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RESUMO

Esta monografia aborda problemas de controle e filtragem em sistemas com saltos espont-

âneos que alteram seu comportamento e cujas mudanças são detectadas e estimadas por um

detector imperfeito. Mais precisamente, consideramos sistemas lineares cujos saltos podem ser

modelados usando um processo markoviano (Markov Jump Linear Systems) e cujo modo de

operação corrente é estimado por um detector. O detector é considerado imperfeito tendo em

vista a possibilidade de divergência entre o modo real de operação e o modo de operação de-

tectado. Ademais, as probabilidades das detecções são consideradas conhecidas. Assumimos

que o detector possui uma dinâmica própria, o que significa que o modo de operação detectado

pode mudar independentemente do modo real de operação. A novidade dessa abordagem está

na modelagem das incertezas. Um processo oculto de Markov (HMM) é usado para modelar

as incertezas introduzidas pelo detector. Para esses sistemas, os seguintes problemas são abor-

dados: i) estabilidade quadrática ii) controle H2, iii) controle H∞ e iv) o problema da filtragem

H∞. Soluções baseadas em Desigualdades de Matriciais Lineares (LMI) são desenvolvidas para

cada um desses problemas. No caso do problema de controle H2, a solução minimiza um lim-

ite superior para a norma H2 do sistema de controle em malha fechada. Para o problema H∞

-controle é apresentada uma solução que minimiza um limite superior para a norma H∞ do sis-

tema de controle em malha fechada. No caso da filtragem H∞, a solução apresentada minimiza

a norma H∞ de um sistema que representa o erro de estimativa. As soluções para os problemas

de controle são ilustradas usando um exemplo numérico que modela um processo simples de

dois tanques.

Palavras-Chave – controle estocástico, controle ótimo, filtragem, sistemas markovianos.



ABSTRACT

This monograph addresses control and filtering problems for systems with sudden changes

in their behavior and whose changes are detected and estimated by an imperfect detector. More

precisely it considers continuous-time Markov Jump Linear Systems (MJLS) where the current

mode of operation is estimated by a detector. This detector is assumed to be imperfect in

the sense that it is possible that the detected mode of operation diverges from the real mode

of operation. Furthermore the probabilities for these detections are considered to be known.

It is assumed that the detector has its own dynamic, which means that the detected mode of

information can change independently from the real mode of operation. The novelty of this

approach lies in how uncertainties are modeled. A Hidden Markov Model (HMM) is used to

model the uncertainties introduced by the detector. For these systems the following problems

are addressed: i) Stochastic Stabilizability in mean-square sense, ii) H2 control, iii) H∞ control

and iv) the H∞ filtering problem. Solutions based on Linear Matrix Inequalities (LMI) are

developed for each of these problems. In case of the H2 control problem, the solution minimizes

an upper bound for the H2 norm of the closed-loop control system. For the H∞ control problem a

solution is presented that minimizes an upper bound for the H∞ norm of the closed-loop control

system. In the case of the H∞ filtering, the solution presented minimizes the H∞ norm of a

system representing the estimation error. The solutions for the control problems are illustrated

using a numerical example modeling a simple two-tank process.

Keywords – Stochastic Control, Optimal Control, Filtering, Markov Processes.
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1 INTRODUCTION

1.1 Motivation

Classical control theory usually considers the dynamic system as time invariant, however,

for real systems this is a very restrictive consideration, as the system’s properties might change

over time. Reasons for these changes can be grouped as follows:

Changes in the environment Many systems depend on external variables which are beyond

the influence of the control system. Examples are wind and solar power systems, flotation

processes in the mining industry or economic models. All these processes depend on

external variables like the availability of sun and wind, the mineral concentration in the

ore or the economic situation of some nation. In these cases the setpoint of the controller

or even the whole control strategy has to be adjusted according to these external influences

[8, 48, 92, 28, 52, 34, 86].

Faults Another reason for changes in systems behavior are faults. A fault is defined as an

unpermitted deviation of the expected behavior of a system. Faults can occur in the

sensors, the actuators or the system itself. Examples for faults in the system are ruptures

in tubulation, tanks etc.

Especially for safety-related systems like industrial plants [20, 56] or aerospace systems

[6, 46, 32] it is important to ensure that faults in the systems or altered environmental

conditions do not lead to dangers for the environment and people. Other systems are

either completely inaccessible like a Mars lander [50] or inaccessible at certain instants

like offshore wind turbines in the European winter [41]. In these cases it is desirable that

a fault not lead to a complete loss of the system.

Attacks on the system A relatively new reason for a changed behavior of a technical system

are attacks on a cyber-physical system where an intruder alters the behavior of a system

to cause damage or losses. The most known incident in this category is the stuxnet attack

[57].
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For many systems it is important that the system maintain an acceptable behavior and meet

some performance requirements even in the presence of these changes. Various approaches

have been developed to deal with these changes. See for example [9] for an introduction to fault

tolerant systems, [58] for switching systems, [17, 16] for Markov Jump Linear Systems, and for

robust control see for example [60, 101, 7, 1, 4, 87].

In general the approaches can be divided into two classes: active systems and passive sys-

tems. Passive systems are also categorized as robust control. Methods for robust control result in

a controller that guarantees an acceptable behavior even under certain variations of operational

conditions. As this leads to a trade-off between robustness and performance, the performance in

nominal operation is usually suboptimal. Furthermore the range of allowed variations is smaller

(see for instance [9]). One advantage of this is that they do not need any additional resources

and stability of the overall system can be guaranteed as long as alterations stay within certain

bounds. The structure is shown in Figure 1.

Figure 1: Block diagram of the robust feedback system

-
r(t) y(t)

u(t)e(t)

Source: Author

Active approaches address these drawbacks by a reconfiguration of the controller after the

detection and identification of a change has taken place. A prerequisite for this is the existence

of an additional supervisional layer to detect these changes and prompt a reconfiguration of the

controller. The structure is depicted in Figure 2. Hence active approaches come at the cost of

additional hardware and energy demands. Furthermore, most of them only guarantee the sta-

bility of certain controller/plant combinations, leaving the possibility of delayed detection and

possible misdetections aside. However, even the stability of all controller/plant combinations

does not necessarily ensure the stability of the complete system [17].

For systems where the occurrence of changes can be modeled by a Markov chain or a

Markov process, the theory of Markov Jump Linear Systems (MJLS) combines the advantages

of both active and passive approaches by providing an active adjustment of the controller while

guaranteeing stability of the overall system. The active adjustment leads to a better performance

and a broader range of possible dynamic variations. But until now the theory of MJLS does not

provide readily usable tools to include the possibility of misdetections and false alarms into the
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Figure 2: Block diagram of the feedback system

-
r(t)

Reconfiguration

y(t)
u(t)e(t)

Source: Author

systems model. This text deals with these cases where the changes can be modeled using a

Markov process.

A formal introduction of the system follows in the next section. For an active reconfigu-

ration, the system depends on the presence of a detector which provides information about the

current state of the system. Usually ( e.g. [87, 76, 3]) it is assumed that the detector is perfect

and thus the information about the nature of the fault always corresponds to the state of the real

system. However, studies have shown that this assumption cannot be fulfilled by a real system.

For example [68, 73] have shown that there exists a considerable detection delay as well as a

high number of false detections in current algorithms concluding that the evaluated techniques

need improvements to be useful. Even with more sophisticated methods it is unlikely that the

detection delay is zero and that there are no false alarms or detections.

Hence it is necessary to consider the possibility of a false detection of a fault, and to develop

methods capable of dealing with this uncertainty.

1.2 Contributions and Structure

This monograph is motivated by the fact that fault tolerant control systems in these days are

usually not capable of guaranteeing the stability of the overall system in the presence of false

alarms and misdetections. This work approaches the problem by providing a readily imple-

mentable solution which guarantees stochastic stability for systems where the dynamic of the

fault occurrence can be modeled by a Markov Process (Markov Jump Systems) and its detection

can be modeled by a Hidden Markov Process. Chapter 5 provides a condition for mean-square-

stability based on linear matrix inequalities (LMI) which can be easily solved using a modern

computer and common software. The solution encompasses those special cases which were
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discussed in [88, 64, 63, 2]. Section 6.1 extends the LMI-conditions in a way, that the solu-

tion guarantees an upper bound on the H2 cost. The case of H∞ optimal control is presented

in Chapter 7. This Chapter follows the ideas presented in Section 6.1 and [89], extend them

for H∞ control and considers static output feedback rather than state-feedback. This results in

a new LMI condition for this control case. The novelty and main difference to [81] lies in the

model representing the detector as well as considering the static output feedback case. The

probability distribution of the joint process, defined by the detection process and the Markov

parameter, is considered to be an exponential hidden Markov process so that the time evolution

of the process is well defined and can be easily simulated. Chapter 8 presents results for the H∞

filtering problem. Again the difference to [78] lies in the model representing the detector. As

before the solution of the problem is given as an LMI condition. This monograph is concluded

with Chapter 9 which presents a summary of the results obtained, and discusses directions for

further research.

The results presented in Chapter 5 and 6 were partially presented at the 2015 IEEE Con-

ference on Descision and Control [91] and published in the IEEE Transactions on Automatic

Control [89]. As for the results in Chapter 7, they were presented at the 2018 IEEE Conference

on Decision and Control and published in the IEEE Control Systems Letters [90]. Finally the

results presented in Chapter 8 are currently in preparation to be submitted.

1.3 Running Example

This section introduces the example which will be used throughout this monograph for the

numerical evaluation of the results.

Example 1. This example uses a model of a two-tank system and is adapted from [75]. The

plant is shown in Figure 3. It consists of two tanks T1 and T2 which are connected by two valves

V1 and V2. The valves are controlled by the signals u2(t) and u3(t) respectively. Additionally

the tank T1 can be filled via pump P1 (u1(t)) and the drain of the tank T2 is used as a disturbance

d(t). It is assumed that all actuators exhibit a linear characteristic and that they can be con-

trolled continuously. Furthermore it is assumed that any dynamic behavior of the actuators can

be neglected. Three sensors are included in the model, one continuous level-sensor for tank T1

(y1) and two continuous level-sensors for the tank T2. While the sensor at tank T1 does not show

any dynamic behavior, both sensors installed at tank T2 are modeled by a first order delay with

the states s1 and s2. The state vector is given by: x = (ν1 ν2 h1 h2 s1 s2)
′ where ν1 and ν2 are

the flows in valve one and two respectively, h1 and h2 refer to the height of the fluid in the tanks

while s1 and s2 refer to the sensor readings in tank T2. The input vector consists of the control
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Figure 3: Flow diagram of the two-tanks system

L

L

L
T1 T2P1

V 1

V 2

u1(t)

u3(t)

u2(t) d(t)h1(t) h2(t)

Source: Author

signal for the pump and the control signals for the two valves. The nonlinear model of this plant

is discussed in more detail in [74]. The plant is operated around the following operating point:

x̄ =
(

0.74 0.2 0.4 0.06 0.06 0.06

)′

ū =
(

0.5 0.78 0.2
)′

Linearizing the nonlinear model of the system at this point leads to a linear system with the

system matrix given by:

A =




0 0 0 0 0 0

0 0 0 0 0 0

−3.2 −3.4 −7.1 3.6 0 0

3.2 3.4 7.1 −18 0 0

0 0 0 10 −10 0

0 0 0 1/0.3 0 −1/0.3




.

The input matrix depends on the mode of operation θ which will be defined later in more detail.

The mode-dependent matrix is given by:

Bθ =




0 b12 0

0 0 0.2

8.1 0 0

0 0 0

0 0 0

0 0 0




(1.1)

It is assumed that the lower valve V1 of the system is subject to faults which alter the behav-

ior of the valve. Three possible scenarios are considered:
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• The valve is undamaged, resulting in (b21 = 1).

• Opening reduced to 25% of the desired value (b21 = 0.25).

• The valve is stuck in the closed position and cannot be opened (b21 = 0).

The occurrence of these three scenarios (modes of operation) is modeled by a continuous-time

Markov Process with the transition-rate matrix given by:

Π =




−0.0894 0.0671 0.0223

0.0671 −0.0671 0

0.0236 0 −0.0236


 (1.2)

This model is used in the following chapters to evaluate the obtained results numerically.
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2 LITERATURE SURVEY

2.1 Markov Jump Linear Systems

Markov Jump Linear Systems (MJLS) emerged in the middle of the 20th century as a spe-

cial case of stochastic differential and difference equations [49, 38]. Research of MJLS gained

significant momentum in the early 2000s. Figure 4 shows the development of articles published

by the most important publishers which tagged as MJLS (see section A for details). Since then

a mature body of system theory was developed, including various problems of stability and op-

timal control which have been intensively studied. The texts [17, 11, 16, 33, 31, 65, 86] and

references therein provide a general overview on MJLS including these topics.

In the early 90s [64] was one of the first considering the possibility of detection delays, for

the mode of operation, but the solution was presented in form of a set of coupled Lyapunov

equations and hence not readily implementable. Later [88] also took the possibility of false

detections into account, but the solution was still given as a Lyapunov function with the known

problems. Uncertainty about the state-variable was introduced by [33] who provided a solution

in form of coupled Ricatti equations. A more feasible approach was presented in [30], where an

LMI condition is presented for discrete-time systems. Moreover the cluster-case was considered

in this work, in which the non-observed part of the Markov states is grouped into a number

of clusters of observations. A more general model for a discrete-time MJLS was analyzed

in [18] where an LMI condition for the stabilization and H2-optimal control of discrete-time

Markov jump linear system was presented. This solution includes the special cases of perfect

information, no information and cluster detection. For the perfect information the results recast

the usual ones for the H2 control of discrete-time MJLS as presented in [16]. Finally, [80]

presented a bounded real lemma for continuous-time MLJS but under a different hypothesis on

the joint process Z(t) = (θ(t),θ̂(t)). A similar model using two separate Markov Processes to

represent the failure and the FDI process was presented in [63]. Recently similar ideas have

been presented in the field of cyber-physical systems to model and detect attacks [84].
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Figure 4: Development of the number of publications tagged with MJLS
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Source: Author, see appendix A for details.

In order to analyze the imperfect detection case, [89] considered the H2-control problem,

using a hidden Markov model to represent the failure process as well as the detection pro-

cess. For the H∞-control problem and also bearing in mind the case of imperfect detections,

[2] introduced LMI solutions for robust output feedback control for uncertain systems. The

approach uses three separable Markov processes to represent actuator failure, component fail-

ure and the FDI process. While this is a very flexible approach, the authors point out that it is

difficult to determine the values of the transition rates of the FDI process. Later [81] provided

a state-feedback result for the H∞-control of systems with uncertain detections, considering a

continuous-time version of [18] for the detection of the mode of operation. The detector is

based on a continuous-time probabilistic Markov type assumption. Note that this assumption

in general does not allow to define the distribution of the joint process which is formed by the

information coming from the detector and the Markov parameter. This may lead to practical

problems concerning the detectability and the ability to implement the method.

The filtering problem was discussed for example in [17] and [93]. Later [78, 77] provided

results for continuous time Markov Jump Linear Systems where the mode of operation is subject

to uncertainties. As in case of the control problems, the main difference to the monograph in

hand lies in the way the uncertainties are modeled.

Remark 2.1. Some authors [66, 96] emphasize the possibility that the mode of operation and

the observed mode are different and call this asynchronous control or asynchronous filtering.
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2.2 Uncertainties

Uncertainties in Markov Jump Linear Systems

As mentioned before there exists a quite comprehensive literature on optimal control of

MJLS for the case where the current state of the Markov process (mode of operation) is perfectly

known. However, as mentioned before, for real-world applications in fault tolerant control it

is necessary to acknowledge that this information is subject to uncertainty. Results for this

scenario are more scarce. Table 1 gives an overview on the publications and the uncertainties

which were considered. Possible uncertainties in MJLS can be divided into four classes:

Uncertainty about the state variable This refers to the usual case where at least a subset of

the state-variables is not measurable.Works which consider this case are for example [33,

10, 19, 22]

Uncertainty about the systems parameters In the case of linear systems this means that the

system matrices are subject to uncertainty and may differ from the real parameters. Works

which consider this case are for example [3, 2]

Uncertainties in the transition matrix In this case some of the transition probabilities are not

exactly known. Examples were given in [17].

Uncertainty about the mode of operation In this case the information about the current mode

of operation is unknown or probably wrong. This implies that the chosen controller for the

system is probably not the one which was designed for the current mode of operation. An

example for the occurrence of this scenario is the case in which the system is subject to a

fault which was not (yet) detected by the supervisory system. Considering this uncertainty

makes it possible to guarantee stability of the overall system even in case of possible false

alarms and wrong detections of the FDI. This makes this case especially interesting for

fault-tolerant control. This case was studied in [89, 18, 80, 78, 40, 39]

It should be noted that mixed cases are also possible and common and should be taken into

consideration.



1
0

Ref Class Uncertainty Cases Control Filtering

Disc. Cont. Mode State TM Struct Perfect Cluster No H2 H∞ l2 − l∞ H2 H∞ Techniques

[2] x X x x x X x x x x X x x x

[18] X x X x x x X X X X x x x x LMI

[33] x X x X x x x x x x x x x x Coupled Riccati equations

[64] x X X x x x x x x x x x x x Lyapunov Condition

[83] x X x x X x X x X X x x x x LMI

[88] x X X x x x X X x x x x x x Lyapunov condition

[30] X x X x x x X X x X x x x x LMI

[81] x X X x x x X X X x X x x x LMI

[100] X x X x x x x x x x x x X x LMI

[96] X x X x x x x x x x x x x x LMI

[62] x x x x x x x x x x x x x X

[98] X x x x x x X x x x x x x X LMI

[27] x X X x x x x x x x x x x X LMI

[69] x x X x x x x x x x X x x x LMI

[25] X x X x x x x x x x x x x X LMI

[36] x x x x x x x x x x x x x x

[78] x X X x x x x x x x X x x X LMI

[26] x X x x x x X x x x x x x X LMI

[77] x X x x x x X X x x x x x X LMI

Table 1: Uncertainties in MJLS Literature
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2.3 The stochastic nature of faults and other changes

Figure 5: The bathtub curve, showing a typical failure rate λ (t)

λ

t

useful life wear outburn-in

Source: Author

As will be later discussed, the stochastic nature of the changes is important for the approach

detailed in this monograph. This section discusses justifications for the use of different distri-

butions. In case of faults [51] takes the well known bathtub curve (see Figure 5) as a basis and

argues that during the period of useful life the Mean-Time To Failure (MTTF) is constant and

hence it is justifiable to use an exponential function to model the reliability.

However, [55] debates whether the bathtub curve is justifiable in the burn-in phase and

concludes that most of the references do not provide evidence for the existence of the bathtub

curve. He also traces the bathtub curve back to [47] stating that its real origin is unknown [61]

also concludes that the bathtub curve is not justified in most of the cases but points out that there

are some cases where the bathtub curve can be justified.

Also justifying the exponential function, [63] argues that the occurrence of faults is rare and

therefore, according to the law of rare events [71], a Poisson process is the best description for

this behavior.

Extensive data is available for faults in hard disks, [70] found that after the first fault the

probability of another failure within the next 60 days is over 21 times higher. Hence the Markov-

Property is not given here. The authors do not discuss an appropriate distribution. [82] gathered

data from more than 100000 disks, stating that the exponential distribution is not suitable to

model the time between failures and suggesting the use of two parameter distributions like the

Weibull distribution. Appendix B discusses data available from the storage company Backblaze,

the data analyzed gives no clear image, but an exponential function can be ruled out.
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For weather models, [95] discusses both history and suitability of different stochastic mod-

els, including first and higher level Markov models. The authors conclude that for some appli-

cations Markov models are a suitable fit.

As for economic scenarios, Markov models are a common way of modeling, see for exam-

ple [34] and [53].

Taking all of the aforementioned arguments into account, one can conclude that there are

many instances in which an exponential function is adequate to model the changes that were

previously discussed. Therefore the exponential function and subsequent MJLS will be studied

in this thesis.
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3 PRELIMINARIES

3.1 Notation

Spaces

Banach space For the Banach spaces X and Y, the Banach space of all bounded linear

operators from X to Y is written as B(X,Y). The uniform induced norm is represented by

‖.‖ and, for simplicity, B(X) := B(X,X). The spectrum of the operator T ∈ B(X) is denoted

by σ(T ) and Re(λ (T )) := sup{Re(λ );λ ∈ σ(T )}. Where Re() denotes the real part of a

complex number.

Hilbert space In the Hilbert space X 〈.; .〉 stands for the inner product, and for T ∈ B(X),

T ∗ indicates the adjoint operator of T . For operators T ∈ B(X) and symmetric matrices

B =B′ the expression T ≻ 0 (T � 0) defines positive (semi) definiteness.

Euclidean space The n-dimensional real Euclidean space is denoted by R
n, the interval

[0,∞) by R
+ and the real part of a complex number z by Re(z). The normed bounded lin-

ear space of all m× n real matrices is denoted by B(Rn,Rm), with B(Rn) := B(Rn,Rn), and

B(Rn)+ := {L ∈ B(Rn) ;L = L′ ≥ 0}).

Consider N and M positive integers. Define Hn,m as the linear space made up of all sequence

of NM matrices V = {Vik; i = 1, . . . ,N,k = 1, . . . ,M} with Vik ∈ B(Rn,Rm). For simplicity, set

H
n := H

n,n and H
n+ := {V = {Vik} ∈ H

n;Vik ≥ 0, i = 1, . . . ,N,k = 1, . . . ,M} and write, for

V ∈ H
n and S ∈ H

n, that V ≥ S if V−S = {Vik −Sik} ∈ H
n+, and that V > S if Vik −Sik > 0

for each i = 1, . . . ,N, k = 1, . . . ,M. For V,S ∈H
n,m, we consider the following inner product in

H
n,m:

〈V;S〉=
N

∑
i=1

M

∑
k=1

tr
(
V ′

ikSik

)
, (3.1)
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Matrices

Throughout this monograph the following notation is applied: matrices are denoted with

bold upper-case letters A, vectors are denoted with lower-case bold letters: v. The transpose

of a matrix A is represented by A′. A Hermetian matrix is a matrix where A = A∗ holds,

with A∗ being the conjugate transpose. For a Hermetian matrix A the following notations

are defined: A ≺ 0 (A � 0) stands for a negative (semi-) definite matrix. This means that all

eigenvalues of this matrix are strictly negative (or null). The symbol ≻ (�) stands for positive

(semi-) definiteness, which means that the eigenvalues are strictly positive (or null). For square

matrices A the following operators are defined:

Definition 3.1 (trace).

tr(A) =
n

∑
ν=1

aνν

with n being the dimension of the matrix and ai j being the element of the matrix in the i-th row

and j-th column.

Definition 3.2 (her).

Her(A) =A+A′.

Symmetric block matrices are abbreviated using ⋆:

[
A B

B′ C

]
=

[
A B

⋆ C

]

Many problems in control theory can be expressed as linear matrix inequalities, which

then can be easily solved using computational methods and packages [94, 13]. A linear matrix

inequality (LMI) is defined as follows:

Definition 3.3 (LMI [13]). With Fi = F ′
i ∈ R

n, i = 0,...,m and x= (x1,...,xm)
′ ∈ R

m as a deci-

sion variable, the inequality

m

∑
i=1

xiFi ≻ 0

is called linear matrix inequality.
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For linear matrix inequalities of block matrices the following assertions which are also

known as Schur Complement, are equivalent [13]:

M =

[
Q S

⋆ R

]
≺ 0

Q≺ 0 and R−S′Q−1S ≺ 0

R≺ 0 and Q−SR−1S′ ≺ 0

This also holds for the case where ≺ is substituted by ≻.

For square matrices P > 0 and G of compatible dimension the following holds:

G′P−1G� Her(G)−P . (3.2)

Lemma 3.1. The following statements are equivalent:

a) B̃′AB̃ > 0 where BB̃ = 0.

b) A+XB+B′X ′ > 0 for some matrix X .

Probability and stochastic processes The following probability-space is defined: (Ω ,Ft,P)

where Ft represents a measurable right-continuous filtration. In this space (Ω ,Ft,P), the math-

ematical expectation with respect to P is denoted by E(.). The Dirac measure over a set A ∈ F

is defined by 1A(.), meaning that

1A(ω) =





1, if ω ∈ A

0, otherwise.
(3.3)

The notation Ln
2 denotes the space of square integrable stochastic processes x = {x(t) ∈

R
n, t ∈ R

+} with x(t) Ft-measurable for each t ∈ R
+

3.2 Markov Jump Linear System

As discussed in Section 2.3 the occurrence of faults for many cases can be modelled by

an exponential distribution. A common framework to model a chain of events where the time

between the events is exponentially distributed is a continuous-time Markov chain. When com-

bined with a linear system where the parameters depend on the state of this Markov chain, the

model is called continuous-time Markov Jump Linear System (CT-MJLS). This Section intro-
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duces the two distinctive parts of a CT-MJLS: first the Markov process which governs the values

of the systems matrices is introduced. Afterwards, the corresponding linear system is defined

in Section 3.2.2. Finally, Section 3.3 discusses the most important properties of MJLS.

3.2.1 Markov processes

For the Markov chain, the following set is defined: N = {1 . . .N} where N is a positive

integer. This set of numbers defines the possible modes of operation of the linear system. This

mode of operation is denoted by θ(t) with θ(t) ∈ N ∀t ∈ R
+. Now define a probability space

(Ω ,Ft,P) where the following assumptions hold:

Assumption 3.1. [17] The filtration Ft ; t ∈ R
+ is a right-continuous filtration augmented by

all null sets in the P-completion of F .

The probabilities of the continuous time Markov chain are defined as follows:

P(θ(t +h) = j|θ(t) = i) =





λi jh+o(h), (i) 6= ( j)

1+λiih+o(h), (i) = ( j).
(3.4)

with the following properties

0 ≤ λi j, i 6= j

0 ≤ λi :=−λii = ∑
j: j 6=i

λi j ∀i ∈ N

The values λi j are called transition rates and form the transition rate matrix Π . This matrix,

together with the initial condition θ0, define the Markov process which governs the dynamic

system introduced in the next section.

Remark 3.1. In the remaining parts of this monograph, the time dependence of θ(t) will be

omitted to improve readability. Hence: θ = θ(t)
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3.2.2 Dynamic system

The dynamic part of a Markov Jump Linear System in general is defined by:

Σθ :





ẋ(t) =Aθx(t)+Bθu(t)+Hθw(t)

y(t) =Cθx(t)

x(0) = x0

θ(0) = θ0

(3.5)

where the development of the state x(t) depends on the state himself, the input u(t) and the

disturbance w(t) which will be defined in the following chapters. Furthermore, there are the

gain-matrices Aθ , Bθ and Hθ . The output y(t) depends on the state, input, and disturbance

with the corresponding gain matrices Cθ , Dθ and Fθ respectively. All matrices depend on the

mode of operation θ which was defined in the previous section. It is assumed that all matrices

and vectors are of compatible dimension.

Furthermore, the following decomposition of the state x(t) is defined:

x(t) = xzs(t)+xzi(t)

where xzs(t) is the unique solution to

ẋzs(t) =Aθxzs(t)+Hθw(t)

with xzs(0) = 0, and is called the zero-state response. The second part xzi, called the zero-input

response, is defined as the unique solution to:

ẋzi(t) =Aθxzi(t)

with xzi(0) = x0.

3.2.3 The general control problem

The general control problem is stated as follows: Find a controller that controls the system

(3.5) via input u(t) using the controller

ΣC :




xc(t) = h(xc(t),y(t))

u(t) = f (xc(t),y(t))

xc(0) = xc0

(3.6)
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in a way that certain stability and performance criteria are met. These criteria are discussed in

more depth in the following sections. As the properties of the dynamic system depend on the

parameter θ , the goal is to find a set of N controllers:

ΣK(θ ) :




xc(t) = hθ (xc(t),y(t))

u(t) = fθ (xc(t),y(t))

xc(0) = xc0

(3.7)

This monograph studies two particular cases of the control problem: linear output feedback

control and linear state-feedback control as a special case of the latter.

Linear output feedback control describes a memoryless controller which applies a gain

matrix to the output-signal y(t) of the system (3.5) and feeds the resulting signal to the input

u(t) of the same system. The controller matrix K depends on θ . In this case, the following

control law will be applied.

u(t) =Kθy(t).

Resulting in the closed-loop system:

Σclo :





ẋ(t) = (Aθ +BθKθCθ )x(t)+Hθw(t)

y(t) =Cθx(t)

x(0) = x0

θ(0) = θ0

(3.8)

For convenience the following feedback system matrix is defined:

Ãθ = (Aθ +BθKθCθ )

C̃θ =Cθ

State feedback control State feedback control can be considered as a special case of (3.8)

where C = I hence the control law reduces to:

u(t) =Kθx(t) (3.9)
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and the closed-loop system:

Σcls





ẋ(t) = (Aθ +BθKθ )x(t)+Hθw(t)

y(t) =Cθx(t)
(3.10)

Again Ãθ and C̃θ are defined as:

Ãθ = (Aθ +BθKθ )

C̃θ =Cθ

3.3 Results

3.3.1 Stability

For this section the system (3.5) is reduced to the following system:

ẋ(t) =Aθx(t)+Bθu(t)

x(0) = x0

θ(0) = θ0

(3.11)

Definition 3.4 (Stochastic Stability [17] ). The system (3.8) is called mean square stabilizable

if there exists a set of controllers K = (K1 . . .Kn) that for arbitrary initial conditions x0, θ0

∫ ∞

0
E
(
‖x(t)‖2

)
dt < ∞ (3.12)

holds.

Definition 3.5 (internal Mean-Square-Stability (iMSS) [17]). System (3.11) is called internally

mean-square-stable if for arbitrary initial conditions x0, θ0,

lim
t→∞

E
(
‖xzi(t)‖

2
)
= 0

holds.

In order to obtain differential equations for the second moments of x(t) in (3.8) the follow-

ing linear operators are defined:
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Definition 3.6. [17][Operators] L ∈B(Hn) and T ∈B(Hn): for P := {Pi} ∈H
n, set L (P) :=

{Li(P); (i) ∈ N } ∈H
n and T (P) := {Ti(P); (i) ∈ N } ∈H

n as

Li(P) := ÃiPi +PiÃ
′
i + ∑

j∈N

λi jP j, (3.13)

Ti(P) := Ã′
iPi +PiÃi + ∑

j∈N

λ jiPj. (3.14)

hold.

Equivalent criteria for stability

Theorem 3.1. The following assertions are equivalent:

i) there exists K = {Ki; i ∈ N } ∈ K such that it stabilizes system (3.10) as in Definition

3.4.

ii) there exists K = {Ki; i ∈ N } such that Re(λ (L ))< 0.

iii) there exist K = {Ki; i ∈ N } and P = {Pi} ∈H
n+, Pi > 0, (i) ∈ N such that L (P)< 0.

iv) there exists K = {Ki; i ∈ N } such that Re(λ (T ))< 0.

v) there exist K = {Ki; i ∈ N } and P = {Pi} ∈H
n+, Pi > 0, (i) ∈ N , such that T (P)< 0.

Proof. See Lemma 3.37 in [17].

3.3.2 Optimal Control

Optimal control aims at controlling a system while minimizing some performance measure

[54]. These measures are also called costs. In this monograph two performance measures are

considered: H2 norm and H∞ norm. For these cases the following system is considered:

Σθ :





ẋ(t) =Aθx(t)+Bθu(t)+Hθw(t)

z(t) =Cθx(t)+Dθu(t)+Fθw(t)

y(t) =Eθx(t)

x(0) = x0

θ(0) = θ0

(3.15)
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H2-control

The H2-norm measures the impact of the disturbance w(t) via the system (3.15) onto the

output z(t). The matrix F is considered to be 0 in the following. The system ΣK refers to the

system (3.15) controlled by a state feedback controller:

u(t) =Kθx(t)

Definition 3.7. [17] The H2-norm of the system ΣK is defined as

‖ΣK‖
2
2 :=

r

∑
s=1

∑
i∈N

ηi ‖zs,i‖
2
2

where ‖·‖ represents the Euclidean norm and zs,i represents the output {z(t); t ∈ R
+} given by

(3.15) when:

(i) the input is given by w = {w(t); t ≥ 0}, w(t) = esδ (t), δ (t) the unitary impulse, and es

the r-dimensional unitary vector formed by 1 at the sth position and zero elsewhere, and

(ii) (θ0) = (i) ∈ N with probability ηi.

The H2-norm as defined above can be calculated via the solution of the continuous-time

coupled observability and controllability Gramians, a result that mirrors its deterministic coun-

terpart, see the last chapter for details.

H∞ control

Definition 3.8 (H∞-Cost [17]). For the system (3.5) with u= 0 the following operator is defined:

Lw(t) =Cθxzs(t)+Lθw(t) t ∈ R
+

where L : Lr
2(Ω ,Ft,P)→ L

p
2(Ω ,Ft ,P) is a well-defined bounded operator if iMSS holds (see

[17]). This operator describes the impact of disturbances w(t) on the output of the system

(3.15). The H∞-norm is defined as:

‖L‖= sup

{
‖Lw‖2

‖w‖2

: w ∈ Lr
2(Ω ,Ft,P), ‖w‖2 6= 0

}
= ‖Σθ‖∞

The norm defined above represents a measure for the worst-case effect of finite-energy distur-

bances on the output.
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The bounded-real lemma established an LMI condition for the stability and optimality of a

dynamic system:

Lemma 3.2 (Bounded Real Lemma [17]). A System (3.5) is internally mean-square-stable, with

an H∞ cost smaller than γ if the following condition hold:




RiAi +A′
iRi +∑ j∈N λi jR j RiHi C ′

i

H ′
iRi −γI F ′

i

Ci Fi −γI


<0 (3.16)

with Ri > 0, for all i ∈ N .
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4 THE HIDDEN MARKOV PROCESS

As discussed in Section 2.2, the detection of the mode of operation should not be considered

as perfect; it is subject to uncertainties. Therefore, additional to the mode of operation a detected

mode of operation has to be considered. This detected mode of operation corresponds to the

information that is emitted by a detector which observes the actual plant and tries to estimate

the mode of operation. This estimated mode of operation will be denoted by θ̂ (t).

Figure 6: Estimation of the mode of operation using a detector

u(t) y(t)

θ̂

Source: Author

While the practical realization of such a detector is beyond the scope of this thesis, a math-

ematical model of the detection process and the combined process is introduced in this chapter.

Section 4.1 introduces the underlying idea, followed by Section 4.1.1, in which the mathemati-

cal model is introduced. Section 4.2 extends the results from Section 3.3 to the new model and

Section 4.3 closes the chapter with some example cases.

Choice of the detector In the literature the choice of a detector (if given) can be divided

into two different concepts. Some [18, 80, 77] define the detector using a σ -field, see for

example [18] for details. To others [91, 89, 90, 23, 24], the evolution of the real mode and

the observed mode of operation can be modelled as a hidden-Markov process where the real

mode of operation is modelled as the hidden state and the observed state models the signal
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which is emitted by the detector. The second approach has the advantage that the distribution

of the detection process is exactly known and can easily be modelled In this work the second

approach, more specifically a Hidden Markov-process consisting of two elements as described

in section 4.1.1, is considered. This leads to the fact that the joint process by design fulfils

the Markov-property while the detector alone does not necessarily fulfil this property as the

transition rate at a time t depends on θ(t), see also Remark 4.1.

4.1 The underlying concept

To model the uncertainties which were discussed before the following is considered: to

every mode of operation all possible detections are assigned with their corresponding probabil-

ities (see Figure 7 for an example). This idea is known as a Hidden Markov Model. For the

combined process this opens a space describing the possible combinations of the two processes.

In this monograph both the underlying Markov process and the detection process are modelled

as one Markov process where every state of the process is formed by a combination of θ and θ̂ .

Figure 7: Markov Chain with 3 modes of operation

1 2

3

θ̂ P(θ̂)

1 0.8
2 0.1
3 0.1

θ̂ P(θ̂)

1 0.2
2 0.7
3 0.1

θ̂ P(θ̂)

1 0.2
2 0.2
3 0.6

Source: Author

4.1.1 Hidden Markov Process

In a probability space (Ω ,Ft,P) a continuous-time hidden Markov model (CT-HMM)

Z(t) = (θ(t),θ̂(t)), t ∈R
+, is formed by two components, the hidden state θ(t) taking values in

the set N := {1, . . . ,N}, and the observation state θ̂(t) taking values in the set M := {1, . . . ,M}.

Both sets form the invariant set V as follows: V ⊆ N ×M .

The following assumptions are made:
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Assumption 4.1. Z(t) is a homogeneous Markov process taking values in N ×M with the

transition rates ν(i,k)( j,l), fulfilling the following properties:

ν(i,k)( j,l) ≥ 0 for ( j,l) 6= (i,k)

ν(i,k)(i,k) =− ∑
( j,l) 6=(i,k)

ν(i,k)( j,l).

Therefore:

P(Z(t +h) = ( j,l)|Z(t) = (i,k)) =





ν(i,k),( j,l)h+o(h), ( j,l) 6= (i,k)

1+ν(i,k),(i,k)h+o(h), ( j,l) = (i,k).
(4.1)

Assumption 4.2. The transition rates ν(i,k)( j,l) , for (i,k), ( j,l) in N ×M satisfy

ν(i,k)( j,l) =





αk
jlλi j, j 6= i, l ∈ M

qi
kl, l 6= k, j = i, i ∈ N

λii +qi
kk, j = i, l = k

(4.2)

where

M

∑
l=1

αk
jl = 1,

λi j ≥ 0 ∀ j 6= i,

qi
kl ≥ 0 ∀l 6= k

λii =−∑
j 6=i

λi j

qi
kk =−∑

l 6=k

qi
kl.

(4.3)

Remark 4.1. It should be noted, that θ(t) alone is a Markov process with the transition rates

given by λi j, but the observed mode of operation θ̂(t) alone may not be a Markov process since

in general its transition rate at time t will depend on θ(t).

Considering an invariant set V ⊆ N ×M for Z(t) (that is, P(Z(t) ∈ V ) = 1 whenever

Z(0) ∈ V ), the following distinct situations can be modelled:

Perfect Information In case of M = N , qi
kl = 0, αk

j j = 1, αk
jl = 0 for l 6= j, and invariant

set V = {(i,i); i ∈ N }. Therefore the mode of operation θ and the observed mode of

operation θ̂ will always jump at the same time to the same state (θ̂(t) = θ(t) ∀t). In this

case the transition-rate matrix formed by ν(i,k)( j,l) can be reduced to a square-matrix of

the dimension NxN just containing the jumps of θ .
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No Information If M = {1}, qi
kl = 0 and α1

j1 = 1, the detector will always provide the same

information about the mode of operation and thus θ̂ will be constant. Therefore no in-

formation about the actual mode of operation exists and the control problem reduces to

robust control.

No Mutual Jumps Supposing αk
jk = 1, αk

jl = 0 for l 6= k. In this case, with probability one,

one jump at a time will occur for θ(t) (with rate λi j) and θ̂ (t) (with rate qi
kl , conditioned

on θ(t) = i). This kind of situation was considered, for instance, in [88, 64, 63, 2].

The Cluster Case Considering that the Markov-chain can be modelled as a union of M disjoint

sets (or clusters) Ni, such that N = ∪M
j=1N j, using M = {1, . . . ,M}, with M ≤ N. A

function g : N → M can be defined such that g(i) = j for all i ∈ N j, with g(i) repre-

senting to which cluster the state i belongs to. This concept was discussed in [30, 45, 37].

It is assumed that the detector emits information about the cluster to which θ belongs to

while the mode itself is unknown.

Delayed Detections Another possible case is the one where the observed mode of operation θ̂

follows the trajectory of the mode of operation θ , but with a time delay (see Figure 8).

This case can be modelled by using

αk
jl




6= 0 for l = k

= 0 for l 6= k

and

qi
kl




6= 0 for i = l

= 0 otherwise.

These situations and combinations of them allow to model a large share of the cases dis-

cussed in the literature, for example those discussed in [88, 64, 63, 2, 30, 18], see also Table 1

for more examples.

4.1.2 Modified control problem

Considering the model introduced in the previous section, the modified control problem is

stated as follows: find a set of controllers K that control the system (3.5) via input u(t) using
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Figure 8: Trajectory of a system with delayed detections, θ(t) in orange and θ̂(t) in blue.
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Source: Author

a controller

ΣK(θ̂) :




xc(t) = hθ̂ (xc(t),y(t))

u(t) = fθ̂ (xc(t),y(t))

xc(0) = xc0

(4.4)

in a way that certain stability and performance criteria are met, while the controller has only

access to an estimate of the mode of operation. As the properties of the dynamic system depend

on the parameter θ , there are N different systems which should be controlled. As the controller

has access to an estimated value of θ , there is a set of M controllers. As before two particular

cases of the control problem are considered: linear output feedback control and linear state-

feedback control as a special case of the latter. The difference to the cases in the previous

chapter lies in the fact that the controller now depends on θ̂ .

Linear output feedback control The control law now turns into:

u(t) =Kθ̂y(t).
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Resulting in the closed-loop system:

Σclo :





ẋ(t) =
(
Aθ +BθKθ̂Cθ

)
x(t)+Jθw(t)

z(t) =Cθx(t)+Lθw(t)

x(0) = x0

θ(0) = θ0

θ̂(0) = θ̂0

(4.5)

For convenience the following feedback system matrix is defined:

Ãθ ,θ̂ =
(
Aθ +BθKθ̂Cθ

)
(4.6)

State feedback control In this case the control law turns into:

u(t) =Kθ̂x(t) (4.7)

and the closed-loop system:

Σcls





ẋ(t) =
(
Aθ +BθKθ̂

)
x(t)+Jθw(t)

z(t) =Cθx(t)+Lθw(t)
(4.8)

4.2 Results

In this section the results shown in Section 3.3 are extended to the case where the controller

has only access to the estimated mode of operation.

4.2.1 Stability

Definition 4.1 (Stochastic Stabilizability). The System (3.5) is stochastically stabilizable if there

exists Kl ∈ B(Rn,m), l ∈ M , such that for arbitrary initial conditions (θ0,θ̂0) ∈ V and x0, we

have that
∫ ∞

0 E
(
‖x(t)‖2

)
dt < ∞ where x(t) is given by (3.10) with t ∈ R

+. In this case we say

that Kl stabilizes (4.5) and write K := {Kl; l ∈ M }. We denote the set of K that stabilizes (4.5)

by K .

Definition 4.2 (Operators). Since V is an invariant set for Z(t), only Aik with the states (i,k) ∈

V will matter for the stochastic stability of (4.5) whenever (θ0,θ̂0) ∈ V . In order to obtain

differential equations for the second moments of x(t) in (4.5) we define the following linear
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operators L ∈ B(Hn) and T ∈ B(Hn): for P := {Pik} ∈ H
n, set L (P) := {L jl(P); ( j,l) ∈

V } ∈H
n and T (P) := {Tik(P); (i,k) ∈ V } ∈H

n as

L jl(P) := Ã jlPjl +PjlÃ
′
jl + ∑

(i,k)∈V

ν(i,k)( j,l)Pik, (4.9)

Tik(P) := Ã′
ikPik +PikÃik + ∑

( j,l)∈V

ν(i,k)( j,l)Pjl. (4.10)

Lemma 4.1. This result establishes a link between T and L . With the inner product as de-

fined in Section 3.1, we have that T ∗ = L , i.e., T is the adjoint operator of L . Moreover

Re(λ (T ))< 0 if and only if Re(λ (L ))< 0.

Proof. It follows the same reasoning as in Lemma 3.5 and Proposition 3.11 in [17].

4.2.2 Cost measures

H2-control

The H2-norm measures the impact of the disturbance w(t) via the system (3.15) onto the

output z(t). The matrix F is considered to be 0 in the following. The system ΣK refers to the

system (3.15) controlled by a state feedback controller:

u(t) =Kθ̂x(t)

If K = {Kl; l ∈M } ∈K , Kl stabilizes (4.5) (see Definition 4.1) then from Lemma 4.1 and

Theorem 3.1 it follows that Re(λ (L ))< 0 and Re(λ (T ))< 0. Considering w= {w(t); t ∈R
+}

an impulse input (that is, w(t) = vδ (t) where v is an r-dimensional vector and δ (t) the unitary

impulse) then, as a consequence of Theorem 3.15 (v) in [17], there exists b > 0 and a > 0, such

that for each t ∈ R
+,

E(‖z(t)‖2)≤ a e−btE(‖x0‖
2) (4.11)

and
∫ ∞

0 E(‖z(t)‖2)dt < ∞.

The H2-norm as defined above can be calculated via the solution of the continuous-time

coupled observability and controllability Gramians, a result that mirrors its deterministic coun-

terpart.

For

K = {Kl; l ∈ M } ∈ K
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define

C̃il :=Ci +DiKl

as well as T , L as in (4.9), (4.10), and

M := {C̃′
iC̃i} ∈H

n+

ηN := {ηiHiH
′
i} ∈H

n+

S := {Si} ∈H
n+

P := {Pi} ∈H
n+

the unique solution of the equations (see Theorem 3.25 in [17]): T (S)+M = 0 (observability

Gramian) and L (P)+ηN = 0 (controllability Gramian).

The following result establishes a connection between the H2-norm with the observability

and controllability Gramians.

Theorem 4.1.

‖ΣK‖
2
2 = ∑

( j,l)∈V

η jl tr
(
H ′

jlS jlH jl

)
= ∑

( j,l)∈V

tr
(
C̃ jlPjlC̃

′
jl

)
.

Proof. The proof follows the same reasoning as the proof of Theorem 5.4 in [17]. For the first

equality with i ∈ N

Ti(S)+C̃∗
jlC̃ jl = Ã∗

i Si +SiÃi + ∑
j∈S

λi jS j +C̃∗
jlC̃ jl = 0.

Consider z = {z(t); t ≥ 0} an impulse response of (4.5). Then

E
(
z(t)∗z(t)

)
= E

(
x(t)∗C̃∗

θ (t)C̃θ (t)x(t)
)

=−E
(

x(t)∗Tθ (t)(S)x(t)
)

=− ∑
i∈S

E
(

x(t)∗Ti(S)x(t)1{θ (t)=i}

)

=− ∑
i∈S

tr
(

E
(

x(t)x(t)∗1{θ (t)=i}

)
Ti(S)

)

=− ∑
i∈S

tr
(

Qi(t)Ti(S)
)

=−
〈
Q(t);T (S)

〉

=−
〈
L (Q(t));S

〉

=−
〈
Q̇(t);S

〉
.
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Taking the integral over t from 0 to ∞, and recalling that Q(t)→ 0 as t → ∞ (since the system

is MSS) and that θ(0) = j, x(0) = H jes, results in

∥∥zs, j

∥∥2

2
=

∫ ∞

0
E(‖z(t)‖2)dt

=−

∫ ∞

0

〈
Q̇(t);S

〉
dt

=−
〈
Q(t);S

〉]∞

0

=
〈
Q(0);S

〉

= ∑
i∈S

tr
(
Qi(0)Si

)

= e∗s H∗
j S jH jes.

Therefore,

‖ΣK‖
2
2 =

r

∑
s=1

∑
j∈S

ν j

∥∥zs, j

∥∥2

2
=

r

∑
s=1

∑
j∈S

ν je
′
sH

′
jS jH jes = ∑

j∈S

ν j tr(H∗
j S jH j)

holds, proving the first equality.

The second equality is proven in the following:

‖ΣK‖
2
2 =

N

∑
j=1

ν j tr
(
H∗

j S jH j

)

=
N

∑
j=1

tr
(

ν jH
∗
j S jH j +Pj

(
C̃∗

j C̃ j +T j(S)
))

=
N

∑
j=1

tr
(

ν jH jH
∗
j S j +PjC̃

∗
jC̃ j

)
+
〈
P;T (S)

〉

=
〈
P;M

〉
+
〈
νN;S

〉
+
〈
L (P);S

〉

=
〈
P;M

〉
+
〈
(L (P)+νN);P

〉

=
〈
P;M

〉
=

N

∑
j=1

tr
(
C̃ jPjC̃

∗
j

)

completing the proof of the theorem.
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H∞ control

Now the following system is considered:

ΣC :





ẋ(t) =Aθx(t)+Bθu(t)+Jθw(t)

z(t) =Cθx(t)+Dθu(t)+Lθw(t)

y(t) =Eθx(t)

(4.12)

where u(t) ∈ R
p denotes the vector of control and y ∈ R

s the measured output. Again all

matrices are considered to be of compatible dimensions. The following assumption regarding

Ei is made:

Assumption 4.3. It is assumed that Ei has full row rank for all i ∈ N .

4.2.3 Bounded Real Lemma

As pointed out before, the controller considered does not depend on θ , but on θ̂ . Therefore

the matrix Ai in (3.16) changes to Ãik =Ai+BiKk and matrix C̃i to C̃ik =Ci+DiKk. Using

the same reasoning as in [89] with the hidden Markov process as explained before, Lemma 3.2

turns into the following one:

Lemma 4.2 (Extended Bounded Real Lemma). The system (4.5) is iMSS with a H∞ cost smaller

than γ if the following conditions hold: for ( j,l) ∈ V ,




R jlÃ jl + Ã′
jlR jl +∑(i,k)∈V ν(i,k)( j,l)Rik R jlH j C̃ ′

jl

H ′
jR jl −γI F ′

j

C̃ jl F j −γI


<0 (4.13)

with R jl > 0 for all ( j,l) ∈ V .
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4.3 Examples

This section gives some examples to illustrate the findings of this chapter. For this purpose

a Markov Process with 3 modes of operation as depicted in Figure 9 is considered.

Figure 9: Markov Chain with 3 modes of operation

1 2

3

Source: Author

This means that N = [1,2,3]. To each mode θ probabilities are assigned. In the most

general case M = N holds, so the joint Markov process takes in the space V = N ×M . For

the depicted chain this opens a space of 9 possible combinations of θ and θ̂ . Using the relations

(4.2) and (4.3) the general form of the transition matrix is shown below:

Π =

θ , θ̂ 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3






1,1 λ11 +q1
11 q1

12 q1
13 α1

21λ12 α1
22λ12 α1

23λ12 α1
13λ13 α1

13λ13 α1
13λ13

1,2 q1
21 λ11 +q1

22 q1
23 α2

21λ12 α2
22λ12 α2

23λ12 α1
13λ13 α1

13λ13 α1
13λ13

1,3 q1
31 q1

32 λ11 +qi
kk α3

21λ12 α3
22λ12 α3

23λ12 α1
13λ13 α1

13λ13 α1
13λ13

2,1 α1
11λ21 α1

12λ21 α1
13λ21 λ22 +q2

11 q2
12 q2

13 α1
11λ23 α1

12λ23 α1
13λ23

2,2 α2
11λ21 α2

12λ21 α2
13λ21 q2

21 λ22 +qi
22 q2

23 α1
11λ23 α1

12λ23 α1
13λ23

2,3 α3
11λ21 α3

12λ21 α3
13λ21 q2

31 q2
32 λ22 +q2

33 α1
11λ23 α1

12λ23 α1
13λ23

3,1 α1
11λ31 α1

12λ31 α1
13λ31 α1

21λ32 α1
22λ32 α1

23λ32 λ33 +q3
11 q3

12 q3
13

3,2 α2
11λ31 α2

12λ31 α2
13λ31 α2

21λ32 α2
22λ32 α2

23λ32 q3
21 λ33 +q3

22 q3
23

3,3 α3
11λ31 α3

12λ31 α3
13λ31 α3

21λ32 α3
22λ32 α3

23λ32 q3
31 q3

23 λ33 +q3
33

(4.14)

The transition matrix (4.14) shows a block diagonal structure. The blocks on the main diagonal

model these situations where the real mode of operation does not change. The values for qi
kl

are used to model spontaneous jumps, which means that the estimated mode of operation θ̂

changes, even though the underlying mode of operation θ of the plant does not change. The

values αk
jl are used to model the detection probabilities when both the mode of operation θ and

the estimated mode of operation jump at the same time. As for the remaining values, the values
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for λi j are taken from the transition matrix of the original plant and the others are calculated

using the relations (4.3).

In the following section the parametrization for the special cases introduced at the end

of Section 4.1.1 are discussed in more detail. For the initial transition matrix the following

numerical values for the transition matrix are used:

Π =




−0,5 0,4 0,1

0,2 −0,5 0,3

0,4 0,2 −0,6


 (4.15)

For all cases a graphical representation is shown. The numbers in the nodes represent the

actual values for the mode of operation and the estimated mode of operation, where the first

number corresponds to θ and the second one to θ̂

Remark 4.2. In the following section elements of matrices which are 0 will be left blank to

enhance readability.

Remark 4.3. To illustrate the affects on the matrix, in all cases a full N×N matrix is shown. If

a combination of θ , θ̂ does not exist the corresponding node is considered as inaccessible but

existing.

Figure 10: Graph representation of the reachable nodes in the case of perfect information

1,1

2,2

3,3

Source: Author

Example 2 (Perfect Information). This means that at every instance of time θ̂ = θ holds and

therefore the detector always provides a perfect information about the mode of operation. A

graphical representation is shown in Figure 10 To achieve this, the following detection proba-

bilities are considered:
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θ = 1 θ = 2 θ = 3

P(θ̂ = 1) 1 0 0

P(θ̂ = 2) 0 1 0

P(θ̂ = 3) 0 0 1

Using these values, the transition matrix turns into:

Π =

θ , θ̂ 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3





1,1 −0,5 0,4 0,1

1,2

1,3

2,1

2,2 0,2 −0,5 0,3

2,3

3,1

3,2

3,3 0,4 0,2 −0,6

This assumes that θ0 = θ̂0 holds. If this is not the case it is necessary to contemplate the

possibility that the first jump occurs from a joint mode of observation (θ , θ̂) where θ0 6= θ̂0, to

(θ , θ̂) where θ0 = θ̂0, thus introducing more elements to the matrix.

Π =

θ , θ̂ 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3





1,1 −0,5 0,4 0,1

1,2 −0,5 0,4 0,1

1,3 −0,5 0,4 0,1

2,1 0,2 −0,5 0,3

2,2 0,2 −0,5 0,3

2,3 0,2 −0,5 0,3

3,1 0,4 0,2 −0,6

3,2 0,4 0,2 −0,6

3,3 0,4 0,2 −0,6
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Figure 11: Graphical representation of the reachable nodes in the no information case

1,1

2,1

3,1

Source: Author

Example 3 (No information). This case considers θ̂ = const. For the example θ̂ = 1 ∀ t and

θ̂0 = 1 is chosen, the graphical representation is shown in Figure 11. As for the numerical

values, the following detection probabilities are used:

θ = 1 θ = 2 θ = 3

P(θ̂ = 1) 1 1 1

P(θ̂ = 2) 0 0 0

P(θ̂ = 3) 0 0 0

This turns the transition matrix into:

Π =

θ , θ̂ 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3





1,1 −0,5 0,4 0,1

1,2

1,3

2,1 0,2 −0,5 0,3

2,2

2,3

3,1 0,4 0,2 −0,6

3,2

3,3

It can be seen that, as in the perfect information case, the matrix could be reduced to the original

one, the only difference in this case is the information emitted by the detector.
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Figure 12: Graphical representation of the cluster case

1,1

2,2

3,2

Cluster

Source: Author

Example 4 (The Cluster Case). This is a combination of the cases presented before, for a

subset ND ⊂ N perfect information is assumed, while for the remaining NND = N −ND the

no information case is considered, that means that, while θ ∈ NND θ̂ = const is considered.

In general a multitude of and NND can be considered, meaning that there are various clusters

(which possibly emit different θ̂ ). For this example it is considered that N is divided in ND =

1 and NND = [2,3]. The corresponding graph is shown in Figure 12. Using the detection

probabilities it is modelled by:

θ = 1 θ = 2 θ = 3

P(θ̂ = 1) 1 0 0

P(θ̂ = 2) 0 1 1

P(θ̂ = 3) 0 0 0

Π =

θ , θ̂ 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3





1,1 −0,5 0,4 0,1

1,2

1,3

2,1

2,2 0,2 −0,5 0,3

2,3

3,1

3,2 0,4 0,2 −0,6

3,3
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Figure 13: Graphical representation of the case where there are no mutual jumps allowed

Source: Author

Example 5 (No mutual jumps). This case models that θ̂ only jumps when θ also jumps, hence

the detector does not show an independent dynamic. This affects the blocks on the main diago-

nal which themselves exhibit a diagonal structure thus eliminating the internal dynamic of the

detector. The corresponding graph is shown in Figure 13. The nodes which belong to the same

mode of operation θ are enclosed by orange boxes. While it is difficult to trace every connec-

tion between the nodes, it can be seen that there is no connection between the nodes where θ is

constant. For this example the following probabilities are considered:

θ = 1 θ = 2 θ = 3

P(θ̂ = 1) 0,6 0,1 0,1

P(θ̂ = 2) 0,3 0,7 0,1

P(θ̂ = 3) 0,1 0,2 0,8

Furthermore it is considered that these probabilities are independent from the previous mode of

operation. The corresponding transition matrix turns into:
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Π =

θ , θ̂ 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3





1,1 −0,5 0,04 0,28 0,08 0,01 0,01 0,08

1,2 −0,5 0,04 0,28 0,08 0,01 0,01 0,08

1,3 −0,5 0,04 0,28 0,08 0,01 0,01 0,08

2,1 0,12 0,06 0,02 −0,5 0,03 0,03 0,24

2,2 0,12 0,06 0,02 −0,5 0,03 0,03 0,24

2,3 0,12 0,06 0,02 −0,5 0,03 0,03 0,24

3,1 0,24 0,12 0,04 0,02 0,14 0,04 −0,6

3,2 0,24 0,12 0,04 0,02 0,14 0,04 −0,6

3,3 0,24 0,12 0,04 0,02 0,14 0,04 −0,6

Figure 14: Graphical representation for the case of delayed detections

1,1

2,1

3,1

1,2

1,3

2,2

3,2 2,3
3,3

Source: Author

Example 6 (Delayed detections). This case can occur when there is a perfect detector which

is able to detect any change of θ , but with a delay (see Figure 8 for an example trajectory).

A graphical representation is shown in Figure 14, where the transitions of the detector are

shown in orange and the transitions of the mode of operation in black. It is assumed that the

dynamic of the detector is much faster than the dynamic of the Markov Process (here factor 10
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is considered) which governs the evolution of θ .

Π =

θ , θ̂ 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3





1,1 −0,5 0,4 0,1

1,2 5 −5

1,3 5 −5

2,1 −5 5

2,2 0,2 −0,5 0,3

2,3 5 −5

3,1 −6 6

3,2 −6 6

3,3 0,4 0,2 −0,6

These cases represent the extreme cases where just one specific characteristic is modelled

When modelling real systems a mixture of the cases presented here would be the most com-

mon case. The influence of some of the parameters on the cost function is explored in the

corresponding chapters.
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5 STABILITY

The goal of this section is to present LMI sufficient conditions to obtain K = {Kl; l ∈M } ∈

K , in a way that stability in the mean-square sense is guaranteed for the system in a closed loop.

The solution is based on the Lyapunov-like equation L (P)< 0 and its dual T (P)< 0.

The problem is stated as follows: find a set of controllers K with Kl ∈ B(Rn,m), l ∈ M ,

which stabilize the closed-loop system (4.5) in a way that it is mean square stable (see Definition

4.1) for arbitrary initial conditions in V .

In this chapter Aik := Ai +BiKk holds for i ∈ N , k ∈ M . Therefore the feedback-loop can

be rewritten as

ẋ(t) = Aθ ,θ̂x(t) =AZ(t)x(t). (5.1)

5.0.1 Primal case

The first result is obtained using the Lyapunov-like equation L (P) < 0. For P = {Pik} ∈

H
n+, J := {Jik} ∈H

n+, Ll , l ∈ M , j ∈ I , set for ( j,l) ∈ V ,

Ψjl :=A jPjl +PjlA
′
j + ∑

(i,k)∈V

ν(i,k)( j,l)Pik +B jLl +L′
lB

′
j + J jl.

For fixed parameters ζl > 0, the following result provides an LMI sufficient condition for the

stochastic stabilizability of the system (4.5):

Theorem 5.1. If it is possible to find P= {Pik} ∈H
n+, Ll , Ul , l ∈M ( j), j ∈I , J= {Jik}∈H

n+

and ζl , such that for all ( j,l) ∈ V .

Φ jl :=




Ψjl B jLl 0

⋆ −Her(Ul) ζlPjl −Ul

⋆ ⋆ −J jl


< 0 (5.2)

holds, then Kl = ζlLlU
−1
l stochastically stabilizes system (6.2).
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Proof. This proof is inspired by the proof of Theorem 4 in [43]. For simplicity, set P̄jl = ζlPjl.

From (5.2) it follows that Her(Ul) =Ul +U ′
l > 0 and thus Ul is non-singular, J jl > 0 and,

without loss of generality, it can be assumed that P̄jl −Ul is non-singular (after perturbing

slightly (5.2) if necessary).

From (3.2) it follows that

U ′
l

(
(P̄jl −Ul)J

−1
jl (P̄jl −Ul)

′
)−1

Ul ≥ Her(Ul)− (P̄jl −Ul)J
−1
jl (P̄jl −Ul)

′. (5.3)

Define

T =

[
I 0 0

0 −I −(P̄jl −Ul)J
−1
jl

]
.

Obviously T has full rank, and hence is invertible. Pre and pos multiplying (5.2) by T and T ′

results in

T Φ jlT
′ =

[
Ψjl −B jLl

⋆ −Her(Ul)+(P̄jl −Ul)J
−1
jl (P̄jl −Ul)

′

]
< 0. (5.4)

Combining (5.3) and (5.4) results in

[
Ψjl −B jLl

⋆ −U ′
l

(
(P̄jl −Ul)J

−1
jl (P̄jl −Ul)

′
)−1

Ul

]
< 0. (5.5)

for ( j,l) ∈ V . Now applying the Schur complement yields to:

Ψjl +B jLlU
−1
l

(
(P̄jl −Ul)J

−1
jl (P̄jl −Ul)

′
)
(U−1

l )′(B jLl)
′ < 0. (5.6)

Recalling that Kl = ζlLlU
−1
l it is possible to obtain from (3.2):

B jLlU
−1
l

(
(P̄jl −Ul)J

−1
jl (P̄jl −Ul)

′
)(

U−1
l

)′ (
B jLl

)′

= (B jKlPjl −B jLl)J
−1
jl (B jKlPjl −B jLl)

′

≥ (B jKlPjl −B jLl)+(B jKlPjl −B jLl)
′− J jl. (5.7)

Combining (5.6) and (5.7) results in

0 >Ψjl +B jLlU
−1
l

(
(P̄jl −Ul)J

−1
jl (P̄jl −Ul)

′
)
(B jLlU

−1
l )′

≥Ψjl +(B jKlPjl −B jLl)+(B jKlPjl −B jLl)
′− J jl (5.8)

= (A j +B jKl)Pjl +Pjl(A j +B jKl)
′+ ∑

(i,k)∈V

ν(i,k)( j,l)Pik.

From (5.8) it follows that L (P)< 0 holds, completing the proof.



43

Remark 5.1. For the perfect information case (θ̂(t) = θ(t)) with V = {(i,i); i ∈ N } from

Theorem 3.1 iii) it follows that if the system (3.5) is stochastically stabilizable then there exists

Ki and Pii > 0, i ∈ N such that for all j ∈ N ,

(A j +B jK j)Pj j +Pj j(A j +B jK j)
′+ ∑

i∈N

ν(i,i)( j, j)Pii < 0. (5.9)

Considering ζ j = ζ for all j, L j =K jP
−1
j j , U j = ζ Pj j, J j j = εI, it is easy to see that (5.9) implies

that Her(A jPj j +B jL j)+∑i∈N ν(i,i)( j, j)Pii + εI + 1
2ζ

B jL jP
−1
j j L′

jB
′
j < 0 for ε sufficiently small

and ζ sufficiently large, and thus from Schur complement we have that (5.2) will hold.

5.0.2 Dual formulation

In the following the dual Lyapunov-like equation T (P)< 0 is used to obtain K = {Kl; l ∈

M } ∈ K using an LMI sufficient condition.

The following definitions are used: for X = {Xik} ∈ H
n+, J = {Jik} ∈ H

n+, Ll , l ∈ M ( j),

j ∈ I , Tik, Qik = {Q(ik),( jl)} ∈H
n+ for (i,k) ∈ V , set

ϒik := XikA′
i +AiXik +BiLk +L′

kB′
i +ν(i,k)(i,k)Xik + Jik

∆ik :=−Her(Tik)+ ∑
( j,l)∈I (i,k)

ν(i,k)( j,l)Q(ik),( jl).

Theorem 5.2. If it is possible to find X = {Xik} ∈ H
n+, Lk, Uk, Tik, Qik = {Q(ik),( jl)} ∈ H

n+,

k ∈ M (i), i ∈ I , J = {Jik} ∈H
n+, for fixed scalars ζl > 0, for all (i,k) ∈ V , that




ϒik Xik BiLk 0

⋆ ∆ik 0 0

⋆ ⋆ −Her(Uk) ζkXik −Uk

⋆ ⋆ ⋆ −Jik



< 0 (5.10)

[
Q(ik),( jl) T ′

ik

⋆ X jl

]
> 0, ( j,l) ∈ V (5.11)

holds, then Kk = ζkLkU
−1
k stochastically stabilizes system (4.5).

Proof. As shown in [14], we have from (5.11) and (3.2) that ∆ik ≥−X̃ik, where

X̃ik :=
(

∑
( j,l)∈I (i,k)

ν(i,k)( j,l)X
−1
jl

)−1

.



44

From this, (5.10), and applying a transformation as in (5.4) we get from (3.2) that




ϒik Xik −BiLk

⋆ −X̃ik 0

⋆ ⋆ −U ′
k

(
(X̄ik −Uk)J

−1
ik (X̄ik −Uk)

′
)−1

Uk


< 0 (5.12)

where X̄ik = ζkXik. From (5.12) and the Schur complement we get that ϒik + XikX̃−1
ik Xik +

BiLkU
−1
k

(
(X̄ik−Uk)J

−1
ik (X̄ik−Uk)

′
)
(U−1

k )′(BiLk)
′ < 0. Recalling that Kk = ζkLkU

−1
k we obtain

from the last inequality and a similar reasoning as in the proof of Theorem 5.1 that T (P) < 0

is satisfied with Pik = X−1
ik , completing the proof.

Remark 5.2. For the perfect information case (θ̂(t) = θ(t)) with V = {(i,i); i ∈ N } from

Theorem 3.1 v) it follows that, if system (3.5) is stochastically stabilizable, then there exists Ki

and Pii > 0, i∈N such that for all j ∈N , Pii(Ai+BiKi)+(Ai+BiKi)
′Pii+∑ j∈N ν(i,i)( j, j)Pj j <

0 and thus

Her(AiXii +BiLi)+Xii

(
∑

j∈N

ν(i,i)( j, j)X
−1
j j

)
Xii < 0 (5.13)

where Xii = P−1
ii , Li = KiP

−1
ii .

Now considering ζi = ζ for all i, Ui = ζ P−1
ii , Jii = εI, Tii =

(
∑ j 6=i ν(i,i)( j, j)X

−1
j j

)−1

and Q(ii),( j j)=

TiiPj jTii+εI, it is easy to see that (5.11) is satisfied and that ∆ii =−Tii−ν(i,i)(i,i)εI. From (5.13)

it follows that, if it is possible to find ε0 > 0 sufficiently small and ζ sufficiently large such that

Her(AiXii +BiLi)+ν(i,i)(i,i)Xii −Xii∆
−1
ii Xii + ε0I + 1

2ζ
BiLiXiiL

′
iB

′
i < 0 , and thus using the Schur

complement (5.10) holds.

Remark 5.3. Remarks 5.1 and 5.2 show that for the perfect information case the LMIs in

Theorems 5.1 and 5.2 will provide for ε sufficiently small and ζ sufficiently large a necessary

and sufficient condition for the existence of a stochastic stabilizing controller for (4.5). In

general the conditions are just sufficient and it is not possible to determine if one is stronger

than the other. Thus it is highly recommended to test both methods and choose the one which

leads to the best result for the given problem.
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6 H2-CONTROL

This chapter discusses the H2-control problem for MJLS, in particular the state-feedback

case. The problem is stated as follows: Consider the system

ΣH2 :





ẋ(t) =Aθx(t)+Bθu(t)

x(0) = x0, θ(0) = θ0

(6.1)

where the matrices Aθ and Bθ depend on the mode of operation as described in the previous

chapter. The goal is to find controllers K = {Kl} ∈ K that stabilize the closed loop system

ΣH2cl :





ẋ(t) =Aθx(t)+BθKθ̂x(t)

x(0) = x0, θ(0) = θ0

(6.2)

in the sense of mean square stability and has guaranteed H2 cost.

The chapter is divided in 3 sections: the first section discusses the problem of stabilizing

the system in the mean square sense. In the following section the solution is extended to the H2

control problem. The chapter finishes with numerical results in the last section.

6.1 The H2-control problem

This section extends the previous result for mean-square-stability by including a measure

of optimality. Specifically the notion of H2-Optimality is used.

The system

Σθ :





ẋ(t) =Aθx(t)+Bθu(t)+Hθw(t)

z(t) =Cθx(t)+Dθu(t)

x(0) = 0, θ(0) = θ0

(6.3)

with Hi ∈ B(Rn,r) for each i ∈ N should be stabilized by controllers K = {Kl} ∈ K using

state-feedback, such that the closed loop system (6.2) is mean-square-stable (see Definition 4.1)
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and has a guaranteed H2 cost (see Definition 3.7). As before, it is assumed that the controller

depends on the estimated mode of operation θ̂ and not on θ .

6.1.1 Primal Case

The following result provides an LMI optimization problem in order to get Kl that stabilizes

(6.2) with a guaranteed H2 cost, based on the controllability Gramian and Theorem 5.1.

Theorem 6.1. For fixed scalars ζl > 0 if we can find P = {Pik} ∈ H
n+, W = {Wik} ∈H

n+, Ll ,

Ul, l ∈ M ( j), j ∈ I , J = {Jik} ∈H
n+, solution of the following LMI optimization problem:

min ∑
(i,k)∈V

tr(Wik)

subject, for all ( j,l) ∈ V , to
[

Wjl ζ
−1/2

l C jUl +ζ
1/2

l D jLl

⋆ Her(Ul)−ζlPjl

]
> 0 (6.4)




Ψjl +η jlH jH
′
j B jLl 0

⋆ −Her(Ul) ζlPjl −Ul

⋆ ⋆ −J jl


< 0 (6.5)

then Kl = ζlLlU
−1
l stochastically stabilizes system (6.3) and

inf
K̄∈K

‖ΣK̄‖
2
2 ≤ ∑

(i,k)∈V

tr(Wik). (6.6)

Proof. From Theorem 5.1 and (6.5) it follows that Kl = LlU
−1
l stabilizes system (6.2) and more-

over L (P)+ηN < 0. Therefore it is possible to find R = {R jl} ∈H
n+ such that L (P)+ηN+

R = 0. From Theorem 4.1 it follows that ‖ΣK‖
2
2 = ∑( j,l)∈V tr

(
(C j +D jKl)P̂jl(C j +D jKl)

′
)
,

where K = {Kl} and P̂ = {P̂jl} ∈ H
n+ is the unique solution of the controllability Gramian

L (P̂) + ηN = 0. Thus L (P − P̂) + R = 0 and from Theorem 3.25 in [17] it follows that

P− P̂ ≥ 0. If we show that Wjl ≥ (C j +D jKl)Pjl(C j +D jKl)
′ then clearly we have that

inf
K̄∈K

‖ΣK̄‖
2
2 ≤ ‖ΣK‖

2
2 = ∑

( j,l)∈V

tr
(
(C j +D jKl)P̂jl(C j +D jKl)

′
)

≤ ∑
( j,l)∈V

tr
(
(C j +D jKl)Pjl(C j +D jKl)

′
)
≤ ∑

( j,l)∈V

tr
(
Wjl

)

showing (6.6). From (3.2) and (6.4) it follows that

[
Wjl ζ

−1/2

l C jUl +ζ
1/2

l D jLl

⋆ 1
ζl

U ′
l P−1

jl Ul

]
> 0. (6.7)
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Using the Schur complement and (6.7):

Wjl > (C jUl +ζlD jLl)U
−1
l Pjl(U

−1
l )′(C jUl +ζlD jLl)

′

= (C j +D jKl)Pjl(C j +D jKl)
′

completing the proof.

Remark 6.1. Using the same reasoning as in Remark 5.1 for the perfect information case and

considering Wii = (Ci +DiKi)Pii(Ci +DiKi)
′+ εI in (6.4), follows that for ε sufficiently small

and ζ sufficiently large the LMI optimization problem in Theorem 6.1 will provide an ε ′-optimal

solution for the H2 control problem.

6.1.2 Dual Case

The following LMI optimization problem is based on the observability Gramian and Theo-

rem 5.2. It provides a solution to calculate Kl that stabilizes (6.2) with a guaranteed H2 cost.

Theorem 6.2. For fixed scalars ζl > 0 and ε > 0 if it is possible to find X = {Xik} ∈ H
n+,

Lk, Uk, Tik, Qik = {Q(ik),( jl)} ∈ H
n+, k ∈ M (i), i ∈ I , J = {Jik} ∈ H

n+, Z = {Zik} ∈ H
n+,

Ξ = {Ξik} ∈H
n+, Y = {Yik} ∈H

n+, solution of the following LMI optimization problem:

min ∑
(i,k)∈V

ηiktr(Ξik)

subject, for all (i,k) ∈ V , to (5.11) and



ϒik +Zik Xik BiLk 0

⋆ ∆ik 0 0

⋆ ⋆ −Her(Uk) ζkXik −Uk

⋆ ⋆ ⋆ −Jik



< 0 (6.8)

[
εZik Xik

⋆ Her(Uk)− εYik

]
> 0,

[
Ξik H ′

i

⋆ Xik

]
> 0 (6.9)

[
Yik (CiUk +ζkDiLk)

′

⋆ I

]
> 0 (6.10)

then Kk = ζkLkU
−1
k

stochastically stabilizes system (6.3) and

inf
K̄∈K

‖ΣK̄‖
2
2 ≤ ∑

(i,k)∈V

ηiktr(Ξik). (6.11)
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Proof. From Lemma 1 in [44] and the first inequality in (6.9) it follows that

Zik > Xik(U
−1
k )′YikU

−1
k Xik (6.12)

and by using (6.10):

Yik > (CiUk +ζkDiLk)
′(CiUk +ζkDiLk).

Combining these results leads to

Zik > Xik(Ci +DiKk)
′(Ci +DiKk)Xik (6.13)

Following the same reasoning as in Theorem 5.2, from (5.11) and (6.8) it follows that

ϒik +Zik +XikX̃−1
ik Xik +BiLkU

−1
k

(
(X̄ik −Uk)J

−1
ik (X̄ik −Uk)

′
)
(U−1

k )′(BiLk)
′ < 0 (6.14)

Using the results presented before and recalling that Kk = ζkLkU
−1
k

it follows that:

ϒik +Xik(Ci +DiKk)
′(Ci +DiKk)Xik +XikX̃−1

ik Xik

+BiLkU
−1
k

(
(X̄ik −Uk)J

−1
ik (X̄ik −Uk)

′
)
(U−1

k )′(BiLk)
′ < 0

From the last inequality and a similar reasoning as in the proof of Theorem 5.2 it follows that

T (P)+M < 0 with Pik = X−1
ik . Take P̂ = {P̂jl} ∈ H

n+ the unique solution of the observabil-

ity Gramian T (P̂)+M = 0. Thus T (P− P̂)+R = 0 where R = {R jl} ∈ H
n+ is such that

T (P)+M+R = 0. From Theorem 3.25 in [17] it follows that P− P̂ ≥ 0. Using the second

inequality in (6.9) results in Ξik > H ′
ikPikHik ≥ H ′

ikP̂ikHik, and thus infK̄∈K ‖ΣK̄‖
2
2 ≤ ‖ΣK‖

2
2 =

∑(i,k)∈V ηiktr
(
H ′

ikP̂ikHik

)
≤ ∑(i,k)∈V ηiktr

(
Ξik

)
showing (6.11).

Remark 6.2. For the primal case (Theorem 6.1) it follows that the maximum number of ma-

trix variables is nV = 3NM + 2M and the the maximum number of LMIs is nL = 2NM. The

dual case (Theorem 6.2) results in nV = 6NM+(NM)2 +2M and nL = 4NM, being thus more

computationally demanding.

As pointed out in Remark 5.3 these conditions are only sufficient and it is not possible to

judge if one is stronger than the other.

6.2 Numerical Example

The following section presents a numerical evaluation of the results obtained before. The

plant shown in Example 1 is used to evaluate the effects of the two parameters αk
jl and qi

kl on

the H2 upper-bound-cost.
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The number of modes of operation θ is considered as 3. This represents the worst-case

scenario where in every mode of operation the detector could detect any mode of operation.

For the evaluation MATLAB is used in combination with the YALMIP-Toolbox [59] and

the solver MOSEK.

Recall from (4.2) that λi j represents the transition rate for θ(t), qi
kl the transition rate for

θ̂(t) conditioned on θ(t) = i. The factor αk
jl describes the probability of a jump of the observa-

tion state θ̂ (t) from state k to state l whenever there is a jump of the hidden Markov parameter

θ(t) from a state i to a state j. Hence, by varying this parameter it is possible to describe the

probability of the right or wrong detection of a jump. For simplicity it is assumed that all αk
jl

are modified equally as follows (recall that N = 3):

αk
jl =





γ for j = l

(1− γ)/(N−1) for j 6= l

and also that qi
kl will be equal for all i, k, and l. The dashed line in Figure 15 shows the H2

upper bound cost in function of γ with qi
kl = 0 while the solid line shows the cost with qi

kl = 1

for all i,k,l. As expected, the upper-bound H2 cost increases for a greater value of qi
kl since

this parameter increases the uncertainty of the detector. Both curves reach their minimum at

γ = 1. The highest cost is located at γ = 1/3 where the detection probabilities are equally likely

to 1/3. In this case the feedback controller matrices are equal for all modes of operation, and

hence the information from the detector is useless (this case is equivalent to the robust control

case). According to Remark 6.2 the number of variables in this case for the primal problem is

equal to 33 and the total number of LMIs is 18. On a standard system (i5 / Windows 7 64 Bit,

8GB Ram, Matlab 2015b, YALMIP-Toolbox [59] and the solver MOSEK) this LMI-condition

is solved in less than 0.4 seconds. For the dual case there are 141 variables and 36 LMIs, and

the computation time was 2.7 seconds.

Figure 16 shows the behaviour of the state variable x3 = h1 corresponding to the switches

given by θ(t) and θ̂(t). It is assumed that at t = 2.3s the lower valve is affected by a failure

which reduces the flow to 25% of its original value. Thus at this moment the mode of operation

(θ ) jumps from 1 to 2. As we allow random jumps of the detector (qi
kl = 1) at t = 0.1s we

have that θ̂ jumps from 1 to 2, which represents a false alarm. Since the system is in a steady-

state condition at this moment, this false alarm does not have an impact on the state x3, as

shown in Figure 16. At time t = 3s the reference value for the water level in tank T1 is changed

to h1 = 0.1. It can be seen that the system tracks this change, even though θ and θ̂ do not
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Figure 15: H2 upper-bound cost for the two-tanks example in function of the parameters γ and

qi
kl = 0 (dashed line), qi

kl = 1 (continuous line), and ζ = 40
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correspond to each other at all times and the controller in some moments is reconfigured for

another mode of operation.
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Figure 16: Simulation of the Systems behaviour, x3(t) = h1(t) (in meters), θ(t) (dashed) and

θ̂(t) (solid) for the two-tanks system
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7 H∞-CONTROL

This chapter considers the H∞ control problem. The goal is to control the system (4.12)

with an output feedback law using only the observed mode of operation θ̂ , that is, in the form

u(t) =Kθ̂y(t) (7.1)

such that the closed loop system

Σcl :




ẋ(t) =

(
Aθ +BθKθ̂Eθ

)
x(t)+Hθw(t)

z(t) =
(
Cθ +DθKθ̂Eθ

)
x(t)+Fθw(t)

(7.2)

is internally mean square stable and has a guaranteed H∞ cost (see Definitions 3.5 and 3.8).

7.1 Main results

First the following result is recalled (see [99]). From Assumption 4.3 there exist non-

singular matrices T j such that for each j ∈ N ,

E jT j =
[
I 0

]
. (7.3)

In the remainder the sum in element (1,1) in the LMI of Lemma 4.2 is represented in the fol-

lowing way:

∑
( j,l)∈V

ν(i,k)( j,l)Rik = ∑
(i,k)∈V( j,l)

ν(i,k)( j,l)X
−1
ik +ν(i,k)(i,k)X

−1
jl

= Π jlD
−1
jl Π jl +ν( j,l)( j,l)X

−1
jl (7.4)
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where

V( j,l) = {(i,l) ∈ V ;(i,l) 6= ( j,k) and ν(i,k)( j,l) 6= 0}

= {r( j,l)(1), . . . ,r( j,l)(τ( j,l));r( j,l)(ι) ∈ V ,ι = 1, . . . ,τ( j,l)}

Π jl =
[√

ν( j,l)r( j,l)(1)
I . . .

√
ν( j,l)r( j,l)(τ( j,l))

I
]

D jl =diag(Xr( j,l)(1)
, . . . ,Xr( j,l)(τ( j,l))

)

and X jl =R−1
jl .

The next Theorem presents, through an LMI constraint, a way to design a controller so that

system (2) is internally mean-square-stable with an H∞ cost smaller than γ .

Theorem 7.1. The system (4.5) is iMSS with an H∞ - cost smaller than γ if there are matrices

X jl > 0, Gl and Vl, and scalars ε j > 0 with j ∈ N and l ∈ M such that the following set of

LMI is satisfied:




ν( j,l)( j,l)X jl H j 0 X jl X jlΠ jl

H ′
j −γI F ′

j 0 0

0 F j −γI 0 0

X ′
jl 0 0 0 0

Π ′
jlX

′
jl 0 0 0 −D jl




+

+Her







A jT jGl +B j

[
Vl 0

]

0

C jT jGl +D j

[
Vl 0

]

−T jGl

0







ε jI

0

0

I

0




′


<0

(7.5)

for all ( j,l) ∈ V , with Gl in the following form:

Gl =

[
Gl1 0

Gl2 Gl3

]
. (7.6)

Moreover the feedback controller matrices are given by:

Kl = VlG
−1
l1 , k ∈ M . (7.7)

Proof. The proof is inspired by the proofs in [81] and [99]. Suppose that there are matrices

X jl > 0, Gl and Vl, and scalars ε j > 0 with j ∈ N and k ∈ M such that (7.5) and (7.6) are

satisfied. From (7.5) we get that T jGl +G′
lT

′
j > 0 and since T j is non-singular, we get that

Gl +G′
l > 0, so that Gl is non-singular. From this and (7.6) we get that Gl1 is non-singular, so
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that Kl in (7.7) is well defined. Noticing that Vl =KlGl1 we get that

[
Kl 0

]
Gl =

[
Kl 0

][Gl1 0

Gl2 Gl3

]
=
[
Vl 0

]
. (7.8)

Thus from (7.3),

A jT jGl +B j

[
Vl 0

]
=A jT jGl +B j

[
Kl 0

]
Gl

=A jT jGl +B jKl

[
I 0

]
Gl

=
(
A j +B jKlE j

)
T jGl.

Using the same reasoning we get that

C jT jGl +D j

[
Vl 0

]
=
(
C j +D jKlE j

)
T jGl.

Thus we conclude that (7.5) is equivalent to




ν( j,l)( j,l)X jl H j 0 X jl X jlΠ jl

H ′
j −γI F ′

j 0 0

0 F j −γI 0 0

X ′
jl 0 0 0 0

Π ′
jlX

′
jl 0 0 0 −D jl




+

+Her







A j +B jKlEj

0

C j +D jKlEj

−I

0




T jGl




ε jI

0

0

I

0




′


<0.

(7.9)

Set Ã jl = (A j +B jKlE j), C̃ jl = (C j +D jKlE j) and notice that

[
Ã′

jl 0 C̃ ′
jl −I 0

]
W = 0

where W is defined as

W =




I 0 0 0

0 I 0 0

0 0 I 0

Ã′
jl 0 C̃ ′

jl 0

0 0 0 I




.
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We have from the Finsler‘s Lemma (see Lemma 3.1) that (7.9) is equivalent to

W ′




ν( j,l)( j,l)X jl H j 0 X jl X jlΠ jl

H ′
j −γI F ′

j 0 0

0 F j −γI 0 0

X ′
jl 0 0 0 0

Π ′
jlX

′
jl 0 0 0 −D jl




W<0

resulting in




ν( j,l)( j,l)X jl +X jlÃ jl + Ã′
jlX

′
jl H j X jlC̃

′
jl X jlΠ jl

H ′
j −γI F ′

j 0

C̃ jlX
′
jl F j −γI 0

Π ′
jlX

′
jl 0 0 −D jl



<0.

From Schur’s Lemma it follows that




Γjl H j X jlC̃
′
jl

H ′
j −γI F ′

j

C̃ jlX
′
jl F j −γI


<0 (7.10)

with Γjl = ν( j,l)( j,l)X jl +X jlÃ jl + Ã′
jlX

′
jl +X jlΠ jlD

−1
jl Π

′
jlX

′
jl . Now by pre and pos multi-

plying (7.10) by diag(X−1
jl ,I,I) and substituting X−1

jl by R jl we get that




Ξ jl R jlH j C̃ ′
jl

H ′
jR jl −γI F ′

j

C̃ jl F j −γI


<0 (7.11)

where

Ξ jl = ν( j,l)( j,l)X
−1
jl + Ã jlX

−1
jl +X−1

jl Ã′
jl +Π jlD

−1
jl Π

′
jl

so that, from (7.4), Ξ jl = ∑( j,l)∈V ν(i,k)( j,l)Rik. From (7.11) and Lemma 4.2 we get the desired

result.

Remark 7.1 (On the size of the problem). Recalling that m denotes the number of outputs,

n the number of state variables, r the number of inputs, while N stands for the number of

Markov states (modes of operation) and M for the number of observed modes, it is worth to

mention that the dimension of the LMI matrix given in Theorem 7.1 is, in the worst case (with

V with NM elements, and Vik with NM − 1 elements) equal to (NM + 1)n+m+ r and it is

necessary to consider NM LMIs, and (N + 2)M matrix variables. In comparison, the method

given by [81] yields to N LMI matrices with dimension (N +1)n+ r+mM, and NM +N +M
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matrix variables. The reason for this difference lies in the modelling of the uncertainties. The

authors of [81] incorporate the uncertainties in the systems matrices while in our approach it

is necessary to create a LMI for every possible combination of θ and θ̂

Remark 7.2 (LMI optimization problem). To minimize the upper bound for the H∞ cost of the

control problem, the parameter γ in (7.5) needs to be minimized, since ‖Gw‖∞ < γ

Remark 7.3 (Perfect Information). For the case in which θ̂(t) = θ(t) for all t ∈ R
+ the LMI

condition (7.5) reduces to the same as in Corollary 4.1 in [81].

Remark 7.4 (On the influence of εi). There exists no obvious rule on how to choose the param-

eters εi in (7.5). Therefore it is necessary to apply an appropriate algorithm to find the set of εi

which will result in the lowest parameter γ in (7.5). Depending on the size of the problem this

might be computationally expensive. Sequence convex optimization is a possible approach to

this problem.

Remark 7.5. As in Remark of [99] the static output feedback design can also be used to design

a dynamic output control. In this scenario it is desired to obtain a control in the following form:

ΣF :





˙̂x(t) = Âθ̂ x̂(t)+ B̂θ̂y(t)

u(t) = Ĉθ̂ x̂(t)+D̂θ̂y(t)
(7.12)

with, as before, y(t) =Eθx(t). From (7.12) and (4.5) we get the following closed-loop system:

ΣCLF :





ẋ(t) =
(
Aθ +Bθ D̂θ̂Eθ

)
x(t)+BθĈθ̂ x̂(t)+Hθw(t)

˙̂x(t) = Âθ̂ x̂(t)+ B̂θ̂Eθx(t)

z(t) =
(
Cθ +DθD̂θ̂Eθ

)
x(t)+DθĈθ̂ x̂(t)+Fθw(t)

(7.13)

Now defining for i ∈ N ,

x̄(t) =

[
x(t)

x̂(t)

]

Ēi =

[
0 I

Ei I

]
, Āi =

[
Ai 0

0 0

]

B̄i =

[
0 Bi

I 0

]
, H̄ =

[
Hi

0

]

C̄i =
[
Ci 0

]
, D̄i =

[
0 Di

]

(7.14)
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we get from (7.13) and (7.14) that

˙̄x(t) =
(
Āθ + B̄θK̂θ̂ Ēθ

)
x̄(t)+H̄θw(t)

z(t) =
(
C̄θ +D̄θK̂θ̂Ē

)
x̄(t)+Fθw(t)

where for l ∈ M ,

K̂l =

[
Âl B̂l

Ĉl D̂l

]
(7.15)

so that the static output feedback design method can be applied with the matrices as in (7.14).

7.2 Numerical evaluation

This section presents a numerical evaluation of the results presented in the previous section.

The following model is used:

Example 7. The example is adapted from [75] and consists of two coupled tanks T1 and T2 as

shown in Figure 3.

We assume that a detector θ̂(t), also taking values in M = N = {1,2,3}, will provide an

estimate of the real mode of operation (valve condition) according to the model described in

(4.1), (4.2).

This model is used in the following to evaluate the influence of the parameter ε (see equation

7.5) and the detection probability as well as discussing the behaviour of the resulting controller.

The first graph (Figure 17) shows the influence of the parameters εi and β . To facilitate the

analysis we use a constant value for all εi. As in [89] the detection probability is changed in the

following way: All αk
jl are modified as follows: αk

jl = β for j = l, αk
jl = (1−β )/2 for j 6= l, and

also that qi
kl will be equal for all i, k, and l. The parameter εi is continuously changed from 0.5

to 2 while β is changed from 0 to 1. Looking at the influence of εi, it can be seen that there is a

minimum at about εi = 0.4. Looking at the influence of the uncertainty, which is represented in

β , it can be seen that the curve follows a similar trajectory as in [89].

For the minimal epsilon, the trajectory is shown in Figure 18. The highest cost is located

at β = 1/3, which is highlighted with a red line, as this is the point where the uncertainties are

at their highest. At this point the result is equal to robust control as there exists no information

on the mode of operation at all. Hence the calculated controller-gains are the same for all

modes of operation. The lowest costs are located at β = 1, which is expected as this is the
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Figure 17: Cost-Surface of the two tank example
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point of the perfect information case. A simulation of the system with the initial state x =[
0.1 0 0 0 0.1 0 0

]′
is shown in Figure 19. The first graph shows the mode of operation,

the second shows the observed mode of operation and the third shows the development of the

states. It can be seen that, despite the fact that θ and θ̂ sometimes show diverging values during

the simulation, all states converge to the operating point at the end of the simulation, showing

that the method presented in this monograph is capable to stabilize the simulated system even

in the presence of uncertainties concerning the mode of operation.
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Figure 18: Cost for the two tank example at optimal epsilon
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Figure 19: Response to initial conditions with ε = 0.4 and β = 0.8
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8 FILTERING

The goal is to design a filter that estimates the output of a linear system while guaranteeing

that the estimation error is subject to certain bounds. This section introduces the system un-

der consideration and defines the bounds more precisely. The following Markov Jump Linear

System (MJLS) is considered:

Σ :





ẋ(t) =Aθx(t)+Bθw(t)

z(t) =Cθx(t)+Dθw(t)

y(t) = Lθx(t)

(8.1)

with x(t) as the state of the system, the disturbance input w(t), the outputs y(t) and z(t).

All matrices are of compatible dimensions and their values depend on the development of a

continuous-time Markov process as before.

8.1 Problem statement

The problem that should be solved is the following: the value of the output z(t) of system

(8.1) should be estimated by using the linear filter

ΣF :





˙̂x(t) = Âθ̂ x̂(t)+ B̂θ̂y(t)

ẑ(t) = L̂θ̂ x̂(t)+ Êθ̂y(t)
(8.2)

while the estimation error is limited. The values of the matrices Â, B̂, L̂ and Ê depend on the

estimated mode of operation. The estimation error z∆ = z(t)− ẑ(t) is expressed as follows:

z(t)− ẑ(t) = Lθx(t)− L̂θ̂ x̂(t)− Êθ̂Cθx(t)− Êθ̂Dθw(t) (8.3)

=
(
Lθ − Êθ̂Cθ

)
x(t)− L̂θ̂ x̂(t)− Êθ̂Dθw(t) (8.4)
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and the state ˙̂x(t):

˙̂x(t) = Âθ̂ x̂(t)+ B̂θ̂Cθx(t)+ B̂θ̂Dθw(t) (8.5)

(8.6)

Both equations can be combined forming an augmented system:

[
ẋ(t)

˙̂x(t)

]
=

[
Aθ 0

B̂θ̂Cθ Aθ̂

][
x(t)

x̂(t)

]
+

[
Bθ

B̂θ̂Dθ

]
w(t)

z∆ (t) =
[
Lθ − Êθ̂Cθ −L̂θ̂

][ẋ(t)
˙̂x(t)

]
− Êθ̂Dθw(t)

(8.7)

For the remainder, the following abbreviations are used:

Āθ ,θ̂ =

[
Aθ 0

B̂θ̂Cθ Aθ̂

]

B̄θ ,θ̂ =

[
Bθ

B̂θ̂Dθ

]

L̄θ ,θ̂ =
[
Lθ − Êθ̂Cθ −L̂θ̂

]

Ēθ ,θ̂ =−Êθ̂Dθ

and hence:

˙̄x(t) = Āθ ,θ̂ x̄(t)+ B̄θ ,θ̂w(t)

z∆ (t) = L̄θ ,θ̂ x̄(t)+ Ēθ ,θ̂w(t)
(8.8)

It should be noted that all the matrices in the last equation depend as much on the mode of

operation θ as on the estimated mode of operation θ̂ . The goal of a bounded error is defined as

follows:

• The System (8.8) representing the error should be internally mean-square-stable. A mean-

square stable error system guarantees that the estimation-error is bounded, and

• The effect of external disturbance in sense of the H∞ norm of the error should be bounded

by γ .

The following paragraphs introduce a design-method for the filter (8.2) based on linear matrix

inequalities which guarantees the two goals defined above.
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8.2 Main result

Using the same reasoning as in [89, 91] the LMI-Condition of the bounded real Lemma

(see Chapter 3) turns into:

Mi(P) =

[
A′

ikPik +PikAik +∑ j,l∈SxM ν(ik),( jl)Pjl +C′
ikCik PikJik +C′

ikLik

⋆ L′
ikLik − γ2I

]
≺ 0 (8.9)

Applied to the system (8.8) the LMI condition transforms in:

Mi(P) =

[
Ā′

ikPik +PikĀik +∑ j,l∈SxM ν(ik),( jl)Pjl + L̄′
ikL̄ik PikB̄ik + L̄′

ikĒik

⋆ Ē′
ikĒik − γ2I

]
≺ 0 (8.10)

Now the new LMI based method is presented, see [79] for a similar result under different

assumptions.

Theorem 8.1. There exists a filter guaranteeing that the System (8.3) representing the error is

iMSS and guarantees a H∞ cost smaller than γ if the following is feasible: there are matrices

Pik ∈ R
2n×2n, Qi ∈ R

(4n+r)×n, Uik ∈ R
2n×2n, Vik ∈ R

r×2n, Wik ∈ R
r×r, Xk ∈ R

n×n, Yk ∈

R
n timesq, Sk ∈ R

p×n, Tk ∈ R
p×q and ϒik ∈ R

(4n+r)×n such that the conditions

Pik ≻ 0 (8.11)

Γik +Her(QiΦi)+Her (ϒikΨik)≺ 0 (8.12)

Ξik =




Uik V ′
ik

[
−C ′

iT
′
k +L′

i

−S′
k

]

Vik Wik −D′
iT

′
k[

−TkCi +Li −Sk

]
−TkDi I



≻ 0 (8.13)

can be fulfilled, with

Γik =




Uil +∑ j,l∈V ν(i,k)( j,l)Pj,l P ′
ik V ′

ik

Pik 0 0

Vik 0 −γ2I+Wik


 (8.14)

Ψik =
[
YkCi Xk 0 −I YkDi

]
(8.15)

Φi =
[
Ai 0 −I 0 Bi

]
(8.16)
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If the problem stated above is feasible, the matrices of the filter (8.2) are given by

Âk =Xk (8.17)

B̂k = Yk (8.18)

L̂k = Sk (8.19)

Êk = Tk (8.20)

Proof. Using the relations stated above, it is possible to make the following substitutions in

(8.15):

Ψik =
[
YkCi Xk 0 −I YkDi

]

=
[
B̂kCi Âk 0 −I B̂kDi

]

If (8.12) is feasible, we get:

Γi,k +Her

([
Qi ϒik

][Φi

Ψik

])
≺ 0 (8.21)

Consider (8.7):

[
Φi

Ψik

]
=

[
Ai 0 −I 0 Bi

B̂kCi Âk 0 −I B̂kDi

]

which can be written as:

[
Φi

Ψik

]
=
[
Āik −I B̄ik

]
(8.22)

For the projection lemma [42] the following fact is used:

ker
[
Āik −I B̄ik

]
= im




I 0

Āik B̄ik

0 I


 (8.23)

Using

Tik =




I 0

Āik B̄ik

0 I
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as a transformation matrix on Γik results in:




I 0

Āik B̄ik

0 I


Γik




I 0

Āik B̄ik

0 I




′

(8.24)

=

[
P ′

ikĀik + Ā′
ikPik +Uil +∑ j,l∈V ν(i,k)( j,l)Pj,l P ′

ikB̄ik +V ′
ik

B̄′
ikPik +Vik −γ2I+Wik

]
(8.25)

=

[
P ′

ikĀik + Ā′
ikPik +∑ jl∈V ν(i,k)( j,l)Pj,l P ′

ikB̄ik

B̄′
ikPik −γ2I

]
+

[
Uik V ′

ik

Vik Wik

]
≺ 0 (8.26)

The second matrix of (8.26) is equal to the upper left block ([1 : 2][1 : 2]) of Ξ (8.13). Applying

the Schur complement to Ξik leads to:

Ξik > 0 (8.27)

[
Uik V ′

ik

Vik Wik

]
−




[
−C ′

iT
′
k +L′

i

−S′
k

]

−D′
iT

′
k


I
[[
−TkCi +Li −Sk

]
−TkDi

]
≻ 0 (8.28)

From (8.28) it follows that:

[
Uik V ′

ik

Vik Wik

]
>




[
−C ′

iT
′
k +L′

i

−S′
k

]

−D′
iT

′
k



[[
−TkCi +Li −Sk

]
−TkDi

]

Now recalling relation (8.20) and (8.19):

[
Uik V ′

ik

Vik Wik

]
>




[
−C ′

i Ê
′
k +L′

i

−L̂′
k

]

−D′
iÊ

′
k



[[
−ÊkCi +Li −L̂k

]
−ÊkDi

]

so:

0 ≻

[
P ′

ikĀik + Ā′
ikPik +∑ jl∈V ν(i,k)( j,l)Pj,l P ′

ikB̄ik

B̄′
ikPik −γ2I

]
+

[
Uik V ′

ik

Vik Wik

]

≻

[
P ′

ikĀik + Ā′
ikPik +∑ jl∈V ν(i,k)( j,l)Pj,l P ′

ikB̄ik

B̄′
ikPik −γ2I

]
+

[
L̄′

ik

Ē′
ik

][
L̄ik Ēik

]

which is equivalent to the bounded real lemma (8.9) and thus closing the proof.
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9 CONCLUSIONS

9.1 Summary

In the previous chapters, continuous-time MJLS with partial information on the mode of

operation have been discussed and design procedures based on LMI equations for the following

problems have been derived:

• Stochastic stabilizability

• H2-control

• H∞-control

• H∞-filtering

Numerical simulations have shown the usefulness and applicability of the procedures for both

the H2 and H∞ control problems. In both cases it could be shown that both methods lead to a

controller able to stabilize the system while achieving a minimal cost for the given detection

probabilities. As for the filtering case, due to its numerical complexity no results have been

obtained yet.

Different from other existing works, the approach considered in this paper allows the simu-

lation of the system and gives a clear answer on the nature of the detector, since the joint process

formed by the Markov parameter and detector parameter is an exponential hidden Markov pro-

cess. As shown, the formulation encompasses the cases with perfect information, no informa-

tion, the cases considered in [2, 63, 64, 88], and a continuous-time clustering information case,

which was analyzed in ([30]) for discrete-time MJLS. In contrast to the results in [88, 64, 63],

which either do not deal with the control design problem ([88, 64]) or present necessary con-

ditions for the existence of a stabilizing feedback control law and a computational algorithm

which relies on the limiting behavior of the solutions of some Riccati-like and covariance-like

equations ([63], Chapter 8), the design procedures can be readily implemented using available

LMI toolboxes. Moreover the controller obtained in our LMI formulation depends only on the
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information coming from the detector and thus can be implemented in real applications, unlike

the LMI controller design formulation presented in [2], which depends on both the detector

information and the jump parameter.

H2-control For the H2-control case two formulations have been presented, one based on the

controllability gramian and one on observability gramian. The solution based on the control-

lability gramian is computationally more expensive and has no guarantee of convergence. As

expected for the primal case, by an appropriate choice of the parameter ζ it is possible to reach

H2 costs close to the optimal costs for the perfect information case.

H∞-control In this monograph we have presented a new LMI based method for the design

of an H∞ output feedback controller for continuous time MJLS, with a detector subject to false

detections. It is assumed that the joint process formed by the Markov parameter θ(k) and the

detector information θ̂ (k) is an exponential hidden Markov model. Theorem 7.1 provides a

sufficient LMI condition for the existence and design of an output feedback controller as in

(4.5) with an H∞ guaranteed upper bound norm, which was numerically evaluated in Section

7.2.

Filtering For the filtering problem this monograph presented a new LMI based method

which followed the idea of [79, 77], but as before the assumptions on the detector were different,

leading to a model which can be implemented and simulated. However, due to the numerical

complexity of this solution no simulational results have been derived for the example presented

in this work.

9.2 Open Problems

This monograph focuses on the open problem of stabilizing a MJLS where the information

about the mode of operation is subject to uncertainties. Aside from the core problem discussed

in this text there are extensions and problems worthy to be discussed in future works. Some

important ones are:

• Dynamic Output Feedback Control

• Numerical Evaluation

• Uncertainties and Robustness
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• Mixed H2/H∞ Control

These points are detailed below:

Dynamic output feedback control In this monograph only static output control has been

considered. The next natural step would be to extend the results to the dynamic case. For the

perfect information case results have been presented in [22, 17].

Evaluation The numerical evaluation of the design procedures for both the H2 and the H∞

case have been evaluated using a model of a simple process. This allows to show the most

important features and characteristics of the methods without unnecessary complexity. The

natural next step would be evaluating its performance using a model with more complexities or

even a small-scale plant.

Uncertainties and Robustness This work lays the basis to incorporate uncertainties about

the mode of operation into the model of MJLS. However, this is not the only possible source of

uncertainty. The model of the system is usually just an approximation of the real world system.

Which is why it is interesting to combine the approach presented with approaches incorporating

other uncertainties. Some approaches for other uncertainties are shown in [85, 97, 12] and

probably can be used as a starting point.

The mixed H2 H∞ case The mixed case is another possible extension, for systems without

uncertainties a result is shown in [17], and for cases where the transition matrix is not exactly

known [67] presented a result. This case would be a natural extension of the results presented

here since it combines optimality and robustness.



69

BIBLIOGRAPHY

[1] S. Aberkane and V. Dragan. Robust stability and robust stabilization of a class of

discrete-time time-varying linear stochastic systems. SIAM Journal on Control and

Optimization, 53(1):30–57, 2015.

[2] S. Aberkane, D. Sauter, and J. C. Ponsart. Output feedback robust control of uncertain

active fault tolerant control systems via convex analysis. International Journal of

Control, 81(2):252–263, 2008.

[3] S. Aberkane, D. Sauter, J.C. Ponsart, and D. Theilliol. H∞ stochastic stabilization of

active fault tolerant control systems: Convex approach. In 44th IEEE Conference on

Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC ’05.,

pages 3783–3788, Dec 2005.

[4] J. Ackermann. Robust Control: The Parameter Space Approach (Communications and

Control Engineering). Springer, 2002.

[5] Backblaze. Hard drive reliability statistics:

https://www.backblaze.com/b2/hard-drive-test-data.html.

[6] A.L. Benjamin and J.H. Lala. Advanced fault tolerant computing for future manned

space missions. In Digital Avionics Systems Conference, 1997. 16th DASC.,

AIAA/IEEE, volume 2, pages 8.5–26–8.5–32 vol.2, Oct 1997.

[7] S.P. Bhattacharyya. Robust control under parametric uncertainty: An overview and

recent results. Annual Reviews in Control, pages 45–77, 2017.

[8] F. D. Bianchi, H. De Battista, and R. J. Mantz. Wind Turbine Control Systems -

Principles, Modelling and Gain Scheduling Design. Advances in Industrial Control.

Springer, 1 edition, 2007.

[9] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki. Diagnosis and Fault-Tolerant

Control. Springer, 2 edition, 2006.

[10] A. V. Borisov. Analysis and estimation of the states of special jump markov processes.

i. martingale representation. Autom. Remote Control, 65(1):44–57, January 2004.



70

[11] E. K. Boukas. Stochastic Switching Systems: Analysis and Design. Birkhäuser, 2006.
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APPENDIX A – ANALYSIS OF THE

LITERATURE

This chapter discusses the methods used for the quantitative literature and author analysis

which were presented in Chapter 2. For the analysis the publishers listed in Table 2 where

considered. To the author’s knowledge these incorporate the most important publications in the

field. All publishers’ websites were queried for the following terms:

• Markov Jump Linear System

• Markov Jump Linear Systems

• Markovian Jump Linear System

• Markovian Jump Linear Systems

All in all 3033 articles were gathered and analysed. All search results were stored in a database

for later analysis. After the initial import a manual cleanup of the database has been done to

eliminate duplicates both in the used keywords and in authors which were caused by different

spellings or the use of initials instead of given names. For these cleaned results the number of

publications per year was counted and plotted.

Name Number

Elsevier 593

IEEE 1530

Institution of Engineering and Technology (IET) 185

Society for Industrial & Applied Mathematics (SIAM) 9

Springer 262

Taylor and Francis 116

Wiley 323

Other 15

Sum 3033

Table 2: Publications per publisher
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APPENDIX B – THE BACKBLAZE DATA

The cloud-storage company Backblaze publishes daily data on the status of all the hard disk

drives (HDD) that have been used by the company [5] since April 2013. This dataset consists

of the data of 118269 drive with 2322729251 hours of operation. 6942 of these drives have

failed during operation.

The Data The dataset consists of daily data in various fields for every operational

hard-drive in the data center. For the following analysis only the following fields are of interest:

serialnumber The serial number is unique and used to separate the observations.

model All serial numbers belonging to one model are grouped.

failure This field is set to one if a hard disk fails. There exists no exact a definition of failure,

but the result is a replacement of the hard disk in question.

smart 9 raw This field contains the uptime of the HDD in hours, as the statistics are collected

once per day this data has an accuracy of about 24 hours.

The data has to be considered as censored data, as most of the disks haven’t failed yet, which is

also a result of the fact that the number of drives is permanently changing and some disks are

retired before they fail. From the total of 118269 drives registered in the database only 88388

were in use by the end of September 2017.

Analysis For the analysis the language R [72] is used together with the fitdrplus package

[29]. The failed drives are divided into 99 different models. For models with more than 100

disks in use, the corresponding numbers are listed in table 3. It can be noted that the

failure-ratio varies widely across the different models which is why each model is discussed

separately. In the following pages all models with more than 100 failed disks are examined. To



80

exclude outliers, disks with an uptime of more than 10 years or empty smart 9 raw values

have been excluded.

The analysis is carried out in two different steps: First the censored data (the disks which have

not failed yet) is dismissed and for the remaining data a Cullen and Frey [21] graph is plotted.

To improve the result, bootstrapped values [35, 15] are also included in the graphs. In a second

step the packages functions for censored-data are used and all data is analysed and plotted as a

distribution. If the disk has not failed yet, the latest uptime will be used as a lower bound.

Hence the data will be considered as interval-censored data and plotted as a horizontal line. In

all cases it can be visually seen that the exponential distribution is highly unlikely to be a good

fit for any model, even though the distributions show much variation between the

manufacturers. The Seagate ST drives all show a similar distribution which looks very much

like a log-normal function, especially the ST3000DM001 which is the model with the highest

percentage of failures. For the other manufacturers the data is not that obvious, but based on

this data the exponential distribution can be ruled out and so does the applicability of MJLS for

this scenario.
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Model Number of Disks Number of Failures

ST4000DM000 36944 2635

HGST HMS5C4040BLE640 16309 128

ST8000NM0055 14449 44

ST8000DM002 9995 113

HGST HMS5C4040ALE640 8699 130

Hitachi HDS722020ALA330 4774 229

ST3000DM001 4707 1708

Hitachi HDS5C3030ALA630 4664 147

Hitachi HDS5C4040ALE630 2719 86

ST31500541AS 2188 397

ST6000DX000 1938 58

WDC WD30EFRX 1331 168

ST10000NM0086 1220 0

Hitachi HDS723030ALA640 1048 73

ST500LM012 HN 807 38

ST31500341AS 787 216

WDC WD10EADS 550 64

WDC WD30EZRX 500 22

WDC WD60EFRX 499 58

ST4000DM001 424 24

ST32000542AS 385 33

ST33000651AS 351 31

WDC WD5000LPVX 350 37

TOSHIBA MQ01ABF050 348 7

ST4000DX000 222 77

WDC WD20EFRX 167 15

TOSHIBA MD04ABA400V 150 4

TOSHIBA MQ01ABF050M 140 0

WDC WD1600AAJS 125 19

HGST HDS5C4040ALE630 118 5

ST1500DL003 116 90

WDC WD10EACS 109 8

Table 3: Data of Backblaze Dataset
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HGST HMS5C4040ALE640
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