• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
Documento
Autor
Nome completo
Alexandre dos Santos Mignon
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2017
Orientador
Banca examinadora
Rocha, Ricardo Luis de Azevedo da (Presidente)
Amaral, Jose Nelson
Gomi, Edson Satoshi
José Neto, João
Silva, Flavio Soares Correa da
Título em português
ML4JIT- um arcabouço para pesquisa com aprendizado de máquina em compiladores JIT.
Palavras-chave em português
Aprendizado computacional
Montadores e compiladores
Resumo em português
Determinar o melhor conjunto de otimizações para serem aplicadas a um programa tem sido o foco de pesquisas em otimização de compilação por décadas. Em geral, o conjunto de otimizações é definido manualmente pelos desenvolvedores do compilador e aplicado a todos os programas. Técnicas de aprendizado de máquina supervisionado têm sido usadas para o desenvolvimento de heurísticas de otimização de código. Elas pretendem determinar o melhor conjunto de otimizações com o mínimo de interferência humana. Este trabalho apresenta o ML4JIT, um arcabouço para pesquisa com aprendizado de máquina em compiladores JIT para a linguagem Java. O arcabouço permite que sejam realizadas pesquisas para encontrar uma melhor sintonia das otimizações específica para cada método de um programa. Experimentos foram realizados para a validação do arcabouço com o objetivo de verificar se com seu uso houve uma redução no tempo de compilação dos métodos e também no tempo de execução do programa.
Título em inglês
ML4JIT - a framework for research on machine learning in JIT compilers.
Palavras-chave em inglês
Code optimization
JIT compilers
Machine learning
Resumo em inglês
Determining the best set of optimizations to be applied in a program has been the focus of research on compile optimization for decades. In general, the set of optimization is manually defined by compiler developers and apply to all programs. Supervised machine learning techniques have been used for the development of code optimization heuristics. They intend to determine the best set of optimization with minimal human intervention. This work presents the ML4JIT, a framework for research with machine learning in JIT compilers for Java language. The framework allows research to be performed to better tune the optimizations specific to each method of a program. Experiments were performed for the validation of the framework with the objective of verifying if its use had a reduction in the compilation time of the methods and also in the execution time of the program.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2017-09-05
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2014. Todos os direitos reservados.