

Figura 4.8 - Fluxograma para produção das cavidades seladas e respectivos testes; A = HMDS ou HFE; Int. = *intermixing*, HMDS/HFE

Foi definido um grupo de 50 condições distintas para serem testadas. Estas condições compreendiam não só a deposição e caracterização de filmes a base de HMDS, HFE® e *intermixing* como também o uso de TEOS (tetraetilortossilicato) em lugar de HFE®, para permitir comparação com o trabalho de Hernandez (2012) e a verificação da possibilidade de melhora na proteção, quando em exposição a ácidos ou bases, de filmes obtidos com HMDS. Como filmes a base de TEOS formam a estrutura Si-O-Si e, por exposição à ultravioleta, produzem SiOH além de sofrerem *cross link*, há boa probabilidade de que superfície torne-se menos sensível a variações de pH.

Para estas condições os testes de caracterização compreenderam:

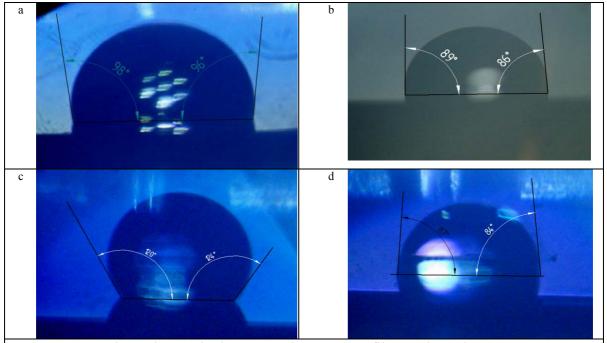
- Perfilometria para determinação de taxa de deposição.
- Elipsometria para determinação de índice de refração e espessura (este último parâmetro, para permitir comparação com as medidas obtidas por perfilometria).

- Ângulo de contato com água, compostos orgânicos e soluções aquosas destes. Além de, eventualmente, testes com ácidos ou bases. Se necessário filmagem da interação da amostra com os líquidos, para compreender melhor as características de adsorção.
- Microscopia óptica e eletrônica de varredura, para determinar a formação de cluster na amostra. Quando os clusters apresentam (de acordo com avaliação por espectroscopia de infravermelho) alguma característica importante, sua densidade e tamanho médio são igualmente determinados.
- Espectroscopia de infravermelho e, dependendo dos resultados, também Raman.
- Os testes determinam o subconjunto que será exposto à radiação e novamente caracterizado. Esse novo subgrupo determina as amostras que poderão sofrer análise por espectroscopia de fotoelétrons por raio X.
- Após todos esses procedimentos, as estruturas e o QCM são construídos e testados.

Foram usadas as recomendações de procedimentos para minimização de erros de medida propostas por outros autores (LIMA, 2009) (HERNANDEZ, 2012) que depositaram filmes idênticos, ou semelhantes, utilizando o mesmo equipamento. Assim, amostras grandes foram produzidas para permitir medida de ângulo de contato com vários reagentes e cada medida de ângulo de contato foi processada no mínimo 5 vezes, para definir-se um valor médio, etc.

Devido ao grande número de parâmetros envolvidos na caracterização desses grupos de amostras, a maioria da informação relevante obtida encontra-se no ANEXO 2. Neste item são apresentados os parâmetros - e respectivos valores obtidos – necessários para compreender as tendências, ou seja, a escolha das condições mais adequadas para testes em estruturas ou em QCM.

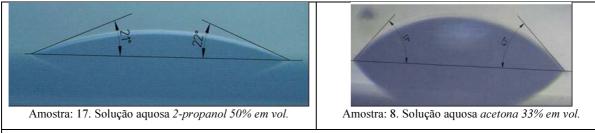
A **Tabela 4.1** apresenta as principais condições de deposição, além de índice de refração e taxa de deposição, do subconjunto que apresentou as melhores propriedades (de acordo com o exposto acima). Nessas amostras, o tempo de deposição foi mantido em 15 minutos e a distância entre os eletrodos também foi mantida fixa em 15 cm (exceção apenas à amostra 27, com 20 cm).

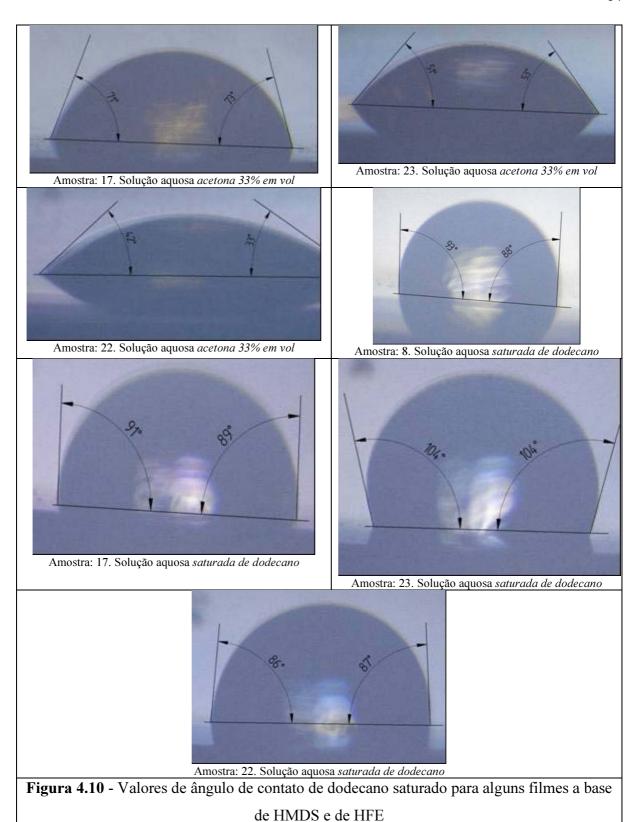

Tabela 4.1 - Condições de deposição e principais propriedades dos filmes produzidos

Tipo de amostra	Reagente eletrodo principal	Reagente eletrodo auxiliar	Tensão de plasma (v)	Pressão de processo (mtorr)	Parcela Admissão central	Condição elétrica catodo-anel	Índice de Refração	Taxa de Deposição (Å/min)				
FILMES de HMDS												
8	HMDS	0	470	100	100%	Ater/Flut.	1, 622	254,3				
20	HMDS	0	560	80	100%	Ater/Flut.	2, 055	183,0				
23	HMDS	0	490	100	100%	Ater/Flut.	1, 312	120,0				
FILMES de HFE												
1	HFE	0	505	100	100%	Ater/Flut.	1, 505	58,0				
17	0	HFE	640	80	0%	Flut/Flut.	1, 899	155,0				
21	0	HFE	540	80	0%	Ater/Flut.	1, 310	38,5				
26	HFE	HFE	470	85	50%	Ater/Flut.	1, 572	100,0				
27	HFE	HFE	530	85	50%	Ater/Ater.	1, 580	260,0				
FILMES de INTERMIXING												
19	HMDS	HFE	530	100	50%	Ater/Flut.	2, 622	163,0				
22	HMDS	HFE	510	100	75%	Ater/Flut.	1, 311	220,0				

Taxas de deposição acima de 10 nm/min são bastante adequadas já que tempos curtos de deposição diminuem o bombardeamento dos filmes. Esse bombardeamento pode ser útil para a produção de partículas de carbono (como comentado posteriormente), o que pode favorecer a adsorção, porém, tem a desvantagem de diminuir a presença de espécies fluoradas (a partir de HFE) na superfície do filme (LIMA, 2009), ou seja, diminui a proteção da superfície. As maiores espessuras (~100 nm) são também úteis para produção de pré-concentradores, usando *intermixing*, já que o filme a base de HFE permite a permeação de compostos orgânicos, ou seja, é possível aprisionar o analito em uma região maior, o que aumenta a quantidade de amostra que pode ser processada ou a eficiência do pré-concentrador. Para análise por QCM, como a medida baseia-se em adsorção e é bastante sensível, portanto, filmes de pequena espessura (~10 nm) já são adequados. Para a produção de produção de estruturas, filmes finos são suficientes uma vez que apenas a propriedade de superfície é relevante para determinar o comportamento esperado.

Os valores obtidos para taxa de deposição e índice de refração são consistentes com os obtidos por Lima (2009), e indicam uma boa reprodutibilidade do equipamento PECVD. A grande variabilidade nos índices de refração obtidos (de 1,3 a 2,0) é decorrente principalmente da existência, ou não, de *clusters* nos filmes formados. Para os *intermixing*, a taxa de deposição é ligeiramente menor que para os filmes a base de HMDS ou HFE devido à diferença nos mecanismos de deposição. Assim, para HFE, há dificuldade do reagente depositar em condições de alto bombardeamento, o que é exigido para deposição de HMDS; portanto, faz-se necessário um compromisso para obter a formação do compósito. Contudo, apesar da existência dos *clusters*, de modo geral, os filmes têm índice de refração próximo aos valores obtidos para compostos orgânicos ou organo-silano (entre 1,4 e 1,6), com exceção do *intermixing*, cuja medida, provavelmente é dificultada pela inexistência de uma camada entre os filmes. De fato, Hernandez (2012) atribuiu à existência de vários núcleos dos dois filmes a impossibilidade de guiar o laser, para construção de sensores ópticos.

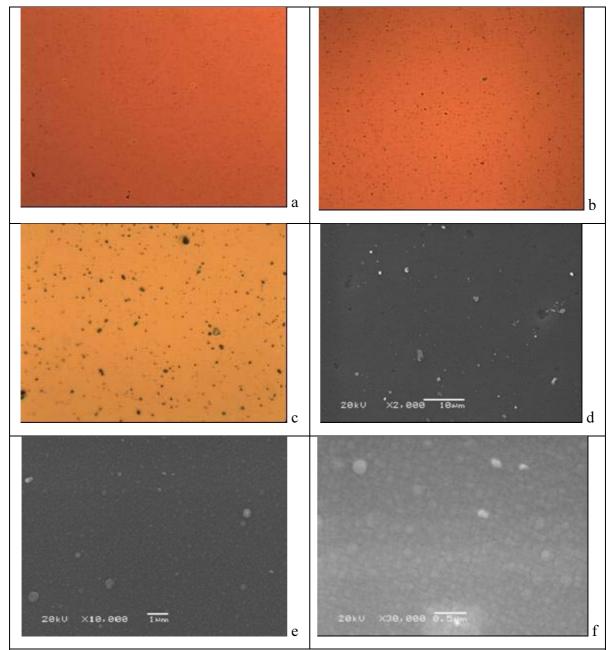

A **Figura 4.9** apresenta algumas imagens (ampliadas em 500 vezes) que mostram o perfil e valor do ângulo de contato de com água para várias amostras produzidas de acordo com as condições descritas na **Tabela 4.1**. Para todas as amostras dessa tabela, os valores de ângulo de contato com água são, aproximadamente, 90° ou maior, ou seja, as amostras são todas hidrofóbicas, como esperado para filmes a base de HMDS, HFE e/ou que os contenham.


Figura 4.9 - Valores de ângulo de contato de água para filmes a base de HMDS (amostra 1 e 23), HFE(amostra 17) ou intermixing (amostra 22). Amostra: (a) 1; (b) 17; (c) 23; (d) 22

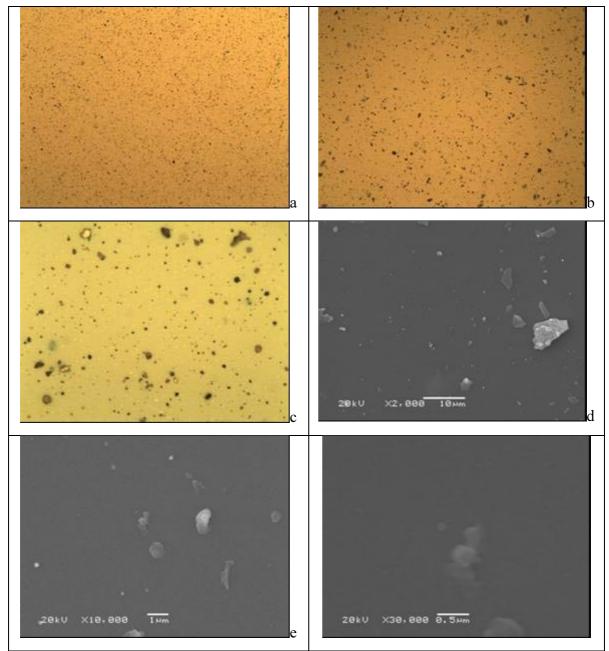
A afinidade por soluções de compostos orgânicos foi testada utilizando-se dodecano, n-hexano, acetona e 2-propanol, além de solução aquosa desses reagentes. Todos os reagentes molham os filmes, ou seja, são filmes hidrofóbicos e organofilicos. Como as medidas utilizaram o equipamento desenvolvido por Hernandez (2012), é possível a filmagem da gota sobre a superfície do líquido; assim, muito embora o ângulo zero (espalhamento) ocorra na maioria das vezes para o reagente puro, é possível notar variações de comportamento, com o ângulo sendo muito baixo no início e tornando-se zero a seguir (menos de 0,1 s de medida).

Na Figura 4.10 são apresentadas imagens com ampliação de 500 vezes, que expõem o perfil e valor do ângulo de contato de apenas algumas amostras para soluções aquosas de 2propanol 50% vol., acetona 33% vol. e saturada por dodecano. Com altos volumes de acetona ou 2-propanol, observa-se baixo ângulo, novamente indicativo de afinidade por estes compostos. Aparentemente, a maior afinidade ocorre para 2-propanol; de fato, não foi possível obter imagens fotográficas de ângulo de contato com esse reagente devido à grande rapidez com que molham completamente os filmes (ângulo zero). Dodecano é usado como referência em medidas cromatográficas por ser considerado insolúvel em água; assim, a variação pequena no ângulo em relação à água é esperada; especialmente para a amostra 23 (filme a base de HMDS), a variação atinge 20°, o que é bastante significativo. O ângulo de contato reflete as interações com a superfície; estas interações podem ser essencialmente químicas – adsorção, etc., ou físicas – efeitos secundários devido à rugosidade, etc.; como os filmes foram depositados sobre silício para essas medidas, a rugosidade da superfície, quando ocorre, é devido à formação de cluster, mas, como determinado por perfilometria e também abordado posteriormente, esta é pequena. Portanto, a maior influência no ângulo é química e indica grande afinidade do reagente com a superfície.

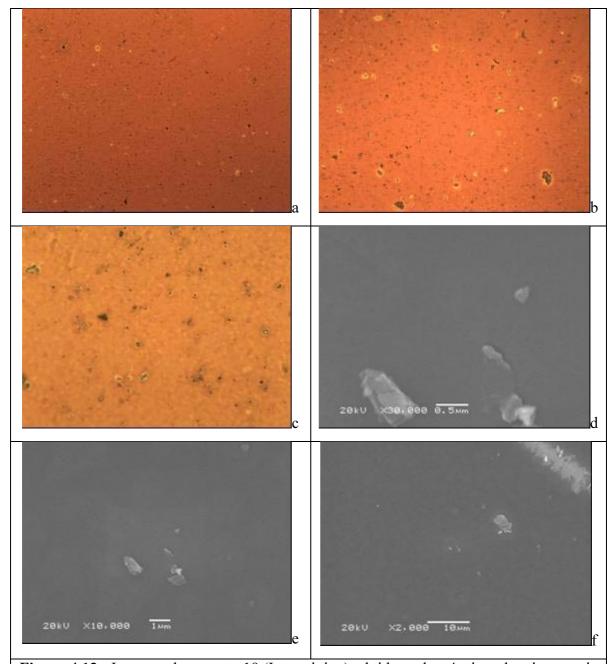
Figura 4.10 - Valores de ângulo de contato de dodecano saturado para alguns filmes a base de HMDS e de HFE



Análises por microscopia óptica e eletrônica de varredura (MEV) apresentaram filmes com *clusters* de diversos tamanhos. Para poder correlacionar o surgimento de *clusters* com o


comportamento de outras propriedades da amostra, foram calculados o tamanho e a densidade dos *clusters* formados (ver ANEXO 2). As **figuras 4.11, 4.12, 4.13** e **4.14** apresentam os resultados típicos para as duas técnicas de microscopia em imagens com ampliação de 50x, 200x e 1000x para microscopia óptica e 2000x (10 µm), 10000x (1 µm) e 30000x (0,5 µm) para microscopia Eletrônica de Varredura. Nessas figuras apresenta-se tanto filmes com alta como com baixa concentração de *clusters*. Nas fotos por microscopia óptica os *clusters* com aparência de pontos claros correspondem a silicone – compostos de silício com radicais carbônicos, e os pontos escuros a nódulos de carbono, em geral, amorfo.

É possível observar por MEV que a superfície apresenta-se plana, o que sugere que os clusters encontram-se "imersos" no filme. As partículas grandes (maiores que 10 μm), vistas principalmente por microscopia óptica (aparentemente presentes pouco acima e internamente ao filme), podem ter sido criadas mediante a formação de particulados durante a deposição (deposição em fase gasosa), mas é menos provável, por que estão bem disseminadas pelas amostras e têm baixa distribuição de tamanho médio. Além disso, nesse equipamento e em deposição sobre metal, Lima (2009) observou a formação de heterogeneidades nas dimensões macro, meso e micro nos filmes finos poliméricos depositados por polimerização via plasma.


A análise do tamanho e densidade dos *clusters* indica comportamento similar ao detectado por Hernandez (2012) para a deposição por TEOS de filmes finos nesse equipamento. Assim, amostras a base de HMDS em geral apresentam maior número de pontos escuros (carbono) se comparados com filmes a base de HFE ou a *intermixing*. São exemplos desse comportamento as amostras 8 (HMDS/ 38258 pontos/mm²), 21 (HFE/ 9924 pontos/mm²) e 22 (HMDS/HFE com 4394 pontos/mm²). Além disso, esses resultados, se comparados com filmes produzidos a base de HMDS/TEOS, apresentam uma diferença importante, pois as amostras a base de HMDS ou de HFE tem pouca probabilidade de apresentar pontos claros (silicone) e a tendência é por menor densidade de pontos escuros. São exemplos a amostra 11 e 12 (HMDS/TEOS) com 22803 pontos escuros/mm² e 29318 pontos escuros/mm², respectivamente, além de 6061 pontos claros/mm² na amostra 11 enquanto nas amostras 3, 4, 5, 6 (HFE) e 28 (HMDS) não se observa presença de pontos. Esse resultado é consistente com o mecanismo de deposição para TEOS, que é baseado em reações íon/molécula e a remoção dos radicais carbônicos é difícil, o que favorece a presença desses nódulos.

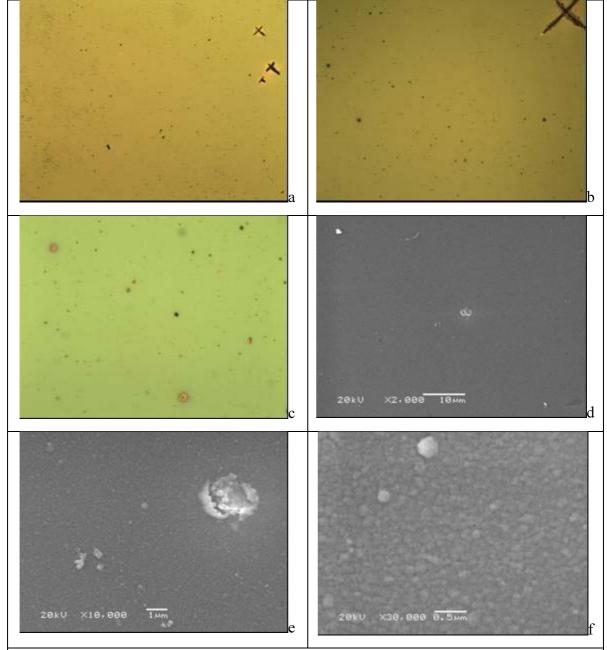

Figura 4.11 - Imagens da amostra 8 (HMDS), obtidas pelas técnicas de microscopia óptica: (a) 50x; (b) 200x; (c)1000x., e eletrônica de varredura: (d) 2000x; (e)10000x; (f)30000x

Figura 4.12 - Imagens da amostra 17 (HFE) obtidas pelas técnicas de microscopia óptica: (a) 50x; (b) 200x; (c)1000x., e eletrônica de varredura: (d) 2000x; (e)10000x; (f)30000x

Figura 4.13 - Imagens da amostra 19 (Intermixing), obtidas pelas técnicas de microscopia óptica: (a) 50x; (b) 200x; (c)1000x., e eletrônica de varredura: (d) 2000x; (e)10000x; (f)30000x

Figura 4.14 - Imagens da amostra 22 (Intermixing), obtidas pelas técnicas de microscopia óptica: (a) 50x; (b) 200x; (c)1000x., e eletrônica de varredura: (d) 2000x; (e)10000x; (f)30000x

Em resumo, as quantidades por tipo, tamanho médio e densidade das partículas presentes nas superfícies das amostras descritas na **Tabela 4.1** são apresentadas na **Tabela 4.2**. As imagens (fotografias) de microscopia óptica usadas nessa determinação têm ampliação de 1000 vezes. Nesta tabela, a denominação ponto preto ou ponto branco é utilizada para facilitar a comparação com os resultados obtidos por microscopia óptica. No presente caso, os

pontos pretos correspondem a carbono amorfo, determinado por microscopia Raman, e os pontos brancos por compostos orgânicos, determinados por espectroscopia de infravermelho.

Tabela 4.2 - Resultados típicos de análises por microscopia óptica para filmes a base de HMDS/HFE

Tipo da amos tra	Tensão de plasma (V)	Pressão de processo (mtorr)	Índice de Refra- ção	Taxa de Depos. (Å/ min)	Número de Pontos Pretos	Densida- de, de Pontos Pretos / mm²	Tama- nho Médio Pretos (µm²)	Número de pontos Brancos	Densida- de de pontos Brancos/ mm²	Tama- nho Médio Branc os (μm²)		
FILMES de HMDS												
8	470	100	1, 622	254,3	505	38258	0, 648	0	0	0		
20	560	80	2, 055	183,0	187	14167	1, 361	0	0	0		
23	490	100	1, 312	120,0	68	5152	0, 605	600	45455	0,055		
FILMES de HFE												
1	505	100	1, 505	58,0	51	3864	0, 187	89	6742	0,243		
17	640	80	1, 899	155,0	316	23939	1, 025	341	25833	0,		
										134		
21	540	80	1, 310	38,5	131	9924	0, 344	0	0	0		
26	470	85	1, 572	100,0	Não	5152	0, 57	Não	97955	0,		
					Obtido			Obtido		425		
27	530	85	1, 580	260,0	Não	57955	0, 91	Não	0	0		
					Obtido			Obtido				
	FILMES de INTERMIXING											
19	530	100	2, 622	163,0	142	10758	0, 475	0	0	0		
22	510	100	1, 311	220,0	58	4394	0, 378	0	0	0		

Para a análise por espectroscopia de infravermelho, as principais bandas do espectro e sua intensidade relativa (normalizada) encontram-se listadas no ANEXO 2. De modo geral, filmes a base de HMDS apresentam CH (*stretching*, 2950 cm⁻¹), Si(CH₃)₃ (*rocking*, 1260 cm⁻¹, normalmente a banda mais fina e isolada no espectro, o que a torna bem característica), Si–N (*bending*, 1180 cm⁻¹) e Si–O (1070 cm⁻¹). Não há grande variação nas bandas, e sim na intensidade relativa, o que é consistente com a maior oxidação ou não da molécula durante a