, maximum frequency, throughput, power, and energy consumption, thus

providing basis on how to define and to measure each of these metrics. However, they

do not analyze trade-offs among area, throughput, and power.

The work by (MIKAMI et al., 2010) presents a compact implementation for the Luffa

hash function, which was one of the candidates in the SHA-3 competition. The authors

present three distinct architectures for synthesis, exemplifying some optimization tech-

niques and analyzing the trade-off between area and throughput. The latter can be ob-

tained by the ratio of the operating frequency to the number of clock cycles required

for each round of the function, and results for each of these metrics are obtained for

each architecture. The synthesis is performed for ASIC and graphs representing the

relation between the throughput of the circuit and its area are presented, showing how

the throughput behaves when the area utilization increases. The conclusion is that, al-

though the throughput increases with the increase in area, this growth is not uniform.

Results and analyses for power consumption are not provided. A compact work that

presents some strategies for developing architectures with trade-offs between area and

throughput. For the Skein hash function, which was among the SHA-3 competition fi-

nalists, there is the work done by (WALKER et al., 2010). Other similar works are found

for the hash functions Shabal (DETREY; GAUDRY; KHALFALLAH, 2011) and Whirlpool

(MCLOONE; MCIVOR, 2007).

In the work by (TILLICH et al., 2010), the authors present high-speed architectures

for 14 candidates of the second round of the SHA-3 competition. Given the number of

different algorithms, the authors present their method to make implementations struc-

turally similar to each other, except for the intrinsic differences between the algorithms.

With this approach, it is possible to compare the synthesis results in a consistent and

more realistic way. The design of all modules was planned to address area-latency

trade-off to maximize circuit speed. All the results are compared to each other and to

a reference hardware implementation for the SHA-2 algorithm as well. No power ana-
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lysis is performed. The work by (GUO et al., 2010) is complementary, also presenting

synthesis results for FPGA. The authors elaborate a method of comparison to decrease

the impacts of the peculiarities of each platform. To evaluate the implementations,

they propose the use of the maximum throughput and the throughput-to-area. They

also use the area and power obtained for a specific value of throughput. The authors

also analyze the trade-off between power and area, and the trade-off between area and

maximum throughput. However, there is no analysis of any scenario that presents a

three-dimensional trade-off among area, throughput, and power. The results for all the

algorithms are presented and compared in terms of the proposed metrics.

3.2 Hardware Designs for Other Types of Algorithms

In (ALPHA TECHNOLOGY, 2013), an architecture is presented to execute the scrypt

password hashing scheme. No special optimization in terms of area and energy is per-

formed, but complete synthesis results for ASIC and FPGA are presented. The work

by (WIEMER; ZIMMERMANN, 2014) presents a flexible and high-speed implementation

for the bcrypt password hashing scheme, targeting password-search attacks. Due to the

nature of the application, parallelism techniques are presented and applied, constituting

a great example of application of this technique. Results for area, energy, latency, and

cost are presented and compared with other results in the literature. In (MALVONI; KNE-

ZOVIC, 2014), another parallel hardware architecture for the same PHS is presented.

This architecture is optimized in terms of power consumption and production cost,

complementing the work by (WIEMER; ZIMMERMANN, 2014).

The work by (BEDNARA et al., 2002) performs an area-latency trade-off analysis for

hardware implementations of algorithms used in elliptic curve cryptography. Addition-

ally, it provides an architecture for a cryptographic coprocessor that can be configured

with variable parameters for area and latency, as well as the size of the underlying

finite field. This design represents the idea for obtaining an architecture or group of
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architectures that can be configurable in relation to some performance metrics. The au-

thors also show how to apply high-level techniques for designing the control unit. The

proposed FPGA architecture is detailed and can be adapted to achieve the mentioned

trade-off by using some degrees of freedom such as the number of functional units in

the datapath, degree of parallelism in the units of multiplication, and the implemen-

tation strategy for the control unit. Synthesis results comparing various coprocessor

configurations are presented. The analysis performed is restricted to the trade-off be-

tween area and latency, and there is no synthesis results for power consumption or

an analysis of any three-dimensional trade-off. Similar work is found in (WENGER;

FELDHOFER; FELBER, 2011).

A guide for low power design of embedded systems is provided in (IVEY, 2011).

Despite the specificity of the guide, the presentation of some ideas for this type of

design and detailed definitions of static and dynamic power are of great value. De-

scriptions of techniques and approaches for low power design at the architecture and

technology level are found in (HAVINGA; SMIT, 2000). Based on some of these ideas,

(HÄMÄLÄINEN, 2006) presents strategies and techniques to obtain an implementation

of the AES (Advanced Encryption Standard) algorithm with small area utilization,

exploring the trade-off between this metric and the power consumption. The imple-

mentation is performed in ASIC and compared with other results in the literature. The

authors indicate that the power consumption to process each input block of the algo-

rithm is smaller, despite presenting a larger throughput and area similar to other works

cited by them. Similar work can be found in (KHOSE; RAUT, 2014).

The work by (SUTTER; DESCHAMPS; BOEMO, 2004) presents implementations of

three algorithms for modular multiplication (Multiply and Reduce, Shift and Add,

Montgomery Multiplication). Each implementation is described in both combinational

and sequential form and synthesized in FPGA. For the combinational form, the au-

thors compare the synthesis results in terms of area utilization (number of CLBs) and
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maximum latency. For the sequential form, the results are compared in terms of area

(number of CLBs and Flip-Flops) and maximum operating frequency. In this step,

no optimizations or trade-off analysis between the metrics is performed. Implemen-

tations are performed using the description obtained directly from the algorithm in

question. Next, the authors measure the power consumption of the circuit, presenting

an overview of several components of the total power: dynamic, static, off-chip, and

synchronization. The comparison of the three algorithms in their combinational form

is made in terms of area, energy, and latency. Similar measurements are performed for

the algorithms in their sequential form. The work is direct in its goals and analyzes the

area utilization, the power consumption, and the latency of three different algorithms

for the same application. On the other hand, it does not present any optimization for

some of these metrics or analyze any trade-off between them, but it constitutes an ex-

ample of implementing an algorithm in the combinational and sequential approaches.

The work by (ZHOU; HUANG; SMITH, 2011) presents efficient and high-performance

area utilization proposals for Montogomery multipliers. Architectures derived directly

from the algorithm together with an optimized architecture and other architectures

from the literature are compared in terms of FPGA synthesis results, specifically area

and latency. The optimized architecture provided by the authors shows an increase in

the operating frequency and in the total throughput, in addition to a reduction of 60%

in area resources when compared with other works in the literature.

The authors in (SARAVANAKUMAR; RANGARAJAN; RAJASEKAR, 2012) present an

implementation of a CS (Circuit-Switched) router within the concept of network in

a single encapsulation (Network-On-Chip - NOC). Two architectures are presented

and compared, with and without the use of pipeline. Synthesis results are obtained

for ASIC with the help of Synopsys tools, and the metrics of area, power, and la-

tency are compared. Dynamic and static power, critical path delay, and combina-

tional and non-combinational area are obtained directly from the synthesis tools. The
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pipelined architecture presents a lower power consumption and a lower utilization of

non-combinational area (about half of that used by the other architecture). The non-

pipelined architecture presents a lower critical path delay and a lower combinational

area utilization, but the difference is less than 4%. This work constitutes an interesting

reference to the method to compare architectures with and without optimizations. A

complementary work is (AHMED; ABDALLAH, 2013).

The work by (DENG et al., 2011) proposes models to estimate area, power, and la-

tency for circuits synthesized in FPGA, specifically those of Xilinx. The purpose of

these models is, employing a design method, to efficiently use available area resources.

Other models proposed to estimate the power consumption in different parts of the cir-

cuit are derived from previous models. Furthermore, models for estimating latency

are obtained in a similar way. Some circuits are proposed and used as an example to

validate and to compare the models. Hence, the work described can provide ideas and

tools for an optimized project for FPGAs, enabling them to use their natural character-

istics more efficiently. It can also provide confidence when comparing the results with

the synthesis results obtained for ASIC. Other considerations about trade-offs between

performance metrics can be found in (JEAN-JACQUES et al., 2002; MARKOVIC; NIKOLIC;

BRODERSEN, 2006).

3.3 Discussion

The three main metrics of interest for this research are the area utilization, the

power consumption, and the throughput. Some works discussed earlier address opti-

mized hardware design for improving one of these metrics. In other works, optimiza-

tions are made for two of them, but without analyzing how a third metric relates to the

other ones. The values obtained for this third metric are assumed to be consequences of

the previous optimizations in the other metrics. Other works analyze the trade-off be-

tween two of these metrics, such as area and throughput, or power and area, or among
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other associated metrics such as latency and maximum operating frequency. Further-

more, the lack of results for power consumption can be verified in most of the works,

despite being a crucial parameter in mobile and embedded devices. Only in one of

the works were optimizations found for the three metrics (ZHANG et al., 2014). Howe-

ver, no three-dimensional trade-off analysis between them was found. Nevertheless, it

constitutes a great example of some optimization ideias that can be used as a basis for

this type of analysis. The work by (SUNNY; SARANYA, 2014), despite not presenting

trade-offs analyses, presents a sequence of implementations for an algorithm, starting

with an implementation obtained directly from the algorithm specification and then

presenting optimizations for high speed and less area utilization, with one architecture

for each optimized metric. It can be also noted that many works present synthesis re-

sults only for ASIC or only for FPGA. Thus, we intend to contribute to bridging these

gaps, not just presenting complete synthesis results for both ASIC and FPGA, but also

proposing ideas and architectures that allow analyzing a trade-off among three metrics

(area, power, throughput). In addition, no hardware implementation was found for the

BlaMka algorithm. Then, providing this implementation will be of great value not only

to help us address the analysis of the trade-offs commented above, but also to present

the first hardware design and performance analysis on this platform for this algorithm.
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4 DESIGN AND IMPLEMENTATION

In Chapter 2, some basic topics about hardware design and cryptography were pre-

sented. In this chapter, the permutation function of the BlaMka cryptographic sponge

and its hardware design and implementation are described.

4.1 Strategy

In order to carry out the hardware design and implementation of the chosen al-

gorithm and to meet the goals proposed for this work, we will follow a well-defined

design strategy, shown in Figure 6. Below, a brief description for each of the steps

in this strategy is presented. Although the strategy is described as a function of the

proposed algorithm, it could also be used for other types of algorithms.

1. After choosing the algorithm to be implemented as a case study, it is necessary

to understand its operation. In this step, the algorithm is analyzed and its main

features and characteristics are presented.

2. The next step consists of a basic design derived directly from the algorithm struc-

ture, simply mapping the operations and variables used by the algorithm into

simple hardware modules such as registers, adders, multiplexers, among others.

3. Variations are proposed in the basic design to obtain optimizations, initially im-

proving the throughput, which is one of the metrics of greater interest for the
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Figure 6: Design and implementation strategy

BlaMka algorithm, and later performing improvements in terms of area utiliza-

tion and power consumption.

4. After the design of several architectures from the previous steps, they are de-

scribed in VHDL using the design tools presented in Chapter 2. Functional

simulations are performed to verify the correct operation of the architectures.

5. In this step, the various descriptions are implemented in both ASIC and FPGA,

obtaining results for area, power, throughput, latency, among several other met-

rics.
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6. Finally, from the experimental results obtained from the previous step, a detailed

performance analysis is conducted, starting from a simple one-dimensional ana-

lysis until culminating in the three-dimensional analysis discussed in Chapter

1.

For designing and describing sequential circuits, a partitioning model will be

adopted dividing the complete system into a control unit and a datapath unit, as shown

in Figure 7. For combinational circuits, the complete system is reduced to the datapath

unit; because they do not have memory elements, no control signals are necessary.

Figure 7: Partitioning model for sequential circuits

The datapath module is responsible for receiving the data inputs of the system, for

storing and transforming these data, as well as for generating and presenting the output

results after executing the algorithm it implements. The control unit is responsible for

generating the signals that will control the execution of the datapath module, and for

generating the external control outputs for the system. To perform its function, it is

aided by condition signals received from the datapath module and by external control

inputs. Here, the control unit will be designed only once and it will be reused with

minor adjustments in all the proposed circuits. Optimizations will be suggested and
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implemented only in the datapath module.

4.2 BlaMka Permutation Function

Figure 8a presents the permutation function of BlaMka, denoted by G. The G

function has four 64-bit inputs, named a, b, c, d, which will be updated and presented

as outputs after its execution. The basic structure of G consists of two updates for each

input variable, and the values used for the calculations will be those that have already

been updated in the previous steps of the algorithm. For example, the value of variable

a used in step 2 corresponds to the result of step 1, and the value of variable d used in

step 3 corresponds to the result of step 2. The same reasoning applies to the other steps,

and the Figure 8b shows this strictly sequential nature of the G function. The ⊕ sym-

bol denotes bitwise Exclusive-OR (XOR) logical operation, while + denotes wordwise

addition, and · denotes wordwise multiplication. Assuming a little-endian convention,

lsw(x) is the least significant word (32 bits) of x. The symbol ≪ denotes a left shift

operation and the symbol≫ denotes a right rotation operation. The permutation func-

tion of Blake2b has the same structure, except for the absence of the multiplicative

components 2 · lsw(a) · lsw(b) and 2 · lsw(c) · lsw(d), as can be seen in Figure 9.

1. a ← a + b + 2 · lsw(a) · lsw(b)
2. d ← (d ⊕ a)≫ 32
3. c ← c + d + 2 · lsw(c) · lsw(d)
4. b ← (b ⊕ c)≫ 24
5. a ← a + b + 2 · lsw(a) · lsw(b)
6. d ← (d ⊕ a)≫ 16
7. c ← c + d + 2 · lsw(c) · lsw(d)
8. b ← (b ⊕ c)≫ 63

(a) BlaMka G function

1. a ← a + b + 2 · lsw(a) · lsw(b)
2. d ← (d ⊕ a)≫ 32
3. c ← c + d + 2 · lsw(c) · lsw(d)
4. b ← (b ⊕ c)≫ 24
5. a ← a + b + 2 · lsw(a) · lsw(b)
6. d ← (d ⊕ a)≫ 16
7. c ← c + d + 2 · lsw(c) · lsw(d)
8. b ← (b ⊕ c)≫ 63

(b) BlaMka G function sequential nature

Figure 8: The BlaMka permutation function denoted as G. Adapted from (SIMPLICIO
et al., 2015)

Each variable update operates with values of two other variables. The algorithm
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1. a ← a + b
2. d ← (d ⊕ a)≫ 32
3. c ← c + d
4. b ← (b ⊕ c)≫ 24
5. a ← a + b
6. d ← (d ⊕ a)≫ 16
7. c ← c + d
8. b ← (b ⊕ c)≫ 63

(a) Blake2b G function

1. a ← a + b+2 · lsw(a) · lsw(b)
2. d ← (d ⊕ a)≫ 32
3. c ← c + d+2 · lsw(c) · lsw(d)
4. b ← (b ⊕ c)≫ 24
5. a ← a + b+2 · lsw(a) · lsw(b)
6. d ← (d ⊕ a)≫ 16
7. c ← c + d+2 · lsw(c) · lsw(d)
8. b ← (b ⊕ c)≫ 63

(b) BlaMka G function

Figure 9: Comparison between Blake2b and BlaMka G functions. Adapted from (SIM-
PLICIO et al., 2015)

has two different sequences of operations, which are repeated alternately during its

execution. The first sequence (odd steps) consists of addition, multiplication, and shift

operations. The second sequence (even steps) consists of XOR and rotation operations.

The number of bits that must be rotated varies depending on which stage of the G

function the execution is, but only four different values are used: 16, 24, 32 and 63

bits. Each pair of inputs of the G function goes through this basic structure twice. In

the first sequence, we have a multiplicative component, and the detail for working with

the least significant word was a choice in terms of performance by the creators of the

algorithm (SIMPLICIO et al., 2015). Of course, multiplication between 64-bit variables

would be more costly than using only 32-bit operands.

4.3 Design and Implementation

4.3.1 Basic Design

The four variables used by the G function have a size of 64 bits each, constitut-

ing 256-bit input data and 256-bit output data. The first two lines of the algorithm

have the same structure as the other pairs of lines, except for the variables used in the

calculations, and the number of bits to be rotated in the updates of variables b and d.
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Sequential and combinational circuits can be constructed to implement the G function.

For a sequential circuit, and as the basic design, we can assign a register to store each

variable, and directly implement the structure of the first two lines of the algorithm,

reusing their functional units to perform the other pairs of lines. Other approaches

could be used, such as a circuit that implements four steps of the algorithm, in which

case it would be necessary to duplicate the number of functional units as adders and

multipliers. For simplicity and also for a lesser area utilization (mainly by reducing

the number of multipliers required), the first approach was preferred for the sequential

circuits. However, a circuit with four multipliers that can execute the whole algorithm

at once is simply a combinational circuit, and will be described in the next section.

For the sequencial circuit, in terms of storage, only four registers are used to store the

variables, as well as other combinational components required to perform the desired

operations, such as multipliers, adders, and modules for 64-bit XOR operation. Except

for the two input signals of the multiplier, which have 32 bits each, all other signals

used in the circuit are 64-bit long.

To update variable d, we need to wait for the result of variable a. Assuming we

have separate units for addition and multiplication, one clock cycle will be necessary

to perform the update of variable a, since a + b and 2 · lsw(a) · lsw(b) can be calculated

in parallel. In this same cycle, it is possible to update variable d, since shifts and

rotations constitute only changes in wires connections, just adding the 64-bit XOR

module latency to this cycle time. Similar comments are valid for variables c and b.

As previously mentioned, the Blake2b algorithm does not have multiplications,

which is the main difference compared to BlaMka in terms of the types of components.

However, all other considerations explained above are valid for both algorithms. Using

multiplexers and mapping operations of the algorithm into functional units, the result-

ing basic sequential circuit is shown in Figure 10 for Blake2b and in Figure 11 for

BlaMka. The shaded region in Figure 11 indicates the part of the circuit corresponding
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to the differences between the permutation functions of both algorithms. The circuit

presented for Blake2b will be used as a reference for the analysis of the experimental

results for BlaMka.

Figure 10: Sequential circuit for Blake2b G function

The multiplication by 2 indicated by << 1 can be accomplished by a simple left

shit of 1 bit. This shift operation, as well as the rotation to the right of x bits, consists

basically in changes of wires, that is, these operations do not require using specific

combinational and sequential components, because the number of bits to be shifted

and the number of bits to be rotated are known. Of course, if these pieces of informa-

tion were not previously known, specific modules for such operations should be used.
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Figure 11: Sequential circuit for BlaMka G function

However, to facilitate understanding and mapping between the circuits and the algo-

rithms of Figures 8a and 9a, these operations are represented as modules in Figures 10,

11, and in all other circuits presented herein. Furthermore, to simplify the figures and

to facilitate their understanding, the control signals for the registers and the selection

signals for the multiplexers were omitted. The sequential circuit shown is executed

four times to obtain the final results generated by the algorithm at the outputs of the

four registers. Such loop operation is controlled by the control unit, which is described

below.

The ASM (Algorithmic State Machine) diagram for the control unit is shown in
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Figure 12, and is the same for both datapaths of Figures 10 and 11 (but the diagram

shows only the operations of BlaMka G function). This module is responsible for gen-

erating the enable signals for the registers and the selection signals for the multiplexers.

In addition, it has an external control input named start which, by assuming the value

1, indicates that the circuit must start to operate. As a control output, it produces the

done signal at the end of execution of the implemented algorithm, which presents the

value 1 to indicate that the results are available and stable at the system outputs. The

ASM diagram indicates the presence of seven states. There is an external control sig-

nal reset for the complete system, not shown in the figure, responsible for initializing

the registers and putting the control unit in its initial state IDLE. There is also a clock

signal responsible for the state transitions. The state S_0 is responsible for receiving

and storing the input variables. The following four states, S_1 through S_4, update the

variables stored by the registers by performing two steps of the algorithm in each state.

The steps indicated next to each state correspond to those in Figure 8a. The last state,

S_5, triggers the done signal indicating that the outputs are available. As can be seen

in the figure, the complete system will need 6 clock cycles to perform its operation.

4.3.2 Optimizations

From the basic circuit obtained for BlaMka, one can obtain optimizations. The

first optimization aims to increase the throughput, which is one of the most important

characteristics for this type of algorithm. Then, how improvements could be done in

terms of area utilization and power consumption are evaluated.

To obtain the optimizations, a possible strategy is to analyze the project from three

different levels: algorithm, components, and microarchitecture.
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Figure 12: Control unit ASM diagram
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4.3.2.1 Algorithm Level

At the algorithm level, its execution can be seen to be purely sequential, as shown

previously. This does not allow the parallelism technique to be used at the algorithm

level. It is worth noting that BlaMka is used as a subcomponent in more complex

algorithms (for example, in password hashing schemes). At the level of these other

algorithms, the parallelism technique may or may not be applicable during the use of

multiple instances that implement the G function.

4.3.2.2 Components Level

In terms of components, two of them that perform arithmetic operations are

present: adders and multipliers. For the permutation function, the metric of great-

est interest is the throughput, which depends directly on the circuit latency. Thus, for

implementing the adders and the multiplier, purely combinational circuits were chosen

in order to obtain the best performance in terms of latency. This decision was based

on the results presented in (DESCHAMPS; BIOUL; SUTTER, 2006; DESCHAMPS; SUTTER;

CANTO, 2012). For simplicity, the implementations proposed herein use combinational

adders defined by operation + of the VHDL language. For combinational multipliers,

(DESCHAMPS; SUTTER; CANTO, 2012) presents various circuits and synthesis results

for FPGA. For targeting more accurate results for this work, these circuits were syn-

thesized again for both ASIC and FPGA. Combinational multipliers based on trees

of counters for fast multiplication could also be used, such as the Dadda multiplier

(DADDA, 1965; DADDA, 1976). Using the Synopsys Design Compiler (SYNOPSYS INC.,

2015a) and a 90nm cell library for ASIC synthesis, the results for latency are presented

in Table 3. Using the Xilinx Vivado Design Suite (XILINX INC., 2016b) and a 20nm

Xilinx Virtex UltraSCALE for FPGA synthesis, the results for latency are presented in

Table 4.

The default_multiplier corresponds to the synthesis of a multiplier from op-
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Table 3: Comparison between combinational multipliers (ASIC)

Multipliers Latency
32 x 32 bits (ns)

basic_base2_multiplier 42.99
basic_base16_multiplier 82.15

carry_save_multiplier 56.37
dadda_multiplier 20.00
default_multiplier 15.81

parallel_csa_multiplier 60.31
parallel_multiplier 119.16

ripple_carry_multiplier 112.75

Table 4: Comparison between combinational multipliers (FPGA)

Multipliers Latency
32 x 32 bits (ns)

basic_base2_multiplier 39.855
basic_base16_multiplier 29.299

carry_save_multiplier 21.456
dadda_multiplier 12.515
default_multiplier 17.061

parallel_csa_multiplier 26.829
parallel_multiplier 40.766

ripple_carry_multiplier 34.453

erator ∗ of the VHDL, leaving to the synthesis tool the task of defining the specific

algorithm and components to be used. For ASIC, this multiplier is observed to have

the lowest latency among those presented. Hence, this multiplier was chosen for

the circuits. Moreover, the dadda_multiplier has higher latency, but close to the

default_multiplier and, as will be seen below, it has some features that allow op-

timization attempts at the microarchitecture level, such as the separation of the multi-

plier in two steps and the use of carry save adders. For FPGA, the dadda_multiplier

has the lowest latency, hence it was chosen for the circuits. To maintain consistency

between ASIC and FPGA, the default_multiplier will also be used for FPGA. In
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general, these two multipliers had the best performance in terms of latency. But for

this work, the multipliers chosen were those with minimum latency, because this met-

ric directly influences the throughput. Other approaches are possible such as choosing

the multiplier with the minimum power consumption or the minimum area utilization.

More details about adders and multipliers, and the details about their implementation

can be found in (DESCHAMPS; BIOUL; SUTTER, 2006; DESCHAMPS; SUTTER; CANTO,

2012). The architecture for the permutation function of Blake2b will be called blake2b-

ref. The basic architecture for the permutation function of BlaMka, with the default

multiplier, will be called seq-blamka-default. Replacing the default multiplier by the

Dadda multiplier, we obtain the architecture seq-blamka-dadda.

4.3.2.3 Microarchitecture Level

The third approach for optimizations involves modifying the microarchitecture,

which can be performed using the knowledge of the internal operation of the Dadda

algorithm. The Dadda multiplier can be divided into two steps: the first one is respon-

sible for addition of bits and carry generation, using the two 32-bit inputs and resulting

in two 64-bit long partial values. The second step is where these two partial values

are added, yielding the final result of the multiplication. In the case of adders, despite

the use of the adder generated by the operator + of VHDL language, there are various

other options. One of them is the Carry-Save Adder (CSA), which the main charac-

teristic is the application to the addition of three or more values. Noting that the two

partial values generated in the first step of Dadda multiplier and the output of the first

adder in Figure 11 have the same size of 64 bits, one can substitute the second adder

and add these three values using a single CSA with three inputs to update variables a

and c. This idea, which results in an architecture named seq-blamka-csa3, can be seen

in Figure 13. For simplicity, only the modified parts of the sequential circuit in Figure

11 are shown. For the Dadda multiplier, its output a ∗ b can be represented as x+ y, the

sum of the partial values generated as outputs of its first step. Thus, the 1-bit left shift
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operation should be applied to each partial value of the Dadda multiplier before using

them in the carry-save adder, satisfying 2 ∗ (a ∗ b) = 2 ∗ (x + y) = 2 ∗ x + 2 ∗ y. The

same reasoning applies to variables c and d.

Figure 13: Dadda multiplier and CSA-3

Another possibility would be inserting registers in a possible critical path, namely

between the first stage of Dadda multiplier and the carry-save adder, to increase the

throughput (with impacts on area and power, to be analyzed in the next chapter), re-

sulting in the circuit named seq-blamka-reg. Figure 14 shows this ideia. The control

unit for this architecture will need four more states in its ASM diagram, because of the

insertion of registers, totalizing 10 clock cycles.

Figure 14: Dadda multiplier, CSA-3, and registers
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An important and associated issue is the implementation of the proposed sequen-

tial circuits. The input variables have 64 bits each, which means that receiving them

all in parallel would require a 256-bit input bus, with the same reasoning applied to

the outputs. An alternative is to only allow the input/output of a smaller block of

bits in parallel, for example, 64 bits (choice made for convenience because each vari-

able has 64 bits, but several possibilities could be used). This strategy can decrease

power consumption because it reduces the number of wires needed in the circuit and

consequently fewer wires need to be powered in parallel. However, it is necessary to

increase the number of clock cycles required to execute the algorithm. The control

unit will need 16 clock cycles to perform the circuit operation. This architecture will

be called seq-blamka-serial. In the case of FPGAs, reducing the number of input/out-

put bits in parallel is interesting, since several families of FPGAs do not have many

I/O (Input/Output) pins available, making it impossible for the main synthesis tools to

perform the Place & Route step. It is worth noting that the FPGA tools used herein

can perform a preliminary synthesis step providing results for the various metrics of

interest, but these results can be very imprecise, since they do not yet take into account

particularities of the chosen FPGA, such as the distribution of its basic components and

the resources consumed by wires connections, contributions that will only be counted

after the Place & Route step.

Combinational circuits that implement the function G can also be obtained. Figure

15 presents the basic cell of this architecture. Four cells are required, totalizing four

multipliers. The combinational circuit does not have either registers or multiplexers

and, as a consequence, it does not have a control unit. The complete combinational

circuit can be seen in Figure 16, with the resulting architecture named comb-blamka-

default. The same reasoning applied to the previous sequential circuits can be used to

obtain the architectures comb-blamka-dadda and comb-blamka-csa3.

Finally, it is also possible to remove the first adder and use just one CSA with four
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Figure 15: Combinational circuit basic cell

inputs. This attempt can reduce the area utilization and is shown in Figure 17. The

resulting architecture will be called comb-blamka-csa4.

4.3.2.4 Remarks

As a complement, it should be noted that several other optimizations and variations

could be obtained, especially if the chosen algorithm is changed, since the analyses per-

formed in this work are focused on the chosen algorithm, respecting its characteristics.

However, only a few variations were suggested to provide sufficient data to allow the

proposed analysis to be performed. All optimizations were performed incrementally

with the initial objective of increasing the throughput, and subsequently reducing area

utilization and power consumption. Another approach would be to start with a basic
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Figure 16: Complete combinational circuit
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Figure 17: Dadda multiplier and CSA-4

circuit and to implement each optimization from that circuit or a combination of these

two strategies.
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5 EXPERIMENTAL RESULTS AND
PERFORMANCE ANALYSIS

This chapter presents the experimental results, as well as their detailed analysis in

order to evaluate the performance of the implementations. In addition, the traditional

performance analysis will be expanded to explore a three-dimensional analysis involv-

ing the metrics of greater interest. The results and analyses for ASIC and FPGA are

presented in different sections.

5.1 ASIC

All circuits were described using the VHDL language and synthesized for ASICs

using the tools and the 90nm cell library provided by Synopsys. The latency is mea-

sured in ns and the throughput in Gbps. The area utilization is measured in kGE (Gate

Equivalents), assuming NAND gates with an area of 5.777 µm2. The power consump-

tion is measured in mW, assuming an operating voltage of 0.75V . All circuits have

256 bits of output, and the number of clock cycles required for their execution is also

indicated. For combinational circuits, the number of clock cycles was assumed as 1.

From these results, it is possible to derive some metrics of efficiency. For example,

the throughput-area ratio, measured in kbps/GE, and the energy-per-bit, measured in

mJ/Gb. The complete synthesis results are presented in Table 5. To assist the analysis,

several graphs can be generated from the results. The architecture obtained for the

permutation function of Blake2b will simply be called reference architecture. The set

of results for a given architecture will be called a performance point.



65

Table 5: Implementation results (ASIC)

Architectures Area Power # Clock Cycle Time Latency Max. Freq. # Output Throughput Throughput-to-area Energy-per-bit
(kGE) (mW) Cycles (ns) (ns) (MHz) bits (Gbps) (kbps/GE) (mJ/Gb)

blake2b-ref 5.23 0.405 6 4.43 26.58 225.73 256 9.631 1841.55 0.042
seq-blamka-default 14.13 0.384 6 27.36 164.16 36.55 256 1.559 110.36 0.246
seq-blamka-dadda 17.93 0.460 6 28.78 172.68 34.75 256 1.483 82.68 0.311
seq-blamka-csa3 17.54 0.489 6 29.05 174.30 34.42 256 1.469 83.74 0.333
seq-blamka-reg 19.92 0.582 10 16.63 166.30 60.13 256 1.539 77.28 0.378

seq-blamka-serial 19.76 0.423 16 17.65 282.40 56.66 256 0.907 45.88 0.466
comb-blamka-default 35.17 1.680 1 111.52 111.52 — 256 2.296 65.27 0.732
comb-blamka-dadda 52.07 1.876 1 136.14 136.14 — 256 1.880 36.11 0.998
comb-blamka-csa3 52.82 2.104 1 105.51 105.51 — 256 2.426 45.94 0.867
comb-blamka-csa4 51.78 2.072 1 107.78 107.78 — 256 2.375 45.87 0.873
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5.1.1 One-Dimensional Analysis

To all one-dimensional graphs, the vertical bars from left to right correspond to the

legend from top to down. The first graph in Figure 18 shows the absolute throughput

values of the various architectures for the BlaMka permutation function compared to

the value obtained for the reference architecture.

Figure 18: Throughput comparison (ASIC)

For BlaMka, the architecture seq-blamka-default has the highest throughput be-

tween the sequential circuitry and the architecture comb-blamka-csa3 between the

combinational versions. In general, the latter showed the highest throughput (2.426

Gbps), 56% higher than the best sequential version (1.559 Gbps). In addition, it can be

noted that all combinational architectures presented throughput superior to the sequen-

tial architectures. The lowest overall performance occurred in the seq-blamka-serial

sequential architecture, which receives inputs and outputs serially in 64-bit blocks.

This was a theoretically expected result, since this architecture, which aims to reduce

power consumption, on the other hand requires a greater number of clock cycles for

its complete execution. It is also possible to verify that all architectures for BlaMka

have lower throughput than the reference architecture. Quantitatively, these differ-
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ences can be visualized in the graph of Figure 19, which indicates the throughput of

each proposed architecture for BlaMka as a fraction of the throughput of the reference

architecture. The architecture with the highest throughput, comb-blamka-csa3, has a

throughput of about 25% of that obtained for the reference architecture. This fact is the

first evidence that shows how the inclusion of multiplications affects the performance

of the BlaMka algorithm in relation to this metric.

Figure 19: Throughput ratio comparison (ASIC)

Figures 20 and 21 show the performance in relation to the silicon area and power

consumption, respectively. In terms of area, it is possible to see that the combinational

architectures, as expected, presented the highest values. Among them, the inclusion

of the Dadda multiplier caused a significant increase in area compared to the com-

binational circuit with the default multiplier, but this discrepancy is attributed to the

presence of 4 Dadda multipliers in the combinational circuits. Approximately, the dif-

ference in terms of area is still similar to that of the sequential circuits, as it is possible

to visualize when comparing the architectures seq-blamka-default and seq-blamka-

dadda. It should also be noted that the BlaMka more compact architecture that was

obtained, seq-blamka-default, still has an area about three times greater than the ref-

erence architecture, which illustrates the minimal increase in area cost caused by the



68

inclusion of combinational multipliers (for maximizing the throughput). However, it

is not the overall minimum increase in area, because it is possible to use sequential

multipliers, which are very compact in terms of area but need more clock cycles to

execute and consequently reduce the throughput.

Figure 20: Area comparison (ASIC)

Figure 21: Power comparison (ASIC)

In the power graph, we can see the difference between the power consumption of

the sequential and the combinational circuits, attributed not only to the greater number
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of modules used in the combinational versions, especially the multipliers, but mainly

to the increase in the number of necessary wire connections. However, there were no

substantial differences in power between the sequential implementations for BlaMka

and the reference architecture, due primarily to the maximum frequency that each cir-

cuit can operates. In addition, the synthesis tool has several methods to implement

multipliers and the respective circuit in which they are included in a very optimized

way. This can be visualized in the power consumption for the seq-blamka-default ar-

chitecture, which is smaller than the consumption for the reference architecture. The

power consumption is higher for the sequential versions with the Dadda multiplier, but

it is still close to the consumption of the reference architecture. The power for the com-

binational circuits was estimated assuming that these circuits are the critical path of an

external system. Thus, the frequency of operation is the inverse of the combinational

circuit cycle time.

Finally, two graphs representing efficiency measures are shown in Figures 22 and

23. In terms of throughput-to-area, the architecture seq-blamka-default has the high-

est efficiency, although the other architectures do not present very high discrepancies.

In terms of efficiency in energy, the combinational architectures have a consumption

superior to that of the sequential architectures, when performing the same amount of

processing. It is worth noting that, despite the proximity in power consumption be-

tween the sequential versions of BlaMka and the reference architecture, the latter is

about 6 times more efficient. And, although the minimum difference in area utilization

is about 3 times for the sequential circuits, the efficiency of the reference architecture

in relation to the amount of throughput it can obtain on average by a certain amount of

area is about 18 times greater than the best performance for BlaMka. These efficiency

measures again evidence the impact caused by the inclusion of multiplications, mainly

in the financial cost for manufacturing and operating the circuits, represented by the

area utilization and the power consumption.
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Figure 22: Throughput-to-area comparison (ASIC)

Figure 23: Energy-per-bit comparison (ASIC)

5.1.2 Two-Dimensional Analysis

After the first analysis, observing each metric of interest, a two-dimensional ana-

lysis of the trade-offs present in the implementations can be performed. In this work,

three trade-offs of this type will be analyzed. The first one, between area and through-

put, is shown in Figure 24. The trend line presented for this graph as the ones for the
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other two-dimensional graphs are only approximate and they agree with the number

of performance points available. The more points we have, the more accurate that

curve will be. However, even roughly, it can help us to understand the behavior of the

analyzed trade-off.

Figure 24: Trade-off between area and throughput (ASIC)

As can be seen in the graph, as we want to increase the throughput of the system,

it will be necessary to increase the use of the silicon area. However, it is possible to

observe that some circuits with a throughput approaching 1.5 Gbps (points 1 to 4) have

an area very close to each other, which allows directly selecting the circuit with the

greatest throughput, since the differences in area utilization are small. In addition, we

have a point with a similar area, but with a significant decrease in throughput (point

5); if only this trade-off is observed, it could be concluded that it is not a relevant

option. It can also be observed that if the objective is to obtain higher throughput, the

best options are among the combinational versions; however, the area tends to grow

significantly in response. Yet, as commented above, again we have some points with
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throughput close to each other, but with relatively different areas (points 6, 8, and 9).

Thus, assuming that we initially desire maximum throughput, it is possible to give up a

small amount of that throughput by a significant decrease in area. Finally, regardless of

the approach, the choice within this trade-off can be misleading, because when judging

each performance point, we lack the information on the power consumption, another

crucial factor in terms of cost. This absence is not only graphical, but also conceptual,

as analyzed and explained in chapters 1 and 3.

In Figure 25, we have the trade-off between power and throughput. The consider-

able increase in power is directly verified when the maximum throughput is desired.

Figure 25: Trade-off between power and throughput (ASIC)

Some circuits have lower power consumption but are limited to a throughput range

from 0.9 to 1.6 Gbps (points 1 to 5). If the focus is on mobile devices, it might be worth

to giving up maximum throughput for a slightly lower throughput, but substantially

reducing power consumption, a factor of crucial importance for this type of device that

usually is battery-powered. Of course, it is possible to see how power responds to the

trade-off between area and throughput, but this is possible here because of the small
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number of performance points. If we have dozens of points, observing the response of

a third metric would become complicated. Additionally, we can analyze the trade-off

between area and power shown in Figure 26.

Figure 26: Trade-off between power and area (ASIC)

More compact versions are observed to have lower power consumption, while

versions with greater area utilization present higher consumption of power, because

power is directly dependent of the number of logic gates in the circuit. Area and power

together form a crucial factor in the financial cost for the design. In ASICs, despite

the low cost of area for high production quantities, the power consumption directly

influences its application, mainly in mobile devices. In addition, the higher the power

consumption, the greater the thermal dissipation, which can result not only in the rapid

depletion of the battery but also in shortening the life of several components if an

efficient cooling system is not present.
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5.1.3 Three-Dimensional Analysis

The performance of a circuit in terms of speed has always been a requirement in

most projects. Nowadays, with the massive use of devices with restrictions of energy

resources and physical size, area and power have also become important factors. From

the two-dimensional analyses it is possible to identify two main difficulties in analyz-

ing the behavior of these metrics together. The first is to observe the response of the

third metric when analyzing the trade-off between the other two. The second is the

difficulty in obtaining balanced performance points. For example, instead of searching

for the maximum optimization of a given metric, it is possible to decrease the per-

formance of this metric to obtain better performances for the others. An analogy can

be made by treating each metric as a currency, which allows exchanging some units

of this currency from one metric to another. To address these difficulties, an analysis

of a three-dimensional trade-off among area, power, and throughput is proposed. To

perform this analysis, two approaches are presented and can be used together.

5.1.3.1 Projections Approach

Figure 27 presents the first approach, which is to treat each two-dimensional graph

as a projection on a three-dimensional graph. As aforementioned, the curves are appro-

ximate and the three-dimensional analysis is as well. However, extending the reasoning

used in the two-dimensional case, one can imagine each curve as a projection of a sur-

face in space on a plane, roughly representing the relationship among area, power, and

throughput. Designing such a surface is not possible in this case, owing to the finite

and small number of available performance points and to the absence of mathematical

models (that are not part of the scope of this work) to represent the relationships among

the metrics. Moreover, even the estimation would be very arbitrary; we therefore chose

only to use the curves as projections.

In this graph, each performance point is numbered and has its counterpart in each
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Figure 27: Projections approach (ASIC)

plan for easy visualization and analysis. Starting from the two-dimensional analyses

carried out previously, one can expand them, but now observing the behavior of the

three metrics together. For example, we can start at point 1 (Figure 28) and if the goal

is to obtain maximum throughput, we can observe by the power x throughput plane

that points 8 and 9 have greater throughput than point 1 and provide close solutions

for both throughput and power, with point 8 having the best throughput performance

(Figure 29). However, by slightly sacrificing the throughput, we can go to point 6 and

observing this point in the plane power x area, there is a considerable reduction in the

area utilization (Figure 30).

It is possible to verify quantatively these variations using the data of Table 5, re-

presenting each point as a triple (Throughput in Gbps, Area in kGE, Power in mW).

Moving from point 1 to point 8:
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Figure 28: Projections approach - Point 1 (ASIC)

Point 1 : (1.559, 14.13, 0.384)⇒ Point 8 : (2.426, 52.82, 2.104)

∆T = 2.426 − 1.559 = 0.867 Gbps [∆T% = 0.867/1.559 = +55.6%]

∆A = 52.82 − 14.13 = 38.69 kGE [∆A% = 38.69/14.13 = +273.8%]

∆P = 2.104 − 0.384 = 1.720 mW [∆P% = 1.720/0.384 = +447.9%]

Thus, to increase the throughput in 1 Gbps, it is possible to calculate the response

in area and power:

1 Gbps→ 44.62 kGE

1 Gbps→ 1.98 mW

We can perform the same calculations when moving from point 1 to point 6:

Point 1 : (1.559, 14.13, 0.384)⇒ Point 6 : (2.296, 35.17, 1.680)

∆T = 2.296 − 1.559 = 0.737 Gbps [∆T% = 0.737/1.559 = +47.3%]
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Figure 29: Projections approach - Point 8 (ASIC)

∆A = 35.17 − 14.13 = 21.04 kGE [∆A% = 21.04/14.13 = +148.9%]

∆P = 1.680 − 0.384 = 1.296 mW [∆P% = 1.296/0.384 = +337.5%]

To increase the throughput in 1 Gbps, the response in area and power is:

1 Gbps→ 28.55 kGE

1 Gbps→ 1.76 mW

These calculations show that in the case of point 8, it was possible to sacrifice

slightly the throughput to reduce significantly area and power when moving to point 6.

On the other hand, if we have power limitation, by looking at the plane power

x area, the points that have areas close to each other keep this proximity in terms of

power. However, by looking at the corresponding points in the area x throughput plane,

we see that point 5, which represents the architecture seq-blamka-serial, has lower

throughput than the others. This makes it evident that the strategy used to reduce power
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Figure 30: Projections approach - Point 6 (ASIC)

actually reduced it, but such a reduction was largely compensated by the decrease in

throughput performance, which may not be an attractive alternative except in very

specific applications where energy is an extremely important factor and speed is not.

We can also obtain a balanced performance point among the three metrics. For

example, points 6 to 9 have higher power consumption as well as area utilization com-

pared to points 1 to 5. Then, it is possible to choose between points 1 and 5 because

they have lower and very similar power consumption, but differ in terms of area and

throughput. It is possible to see in planes power x throughput and power x area that

point 1 has the best throughput for this group of points, and it also has the lowest area

in that group. It is evident from this representation that the conclusions obtained in

the one-dimensional and the two-dimensional analyses can be obtained in this three-

dimensional analysis, and it also facilitates the three-dimensional understanding of the

behavior of these metrics, even if approximate. In addition, it is simpler to find bal-
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anced performance points that do not sacrifice one metric in detriment of others, but

rather adjust these metrics to each other until values are obtained that are not the max-

imum values, but which together provide a balanced performance among the points

available.

Another variation is to change the throughput axis by its inverse. In this way, all

the axes will have the same direction: greater values represent less desirable results

(Figure 31). From that, it is possible to calculate a volume corresponding to each

point and obtain a balanced performance point in a more direct way. Table 6 presents

these volume calculations. It is possible to see that point 1 presents the lowest volume,

corresponding to a better performance involving the three metrics together. In addition,

if maximum throughput is desired, we can choose the point 8. However, the volume

for this point is the highest. Therefore, it is possible to move to point 6, where we have

a slightly decrease in throughput but a considerable decrease in volume, constituting a

more balanced choice. This was the same result previously obtained but now in a more

direct way (Figure 32). The volume establishes a criterion to select optimizations.

Table 6: Volume comparison (ASIC)

Architectures Volume
(kGE*mW/Gbps)

seq-blamka-default 3.476
seq-blamka-dadda 5.567
seq-blamka-csa3 5.844
seq-blamka-reg 7.528

seq-blamka-serial 9.217
comb-blamka-default 25.745
comb-blamka-dadda 51.951
comb-blamka-csa3 45.807
comb-blamka-csa4 45.179
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Figure 31: Projections approach - Inverse of throughput (ASIC)

5.1.3.2 Planes Approach

The second approach for a three-dimensional analysis is shown in Figure 33. In

this graph, performance points are grouped into planes that go through certain values in

one axis and allow us to analyze performance variations as we move from one group to

another. This approach is based on theoretical models presented in (DEMICHELI, 1994).

Using the throughput as a reference, three groups were formed: points with throughput

near 1 Gbps, points with throughput near 1.5 Gbps, and points with throughput near

2.3 Gbps. These groups are approximate and each plane contains performance points

where throughput is around and close to the throughput value through which the plane

passes, but they are not exactly equal to this value. The green and orange planes show

that point 7, although it is in the same plane as points 1 to 4, has a larger area and

power consumption than these other points. From the green plane, one can have a 50%
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Figure 32: Projections approach - Volume (ASIC)

increase in throughput by going to the orange plane. This gain would be compensated

by the increase in area and power of point 7. However, we have points 1 to 4, besides

presenting the same increase in throughput, present performance similar to point 5

in terms of area and power. Point 1 performs better in all metrics for a point in this

plane. From the orange plane, approximately another 50% increase in throughput can

be obtained by going up to the purple plane. This division into planes also makes it

possible to find points with a balanced performance between the metrics. As can be

seen, points 1 to 4 do not have the highest overall values for throughput, but they do

not have the minimum values, either. In addition, they have low power consumption

compared to the values in the plane with the maximum throughput. Finally, they have

low area utilization compared to the point with minimum throughput.

It is possible to verify quantatively these variations using the data of Table 5. The

throughput interval in each plane can be obtained and an average throughput can be



82

Figure 33: Planes approach (ASIC)

calculated:

Green Plane : [0.907]→ T average = 0.907 Gbps

Orange Plane : [1.469, 1.880]→ T average = 1.674 Gbps

Purple Plane : [2.296, 2.426]→ T average = 2.361 Gbps

With the throughput established in some interval, the remaining metrics can be

analyzed. For example, starting with point 1 in the orange plane and going to the

purple plane, it is possible to see that the best alternative is point 6, because on average

it has the same increase in throughput than points 8 and 9 but with the minimum area

and power for the purple plane. Representing each point as (Area in kGE, Power in

mW), it is possible to calculate the response in terms of area and power:
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Orange Plane⇒ Purple Plane : ↑ 50% throughput on average

Point 1 : (14.13, 0.384)⇒ Point 6 : (35.17, 1.680)

∆A = 35.17 − 14.13 = 21.04 kGE [∆A% = 21.04/14.13 = +148.9%]

∆P = 1.680 − 0.384 = 1.296 mW [∆P% = 1.296/0.384 = +337.5%]

5.2 FPGA

All circuits were described using the VHDL language and synthesized for FPGAs

using the Xilinx tools and the board Virtex-UltraScale VCU 108 Evaluation Platform

with a 20nm Virtex UltraSCALE model xcvu095-ffva2104-2-e. The latency is mea-

sured in ns and the throughput in Gbps. The area utilization is measured in CLB

(Configurable Logic Blocks). The power consumption is measured in W. All circuits

have 256 bits of output, and the number of clock cycles required for their execution

is also indicated. For combinational circuits, the number of clock cycles was assumed

to be 1. From these results, it is possible to derive some metrics of efficiency. For

example, the throughput-area ratio, measured in Mbps/CLB, and the energy-per-bit,

measured in mJ/Gb. The circuits were synthesized without using DSPs (Digital Sig-

nal Processor). The complete synthesis results are presented in Table 7. To assist the

analysis, several graphs can be generated from the results. The architecture obtained

for the permutation function of Blake2b will be simply called reference architecture.

The set of results for a given architecture will be called a performance point.
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Table 7: Implementation results (FPGA)

Architectures Area Power # Clock Cycle Time Latency Max. Freq. # Output Throughput Throughput-to-area Energy-per-bit
(CLB) (W) Cycles (ns) (ns) (MHz) bits (Gbps) (Mbps/CLB) (mJ/Gb)

blake2b-ref 109 1.442 6 3.07 18.44 325.31 256 13.880 127.34 103.892
seq-blamka-default 452 1.175 6 9.80 58.78 102.08 256 4.356 9.64 269.773
seq-blamka-dadda 378 1.297 6 6.83 40.97 146.43 256 6.248 16.53 207.591
seq-blamka-csa3 347 1.350 6 6.37 38.23 156.96 256 6.697 19.30 201.582
seq-blamka-reg 432 1.601 10 3.50 34.97 285.96 256 7.321 16.95 218.699

seq-blamka-serial 353 1.130 16 3.58 57.20 279.72 256 4.476 12.68 252.484
comb-blamka-default 1052 1.073 1 49.02 49.02 — 256 5.222 4.96 205.480
comb-blamka-dadda 975 1.128 1 41.54 41.54 — 256 6.163 6.32 183.040
comb-blamka-csa3 1018 1.150 1 39.26 39.26 — 256 6.521 6.41 176.341
comb-blamka-csa4 1007 1.143 1 41.75 41.75 — 256 6.132 6.09 186.398
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5.2.1 One-Dimensional Analysis

To all one-dimensional graphs, the vertical bars from left to right correspond to the

legend from top to down. The first graph in Figure 34 shows the absolute throughput

values of the various architectures for the BlaMka permutation function compared to

the value obtained for the reference architecture.

Figure 34: Throughput comparison (FPGA)

For BlaMka, the architecture seq-blamka-reg has the highest throughput between

the sequential circuitry and the architecture comb-blamka-csa3 between the combina-

tional versions. In general, the seq-blamka-reg showed the highest throughput (7.321

Gbps), 12% higher than the best combinational version (6.521 Gbps). In addition, it

can be noted that combinational and sequential architectures present similar through-

put. The lowest overall performance occurred in the seq-blamka-default sequential

architecture. This circuit is the only sequential circuit that does no use the Dadda

multiplier, and this also indicates that synthesis tools for FPGAs were not capable of

implementing a default multiplier efficiently in terms of speed. It is also possible to

verify that all architectures for BlaMka have lower throughput than the reference ar-

chitecture. Quantitatively, these differences can be visualized in the graph of Figure

35, which indicates the throughput of each proposed architecture as a fraction of the
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throughput of the reference architecture. The architecture with the highest throughput

for BlaMka, seq-blamka-reg, has a throughput of about 53% than that obtained for the

reference architecture. This fact is the first evidence that shows how the inclusion of

multiplication operations affected the performance of the BlaMka algorithm in relation

to this metric.

Figure 35: Throughput ratio comparison (FPGA)

Figures 36 and 37 show the performance in relation to the silicon area and power

consumption, respectively. In terms of area, the combinational architectures, as ex-

pected, presented the highest values. It should also be noted that BlaMka more com-

pact architecture, seq-blamka-csa3, still has an area about three times as great as that of

the reference architecture, which illustrates the minimal increase in area cost caused by

the inclusion of combinational multipliers (for maximizing the throughput). However,

it is not the overall minimum increase in area, because it is possible to use sequential

multipliers, which are very compact in terms of area but need more clock cycles to

execute and consequently reduce the throughput.

In the power graph, we can see the difference between the power consumption of

the sequential and combinational circuits. In spite of the greater number of modules

used in the combinational versions, especially the multipliers, and also the increase
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Figure 36: Area comparison (FPGA)

Figure 37: Power comparison (FPGA)

in the number of necessary wire connections, the power consumption for the com-

binational circuits were smaller if compared to the sequential circuits. This can be

explained highlighting that power was estimated assuming that these circuits are the

critical path of an external system. Thus, the frequency of operation is the inverse

of the combinational circuit latency. These calculated frequencies are smaller than

the frequencies obtained for the sequential circuits. For all circuits, frequency had a

higher influence in power consumption than the increase in number of components and
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wire connections. This can be visualized for all architectures that have smaller power

consumption than that of the reference architecture, except for the seq-blamka-reg.

Finally, two graphs representing efficiency measures are shown in Figures 38 and

39. In terms of throughput-to-area, the architecture seq-blamka-csa3 has the highest

efficiency. However, the reference architecture is much more efficient than all the ar-

chitectures for BlaMka, almost 7 times as high as the best performance achieved. In

terms of energy efficiency, the sequential architectures have a consumption superior

to that of the combinational architectures, when performing the same amount of pro-

cessing. It is worth noting that, despite the proximity in power consumption between

the BlaMka architectures and the reference architecture, the latter is about twice as

efficient. These efficiency measures again evidence the impact caused by the inclusion

of multiplications, mainly in the financial cost for manufacturing and operating the

circuits, represented by the area utilization and the power consumption.

Figure 38: Throughput-to-area comparison (FPGA)

5.2.2 Two-Dimensional Analysis

After the first analysis, observing each metric of interest, a two-dimensional ana-

lysis for the trade-offs present in the implementations can be performed. In this work,
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Figure 39: Energy-per-bit comparison (FPGA)

three trade-offs of this type will be analyzed. The first one, between area and through-

put, is shown in Figure 40. The trend line presented for this graph as the ones for the

other two-dimensional graphs are only approximate and they agree with the number

of performance points available. The more points we have, the more accurate that

curve will be. However, even roughly, it can help us to understand the behavior of the

analyzed trade-off.

This graph shows that to increase the throughput of the system, it is not necessary

to increase the area utilization. Sequential circuits can be observed to have similar

area utilization, the same applying to the combinational circuits, which allows directly

selecting the sequential circuit with the greatest throughput. In addition, we have per-

formance points with similar throughput, but with a significant increase in area; if only

this trade-off is observed, it could be concluded these are not relevant options. It can

also be observed that if the objective is to obtain the highest possible throughput, the

best options are between the sequential versions. Finally, regardless of the approach,

the choice within this trade-off can be misleading, because when judging each perfor-

mance point, we lack the information on the power consumption, another crucial factor

in terms of cost. This absence is not only graphical, but also conceptual, as analyzed
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Figure 40: Trade-off between area and throughput (FPGA)

and explained in chapters 1 and 3.

In Figure 41, we have the trade-off between power and throughput. The consid-

erable increase in power is directly verified when the maximum throughput is desired.

Some circuits have a lower power consumption but are limited to a throughput range

from 4.3 to 6.5 Gbps (point 1 and 5 to 9). If the focus is on mobile devices, it might

be worth giving up maximum throughput for a slightly lower throughput, but sub-

stantially reducing power consumption, a factor of crucial importance for this type of

device, which is usually battery-powered. Of course, it is possible to see how power

responds to the trade-off between area and throughput, but this is possible here be-

cause of the small number of performance points. If we have dozens of points, this

two-dimensional analysis, also observing the response of a third metric, would be-

come complicated. Additionally, we can analyze the trade-off between area and power

shown in Figure 42.

More compact versions can be observed to have higher power consumption, while
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Figure 41: Trade-off between power and throughput (FPGA)

Figure 42: Trade-off between power and area (FPGA)

versions with greater area utilization present lower consumption of power. The rea-

son for this behavior is that combinational circuits, despite having a larger number of
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wire connections and functional modules, operate in a smaller frequency. Area and

power together form a crucial factor in the financial cost for the design. In addition,

the greater the power consumption, the greater the thermal dissipation, which can re-

sult in shortening the life of several components if an efficient cooling system is not

employed.

5.2.3 Three-Dimensional Analysis

The performance of a circuit in terms of speed has always been a requirement in

most projects. Nowadays, with the massive use of devices with restrictions of energy

resources and physical size, area and power have also become important factors. From

the two-dimensional analyses, two main difficulties in analyzing the behavior of these

metrics together can be identified. The first is to observe the response of the third

metric when analyzing the trade-off between the other two metrics. The second is the

difficulty in obtaining balanced performance points. For example, instead of searching

for the maximum optimization of a given metric, it is possible to decrease the perfor-

mance of this metric in order to obtain better performances for the others. An analogy

can be made by treating each metric as a currency, which allows exchanging some

coins from one metric to another. To address these difficulties, an analysis of a three-

dimensional trade-off among area, power, and throughput is proposed. To perform this

analysis, two approaches are presented and can be used together.

5.2.3.1 Projections Approach

Figure 43 presents the first approach, which is to treat each two-dimensional graph

as a projection on a three-dimensional graph. As aforementioned, the curves are appro-

ximate and the three-dimensional analysis is as well. However, extending the reasoning

used in the two-dimensional case, one can imagine each curve as a projection of a sur-

face in space on a plane, roughly representing the relationship among area, power, and
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throughput. Designing such a surface is not possible in this case, owing to the finite

and small number of available performance points and to the absence of mathematical

models (that are not part of the scope of this work) to represent the relationships among

the metrics. Moreover, even the estimation would be very arbitrary; we therefore chose

only to use the curves as projections.

Figure 43: Projections approach (FPGA)

In this graph, each performance point is numbered and has its counterpart in each

plan for easy visualization and analysis. Starting from the two-dimensional analyses

carried out previously, one can expand them, but now observing the behavior of the

three metrics together. For example, we can start at point 1 (Figure 44) and if the goal is

to obtain maximum throughput with low power consumption, the power x throughput

plane shows that point 4 has the best throughput performance (Figure 45). However,

by slightly sacrificing the throughput, we can go to point 3 and observing this point

in the planes power x throughput and area x throughput, there is a reduction in power
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consumption and area utilization (Figure 46).

Figure 44: Projections approach - Point 1 (FPGA)

It is possible to verify quantatively these variations using the data of Table 7, re-

presenting each point as a triple (Throughput in Gbps, Area in CLB, Power in W).

Moving from point 1 to point 4:

Point 1 : (4.356, 452, 1.175)⇒ Point 4 : (7.321, 432, 1.601)

∆T = 7.321 − 4.356 = 2.965 Gbps [∆T% = 2.965/4.356 = +68.1%]

∆A = 432 − 452 = −20 CLB [∆A% = −20/452 = −4.4%]

∆P = 1.601 − 1.175 = 0.426 W [∆P% = 0.426/1.175 = +36.3%]

Thus, to increase the throughput in 1 Gbps, it is possible to calculate the response

in area and power:

1 Gbps→ −6.7 CLB
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Figure 45: Projections approach - Point 4 (FPGA)

1 Gbps→ 0.144 W

We can perform the same calculations when moving from point 1 to point 3:

Point 1 : (4.356, 452, 1.175)⇒ Point 3 : (6.697, 347, 1.350)

∆T = 6.697 − 4.356 = 2.341 Gbps [∆T% = 2.341/4.356 = +53.7%]

∆A = 347 − 452 = −105 CLB [∆A% = −105/452 = −23.2%]

∆P = 1.350 − 1.175 = 0.175 W [∆P% = 0.175/1.175 = +14.9%]

To increase the throughput in 1 Gbps, the response in area and power is:

1 Gbps→ −44.8 CLB

1 Gbps→ 0.075 W

These calculations show that in the case of point 4, it was possible to sacrifice

slightly the throughput to reduce significantly the power and the area when moving to
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Figure 46: Projections approach - Point 3 (FPGA)

point 3.

On the other hand, if we have power limitation, by looking at the plane power

x area, the points that have areas close to each other keep this proximity in terms

of power. However, by looking at the corresponding points in the area x throughput

plane, we see that point 5, which represents the architecture seq-blamka-serial, has

the second lowest throughput. This makes it evident that the strategy used to reduce

power actually reduced it in comparison to the other sequential circuits, but such a

reduction was largely compensated by the decrease in throughput performance, which

may not be an attractive alternative except in very specific applications where energy

is an extremely important factor and speed is not.

We can also obtain a balanced performance point among the three metrics. For

example, points 1 to 5 have higher power consumption but lower area utilization, and
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points 6 to 9 have higher area utilization but lower power consumption. It is possible to

see in planes power x throughput and area x throughput that point 4 has the best overall

throughput, but it also has the highest power consumption. By slightly balancing the

choice, we can have a small decrease in throughput in exchange for moving to point

3, which has a small area and a considerable reduction in power consumption. It is

evident from this representation that the conclusions obtained in the one-dimensional

and two-dimensional analyses can be obtained in this three-dimensional analysis, and

it also facilitates the three-dimensional understanding of the behavior of these metrics,

even if approximate. In addition, it is simpler to find balanced performance points

that do not sacrifice one metric in detriment of others, but rather adjust these metrics

to each other until values are obtained that are not the maximum values, but which

together provide a balanced performance among the points available.

Another variation is to change the throughput axis by its inverse. In this way, all

the axes will have the same direction: greater values represent less desirable results

(Figure 47). From that, it is possible to calculate a volume corresponding to each

point and obtain a balanced performance point in a more direct way. Table 8 presents

these volume calculations. It is possible to see that point 3 presents the lowest volume,

corresponding to a better performance involving the three metrics together. In addition,

if maximum throughput is desired, we can choose the point 4. However, the volume

for this point is about 35% higher. Therefore, it is possible to stay in point 3, where

we have a slightly decrease in throughput but the lowest volume, constituting a more

balanced choice. This was the same result previously obtained but now in a more direct

way (Figure 48). The volume establishes a criterion to select optimizations.

5.2.3.2 Planes Approach

The second approach for a three-dimensional analysis is shown in Figure 49. In

this graph, performance points are grouped into planes that go through certain values in
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Table 8: Volume comparison (FPGA)

Architectures Volume
(CLB*W/Gbps)

seq-blamka-default 121.9
seq-blamka-dadda 78.5
seq-blamka-csa3 69.9
seq-blamka-reg 94.5

seq-blamka-serial 89.1
comb-blamka-default 216.2
comb-blamka-dadda 178.5
comb-blamka-csa3 179.6
comb-blamka-csa4 187.7

Figure 47: Projections approach - Inverse of throughput (FPGA)

one axis and allow us to analyze performance variations as we move from one group to

another. This approach is based on theoretical models presented in (DEMICHELI, 1994).

Using the throughput as a reference, four groups were formed: points with throughput

near 4.3 Gbps, points with throughput near 5.3 Gbps, points with throughput near 6.3
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Figure 48: Projections approach - Volume (FPGA)

Gbps, and points with throughput near 7.3 Gbps. These groups are approximate and

each plane contains performance points where throughput is around and close to the

throughput value through which the plane passes, but are not exactly equal to this

value. From the purple plane, one can have a 23% increase in throughput by going

to the orange plane. This gain would be compensated by an increase in area and a

decrease in power, represented by point 6. However, we have points 2, 3, and 7 to 9 in

the green plane that have similar power consumption, but some of them even present

a decrease in area, although all these points have a 19% increase in throughput. From

the green plane, approximately another 16% increase in throughput can be obtained by

going to the yellow plane. This division into planes also allows finding points with a

balanced performance between the metrics. As can be seen, points 2 and 3 do not have

the highest overall values for throughput, but they do not have the minimum values,

either. In addition, they have lower power consumption compared to the point in the
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plane with the maximum throughput.

Figure 49: Planes approach (FPGA)

It is possible to verify quantatively these variations using the data of Table 7. The

throughput interval in each plane can be obtained and an average throughput can be

calculated:

Purple Plane : [4.356, 4.476]→ T average = 4.416 Gbps

Orange Plane : [5.222]→ T average = 5.222 Gbps

Green Plane : [6.132, 6.697]→ T average = 6.415 Gbps

Yellow Plane : [7.321]→ T average = 7.321 Gbps

With the throughput established in some interval, the remaining metrics can be

analyzed. For example, starting with point 3 in the green plane and going to the yellow

plane, we obtain the point 4 that presents the highest throughput. From the previous
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analyses it was concluded that point 3 presents the most balanced performance, but it is

possible to have an increase of about 16% if we move to the yellow plane. Representing

each point as (Area in CLB, Power in W), it is possible to calculate the response in

terms of area and power:

Green Plane⇒ Yellow Plane : ↑ 16% throughput on average

Point 3 : (347, 1.350)⇒ Point 4 : (432, 1.601)

∆A = 432 − 347 = 85 CLB [∆A% = 85/347 = +24.5%]

∆P = 1.601 − 1.350 = 0.251 W [∆P% = 0.251/1.350 = +18.6%]
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6 CONCLUSIONS

We presented hardware implementations for the permutation function of the

BlaMka algorithm. Combinational and sequential circuits were synthesized cover-

ing a range of possible choices taking into account throughput, area, and power. All

circuits were synthesized for ASICs, with results for throughput ranging from 0.907

Gbps to 2.426 Gbps, area utilization ranging from 14.13 kGE to 52.82 kGE, and power

consumption ranging from 0.384 mW to 2.104 mW. All circuits were also synthe-

sized for FPGAs, with results for throughput ranging from 4.356 Gbps to 7.321 Gbps,

area utilization ranging from 347 CLB to 1052 CLB, and power consumption rang-

ing from 1.073 W to 1.601 W. The results were compared to an implementation of

the permutation function of Blake2b, showing that the performance decrease is quite

marked when multiplications are included. Furthermore, it was verified the difficulty

in using parallelism at the algorithm level, confirming the strictly sequential nature of

the algorithm. It was also verified that, in fact, the inclusion of multiplications signif-

icantly reduces the performance of the permutation function, as theoretically stated in

(SIMPLICIO et al., 2015). This was the desired result, since for Lyra2 password hash-

ing scheme it is interesting to have a cryptographic sponge that is slower in order to

difficult brute-force attacks. With the synthesis results, a detailed performance analy-

sis was performed for each platform, starting from a one-dimensional analysis, going

through a two-dimensional analysis, and culminating in a three-dimensional analysis.

Two techniques were presented for such analysis, namely projections approach and

planes approach. Although there is room for improvement, the proposed method is a



103

initial step showing that, in fact, a trade-off between three metrics can be analyzed, and

that it is also possible to find balanced performance points. From the two approaches

presented, it was possible to derive a criterion to select optimizations when we have

restrictions, such as a desired throughput range or a maximum physical size, and when

we do not have restrictions, in which case we can choose the optimization with the

most balanced performance.

Figure 50 shows a comparison with the most relevant works analyzed in Chapter

3. The comparison involves the presence of results for three different metrics that

cannot be derived from each other, implementation results for FPGA and ASIC, the

three types of analyses done in this work, and the criterion to select optimizations.

Figure 50: Literature comparison

6.1 Research Contributions and Publications

The contributions can be divided into two groups:
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(I) the hardware implementation for the permutation function of BlaMka crypto-

graphic sponge, synthesized for both ASIC and FPGA. Based on the literature review,

this is the first implementation of this algorithm in this platform. In addition, the ana-

lysis of the performance of this implementation compared to the implementation of

Blake2b permutation function, from which the BlaMka algorithm was designed, as

well as the experimental verification of some of its theoretical properties (parallelism

difficulty at algorithm-level, performance reduction due to the inclusion of multiplica-

tions) were performed.

(II) the performance analysis of a hardware implementation by jointly analyz-

ing the trade-offs associated with three different metrics, which was named a three-

dimensional analysis, was performed. Two techniques were presented for such analy-

sis, namely projections approach and planes approach. It was also presented a criterion

to select optimizations when we have restrictions in some metrics and when we do not

have restrictions.

As a partial result of all the work, a paper was developed and published in LAS-

CAS 2017 (8th IEEE Latin American Symposium on Circuits and Systems) confer-

ence entitled "Hardware Implementation for Permutation Function of Multiplication-

Hardened Sponge BlaMka", where the hardware design and implementation for the

BlaMka permutation function was presented, with several architectures proposed and

analyzed, as well as the comparison of its performance with the algorithm from which

it originated. In addition, the experimental verifications of the theoretical statements

as mentioned in the group of contributions (I) were carried out. A second paper will be

developed furthering the analysis of performance to contemplate what was discussed

in the group of contributions (II), aiming a publication at an international journal.
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6.2 Future Work

As future work, we intend to design and to implement the complete BlaMka algo-

rithm, as well as to analyze its performance when used in password hashing schemes,

applying the three-dimensional analysis to these schemes. We also intend to expand

the three-dimensional analysis to other types of algorithms, for example algorithms

that allow parallelism. Finally, we intend to keep improving the ideas behind the three-

dimensional analysis in order to obtain more accurate results, and perhaps more formal

relations among the metrics involved.
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